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Introducción

La noción de M -ideal fue introducida por E. M. Alfsen y E. G. Effros en su art́ıculo

Structure in real Banach spaces publicado en 1972. La teoŕıa de M -ideales surge al querer

extender la noción de ideal bilátero interno de un álgebra de Banach a un espacio de Banach

general. Esta estructura nos permite un mejor entendimiento de la geometŕıa de un espacio

de Banach en términos de la geometŕıa y las propiedades de la bola unidad cerrada de su

espacio dual. Más concretamente, un subespacio cerrado J de un espacio de Banach X se

dice un M-ideal en X, si su espacio anulador J⊥, es la imágen de una proyección P del

espacio dual tal que ‖x∗‖ = ‖P (x∗)‖+ ‖x∗ −P (x∗)‖, para todo x∗ ∈ X∗. Cuando J es un

M -ideal en X, el complemento canónico de J⊥ en X∗ se identifica (isométricamente) con

J∗. Aśı, podemos escribir X∗ = J⊥ ⊕1 J
∗, igualdad que, de alguna manera, muestra que

en la bola unidad de X subyace una estructura de norma supremo que está cercánamente

relacionada con J . Cuando X se descompone como J ⊕∞ J̃ , para J̃ algún subespacio

cerrado de X, se dice que J es un M-sumando de X. Claramente, los M -sumandos son

M -ideales, pero existen sutiles diferencias entre estas dos nociones. Por ejemplo, c0 es

un M -ideal en ℓ∞ y no en un M -sumando. Desde su surgimiento, la estructura de M -

ideales ha sido muy estudiada. Nuestro trabajo se basa fuertemente en la monograf́ıa de

Hardmand, Werner and Werner [HWW], donde se encuentran los principales desarrollos

de esta teoŕıa.

En estas notas presentamos algunos conceptos básicos de la estructura de M -ideales,

introducimos las propiedades más relevantes que nos permiten asegurar la presencia de

M estructura en espacios clásicos y mostramos como impacta esta teoŕıa en espacios de

funciones no lineales, más espećıficamente en especios de polinomios homogéneos definidos

sobre un Banach.

El trabajo se divide en cuatro partes. El Caṕıtulo 1 es introductorio. Presentamos

propiedades deM -ideales haciendo hincapié en su descripción e impacto geométrico. Mos-

tramos (Teorema 1.2.3) que es equivalente que un subespacio cerrado sea un M -ideal de

X a que se verifique la 3-ball property, una propiedad que involucra intersección de tres

bolas en el espacio X. La fuerza de este resultado radica en que se puede constatar que

un subespacio es un M -ideal a través de la estructura del espacio y no del espacio dual.

Como aplicación damos un primer ejemplo de M -ideal no trivial (Ejemplo 1.2.6).
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Gelfand y Naimark probaron que toda C∗−álgebra es isométricamente ∗-isomorfo a la
∗−álgebra formada por los operadores acotados de algún espacio de Hilbert H. En este

caso, el único ideal bilátero cerrado es K(H), el subespacio de los operadores compactos.

Esto genera un interés en saber cuándo los operadores compactos forman un M -ideal en

el conjunto de los operadores acotados. Este problema es tratado en el Caṕıtulo 2, en el

que se estudia el caso particular en el que X es un espacio de Lorentz.

En el Caṕıtulo 3 presentamos dos propiedades; la propiedad (M) y la propiedad (M∗).

Éstas, en conjunto con las aproximaciones compactas achicantes de la identidad, permiten

caracterizar cuándo los operadores compactos forman un M -ideal dentro del conjunto de

los operadores acotados (Teorema 3.2.3).

Por último, el Caṕıtulo 4 está dedicado a resultados novedosos sobre la estructura de

M -ideales, en espacios donde las funciones no son lineales. Trabajamos sobre el art́ıculo

reciente de V. Dimant [Dv] estudiando el espacio de polinomios homogéneos definidos sobre

un espacio de Banach. Para ésto, como primer paso, introducimos las nociones básicas

de la teoŕıa de polinomios homogéneos. Como consecuencia de estar trabajando sobre

espacios de dimensión infinita, aparecen naturalmente distintas subclases de polinomios,

que también presentamos. Entre estas clases se encuentran las de los polinomios de tipo

finito, los aproximables, los débil continuos sobre conjuntos acotados del espacio y los débil

secuencialmente continuos.

Al cambiar del contexto de operadores al de polinomios homogéneos, el rol que jue-

gan los operadores compactos suelen jugarlo los polinomios débil continuos en acotados

(Proposición 4.2.9). Esto da sentido al problema de estudiar cuándo los polinomios débil

continuos en acotados forman un M -ideal en el espacio de los polinomios homogéneos.

Al trabajar con espacios de polinomios veremos que varias propiedades que cumplen los

operadores acotados son preservadas (Proposiciones 4.3.1 y 4.3.2). En este contexto la falta

de linealidad y, más precisamente, el grado de homogemneidad, tienen un protagonismo

importante. De hecho, (Corolario 4.3.9) mostramos que existe un único valos de n para

el cual los polinomios débil continuos en acotados pueden ser un M -ideal no trivial. Este

valor de n, depende del espacio de Banach dominio X y es llamado el valor cŕıtico de X.

Terminamos esta monograf́ıa, dando una extensión de las definiciones de Propiedad

(M) y Propiedad (M∗) al caso polinomial y presentando una versión (para el caso ho-

mogéneo) de las equivalencias del Teorema 3.2.3 (Teorema 4.5.3).



Caṕıtulo 1

M-ideales en espacios de Banach

En este trabajo, consideramos espacios de Banach sobre K donde K denota el cuerpo

de números reales o complejos. Dado un espacio de Banach X, BX y SX denotarán,

respectivamente, la bola unidad cerrada y la esfera unitaria de X. Si x ∈ X y r > 0,

B(x, r) denota la bola cerrada de centro x y radio r. Por otra parte, X∗ denota el espacio

dual de X y X∗∗ su bidual. Dado x ∈ X, x̂ representa el elemento de X∗∗ definido

por x̂(ϕ) = ϕ(x) para cada ϕ ∈ X∗∗. Usamos w y w∗ para notar las topoloǵıas débil y

débil-* respectivamente. Recordamos el teorema de Banach-Alaoglu que nos asegura que

(BX∗ , w∗) es compacto para todo espacio de Banach X.

DadosX e Y espacios de Banach notamos por L(X,Y ) al espacio de operadores lineales

y continuos de X a Y dotado de la norma supremo y por K(X,Y ) al subespacio de los

operadores compactos.

Nuestros primeros ejemplos serán contrúıdos sobre espacios clásicos de sucesiones, a

los que notaremos de manera usual. Entre éstos se encuentran:

c0 = {(an)n ⊂ K : ĺım an = 0}

y

ℓ∞ = {(an)n ⊂ K : (|an|)n es acotada},

ambos dotados con la norma supremo, ‖(an)‖∞ = supn |an|. También, con 1 ≤ p < ∞,

apelaremos frecuentemente al espacio

ℓp = {(an)n ⊂ K :

∞∑

n=1

|an|
p <∞},

con su norma usual ‖(an)‖p =
(∑∞

n=1 |an|
p
) 1

p
. Para estos espacios en denota el elemento

cuyas coordenadas son todas nulas salvo la n-ésima donde toma el valor 1.

Con esta notación, X ⊕p Y será la suma directa de dos espacios de Banach X e Y

equipada con la norma de ℓp, es decir, si z ∈ X ⊕p Y , entonces z tiene una única escritura

en la forma z = x+ y con x ∈ X e y ∈ Y y además ‖z‖ = (‖x‖p + ‖y‖p)
1
p .
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1.1. Teoŕıa Básica de M-ideales

1.1.1. Primeras definiciones

Para J subespacio de X, notamos J⊥ al subespacio de X∗ formado por aquellas fun-

ciones que se anulan sobre J y que llamamos anulador de J . Es decir:

J⊥ =: {x∗ ∈ X∗ : x∗(x) = 0, para todo x ∈ J}.

Un proyector es un operador continuo P : X → X tal que P 2 = P . El proyector se

dice contráctil si ‖P‖ = 1 y el subespacio Rg(P ) se dice 1-complementado. Notar que para

todo proyector P , se tiene ‖P‖ ≥ 1.

El concepto deM -ideal se puede expresar usando una clase especial de proyectores que

pasamos a definir.

Definición 1.1.1. Sea X un espacio de Banach.

(i) Un proyector P : X → X se dice M -proyector si para todo x ∈ X,

‖x‖ = máx{‖Px‖; ‖x− Px‖}.

(ii) Un proyector P : X → X se dice L-proyector si para todo x ∈ X,

‖x‖ = ‖Px‖+ ‖x− Px‖.

(iii) Un subespacio cerrado J ⊆ X se diceM -sumando (resp. L-sumando) si es la imagen

de un M -proyector (resp. L-proyector).

(iv) Un subespacio cerrado J ⊆ X se dice M -ideal si J⊥ es un L-sumando en X∗.

Todo espacio de Banach posee M -ideales triviales, J = {0} y J = X. Lo que nos

interesa saber es cuando un espacio de Banach X poseeM -ideales no triviales; aśı también

poder mostrar que no todo subespacio es unM -ideal. Esto último lo logramos en el Ejemplo

1.2.5 y en el Corolario 2.4.13.

Observación 1.1.2. En la definición, se podŕıa haber definido cuando un subespacio es

un L-ideal; sin embargo [HWW, Teorema 1.9] muestra que todo L-ideal es un L-sumando

y por lo tanto no estaŕıamos definiendo algo nuevo.

Notemos que todo M -proyector y L-proyector es contráctil.

Veamos que los L-proyectores están determinados por su núcleo y los M -proyectores

por su rango. Para esto necesitamos un lema previo.

Lema 1.1.3. Sea P : X → X un L-proyector, entonces para todo x ∈ X, existe un único

y ∈ kerP tal que ‖x− y‖ = ı́nf
z∈kerP

‖x− z‖ = d(x, ker(P )).
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Demostración. Veamos que y = x − Px nos da la existencia. Si z ∈ kerP tenemos que

‖x− y‖ = ‖Px‖ = ‖P (x− z)‖ ≤ ‖P‖‖x− z‖ ≤ ‖x− z‖. Luego,‖x− y‖ ≤ ı́nf
z∈kerP

‖x− z‖.

Además, como y ∈ kerP , obtenemos la igualdad.

Supongamos entonces que existe otro ỹ ∈ kerP tal que ‖x− ỹ‖ = ı́nf
z∈kerP

‖x− z‖.

Como P es un L-proyector e ỹ ∈ kerP , tenemos que ‖x − ỹ‖ = ‖P (x)‖ + ‖y − ỹ‖. Pero

entonces,

‖P (x)‖+ ‖y − ỹ‖ = ‖x− ỹ‖ = ‖x− y‖ = ‖Px‖+ ‖x− y − Px‖ = ‖Px‖.

Luego, ‖y − ỹ‖ = 0 y por lo tanto y = ỹ.

Proposición 1.1.4.

(i) Sean P , Q L-proyectores tales que ker(P ) = ker(Q) entonces P = Q.

(ii) Sean P , Q M -proyectores tales que Rg(P ) = Rg(Q) entonces P = Q.

Demostración. Probemos (i): Sea x ∈ X, queremos probar que Qx = Px. Por el lema

previo, existe un único y ∈ ker(P ) tal que ‖x− y‖ = ı́nf
z∈ker(P )

‖x− z‖, más aún, y = x−Px.

Ahora, para x ∈ X se tiene que

‖x− (x−Qx)‖ = ‖Qx‖
= ‖Q(x− (x− Px))‖
≤ ‖Q‖.‖Px‖
≤ ‖Px‖
= ‖x− (x− Px)‖.

Donde la segunda igualdad se debe a que x−Px ∈ Ker(P ) = Ker(Q). Luego, x−Qx

es una apoximación de x tan buena como x− Px, que es la mejor, y por la unicidad de y

resulta que x−Qx = x− Px como queŕıamos ver.

Para probar (ii) usamos que ker(P ∗) = Rg(P )⊥ = Rg(Q)⊥ = ker(Q∗) y, por lo tanto,

siendo P ∗ y Q∗ L-proyectores, podemos usar (i) para concluir que P ∗ = Q∗ . Como X∗

separa puntos de X, se tiene que P = Q.

Corolario 1.1.5. Sea J un M -sumando (resp. L-sumando) de X, entonces existe un

único M -proyector (resp. L-proyector) P tal que Rg(P ) = J .

Observación 1.1.6. Si J es un M -sumando y P es el M -proyector cuya imagen es

J , podemos escribir X = J ⊕∞ Ĵ para algún Ĵ ⊆ X subespacio cerrado. Más aún, por

Corolario 1.1.5, Ĵ resulta ser único. (En efecto, Ĵ = Rg(I − P )).

De la misma forma, si J es un M -ideal, existe un único Ĵ⊥ tal que X∗ = J⊥ ⊕1 Ĵ
⊥

La rećıproca también es fácil de ver; si X = J ⊕∞ Ĵ entonces J es un M -sumando y si

X∗ = J⊥ ⊕1 Ĵ
⊥ entonces J es un M -ideal.
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El siguiente lema, da una relación entre M -ideales y M -sumandos, mostrando que uno

es un caso particular del otro.

Lema 1.1.7. Todo M -sumando es un M -ideal.

Demostración. Sea J un M -sumando de X. Entonces X = J ⊕∞ Ĵ . Luego, si ϕ ∈ X∗ y

x ∈ X, escribimos x = x1 + x2 con x1 ∈ J y x2 ∈ Ĵ y ϕ(x) = ϕ(x1) + ϕ(x2). Si definimos

ϕ2(x) =: ϕ(x1) y ϕ1(x) =: ϕ(x2) tenemos que ϕ1 ∈ J⊥, ϕ2 ∈ Ĵ⊥ y ϕ = ϕ1 + ϕ2.

Además, J⊥ ∩ Ĵ⊥ = 0. Si vemos que ‖ϕ‖ = ‖ϕ1‖ + ‖ϕ2‖, entonces X
∗ = J⊥ ⊕1 Ĵ

⊥ y J

resulta un M -ideal.

Sea x ∈ BX , como X = J ⊕∞ Ĵ existe x1 ∈ BJ , x2 ∈ B
Ĵ
tal que x = x1 + x2. Aśı,

se tiene que |ϕ(x)| ≤ |ϕ(x1)| + |ϕ(x2)| = |ϕ1(x)| + |ϕ2(x)| ≤ ‖ϕ1‖ + ‖ϕ2‖ por lo que

‖ϕ‖ ≤ ‖ϕ1‖+ ‖ϕ2‖.

Rećıprocamente, sean x1 ∈ BJ , x2 ∈ B
Ĵ
y sean θ1, θ2 ∈ R tales que |ϕ1(x1)| = eiθ1ϕ(x1)

y |ϕ2(x2)| = eiθ2ϕ(x2). Entonces tenemos,

|ϕ1(x1)|+ |ϕ2(x2)| = ϕ(eiθ1x1 + eiθ2x2)
≤ ‖ϕ‖.

Como esto pasa para todo x1 ∈ BJ y x2 ∈ B
Ĵ
, se obtiene la otra desigualdad.

Resta preguntarse si vale la vuelta. Es cierto que todo M -ideal es un M -sumando? El

siguiente ejemplo responde esta pregunta en forma negativa.

Ejemplo 1.1.8. Existen M -ideales que no son M -sumandos, basta considerar J = c0

en X = ℓ∞.

En efecto, como c0 no esta complementado en ℓ∞ se tiene que J no puede ser un M -

sumando. Por otro lado J es un M -ideal y para probarlo usaremos la 3-ball property

que demostraremos más adelante. La misma asegura que si un subespacio J verifica que

∀y1, y2, y3 ∈ BJ , x ∈ BX y ε > 0 existe y ∈ J tal que para todo i = 1, 2, 3,

‖x+ yi − y‖ ≤ 1 + ε,

entonces J es un M -ideal en X.

Veamos que esto ocurre para c0 ⊆ ℓ∞. En efecto, dados y1, y2, y3 ∈ Bc0 , x ∈ Bℓ∞ y ε > 0;

elegimos n0 tal que para todo n ≥ n0, |yn(i)| ≤ ε para todo i = 1, 2, 3. Aśı, si x =

(x1, x2, x3, . . .), elegimos

y = (x1, . . . , xn0 , 0, 0, . . .).

Claramente y ∈ c0 y tenemos que

x+ yi − y = (yi(1), . . . , yi(n0), xn0+1, . . .) + (0, . . . , 0, yi(n0 + 1), . . .).

Por lo tanto

‖x+ yi − y‖ ≤ 1 + ε

para todo i = 1, 2, 3.
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Proposición 1.1.9. Sea J ⊆ X un M -ideal. Entonces, todo y∗ ∈ J∗ tiene una única

extensión a una funcional x∗ ∈ X∗ tal que ‖x∗‖ = ‖y∗‖.

Demostración. Como J es un M -ideal en X, tenemos que J⊥ es un L-sumando en X∗.

Luego, podemos escribir X∗ = J⊥ ⊕1 J̃ para algún J̃ ⊆ X∗.

Podemos identificar más expĺıcitamente a J̃ mediante isomorfismos isométricos,

J∗ ∼= X∗/J⊥ ∼= J̃ . (1.1)

Llamemos T1 : J∗ → X∗/J⊥ y T2 : J̃ → X∗/J⊥ las isometŕıas que a cada funcional le

toma su clase en el cociente X∗/J⊥.

Probemos entonces la proposición.

Sea y∗ ∈ J∗ y consideremos x∗ = T−1
2 T1y

∗. Veamos que x∗ es una extensión de y∗. Como

T2(x
∗) = T1(y

∗), ambas funcionales tienen la misma clase enX∗/J⊥. Entonces x∗−y∗ ∈ J⊥

y por lo tanto x∗ coincide sobre J con y∗.

Como T1 y T2 son isometŕıas, por (1.1), podemos indentificar Ĵ = {z∗ ∈ X∗ : ‖z∗‖ =

‖z∗
∣∣
J
‖}, y por lo tanto, ‖x∗‖ = ‖x∗

∣∣
J
‖ = ‖y∗‖. La unicidad de x∗ se obtiene al ser T1, T2

funciones biyectivas.

Observación 1.1.10. La proposición anterior, nos permite ver a J∗ como un subespacio

de X∗. Con esto, cuando J es un M -ideal en X, podemos escribir X∗ = J⊥ ⊕1 J
∗.

En [HWW, Proposición 1.7] se muestran condiciones para saber si un espacio X solo

posee M -ideales o L-sumandos triviales. En el siguiente teorema muestra que para la

mayoŕıa de los espacios, no pueden convivir las estructuras de M -ideales y L-sumandos al

mismo tiempo.

Teorema 1.1.11. Sea X un espacio de Banach que no es isométrico a ℓ∞(2) =: R⊕∞R.

Entonces, X no contiene M -ideales y L-sumandos no triviales al mismo tiempo.

Demostración. Supongamos que el enunciado es falso y veamos que dimX∗ = 2. Con esto

estaremos viendo que X es un espacio de dimensión dos que tiene unM -sumando no trivial

(de dimension 1) y por lo tanto, X será isométrico a ℓ∞(2) lo que nos dará un absurdo.

Por hipótesis, podemos descomponer de forma no trivial X∗ = G⊕∞ Ĝ = Y ⊕1 Ŷ . Nuestro

objetivo será ver que tanto Y como Ŷ son unidimensionales.

Sea P : X∗ → X∗ el M -proyector cuya imagen es G y sea π : X∗ → X∗ el L-proyector

cuya imagen es Y . Veamos que G ∩ Y = {0}.

Supongamos que existe u ∈ G ∩ Y , ‖u‖ = 1 y tomemos x ∈ Ĝ, ‖x‖ = 1; entonces

‖u± x‖ = 1 y por lo tanto, siendo π(u) = u tenemos que

2 = ‖u+ x‖+ ‖u− x‖
= ‖π(u+ x)‖+ ‖u+ x− π(u+ x)‖+ ‖π(u− x)‖+ ‖u− x− π(u− x)‖
= ‖u+ πx‖+ ‖x− πx‖+ ‖u− πx‖+ ‖πx− x‖
≥ 2‖u‖+ 2‖x− πx‖
= 2 + 2‖x− πx‖.
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Con esto se tiene que x = πx ∈ Y . Luego Ĝ ⊆ Y . En particular Ĝ ∩ Y 6= {0} y por

lo tanto, podemos volver a aplicar el mismo razonamiento para G e Y para probar que

G ⊆ Y . Aśı X∗ = Y lo que es absurdo pues Ŷ era subespacio propio no vaćıo. Por lo

tanto, G ∩ Y = 0 y por la misma razón debe ser Ĝ ∩ Y = 0.

Ahora, supongamos que existe Y0 ⊆ Y subespacio de dimensión 2. Como Ĝ ∩ Y = 0 se

tiene que P
∣∣
Y0

es inyectivo. En efecto, si para algún y0 ∈ Y0, P (y0) = 0, se tiene que

y0 ∈ Y ∩ ker(P ) = Y ∩ Ŷ = 0.

Con todo esto, G0 =: P (Y0) es un subespacio de dimensión 2. Por el Teorema de Mazur

[H] G0 contiene un punto de diferenciación z, es decir, ‖z‖ = 1 y

l(x) =: ĺım
h→0

1

h
(‖z + hx‖ − 1)

existe para todo x ∈ G0. Notemos que con esto estamos diciendo que N =: ‖.‖ es una fun-

ción diferenciable en z. Por lo tanto, l(x) es derivada direccional de N en z en la dirección

de x. Luego, l(x) = 〈∇N(z), x〉 y por lo tanto l es lineal. Si pensamos a l : G0 → R, como

G0 tiene dimensión 2, podemos encontrar x ∈ G0, ‖x‖ = 1 tal que l(x) = 0.

Como ‖z‖ = 1 y z ∈ G0 = P (Y0) podemos escribir z = Py
‖Py‖ con ‖y‖ = 1, y ∈ Y0.

Veamos que

ĺım
h→0

‖y + hx‖ − 1

h
= 0.

Para probar esto, notemos que como x ∈ G0 ⊆ Rg(P ) se tiene que

‖y + hx‖ = máx{‖Py + hx‖; ‖y − Py‖}.

Además,

1 = ‖y‖ = máx{‖Py‖; ‖y − Py‖}.

Ahora, si ‖Py‖ < 1 se tiene que ‖y−Py‖ = 1 y, para h suficientemente chico, ‖Py+hx‖ < 1

y por lo tanto

‖y + hx‖ = ‖y − Py‖ = 1.

Si ‖Py‖ = 1 y ‖y − Py‖ < 1, entonces z = Py y, por lo tanto, para h suficientemente

chico

‖y + hx‖ = ‖Py + hx‖ = ‖z + hx‖.

Si 1 = ‖Py‖ = ‖y − Py‖ entonces

‖y + hx‖ = máx{‖z + hx‖; 1}.

En cualquiera de los tres casos, se obtiene ĺımh→0
‖y+hx‖−1

h
= 0 como queŕıamos ver.

Luego, si h > 0 tenemos, para y ∈ Y0, que
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‖y + hx‖ = ‖y + hπx‖+ h‖x− πx‖,

‖y − hx‖ = ‖y − hπx‖+ h‖x− πx‖.

Observando que

‖y + hπx‖+ ‖y − hπx‖ ≥ 2‖y‖ = 2,

tenemos

‖y + hx‖+ ‖y − hx‖ = 2h‖x− πx‖+ ‖y + hπx‖+ ‖y − hπx‖ ≥ 2h‖x− πx‖+ 2

y podemos concluir que

‖y + hx‖ − 1

h
+

‖y − hx‖ − 1

h
≥ 2‖x− πx‖.

Tomando ĺımite para h→ 0+, se obtiene que x = πx ∈ Y . Pero entonces x ∈ G ∩ Y y

x 6= 0 lo cual es un absurdo y por lo tanto dimY = 1.

Observación 1.1.12. No es dif́ıcil ver que X = ℓ∞(2) posee M -ideales y L-sumandos no

triviales. Basta tomar I = {(s, t)/s = 0} y J = {(s, t)/s− t = 0}

En efecto, es claro que I es un M -sumando y por lo tanto, un M -ideal. Para ver que

J es un L-sumando, notamos que

(s, t) =
s− t

2
(1,−1) +

s+ t

2
(1, 1)

y

máx{|s|, |t|} =
|s− t|

2
+

|s+ t|

2
= ‖

s− t

2
(1,−1)‖∞ + ‖

s+ t

2
(1, 1)‖∞.

1.2. 3-ball property

Hasta el momento hemos dado una primera visión sobreM -ideales yM -sumandos y los

relacionamos entre śı. Sin embargo, para dar un ejemplo deM -ideal no trivial o que no sea

un M -sumando, usamos una propiedad que llamamos la 3-ball property. Esta herramienta

resulta ser muy útil y nos da equivalencias para decidir cuándo un subespacio J es un

M -ideal de un espacio X. Antes, necesitamos un par de lemas. El primero, requiere la

noción de ε-isometŕıa; es decir, un operador inversible T tal que ‖T‖‖T−1‖ ≤ 1 + ε, para

ε > 0.

Lema 1.2.1. (Principio de reflexividad local) Sea X un espacio de Banach y sean E ⊆ X∗∗

y F ⊆ X∗ subespacios de dimensión finita. Entonces, para cada 0 < ε < 1 existe una

ε-isometŕıa T : E −→ X verificando
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(i) T (x̂) = x para todo x ∈ E ∩X.

(ii) < x∗;T (x∗∗) > = < x∗∗;x∗ > para todo x∗∗ ∈ E y todo x∗ ∈ F .

Una demostración de este hecho se puede ver en [AK, Teorema 11.2.4.].

Lema 1.2.2. Sea J ⊆ X un M -sumando y sea (Bi)i∈I una colección de bolas cerradas en

X tales que
⋂
iBi 6= ∅ y Bi ∩ J 6= ∅ para todo i; entonces

⋂
iBi ∩ J 6= ∅.

Demostración. Sean xi ∈ X, ri > 0 tales que Bi = B(xi, ri). Como J es un M -sumando

en X, podemos descomponer X = J ⊕∞ R, con R subespacio cerrado. Sea P : X → J la

M -proyección asociada a J y sea x ∈
⋂
iBi. Afirmamos que Px ∈

⋂
iBi ∩ J . En efecto,

sabemos que Px ∈ J . Para cada i, tomamos yi ∈ Bi ∩ J , entonces tenemos que

ri ≥ ‖xi − yi‖
= ‖(Pxi − yi)︸ ︷︷ ︸

∈J

+(xi − Pxi)︸ ︷︷ ︸
∈R=kerP

‖

= máx{‖Pxi − yi‖; ‖xi − Pxi‖}
≥ ‖xi − Pxi‖.

Luego, como ‖Px− Pxi‖ ≤ ‖P‖‖x− xi‖ = ‖x− xi‖ ≤ ri, se tiene que

‖Px− xi‖ = máx{‖Px− Pxi‖; ‖Pxi − xi‖} ≤ ri.

Luego, Px ∈ B(xi, ri) para todo i y se tiene el resultado.

Teorema 1.2.3. (3-ball property) Sea J ⊆ X un subespacio cerrado. Las siguientes afir-

maciones son equivalentes.

(i) J es un M -ideal en X.

(ii) (La n-ball property) Dado n ∈ N. Para cada familia B1, . . . , Bn de bolas cerradas,

Bi = B(xi, ri), tales que
⋂
iBi 6= ∅ y Bi ∩ J 6= ∅ para todo i = 1, . . . , n, se tiene que

⋂
iB(xi, ri + ε) ∩ J 6= ∅ para todo ε > 0.

(iii) (La 3-ball property) Igual que (ii) con n = 3.

(iv) (La 3-ball property restringida) Dados y1, y2, y3 ∈ BJ , x ∈ BX y ε > 0, existe y ∈ J

tal que ‖x+ yi − y‖ ≤ 1 + ε para todo i = 1, 2, 3.

(v) (La n-ball property estricta) Dado n ∈ N. Para cada familia B1, . . . , Bn de bolas

cerradas, tales que (
⋂
iBi)

◦ 6= ∅ y Bi ∩ J 6= ∅ para todo i = 1, . . . , n, se tiene que
⋂
iBi ∩ J 6= ∅.
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Demostración. (i) ⇒ (ii): Sea n ∈ N y sean Bi =: B(xi, ri) i = 1, . . . , n bolas cerradas

en las condiciones de (ii). Como J es M -ideal, entonces J⊥ es L-sumando en X∗, es

decir, X∗ = J⊥ ⊕1 J
∗; y por lo tanto, J⊥⊥ es M -sumando en X∗∗. Además, tenemos que

⋂
iB(x̂i, ri) 6= ∅ y B(x̂i, ri) ∩ J

⊥⊥ 6= ∅ para todo i = 1, . . . , n pues ∩Bi 6= ∅ y Bi ∩ J 6= ∅

para todo i = 1, . . . , n. Aśı, por Lema 1.2.2, existe x∗∗0 ∈
⋂
iB(x̂i, ri) ∩ J

⊥⊥.

Supongamos que (ii) es falso, luego, existe ε > 0 tal que siD =:
⋂
iB(xi, ri+ε), entoncesD

y J tienen distancia positiva. Al ser D convexo y J subespacio cerrado; podemos separarlos

estrictamente. Esto es, por Hahn-Banach, existen ϕ ∈ X∗ y γ > 0 tales que ϕ(x) = 0 para

todo x ∈ J (ϕ ∈ J⊥) y γ ≤ Re(ϕ(y)) para todo y ∈ D.

Sean F =: [ϕ], E =: [x∗∗0 , x̂1, . . . , x̂n] y δ = mı́n{ ε
ri
}. Por el principio de reflexividad local,

existe una δ-isometŕıa T : E −→ X tal que ‖T−1‖ = 1, ‖T‖ ≤ 1 + δ y

T (x̂i) = xi para todo i = 1, . . . , n.

< ϕ;T (x∗∗0 ) > = < x∗∗0 ;ϕ >.

Afirmamos que Tx∗∗0 ∈ D. En efecto,

‖Tx∗∗0 − xi‖ = ‖Tx∗∗0 − T x̂i‖
≤ ‖T‖‖x∗∗0 − x̂i‖
≤ (1 + δ)ri
≤ ri + ε.

Con esto, 0 < γ ≤ Re(< ϕ, Tx∗∗0 >) = Re(< x∗∗0 , ϕ >). Como x∗∗0 ∈ (J⊥)⊥ y ϕ ∈ J⊥,

tenemos una contradicción.

Es evidente que (ii) ⇒ (iii). Veamos que (iii) implica (iv).

Dados y1, y2, y3, x y ε > 0 como en el enunciado, consideramos Bi =: B(x + yi, 1).

Aśı, x ∈
⋂
iBi y yi ∈ Bi ∩ J para todo i = 1, 2, 3 y por lo tanto, por (iii) existe

y ∈
⋂
iB(x+ yi, 1 + ε) ∩ J que cumple lo pedido.

(iv) ⇒ (i): Debemos probar que existe un subespacio cerrado R ⊆ X∗ tal que X∗ =

J⊥ ⊕1 R. Más aún, probaremos que R = J∗ = {x∗ ∈ X∗ : ‖x∗‖ = ‖x∗
∣∣
J
‖}. Veamos que se

tienen las siguientes afirmaciones.

(a) Todo x∗ ∈ X∗ se puede descomponer en la forma x∗ = x∗1 + x∗2 con x∗1 ∈ J⊥ y

x∗2 ∈ J∗, con escritura única.

(b) ‖x∗1 + x∗2‖ = ‖x∗1‖+ ‖x∗2‖ para todo x∗1 ∈ J⊥ y x∗2 ∈ J∗.

(c) J∗ es subespacio cerrado de X∗.
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Dado x∗ ∈ X∗ consideramos x∗2 una extensión por Hahn-Banach de x∗
∣∣
J
y tomamos

x∗1 =: x∗ − x∗2, de donde x∗ = x∗1 + x∗2 como en (a).

Para poder ver la unicidad de la escritura, necesitamos primero probar (b).

Para ver (b), basta mostrar que ‖x∗1 + x∗2‖ ≥ ‖x∗1‖+ ‖x∗2‖, si x
∗
1 ∈ J⊥ y x∗2 ∈ J∗.

Sea ε > 0 y sean x ∈ BX y z ∈ BJ tales que x∗1(x) y x
∗
2(z) son reales y además vale

x∗1(x) ≥ ‖x∗1‖ − ε,

x∗2(z) ≥ ‖x∗2‖ − ε.

Por (iv) tenemos que existe y ∈ J tal que ‖x± z − y‖ ≤ 1 + ε y, por lo tanto,

(1 + ε)(‖x∗1 + x∗2‖+ ‖x∗1 − x∗2‖) ≥
∣∣(x∗1 + x∗2)(x+ z − y) + (x∗1 − x∗2)(x− z − y)

∣∣
= 2

∣∣x∗1(x) + x∗2(z)
∣∣

≥ 2‖x∗1‖+ 2‖x∗2‖ − 4ε
≥ ‖x∗1‖+ ‖x∗2‖+ ‖x∗1 − x∗2‖ − 4ε.

El resultado se obtiene haciendo tender ε a 0.

Ahora, supongamos que x∗1 + x∗2 = y∗1 + y∗2 con x∗1, y
∗
1 ∈ J⊥ y x∗2, y

∗
2 ∈ J∗; entonces

x∗2 = (y∗1−x
∗
1)+y

∗
2 ∈ J⊥+J∗ y como x∗1, y

∗
1 ∈ J⊥, se tiene que x∗2

∣∣
J
= y∗2

∣∣
J
. Aśı, por lo visto

en (b) se tiene que ‖x∗2‖ = ‖y∗1 − x∗1‖+ ‖y∗2‖ = ‖y∗1 − x∗1‖+ ‖y∗2
∣∣
J
‖ = ‖y∗1 − x∗1‖+ ‖x∗2

∣∣
J
‖ =

‖y∗1 − x∗1‖+ ‖x∗2‖ y por lo tanto ‖y∗1 − x∗1‖ = 0. Luego, la descomposición en (a) es única.

Por último, probemos (c). Como la convergencia de puntos de un espacio de Banach,

implica la convergencia de sus normas, tenemos que J∗ = {ϕ/‖ϕ‖ = ‖ϕ
∣∣
J
‖} es cerrado.

Además, si ϕ ∈ J∗, λϕ ∈ J∗ para todo λ escalar. Veamos entonces que es cerrado para

la suma. Sean x∗, y∗ ∈ J∗ y sean x∗1 ∈ J⊥, x∗2 ∈ J∗ únicos tales que x∗ + y∗ = x∗1 + x∗2.

Queremos ver que x∗1 = 0.

Sea x ∈ BX . Dado ε > 0, elegimos y1, y2, y3 ∈ BJ tales que

x∗(y1) ≥ ‖x∗‖ − ε, y∗(y2) ≥ ‖y∗‖ − ε, −x∗2(y3) ≥ ‖x∗2‖ − ε.

Por (iv) existe y ∈ J tal que ‖x+ yi − y‖ ≤ 1 + ε para i = 1, 2, 3. Aśı,

(1 + ε)(‖x∗‖+ ‖y∗‖+ ‖x∗2‖) ≥
∣∣x∗(x+ y1 − y) + y∗(x+ y2 − y)− x∗2(x+ y3 − y)

∣∣
≥ Re(x∗(x+ y1 − y) + y∗(x+ y2 − y)− x∗2(x+ y3 − y))
= Re((x∗ + y∗ − x∗2)(x− y))+ Re(x∗(y1) + y∗(y2)− x∗2(y3))
= Re(x∗1(x)) + x∗(y1) + y∗(y2)− x∗2(y3)
≥ Re(x∗1(x)) + ‖x∗‖+ ‖y∗‖+ ‖x∗2‖ − 3ε.

Con lo cual, haciendo ε → 0 se tiene que Re(x∗1(x)) ≤ 0 para todo x ∈ BX y, por lo

tanto, x∗1(x) = 0 para todo x ∈ BX . Luego, x
∗
1 = 0.



1.2. 3-BALL PROPERTY 15

Dadas n bolas, B(x1; r1), . . . , B(xn; rn) y ε > 0; para ver que (v) → (ii) basta usar (v)

con la colección B(xi; ri + ε) para i = 1, . . . , n.

Para finalizar la demostración, veamos que (ii) ⇒ (v). Sean B(x1; r1), . . . , B(xn; rn)

bolas cerradas tales que (
⋂
iBi)

◦ 6= ∅ y Bi ∩ J 6= ∅ para todo i = 1, . . . , n. Sea δ > 0 e

y0 ∈ X tales que ‖y0 − xi‖ ≤ ri − δ para todo i = 1, . . . , n. Sea r =: mı́n ri.

Vamos a construir una sucesión (yk) ⊆ J tal que

‖yk − yk+1‖ ≤ 2−k4r, (1.2)

‖yk − xi‖ ≤ ri + 2−kδ para todo 1 ≤ i ≤ n.

Al lograr esto, obtendremos una sucesión de Cauchy en J , cuyo ĺımite pertenece a J y que

verifica además pertenecer a
⋂
iB(xi; ri). Por lo tanto,

⋂
iB(xi; ri) ∩ J 6= ∅.

Consideramos las bolas B(y0; 2r − δ) y B(xi; ri) para i = 1, . . . , n. Estas n + 1 bolas,

cumplen (ii), en efecto

y0 ∈ B(y0; 2r − δ) ∩
⋂
B(xi; ri − δ) ⊆ B(y0; 2r − δ) ∩

⋂
B(xi; ri),

Sea i0 tal que r = ri0 . Como B(xi0 ; ri0) ∩ J 6= ∅, tomamos x ∈ B(xi0 , ri0) ∩ J . Resulta

que x ∈ B(y0; 2r − δ) ∩ J . Aśı,

B(y0; 2r − δ) ∩
⋂

i

B(xi; ri) ∩ J 6= ∅.

Luego, por (ii) existe y1 ∈ B(y0; 2r−
δ
2)∩

⋂
iB(xi; ri+

δ
2)∩J ⊆ B(y0; 2r)∩

⋂
iB(xi; ri+

δ
2)

que es lo que queŕıamos probar para k = 1.

Supongamos que tenemos elegidos y1, . . . , yk como en (1.2) y construyamos yk+1 que tam-

bién verifique (1.2).

Consideramos las bolas B(yk; (2
−(k+1) − 2−(2k+1))4r) y B(xi; ri + (2−(k+1) − 2−(2k+1))δ).

Como yk ∈ J y B(xi; ri) ∩ J 6= ∅ se tiene que estas n + 1 bolas intersecan J . Más aún,

veremos que la intersección de estas bolas es no vaćıa. Para esto veamos que

zk =: 2−(k+1)y0+(1−2−(k+1))yk ∈ B(yk; (2
−(k+1)−2−(2k+1))4r)∩

⋂

i

B(xi; ri+(2−(k+1)−2−(2k+1))δ).

Veamos primero que zk ∈ B(yk; (2
−(k+1) − 2−(2k+1))4r):

‖zk − yk‖ = 2−(k+1)‖y0 − yk‖

≤ 2−(k+1)(‖y0 − y1‖+ . . .+ ‖yk−1 − yk‖)

≤ 2−(k+1)
∑k

i=1 2
−i4r

= (2−(k+1) − 2−(2k+1))4r.
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Veamos ahora que zk ∈
⋂
iB(xi; ri + (2−(k+1) − 2−(2k+1))δ), para esto notemos que zk

es una combinación convexa entre y0 e yk y por lo tanto

‖zk − xi‖ ≤ 2−(k+1)‖y0 − xi‖+ (1− 2−(k+1))‖yk − xi‖

≤ 2−(k+1)(ri − δ) + (1− 2−(k+1))(ri + 2−kδ)

= ri + (2−(k+1) − 2−(2k+1))δ.

Finalmente, podemos aplicar (ii) con ε = 2−(2k+1)min{4r; δ} para obtener un elemento

de J tal que

yk+1 ∈ B(yk; 2
−(k+1)4r) ∩

⋂

i

B(xi; ri + 2−(k+1)δ) ∩ J.

Luego, el teorema queda probado.

Una pregunta natural es si vale la 2-ball property ; es decir si el item (ii) del Teore-

ma 1.2.3 formulado con n = 2 da un criterio necesario y suficiente para determinar si un

subespacio es un M -ideal. La respuesta es negativa, como lo muestra el Ejemplo 1.2.5.

Antes, necesitamos el siguiente lema.

Lema 1.2.4. Sea f ∈ L∞. Entonces f = c + g donde c = sup f+ı́nf f
2 , g = f − c y

‖f‖ = |c|+ ‖g‖.

Demostración. Si f(x) ≥ 0 o f(x) ≤ 0 para todo x, el resultado es trivial. Supongamos

entonces que f cambia de signo. Entonces ‖f‖ = sup |f(x)| = máx{sup f(x),− ı́nf f(x)}.

Por otro lado, sup g(x) = sup f(x) − c = sup f−ı́nf f
2 y ı́nf g(x) = ı́nf f(x) − c = ı́nf f−sup f

2 .

Luego, ‖g‖ = | sup f−ı́nf f
2 | = sup f−ı́nf f

2 . Aśı, si sup f ≥ − ı́nf f , entonces y ‖f‖ = sup f y

|c|+ ‖g‖ =
sup f + ı́nf f

2
+

sup f − ı́nf f

2
= sup f.

Si sup f ≤ − ı́nf f , entonces ‖f‖ = − ı́nf f y

|c|+ ‖g‖ = −
sup f + ı́nf f

2
+

sup f − ı́nf f

2
= − ı́nf f.

Ejemplo 1.2.5. Sea X = L1(µ) = {x µ-medibles :
∫
|x|dµ < ∞} con µ una medida

positiva, y sea J = {x ∈ X/
∫
xdµ = 0}. Entonces, J no es un M -ideal, aunque cumple la

2-ball property.

Veamos que J no es unM -ideal de X. Por Teorema 1.1.11, alcanza ver que X posee un

L-sumando no trivial. En efecto, todo x ∈ X se puede escribir de la forma x = x+ − x−,

donde x+ es su parte positiva y x− su parte negativa. Notemos que

‖x‖ =
∫
|x|dµ

=
∫
x+dµ+

∫
x−dµ

=
∫
|x+|dµ+

∫
|x−|dµ

= ‖x+‖+ ‖x−‖.
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Con lo cual {x ∈ X/x = x+} es un L-sumando no trivial de X.

Para ver que J cumple la 2-ball property supongamos que se tienen B1 =: B(x1, r1) y

B2 =: B(x2, r2) tales que B1 ∩ B2 6= ∅ y Bi ∩ J 6= ∅ para i = 1, 2 y que existe ε > 0 tal

que B(x1, r1 + ε) ∩B(x2, r2 + ε) ∩ J = ∅.

Consideremos en L1 ⊕ L1 el conjunto convexo D = {(z1, z2) : ‖zi − xi‖ ≤ ri; i = 1, 2} y

el subespacio F = {(y, y) : y ∈ J}. Por el teorema geométrico de Hahn-Banach, podemos

separar estŕıctamente a D y F por una funcional (f1, f2) ∈ L∞ ⊕ L∞.

Aśı tenemos que

f1 + f2 ∈ J⊥

y

sup
(z1,z2)∈D

∫
(f1z1 + f2z2)dµ < 0. (1.3)

Por Lema 1.2.4, toda g ∈ L∞ puede ser descompuesta en la forma

g = c+ h

donde c es una constante, h = g − c y ‖g‖ = |c|+ ‖h‖.

Como J⊥ = [1], podemos conseguir una misma g ∈ L∞ tal que

f1 = c1 + g

y

f2 = c2 − g,

donde

‖fi‖ = |ci|+ ‖g‖ i = 1, 2.

Notemos además que para toda f ∈ L∞

‖f‖ = sup
x∈BL1

∫
fxdµ = sup

x∈B(x1,r1)

∫
f
(x− x1

r1

)
dµ,

y si z ∈ B(x1, r1) ∩B(x2, r2) entonces

∣∣
∫
f(x1 − x2)dµ

∣∣ ≤ ‖f‖∞
( ∫

|x1 − z|dµ+

∫
|x2 − z|dµ

)
≤ ‖f‖(r1 + r2).

Por lo tanto, si consideramos yi ∈ B(xi, ri) ∩ J tenemos que

sup
(z1,z2)∈D

∫
(f1z1 + f2z2)dµ = sup

(z1,z2)∈D

∫ (
f1(z1 − x1) + f1x1 + f2(z2 − x2) + f2x2

)
dµ

= ‖f1‖r1 + ‖f2‖r2 + c1
∫
x1dµ+

∫
(g(x1 − x2)dµ+ c2

∫
x2dµ

= ‖f1‖r1 + ‖f2‖r2 + c1
∫
(x1 − y1)dµ+

∫
g(x1 − x2)dµ

+ c2
∫
(x2 − y2)dµ

≥ ‖f1‖r1 + ‖f2‖r2 −
(
|c1|r1 + ‖g‖(r1 + r2) + |c2|r2

)

= 0
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lo que contradice (1.3).

Un subespacio que cumple la 2-ball property se dice un semi-M -ideal. Para más infor-

mación sobre semi-M -ideales ver [HWW, página 43]. El ejemplo anterior muestra que hay

semi-M -ideales que no son M -ideales.

El siguiente es un ejemplo clásico que ilustra cómo la 3-ball property permite mostrar

fácilmente que un subespacio es un M -ideal.

Ejemplo 1.2.6. Sea 1 < p ≤ q < ∞. Enontces K(ℓp, ℓq) es un M -ideal en L(ℓp, ℓq).

También, cualquiera sea X espacio de Banach, se tiene que K(X, c0) es un M -ideal en

L(X, c0).

Demostración. Veamos primero que K(ℓp, ℓq) es unM -ideal en L(ℓp, ℓq). Sean Pn y Qn las

proyecciones en las primeras n coordenadas de ℓp y ℓq respectivamente. Entonces ambas

sucesiones convergen puntualmente a la identidad y por lo tanto convergen unifórmemente

en cualquier conjunto compacto. Lo mismo sucede para sus operadores adjuntos P ∗
n y Q∗

n.

Verifiquemos la 3-ball property. Sean S1, S2, S3 ∈ BK(ℓp,ℓq), sea T ∈ BL(ℓp,ℓq) y sea ε > 0.

Vamos a probar que se pueden elegir n, m suficientemente grandes tales que

‖T + Si − (QnT + TPm −QnTPm)‖ ≤ 1 + ε. (1.4)

Como Pm, Qn son operadores de rango finito, resulta que (QnT + TPm − QnTPm) ∈

K(ℓp, ℓq) para todo n, m. Para probar (1.4) vamos a intercalar QnSiPm. Por un lado

tenemos

ĺım
n,m→∞

‖QnSiPm − Si‖ ≤ ĺım
n,m→∞

‖QnSi − Si‖‖Pm‖+ ‖SiPm − Si‖

≤ ĺım
n→∞

‖QnSi − Si‖+ ĺım
m→∞

‖P ∗
mS

∗
i − S∗‖.

= 0.

Por otra parte, necesitamos estimar

‖T +QnSiPm − (QnT + TPm −QnTPm)‖.

Para esto, notemos que

T − (QnT + TPm −QnTPm) = (I −Qn)T − (I −Qn)TPm = (I −Qn)T (I − Pm).

Dado x ∈ ℓp, tenemos que

‖[(I −Qn)T (I − Pm) +QnSiPm]x‖ =
(
‖(I −QnT (I − Pm))x‖

q + ‖QnSiPmx‖
q
) 1

q

≤ (‖(I − Pm)x‖
q + ‖Pmx‖

q)
1
q

≤ (‖(I − Pm)x‖
p + ‖Pmx‖

p)
1
p

= ‖x‖.
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Como ‖QnSiPn − Si‖ puede tomarse tan chico como se quiera, hemos probado que se

pueden encontrar n,m que cumplen lo pedido.

Para ver que K(X, c0) ⊆ L(X, c0) es un M -ideal, se razona de la misma forma. En este

caso, el operador compacto que sirve es QnT para algún n suficientemente grande.

Qué sucede para p > q? En este caso, se puede probar que K(ℓp, ℓq) = L(ℓp, ℓq)

(Corolario 2.4.8) con lo cual los operadores compactos de ℓp en ℓq resultan ser un M -ideal

trivial en L(ℓp, ℓq).

1.2.1. M-ideales y su geometŕıa

Terminaremos esta sección inicial comentando sobre algunas propiedades geometricas

de los espacios que admiten una estructura de M -ideal. Un subespacio J de un espacio de

Banach X se dice proximinal si para todo x ∈ X existe y ∈ J que realiza la distancia a x,

es decir ‖x− y‖ = d(x, J). Notamos por PJ(x) al conjunto de tales y ∈ J , que llamaremos

elementos proximinales, y diremos que PJ(x) es el conjunto de mejores aproximantes de J

a x. Si, para todo x ∈ X, PJ(x) tiene un único elemento, decimos que J es un subespacio

de Chebyshev. Por ejemplo, todo subespacio cerrado J ⊆ H, con H un espacio de Hilbert,

es de Chebyshev. Lo mismo sucede con ker(P ) para P un L-proyector (Lema 1.1.3).

Proposición 1.2.7. Sea X un espacio de Banach y sea J ⊆ X un M -sumando. Sea

P : X → X una M -proyección con rango J . Entonces, para todo x ∈ X \ J , el conjunto

PJ(x) es la bola de centro Px y radio ‖x− Px‖.

Demostración. Como J es un M -sumando, tenemos que para todo y ∈ J , ‖y − x‖ =

máx{‖y−Px‖, ‖x−Px‖} ≥ ‖x−Px‖. Luego, como Px ∈ J se tiene que ‖x−Px‖ = d(x, J)

y por lo tanto Px ∈ PJ(x).

Sea y ∈ J tal que ‖y − Px‖ ≤ ‖x − Px‖. Entonces ‖y − x‖ = ‖x − Px‖ = d(x, J) y por

lo tanto y ∈ PJ(x). Por otro lado, si y ∈ PJ(x), entonces ‖x − Px‖ = d(x, J) = ‖y − x‖,

pero como ‖y − x‖ = máx{‖y − Px‖, ‖x− Px‖} entonces debe ser ‖y − Px‖ ≤ ‖x− Px‖.

Aśı, probamos que PJ(x) es la bola de centro Px y radio ‖x− Px‖.

Corolario 1.2.8. Si J es un M -sumando en X, entonces J = span{PJ(x)} para todo

x ∈ X \ J .

Con este resultado, vemos que un M -sumando está lejos de ser un subespacio de

Chebyshev, aunque śı son subespacios proximinales. El siguiente resultado muestra que

un M -ideal es un subespacio proximinal.

Proposición 1.2.9. Los M -ideales son proximinales.
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Demostración. Sea J ⊆ X un M -ideal y sea x ∈ X tal que d = d(x, J) > 0. Vamos a

construir una sucesión (yn) ⊆ J cumpliendo

‖yn+1 − yn‖ ≤
(3
4

)n
, (1.5)

‖yn − x‖ ≤ d+
(3
4

)n−1
. (1.6)

Una vez logrado esto, por (1.5) tenemos que (yn) es de Cauchy y, por lo tanto, converge

a un elemento y ∈ J . Por (1.6), se tiene que y dista de x en no más que d. Con lo cual

tenemos que y ∈ PJ(x).

Construimos la sucesión (yn) por inducción. Sea ε > 0 y sea y ∈ J tal que ‖y−x‖ < d+ ε.

Consideramos las bolas B(x, d+ ε
2) y B(y, ε2). Como d > 0, estas bolas tiene intersección

no vaćıa. Además, B(y, ε2) interseca a J en y y como d = d(x, J), B(x, d + ε
2) también

interseca a J .

Como J es un M -ideal, por el Teorema 1.2.3 item (ii), tenemos que existe

y1 ∈ J ∩B(x, d+
3ε

4
) ∩B(y,

3ε

4
).

Aplicando este razonamiento para εn = (34)
n−1 obtenemos la sucesión (yn) deseada.

Una herramienta útil al momento de calcular normas en un espacio de Banach es el

conjunto de puntos extremales. En el caso en queX posea unM -ideal J , podemos describir

los extremales de X en función de los extremales de J .

Definición 1.2.10. Sea C ⊆ X un subconjunto convexo de un espacio de Banach, decimos

que x ∈ C es un punto extremal de C si ∀y, z ∈ C y t ∈ (0, 1) tal que x = ty + (1− t)z se

tiene que x = y = z.

Notamos por Ext(C) al conjunto de puntos extremales de C y tomamos la convención

Ext({0}) = ∅.

En otras palabras, un punto extremal de un conjunto convexo, no es otra cosa que un

punto que no pertenece a ningún segmento no trivial incluido en el conjunto.

Notar que para todo X espacio vectorial normado, se tiene que Ext(BX) ⊆ SX , ya

que dado x0 punto interior en BX , existe ε > 0 tal que B(x0, ε) ⊆ BX , y x0 se escribe

como punto medio de dos elementos de BX .

Observación 1.2.11. Sean A, B dos conjuntos convexos tales que A ⊆ B, entonces

Ext(B) ∩ A ⊆ Ext(A).

En efecto, sea x0 un punto extremal de B tal que x0 ∈ A y supongamos que x0 es un

punto interior de un segmento con extremos a1, a2 ∈ A. Como A es convexo y A ⊆ B,

entonces el segmento [a1, a2] esta incluido en B, lo que contradice el hecho de que x0 sea

un punto extremal de B. Luego x0 ∈ Ext(A).
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Notar que en A pueden haber otros extremales que no sean extremales de B. El si-

guiente gráfico muestra un ejemplo de esto.

B

oo

o

A
a

b

c

(1.7)

En este caso, a es un extremal de B que interseca a A, pero b y c son extremales de A

que no lo son de B.

Para L-sumandos se tiene la siguiente descripción.

Proposición 1.2.12. Sea X = J1 ⊕1 J2 entonces:

Ext(BX) = Ext(BJ1) ∪ Ext(BJ2).

Demostración. Sea x ∈ Ext(BX), entonces existen únicos y ∈ J1, z ∈ J2 tales que

x = y + z. Si y = 0, entonces x = z ∈ J2 y, como x es un punto extremal, x ∈ BJ2 .

Como BJ2 ⊆ BX , por la observación anterior, tenemos que

x ∈ Ext(BX) ∩BJ2 ⊆ Ext(BJ2) ⊆ Ext(BJ1) ∪ Ext(BJ2).

Lo mismo obtenemos si z = 0. Nos queda analizar el caso en el que 0 < ‖y‖ < 1 y

0 < ‖z‖ < 1. En este caso tomamos un ε > 0 tal que (1 − ε‖y‖‖z‖ ) > 0 y (1 − ε ‖z‖‖y‖) > 0.

Entonces, escribimos

w1 =: (1 + ε)y + (1− ε
‖y‖

‖z‖
)z,

w2 =: (1− ε
‖z‖

‖y‖
)y + (1 + ε)z.

Notemos que w1 está en SX ; más aún,

‖w1‖ = (1 + ε)‖y‖+ (1− ε
‖y‖

‖z‖
)‖z‖ = ‖y‖+ ‖z‖ = ‖x‖ = 1

al estar x en Ext(BX). De la misma forma w2 ∈ SE .

Tomando t = ‖z‖
‖y‖+‖z‖ ∈ (0, 1), podemos escribir

x = tw1 + (1− t)w2.

En efecto,

tw1 + (1− t)w2 = ‖z‖
‖z‖+‖y‖

(
(1 + ε)y +

(
1− ε‖y‖‖z‖

)
z
)
+
(
1− ‖z‖

‖z‖+‖y‖

)((
1− ε ‖z‖‖y‖

)
y + (1 + ε)z

)

=
(
(1+ε)‖z‖
‖y‖+‖z‖ + ‖y‖−ε‖z‖

‖y‖+‖z‖

)
y +

(
‖z‖−ε‖y‖
‖y‖+‖z‖ + ‖y‖(1+ε)

‖y‖+‖z‖

)
z

= y + z
= x
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mostrando que x /∈ Ext(BX) y contradiciendo la hipótesis.

Ahora, sea x ∈ Ext(BJ1), ‖x‖ = 1 y supongamos que existen λ ∈ (0, 1), y, z ∈ BX tales

que x = λy + (1− λ)z. Sean y1, z1 ∈ J1 y y2, z2 ∈ J2 tales que y = y1 + y2 y z = z1 + z2.

Aśı, podemos escibir

x = λy1 + (1− λ)z1 + λy2 + (1− λ)z2.

Como x ∈ J1 debe ser λy2+(1−λ)z2 = 0 y como x ∈ Ext(BJ1) entonces x = y1 = z1.

Pero entonces x ∈ J1 ∩ J2 = 0, llegando a un absurdo al ser ‖x‖ = 1.

Luego x ∈ BX . Análogamente se prueba que Ext(BJ2) ⊆ Ext(BX).

Corolario 1.2.13. Sea X un espacio de Banach y sea J ⊆ X un M -ideal. Entonces

Ext(BX∗) = Ext(BJ⊥) ∪ Ext(BJ∗)

Demostración. Por la Observación 1.1.10, tenemos que X∗ = J⊥ ⊕1 J
∗. El resultado se

sigue de la Proposición 1.2.12.



Caṕıtulo 2

M-ideales en espacios de

Operadores.

2.1. Algunas propiedades básicas.

Recordemos que la teoŕıa de M -ideales trata de generalizar la noción de ideal bilátero

en un álgebra de Banach. Gelfand y Naimark probaron que toda C∗-álgebra es isométri-

camente ∗-isomorfa a la ∗-álgebra formada por los operadores acotados de algún espacio

de Hilbert H. En este caso, el único ideal bilátero cerrado es K(H), el subespacio de los

operadores compactos.

Esto propicia un interés particular por estudiar cuándo K(X) es un M -ideal dentro de

L(X) y, más en general, estudiar cuándo K(X,Y ) ⊆ L(X,Y ) es un M -ideal y si es el

único.

En este caṕıtulo estudiaremos estos casos, introduciremos la noción de la propiedad (M)

y la usaremos para dar una nueva equivalencia para un subespacio de ser un M -ideal.

Comencemos por definir la distancia de Banach-Mazur entre dos espacios de Banach.

Definición 2.1.1 (Distancia de Banach-Mazur). Sean X, Y dos espacios de Banach. Se

define la distancia de Banach-Mazur entre X e Y por

d(X,Y ) =: ı́nf{‖T‖.‖T−1‖ tal que T : X → Y es isomorfismo}.

Por otra parte, si X e Y no son isomorfos, la distancia de Banach-Mazur es infinita.

Observemos que dado c ∈ R y T : X → Y isomorfismo tal que ‖T‖‖T−1‖ ≤ c, podemos

tomar T̃ = T
‖T‖ para obtener un isomorfismo que cumple ‖T̃‖ = 1 y ‖T̃−1‖ ≤ c.

Proposición 2.1.2.

(a) Sean X, Y espacios de Banach tales que K(X,Y ) ⊆ L(X,Y ) es un M -ideal y sean

E ⊆ X, F ⊆ Y subespacios 1-complementados. Entonces K(E,F ) ⊆ L(E,F ) es

M -ideal.

23
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(b) La clase de los espacios de Banach para los cuales K(X,Y ) ⊆ L(X,Y ) es M -ideal

es cerrada con la distancia de Banach-Mazur.

Demostración. (a) Sean πE , πF proyecciones, ambas de norma 1, a E y F respectivamente.

Vamos a verificar la 3-ball property para K(E,F ) y L(E,F ). Sean Si ∈ BK(E,F ), T ∈

BL(E,F ), ε > 0 y sean JE : E → X, JF : F → Y las respectivas inclusiones. Entonces

JFSiπE ∈ BK(X,Y ) y JFTπE ∈ BL(X,Y ). Aśı, por hipótesis, existe R ∈ K(X,Y ) tal que

para todo i = 1, 2, 3

‖JFTπE + JFSiπE −R‖ ≤ 1 + ε.

Sea πFRJE ∈ K(E,F ) y x ∈ BE . Entonces

‖(T + Si − πFRJE)x‖ = ‖πF (T + Si −RJE)x‖
≤ ‖(T + Si −RJE)x‖
= ‖(JFTπE + JFSiπE −R)x‖
≤ ‖JFTπE + JFSiπE −R‖
≤ 1 + ε,

que es lo que queŕıamos demostar.

(b) Dado ε > 0, sea ε̃ > 0 tal que (1 + ε̃)3 ≤ 1 + ε. Sean Xε y Yε espacios de Banach

tales que d(X,Xε) < 1 + ε̃, d(Y, Yε) < 1 + ε̃ y K(Xε, Yε) ⊆ L(Xε, Yε) es un M -ideal.

Queremos ver que K(X,Y ) ⊆ L(X,Y ) es un M -ideal. Igual que en (a) vamos a verificar

la 3-ball property. Sean Si ∈ BK(X,Y ), i = 1, 2, 3 y T ∈ BL(X,Y ). Sean T1 : Xε → X

y T2 : Y → Yε isomorfismos tales que ‖Ti‖ = 1 y ‖T−1
i ‖ ≤ 1 + ε̃, i = 1, 2. Entonces,

considerando T2TT1 ∈ BL(Xε,Yε), T2SiT1 ∈ BK(Xε,Yε), existe R ∈ K(Xε, Yε) tal que para

i = 1, 2, 3

‖T2TT1 + T2SiT1 −R‖ ≤ 1 + ε̃.

Con lo cual, si R̃ = T−1
2 RT−1

1 se tiene que

‖T + Si − R̃‖ = ‖T−1
2 (T2TT1 + T2SiT1 −R)T−1

1 ‖
≤ (1 + ε̃)3

≤ 1 + ε.

y la proposición queda probada.

Proposición 2.1.3. Si K(X,Y ) ⊆ L(X,Y ) es unM -sumando, entonces K(X,Y ) = L(X,Y ).

Demostración. Por el absurdo, supongamos que existe un subespacio no trivial R ⊆

L(X,Y ), R 6= {0}, tal que L(X,Y ) = K(X,Y ) ⊕∞ R y sea T ∈ R con ‖T‖ = 1. Sea

0 < ε < 1, x0 ∈ SX tal que ‖Tx0‖ ≥ 1 − ε, y sea x∗0 ∈ SX∗ tal que x∗0(x0) = 1.

Definimos S ∈ K(X,Y ) dado por Sx = x∗0(x)Tx0. Entonces, ‖S‖ ≤ 1 y por lo tanto

‖S + T‖ = máx{‖S‖, ‖T‖} = 1.
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Por otro lado, ‖(S + T )x0‖ = 2‖Tx0‖ ≥ 2 − 2ε, lo que nos lleva a un absurdo pues

x0 ∈ SX .

2.2. Distancia de un operador a K(X, Y ).

Los operadores compactos entre dos espacios de Banach son importantes por las diver-

sas propiedades que poseen. Sin embargo, no siempre podemos trabajar con operadores

compactos. Aún aśı, podemos preguntarnos cuán cerca está un operador de ser compacto.

Para esto se define la norma esencial de un operador T ∈ L(X,Y ) como su distancia a

K(X,Y ).

Definición 2.2.1. Sea T : X → Y un operador lineal y acotado. La norma esencial de T

será el número

‖T‖e =: d(T,K(X,Y )) = ı́nf{‖T −K‖ : K ∈ K(X,Y )}.

Observación 2.2.2. Podemos pensar ‖T‖e como una norma cociente, la de la clase de

T en L(X,Y )/K(X,Y ). Como (E/S)∗ = S⊥, siempre podemos encontrar ψ ∈ BK(X,Y )⊥

tal que ψ(T ) = ‖T‖e.

Definición 2.2.3. Sea X un espacio de Banach y C ⊆ X∗ un subconjunto acotado. Un

conjunto B ⊆ C se dice frontera de James para C si para todo x ∈ X existe ψ ∈ B tal

que ψ(x) = sup{ϕ(x) : ϕ ∈ C}. Un subconjunto B ⊆ BX∗ se dice frontera de James de X

si es una frontera de James para BX∗ .

Notemos que si B ⊆ BX∗ es una frontera de James de X, entonces todo x ∈ X realiza

su norma a través de una función de B. Todo espacio de Banach tiene como frontera de

James al conjunto Ext(BX∗). Una demostración de este hecho se puede ver en [FHHMPZ,

Pag. 80]. Con esto y la Observación 2.2.2, tenemos el siguiente corolario.

Corolario 2.2.4. Sean X, Y espacios de Banach tales que K(X,Y ) es un M -ideal en

L(X,Y ). Entonces, para todo T ∈ L(X,Y ) existe ψ ∈ Ext(BK(X,Y )⊥) tal que ψ(T ) =

‖T‖e.

Introducimos ahora un par de lemas útiles; el primero de ellos es una versión rećıproca

del teorema de Kreim-Milman, [FHHMPZ, Teorema 3.41]. Notaremos por co(B) la cápsula

convexa de un conjunto B, que es el conjunto de las combinaciones lineales finitas convexas

de los elementos de B.

Lema 2.2.5. Sea X un espacio de Banach y sea C ⊆ X un subconjunto w∗-compacto y

convexo. Sea B ⊆ C tal que co(B) = C. Entonces Ext(C) ⊆ B
w∗

.
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Demostración. Supongamos que existe x ∈ Ext(C) tal que x /∈ B
w∗

. Entonces por el

teorema de Kreim-Milman, existe ϕ ∈ X∗ y α ∈ R tal que ℜ(ϕ(x)) > α ≥ sup
y∈B

ℜ(ϕ(y)).

Como ϕ es lineal tenemos que sup
y∈B

ℜ(ϕ(y)) = sup
y∈co(B)

ℜ(ϕ(y)). En efecto, como B ⊆ co(B),

sup
y∈B

ℜ(ϕ(y)) ≤ sup
y∈co(B)

ℜ(ϕ(y)). Por otro lado, si y ∈ co(B) y ε > 0 existe y0 ∈ co(B) tal que

‖y − y0‖ ≤ ε. Sean λ1, . . . , λN ∈ C e y1 . . . , yN ∈ B tales que y0 =
∑
λiyi con

∑
λi = 1.

Entonces,
ℜ(ϕ(y0)) =

∑
ℜ(λiϕ(yi))

=
∑

ℜ(λi)ℜ(ϕ(yi))−ℑ(λi)ℑ(ϕ(yi))
≤

∑
ℜ(λi)sup

z∈B
ℜ(ϕ(z)) + ℑ(λi)sup

z∈B
ℑ(ϕ(z))

= sup
z∈B

ℜ(ϕ(z)).

Luego,

ℜ(ϕ(y)) = ℜ(ϕ(y − y0)) + ℜ(ϕ(y0)) ≤ ‖ϕ‖ε+ sup
z∈B

ℜ(ϕ(z)).

Como esto vale para cualquier ε > 0, se obtiene lo buscado. Sin embargo, el hecho de que

sup
y∈B

ℜ(ϕ(y)) = sup
y∈co(B)

ℜ(ϕ(y)) sumado a que x ∈ C, contradice co(B) = C.

Proposición 2.2.6. Sean X, Y espacios de Banach. Entonces,

Ext(BL(X,Y )∗) ⊆ {y∗ ⊗ x : y∗ ∈ BY ∗ , x ∈ BX}
w∗

.

Acá estamos viendo a y∗ ⊗ x como elemento de L(X,Y )∗ mediante y∗ ⊗ x(T ) =: y∗(Tx).

Demostración. Llamamos B = {y∗ ⊗ x : y∗ ∈ BY ∗ , x ∈ BX}. Por el Lema 2.2.5, basta

probar que co(B) = BL(X,Y )∗ .

Sean y∗ ∈ BY ∗ y x ∈ BX . Si T ∈ L(X,Y ), entonces |y∗ ⊗ x(T )| ≤ ‖T‖. Luego, B ⊆

BL(X,Y )∗ y por lo tanto co(B) ⊆ BL(X,Y )∗ . Para mostrar la otra inclusión, supongamos

que existe una ϕ ∈ BL(X,Y )∗ \ co(B). Como BL(X,Y )∗ es w∗-compacto, por el teorema

de Hahn-Banach geométrico, podemos encontrar un operador T ∈ L(X,Y ), ‖T‖ = 1 y

r > r̃ > 0 tales que para todo y∗ ∈ BY ∗ , x ∈ BX

〈
y∗ ⊗ x, T

〉
< r̃ < r ≤

〈
ϕ, T

〉
≤ 1.

Entonces

1 = ‖T‖ = sup
y∗⊗x∈BY ∗⊗BX

y∗(Tx) ≤ r̃ < 1

teniendo una contradicción. Luego, el resultado es cierto.

Lema 2.2.7. Sean X, Y espacios de Banach, y sean x∗∗0 ∈ X∗∗, y∗0 ∈ Y ∗ tales que

x∗∗0 (K∗y∗0) = 0 para todo K ∈ K(X,Y ) de la forma K(x) = x∗(x).y con x∗ ∈ X∗ e y ∈ Y .

Entonces x∗∗0 = 0 o y∗0 = 0.
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Demostración. Supongamos que x∗∗0 6= 0 e y∗0 6= 0; entonces existen x∗0 ∈ X∗ e y0 ∈ Y

tales que x∗∗0 (x∗0) = 1 y y∗0(y0) = 1.

Definimos K : X → Y en la forma K(x) =: x∗0(x).y0. Este es un operador lineal, continuo

y compacto (al ser de rango finito). Si y∗ ∈ Y ∗ y x ∈ X, tenemos que

K∗(y∗)(x) = y∗(Kx) = x∗0(x).y
∗(y0).

Con lo cual, K∗(y∗0) = x∗0 y, por lo tanto x∗∗0 (K∗y∗0) = 1 6= 0 llegando a una contradicción.

Luego, el lema queda probado.

Dado un operador, no es fácil calcular su norma esencial, sin embargo, vamos a ver

que si K(X,Y ) es unM -ideal en L(X,Y ), tenemos una forma alternativa para hallar ‖T‖e

cualquiera sea T ∈ L(X,Y ).

Proposición 2.2.8. Sean X, Y espacios de Banach tales que K(X,Y ) es un M -ideal en

L(X,Y ). Entonces para todo T ∈ L(X,Y )

‖T‖e = máx{w(T ), w∗(T )},

donde

w(T ) = sup{ĺım sup ‖Txα‖ / (xα) ⊆ SX y xα
w
→ 0},

w∗(T ) = sup{ĺım sup ‖T ∗x∗α‖ / (xα) ⊆ SX y x∗α
w∗

→ 0}.

Demostración. Sea K ∈ K(X,Y ) y sea (xα) ⊆ SX una red tal que xα
w
→ 0. Como K es

compacto, se tiene que Kxα → 0 y por lo tanto

ĺım sup ‖Txα‖ = ĺım sup ‖(T −K)xα‖
≤ ‖T −K‖.

Como esto vale para todo K ∈ K(X,Y ) y (xα) ⊆ SX tal que xα
w
→ 0, tenemos que

w(T ) ≤ ‖T‖e.

Por otro lado, si (y∗α) ⊆ Y ∗, ‖y∗α‖ = 1 y y∗α
w∗

→ 0, entonces para todo x ∈ BX tenemos que

K∗y∗α(x) = y∗α(Kx) → 0.

Con lo cualK∗y∗α converge a cero puntualmente. Al serK compacto resulta queK∗ lo es

y por lo tanto esta convergencia se puede conseguir en norma. Luego, el mismo razonamien-

to hecho para w(T ) se aplica para llegar a w∗(T ) ≤ ‖T‖e. Aśı, ‖T‖e ≥ máx{w(T ), w∗(T )}

(observemos que esta desigualdad se probó sin usar que los operadores compactos formen

un M -ideal dentro de los operadores acotados).

Para probar la otra desigualdad por el Corolario 2.2.4, consideramos ψ ∈ Ext(BK(X,Y )⊥)

tal que ψ(T ) = ‖T‖e. Como K(X,Y ) ⊆ L(X,Y ) es un M -ideal, por el Corolario 1.2.13,



28 CAPÍTULO 2. M-IDEALES EN ESPACIOS DE OPERADORES.

tenemos que ψ ∈ Ext(BL(X,Y )∗).

Por la Proposición 2.2.6 existen redes (xα) ∈ BX , (y
∗
α) ∈ BY ∗ tales que y∗α ⊗ xα

w∗

→ ψ.

Pasando a subredes, podemos suponer además que existe y∗ ∈ Y ∗, x∗∗ ∈ X∗∗ tales que

y∗α
w∗

→ y∗ y xα
w∗

→ x∗∗ Entonces, para todo K ∈ K(X,Y ) de la forma K(x) = x∗(x).y con

x∗ ∈ X∗ e y ∈ Y , se tiene que

0 = ψ(K)
= ĺım(y∗α ⊗ xα)(K)
= ĺım y∗α(Kxα)
= ĺımx∗(xα)y

∗
α(y)

= ĺımx∗∗(x∗)y∗(y)
= ĺımx∗∗(K∗y∗).

Como esto vale para todo K ∈ K(X,Y ) de la forma K(x) = x∗(x).y, por Lema 2.2.7,

debe ser x∗∗ = 0 o y∗ = 0.

Si x∗∗ = 0 entonces xα
w∗

→ 0 y, por lo tanto,

‖T‖e = ψ(T )
= ĺım y∗α(Txα)
≤ ĺım sup ‖Txα‖
≤ w(T ).

Por otro lado, si y∗ = 0 tenemos ‖T‖e ≤ w∗(T ) terminando la demostración.

Como aplicación de la norma esencial para K(X,Y ) un M -ideal en L(X,Y ), tenemos

el siguiente resultado que debe ser léıdo a la luz del teorema de Bishop-Phelps ([BD, p.

7]), el cual afirma que para todo espacio de Banach X, el conjunto de las funcionales que

alcanzan la norma es denso en X∗. Este problema es estudiado en profundidad en [A].

Proposición 2.2.9. Sean X, Y espacios de Banach tales que K(X,Y ) ⊆ L(X,Y ) es un

M -ideal.

(i) Sea T ∈ L(X,Y ) tal que T ∗ no alcanza su norma, entonces ‖T‖ = ‖T‖e.

(ii) El conjunto de los operadores T para los cuales T ∗ no alcanzan su norma en BY ∗ es

nunca denso en L(X,Y ).

Demostración. Vamos a ver una prueba de estos hechos, apelando a resultados de [HWW]

que no demostraremos.

(i) Sea ψ ∈ Ext(BL(X,Y )∗) tal que ψ(T ) = ‖T‖. Por Proposición 1.2.12 tenemos que

ψ ∈ Ext(BK(X,Y )⊥) o ψ ∈ Ext(BK(X,Y )∗). Si este último fuese el caso, por [HWW, Teorema

VI 1.3] existen x∗∗ ∈ Ext(BX∗∗) e y ∈ Ext(BY ∗) tales que ‖T ∗‖ = ‖T‖ = ψ(T ) =
〈
T ∗∗x∗∗, y∗

〉
=

〈
x∗∗, T ∗y∗

〉
. Con esto tenemos que ‖T ∗‖ ≤ ‖x∗∗‖‖T ∗y∗‖ ≤ ‖T ∗y∗‖ ≤ ‖T ∗‖
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contradiciendo la hipótesis. Luego ψ ∈ Ext(BK(X,Y )⊥) y por lo tanto

‖T‖ = ψ(T ) = sup{ϕ(T ) : ϕ ∈ Ext(BK(X,Y )⊥)} = ‖T‖e.

(ii) El conjunto {T ∈ L(X,Y ) : ‖T‖ = ‖T‖e} es claramente cerrado y, por (a), contiene

al conjunto de los operadores cuyos adjuntos no alcanzan la norma. Por lo tanto basta

probar que tiene interior vaćıo.

Notemos que
sup

ψ∈BK(X,Y )∗

|ψ(T )| ≤ sup
ψ∈BL(X,Y )∗

|ψ(T )|

= sup
y∗∈BY ∗ ,x∈BX

| 〈y∗ ⊗ x, T 〉 |

≤ sup
ψ∈BK(X,Y )∗

|ψ(T )|,

y por lo tanto ‖T‖ = sup
ψ∈BK(X,Y )∗

|ψ(T )|.

El resultado se obtiene por [HWW, Corolario II.1.7] y [HWW, Proposición II.1.11], to-

mando J = K(X,Y ) y notando que si d(T, J) = 1 entonces ‖T‖ = ‖T‖e = 1 para todo

T ∈ L(X,Y ) tal que ‖T ∗‖ no alcanza la norma.

2.3. Bases incondicionales.

En esta sección desarrollamos, brevemente, conceptos elementales sobre la teoŕıa de

bases incondicionales que necesitamos para poder estudiar estructuras de M -ideales cuan-

do trabajamos con los espacios de Lorentz (Ver sección 2.4). Comenzamos con algunas

definiciones.

Definición 2.3.1. Sea X un espacio de Banach y sea (xn) ⊆ X una sucesión. Decimos que

la serie
∑
xn converge incondicionalmente si la serie

∑
xσ(n) converge para toda σ ∈ S(N),

siendo S(N) el conjunto de las permutaciones de los naturales.

El Teorema de Riemann de reordenamiento de una serie demuestra que en el caso

de K la noción de convergencia incondicional y absoluta son equivalentes. Esto muestra

que, en el caso de trabajar sobre K todo reordenamiento de una serie incondicionalmente

convergente suma lo mismo. Al pasar a espacios de Banach arbitrarios, no es cierto que la

convergencia incondicional implique la convergencia absoluta, sin embargo sigue valiendo

que todo reordenamiento suma lo mismo.

Lema 2.3.2. Sea X un espacio de Banach y (xk) ⊆ X tal que
∑
xk converge incondicio-

nalmente. Entonces, para toda permutación σ ∈ S(N) tenemos que
∑
xk =

∑
xσ(k).

Demostración. Sea ϕ ∈ X∗. Entonces,
∑
ϕ(xk) es una serie incondicionalmente conver-

gente en K y por lo tanto todo reordenamiento suma lo mismo. Como X∗ separa puntos

y ϕ(
∑
xk) =

∑
ϕ(xk), el lema queda probado.
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Llamamos una subserie de una serie
∑
xn a una serie de la forma

∑
xnk

, nk una

sucesión creciente infinita de N.

Proposición 2.3.3. Son equivalentes:

(i) La serie
∑
xn converge incondicionalmente.

(ii) Toda subserie es convergente.

Demostración. Supongamos que la serie
∑
xn converge incondicionalmente y que

∑
xnk

es una subserie que no converge. Entonces la sucesión de sumas parciales no es de Cauchy,

y por lo tanto, existen ε > 0 y p1 < q1 < p2 < . . . , tales que

‖

qj∑

k=pj

xnk
‖ ≥ ε para todo j ∈ N (2.1)

Consideramos la sucesión de términos (yn) que no están en ningún bloque {xpj , . . . , xqj},

y tomamos el reordenamiento xp1 , . . . , xq1 , y1, xp2 , . . . , xq2 , y2, . . .. Este reordenamiento no

converge. En efecto, para ε > 0, por (2.1), la cola de la serie nunca es menor que ε.

Aśı tenemos (ii) a partir de (i).

Para mostrar la rećıproca, supongamos que existe una permutación σ ∈ S(N) tal que
∑
xσ(n) no converge. Entonces, existe ε > 0 y una sucesión pj < qj < pj+1 < . . ., tales

que para todo j,

‖

qj∑

n=pj

xσ(n)‖ ≥ ε.

Podemos suponer que σ(qj) < σ(pj+1) para todo j, sino, podemos elegir una subsuce-

sión conveniente para que esta condición se cumpla. Consideramos los bloques dados por

{σ(pj), . . . , σ(qj)} y suponemos que para todo j, σ(qj) < σ(pj+1). Aśı,

∑

j

qj∑

n=pj

xn

es una subserie que no converge, lo que contradice (ii).

Definición 2.3.4. Una base (en) de un espacio de Banach X se dice incondicional si

(eσ(n)) es una base para toda permutación σ ∈ S(N).

Por el lema previo, esta definición es equivalente a pedir que toda serie
∑
anen converge

incondicionalmente.

Para cada θ ∈ Bℓ∞ y X con base incondicional (en), se considera el operador Mθ :

X → X en la forma

Mθ(
∑

anen) =
∑

anθnen
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Estos operadores resultan ser lineales y continuos. En efecto, son ĺımite puntual de los

operadores continuos MN
θ que provienen de componer

MN
θ :

∞∑

n=1

anen 7−→
N∑

n=1

anen 7−→
N∑

n=1

anθnen.

Por el Principio de Acotación Uniforme, los operadores Mθ están uniformemente aco-

tados. Definimos aśı la constante incondicional de la base (en) como el número κ =

supθ∈Bℓ∞
‖Mθ‖. Observemos que si θn = 1 para todo n, entonces κ ≥ ‖Mθ‖ = 1.

Definición 2.3.5. Una base (en) de un espacio de BanachX se dice una base κ-incondicional

si es una base incondicional con constante incondicional κ.

Proposición 2.3.6. Sea X un espacio de Banach con una base (en). Encontes, son equi-

valentes:

(i) (en) es una base κ-incondicional.

(ii) Para todo N ∈ N, a1, . . . , aN y b1, . . . , bN escalares tales que |ai| ≤ |bi| para todo

i = 1, . . . , N , se tiene

‖
N∑

n=1

anen‖ ≤ κ‖
N∑

n=1

bnen‖.

Demostración. Supongamos que (en) es una base κ-incondicional. Entonces θ = (θn) =:

(an
bn
) ∈ Bℓ∞ (donde |an| > 0 implica |bn| > 0), y tenemos que

‖
N∑

n=1

anen‖ = ‖
N∑

n=1

bnθnen‖ = ‖Mθ(
∑

bnen)‖ ≤ κ‖
∑

bnen‖

como queŕıamos ver.

Para probar el rećıproco, notemos que, por la Proposición 2.3.3, basta ver que toda subserie

converge. Sea
∑
ank

enk
una subserie y sea ε > 0. Como

∑
anen converge, existe n0 tal

que para todo q > p ≥ n0

‖

q∑

j=p+1

ajej‖ ≤
ε

κ
.

Ahora, para todo l, tenemos que {nk+1, . . . , nk+l} ⊆ {nk + 1, . . . , nk+l}. Luego, usando la

hipótesis para |an| ≥ 0 tenemos que

‖
k+l∑

j=k+1

anj
enj

‖ ≤ κ‖

nk+l∑

j=nk+1

ajej‖ ≤ ε.

Aśı, la serie
∑
ank

enk
es de Cauchy y por lo tanto, converge.
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Proposición 2.3.7. Sea X un espacio de Banach complejo y sea (xn) ⊆ X una base κ-

incondicional. Sea (an) ⊆ C tal que
∑
anen converge, y sea (λn) ⊆ C acotada. Entonces,

‖
∑

λnanen‖ ≤ 2κ sup |λn|‖
∑

anen‖.

Demostración. Sea x∗ ∈ X∗, ‖x∗‖ = 1 tal que

∑
λnanx

∗(en) = ‖
∑

λnanen‖,

y sean (θn), (ηn) ⊆ {±1} definidas como θn = 1 si ℜ(anx
∗(en)) ≥ 0 y θn = −1 si

ℜ(anx
∗(en)) < 0 y ηn = 1 si ℑ(anx

∗(en)) ≥ 0 y ηn = −1 si ℑ(anx
∗(en)) < 0. Enton-

ces,

‖
∑
λnanen‖ ≤ sup |λn|

∑
|anx

∗(en)|
≤ sup |λn|

∑
|ℜ(anx

∗(en))|+ |ℑ(anx
∗(en))|

= sup |λn|
∑(

ℜ(θnanx
∗(en)) + ℑ(ηnanx

∗(en))
)

= sup |λn|
(
x∗(Mθ(

∑
anen)) + x∗(Mη(

∑
anen))

)

≤ sup |λn|2κ‖
∑
anen‖,

obteniendo aśı lo enunciado.

2.4. M-ideales en espacios de operadores sobre espacios de

sucesiones.

Queremos estudiar cuándo los operadores compactos forman un M -ideal en el espacio

de los operadores lineales y acotados. Nuestra primera aproximación serán los operadores

sobre espacios de sucesiones clásicos como lo son ℓp y los espacios de Lorentz dado que

estos tienen base incondicional.

Comenzamos por dar la definición de los espacios de Lorentz.

Para cada p ≥ 1 y cada sucesión de números positivos no creciente w = (wk) tal que

w1 = 1, consideramos el conjunto

d(w, p) =: {x = (xk) : sup
∑

|xσ(k)|
pwk <∞},

si p 6= ∞, y

d(w, p) =: {x = (xk) : sup ‖xσ(k)wk‖∞ <∞},

si p = ∞; donde el supremo lo tomamos sobre todas las permutaciones σ ∈ SN.

Para x ∈ d(w, p), definimos ‖x‖ =: sup
σ∈SN

(
∑

|xσ(k)|
pwk)

1
p , que resulta ser una norma que

hace de d(w, p) un espacio de Banach para todo 1 ≤ p < ∞. De forma análoga se define

la norma para p = ∞.
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Observación 2.4.1. Si x ∈ d(w, p) y σ ∈ SN, entonces

∑
|xσ(k)|

pwk ≤
∑

|xσ(k)|
p

=
∑

|xk|
p;

donde la primera desigualdad se debe a que wk ≤ 1 para todo k.

Aśı, Id : ℓp → d(w, p) es continua si 1 ≤ p <∞. De la misma forma Id : ℓ∞ → d(w,∞)

es continua. Con lo cual se tiene que si ı́nf wk > 0 entonces, d(w, p) ≈ ℓp y si
∑
wk < ∞

resulta d(w, p) ≈ ℓ∞.

En adelante, llamaremos sucesión admisible a una sucesión (wk) ∈ ℓp de términos

positivos tal que wk es no creciente, w1 = 1, ĺımwk = 0 y
∑
wk = ∞.

Ahora definimos los espacios de Lorentz (que serán espacios distintos de los ℓp) como sigue.

Definición 2.4.2. Sea p ≥ 1, w = (wk) una sucesión admisible. Se define el espacio de

Lorentz asociado a w mediante

d(w, p) =: {x = (xk)/‖x‖d(w,p) <∞}

donde

‖x‖d(w,p) = sup
σ∈SN

(
∑

|xσ(k)|
pwk)

1
p

si p 6= ∞, y

‖x‖d(w,p) = sup
σ∈SN

‖xσ(k)wk‖∞

si p = ∞.

Notar que los vectores canónicos forman una base de d(w, p) que además es incondi-

cional de constante κ = 1.

La siguiente definición permite comparar sucesiones entre espacios de Banach.

Definición 2.4.3. Sean X, Y espacios de Banach, (xk) ⊆ X e (yk) ⊆ Y dos sucesiones.

Decimos que (xk) domina a (yk) si existe T ∈ L(X,Y ) tal que Txk = yk para todo k ∈ N.

En este caso notamos (xk) > (yk).

Observación 2.4.4. Por la Observación 2.4.1, la base canónica de ℓp domina a la base

canónica de d(w, p) para todo 1 ≤ p ≤ ∞.

Definición 2.4.5. Dos bases (xn), (yn) de X e Y respectivamente se dicen equivalentes

si,
∑
anxn converge si y sólo si

∑
anyn converge.

Por el teorema del gráfico cerrado se tiene que dos bases (xk) e (yk) son equivalentes

si y solo si (xk) > (yk) e (yk) > (xk). En efecto, es claro que si (xk) > (yk) e (yk) > (xk)

las bases son equivalentes. Rećıprocamente, definimos T : [xn] → [yn] mediante Txn =: yn
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y lo extendemos por linealidad. Para ver que T resulta ser un operador acotado, tomamos

(zn) ⊆ X, z ∈ X e y ∈ X tales que zn → z y T (zn) → y. Queremos ver que Tz = y.

Si (x∗n) e (y∗n) son las bases duales de (xn) e (yn) respectivamente, escribimos zn =
∑
x∗j (zn)xj y T (zn) =

∑
x∗j (zn)yj . Aśı, para todo k ∈ N se tiene que

x∗k(z) = ĺım
n
x∗k(zn) = ĺım

n
y∗k(

∑

j

x∗j (zn)yj) = ĺım
n
y∗k(T (zn)) = y∗k(y)

Luego, x∗k(z) = y∗k(y) para todo k ∈ N; y con lo cual, T (z) =
∑
x∗k(z)yk =

∑
y∗k(y)yk = y

como queŕıamos ver.

Ejemplo 2.4.6. Sean 1 < p, q < ∞ y sean (ek), (fk) las bases canónicas de ℓp y ℓq

respectivamente. Entonces (ek) > (fk) si y sólo si p ≤ q.

En efecto, si p ≤ q la inclusión de ℓp en ℓq resulta continua y cumple la definición.

Rećıprocamente, supongamos que p > q y que existe T ∈ L(ℓp, ℓq) tal que Tek = fk.

Como p > q existe una sucesión (ak) ∈ ℓp \ ℓq. Escribimos a =
∑
akek. Entonces, por

definición de T , tenemos que
∑
akfk =

∑
akTek = Ta ∈ ℓq, lo cual es absurdo.

La siguiente proposición, basada en comparación de sucesiones, da un criterio para

asegurar que todo operador continuo es compacto.

Proposición 2.4.7. Sean (ek) ⊆ X, (fk) ⊆ Y sucesiones tales que (fk) ≮ (ek). Su-

pongamos que para toda (xk) débil nula, ‖xk‖ 9 0, existe una subsucesión (xnk
) tal que

(xnk
) < (ek) y para toda sucesión (yk) débil nula, ‖yk‖ 9 0, existe una subsucesión (ynk

)

tal que (ynk
) > (fk). Entonces K(X,Y ) = L(X,Y ).

Demostración. Supongamos que existe T ∈ L(X,Y ) \ K(X,Y ). Entonces existe α > 0 y

(xk) ⊆ X débil nula tal que ‖Txk‖ > α ≥ 0. Como T es continua, entonces T es w-w

continua y por lo tanto Txk
w
→ 0. Como ‖Txk‖ 9 0 y ‖xk‖ ≥ α

‖T‖ , entonces ‖xk‖ 9 0. Por

hipótesis, y pasando por subsucesiones de ser necesario, podemos pensar que (ek) > (xk)

y (Txk) > (fk). Pero esto es absurdo al ser > una relación transitiva.

Corolario 2.4.8. Si p > q, entonces K(ℓp, ℓq) = L(ℓp, ℓq)

Demostración. Por [LT, Pag. 53] se tiene que toda sucesión (xk) ⊆ ℓp débil nula tal que

‖xk‖ 9 0 tiene una subsucesión equivalente a (ek), la base canónica de ℓp. Por otro lado,

como p > q, por el Ejemplo 2.4.6, (ek) ≯ (fk).

Ahora estudiaremos condiciones necesarias y suficientes para que K(ℓp, d(w, q)) sea un

M -ideal en L(ℓp, d(w, q)) en el caso en que p > q. En este caso, vamos a ver que para

toda sucesión admisible tal que w /∈ ℓ p
p−q

, K(ℓp, d(w, q)) = L(ℓp, d(w, q)) y que, por el

contrario, si w ∈ ℓ p
p−q

entonces no sólo existe un operador acotado no compacto sino que

K(ℓp, d(w, q)) no es un M -ideal en L(ℓp, d(w, q)). Notemos que, como p > q, resulta que

1 < p
p−q <∞ y (ℓ p

q
)∗ = ℓ p

p−q
.
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Lema 2.4.9. Sea p > q, w /∈ ℓ p
p−q

una sucesión admisible y sean (ek) ⊆ ℓp y (fk) ⊆ d(w, q)

las bases canónicas. Entonces (ek) ≯ (fk).

Demostración. Como w /∈ ℓ p
p−q

, por la dualidad de los espacios ℓp, existe b = (bk) ∈ ℓ p
q
tal

que
∑
wk|bk| = ∞. Luego, no puede existir una constante C > 0 tal que para todo N ∈ N

‖
N∑

(bk)
1
q fk‖d(w,q) ≤ C‖

N∑
(bk)

1
q ek‖ℓp . (2.2)

En efecto, si esta constante existiera, se tendŕıa que

C(
N∑

|bk|
p
q )

1
p = C‖

N∑
(bk)

1
q ek‖d(w,p)

≥ ‖
N∑

(bk)
1
q fk‖d(w,q)

= sup
σ

N∑
wk|bσ(k)|

≥
N∑
wk|bk|,

llegando a un absurdo al hacer N → ∞.

Ahora, supongamos que (fk) esta dominada por (ek). Entonces existe un operador

acotado T : ℓp → d(w, q) tal que Tek = fk. Pero entonces C = ‖T‖ cumple (2.2), lo que

es una contradicción.

Observación 2.4.10. Observemos que esto no lo podemos hacer en el caso en que w sea

una sucesión admisible tal que w ∈ ℓ p
p−q

. En este caso se tiene que (ek) > (fk).

Para verlo, alcanza con notar que para cualquier elección de escalares a1, . . . , aN , se tiene

(

N∑
wk|ak|

q)
1
q ≤ (

N∑
w

p
p−q

k )
p−q
pq (

N∑
|ak|

p)
1
p .

Con lo cual, definiendo Tek =: fk y extendiendo por linealidad, resulta ser

T : ℓp → d(w, q) continua, con ‖T‖ = (
∑N w

p
p−q

k )
p−q
pq .

Proposición 2.4.11. Sea p > q y sea w /∈ ℓ p
p−q

una sucesión admisible. Entonces

K(ℓp, d(w, q)) = L(ℓp, d(w, q)).

Demostración. Sean (ek) y (fk) las bases canónicas de ℓp y ℓq respectivamente. Por el Lema

2.4.9, (ek) � (fk). Por la Proposición 2.4.7, basta probar que toda sucesión (yn) ∈ d(w, q)

débil nula tal que ‖yn‖ 9 0 tiene una subsucesión (ynk
) tal que (ynk

) > (fk).

Sea (yn) ∈ d(w, q) débil nula tal que ‖yn‖ 9 0. Por [LT, Proposición 1.a.12.], (yn) es

equivalente a una base normalizada (un) de bloques de la base (fk) ⊆ d(w, q). Supongamos

que un es de la forma

un =

mn+1∑

k=mn+1

akfk . (2.3)
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Si ak → 0, por [LT, Proposición 4.e.3.], resulta que (un) es equivalente a (en) la base de ℓp.

Pero, por la Observación 2.4.4, ésta domina a (fn) y por lo tanto existe una subsucesión

(ynk
) > (fn).

Si ak 9 0, existe una subsucesión ajk y ε > 0 tal que |ajk | ≥ ε para todo k. Tomando una

subsucesión de los (un) podemos suponer que en la escritura (2.3) aparece un coeficiente

ajk y por lo tanto, para todo n ∈ N existe k(n) ∈ {mn + 1, . . . ,mn+1} tal que |ak(n)| > ε.

Como (fn) es una base incondicional con constante incondicional 1, por la Proposición

2.3.6, se tiene que para todo N ∈ N y b1, . . . , bN escalares,

ε‖
N∑

n=1

bnfk(n)‖ = ‖
N∑

n=1

εbnfk(n)‖ ≤ ‖
N∑

n=1

ak(n)bnfk(n)‖. (2.4)

Tomando λn = 1 si n = n(k) y λn = 0 si no, podemos reescribir (2.4) para obtener

‖
N∑

n=1

ak(n)bnfk(n)‖ = ‖
N∑

n=1

mn+1∑

k=mn+1

λnakbnfk‖

≤ 2‖
N∑

n=1

mn+1∑

k=mn+1

akbnfk‖,

donde la última desigualdad se debe a la Proposición 2.3.7 notando que sup |λn| = 1.

Luego, 2‖
N∑

n=1

mn+1∑

k=mn+1

akbnfk‖ ≥ ε‖
N∑

n=1

bnfk(n)‖ y por lo tanto, recordando el Lema 2.3.2,

tenemos que

‖
N∑

n=1

bnun‖ = ‖
N∑

n=1

mn+1∑

k=mn+1

akbnfk‖ ≥
ε

2
‖

N∑

n=1

bnfk(n)‖ =
ε

2
‖

N∑

n=1

bnfn‖.

Luego, definir Tun = fn nos da un operador continuo y por lo tanto (un) > (fn). Como

(un) es equivalente a una subsucesión de (yn) obtenemos lo buscado.

Para terminar esta sección, vamos a ver queK(ℓp, d(w, q)) no es unM -ideal en L(ℓp, d(w, q))

si p > q y w ∈ ℓ p
p−q

. Para esto, necesitamos la siguiente proposición.

Proposición 2.4.12. Sea (en) base de X y sea (fn) base incondicional de Y con constante

incondicional 1, tal que (en) > (fn) y sea T ∈ L(X,Y ) tal que Ten = fn para todo n ∈ N.

Supongamos además que existe D ∈ K(X,Y ) y δ > 0 tal que ‖D‖ ≤ ‖T‖ < δ y para todo

n ∈ N

‖PnT −D‖ ≥ δ,

donde Pn : Y → Y esta dada por Pn(
∑
akfk) =

∑∞
k=n+1 akfk. Entonces K(X,Y ) ⊆

L(X,Y ) no es un semi-M -ideal.

Demostración. Sean Pn = I − Pn las proyecciones a las primeras coordenadas. Como D

es compacto, se tiene que ‖PnD −D‖ → 0. Dado ε > 0 tal que ‖T‖ < δ − ε = δ̃, existe
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m ≥ N tal que ‖PnT + PmD‖ ≥ δ̃. Con lo cual podemos suponer que D = PmD.

Vamos a construir dos bolas en L(X,Y ), B1 y B2 tales que B1∩B2 6= ∅, B1∩K(X,Y ) 6= ∅

y B2 ∩ K(X,Y ) 6= ∅ pero B1 ∩ B2 ∩ K(X,Y ) = ∅. Con lo cual, no se cumple la 2-ball

property y K(X,Y ) no puede ser un M -ideal en L(X,Y ).

Sea B1 = B(PmT + D; ‖T‖) y B2 = B(PmT − D; ‖T‖). Por hipótesis, se tiene que

PmT ∈ B1 ∩B2. Como ‖Pm‖ ≤ 1, tenemos que D ∈ B1 ∩K(X,Y ) y −D ∈ B2 ∩K(X,Y ).

Supongamos que existe

A ∈ B1 ∩B2 ∩ K(X,Y ). (2.5)

Nuevamente, podemos suponer que A = PnA para algún n ≥ m. Ahora,

2δ ≤ ‖2(PnT +D)‖ ≤ ‖PnT +D − PmA‖+ ‖PnT +D + PmA‖. (2.6)

Como n ≥ m, PnPm = Pn. Además PmP
m = 0 y por lo tanto se tiene que

PnT +D − PmA = (Pm + Pn)(PmT +D −A).

Por otro lado, como la constante incondicional de Y es 1, se tiene que ‖PnT+D+PmA‖ =

‖ − PnT +D + PmA‖. Se sigue de (2.6) que

2δ ≤ ‖(Pm + Pn)(PmT +D −A)‖+ ‖ − PnT +D + PmA‖

≤ ‖(Pm + Pn)‖‖T‖+δ
2 + ‖T‖+δ

2

≤ ‖T‖+δ
2 + ‖T‖+δ

2
= ‖T‖+ δ
< 2δ.

Como esto es un absurdo, tenemos entonces que no puede existir un A cumpliendo (2.5),

mostrando que K(X,Y ) ⊆ L(X,Y ) no es un semi-M -ideal.

Corolario 2.4.13. Sea p > q, w ∈ ℓ p
p−q

una sucesión admisible. Entonces K(ℓp, d(w, q))

no es un semi-M -ideal en L(ℓp, d(w, q)); y por lo tanto, no es un M -ideal.

Demostración. Sean (ek), (fk) las bases canónicas de ℓp y d(w, q) respectivamente. Como

w ∈ ℓ p
p−q

, por la Observación 2.4.10, existe T ∈ L(ℓp, d(w, q)) tal que Tek = fk para todo

k ∈ N. Definimos D ∈ K(ℓp, d(w, q)) en la forma: De1 =: ‖T‖f1 y Dei = 0 para todo i ≥ 2.

Aśı, ‖D‖ = ‖T‖.

Sea

xn = (0, . . . , 0︸ ︷︷ ︸
n

, w
1

p−q

2 , w
1

p−q

3 , . . . ).

Sea W =
∑
w

p
p−q

k y a > W
1
p . Entonces

‖ae1 + xn‖p = (ap +W − 1)
1
p =: b

y

‖(PnT +D)(ae1 + xn)‖d(w,q) ≥ (aqW
p−q
p +W − 1)

1
q =: c,
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Notar que W
p−q
pq = ‖T‖.

Si pensamos a b y c como funciones en a, el cociente c
b
tiende a W

p−q
pq = ‖T‖ cuando a

crece. Más aún, c
b
decrece a ‖T‖; con lo cual, podemos elegir a suficientemente grande de

modo que si δ =: c
b
, entonces δ > ‖T‖.

Por último, notamos que

‖PnT +D‖ ≥ ‖(PnT +D)(
ae1 + xn

b
) =

c

b
,

obteniendose aśı el resultado gracias a la Proposición 2.4.12.

Cabe mencionar que la situación para operadores entre espacios de Lorentz fue estu-

diada parcialmente por [O], en donde se muestra que si p > (p− 1)q y d(v, p)∗ ⊆ d(w, q),

entonces K(d(v, p)∗, d(w, q)) no es un semi-M -ideal en L(d(v, p)∗, d(w, q)).



Caṕıtulo 3

Propiedades (M) y (M∗)

En este caṕıtulo trataremos de clasificar los espacios de BanachX para los cuales K(X)

es un M -ideal en L(X). El resultado principal es el Teorema 3.2.3 en el que damos varias

equivalencias. La conclusión más importante (condición (v)) es que un espacio de Banach

X tiene la propiedad de que K(X) es un M -ideal en L(X) si y sólo si X satisface una

condición estructural, llamada (M)-propiedad o propiedad (M) junto con la existencia

de una red de operadores compactos (Kα)α tales que tanto Kα como K∗
α aproximan

puntualmente a la identidad y se satisface que ĺım ‖I − 2Kα‖ = 1.

3.1. La propiedad (M) y la estructura de M-ideal

La propiedad (M) se define como sigue:

Definición 3.1.1. Sea X un espacio de Banach. Decimos que X tiene la propiedad (M)

si para todo u, v ∈ X; ‖u‖ = ‖v‖ y toda red (xα) ⊆ X acotada débil nula, se tiene

ĺım sup ‖u+ xα‖ = ĺım sup ‖v + xα‖.

Definición 3.1.2. Sea (xα) ⊆ X una red. Decimos que la red es relativamente compacta

en norma si {xα} tiene clausura compacta; es decir, si existe una subred convergente en

norma.

Lema 3.1.3. Sea X un espacio de Banach. Son equivalentes:

(i) X tiene la propiedad (M).

(ii) Para todo u, v ∈ X, ‖u‖ = ‖v‖ y toda red (xα) ⊆ X acotada débil nula tal que

ĺım ‖u+ xα‖ existe; se tiene que ĺım ‖v + xα‖ existe y ambos ĺımites coinciden.

(iii) Para todo u, v ∈ X, ‖u‖ ≤ ‖v‖ y toda red (xα) ⊆ X acotada débil nula se tiene que

ĺım sup ‖u+ xα‖ ≤ ĺım sup ‖v + xα‖.

39
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(iv) Si (uα), (vα) ⊆ X son redes relativamente compactas en norma tal que ‖uα‖ ≤ ‖vα‖

para todo α y (xα) ⊆ X es una red acotada débil nula, entonces

ĺım sup ‖uα + xα‖ ≤ ĺım sup ‖vα + xα‖.

Demostración. Supongamos que X tiene la propiedad (M) y sean u, v ∈ X y (xα) ⊆ X

red acotada débil nula, tales que ĺım ‖u+ xα‖ existe y por lo tanto coincide con su ĺımite

superior. Entonces

ĺım ‖u+ xα‖ = ĺım sup ‖u+ xα‖ = ĺım sup ‖v + xα‖.

Con lo cual ĺım ‖v + xα‖ existe y coincide con ĺım ‖u+ xα‖. Luego (i) implica (ii).

Veamos que podemos obtener (i) a partir de (ii). Supongamos que existen u, v ∈ X y

(xα) ⊆ X red acotada débil nula tales que

ĺım sup ‖u+ xα‖ < ĺım sup ‖v + xα‖.

Entonces, como el ĺımite superior es el supremos de los ĺımites de todas las subredes

convergentes, existe una subred (xαγ ) convergente a x tal que ĺım sup ‖u+ xα‖ < ĺım ‖v+

xαγ‖. Por hipótesis, ĺım ‖u+ xαγ‖ existe y coincide con ĺım ‖v + xαγ‖.

Pero entonces ĺım sup ‖u+ xα‖ < ĺım ‖v + xαγ‖ = ĺım ‖u+ xαγ‖ ≤ ĺım sup ‖u+ xα‖.

Vamos a ver que (iv)⇒(i)⇒(iii)⇒(iv). Es fácil ver que (iv)⇒(iii) y (iii)⇒(i). Luego

(iv) implica (i). Para probar que (i) implica (iii) tomamos u, v como en (i) y λ > 1 tal

que ‖λu‖ = ‖v‖. Al ser λ > 1, u+xα es una combinación convexa de λu+xα y −λu+xα,

luego se tiene que

‖u+ xα‖ ≤ máx{‖λu+ xα‖; ‖xα − λu‖},

con lo cual

ĺım sup ‖u+ xα‖ ≤ máx{ĺım sup ‖λu+ xα‖; ĺım sup ‖xα − λu‖}
= máx{ĺım sup ‖v + xα‖; ĺım sup ‖xα − v‖}.

Usando otra vez queX tiene la propiedad (M), tenemos que ĺım sup ‖xα−v‖ = ĺım sup ‖v+

xα‖ y se sigue el resultado.

Por último, veamos que (iv) se obtiene de (iii). Supongamos que (iv) es falso. Entonces,

como las redes son relativamente compactas en normas, podemos encontrar subredes (uαk
),

(vαk
) ⊆ X y u, v ∈ X tales que uαk

→ u y vαk
→ v, cumpliendo

ĺım sup ‖uαk
+ xαk

‖ > ĺım sup ‖vαk
+ xαk

‖.

Pero como ‖uα‖ ≤ ‖vα‖ se tiene que ‖u‖ ≤ ‖v‖; con lo cual resulta ser falso (iii) para este

u, v contradiciendo las hipótesis.

El siguiente lema vincula la propiedad (M) de un espacio X con los operadores

contráctiles sobre X.
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Lema 3.1.4. Sea X un espacio de Banach con la propiedad (M) y sea T ∈ L(X); ‖T‖ ≤ 1.

Sean (uα), (vα) ⊆ X redes relativamente compactas en norma tales que ‖uα‖ ≤ ‖vα‖ y

sea (xα) ⊆ X red acotada débil nula. Entonces,

ĺım sup ‖uα + Txα‖ ≤ ĺım sup ‖vα + xα‖.

Demostración. Supongamos que ‖T‖ = 1 y para cada λ < 1, w ∈ X, sea ‖w‖ = 1, tal que

‖Tw‖ > λ. Sean wα = ‖vα‖w. Entonces, como ‖λuα‖ ≤ ‖Tw‖‖vα‖ = ‖Twα‖ y (Txα) es

acotada y débil nula, por Lema 3.1.3 tenemos que

ĺım sup ‖λuα + Txα‖ ≤ ĺım sup ‖Twα + Txα‖
≤ ĺım sup ‖wα + xα‖
= ĺım sup ‖vα + xα‖.

Haciendo λ→ 1 obtenemos lo buscado.

Supongamos ahora que ‖T‖ < 1 y escribimos T = λL donde λ = ‖T‖ y ‖L‖ = 1.

Nuevamente considerando combinaciones convexas y, utilizando el caso anterior para L,

tenemos que

ĺım sup ‖uα + Txα‖ ≤ máx{ĺım sup ‖uα + Lxα‖; ĺım sup ‖uα − Lxα‖}
≤ máx{ĺım sup ‖vα + xα‖; ĺım sup ‖ − vα + xα‖}
= ĺım sup ‖vα + xα‖

como queŕıamos probar.

Análogamente a la definición de propiedad (M), se define la condición (M∗). Decimos

queX tiene la propiedad (M∗) si para todo u∗, v∗ ∈ X∗; ‖u∗‖ = ‖v∗‖ y toda red (x∗α) ⊆ X∗

acotada débil∗ nula, se tiene

ĺım sup ‖u∗ + x∗α‖ = ĺım sup ‖v∗ + x∗α‖.

Lema 3.1.5. Para la propiedad (M∗) se tiene un resultado similar al Lema 3.1.3

Demostración. La demostración es análoga a la hecha para el Lema 3.1.3.

Podemos preguntarnos si hay alguna relación entre la propiedad (M) y la propiedad

(M∗). A continuación mostraremos que la propiedad (M∗) implica la propiedad (M) pero

no al revés. Aunque estas dos propiedades son equivalentes si el espacio tiene una aproxi-

mación compacta achicante de la identidad, como muestra el Teorema 3.2.3.

Proposición 3.1.6. Sea X un espacio de Banach con la propiedad (M∗), entonces X

tiene la propiedad (M).

Demostración. Haremos la demostración en el caso en que X sea un espacio de Banach

real.

Supongamos que existen ‖u‖ = ‖v‖ y (xα) acotada débil nula tales que

ĺım sup ‖u+ xα‖ > ĺım sup ‖v + xα‖,
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y sea (x∗α) ⊆ BX∗ tal que x∗α(u + xα) = ‖u + xα‖ para cada α. Pasando por subredes,

podemos suponer que (x∗α) converge débil∗ a x∗. Sea v∗ ∈ X∗ tal que ‖v∗‖ = ‖x∗‖ y

v∗(v) = ‖x∗‖‖v‖. Entonces x∗(u) ≤ ‖x∗‖‖u‖ = ‖v∗‖‖v‖ = v∗(v) y por lo tanto

ĺım sup ‖u+ xα‖ = ĺım sup x∗α(u+ xα)
= x∗(u) + ĺım sup(x∗α − x∗)(xα)
≤ v∗(v) + ĺım sup(x∗α − x∗)(xα)
= ĺım sup(v∗ + x∗α − x∗)(v + xα)
≤ ĺım sup ‖v∗ + x∗α − x∗‖‖v + xα‖
≤ ĺım sup ‖v + xα‖,

pues la propiedad (M∗) implica que ĺım sup ‖v∗+x∗α−x
∗‖ = ĺım sup ‖x∗+x∗α−x

∗‖ ≤ 1.

Ejemplo 3.1.7. No todo espacio que cumple la propiedad (M), cumple la propiedad (M∗).

En efecto, veamos que ℓ1 es un ejemplo de esta situación.

Si tomamos (en) la sucesión canónica de ℓ∞ = (ℓ1)
∗; esta sucesión es débil∗ nula, pero si

consideramos v = (1, . . . , 1, . . . , ) en ℓ∞, tenemos que ‖e1‖∞ = ‖v‖∞ aunque si n > 1,

‖e1 + en‖∞ = 1 < 2 = ‖v + en‖,

mostrándonos que ℓ1 no posee la propiedad (M∗).

Para ver que este espacio śı cumple la propiedad (M), vamos a definir una propiedad más

general que la propiedad (M).

Definición 3.1.8. Dado 1 ≤ p < ∞. Decimos que un espacio de Banach X tiene la

propiedad mp si para todo x ∈ X y toda red acotada débil nula (xα) ⊆ X se tiene que

ĺım sup ‖x+ xα‖ =
(
‖x‖p + ĺım sup ‖xα‖

p
) 1

p .

Aśı mismo decimos que X tiene la propiedad m∞ si

ĺım sup ‖x+ xα‖ = máx{‖x‖, ĺım sup ‖xα‖}.

Observemos que por la Definición 3.1.1 todo espacio con la propiedad mp inmediata-

mente cumple la propiedad (M). Luego para probar que ℓ1 tiene la propiedad (M), basta

mostrar que tiene la propiedad mp, para algún p. Más en general tenemos la siguiente

proposición.

Proposición 3.1.9. Si 1 ≤ p < ∞, entonces ℓp tiene la propiedad mp, además c0 tiene

la propiedad m∞.

Demostración. Sea x ∈ ℓp y (xn) ⊆ ℓp acotada débil nula. Para cada n ∈ N sea πn : ℓp → ℓp

la proyección canónica en las primeras n coordenadas. Sean ε > 0 y k0 ∈ N tal que

‖(I − πk0)x‖ ≤ ε. Como (xα) es débil nula, existe un α0 tal que para todo α > α0,

‖πk0xα‖ ≤ ε. Entonces, si α > α0 tenemos que

|‖x+ xα‖ − ‖πk0x+ (I − πk0)xα‖| ≤ 2ε.
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Luego, ĺım sup ‖x+ xα‖ = ĺım sup ‖πk0x+ (I − πk0)xα‖. Por otro lado,

|‖πk0x+ (I − πk0)xα‖
p − (‖x‖p + ‖xα‖

p)| =

k0∑

j=1

|xj |
p +

∞∑

j=k0+1

|xαj |
p − (

∞∑

j=1

|xj |
p +

∞∑

j=1

|xαj |
p)

=

∞∑

j=k0+1

|xj |
p +

k0∑

j=1

|xαj |
p

≤ 2εp.

Con lo cual, ĺım sup ‖πk0x + (I − πk0)xα‖
p = (‖x‖ + ĺım sup ‖xα‖

p)
1
p , probando aśı el

resultado. Con una demostración análoga obtenemos el resultado deseado para c0.

Hasta ahora vimos que todo espacio con la propiedad (M∗) tiene la propiedad (M).

Además mostramos que para ℓ1 la rećıproca es falsa. El siguiente teorema muestra que ℓ1

es esencialmente el único espacio separable con esta propiedad.

Teorema 3.1.10. Sea X un espacio de Banach separable con la propiedad (M) y que no

contiene una copia de ℓ1. Entonces X tiene la propiedad (M∗).

Demostración. Por [KW, Lema 2.5], X∗ es separable y, por lo tanto, podemos probar la

propiedad (M∗) usando sucesiones. Sea (x∗n) ⊆ X∗ una sucesión débil∗ nula. Por el Lema

3.1.3 (iii) para la versión (M∗), es suficiente probar que si para todo x∗ ∈ X∗, ĺım ‖x∗+x∗n‖

existe, entonces para todo y∗ ∈ X∗ con ‖x∗‖ = ‖y∗‖,

φ(x∗) =: ĺım ‖x∗ + x∗n‖

satisface

φ(x∗) = φ(y∗). (3.1)

Notemos que φ es contráctil ya que |φ(x∗) − φ(y∗)| ≤ ‖x∗ − y∗‖, luego es continua. Para

mostrar (3.1) vamos a usar la función auxiliar g : R≥0 → R definida por

g(t) =: ı́nf{φ(x∗) : ‖x∗‖ = t},

(que resulta continua) y vamos a probar que φ(τx∗) = g(τ) para todo τ ≥ 0 y para todo x∗

de norma 1. Está claro que si vemos esto, obtenemos (3.1). En efecto, si ‖x∗‖ = ‖y∗‖ = 1

o ‖x∗‖ = ‖y∗‖ = 0, no hay nada que mostrar. Si no, x∗/‖y∗‖ tiene norma 1 y vale

φ(x∗) = φ(‖y∗‖
x∗

‖y∗‖
) = g(‖y∗‖) = φ(‖y∗‖

y∗

‖y∗‖
) = φ(y∗).

La demostración de lo que sigue, es técnica. Notemos que φ(x∗) ≥ ‖x∗‖ − φ(0). Luego

g(t) ≥ t−g(0). Con lo cual, g alcanza su mı́nimo en τ0 ∈ R≥0. Más aún, g(τ0) < g(τ) para

todo τ0 < τ .

Como X∗ es separable, existen u∗ ∈ BX∗ y u ∈ SX tales que u∗(u) = 1 y ĺım ‖u∗n−u
∗‖ = 0
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para toda (u∗n) ∈ X∗ satisfaciendo ĺım ‖u∗n‖ = ĺımu∗n(x) = 1, ver [P, p. 80].

Sean τ > 0, Z = {x∗ ∈ X∗ : x∗(u) = 0} y sea

θ =: ı́nf{φ(τv∗) : v∗ ∈ u∗ + Z}.

Sea (Fn) una sucesión creciente de subespacios de Z, de dimensión finita, tal que
⋃
Fn es

densa en Z. Entonces, para todo k ∈ N

ĺım inf
n

d(τu∗ + x∗n, Fk) ≥ θ. (3.2)

En efecto, supongamos que existe un k0 ∈ N para el cual esto no se cumple. Como (x∗n) es

w∗-nula, por un argumento de compacidad, podemos encontrar una subsucesión (x∗nj
) y

f∗ ∈ Fk0 tal que ĺım
j
‖f∗+τu∗+x∗nj

‖ < θ. Pero entonces, φ(f∗+τu∗) < θ lo que contradice

la elección de θ. Luego, (3.2) se cumple y por lo tanto, existe una subsucesión (y∗n) de (x
∗
n)

tal que ĺım inf
n

d(τu∗ + y∗n, Fn) ≥ θ.

Por Hahn-Banach, para todo n ∈ N existe yn ∈ BX , tal que f
∗(yn) = 0 para todo f∗ ∈ Fn

y

ĺım inf
n

(τu∗(yn) + y∗n(yn)) ≥ θ. (3.3)

Como
⋃
Fn es densa en Z y f∗(yn) = 0 para todo f∗ ∈ Fn, tenemos que si ŷn

w∗

→ ξ,

entonces ξ
∣∣
Z
= 0 y por lo tanto ξ ∈ [û].

Como X es reflexivo, BX es relativamente débil compacto. Luego, pasando por subsuce-

siones, podemos suponer que (yn) converge débilmente a αu para algún α ∈ K. Escribimos

entonces yn = αu+ fn con (fn) débil nula y ‖u‖ = 1.

Vamos a usar esta sucesión (yn) para estimar φ.

Si ‖x‖ ≤ 1, como X tiene la propiedad (M), entonces ĺım sup ‖αx+ fn‖ = ĺım sup ‖αu+

fn‖ = ĺım sup ‖yn‖ ≤ 1. Luego, si x∗ ∈ X∗,

φ(x∗) = ĺım ‖x∗+x∗n‖ = ĺım ‖x∗+ y∗n‖ ≥ ĺım(x∗+ y∗n)(αx+ fn) = αx∗(x)+ ĺım sup y∗n(fn).

Como esto es para todo ‖x‖ ≤ 1, si β = ĺım sup y∗n(fn), tenemos que

φ(x∗) ≥ |α|‖x∗‖+ β, (3.4)

para todo x∗ ∈ X∗.

Si v∗ ∈ u∗ + Z, se tiene que ‖v∗‖ ≥ v∗(u) = 1 y por lo tanto

θ ≥ |α|τ + β.

Por otra parte, por (3.2) tenemos que

θ ≤ ĺım inf(τu∗(yn) + y∗n(yn)) ≤ ατ + β.
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Concluimos entonces que θ = ατ + β con α ≥ 0 y τ > 0.

Supongamos entonces que τ > τ0. Como φ(x∗) ≥ α‖x∗‖+ β ≥ β, tenemos que β ≤ g(τ0).

Por otro lado, si t ≥ τ y ‖x∗‖ = t, entonces por (3.4)

θ = ατ + β ≤ αt+ β ≤ |α|‖x∗‖+ β ≤ φ(x∗).

Luego, θ ≤ g(t) para todo t ≥ τ y por lo tanto,

θ ≥ ı́nf{g(t) : t ≥ τ} > g(τ0).

Entonces, θ = ατ + β > g(τ0) ≥ β y por lo tanto α > 0 al ser τ > 0.

Sea (v∗n) ⊆ u∗ + Z tal que φ(v∗n) < θ + 1
n
. Entonces

ατ‖v∗n‖+ β < θ +
1

n
,

y por lo tanto

‖v∗n‖ − 1 ≤
1

ατn
.

Como v∗n(u) = u∗(u) = 1 tenemos que ĺım ‖v∗n‖ = 1. Por lo tanto, por la elección de u∗,

ĺım ‖v∗n − u∗‖ = 0. Como φ es continua, tenemos que φ(τu∗) = θ = ατ + β.

Por (3.4) tenemos que φ(τu∗) ≤ φ(τv∗) para todo ‖v∗‖ = 1. Con lo cual, φ(τu∗) = g(τ).

Sea B el subconjunto de BX∗ formado por los puntos w∗ para los cuales existe w ∈ BX

tal que w∗(w) = 1 y, para toda (u∗n) ∈ X∗ cumpliendo que ĺım ‖u∗n‖ = ĺımu∗n(w) = 1, se

tiene que ĺım ‖u∗n − w∗‖ = 0. Como u∗ ∈ B y φ es convexa, entonces φ(τx∗) ≤ g(τ) para

todo x∗ en la clausura convexa C de B.

Como X∗ es separable, por [P, p. 80], C es w∗-denso en BX∗ y por [KW, Lema 3.5], es

denso en BX∗ . Luego, φ(τx∗) ≤ g(τ) para todo ‖x∗‖ ≤ 1. En particular, φ(τx∗) = g(τ) si

‖x∗‖ = 1 y τ > τ0.

Por otro lado, si τ < τ0, entonces, por el argumento de recién, φ(τx∗) ≤ g(t) para todo

‖x∗‖ = 1 y t > τ0. Luego, φ(τx
∗) ≤ g(τ0) y, por lo tanto, φ(τx∗) = g(τ0) ≤ g(τ). Aśı,

φ(τx∗) = g(τ).

Hemos probado entonces que φ(τx∗) = g(τ) para todo τ ≥ 0 y para todo ‖x∗‖ = 1, lo que

muestra (3.1).

3.2. La propiedad (M) y M-ideales de operadores.

En esta sección relacionamos estas dos nuevas nociones con la de M -ideales estudiada

anteriormente. Veremos que todo espacio X que tiene la propiedad (M∗) es unM -ideal en

X∗∗. También introduciremos la definición de una aproximación compacta achicante de la

identidad que nos ayudará a dar equivalencias para saber cuándo K(X,Y ) es un M -ideal

en L(X,Y ).
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Proposición 3.2.1. Sea X un espacio de Banach que tiene la propiedad (M∗). Entonces

X es un M -ideal en X∗∗.

Demostración. Debemos ver que X∗∗∗ = X⊥ ⊕1 X
∗. Sea ϕ ∈ X⊥ ⊆ X∗∗∗ y sea ψ ∈ X∗

(acá pensamos X∗ ⊆ X∗∗∗). Vamos a probar que ‖ϕ+ ψ‖ = ‖ϕ‖+ ‖ψ‖.

Sean λ ∈ R, λ < 1 y x∗∗ ∈ BX∗∗ tales que ϕ(x∗∗) > λ‖ϕ‖. Tomamos x∗ ∈ X∗ tal que

‖x∗‖ = ‖ψ‖ y x∗∗(x∗) > λ‖x∗‖ = λ‖ψ‖.

Como ϕ ∈ B(−ψ; ‖ψ + ϕ‖) ⊆ X∗∗∗, por el teorema de densidad de Goldstine, existe

(y∗α) ⊆ B(−ψ; ‖ψ + ϕ‖) tal que (y∗α) converge débil-∗ a ϕ en X∗∗∗.

Como ϕ(x∗∗) > λ‖ϕ‖, podemos además suponer que para todo α, x∗∗(y∗α) > λ‖ϕ‖.

Por último, como ϕ ∈ X⊥, tenemos que (yα) tiende w
∗ a cero en X∗; con w∗ = σ(X∗, X).

Con todo esto
‖ψ + ϕ‖ ≥ ĺım sup ‖ψ + y∗α‖

= ĺım sup ‖x∗ + y∗α‖
≥ ĺım sup x∗∗(x∗ + y∗α)
≥ λ(‖ψ‖+ ‖ϕ‖),

donde la igualdad se debe a que X tiene la propiedad (M∗) y ‖ψ‖ = ‖x∗‖. Haciendo λ→ 1

se obtiene una desigualdad. La proposición queda probada al notar que ‖ψ+ϕ‖ ≤ ‖ψ‖+‖ϕ‖

siempre.

Introducimos ahora el concepto de aproximaciones compactas achicantes de la identi-

dad que usaremos junto con los conceptos de propiedad (M) y propiedad (M∗) para dar

nuevas equivalencias que nos permitan saber cuándo K(X) ⊆ L(X) es un M -ideal.

Definición 3.2.2. Una red de operadores compactos (Kα) sobre un espacio de Banach

X se dice una aproximación compacta achicante de la identidad (SCAI) si Kαx → x y

K∗
αx

∗ → x∗ para todo x ∈ X y todo x∗ ∈ X∗.

Teorema 3.2.3. Sea X un espacio de Banach de dimensión infinita. Son equivalentes:

(i) K(X) es un M -ideal en L(X).

(ii) Existe (Kα) una SCAI tal que para todo S, T ∈ L(X)

ĺım sup ‖SKα + T (I −Kα)‖ ≤ máx{‖S‖; ‖T‖}.

(iii) Existe (Kα) una SCAI tal que para todo S, T ∈ L(X)

ĺım sup ‖KαS + (I −Kα)T‖ ≤ máx{‖S‖; ‖T‖}.

(iv) Existe (Kα) una SCAI tal que ‖Kα‖ ≤ 1 para todo α y para todo S ∈ BK(X)

ĺım sup ‖S + I −Kα‖ ≤ 1.
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(v) X tiene la propiedad (M) y existe (Kα) una SCAI tal que

ĺım ‖I − 2Kα‖ = 1.

(vi) X tiene la propiedad (M∗) y existe (Kα) una SCAI tal que

ĺım ‖I − 2Kα‖ = 1.

Antes de demostrar este teorema, se necesitan algunas herramientas acerca de M -

ideales en un álgebra de Banach. Para la definición deM -ideal interno a derecha (izquierda)

y M -ideal interno bilátero, referirse a [HWW, Definición V.3.1.]. Por [HWW, Proposición

VI.4.10.] se tiene que si K(X) es un M -ideal en L(X), entonces resulta ser un M -ideal

interno bilátero.

Para U un álgebra de Banach y e su neutro, decimos que (pα) es una λ-aproximación a

izquierda de la identidad si cumple

• ‖pα‖ ≤ λ para todo α

• ĺım pαa = a para todo a ∈ U.

De la misma forma se dice que pα aproxima a derecha si ĺım apα = a para todo a ∈ U.

Además se tiene el siguiente resultado que también debemos a [HWW].

Teorema 3.2.4. [HWW, Teorema V.3.2.] Sea U un álgebra de Banach con unidad y sea

J ⊆ U subespacio. Son equivalentes:

(i) J es un M -ideal interno a izquierda (derecha).

(ii) J es un ideal a izquierda (derecha), un M -ideal y contiene una 1-aproximación de la

identidad a la derecha (izquierda).

(iii) J es un ideal a izquierda (derecha) y contiene una aproximación de la identidad a

derecha (izquierda) (pα) ⊆ J satisfaciendo

ĺım sup ‖spα + t(e− pα)‖ ≤ 1 ∀s, t ∈ BU,

donde e es el elemento neutro del álgebra U.

Además, si J es un M -ideal interno bilátero, entonces se puede elegir (pα) una aproxima-

ción bilateral de la identidad, cumpliendo simultáneamente

ĺım sup ‖spα + t(e− pα)‖ ≤ 1

y

ĺım sup ‖pαs+ (e− pα)t‖ ≤ 1.
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Demostración. (del teorema 3.2.3)

Veamos primero que (i) y (ii) son equivalentes.

Si (i) es cierto, por lo observado arriba K(X) resulta ser unM -ideal interno bilátero, y por

el Teorema 3.2.4, K(X) contiene una 1-aproximación de la identidad (Kα) cumpliendo

ĺım sup ‖SKα + T (I −Kα)‖ ≤ 1 ∀S, T ∈ L(X).

Las equivalencias entre (iv) y (v) del [HWW, Lema VI.4.9.], implican (K∗
α)α converge

puntualmente a la identidad sobre X∗, mostrando que (Kα)α es una SCAI.

Obetenemos (ii) multiplicando y dividiendo por máx{‖S‖; ‖T‖}.

Usando (iii) ⇒ (ii) del Teorema 3.2.3 obtenemos (i) a partir de (ii); siempre recordando

que K(X) es un ideal bilátero en L(X). De la misma forma se tiene que (ii) implica (iii).

Para probar que (iii) implica (iv), tomamos S = I y T = 0 y tenemos que ‖Kα‖ ≤ 1 para

todo α. Por último, si S ∈ BK(X) entonces

‖S + I −Kα‖ ≤ ‖KαS + I −Kα‖+ ‖KαS − S‖.

Como S es compacto yKα converge puntualmente a la identidad, se tiene que ‖Kα S − S‖ → 0.

(iv) ⇒ (vi): Observemos que ‖I−2Kα‖ ≥ 1 para todo α. En efecto, si esto no fuese cierto,

tendŕıamos que 2K = I − (I − 2K) es inversible pero esto no puede ser pues X es un

espacio de dimensión infinita. Tomando S = −Kα en la hipótesis de (iv), tenemos la otra

desigualdad.

Veamos entonces que X tiene la propiedad (M∗). Para esto usaremos el Lema 3.1.5. Su-

pongamos que (x∗γ) ⊆ X∗ es una red acotada débil-∗ nula y sean u∗, v∗ ∈ X∗ tales que

‖u∗‖ ≤ ‖v∗‖. Entonces existe un operador S̃ de rango 1 (y por lo tanto compacto) tal que

‖S̃‖ ≤ 1 y S̃(v∗) = u∗. En efecto, supongamos que θ ∈ X∗∗ tal que ‖θ‖ = 1 y θ(v∗) = ‖v∗‖.

Entonces S̃(x∗) = θ(x∗)
‖v∗‖ u

∗ cumple lo buscado.

Notemos que ‖K̃x∗γ‖ → 0 para todo operador compacto K̃. Aśı, si fijamos un ı́ndice α,

ĺım sup
γ

‖u∗ + x∗γ‖ = ĺım sup
γ

‖S̃(v∗ + x∗γ) + (I −K∗
α)x

∗
γ‖

≤ ‖S̃ + I −K∗
α‖ĺım sup

γ
‖v∗ + x∗γ‖+ ‖(I −K∗

α)v
∗‖.

Tomando ĺımite en α obtenemos

ĺım sup
γ

‖u∗ + x∗γ‖ ≤ ĺım sup
γ

‖v∗ + x∗γ‖.

La Proposición 3.1.6 implica (v) suponiendo que (vi) es cierto.

Por último, probamos (i) a partir de (v) usando la 3-ball property (Teorema 1.2.3). Para

esto, alcanza con ver que si S ∈ BK(X) y T ∈ BL(X), entonces

ĺım sup ‖S + T (I −Kα)‖ ≤ 1. (3.5)
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En efecto, para mostrar que se cumple la 3-ball property, es necesario encontrar un ope-

rador compacto K cumpliendo

‖Si + T −K‖ ≤ 1 + ε (3.6)

para S1, S2, S3 ∈ BK(X), T ∈ BL(X) y ε > 0. Si (3.5) se cumple, entonces para el ε > 0

dado y para S1 existe α1 cumpliendo para todo α ≥ α1

‖S1 + T (I −Kα)‖ ≤ 1 + ε.

Partiendo de los α ≥ α1, de la misma forma se consiguen α2 y, luego α3, para S2 y S3

respectivamente. El operador compacto K buscado será TKα3 que cumple con (3.6) para

todos los Si, i = 1, 2, 3.

Probemos entonces (3.5). Fijemos un ı́ndice β. Como ‖S + T (I −Kα)‖ ≤ ‖SKβ + T (I −

Kα)‖+‖S−SKβ‖ y ‖S−SKβ‖ → 0 es suficiente probar que ĺım supα ‖SKβ+T (I−Kα)‖ ≤

1.

Para esto, vamos a usar el lema 3.1.4. Tomemos (xα) ⊆ BX tal que ‖SKβ+T (I−Kα)‖ =

‖SKβxα + T (I −Kα)xα‖.

Observemos que (Kβxα)α es una red relativamente compacta; además, como ĺımK∗
αx

∗ =

x∗ para todo x∗ ∈ X∗, se tiene que ((I −Kα)xα) y (T (I −Kα)xα) son redes débil nulas.

Con lo cual, aplicando el Lema 3.1.4 y el item (iii) del Lema 3.1.3 tenemos que

ĺım sup
α

‖SKβxα + T (I −Kα)xα‖ ≤ ĺım sup
α

‖Kβxα + T (I −Kα)xα‖

≤ ĺım sup
α

‖Kβxα + (I −Kα)xα‖

≤ ĺım sup
α

‖Kβ + I −Kα‖.

Por último, veamos que ĺım sup
α

‖Kβ + I −Kα‖ ≤ ‖I − 2Kβ‖.

Notemos que

‖Kβ + I −Kα‖ ≤ ‖I −Kα −Kβ + 2KαKβ‖+ 2‖KαKβ −Kβ‖.

Además, ĺım
α
‖KαKβ−Kβ‖ = 0. Luego, basta probar que ĺım sup

α
‖I−Kα−Kβ+2KαKβ‖ ≤

‖I − 2Kβ‖ para todo β. Usando que ‖I − 2Kα‖‖I − 2Kβ‖ ≥ 1 se tiene que

‖I −Kα −Kβ + 2KαKβ‖ = 1
2‖I + (I − 2Kα)(I − 2Kβ)‖

≤ 1
2(1 + ‖I − 2Kα‖‖I − 2Kβ‖)

≤ ‖I − 2Kα‖‖I − 2Kβ‖,

y por (v), ĺım sup
α

‖I −Kα −Kβ + 2KαKβ‖ ≤ ‖I − 2Kβ‖ para todo β. Luego,

ĺım sup
α

‖SKβxα + T (I −Kα)xα‖ ≤ ĺım sup
α

‖Kβ + I −Kα‖

≤ ĺım sup
α

‖I −Kα −Kβ + 2KαKβ‖

≤ ĺım sup
α

‖I − 2Kα‖‖I − 2Kβ‖

≤ ‖I − 2Kβ‖.
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Probamos entonces que para todo β fijo

ĺım sup
α

‖S+T (I−Kα)‖ ≤ ĺım sup
α

‖SKβ+T (I−Kα)‖+‖S−SKβ‖ ≤ ‖I−2Kβ‖+‖S−SKβ‖.

Tomando ĺımite en β, usando (v) y recordando que ‖S − SKβ‖ → 0 con β se tiene que

ĺım sup
α

‖S + T (I −Kα)‖ ≤ 1

como queŕıamos probar.

Ejemplo 3.2.5. En la Proposición 3.1.9, vimos que para 1 < p <∞, ℓp y c0 son espacios

que tienen la propiedad (M). Más aún, las proyecciones (πn) en las primeras n coordena-

das cumplen el item (v) del Teorema 3.2.3, dándonos nuevos ejemplos de M -ideales. Sin

embargo, ℓ1 no tiene la propiedad (M∗) y por lo tanto K(ℓ1) no es un M -ideal en L(ℓ1).

Terminamos este caṕıtulo con una aplicación del Teorema 3.2.3.

Lema 3.2.6. Sean X, Y , espacios de Banach, tales que K(X) ⊆ L(X) y K(Y ) ⊆ L(Y )

son M -ideales, entones K(X,Y ) ⊆ L(X,Y ) es un M -ideal.

Demostración. Vamos a mostrar la 3-ball property. Sea (Kα) una SCAI para X, veamos

entonces que

ĺım sup ‖S + T (I −Kα)‖ ≤ 1

para todo S ∈ BK(X,Y ) y T ∈ BL(X,Y ).

Fijamos β y elegimos (xα) ⊆ BX tal que ‖SKβxα+T (I −Kα)xα‖ = ‖SKβ +T (I −Kα)‖.

Al igual que en (v) ⇒ (i) del Teorema 3.2.3, y notando que (I − Kα)xα es débil nula,

podemos probar que

ĺım sup
α

‖SKβxα + T (I −Kα)xα‖ ≤ ĺım sup
α

‖Kβxα + (I −Kα)xα‖ ≤ 1,

como queŕıamos ver.



Caṕıtulo 4

M-ideales en espacios de

polinomios.

En este caṕıtulo, centramos nuestro estudio en el espacio de polinomios n-homogéneos.

Si bien la definición podŕıa darse para funciones entre dos espacios vectoriales, vamos a

optar por presentar esta clase de funciones a valores escalares. Después de dar las nociones

básicas de esta toeŕıa, vamos a estudiar si hay presencia o no de una estructura de M -

ideales. En lo siguiente si X es un espacio de Banach, L(nX) representará al espacios de

las funciones multilineales acotadas A : Xn → Y .

4.1. Polinómios n-homogéneos.

Para dar la noción de polinomio n-homogéneo, usaremos las funciones multilineales.

Decimos que A es simétrica si para toda permutación σ ∈ Sn

A(xσ(1), . . . , xσ(n)) = A(x1, . . . , xn).

Una función multilineal es continua (o acotada) si es continua en cada n-tupla (x1, . . . , xn).

Además,

‖A‖ = sup
‖xi‖≤1

‖A(x1, . . . , xn)‖

resulta ser una norma en el espacio de las funciones multilineales, que lo hace un espacio de

Banach. Notaremos por L(nX) al espacio de funciones n-lineales continuas, y por Ls(
nX)

al subespacio de las funciones simétricas.

Dada una multilineal A, podemos definir una multilineal simétrica asociada dada por

Ã(x1, . . . , xn) =:
1

n!

∑

σ∈Sn

A(xσ(1), . . . , xσ(n)).

Definición 4.1.1. Decimos que una función P : X → K es un polinomio n-homogéneo

continuo si existe A ∈ L(nX) continua tal que P (x) = A(x, . . . , x).

51



52 CAPÍTULO 4. M -IDEALES EN ESPACIOS DE POLINOMIOS.

Vamos a notar por P(nX) al conjunto de polinomios n-homogéneos continuos a valores

en K.

Definición 4.1.2. Para P polinomio n-homogéneo, definimos ‖P‖ = sup
‖x‖≤1

‖P (x)‖. Ésta

resulta ser una norma en el espacio de polinomios n-homogéneos que lo hace un espacio

de Banach.

A continuación damos distintas formas de mirar la continuidad de un polinomio. La

demostración es análoga a la conocida para operadores lineales.

Proposición 4.1.3. Sea P ∈ P(nX), son equivalentes:

(i) P es continuo para cada x ∈ X.

(ii) P es continuo en un punto x0 ∈ X.

(iii) ‖P‖ <∞.

(iv) ‖P‖ = inf{C > 0 tal que ‖P (x)‖ ≤ C‖x‖n para todo x ∈ X}.

Además, en el caso en que P es continuo se tiene que ‖P (x)‖ ≤ ‖P‖‖x‖n para todo x ∈ X.

Para funciones n-lineales, tenemos un resultado similar a la Proposición 4.1.3. Además,

si A es n-lineal y continua, se tiene que

‖A(x1, . . . , xn)‖ ≤ ‖A‖‖x1‖ . . . ‖xn‖

para todo x1, . . . , xn ∈ X.

Notar que todo elemento de X∗ es un polinomio 1-homogéneo. Más en general, tenemos

los siguientes ejemplos.

Ejemplo 4.1.4. Si ϕ ∈ X∗, entonces ϕn es un polinomio n-homogéneo asociado a la

n-lineal A : Xn → K dada por

A(x1, . . . , xn) = ϕ(x1) . . . ϕ(xn).

Además, si ϕ1, . . . , ϕn ∈ X∗, el producto P (x) = ϕ1(x) . . . ϕn(x) es un polinomio n-

homogéneo. Una n-lineal que lo representa es

A(x1, . . . , xn) = ϕ1(x1) . . . ϕn(xn) (4.1)

Si ϕ1, . . . , ϕk ∈ X∗ y λ1, . . . , λk ∈ K, entonces

P (x) =

k∑

j=1

λjϕ
n
j (x) (4.2)

es un polinomio n-homogéneo.
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Los polinomios de la forma (4.2) forman la clase de polinomios distinguida que llama-

remos Polinomios de tipo finito y que notaremos Pf (
nX). Más adelante veremos que los

polinomios n-homogéneos asociados a la multilineal de la forma (4.1) también son de tipo

finito.

Si X es un espacio de dimensión finita, entonces todo polinomio sobre X es de tipo

finito. Por otro lado, si X tiene dimensión infinita, entonces podemos dar una condición

necesaria para que un polinomio P sea de tipo finito.

Lema 4.1.5. Sea X un espacio de Banach de dimensión infinita y sea P un polinomio

de tipo finito. Entonces P−1(0) posee un subespacio de dimensión infinita.

Demostración. Sean ϕ1, . . . , ϕk ∈ X∗ y λ1, . . . , λk ∈ K tales que P (x) =
∑k

j=1 λjϕ
n
j (x)

para todo x ∈ X. Definimos T : X → Kk en la forma

T (x) = (ϕ1(x), . . . , ϕk(x)),

que T resulta ser un operador lineal y continuo. Como kerT ⊆ P−1(0), basta mostrar

que kerT posee un subespacio de dimensión infinita. Pero esto se cumple al ser X/ ker(T )

isomorfo a un subespacio finito de Kk.

Este lema nos permite mostrar que no todo polinomio es de tipo finito. En efecto, si

consideramos X = ℓ2 y el polinomio P : ℓ2 → R, P (x) =
∑
x2j , tenemos que P−1(0) = 0.

Notar que P es efectivamente un polinomio si tomamos la función 2-lineal A : ℓ2× ℓ2 → R

A(x, y) =
∞∑

j=1

xjyj .

La desigualdad de Hölder muestra que A esta bien definida y es continua.

Recordemos que dada A n-lineal, siempre podemos tomar Ã para tener una n-lineal

simétrica tal que A(x, . . . , x) = Ã(x, . . . , x). Luego, dado P polinomio n-homogéneo siem-

pre existe A n-lineal y simétrica que lo define.

Si (α1, . . . , αn) ∈ Nn, definimos |α| =: α1 + . . . + αn. Escribimos x
αj

j para notar

xj , . . . , xj︸ ︷︷ ︸
αj -veces

. Para |α| = n, notamos A(xα1
1 , . . . , xαn

n ) = A(x1, . . . , x1︸ ︷︷ ︸
α1

, . . . , xn, . . . , xn︸ ︷︷ ︸
αn

).

La fórmula de Leibnitz vincula un polinomio con su n-lineal simétrica:

P (x1 + . . .+ xk) =
∑

|α|=n

n!

α!
A(xα1

1 , . . . , xαk

k ),

donde α! = α1! . . . αn!. En particular obtenemos la versión polinomial del binomio de

Newton,

P (x+ y) =

n∑

j=0

(
n

j

)
A(xj , yn−j).
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Por último, la fórmula de polarización dice cómo recuperar una multilineal simétrica

asociada a un polinomio P .

A(x1, . . . , xn) =
1

2nn!

∑

εi=±1

ε1 . . . εnP (
∑

j

εjxj). (4.3)

Una demostración de esta fórmula se puede ver en [D, Proposición 1.5.].

Corolario 4.1.6. Para todo polinomio n-homogéneo P , existe una única n-lineal simétrica

A tal que P (x) = A(x, . . . , x).

Estamos ahora en condiciones de mostrar que un polinomio asociado a una n-lineal co-

mo en (4.1) es un polinomio de tipo finito. En efecto, fijo x ∈ X, definimosA : X∗ × . . . ×X∗ → K

la n-lineal dada por A(ψ1, . . . , ψn) := ψ1(x) . . . ψn(x). Con esto, si P (x) = ϕ1(x) . . . ϕn(x),

por (4.3), se tiene que

P (x) = A(ϕ1, . . . , ϕn) =
1

2nn!

∑

εi=±1

ε1 . . . εn

n∑

j=1

(
εjϕj

)n
(x),

mostrando que P es de tipo finito.

El subespacio de polinomios de tipo finito Pf (
nX) no es cerrado en P(nX) con la norma

supremo. Su clausura se conoce como la clase de polinomios aproximables que notamos

por PA(
nX). Es decir

PA(
nX) =: Pf (nX).

Ahora mostraremos otras clases de polinomios que surgen de la riqueza de trabajar

sobre dominios de dimensión infinita. Para esto, introducimos el operador TP asociado a

P dado por TP : X → P(n−1X),

TP (x)(y) = Ax(y
n−1) = A(x, y, . . . , y),

donde A es la única n-lineal simétrica tal que P (x) = A(xn).

Proposición 4.1.7. Un polinomio homogéneo es de tipo finito si y sólo si su operador

asociado es de rango finito.

Demostración. Si P es n-homogéneo de tipo finito, escribimos P (x) =

k∑

j=1

λjϕ
n
j (x) donde

λj ∈ K y ϕj ∈ X∗, para todo j = 1, . . . , k. Consideramos A : Xn → K dada por

A(x1, . . . , xn) =

k∑

j=1

λjϕj(x1) . . . ϕj(xn).

Es claro que A es simétrica y representa a P . Luego

TP (x)(y) =
k∑

j=1

λjϕj(x), ϕ
n−1
j (y),
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y, por lo tanto,

TP (x) =

k∑

j=1

λjϕj(x), ϕ
n−1
j ,

mostrando que Rg(TP ) ⊆ [ϕn−1
1 , . . . , ϕn−1

k ].

Rećıprocamente, supongamos que dim Rg(Tp) < ∞. Como X/ kerTP es isomorfo a

Rg(TP ) resulta que X/ kerTP tiene dimensión finita. Consideramos P̃ : X/ kerTP → K,

P̃ ([x]) =: P (x). Veamos que está función esta bien definida. Supongamos que [x] = [y]. Si

A es la única n-lineal simétrica que representa a P , entonces Ax ∈ L(n−1X) dada por

Ax(y1, . . . , yn−1) = A(x, y1, . . . , yn−1)

es la única (n− 1)-lineal simétrica que representa a TP (x). De la misma forma Ay será la

única (n− 1)-lineal simétrica que representa a TP (y).

Como [x] = [y], tenemos que TP (x) = TP (y) y por lo tanto Ax = Ay. Luego,

P (x) = TP (x)(x)
= TP (y)(x)
= Ay(x

n−1)
= A(y, xn−1)
= A(x, y, xn−2)
= Ax(y, x

n−2)
= Ay(y, x

n−2)
= A(y2, xn−2).

Iterando este proceso, obtenemos que P (x) = P (y) mostrando que P̃ esta bien definido y

resulta ser un polinomio n-homogéneo. En efecto, si π : X → X/ kerTP es la proyección

al cociente, consideramos πn : X → (X/ kerTP )
n, πn(x) =: (π(x), . . . , π(x)). Entonces

Ã =: A ◦ π es la n-lineal simétrica que lo representa.

Como P̃ es un polinomio n-homogéneo sobre un espacio de dimensión finita, debe ser de

tipo finito. Entonces existen λ1, . . . , λk ∈ K y ψ1, . . . , ψk ∈ (X/ kerTP )
∗ tales que

P̃ ([x]) =
k∑

j=1

λjψ
n
j ([x])

para todo x ∈ X.

Llegamos al resultado deseado escribiendo

P (x) =
k∑

j=1

λjϕ
n
j (x)

donde ϕj = ψj ◦ π y recordando que P̃ ([x]) = P (x).

Corolario 4.1.8. Un polinomio homogéneo es aproximable si y sólo su operador asociado

se aproxima por operadores de rango finito.
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Es natural estudiar la clase de operadores cuyo operador asociado es compacto. Esta

clase será fundamental para estudiar M -estructuras en espacios de polinomios. Aprove-

chamos para dar su definición.

Definición 4.1.9. Decimos que un polinomio P ∈ P(nX) es w-continuo en acotados si

P (xα) → P (x) para toda red acotada (xα) tal que xα
w
→ x. Notamos por Pw(

nX) al

conjunto de polinomios débil continuos en acotados.

La equivalencia entre la clase de polinomios homosgéneos w-continuos y la clase de

polinomios cuyo operador asociado es compacto se muestra en [AHV, Teorema 2.9.].

Finalmente, vamos a usar una clase mayor de polinomios que es la siguiente:

Definición 4.1.10. Decimos que un polinomio P ∈ P(nX) es débil continuo en cero si

P (xα) → 0 para toda red acotada (xα) débil nula. Notamos por Pw0(
nX) al conjunto de

polinomios débil continuos en cero.

En general, P(nX) 6= Pw(
nX), un ejemplo de esto es el polinomio P : ℓ2 → K,

P (x) =

∞∑

j=1

x2j . La base canónica (ej) de ℓ2 es débil nula, pero P (ej) = 1 para todo j ∈ N.

Además, Pw0(
nX) 6= Pw(

nX) en muchas situaciones, aunque estos espacios coinciden para

grado 2 como se muestra a continuación.

Proposición 4.1.11. Pw(
2X) = Pw0(

2X) para todo espacio de Banach X.

Demostración. Sólo hay que probar una inclusión. Sea P ∈ Pw0(
2X), queremos ver que

P es débil continuo en acotados de X. Sea (xα) ⊆ X una red acotada y sea x0 ∈ X tal

que xα
w
→ x0. Sea A ∈ L(2X) la única 2-lineal simétrica tal que A(x, x) = P (x) para todo

x ∈ X. Entonces,

P (xα)− P (x0) = A(xα, xα − x0) +A(x0, xα − x0) = P (xα − x0) + 2A(x0, xα − x0).

Como P es débil continuo en 0, P (xα − x0) → 0. Pero por otra parte, A(x0, ·) es un

elemento de X∗ y por lo tanto A(x0, xα − x0) → 0. Luego P (xα) → P (x0) y por lo tanto,

P es débil continuo en acotados.

Para n > 2, existen espacios X para los cuales Pw(
nX) = Pw0(

nX). Para verlo,

usaremos el siguiente resultado.

Lema 4.1.12. Sean 1 < p < ∞, (xn) ⊆ ℓp, x ∈ ℓp. Entonces xn
w
→ x si y solo

sup ‖xn‖p < ∞ y ĺım
n
xn(k) = x(k) para todo k ∈ N.

Demostración. Podemos suponer que x = 0, sino se considerará yn = xn − x.

Si xn
w
→ 0, el principio de acotación uniforme nos asegura que sup ‖xn‖p <∞. Obtenemos

ĺım
n

xn(k) = x(k) para todo k ∈ N usando las funcionales e∗k : ℓp → K, e∗k(x) =: xk.
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Rećıprocamente, sea ϕ ∈ (ℓp)
∗, ϕ ∼ y donde y ∈ ℓq con 1

p
+ 1

q
= 1. Sean ε > 0 y k0 ∈ N

tales que

∞∑

j=k0

|y(j)|q < εq. Entonces,

|ϕ(xn)| ≤
∣∣∣
k0∑

j=1

xn(j)y(j)
∣∣∣+

∣∣∣
∞∑

j=k0+1

xn(j)y(j)
∣∣∣ ≤

∣∣∣
k0∑

j=1

xn(j)y(j)
∣∣∣+

∞∑

j=k0+1

|y(j)|q‖xn‖.

Por hipótesis, ‖xn‖ esta uniformemente acotada y xn tiende débil a cero. Luego, podemos

obtener |ϕ(xn)| < ε para n suficientemente grande.

Con este lema, podemos obtener que el polinomio P : ℓ2 → K dado por P (x) =

x(1)

∞∑

j=2

x(j)2 no es débil continuo en x = e1. En efecto, usando el lema vemos que xn =

e1 + en+1 tiende débil a e1, pero P (e1) = 0 y P (xn) = 1 para todo n ∈ N. Sin embargo,

este polinomio es débil continuo en x = 0. En efecto, supongamos que xα es una red débil

nula que está acotada en norma por una constante C > 0. Con esto,

|P (xα)| =
∣∣∣xα(1)

∞∑

j=2

(xα(j)
2
∣∣∣ ≤ |xα(1)|‖xα‖2 ≤ xα(1)C.

Como xα(1) → 0, tenemos que P ∈ Pw0(
3X) \ Pw(

3X) con X = ℓ2.

Vimos que, en general, P(nX) 6= Pw(
nX). Sin embargo, el espacio de polinomios sobre

espacios ℓp, 1 ≤ p <∞, tiene la siguiente propiedad.

Proposición 4.1.13. Sea n < p. Entonces P(nℓp) = Pw(
nℓp).

Para poder ver esto necesitamos primero algunas definiciones y resultados.

Definición 4.1.14. Sea X un espacio de Banach con base de Schauder (ej). Definimos el

soporte de un elemento x ∈ X, x =
∑
xjej ∈ E por sop(x) =: {j ∈ N tal que xj 6= 0}.

Lema 4.1.15. Para todo n ∈ N, n ≥ 2 y 1 ≤ j ≤ n− 1 se tiene que

n−j∑

r=0

(
n

r

)(
n− r

j

)
(−1)n−r−j = 0.

Demostración. Recordemos que
∑s

r=0

(
s
r

)
(−1)r = (1−1)s = 0 para todo s ∈ N. Entonces,

n−j∑

r=0

(
n

r

)(
n− r

j

)
(−1)n−r−j =

n−j∑

r=0

n!

r!j!(n− r − j)!
(−1)n−r−j

= n!(−1)n−j

j!(n−j)!

n−j∑

r=0

(
n− j

r

)
(−1)r = 0,

tomando s = n− j.
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Proposición 4.1.16. Sea P ∈ P(nX) un polinomio n-homogéneo y sea A su única n-

lineal simétrica tal que P (x) = A(xn). Entonces, para todo x, y ∈ X

P (x)− P (y) =
n−1∑

r=0

(
n

r

)
A(yr, (x− y)n−r)

Demostración. Usando el binomio de Newton, escribimos

n−1∑

r=0

(
n

r

)
A(yr, (x− y)n−r) =

n−1∑

r=0

n−r∑

j=0

(
n

r

)(
n− r

j

)
A(xj , yn−j)(−1)n−r−j

=
n∑

j=0

A(xj , yn−j)

n−j∑

r=1

(
n

r

)(
n− r

j

)
(−1)n−r−j

= A(xn) +
n−1∑

j=1

A(xj , yn−j)

n−j∑

r=1

(
n

r

)(
n− r

j

)
(−1)n−r−j

︸ ︷︷ ︸
0

−A(yn),

donde, si j = 0, tenemos que

n−0∑

r=0

(
n

r

)(
n− r

0

)
(−1)n−r−0 = 1.

Proposición 4.1.17. Sea 1 ≤ p <∞ y sea (ej) la base canónica de ℓp. Sea (un) ⊆ ℓp una

sucesión de elementos con soportes disjuntos y sean a, b > 0 tales que a < ‖un‖ < b para

todo n ∈ N. Entonces el espacio generado por (un) es isomorfo a ℓp.

Demostración. Supongamos que un es una sucesión de bloques; es decir, un =
∑qn

j=pn
un(j)e(j)

con p1 < q1 < p2 < . . .. Si vemos que (un) es equivalente a (en), entonces los espacios que

generan son isomorfos. Escribimos

‖
∑N

n=1 anun‖ = ‖
∑N

n=1

∑qn
j=pn

anun(j)e(j)‖

=
(∑N

n=1

∑qn
j=pn

|anun(j)|
p
) 1

p

=
(∑N

n=1 |an|
p
) 1

p
(∑qn

j=pn
|un(j)|

p
) 1

p

=
(∑N

n=1 |an|
p‖un‖

p
) 1

p .

notando que
(∑qn

j=pn
anun(j)ej

)
n∈N tienen soporte disjuntos para justificar la segunda

igualdad.

Como a < ‖un‖ < b, entonces ap < ‖un‖
p < bp y por lo tanto se tiene que a‖

N∑

n=1

anen‖ ≤

‖
N∑

n=1

anun‖ ≤ b‖
N∑

n=1

anen‖. Luego, ‖
∑N

n=1 anun‖ converge śı y solo śı ‖
∑N

n=1 anen‖ lo

hace. Entonces (un) y (en) son sucesiones equivalentes.
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Proposición 4.1.18. Sean 1 ≤ n < p < ∞, P ∈ P(nℓp) y (ej) la base canónica de ℓp.

Entonces
(
P (ej)

)
j
∈ ℓ p

p−n
.

Más aún, para todo j ∈ N,

‖(P (ej))j‖ p
p−n

≤ ‖P‖.

Demostración. Para cada j elegimos λj ∈ C tal que λnj P (ej) = |P (ej)|
p

p−n . Por [D, Lema

1.57.] tenemos que
∑
P (xj) = E

[
P (

∑
sjxj)

]
donde E[·] es la función esperanza y sj son

variables aleatorias continuas en [0, 1] cumpliendo

E
[
si1 , . . . , sin

]
=

{
1 si sil = sir para todo i, r,
0 caso contrario.

y

|sj(t)| = 1 para todo t y todo j.

Aśı, ∑k
j=1 |P (ej)|

p
p−n =

∑k
j=1 P (λjej)

= E
[
P (

∑k
j=1 λjsjej)

]

=
∫ 1
0 P

(∑k
j=1 λjsj(t)ej

)
dt

≤ ‖P‖
(∑k

j=1 |λj |
p
)n

p .

Como λnj P (ej) = |P (ej)|
p

p−n , tenemos que

|λpj ||P (ej)|
p
n = |P (ej)|

p
n

p
p−n ,

luego

|λpj | = |P (ej)|
p
n
( p
p−n

−1)
= |P (ej)|

p
p−n .

Asumiendo que P (ej0) 6= 0 para algún j0 y tomando k ≥ j0 tenemos que

( k∑

j=1

|P (ej)|
p

p−n
) p−n

p = ‖
(
P (ej)j

)
‖ℓ p

p−n

≤ ‖P‖,

de donde se sigue el resultado.

Observación 4.1.19. Si P es un polinomio homogéneo e (yj) ∈ ℓp es equivalente a (ej)

se tiene que (P (yj)) ∈ ℓ p
p−n

. En efecto, sea T : ℓp → ℓp lineal y continuo tal que Tej = yj.

Podemos tomar λj ∈ C cumpliendo

λnj P (yj) = |P (yj)|
p

p−n .

Siguiendo la demostración de anterior, tenemos
∑k

j=1 |P (yj)|
p

p−n =
∑k

j=1 |P (Tej)|
p

p−n ≤

‖P‖‖T‖
(∑k

j=1 |λj |
p
)n

p . En este caso se tiene que ‖(P (yj))j‖ ≤ ‖P‖‖T‖.
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Veamos ahora que si n < p, todo polinomio continuo P ∈ P(nℓp) es débil continuo

sobre acotados de ℓp.

Demostración. (de la Proposición 4.1.13)

Sea P ∈ P(nℓp) y sea A : ℓnp → C la única n-lineal simétrica tal que A(xn) = P (x) para

todo x ∈ ℓp. Recordemos que

P (x)− P (y) =

n−1∑

r=0

(
n

r

)
A(yr, (x− y)n−r)

para todo x, y ∈ ℓp. Luego, como A(yr, (x − y)n−r) son polinomios (n − r)-homogéneos

en la variable x para todo r, basta probar que P(nℓp) ⊆ Pw0(
nℓp). Supongamos que

P /∈ Pw0(
nℓp), entonces existe una sucesión (wj) ∈ Bℓp débil nula y un δ > 0 tal que

|P (wj)| > δ.

Como P es continuo, ‖wj‖ no puede tender a cero y por lo tanto, considerando una sub-

sucesión de ser necesario, podemos suponer que existe un γ ∈ (0, 1) tal que γ < ‖wj‖ ≤ 1

para todo j ∈ N.

Hacemos la siguiente construcción basada en el principio de selección de Bessaga-Pelczynski.

Tomamos n1 = 1 y elegimos r1 ∈ N tal que ‖(I − πr1)wn1‖ ≤ γ
2 . Como (wj) es débil nula

y πs es compacto para todo s ∈ N, podemos encontrar n2 > n1 tal que ‖πr1wn2‖ ≤ γ
4 .

Además, como P es continuo, es posible elegir n2 cumpliendo

|P ((I − πr1)wn2)| ≥ |P (wn2)| − |P (πr1wn2)| > δ −
δ

4
=

3

4
δ.

Ahora elegimos r2 > r1 tal que ‖(I − πr2)wn2‖ ≤ (γ2 )
2 y luego n3 > n2 tal que

‖πr2wn3‖ ≤
γ

4

y

|P ((I − πr2)wn3)| >
3

4
δ.

De esta forma, se contruyen dos sucesiones crecientes de números naturales, (rk) y (nk),

cumpliendo simultáneamente

‖(I − πrk)wnk
‖ ≤ (

γ

2
)k,

‖πrkwnk+1
‖ ≤

γ

4
,

y

|P ((I − πrk)wnk+1
)| >

3

4
δ. (4.4)

para todo k ∈ N.

Si consideramos yk = (πrk − πrk−1
)wnk

, entonces (yk) ⊆ ℓp y se tiene que

‖yk −wnk
‖ = ‖(πrk −πrk−1

)wnk
−wnk

‖ ≤ ‖πrk−1
wnk

‖+ ‖(I −πrk)wnk
‖ ≤

γ

4
+ (

γ

2
)k ≤

3γ

4
,
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y, por lo tanto,

‖yk‖ > γ −
3γ

4
=
γ

4
.

Como ‖yk‖ ≤ ‖πrk − πrk−1
‖‖wnk

‖ ≤ 1, usando la Proposición 4.1.17, tenemos que (yk)

es equivalente a (ek), la base canónica de ℓp. Por lo tanto, por la Observación 4.1.19,

(P (yk))k ∈ ℓ p
p−n

.

Por último, si uk =: (I − πrk−1
)wnk

, recordando que ‖yk‖ ≤ 1 y γ < 1, tenemos que

|P (uk)− P (yk)| ≤
∑n−1

r=0 ‖A‖‖yk‖
r‖uk − yk‖

n−r

<
∑n−1

r=0 ‖A‖‖yk‖‖(I − πrk)‖
n−r

≤
∑n−1

r=0 ‖A‖(
γ
2 )
k(n−r)

≤ M(γ2 )
k.

Luego (P (uk)− P (yk))k ∈ ℓ p
p−n

al ser γ < 1.

Como ℓ p
p−n

es un espacio vectorial tenemos que (P (uk))k ∈ ℓ p
p−n

, pero esto contradice

(4.4) y por lo tanto P es débil continuo en acotados.

4.2. Extensiones al bidual.

En general no existe una versión del teorema de Hahn-Banach para polinomios n-

homogéneos si n ≥ 2. Sin embargo, Aron y Berner mostraron en [AB] que es posible

extender polinomios y operadores multilineales al bidual.

Si ϕ ∈ X∗ podemos definir ϕ ∈ X∗∗, ϕ(z) = z(ϕ). Esta ϕ resulta ser una extensión,

ya que si x ∈ X, entonces ϕ(x̂) = x̂(ϕ) = ϕ(x), donde x̂ denota la inclusión de X en X∗.

Además ‖ϕ‖ = sup
‖z‖≤1

‖ϕ(z)‖ = sup
‖z‖≤1

‖z(ϕ)‖ ≤ ‖ϕ‖ y al ser ϕ una extensión se obtiene la

igualdad de las normas. Esta misma extensión de ϕ se puede lograr por w∗-densidad. Esto

es, si z ∈ X∗∗ y xα
w∗

→ z, se define ϕ(z) = w∗ − ĺımϕ(xα).

La idea para extender funciones multilineales es la misma.

Sea A ∈ L(nX), sean x1, . . . , xn−1 ∈ X fijos y sea Ax1,...,xn−1 ∈ X∗ dada por

Ax1,...,xn−1(x) = A(x1, . . . , xn−1, x).

Si z ∈ X∗∗ definimos z : L(nX) → L(n−1X)

z(A)(x1, . . . , xn−1) = z(Ax1,...,xn−1).

Observación 4.2.1. Observemos que si x1, . . . , xn−1, x ∈ BX , entonces ‖Ax1,...,xn−1(x)‖ ≤

‖A‖‖x1‖ . . . ‖xn−1‖‖x‖ ≤ ‖A‖. Luego,

‖z(A)(x1, . . . , xn−1)‖ = ‖z(Ax1,...,xn−1)‖ ≤ ‖z‖‖Ax1,...,xn−1‖ ≤ ‖z‖‖A‖,
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y por lo tanto, ‖z(A)‖ ≤ ‖z‖‖A‖.

Aśı, si A es n-lineal, vamos a definir A ∈ L(nX∗∗) en la forma

A(z1, . . . , zn) =: z1 ◦ . . . ◦ zn(A).

Observación 4.2.2. En las condiciones de arriba se tiene:

(i) A(x̂1, . . . , x̂n) = A(x1, . . . , xn) para todo x1, . . . , xn ∈ X y, por lo tanto, A es una

extensión de A.

(ii) ‖A‖ = ‖A‖.

(iii) A es w∗-continua en su primera variable.

Demostración.

(i) Si z = x̂, entonces z(A)(x1, . . . , xn−1) = x̂(Ax1,...,xn−1) = A(x1, . . . , xn−1, x). Obtene-

mos lo buscando aplicando esto n veces.

(ii) Por el punto anterior, A resulta ser una extensión de A y por lo tanto, ‖A‖ ≥ ‖A‖ .

Por otro lado, por la Observación 4.2.1,

|A(z1, . . . , zn)| = |z1 ◦ . . . ◦ zn(A)| ≤ ‖A‖

para todo ‖zi‖ ≤ 1.

(iii) Sea (wα) ⊆ X y w ∈ X∗∗ tal que wα
w∗

→ w, entonces

A(wα, z2, . . . , zn) = wα(z2 ◦ . . . ◦ zn︸ ︷︷ ︸
∈X∗

)(A) → w(z2 ◦ . . . ◦ zn)(A) = A(w, z2, . . . , zn),

completando la demostración.

En general, A es w∗-continua en la última variable que usamos para extender, es decir,

si σ ∈ Sn, podemos definir

Aσ(z1, . . . , zn) = zσ(1) ◦ . . . ◦ zσ(n)(A),

y esta sera w∗-continua en la variable zσ(1).

Definición 4.2.3. Para A ∈ L(nX) se define su extensión canónica A ∈ L(nX∗∗) por

A = AId.

Para dar la extensión de un polinomio P ∈ P(nX) a X∗∗ tenemos que elegir una n-

lineal que lo define. Es natural considerar la única n-lineal simétrica asociada a P . Si bien

no es cierto que esta extensión resulte ser simétrica, aún si A lo fuera, tenemos la siguiente

proposición que usaremos más adelante.
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Proposición 4.2.4. Sea A ∈ L(nX) simétrica, y sea A su extesión canónica a X∗, en-

tonces todo elemento de X conmuta con los de X∗∗, es decir

A(x̂, z2, . . . , zn) = A(z2, x̂, z3, . . . , zn) = A(z2, . . . , zn, x̂) ∀zi ∈ X∗∗ i = 2, . . . , n ∀ x ∈ X.

Demostración. Por la definición de A, basta probar que x̂ ◦ z = z ◦ x̂ para todo x ∈ X,

z ∈ X∗∗.

Observemos que si B es n-lineal, entonces x̂(B) = Bx ∈ L(n−1X) con lo cual, para todo

A ∈ L(nX) tenemos

x̂ ◦ z(A)(x1, . . . , xn−2) = (z(A))x(x1, . . . , xn−2)
= z(A)(x1, . . . , xn−2, x)
= z(Ax1,...,xn−2,x)

Por otro lado
z ◦ x̂(A)(x1, . . . , xn−2) = z ◦Ax(x1, . . . , xx−2)

= z((Ax)x1,...,xx−2)
= z(Ax,x1,...,xn−2)

Por último, como A es simétrica obtenemos la igualdad buscada.

Definición 4.2.5. Para P ∈ P(nX) se define su extensión canónica P ∈ P(nX∗∗) como

P (z) =: A(zn) donde A es la extensión canónica de la única n-lineal simétrica asociada

a P .

Notemos que si x̂iα
w∗

→ zi para todo 1 ≤ i ≤ n, entonces

A(z1, . . . , zn) = w∗ − ĺım
α1

. . . ĺım
αn

A(x1α1
, . . . , xnαn

)

y por lo tanto, si z es el w∗-ĺımite de una red (xα) tenemos que P (xα) → P (z).

Observación 4.2.6. Dado P n-homogéneo, la extensión canónica P es una extensión de

P y por lo tanto P (BX) ⊆ P (BX∗∗), con lo cual, ‖P‖ ≤ ‖P‖.

A continuación mostramos que vale la igualdad de las normas.

Teorema 4.2.7. (Davie-Gamelin)

Sea P ∈ P(nX) y sea P su extensión canónica, entonces ‖P‖ = ‖P‖.

Demostración. Por la observación anterior, ‖P‖ ≤ ‖P‖.

Para mostrar la igualdad, basta probar que P (BX∗∗) ⊆ P (BX).

Sea z ∈ BX∗∗ y ε > 0, buscamos x ∈ BX tal que |P (z)− P (x)| ≤ 2ε.

Sea A la única n-lineal simétrica que representa a P y sea A su extensión de canónica.

Como BX es w∗-densa en BX∗∗ y A es w∗-continua en su primer variable, existe x1 ∈ BX

tal que

|A(x1, z
n−1)−A(zn)| ≤

ε

n
.
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Por la proposición 4.2.3., los elementos de X conmutan con los de X∗∗ para A, con lo cual,

podemos conseguir x2 ∈ BX cumpliendo simultaneamente

|A(x1, x2, z
n−2)−A(x1, z

n−1)| ≤
ε

n

y

|A(x2, z
n−1)−A(zn)| ≤

ε

n
.

Con el mismo razonamiento, podemos conseguir x3 ∈ BX cumpliendo

|A(x3, z
n−1)−A(zn)| ≤

ε

n
,

|A(x1, x3, z
n−2)−A(x1, z

n−1)| ≤
ε

n
,

|A(x2, x3, z
n−2)−A(x2, z

n−1)| ≤
ε

n
,

y

|A(x1, x2, x3, z
n−3)−A(x1, x2, z

n−2)| ≤
ε

n
.

En general, conseguimos x1, . . . , xn ∈ BX cumpliendo

|A(xj , z
n−1)−A(zn)| ≤

ε

n
,

|A(xj1 , . . . , xjr , z
n−r)−A(xj1 , . . . , xjr−1 , z

n−r+1)| ≤
ε

n

para todo r > 0.

Con esto, si j1 < j2 < . . . < jn se tiene que

|A(zn)−A(xj1 , . . . , xjn)| ≤ |A(zn)−A(xj1 , z
n−1)|+

. . . +|A(xj1 , . . . , xjn−1)−A(xj1 , . . . , xjn)|
≤ n. ε

n
= ε.

Sea m ∈ N y

xm =
1

m

m∑

j=1

xj ∈ BX .

Entonces,

|P (z)− P (xm)| = |A(zn)−A( 1
m

m∑

j1=1

xj1 , . . . ,
1

m

m∑

jn=1

xjn)|

= |A(zn)− 1
mn

m∑

j1=1

. . .
m∑

jn=1

A(xj1 , . . . , xjn)|

≤ 1
mn

m∑

j1=1

. . .
m∑

jn=1

|A(zn)−A(xj1 , . . . , xjn)|

= 1
mn

∑
1+

1
mn

∑
2 .
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donde
∑

1 es la suma en donde todos los sub́ındices son distintos y
∑

2 en donde algún

sub́ındice se repite.

Si todos los sub́ındices son distintos, como A es simétrica, puedo elegirlos de forma tal

que j1 < . . . < jn sin alterar el valor de A(xj1 , . . . , xjn), con lo cual por lo visto arriba
1
mn

∑
1 ≤ c1

mn ε, donde c1 es la cantidad de n-uplas de números distintos entre 1 y m,

ordenadas en forma creciente. Como este número es menor estricto que mn (todas las

n-uplas) se tiene que c1
mn ≤ 1.

Para las uplas en las que hay dos sub́ındices que se repiten, acotamos 1
mn

∑
2 ≤

c2
mn 2‖A‖.

Donde c2 es la cantidad de uplas en las que se repite algún sub́ındice.

Empleando un razonamiento combinatorio se puede calcular

c2 = mn −m(m− 1) . . . (m− (n− 1))

pensando que son todas las uplas menos las que no se repiten.

Aśı, c2
mn → 0 si m→ ∞ con lo cual, podemos encontrar m ∈ N tal que |P (z)− P (xm)| ≤

2ε.

Proposición 4.2.8. Sea P ∈ Pw(
nX) y sea P su extensión canónica. Entonces P es

w∗-continua en acotados.

Demostración. Sea z ∈ X∗∗ y sea ε > 0. Queremos probar que existen finitas funcionales

ϕ1, . . . , ϕm ∈ X∗ y δ > 0 tales que si w ∈Wϕ1,...,ϕm;δ =: {w ∈ X∗∗ : |(w−z)(ϕi)| ≤ δ ∀ i =

1, . . . ,m}, entonces |P (z)− P (w)| ≤ ε.

Sea (xα) ⊆ BX tal que xα
w∗

→ z y sea α0 tal que si α > α0, |P (xα)− P (z)| ≤ ǫ
3 .

Para este xα0 , como P es débil continuo en acotados, existen ϕ1, . . . , ϕm y δ > 0 tal que

si y ∈ U =: {y ∈ X : |ϕi(y − xα0)| ≤ δ ∀ i = 1, . . . ,m} entonces |P (y)− P (xα0)| ≤
ε
3 .

Como xα
w∗

→ z, existe α1 > α0 tal que |(x̂α1 − z)(ϕi)| ≤ δ
3 para todo i = 1, . . . ,m.

Consideramos W = {w ∈ X∗∗ tal que |(w − z) (ϕi)| ≤ δ
3 , ∀i = 1, . . . ,m}.

Sean w ∈ W e (yα) ⊆ X tales que yα → w, y sea α2 > α1 tal que |P (w)− P (yα2)| ≤
ε
3 y

|(ŷα2 − w)(ϕi)| ≤
δ
3 para todo i = 1, . . . ,m. Entonces,

|P (w)−P (z)| ≤ |P (w)−P (yα2)|+|P (yα2)−P (xα1)|+|P (xα1)−P (z)| ≤
2ε

3
+|P (yα2)−P (xα1)|.

Afirmamos que yα2 ∈ U . En efecto, si 1 ≤ i ≤ m, |ϕi(yα2 −xα1)| ≤ |(ŷα2 −w)(ϕi)|+ |(w−

z)(ϕi)| + |(z − x̂α1)(ϕi)| ≤ δ pues w ∈ W . Luego |P (yα2) − P (xα1)| ≤
ε
3 . Con esto queda

demostrado que P es w∗-continuo.

En el Caṕıtulo 2, estudiamos cuándo K(X,Y ) es un M -ideal en L(X,Y ). Al pasar a

espacios de polinomios, el rol que tienen los operadores compactos, lo tienen los polinomios

débil continuos sobre acotados. Una razón para esto es que si n = 1, Lw(X,Y ) = K(X,Y ),

como se muestra en la siguiente proposición.
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Proposición 4.2.9. Lw(X,Y ) = K(X,Y ) para todo X,Y espacios de Banach.

Demostración. Sean T un operador compacto y (xα) ⊆ X una red acotada débil nula.

Entonces existe x ∈ X y una subred (xαγ ) tal que T (xαγ ) → T (x) y por lo tanto T (xαγ )
w
→

T (x). Como T es continuo, entonces T es w−w-continuo y como xα es débil nula, T (xαγ )
w
→

0. Con lo cual T (x) = 0. Como esto vale para cualquier subred, resulta T (xα) → 0.

Rećıprocamente, sea T débil continuo, queremos probar que T (BX) es compacto. Sea

(xα) ⊆ BX , como BX∗∗ es w∗-compacto, existe (xαγ ) una subred, tal que (x̂αγ ) es w∗-

convergente y por lo tanto w∗-Cauchy. Con lo cual, xαγ ⊆ X es w-Cauchy. Como T es

débil continuo, manda redes w-Cauchy en redes de Cauchy. Luego T (xαγ ) converge.

4.3. M-ideales en espacios de polinomios.

Comenzamos esta sección extendiendo las proposiciones 2.1.2 y 2.1.3 a la versión po-

linomial.

Proposición 4.3.1. Sea X un espacio de Banach.

(i) Si Pw(
nX) ⊆ P(nX) es M -ideal y E ⊆ X es un subespacio 1-complementado,

entonces Pw(
nE) ⊆ P(nE) es un M -ideal.

(ii) La clase de los espacios de Banach para los cuales Pw(
nX) ⊆ P(nX) es un M -ideal,

es cerrada con respecto a la distancia de Banach-Mazur.

Demostración. Las demostraciones para estas proposiciones son análogas a las de la Pro-

posición 2.1.2, teniendo en cuenta en (i) que la restricción de un polinomio débil continuo

es débil continuo y en (ii) notando que si T1, T2 son isomorfismos y P débil continuo en

acotados, entonces T1PT2 es también un polinomio débil continuo en acotados.

Proposición 4.3.2. Si Pw(
nX) es unM -sumando en P(nX) entonces Pw(

nX) = P(nX).

Demostración. La demostracion es similar que la Proposición 2.1.3 considerando Q ∈

P(nX) en la forma Q(x) = x∗(x)P (x) y notando que Q es débil continuo en acotados.

La siguiente, es una versión polinomial de la Proposición 2.2.6. Para cada x ∈ X,

consideramos ex ∈ P(nX)∗ dado por ex(P ) =: P (x) y se tiene que ‖ex‖ ≤ ‖x‖n.

Proposición 4.3.3. Sea X un espacio de Banach.

(i) Sea J ⊆ P(nX) un subespacio tal que Pf (
nX) ⊆ J , entonces

Ext(BJ∗) ⊆ {±ex : x ∈ SX}
w∗

,

donde ± es necesario sólo en el caso real y w∗ es la topoloǵıa σ(J∗, J).
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(ii) En el caso especial de (i) en el que J = Pw(
nX) se tiene que

Ext(BJ∗) ⊆ {±ez : z ∈ SX∗∗},

donde ± es necesario sólo en el caso real.

Demostración. (i): Por el lema 2.2.5, basta probar que

BJ∗ = co{±ex : x ∈ SX}.

Sea x ∈ SX . Entonces la aplicación ex definida por ex(P ) =: P (x), es de norma 1. Además,

como Pf (
nX) ⊆ J , tenemos que los polinomios de la forma γn estan en J , con lo cual si

tomamos γ ∈ BX∗ tal que |γ(x)| = ‖x‖ = 1 tenemos la igualdad. Con esto, tenemos que

co{±ex : x ∈ SX} ⊆ BJ∗ .

Para ver la otra inclusión, supongamos que existe ϕ ∈ BJ∗ \ co{±ex : x ∈ SX}. Por el

teorema de separación de Hahn-Banach, existen P ∈ P(nX), ‖P‖ = 1, y r > s > 0 tales

que

ℜ(
〈
P, ξ

〉
) < s < r ≤ ℜ(

〈
P,ϕ

〉
)

para todo ξ ∈ co{±ex : x ∈ SX}. En particular si ξ = sg(P (x))ex, con x ∈ SX , resulta que

|P (x)| < s < r ≤ ℜ(
〈
P,ϕ

〉
) ≤ ‖P‖‖ϕ‖ ≤ 1.

Luego, ‖P‖ ≤ s < 1, llegando a un absurdo.

(ii): Sea φ ∈ Ext(BJ∗). Por el item (i), existe una red (xα) ⊆ SX tal que exα
w∗

→ φ. Esta

elección de signos es posible dado que, como ‖φ‖ = 1, existe P ∈ J tal que φ(P ) > 0.

Luego, exα(P ) → φ(P ) > 0 y, por lo tanto, existen infinitos α para los cuales exα no cambia

de signo. Pasando por una subred, podemos suponer que (x̂α) converge en la topoloǵıa

σ(X∗∗, X∗) a una elemento z ∈ BX∗∗ .

Por la Proposisión 4.2.8 tenemos que P (x̂α) → P (z) para todo P ∈ Pw(
nX) y por lo tanto

exα
w∗

→ ez, donde w
∗ es la topoloǵıa σ(J∗, J) con J = Pw(

nX). Como esta topoloǵıa w∗ es

Hausdorff tenemos que φ = ez.

Por último, notemos que

1 = ‖φ‖ = ‖ez‖ = ‖z‖n.

Usando la Proposición 4.2.9, podemos extender la Definición 2.2.1, como sigue.

Definición 4.3.4. Dado P ∈ P(nX) se define su norma esencial por

‖P‖e =: d(P,Pw(
nX)) = ı́nf{‖P −Q‖ : Q ∈ Pw(

nX)}.

A continuación damos la versión polinomial de la Proposisión 2.2.8.
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Proposición 4.3.5. Supongamos que Pw(
nX) ⊆ P(nX) es un M -ideal y sea P ∈ P(nX).

Entonces ‖P‖e = w(P ) donde

w(P ) =: sup{ĺım sup |P (xα)| : ‖xα‖ = 1, xα
w
→ 0}.

Demostración. Sea Q ∈ Pw(
nX) y (xα) ⊆ X una red acotada débil nula, ‖xα‖ = 1.

Entonces

‖P −Q‖ ≥ |(P −Q)(xα)| ≥ |P (xα)| − |Q(xα)|

y como Q es débil continuo en acotados tenemos que ‖P −Q‖ ≥ ĺım sup |P (xα)| y por lo

tanto ‖P‖e ≥ w(P ). Esto pasa independientemente de que Pw(
nX) sea un M -ideal.

Por el Corolario 2.2.4, existe ψ ∈ Ext(BPw(nX)⊥) tal que ψ(P ) = ‖P‖e. Por el Corolario

1.2.13 tenemos que ψ ∈ Ext(BP(nX)∗) y, por la Proposición 4.3.3 (i), ψ ∈ {±ex : x ∈ SX}w
∗ ,

acá w∗ es la topoloǵıa σ(X∗∗, X∗).

Entonces, existe una red (xα) ∈ SX tal que exα
w∗

→ ψ. Pasando por una subred, podemos

suponer que exα
w∗

→ z para algún z ∈ BX∗∗ .

Ahora, si γ ∈ X∗, entonces γn ∈ Pw(
nX) y por lo tanto, como ψ ∈ Pw(

nX)⊥,

0 = ψ(γn) = ĺım
α
(γ(xα))

n = (z(γ))n,

con lo cual z = 0 y por lo tanto (xα) es débil nula.

Aśı

‖P‖e = ψ(P ) = ĺım
α
exα(P ) = ĺım

α
P (xα) ≤ w(P ),

completando la demostración.

Corolario 4.3.6. Si Pw(
nX) es un M -ideal en P(nX), entonces Pw(

nX) = Pw0(
nX).

Demostración. Si P es débil continuo en x = 0, entonces ‖P‖e = w(P ) = 0 y por lo tanto

P es débil continuo.

El teorema de Bishop-Phelps, afirma que las funcionales que alcanzan la norma son den-

sas en X∗. Aron, Garćıa y Maestre probaron en [AGM] que los polinomios 2-homogéneos

cuyas extensiones canónicas alcanzan la norma, son densos en P(2X). Es un problema

abierto saber si este resultado se puede generalizar para polinomios n-homogéneos en ge-

neral. Sin embargo, con la fuerte condición de que Pw(
nX) ⊆ P(nX) sea un M -ideal,

tenemos la siguiente proposición, que resulta ser la versión polinomial de la Proposición

2.2.9.

Proposición 4.3.7. Sea X un espacio de Banach, tal que Pw(
nX) es un M -ideal en

P(nX), entonces:

(i) Si P es un polinomio tal que su extensión canónica P no alcanza la norma en BX∗∗,

entonces ‖P‖e = ‖P‖.
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(ii) El conjunto de los polinomios P ∈ P(nX) cuya extensión canónica no alcanza la

norma es nunca denso en P(nX).

Demostración. (i): Sea φ ∈ Ext(BP(nX)∗) tal que φ(P ) = ‖P‖. Por el Corolario 1.2.13,

tenemos que φ ∈ Ext(BPw(nX)∗) o φ ∈ Ext(BPw(nX)⊥). Si φ ∈ Ext(BPw(nX)∗), por

Propocisión 4.3.3 (ii), resulta que φ = ±ez con z ∈ X∗∗, ‖z‖ = 1. Aśı,

‖P‖ = ‖P‖ = φ(P ) = |P (z)|,

y por lo tanto, P alcanza su norma.

Como esto no es posible, φ ∈ Ext(BPw(nX)⊥) y por lo tanto

‖P‖ = φ(P ) = sup{|ξ(P )| : ξ ∈ Ext(BPw(nX)⊥))} = ‖P‖e.

(ii): Por (i), el conjunto de los polinomios cuya extensión canónica no alcanza la norma,

esta inclúıdo en

F = {P ∈ P(nX) : ‖P‖ = ‖P‖e}.

Como este conjunto es cerrado, basta probar que tiene interior vaćıo. Por [HWW, Propo-

sición II.1.11.], esto pasa si y sólo si

ı́nf{ sup
φ∈BPw(nX)∗

|φ(P )| : ‖P‖e = 1} = 1.

Notemos que
sup

φ∈BPw(nX)∗

|φ(P )| ≤ sup
φ∈BP(nX)∗

|φ(P )|

= ‖P‖
= sup

x∈BX

|P (x)|

= sup
x∈BX

|(ex(P ))|

≤ sup
φ∈BPw(nX)∗

|φ(P )|.

Con lo cual

ı́nf{ sup
φ∈BPw(nX)∗

|φ(P )| : ‖P‖e = 1} = ı́nf{‖P‖ : ‖P‖e = 1}.

Pero 1 = ‖P‖e ≤ ‖P‖ siempre y si P ∈ F conseguimos

ı́nf{ sup
φ∈BPw(nX)∗

|φ(P )| : ‖P‖e = 1} = 1.

Al trabajar con espacios de polinomios, el hecho de que Pw(
nX) sea un M -ideal en

P(nX), condiciona el valor de n ∈ N (Corolario 4.3.9). Esto nos restringe al momento de

buscar M -estructuras en P(nX). Se tiene la siguiente situación.

Proposición 4.3.8.
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(i) Pw(
nX) ⊆ Pw0(

nX).

(ii) Si Pw(
kX) = P(kX) para todo 1 ≤ k < n entonces Pw(

nX) = Pw0(
nX).

(iii) Si existe un polinomio n-homogéneo que no es débil continuo en algún punto x 6= 0,

entonces Pw0(
n+kX) 6= Pw(

n+kX) para todo k.

Demostración.

(i): Trivial por definición.

(ii): Sea P ∈ Pw0(
nX) y xα

w
→ x. Entonces, por la Proposición 4.1.16,

P (xα)− P (x) =

n∑

k=1

(
n

k

)
A((xα − x)k, xn−k) = P (xα − x) +

n−1∑

k=1

(
n

k

)
A((xα − x)k, xn−k).

Obtenemos lo buscado notando que xα − x
w
→ 0 y, para todo 1 ≤ k < n,

A((xα − x)k, xn−k) ∈ P(n−kX) = Pw(
n−kX)

(iii): Sea P un polinomio que no es w-continuo en x 6= 0. Consideremos γ ∈ X∗ tal que

γ(x) 6= 0 y Q(x) = γk(x)P (x) ∈ P(n+kX). Veamos que Q no es débil continuo en x. Sea

(xα), tal que xα
w
→ x pero P (xα) 9 P (x) y supongamos que Q(xα) → Q(x). Podemos

suponer, considerando subredes, que γ(xα) 6= 0 para todo α.

Aśı, P (xα) =
Q(xα)
γk(xα)

→ γk(x)P (x)
γk(x)

lo que contradice la elección de (xα).

Con lo visto hasta ahora tenemos el siguiente corolario, que usaremos constantemente

en lo que sigue.

Corolario 4.3.9. Sea X un espacio de Banach, entonces Pw(
kX) = Pw0(

kX) = P(kX)

para todo k o existe un único n tal que

Pw(
kX) = Pw0(

kX) = P(kX) para todo k < n.

Pw(
nX) = Pw0(

nX) & P(nX).

Pw(
kX) & Pw0(

kX) ⊆ P(kX) para todo k > n.

Cuando este único n existe, decimos que n es el grado cŕıtico de X y lo notamos

n = cd(X). Aśı, si existe un polinomio en X que no es débil continuo, resulta que

cd(X) = min{k : Pw(
kX) 6= P(kX)}.

Si n = 1, entonces P(1X) = X∗ = Pw(
1X) y por lo tanto, cd(X) ≥ 2 para todo espacio

de Banach X.
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Ejemplo 4.3.10. Si H es un espacio de Hilbert y (eα) es una base ortonormal, entonces

el polinomio

P (x) =
∑

α

< x, eα >
2

es continuo pero no débil continuo en acotados. Luego, cd(H) ≤ 2 y por lo tanto, cd(H) = 2

para todo espacio de Hilbert H.

Ejemplo 4.3.11. Si X = ℓp, entonces cd(ℓp) es el único número n0 que cumple p ≤ n0 <

p+ 1.

En efecto, si k ≥ p podemos considerar el polinomio P (x) =
∑
xkj . Como ej

w
→ 0 y

P (ej) = 1 para todo j, tenemos que este polinomio no es débil continuo en acotados. Pero

como k ≥ p, P resulta ser continuo y cd(ℓp) ≤ n0.

Si k < p vimos, en el Ejemplo 4.1.13, que P(nℓp) = Pw(
nℓp) y, por lo tanto, cd(ℓp) = n0

donde p ≤ n0 < p+ 1.

Ejemplo 4.3.12. Sea X = d∗(w, p) el espacio dual de un espacio de Lorentz y sea n− 1

el mayor número natural estŕıctamente más chico que p∗ donde 1
p
+ 1

p∗
= 1. Supongamos

que w /∈ ℓs donde s = ( (n−1)∗

p
)∗. Entonces [JSP, Proposición 2.4.] muestra que n = cd(X).

4.4. Aproximaciones compactas.

En esta sección, estudiaremos como usar las SCAI (Definición 3.2.2) para ayudarnos a

ver cuándo Pw(
nX) es un M -ideal, y veremos algunos ejemplos que surgirán a partir del

Corolario 4.4.3. En este caso, por el Corolario 4.3.9, necesitamos la condición n = cd(X).

Lema 4.4.1. Sea X un espacio de Banach, y sea (Sα) ⊆ L(X) tal que S∗
αγ → γ para todo

γ ∈ X∗. Entonces, para todo P ∈ Pw(
nX), ‖P − P ◦ Sα‖ → 0.

Demostración. Como S∗
α converge puntualmente a la identidad, entonces existe C > 0 al

que ‖Sα‖ = ‖S∗
α‖ ≤ C para todo α.

Para todo espacio de Banach Y y todo K ∈ K(X,Y ) operador compacto,

‖K∗ −K∗ ◦ S∗
α‖ → 0,

Con lo cual, si P ∈ Pw(
nX) su operador asociado TP es compacto y por lo tanto, para

todo ‖x‖ ≤ 1,

|P (x)− P ◦ Sα(x)| =
∑(

n
k

)
A((x− Sα(x))

k, Sα(x)
n−k)

≤
∑(

n
k

)
|TP (x− Sα(x))((x− Sα(x))

k−1, Sα(x)
n−k)

≤
∑(

n
k

)
‖TP − TP ◦ Sα‖‖I − Sα‖

k−1‖Sα‖
n−k‖x‖n

≤
∑(

n
k

)
‖TP − TP ◦ Sα‖(1 + C)k−1Cn−k,

que tiende a cero independientemente de x ∈ BX .
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Proposición 4.4.2. Sea X un espacio de Banach, n = cd(X), y sea (Kα) una red acotada

de operadores compactos de X en X satisfaciendo

K∗
αγ → γ para toda γ ∈ X∗.

Para todo ε > 0 y todo α0, existe α > α0 tal que para todo x ∈ X

‖Kαx‖
n + ‖x−Kαx‖

n ≤ (1 + ε)‖x‖n.

Entonces, Pw(
nX) es un M -ideal en P(nX).

Demostración. Vamos a verificar la 3-ball property para Pw(
nX) ⊆ P(nX). Sean P1, P2,

P3 ∈ BPw(nX), Q ∈ BP(nX) y ε > 0. Queremos encontrar P ∈ Pw(
nX) tal que

‖Q+ Pi − P‖ ≤ 1 + ε para i = 1, 2, 3. (4.5)

Por la proposición anterior, podemos elegir un α0 tal que si α > α0

‖Pi − Pi ◦Kα‖ ≤
ε

2
para i = 1, 2, 3.

y

‖Kαx‖
n + ‖x−Kαx‖

n ≤ (1 +
ε

2
)‖x‖n para todo x ∈ X.

Consideramos el polinomio P ∈ P(nX)

P (x) = Q(x)−Q(x−Kαx)

Vamos a ver que P es débil continuo en acotados y satisface (4.5). Como n = cd(X) basta

ver que P es débil continuo en x = 0.

Sea (xβ) ⊆ X una red acotada débil nula. Como Kα es compacto, existen una subsubred

xβγ e y ∈ X tal que ĺım
γ
Kα(xβγ ) = y. Entonces Kα(xβγ )

w
→ y. Como Kα es continuo,

entonces es w − w-continuo y resulta y = 0 al ser xα débil nula. Luego, Kα(xβ) → 0

cuando β → ∞.

Sea B es la n-lineal simétrica tal que Q(x) = B(xn). Entonces, por la Proposición 4.1.16,

|P (xβ)| = |Q(xβ)−Q(xβ −Kαxβ)|
≤

∑(
n
k

)
B((Kαxβ)

k, (xβ −Kαxβ)
n−k)

≤
∑(

n
k

)
‖B‖‖Kαxβ‖

k((1 + C1)C2)
n−j → 0,

donde C1 es la constante que acota a (Kα)α y C2, la que acota a (xβ)β . Luego P es débil

continuo en x = 0. Veamos que verifica (4.5)

Sea x ∈ BX , entonces, para
ε
2 > 0 existe un α tal que

‖(Q+ Pi ◦Kα − P )x‖ = ‖Q(x−Kαx) + Pi(Kαx)‖
≤ ‖Kαx‖

n + ‖x−Kαx‖
n

≤ 1 + ε
2 .
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Con lo cual ‖Q+ Pi ◦Kα − P‖ ≤ 1 + ε
2 y por lo tanto, si i = 1, 2, 3, se tiene que

‖Q+ Pi − P‖ ≤ ‖ ≤ ‖Q+ Pi ◦Kα − P‖+ ‖Pi − Pi ◦Kα‖ ≤ 1 + ε

como queŕıamos ver.

Un caso particular en el que se cumplen la primera condición de la Proposición 4.4.2 es

cuando el espacio de Banach posee una descomposición achicante de espacios de dimensión

finita. Dado un espacio de Banach X, diremos que la sucesión de subespacios cerrados

{Xj}j∈N es una descomposición de Schauder para X (o simplemente una descomposición

para X) si todo x ∈ X tiene una única representación de la forma x =

∞∑

j=1

uj con uj ∈ Xj

para todo j ∈ N. Si todos los subespacios Xj tienen dimensión finita, decimos que X

posee una descomposición de espacios de dimensión finita. Por último, vamos a decir que

la descomposición es achicante si para todo ϕ ∈ X∗ se tiene que ĺım
k
‖ϕ

∣∣
[Xj :j>k]

‖ = 0.

Corolario 4.4.3. Sea X una espacio de Banach con una descomposición achicante de

espacios de dimensión finita, con proyecciones πj tales que para todo ε > 0 y j0, existe

j > j0 satisfaciendo

‖πjx‖
n + ‖x− πjx‖

n ≤ (1 + ε)‖x‖n ∀x ∈ X.

Si n = cd(X), entonces Pw(
nX) ⊆ P(nX) es un M -ideal.

Ejemplo 4.4.4. En el Ejemplo 4.3.10 vimos que cd(H) = 2 para todo espacio de Hilbert

H. Las proyecciones asociadas a la base (eα) cumplen las hipótesis del corolario anterior

y por lo tanto, Pw(
2H) ⊆ P(2H) es un M -ideal para todo H espacio de Hilbert.

Ejemplo 4.4.5. En el Ejemplo 4.3.11 se vió que cd(ℓp) es el único número natural n0

cumpliendo p ≤ n0 < p+ 1. Como las proyecciones en las primeras coordenadas cumplen

las hipótesis del Corolario 4.4.3, Pw(
n0ℓp) es un M -ideal en P(n0ℓp).

Ejemplo 4.4.6. Sea X = d∗(w, p) el espacio dual de un espacio de Lorentz. Sabemos por

Ejemplo 4.3.12 que si s = ( (n−1)∗

p
)∗ y w /∈ ℓs entonces cd(X) = n cumple que n − 1 es el

mayor número natural estrictamente más chico que p∗. Para este n, se tiene que Pw(
nX)

es un M -ideal en P(nX). En efecto, d∗(w, p) tiene una base achicante de Schauder (ej).

Si elejimos (πm) las proyecciones

πm(x) =
m∑

j=1

xjej

tenemos que

‖πmx‖
n + ‖x− πmx‖

n ≤ (‖πmx‖
p∗ + ‖x− πmx‖

p∗)
n
p∗ ,

donde la última desigualdad se debe a que n ≥ p∗.
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4.5. Propiedad (M) para polinomios.

En el Caṕıtulo 3, introdujimos la propiedad (M), junto con la propiedad (M∗) y vimos

que exist́ıa una relación entre la teoŕıa de M -ideales y estas propiedades. Al trabajar

con espacios de polinomios, obtenemos una equivalencia (Teorema 4.5.8) que relaciona

nuevamente ambos conceptos. Para ello se define una versión polinomial de la propiedad

(M); pero antes necesitamos algunos resultados.

Lema 4.5.1. Si Pw(
nX) ⊆ P(nX) es un M -ideal entonces, para todo P ∈ P(nX) existe

una red acotada (Pα) ⊆ Pw(
nX) tal que Pα(z) → P (z) para todo z ∈ X∗∗.

Demostración. Por [HWW, Remark I.1.13] tenemos que BPw(nX) es σ(P(nX),Pw(
nX)∗)

densa en BP(nX), con lo cual para P ∈ BP(nX), existe (Pα) ⊆ Pw(
nX) tal que Pα → P

en la topoloǵıa σ(P(nX),Pw(
nX)∗). El resultado se obtiene al notar que, para z ∈ X∗∗

la aplicación ez : Pw(
nX) → K dada por ez(P ) =: P (z) es un elemento de Pw(

nX)∗.

En efecto, ez es lineal y cumple |ez(P )| = |P (z)| ≤ ‖P‖‖z‖n = ‖P‖‖z‖n para todo

z ∈ BX∗∗ .

La siguiente proposición es necesaria para demostrar el Teorema 4.5.3

Proposición 4.5.2. Sea X un espacio de Banach y sea J ⊆ X un M -ideal. Entonces

para todo x ∈ X existe red (xα) ⊆ J tal que xα → x en la topoloǵıa σ(X, J∗) cumpliendo

ĺım sup ‖z + (x− xα)‖ ≤ máx{‖z‖, ‖z + J‖+ ‖x‖} ∀z ∈ X.

Una demostración de esto se puede ver en [W, Proposición 2.3]

Teorema 4.5.3. Sea X un espacio de Banach. Son equivalentes:

(i) Pw(
nX) ⊆ P(nX) es un M -ideal.

(ii) Dado P ∈ P(nX), existe una red (Pα) ⊆ Pw(
nX) tal que para todo z ∈ X∗∗,

Pα(z) → P (z) y

ĺım sup ‖Q+ P − Pα‖ ≤ máx{‖Q‖, ‖Q‖e + ‖P‖} ∀ Q ∈ P(nX).

(iii) Dado P ∈ P(nX), existe una red (Pα) ⊆ Pw(
nX) tal que para todo z ∈ X∗∗,

Pα(z) → P (z) y

ĺım sup ‖Q+ P − Pα‖ ≤ máx{‖Q‖, ‖P‖} ∀ Q ∈ Pw(
nX).

Demostración. Por el Lema 4.5.1 y la Proposición 4.5.2 tenemos que (i) implica (ii).

Además obtenemos (iii) de (ii) notando que si Q ∈ Pw(
nX) entonces ‖Q‖e = 0.

Para ver que (iii) implica (i), chequeamos la 3-ball property. Sean P1, P2, P3 ∈ BPw(nX)
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y Q ∈ BP(nX). Por (ii) existe una red (Qα) ⊆ Pw(
nX) tal que Qα(z) → Q(z) para todo

z ∈ X∗∗ y para todo i = 1, 2, 3,

ĺım sup ‖Q+ Pi −Qα‖ ≤ máx{‖Q‖, ‖Pi‖} ≤ 1.

Fijo P1, dado ε > 0, podemos entontrar una subred Qα̃ de Qα tal que

‖Q+ P1 −Qα̃‖ ≤ 1 + ε.

Ahora, partiendo de esta subred procedemos de igual manera con P2 y luego con P3.

Ahora śı estamos en condiciones de definir la propiedad (M) para polinomios en con-

junto con la propiedad (M) n-polinomial para espacios de Banach X.

Definición 4.5.4. Decimos que un polinomio P ∈ BP(nX) tiene la propiedad (M) si para

todo λ ∈ K, v ∈ X tal que |λ| ≤ ‖v‖n y toda red acotada (xα) ⊆ X débil nula, se tiene

que

ĺım sup |λ+ P (xα)| ≤ ĺım sup ‖v + xα‖
n.

Definición 4.5.5. Decimos que un espacio de Banach X tiene la propiedad (M) n-

polinomial si todo P ∈ BP(nX) tiene la propiedad (M).

Extendiendo el Lema 3.1.3 (iv) para la versión polinomial obtenemos el siguiente re-

sultado cuya demostración es análoga a la ya mostrada.

Lema 4.5.6. Sea P ∈ BP(nX) con la propiedad (M) y sea (vα) una red contenida en un

conjunto compacto de X. Entonces, para toda red (λα) ⊆ K tal que |λα| ≤ ‖vα‖
n para todo

α y toda red acotada (xα) ⊆ X débil nula, se tiene que

ĺım sup |λα + P (xα)| ≤ ĺım sup ‖vα + xα‖
n.

Proposición 4.5.7. Sea X un espacio de Banach, n = cd(X) y supongamos que Pw(
nX) ⊆

P(nX) es un M -ideal. Entonces X tiene la propiedad (M) n-polinomial.

Demostración. Sea P ∈ BP(nX), v ∈ X y λ tal que |λ| ≤ ‖v‖n, y sea (xα) una red acotada

débil nula. Tomamos Q ∈ Pw(
nX), ‖Q‖ ≤ 1 tal que Q(v) = λ y ε > 0.

Por el Teorema 4.5.3 (iii), existe un polinomio R ∈ Pw(
nX) tal que

|P (v)−R(v)| ≤ ε y ‖Q+ P −R‖ ≤ 1 + ε.

Como Q(v + xα) → Q(v) y R(xα) → 0 tenemos que

ĺım sup |λ+ P (xα)| = ĺım sup |Q(v) + P (xα)|
= ĺım sup |Q(v + xα) + (P −R)(xα)|
≤ ĺım sup |Q(v + xα) + (P −R)(xα) + (P −R)(v)|+ ε.
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Sea A la única n-lineal simétrica que representa a (P −R).

Entonces, como n = cd(X), por el Corolario 4.3.9, para todo 1 ≤ k ≤ n − 1, P(kX) =

Pw(
kX) y, por lo tanto,

|(P −R)(v + xα)− [(P −R)(v) + (P −R)(xα)]| = |
n−1∑

j=1

A(vj , xn−jα )| → 0.

Luego,

ĺım sup |λ+P (xα)| ≤ ĺım sup |Q(v+xα)+(P−R)(v+xα)|+ε ≤ (1+ε) ĺım sup ‖v+xα‖
n+ε.

El resultado se obtiene entonces haciendo ε→ 0.

El siguiente teorema es la versión polinomial de las equivalencias entre (i) y (v) del

Teorema 3.2.3

Teorema 4.5.8. Sea X un espacio de Banach y sea (Kα) una SCAI tal que ‖I−2Kα‖ → 1

y sea n = cd(X). Entonces Pw(
nX) ⊆ P(nX) es un M -ideal si y sólo si X tiene la

propiedad (M) n-polinomial.

Demostración. La proposición anterior nos da una de las implicaciones. Para probar la

rećıproca, verifiquemos la 3-ball property. Sean P1, P2, P3 ∈ BPw(nX), Q ∈ BP(nX), ε > 0

y sea P (x) =: Q(x) − Q(x − Kαx). Como en la demostración de la Proposición 4.4.2 se

puede ver que P es débil continuo en acotados. Por el Lema 4.4.1 podemos elegir β tal

que

‖I − 2Kβ‖
n ≤ 1 +

ε

2
y ‖Pi − Pi ◦Kβ‖ ≤

ε

2
i = 1, 2, 3.

Como

‖Q+ Pi − P‖ ≤ ‖Q+ Pi ◦Kβ − P‖+ ‖Pi − Pi ◦Kβ‖ ≤ ‖Pi ◦Kβ +Q ◦ (I −Kα)‖+
ε

2
,

basta ver que ‖Pi ◦Kβ +Q ◦ (I −Kα)‖ ≤ 1 + ε
2 .

Sea (xα) ⊆ BX tal que

‖P1 ◦Kβ +Q ◦ (I −Kα)‖ = |P1(Kβxα) +Q(xα −Kαxα)|.

Notemos que |P1(Kβxα)| ≤ ‖Kβxα‖
n, (Kβxα)α está contenida en un conjunto compacto y,

como (Kα) es una SCAI, tenemos que (xα−Kαxα) es una red acotada débil nula. Luego,

por el Lema 4.5.6, tenemos que

ĺım sup |P1(Kβxα) +Q(xα −Kαxα)| ≤ ĺım sup ‖Kβxα + xα −Kαxα‖
n

≤ ĺım sup ‖Kβ + I −Kα‖
n

≤ ‖I − 2Kβ‖
n ≤ 1 + ε

2 ,

donde la última desigualdad proviene de la demostración (v) ⇒ (i) del Teorema 3.2.3.
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Proposición 4.5.9. Sea X un espacio de Banach y sea n = cd(X). Si X tiene la propiedad

(M), entonces X tiene la propiedad (M) n-polinomial.

Demostración. Sea P ∈ BP(nX), λ ∈ K y v ∈ X tal que |λ| ≤ ‖v‖n y sea (xα) una red

acotada débil nula. Queremos probar que

ĺım sup |λ+ P (xα)| ≤ ĺım sup ‖v + xα‖
n. (4.6)

Supongamos primero que ‖P‖ = 1. Dado ε > 0, existe uε ∈ X tal que P (uε) = λ(1− ε) y

‖uε‖ ≤ |λ|
1
n ≤ ‖v‖. En efecto sea yε ∈ BX tal que |P (yε)| > 1− ε y sea 0 < r < 1 tal que

rn|P (yε)| = 1− ε. Luego, si σ = sg(P (yε)) entonces uǫ = λ
1
nσryε sirve.

Aśı
ĺım sup |λ+ P (xα)| ≤ ĺım sup |P (uε) + P (xα)|+ ε|λ|

= ĺım sup |P (uε − xα)|+ ε|λ|
≤ ‖P‖ ĺım sup ‖uε + xα‖

n + ε|λ|
≤ ĺım sup ‖v + xα‖

n + ε|λ|,

donde la igualdad vale por ser n = cd(X) y la última desigualdad se debe a que X tiene la

propiedad (M). Luego tenemos (4.6) para todo ‖P‖ = 1. Ahora, si ‖P‖ < 1, (λ+P (xα)) es

una combinación convexa de (λ+ P
‖P‖(xα)) y (λ− P

‖P‖(xα)). En efecto, tomando ξ = 1+‖P‖
2

se tiene que

ξ
(
λ+

P

‖P‖
(xα)

)
+ (1− ξ)

(
λ−

P

‖P‖
(xα)

)
= λ+ P (xα).

Luego,

ĺım sup |λ+ P (xα)| ≤ máx{ĺım sup |λ+ P
‖P‖(xα)|; ĺım sup |λ− P

‖P‖(xα)|}

≤ ĺım sup ‖v + xα‖
n,

como queŕıamos ver.

Corolario 4.5.10. Sea X un espacio de Banach y n = cd(X). Si K(X) es un M -ideal en

L(X), entonces Pw(
nX) ⊆ P(nX) es un M -ideal.

Demostración. Por el Teorema 3.2.3, X tiene la propiedad (M) y existe una SCAI (Kα)

tal que ‖I − 2Kα‖ → 1. El resultado se obtiene entonces a partir del Teorema 4.5.8 y la

Proposición 4.5.9.

La rećıproca no es cierta. Un contraejemplo de esto se puede ver en [Dv, Remark 3.12.].
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