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Introduccion

La nocién de M-ideal fue introducida por E. M. Alfsen y E. G. Effros en su articulo
Structure in real Banach spaces publicado en 1972. La teoria de M-ideales surge al querer
extender la nocién de ideal bilatero interno de un dlgebra de Banach a un espacio de Banach
general. Esta estructura nos permite un mejor entendimiento de la geometria de un espacio
de Banach en términos de la geometria y las propiedades de la bola unidad cerrada de su
espacio dual. Mas concretamente, un subespacio cerrado J de un espacio de Banach X se
dice un M-ideal en X, si su espacio anulador J=+, es la imdgen de una proyeccién P del
espacio dual tal que ||z*| = ||P(z*)|| + ||z* — P(z*)]|, para todo z* € X*. Cuando J es un
M-ideal en X, el complemento canénico de J+ en X* se identifica (isométricamente) con
J*. Asi, podemos escribir X* = J+ @ J*, igualdad que, de alguna manera, muestra que
en la bola unidad de X subyace una estructura de norma supremo que estd cercdnamente
relacionada con J. Cuando X se descompone como J @y J. , para J algin subespacio
cerrado de X, se dice que J es un M-sumando de X. Claramente, los M-sumandos son
M-ideales, pero existen sutiles diferencias entre estas dos nociones. Por ejemplo, ¢y es
un M-ideal en £, y no en un M-sumando. Desde su surgimiento, la estructura de M-
ideales ha sido muy estudiada. Nuestro trabajo se basa fuertemente en la monografia de
Hardmand, Werner and Werner [HWW], donde se encuentran los principales desarrollos

de esta teoria.

En estas notas presentamos algunos conceptos basicos de la estructura de M-ideales,
introducimos las propiedades més relevantes que nos permiten asegurar la presencia de
M estructura en espacios clasicos y mostramos como impacta esta teoria en espacios de
funciones no lineales, mas especificamente en especios de polinomios homogéneos definidos

sobre un Banach.

El trabajo se divide en cuatro partes. El Capitulo 1 es introductorio. Presentamos
propiedades de M-ideales haciendo hincapié en su descripcién e impacto geométrico. Mos-
tramos (Teorema 1.2.3) que es equivalente que un subespacio cerrado sea un M-ideal de
X a que se verifique la 3-ball property, una propiedad que involucra interseccién de tres
bolas en el espacio X. La fuerza de este resultado radica en que se puede constatar que
un subespacio es un M-ideal a través de la estructura del espacio y no del espacio dual.

Como aplicacién damos un primer ejemplo de M-ideal no trivial (Ejemplo 1.2.6).
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4 INDICE GENERAL

Gelfand y Naimark probaron que toda C*—4&lgebra es isométricamente *-isomorfo a la
*—dlgebra formada por los operadores acotados de algiin espacio de Hilbert H. En este
caso, el tnico ideal bildtero cerrado es IC(H), el subespacio de los operadores compactos.
Esto genera un interés en saber cuando los operadores compactos forman un M-ideal en
el conjunto de los operadores acotados. Este problema es tratado en el Capitulo 2, en el
que se estudia el caso particular en el que X es un espacio de Lorentz.

En el Capitulo 3 presentamos dos propiedades; la propiedad (M) y la propiedad (M*).
Estas, en conjunto con las aproximaciones compactas achicantes de la identidad, permiten
caracterizar cuando los operadores compactos forman un M-ideal dentro del conjunto de
los operadores acotados (Teorema 3.2.3).

Por 1ltimo, el Capitulo 4 estd dedicado a resultados novedosos sobre la estructura de
M-ideales, en espacios donde las funciones no son lineales. Trabajamos sobre el articulo
reciente de V. Dimant [Dv] estudiando el espacio de polinomios homogéneos definidos sobre
un espacio de Banach. Para ésto, como primer paso, introducimos las nociones bésicas
de la teoria de polinomios homogéneos. Como consecuencia de estar trabajando sobre
espacios de dimensién infinita, aparecen naturalmente distintas subclases de polinomios,
que también presentamos. Entre estas clases se encuentran las de los polinomios de tipo
finito, los aproximables, los débil continuos sobre conjuntos acotados del espacio y los débil
secuencialmente continuos.

Al cambiar del contexto de operadores al de polinomios homogéneos, el rol que jue-
gan los operadores compactos suelen jugarlo los polinomios débil continuos en acotados
(Proposicién 4.2.9). Esto da sentido al problema de estudiar cuando los polinomios débil
continuos en acotados forman un M-ideal en el espacio de los polinomios homogéneos.

Al trabajar con espacios de polinomios veremos que varias propiedades que cumplen los
operadores acotados son preservadas (Proposiciones 4.3.1 y 4.3.2). En este contexto la falta
de linealidad y, més precisamente, el grado de homogemneidad, tienen un protagonismo
importante. De hecho, (Corolario 4.3.9) mostramos que existe un tnico valos de n para
el cual los polinomios débil continuos en acotados pueden ser un M-ideal no trivial. Este
valor de n, depende del espacio de Banach dominio X y es llamado el valor critico de X.

Terminamos esta monografia, dando una extensiéon de las definiciones de Propiedad
(M) y Propiedad (M*) al caso polinomial y presentando una versién (para el caso ho-

mogéneo) de las equivalencias del Teorema 3.2.3 (Teorema 4.5.3).



Capitulo 1

M-ideales en espacios de Banach

En este trabajo, consideramos espacios de Banach sobre K donde K denota el cuerpo
de nameros reales o complejos. Dado un espacio de Banach X, By y Sx denotaran,
respectivamente, la bola unidad cerrada y la esfera unitaria de X. Sixz € X y r > 0,
B(xz,r) denota la bola cerrada de centro x y radio r. Por otra parte, X* denota el espacio
dual de X y X** su bidual. Dado * € X, & representa el elemento de X** definido
por Z(p) = p(z) para cada ¢ € X**. Usamos w y w* para notar las topologias débil y
débil-* respectivamente. Recordamos el teorema de Banach-Alaoglu que nos asegura que
(Bx+,w") es compacto para todo espacio de Banach X.

Dados X e Y espacios de Banach notamos por £(X,Y) al espacio de operadores lineales
y continuos de X a Y dotado de la norma supremo y por K(X,Y) al subespacio de los
operadores compactos.

Nuestros primeros ejemplos seran contruidos sobre espacios clasicos de sucesiones, a

los que notaremos de manera usual. Entre éstos se encuentran:

co = {(an)n C K: lima, = 0}

loo = {(an)n C K: (Jan|)n es acotada},

ambos dotados con la norma supremo, |(ay)|lcc = sup,, |an|. También, con 1 < p < oo,

apelaremos frecuentemente al espacio

l, = {(an)n C K: Z lan|P < oo},

n=1

1

con su norma usual [|(ay)||, = (Zzo:l |an|p) ¥ . Para estos espacios e, denota el elemento
cuyas coordenadas son todas nulas salvo la n-ésima donde toma el valor 1.

Con esta notaciéon, X @, Y serd la suma directa de dos espacios de Banach X e Y
equipada con la norma de £, es decir, si z € X @, Y, entonces z tiene una tnica escritura

1
enlaformaz=x+yconz e X eyecVY yademss |z|| = (||z]|P + ||y]|P)>.

5



6 CAPITULO 1. M-IDEALES EN ESPACIOS DE BANACH

1.1. Teoria Basica de M-ideales

1.1.1. Primeras definiciones

Para J subespacio de X, notamos J' al subespacio de X* formado por aquellas fun-

ciones que se anulan sobre J y que llamamos anulador de J. Es decir:
Jt=:{2* e X*: 2*(x)=0, paratodo z € .J}.

Un proyector es un operador continuo P : X — X tal que P? = P. El proyector se
dice contractil si || P|| = 1y el subespacio Rg(P) se dice 1-complementado. Notar que para
todo proyector P, se tiene || P| > 1.

El concepto de M-ideal se puede expresar usando una clase especial de proyectores que

pasamos a definir.
Definicién 1.1.1. Sea X un espacio de Banach.

(i) Un proyector P : X — X se dice M-proyector si para todo z € X,

2]l = max{|| Pz|; [l — Pz[|}.

(ii) Un proyector P : X — X se dice L-proyector si para todo = € X,

[l = 1P| + [z = Pzl

(iii) Un subespacio cerrado J C X se dice M-sumando (resp. L-sumando) si es la imagen

de un M-proyector (resp. L-proyector).
(iv) Un subespacio cerrado J C X se dice M-ideal si J* es un L-sumando en X*.

Todo espacio de Banach posee M-ideales triviales, J = {0} y J = X. Lo que nos
interesa saber es cuando un espacio de Banach X posee M-ideales no triviales; asi también
poder mostrar que no todo subespacio es un M-ideal. Esto iltimo lo logramos en el Ejemplo
1.2.5 y en el Corolario 2.4.13.

Observacion 1.1.2. En la definicion, se podria haber definido cuando un subespacio es
un L-ideal; sin embargo [HWW, Teorema 1.9] muestra que todo L-ideal es un L-sumando

y por lo tanto no estariamos definiendo algo nuevo.

Notemos que todo M-proyector y L-proyector es contractil.
Veamos que los L-proyectores estdn determinados por su ntcleo y los M-proyectores

por su rango. Para esto necesitamos un lema previo.

Lema 1.1.3. Sea P : X — X un L-proyector, entonces para todo x € X, existe un unico

y € ker P tal que ||x —y| = zeilngHx — z|| = d(z, ker(P)).
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Demostracion. Veamos que y = x — Px nos da la existencia. Si z € ker P tenemos que
lz =yl = 1Pz = ||P(z = )| < IPllllz — 2|l < [|lz - z]|. Luego, |z —y|l < inf Jla— .
Ademsds, como y € ker P, obtenemos la igualdad.

Supongamos entonces que existe otro § € ker P tal que ||z — g|| = ZEIEE{PH.I —z||

Como P es un L-proyector e § € ker P, tenemos que ||z — g|| = ||P(z)|| + |ly — 9||. Pero

entonces,
[1P@)+[ly = gll = llo = gl = llz — yll = [|Pz| + ||z — y — Pz|| = || Pz].
Luego, ||y — g|| = 0 y por lo tanto y = 3. O
Proposicién 1.1.4.
(i) Sean P, @ L-proyectores tales que ker(P) = ker(Q) entonces P = Q.
(ii) Sean P, Q M -proyectores tales que Rg(P) = Rg(Q) entonces P = Q.
Demostracion. Probemos (i): Sea = € X, queremos probar que Qz = Pz. Por el lema

previo, existe un unico y € ker(P) tal que ||z — y| = lllnf&P) |z — z||, més atn, y = v — Px.
zeker

Ahora, para x € X se tiene que

|z —(z—Qz)| = [lQz]
= [[Q(z — (z — Px))|
< |QII.[[P]|
< [Pl
= |z —(z - Pz)|.

Donde la segunda igualdad se debe a que x — Px € Ker(P) = Ker(Q). Luego, x — Qz
es una apoximacién de x tan buena como x — Pz, que es la mejor, y por la unicidad de y
resulta que z — Qx = x — Px como queriamos ver.
Para probar (ii) usamos que ker(P*) = Rg(P)* = Rg(Q)* = ker(Q*) y, por lo tanto,
siendo P* y Q* L-proyectores, podemos usar (i) para concluir que P* = @Q* . Como X*

separa puntos de X, se tiene que P = Q. ]

Corolario 1.1.5. Sea J un M-sumando (resp. L-sumando) de X, entonces existe un

unico M -proyector (resp. L-proyector) P tal que Rg(P) = J.

Observacion 1.1.6. Si J es un M-sumando y P es el M-proyector cuya imagen es
J, podemos escribir X = J B J para algun JCX subespacio cerrado. Mds aiun, por
Corolario 1.1.5, J resulta ser tinico. (En efecto, J = Rg(I — P)).

De la misma forma, si J es un M -ideal, existe un tinico J* tal que X* = J+ @ Jt

La reciproca también es facil de ver; si X = J o J entonces J es un M-sumando Y St
X*=J+t@ JL entonces J es un M-ideal.
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El siguiente lema, da una relacién entre M-ideales y M-sumandos, mostrando que uno

es un caso particular del otro.

Lema 1.1.7. Todo M-sumando es un M -ideal.

Demostracion. Sea J un M-sumando de X. Entonces X = J © J. Luego, si p € X* y
2 € X, escribimos # = x1 + x5 con z1 € J y 23 € J y p(x) = @(x1) + @(x2). Si definimos

pa(z) =: p(21) ¥y p1(z)
Ademss, JtnJt = 0.

resulta un M-ideal.

. (x2) tenemos que 1 € J*4, g € Jt Yy @ = @1+ po.

2

i vemos que ||| = [l¢1]| + [[¢2ll, entonces X* = Jt @y Tty J

Sea x € By, como X = J B J existe x1 € By, x9 € Bj tal que r = 1 + xo. Asi,
se tiene que |p(z)| < [p(z1)] + |p(z2)| = [p1(2)] + |p2(z)| < [lp1]l + |l@2| por lo que
el < llerll + 2]l

Reciprocamente, sean x1 € By, 12 € B; y sean 01, 02 € R tales que [¢1(71)| = e (21)
v |pa(x2)| = €2 (22). Entonces tenemos,
[pr1(z)] + [@2(22)] = p(ear + eay)
< el
Como esto pasa para todo 1 € By y z2 € B7, se obtiene la otra desigualdad. ]

Resta preguntarse si vale la vuelta. Es cierto que todo M-ideal es un M-sumando? El

siguiente ejemplo responde esta pregunta en forma negativa.

Ejemplo 1.1.8. Existen M-ideales que no son M-sumandos, basta considerar J = cgy
en X = .

En efecto, como ¢y no esta complementado en £, se tiene que J no puede ser un M-
sumando. Por otro lado J es un M-ideal y para probarlo usaremos la 3-ball property
que demostraremos mas adelante. La misma asegura que si un subespacio J verifica que

Yy1, yo, Y3 € By, x € Bx y € > 0 existe y € J tal que para todo i = 1,2, 3,
lz+y—yll <1+e,

entonces J es un M-ideal en X.

Veamos que esto ocurre para ¢y C /. En efecto, dados y1, y2, y3 € Be,, = € By y e > 0;
elegimos ng tal que para todo n > ng, |y,(i)| < € para todo i = 1,2,3. Asi, si x =
(z1,x2,x3,...), elegimos

y=(z1,...,%ng,0,0,...).

Claramente y € ¢y y tenemos que

z4+yi —y=(yi(l),...,v:(n0), Tno+1,--.) + (0,...,0,y(no + 1),...).

Por lo tanto
lz+y -yl <1+e

para todo i = 1,2, 3.
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Proposicion 1.1.9. Sea J C X un M-ideal. Entonces, todo y* € J* tiene una unica

extension a una funcional z* € X* tal que ||z*| = ||y*].

Demostracion. Como J es un M-ideal en X, tenemos que J* es un L-sumando en X*.
Luego, podemos escribir X* = J+ @ J para algin JC X*.

Podemos identificar més explicitamente a J mediante isomorfismos isométricos,
Jr= Xt/ gt =] (1.1)

Llamemos T} : J* — X*/J+ y Ty : J — X*/J* las isometrias que a cada funcional le
toma su clase en el cociente X*/J+.

Probemos entonces la proposicion.

Sea y* € J* y consideremos x* = Tz_lle*. Veamos que z* es una extension de y*. Como
Ty (x*) = Ty (y*), ambas funcionales tienen la misma clase en X*/J+. Entonces z*—y* € J*
y por lo tanto x* coincide sobre J con y*.

Como T y T» son isometrias, por (1.1), podemos indentificar J = {z* € X* : ||| =
||z*}J||}, y por lo tanto, ||z*|| = Hx*’JH = ||y*||. La unicidad de z* se obtiene al ser 11, T

funciones biyectivas. O

Observacioén 1.1.10. La proposicion anterior, nos permite ver a J* como un subespacio

de X*. Con esto, cuando J es un M-ideal en X, podemos escribir X* = J*- @&, J*.

En [HWW, Proposicién 1.7] se muestran condiciones para saber si un espacio X solo
posee M-ideales o L-sumandos triviales. En el siguiente teorema muestra que para la
mayoria de los espacios, no pueden convivir las estructuras de M-ideales y L-sumandos al

mismo tiempo.

Teorema 1.1.11. Sea X un espacio de Banach que no es isométrico a {x(2) =: R®s R.

Entonces, X no contiene M-ideales y L-sumandos no triviales al mismo tiempo.

Demostracion. Supongamos que el enunciado es falso y veamos que dimX* = 2. Con esto
estaremos viendo que X es un espacio de dimensién dos que tiene un M-sumando no trivial
(de dimension 1) y por lo tanto, X serd isométrico a ¢, (2) lo que nos dara un absurdo.
Por hipétesis, podemos descomponer de forma no trivial X* = G ® G=Y @1 Y. Nuestro
objetivo serd ver que tanto Y como Y son unidimensionales.

Sea P : X* — X* el M-proyector cuya imagen es G y sea m : X* — X* el L-proyector
cuya imagen es Y. Veamos que GNY = {0}.

Supongamos que existe u € GNY, |lul| = 1y tomemos z € G, ||z| = 1; entonces
|lu+ z|| =1y por lo tanto, siendo 7(u) = u tenemos que
2 = |lutz|+flu—=z

= r(ut ) +lutz—nlut+z)+llr(u—2) + lu -2 —7(u—2)]|
lu+ ma|| + [l — ma|| + [u — ma|| + [|[re — ]

2||ull + 2[Jx — mx]

2+ 2||x — mx||.

v 1
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Con esto se tiene que = 7z € Y. Luego G C Y. En particular GNY # {0} y por
lo tanto, podemos volver a aplicar el mismo razonamiento para GG e Y para probar que
G CY. Asi X* =Y lo que es absurdo pues Y era subespacio propio no vacio. Por lo
tanto, GNY = 0 y por la misma razon debe ser GNY =0.

Ahora, supongamos que existe Yy C Y subespacio de dimensién 2. Como GNY =0 se
tiene que P‘Yo es inyectivo. En efecto, si para algin yo € Yy, P(yo) = 0, se tiene que
yo € Y Nker(P) =Y NY =0.
Con todo esto, Gy =: P(Y)) es un subespacio de dimensién 2. Por el Teorema de Mazur
[H] Go contiene un punto de diferenciacién z, es decir, ||z|]| =1y

() = lim ~(|}z + hz|| - 1)

h—0 h

existe para todo x € Gy. Notemos que con esto estamos diciendo que N =: ||.|| es una fun-
cién diferenciable en z. Por lo tanto, [(z) es derivada direccional de N en z en la direccién
de z. Luego, I(z) = (VN(z),x) y por lo tanto [ es lineal. Si pensamos a [ : Gy — R, como
Gy tiene dimensién 2, podemos encontrar z € Gy, ||z|| =1 tal que I(x) = 0.

Como ||z|| =1y z € Gy = P(Yp) podemos escribir z = HI;—Z” con |yl =1, y € Yp.

Veamos que
T ly +hx|| =1
m —~——— =
h—0 h
Para probar esto, notemos que como z € Gy C Rg(P) se tiene que

0.

ly + hz|| = max{|| Py + hz|; ||y — Py||}.
Ademis,
1 = |lyl| = méx{[|Pyl}; [|ly — Pyll}-

Ahora, si || Py|| < 1 se tiene que ||y—Py|| = 1y, para h suficientemente chico, ||Py+hz| < 1

y por lo tanto

|y + hzx|| = |ly — Py| = 1.

Si||Py|l =1y |ly— Py| <1, entonces z = Py y, por lo tanto, para h suficientemente

chico

|y + ha|| = | Py + hz|| = ||z + ha||.

Sil=||Py[| = |y — Pyl entonces

Iy + ha|| = méx{[|z + hz[; 1}.

lly+hz|—1
Y

En cualquiera de los tres casos, se obtiene limy_q = 0 como queriamos ver.

Luego, si h > 0 tenemos, para y € Yy, que
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ly + hall = lly + hral| + hllz — wa]
ly - hall = lly — hral| + hllz — 7zl .

Observando que
ly + hrz|| + [ly — hrz|| = 2]|y[| = 2,

tenemos

ly + hall + lly — ha| = 2h|jz — mzl| + ||y + hrzl| + ly — hre| > 2h|jz -l +2

y podemos concluir que

ly+hafl =1 Jly — hafl — 1
h h
Tomando limite para h — 0T, se obtiene que x = mx € Y. Pero entonces t € GNY y

> 2|z — mxl|.

x # 0 lo cual es un absurdo y por lo tanto dimY = 1. O

Observacion 1.1.12. No es dificil ver que X = {(2) posee M -ideales y L-sumandos no
triviales. Basta tomar I = {(s,t)/s =0}y J ={(s,t)/s —t =0}

En efecto, es claro que I es un M-sumando y por lo tanto, un M-ideal. Para ver que

J es un L-sumando, notamos que

s—t s+t
t) = ——(1,—1 1.1
(s.) = 2t -+ )
' 5=t Js+1] ¢ ¢
; s — S+ s — S+
(sl 1y = 2+ =ty 2 ).

1.2. 3-ball property

Hasta el momento hemos dado una primera visién sobre M-ideales y M-sumandos y los
relacionamos entre si. Sin embargo, para dar un ejemplo de M-ideal no trivial o que no sea
un M-sumando, usamos una propiedad que llamamos la 3-ball property. Esta herramienta
resulta ser muy 1til y nos da equivalencias para decidir cudndo un subespacio J es un
M-ideal de un espacio X. Antes, necesitamos un par de lemas. El primero, requiere la
nocién de e-isometria; es decir, un operador inversible T tal que ||T|||T~!|| < 1 + ¢, para

e > 0.

Lema 1.2.1. (Principio de reflexividad local) Sea X un espacio de Banach y sean E C X**
y I C X* subespacios de dimension finita. Entonces, para cada 0 < & < 1 existe una

e-isometria T : E — X werificando
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(i) T(Z) = x para todo x € ENX.
(i) < ;T (™) > = < x™*;2* > para todo ™ € E y todo x* € F.

Una demostracion de este hecho se puede ver en [AK, Teorema 11.2.4.].

Lema 1.2.2. Sea J C X un M-sumando y sea (Bj)icr una coleccion de bolas cerradas en
X tales que (), Bi # 0 y B; N J # 0 para todo i; entonces (), BiNJ # 0.

Demostracion. Sean x; € X, r; > 0 tales que B; = B(x;,7;). Como J es un M-sumando
en X, podemos descomponer X = J @ R, con R subespacio cerrado. Sea P : X — J la
M-proyeccién asociada a J y sea z € [, B;. Afirmamos que Pz € (), B; N J. En efecto,

sabemos que Px € J. Para cada ¢, tomamos y; € B; N J, entonces tenemos que

ri 2 |lzi — il
= Pz — i) + (xi — Pay) ||
—_———— ———
eJ €R=ker P
= mdx{||Px; — yill; 2 — Pi|}
Luego, como ||Pz — Px;|| < ||P||||z — =;|| = ||x — ;]| < rs, se tiene que

|Ps — il = més{||Pa — Pl || Pi — i} < i
Luego, Pz € B(x;,r;) para todo i y se tiene el resultado. O

Teorema 1.2.3. (3-ball property) Sea J C X un subespacio cerrado. Las siguientes afir-

maciones son equivalentes.

(i) J es un M-ideal en X.

(ii) (La n-ball property) Dado n € N. Para cada familia By,...,B, de bolas cerradas,
B; = B(x;,1i), tales que (), Bi # 0 y BN J # 0 para todo i = 1,...,n, se tiene que
M B(zi,ri +€)NJ # 0 para todo € > 0.

(iii) (La 3-ball property) Iqual que (ii) con n = 3.

(iv) (La 3-ball property restringida) Dados y1, y2, y3 € By, v € Bx ye >0, existey € J
tal que ||z +y; — y|| <1+ ¢ para todo i =1,2,3.

(v) (La n-ball property estricta) Dado n € N. Para cada familia By, ..., B, de bolas
cerradas, tales que (), B;)° # 0 y BiNJ # 0 para todo it = 1,...,n, se tiene que
N; BiNJ #0.
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Demostracion. (i) = (ii): Sea n € N y sean B; =: B(z;,7;) i = 1,...,n bolas cerradas
en las condiciones de (ii). Como J es M-ideal, entonces J+ es L-sumando en X*, es
decir, X* = J+ @ J*; y por lo tanto, J-+ es M-sumando en X**. Ademds, tenemos que
N; B(Zi,m;) # 0y B(z;,r;) N J+E # 0 para todo i = 1,...,npues NB; # 0y BiN.J £ 0
para todo i = 1,...,n. Asf, por Lema 1.2.2, existe z§* € (), B(Zi, ;) N J+.

Supongamos que (ii) es falso, luego, existe ¢ > 0 tal que si D =: (), B(z;,7;+¢), entonces D
y J tienen distancia positiva. Al ser D convexo y J subespacio cerrado; podemos separarlos
estrictamente. Esto es, por Hahn-Banach, existen ¢ € X* y v > 0 tales que ¢(x) = 0 para
todoz € J (¢ € J*) v v < Re(p(y)) para todo y € D.

Sean F' =: [p], E =: [z§",Z1,...,Zn] y 6 = min{;>}. Por el principio de reflexividad local,

existe una d-isometrfa T: E — X tal que |T7|| =1, |T| <1+dy
» T(Z;) = x; paratodoi=1,...,n.
n <o T(af™) > = < af™ 0 >.

Afirmamos que Txj* € D. En efecto,

|Tzg" — il = [[Tag" — Tz
< T[H2g" — 4]
< (1+9)r
< ri+e.

Con esto, 0 < v < Re(< ¢, Tal* >) = Re(< x5, >). Como z3* € (J1) Ly p € J+,

tenemos una contradiccién.
Es evidente que (ii) = (iii). Veamos que (iii) implica (iv).

Dados y1, y2, y3, x y € > 0 como en el enunciado, consideramos B; =: B(x + y;, 1).
Asi, x € (,Bi y yi € B;NJ para todo ¢ = 1,2,3 y por lo tanto, por (iii) existe
y €, B(x +yi,1+¢)NJ que cumple lo pedido.

(iv) = (i): Debemos probar que existe un subespacio cerrado R C X* tal que X* =
J+ @1 R. Més atin, probaremos que R = J* = {2* € X* : ||z*| = ||a:*‘J||} Veamos que se

tienen las siguientes afirmaciones.

(a) Todo z* € X* se puede descomponer en la forma z* = x% + 3 con 2} € J* y

x5 € J*, con escritura tunica.
(b) NIzt + 23] = [|l2ill + [l23]| para todo o} € J* y a3 € J*.

(c) J* es subespacio cerrado de X*.
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Dado z* € X™ consideramos x5 una extensiéon por Hahn-Banach de x*‘ ; ¥ tomamos
x} =: 2" — a3, de donde z* = x] + 25 como en (a).

Para poder ver la unicidad de la escritura, necesitamos primero probar (b).

Para ver (b), basta mostrar que ||z + x| > [|z¥| + |23, si 2% € J*t y a3 € J*.
1 2 1 2 1 2

Seac >0ysean x € By y z € By tales que z7(x) y 25(2) son reales y ademas vale

vi(z) = ||z e,
w3(2) = [Jaall —e.
Por (iv) tenemos que existe y € J tal que ||z £z —y|| < 14 ¢y, por lo tanto,

(1 +e)(lla7 + a5 + [la1 — 23])) (27 + 25) (2 + 2 = y) + (2] — 25)(z — 2 — y)]

2|2} (@) + 3(2)]
2||25]| + 2|z5] — 4e
3]l + ]l + [lat — 23] — 4e.

VIV IV

El resultado se obtiene haciendo tender € a 0.

Ahora, supongamos que } + x5 = y + i con z%, yi € Jt y xb, yi € J*; entonces

xy = (yi—a})+ys € JE+J* y como x5, yf € J1, se tiene que l‘;‘J = y5| ;. Asi, por lo visto

i
en (b) se tiene que [|23]| = llyf — =il + 31l = Iyt — 21l + 3,1 = llof — 25l + 23], | =

llyi — 27| + ||z5]| ¥ por lo tanto ||y; — «7|| = 0. Luego, la descomposicién en (a) es unica.

Por tltimo, probemos (c). Como la convergencia de puntos de un espacio de Banach,
implica la convergencia de sus normas, tenemos que J* = {¢/|l¢|| = [¢| ;I es cerrado.
Ademss, si p € J*, Ap € J* para todo A escalar. Veamos entonces que es cerrado para
la suma. Sean x*, y* € J* y sean z} € J*, x5 € J* tinicos tales que x* + y* = x} + x3.
Queremos ver que x] = 0.

Sea x € Bx. Dado € > 0, elegimos y1, y2, y3 € By tales que

ey) = 2 —e yiy2) 2yl —e —wa(ys) = [laall e

Por (iv) existe y € J tal que ||z +y; —y|| <1+ ¢ parai=1,2,3. Asi,

L+ la* + ly I+ lla3l) > |o* @+ —y) +y (x+y2 —y) —a3(z +y3 —v)|
> Re(z*(z+y1—y) +y (c+y2—y) —zi(z+y3s —y))
= Re((z" +y" —z3)(z —y))+ Re(z"(y1) + y*(y2) — 25(y3))
= Re(zi(z)) + 2" (v1) + y*(y2) — 25(ys3)
> Re(zi(z)) + lz*]| + ly*|| + [[3] — 3e.

Con lo cual, haciendo ¢ — 0 se tiene que Re(z](z)) < 0 para todo x € Bx y, por lo

tanto, x3(z) = 0 para todo x € Bx. Luego, x] = 0.
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Dadas n bolas, B(z1;71), ..., B(zn;m) y € > 0; para ver que (v) — (ii) basta usar (v)

con la coleccién B(x;;r; +¢) parai=1,...,n.

Para finalizar la demostracién, veamos que (ii) = (v). Sean B(z1;71),...,B(zn;rm)
bolas cerradas tales que ([, B;)° # 0 y BiNJ # 0 para todoi =1,...,n. Sea 6 > 0 e

yo € X tales que |lyo — z;|| < r; — § para todo i =1,...,n. Sea r =: minr;.

Vamos a construir una sucesion (yi) C J tal que

lye = || < 27"4r, (1.2)
g — zi|| <7 +2755 para todo 1 < i < n.

Al lograr esto, obtendremos una sucesién de Cauchy en J, cuyo limite pertenece a J y que

verifica ademds pertenecer a (", B(z;; ;). Por lo tanto, (), B(zs;ri) N J # 0.

Consideramos las bolas B(yo;2r — d) v B(xi;r;) parai = 1,...,n. Estas n + 1 bolas,

cumplen (ii), en efecto
Yo € Blyo; 2r — 6) N () Blwisri — 6) € Blyo; 2r — 6) N () Blasra),

Sea i tal que r = r;,. Como B(x;,;74,) NJ # 0, tomamos = € B(z;,,ri,) N J. Resulta
que z € B(yo;2r —0) N J. Asi,

B(yo;2r —0) N ﬂB(xz-; ri) N J # 0.

Luego, por (ii) existe y; € B(yo; QT—g)ﬂﬂi B(x;; ri+g)ﬂJ C B(yo; 2r)N(); B(a:l-;ri—i—g)
que es lo que queriamos probar para k = 1.
Supongamos que tenemos elegidos y, . .., yx como en (1.2) y construyamos yx,1 que tam-
bién verifique (1.2).
Consideramos las bolas B(yy; (2~ ¢F+1) — 2=Ck+D)4r) v B(zy;r; + (27 KD — 2-Ck+1)) ),
Como y, € J y B(xi;m) NJ # 0 se tiene que estas n + 1 bolas intersecan J. Més atn,

veremos que la interseccion de estas bolas es no vacia. Para esto veamos que

zp =: 2*(k+1)y0+(1—2*(k+1))yk € B(y; (2*(k+1)_2*(2k+1))47,)mﬂ B(l,i;Ti+(27(k+1)_27(2k+1))5)'

Veamos primero que z;, € B(yy; (2~ F+D — 2=Ck+1))47):

law =il = 27 lyo — gy
< 27 (Jlyg — w4 - + gk — will)
< () Sk 9-igy

(2~ (k1) _137(21%1))470.
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Veamos ahora que z;, € (), B(x;;ri + (2~ (k+1) — 2=(2k+1))5) | para esto notemos que z

es una combinacién convexa entre yo e yx y por lo tanto

2k — 4] 27 Dlyy — il 4+ (1 = 27 D) gy, —
2=k (p; — §) + (1 — 27K+ (i 4 27F6)

i + (2—(k+1) o 2—(2k+1))(5‘

A IA

Finalmente, podemos aplicar (i) con & = 2~ (**Dmin{4r; §} para obtener un elemento
de J tal que
Yes1 € Blyg; 2~ * 4y 0 ﬂ B(xsri + 2~ %05 .
i
Luego, el teorema queda probado. ]

Una pregunta natural es si vale la 2-ball property; es decir si el item (ii) del Teore-
ma 1.2.3 formulado con n = 2 da un criterio necesario y suficiente para determinar si un
subespacio es un M-ideal. La respuesta es negativa, como lo muestra el Ejemplo 1.2.5.

Antes, necesitamos el siguiente lema.

Lema 1.2.4. Sea f € L. Entonces f = ¢+ g donde ¢ = M, g=f—-cuy
1Al = lel + llgll-

Demostracion. Si f(z) > 0 o f(x) < 0 para todo z, el resultado es trivial. Supongamos
entonces que f cambia de signo. Entonces || f|| = sup |f(z)| = méx{sup f(z), — inf f(x)}.
% y inf g(z) = inf f(z) —c = M.
Luego, ||g|l = ]SUpf;fnff] = Squ;inff. Asi, sisup f > —inf f, entonces y || f|| =sup f y

Por otro lado, sup g(z) = sup f(z) — ¢ =

supf+1’nff+supf—1'nff

] + gl = 223 I
Sisup f < —inf f, entonces || f|| = —inf f y
sup f +1iInf f  sup f — inf f ,
el + gl = 22T ITES | ST 2R g

O]

Ejemplo 1.2.5. Sea X = Li(n) = {x p-medibles : [ |z|dp < oo} con p una medida
positiva, y sea J = {x € X/ [ xdu = 0}. Entonces, J no es un M-ideal, aunque cumple la
2-ball property.

Veamos que J no es un M-ideal de X. Por Teorema 1.1.11, alcanza ver que X posee un
L-sumando no trivial. En efecto, todo = € X se puede escribir de la forma z = 27 — 2™,
donde x* es su parte positiva y £~ su parte negativa. Notemos que

el = [ laldp
= [aTdp+ [z~ dp

= [latldu+ [ |z |dp
= |lz[| + [l=~|.
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Con lo cual {z € X/x = 27} es un L-sumando no trivial de X.
Para ver que J cumple la 2-ball property supongamos que se tienen By =: B(z1,7r1) y

By =: B(xg,12) tales que BiN By # 0y B;NJ # () para i = 1,2 y que existe € > 0 tal

que B(z1,7m1 +¢) N B(xa, 2 +2)NJ = 0.

Consideremos en Lj & Ly el conjunto convexo D = {(z1,22) : ||zi — @il < misi = 1,2} y

el subespacio F' = {(y,y) : y € J}. Por el teorema geométrico de Hahn-Banach, podemos

separar estrictamente a D y F' por una funcional (f1, f2) € Loo @ Lo

Asi tenemos que

fit fae gt

y
sup /(f1zl + fazo)du < 0. (1.3)
(21,22)€D
Por Lema 1.2.4, toda g € L, puede ser descompuesta en la forma
g=c+h

donde ¢ es una constante, h =g —cy ||g|| = |c| + ||1]|-
Como J* = [1], podemos conseguir una misma g € L, tal que

fi=ca+g
y

Ja=c2—g,
donde

Ifill = leil + Mgl i=1,2.
Notemos ademas que para toda f € Lo
£ = suwp [ fodu= sup
r€B, z€B(z1,r1)
y si z € B(z1,r1) N B(x2,r2) entonces
| [ o= o)l 1o [ o1 el + [ 12z = 2ldu) < 1F1 4 7o),
Por lo tanto, si consideramos y; € B(x;, ;) N J tenemos que
sup /(flz1 + faz2)dp = sup / (fi(z1 — 21) + frz1 + fa(ze — 32) + foxa)dp
(21,22)€D (z1,22)€D

= |lfallr+ I fellr2 + e1 [ zrdp+ [(g

(x1 — @2)dp + o [ wadp

= |fllr + I fellre + e [(z1 —y1)dp+ [ g(z1 — 22)dp

+ 2 [(x2 — yo)dp

v

0

11l + | f2llre = (lenlrs + gl (r1 + 72) + |e2|r2)
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lo que contradice (1.3).

Un subespacio que cumple la 2-ball property se dice un semi-M-ideal. Para mas infor-
macion sobre semi-M-ideales ver [HWW, pagina 43]. El ejemplo anterior muestra que hay

semi-M-ideales que no son M-ideales.

El siguiente es un ejemplo clasico que ilustra cémo la 3-ball property permite mostrar

facilmente que un subespacio es un M-ideal.

Ejemplo 1.2.6. Sea 1 < p < q < oo. Enontces K(ly,4,) es un M-ideal en L({p,{,).
También, cualquiera sea X espacio de Banach, se tiene que K(X,co) es un M-ideal en

L(X,cp).

Demostracion. Veamos primero que K(4,, £,) es un M-ideal en L(£p,¢,). Sean P, y Q, las
proyecciones en las primeras n coordenadas de ¢, y ¢, respectivamente. Entonces ambas
sucesiones convergen puntualmente a la identidad y por lo tanto convergen uniférmemente
en cualquier conjunto compacto. Lo mismo sucede para sus operadores adjuntos P y Q5.
Verifiquemos la 3-ball property. Sean S1, S2, S3 € By, .0,), s€a T € B, 0,) ¥ sea € > 0.

Vamos a probar que se pueden elegir n, m suficientemente grandes tales que
T+ S; — (Q.T+ TP, —Q,TPy,)| <1+e¢. (1.4)

Como P,,, @, son operadores de rango finito, resulta que (Q,T + TP,, — Q,TP,) €
K(¢p,¢q) para todo n, m. Para probar (1.4) vamos a intercalar @,S;P,. Por un lado

tenemos

n,m—00

IN

lim HQnSZ — SlHHPmH + HSle — Sz”
n,M—00

lim ||Q,S; — Si|| + lm ||P; S —S™|.
n—00 M—00
= 0.

IN

Por otra parte, necesitamos estimar

IT + QuSiPm — (QnT + TPy — QuT Py
Para esto, notemos que
T—(QnT+ TP, —Q,TPy)=(I—-Qn,T —(I—QunTP,,=(—QnT(I— Py).

Dado z € ¢, tenemos que

1

H[(I - Qn)T(I — Pm) + QnSsz]m'” = H(I — QnT(I — Pm))xHq 4 ”QTLSZmeHq>E
< (1T = Pr)z|* + [|Pnz]7) s
< (I = Po)z|? + || Pmz|P)?
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Como ||Q,SiP,, — Si|| puede tomarse tan chico como se quiera, hemos probado que se
pueden encontrar n,m que cumplen lo pedido.
Para ver que K(X, cp) C L(X, cp) es un M-ideal, se razona de la misma forma. En este

caso, el operador compacto que sirve es (), para algiun n suficientemente grande. O

Qué sucede para p > ¢? En este caso, se puede probar que K(¢p,4;) = L({p,4y)
(Corolario 2.4.8) con lo cual los operadores compactos de ¢, en ¢, resultan ser un M-ideal
trivial en L(£p, {y).

1.2.1. M-ideales y su geometria

Terminaremos esta seccion inicial comentando sobre algunas propiedades geometricas
de los espacios que admiten una estructura de M-ideal. Un subespacio J de un espacio de
Banach X se dice proximinal si para todo x € X existe y € J que realiza la distancia a =z,
es decir ||z —y|| = d(x, J). Notamos por Pj(z) al conjunto de tales y € J, que llamaremos
elementos proximinales, y diremos que Pj(x) es el conjunto de mejores aproximantes de J
a z. Si, para todo x € X, Py(z) tiene un dnico elemento, decimos que J es un subespacio
de Chebyshev. Por ejemplo, todo subespacio cerrado J C H, con H un espacio de Hilbert,
es de Chebyshev. Lo mismo sucede con ker(P) para P un L-proyector (Lema 1.1.3).

Proposicion 1.2.7. Sea X un espacio de Banach y sea J C X un M-sumando. Sea
P : X — X una M-proyeccion con rango J. Entonces, para todo x € X \ J, el conjunto
Pj(x) es la bola de centro Pz y radio ||x — Pzx||.

Demostracion. Como J es un M-sumando, tenemos que para todo y € J, ||y — z| =
max{||y— Pzl |zt—Px||} > ||z— Pz||. Luego, como Pz € J se tiene que ||x—Pzx| = d(x, J)
y por lo tanto Pz € Pj(z).

Sea y € J tal que ||y — Px| < ||z — Pz||. Entonces ||y — z|| = ||z — Pz|| = d(x,J) y por
lo tanto y € Pj(x). Por otro lado, si y € Py(x), entonces ||z — Px|| = d(x,J) = ||y — z||,
pero como |y — x| = max{|ly — Pz||, ||z — Px||} entonces debe ser ||y — Px|| < ||z — Px||.

Asi, probamos que Pj(x) es la bola de centro Pz y radio || — Pz||. O

Corolario 1.2.8. Si J es un M-sumando en X, entonces J = span{P;(x)} para todo
reX\J.

Con este resultado, vemos que un M-sumando estd lejos de ser un subespacio de
Chebyshev, aunque si son subespacios proximinales. El siguiente resultado muestra que

un M-ideal es un subespacio proximinal.

Proposicion 1.2.9. Los M -ideales son proximinales.
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Demostracion. Sea J C X un M-ideal y sea z € X tal que d = d(z,J) > 0. Vamos a

construir una sucesién (y,) C J cumpliendo

3\n
lymir = wnll < ()" (1.5)
3 n—1
lyn — 2l < d + (1) : (1.6)

Una vez logrado esto, por (1.5) tenemos que (y,) es de Cauchy y, por lo tanto, converge
a un elemento y € J. Por (1.6), se tiene que y dista de x en no més que d. Con lo cual
tenemos que y € Py(z).

Construimos la sucesién (y,,) por induccién. Sea e > 0y sea y € J tal que ||y —z| < d+e.
Consideramos las bolas B(x,d+ 5) y B(y, 5). Como d > 0, estas bolas tiene interseccién
no vacia. Ademas, B(y, 5) interseca a J en y y como d = d(z,J), B(z,d + §) también
interseca a J.

Como J es un M-ideal, por el Teorema 1.2.3 item (ii), tenemos que existe

3¢ 3¢
y1 € JNB(z,d+ Z) N B(y, Z)
Aplicando este razonamiento para e, = (2)"~! obtenemos la sucesién (y,,) deseada. O

Una herramienta 1til al momento de calcular normas en un espacio de Banach es el
conjunto de puntos extremales. En el caso en que X posea un M-ideal J, podemos describir

los extremales de X en funcion de los extremales de J.

Definicion 1.2.10. Sea C' C X un subconjunto convexo de un espacio de Banach, decimos
que z € C' es un punto extremal de C'si Vy,z € C'y t € (0,1) tal que z =ty + (1 —t)z se
tiene que r =y = 2.

Notamos por Ext(C) al conjunto de puntos extremales de C'y tomamos la convencién

Ext({0}) = 0.

En otras palabras, un punto extremal de un conjunto convexo, no es otra cosa que un
punto que no pertenece a ningtin segmento no trivial incluido en el conjunto.

Notar que para todo X espacio vectorial normado, se tiene que Ext(Bx) C Sx, ya
que dado xy punto interior en By, existe € > 0 tal que B(xg,e) C Bx, y o se escribe

como punto medio de dos elementos de By.

Observacion 1.2.11. Sean A, B dos conjuntos convexos tales que A C B, entonces
Ext(B)n A C Ext(A).

En efecto, sea xp un punto extremal de B tal que xg € A y supongamos que xg es un
punto interior de un segmento con extremos ai, as € A. Como A es convexoy A C B,
entonces el segmento [a1, as] esta incluido en B, lo que contradice el hecho de que zp sea

un punto extremal de B. Luego xo € Ext(A).
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Notar que en A pueden haber otros extremales que no sean extremales de B. El si-

guiente grafico muestra un ejemplo de esto.

En este caso, a es un extremal de B que interseca a A, pero by ¢ son extremales de A
que no lo son de B.

Para L-sumandos se tiene la siguiente descripcién.

Proposicién 1.2.12. Sea X = J; &1 Jo entonces:

E.%'t(Bx) = E(I;t(BJ1> @] E.%'t(BJQ).

Demostracion. Sea x© € Ext(Bx), entonces existen unicos y € Ji, z € Jy tales que
x =y + 2 Siy =0, entonces z = z € Jy y, como z es un punto extremal, z € By,.

Como By, C By, por la observacién anterior, tenemos que
x € Ext(Bx) N By, C El‘t(BJQ) - E.Tt(le) U El‘t(BJz).

Lo mismo obtenemos si z = 0. Nos queda analizar el caso en el que 0 < ||y| < 1y

0 < ||z]| < 1. En este caso tomamos un £ > 0 tal que (1 — £HyH) >0y (1-— EH H) > 0.
Entonces, escribimos
wi = (1+e)y+ (1 —e”y”)
wy =t (1— ” H>y+(1+€)
Notemos que wj estd en Sx; més aun,
1 el i
Jwi]l = (1 +&)llyll + ( Izl H)HZH = llyll + llzll = ll=ll =
al estar  en Ext(Bx). De la misma forma wy € Sg.
_ =l i
Tomando ¢ = =iz € (0, 1), podemos escribir
z =tw; + (1 — t)ws
En efecto,
_ [E| [yl [Ed| [Ed]
o+ (L= twe = i (@4 e+ (- eff)z) + (- i) (- =f5Dy + 1+ 2)2)
_  (Qa+9)ll ||y||—6HZ||> (Ilzll—éllyH \y||(1+6)>
- (IIyIHHZII T 0 )Y T Ul + Tyl
=y + z

= X
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mostrando que x ¢ Ext(Byx) y contradiciendo la hip6tesis.

Ahora, sea x € Ext(By,), ||z|| = 1 y supongamos que existen A € (0,1), y, z € Bx tales
que z = Ay + (1 — N)z. Sean y1,21 € J1 y y2,20 € Jo talesque y = y1 +y2 y 2 = 21 + 29.
Asi, podemos escibir

x=Ay1+ (1 =Nz + Aya + (1 — A)zo.

Como x € J; debe ser Aya + (1 — )z = 0y como = € Ezt(By,) entonces x = y; = 27.
Pero entonces x € J; N Jy = 0, llegando a un absurdo al ser ||z| = 1.

Luego x € Bx. Andlogamente se prueba que Ext(By,) C Ext(Bx). O
Corolario 1.2.13. Sea X un espacio de Banach y sea J C X un M-ideal. Entonces
El’t(BX*) = E.%'t(BJJ_) U EZL‘t(BJ*)

Demostracion. Por la Observacién 1.1.10, tenemos que X* = J+ @1 J*. El resultado se

sigue de la Proposicién 1.2.12. O



Capitulo 2

M-ideales en espacios de
Operadores.

2.1. Algunas propiedades basicas.

Recordemos que la teoria de M-ideales trata de generalizar la nocion de ideal bilatero
en un algebra de Banach. Gelfand y Naimark probaron que toda C*-dlgebra es isométri-
camente *-isomorfa a la *-algebra formada por los operadores acotados de algin espacio
de Hilbert H. En este caso, el unico ideal bildtero cerrado es K(H), el subespacio de los
operadores compactos.

Esto propicia un interés particular por estudiar cuando K(X) es un M-ideal dentro de
L(X) y, més en general, estudiar cuando I(X,Y) C L(X,Y) es un M-ideal y si es el
Unico.

En este capitulo estudiaremos estos casos, introduciremos la nocién de la propiedad (M)
y la usaremos para dar una nueva equivalencia para un subespacio de ser un M-ideal.

Comencemos por definir la distancia de Banach-Mazur entre dos espacios de Banach.
Definicién 2.1.1 (Distancia de Banach-Mazur). Sean X, Y dos espacios de Banach. Se
define la distancia de Banach-Mazur entre X e Y por
d(X,Y) =: mf{||T|.||T~| tal que T': X — Y es isomorfismo}.
Por otra parte, si X e Y no son isomorfos, la distancia de Banach-Mazur es infinita.

Observemos que dado ¢ € Ry T : X — Y isomorfismo tal que ||T||||7!| < ¢, podemos

tomar T = ﬁ para obtener un isomorfismo que cumple ||T|| =1y [|[T7Y < e

Proposicién 2.1.2.

(a) Sean X, Y espacios de Banach tales que K(X,Y) C L(X,Y) es un M-ideal y sean
E C X, F CY subespacios 1-complementados. Entonces K(E,F) C L(E,F) es
M -ideal.

23
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(b) La clase de los espacios de Banach para los cuales K(X,Y) C L(X,Y) es M-ideal

es cerrada con la distancia de Banach-Mazur.

Demostracion. (a) Sean wg, mp proyecciones, ambas de norma 1, a E'y F respectivamente.
Vamos a verificar la 3-ball property para K(E,F) y L(E,F). Sean S; € By, T €
Brgry, e >0ysean Jp : E — X, Jp : F — Y las respectivas inclusiones. Entonces
JrSite € Bx,y) Y JFTTE € Br(xy). Asi, por hipétesis, existe R € K(X,Y) tal que
para todo i =1,2,3

”JFTWE + JpSitgp — R” <l+e.

Sea rpRJp € K(E,F) y x € Bg. Entonces
(T + S; — mpRJg)x|| |mr(T + S; — RJg)x||

(T + Si — RJg)z||

H(JFTﬂ'E + JpS;mtEg — R).%'H

”JFTTFE + JpS;tg — RH

1+4e,

IANIA A

que es lo que queriamos demostar.

(b) Dado € > 0, sea € > 0 tal que (1 + &) < 1+4¢. Sean X. y Y. espacios de Banach
tales que d(X,X.) < 1+¢,d(Y,Y:) < 14+ Eéy K(Xc,Y:) C L(Xc,Y:) es un M-ideal.
Queremos ver que K(X,Y) C £(X,Y) es un M-ideal. Igual que en (a) vamos a verificar
la 3-ball property. Sean S; € Bi(xy), ¢+ = 1,2,3 y T' € Bpxy). Sean 11 : Xe — X
y Ty : Y — Y. isomorfismos tales que | T3] = 1y |7, Y| < 1+ &, i = 1,2. Entonces,
considerando T5TTy € Bg(x. y.), 12511 € Bi(x.,y.), existe R € K(X.,Y:) tal que para
i=1,2,3

| ToTT) + T55;Ty — R|| < 1+E&.

Con lo cual, si R = Tz_lRTl_ ! se tiene que
|7+ S; — R| Ty Y(ToTTy + To STy — R)TT |

(1+¢8)3

1+e.

INIA

y la proposicién queda probada.
Proposicién 2.1.3. SiK(X,Y) C L(X,Y) es un M-sumando, entonces K(X,Y) = L(X,Y).

Demostracion. Por el absurdo, supongamos que existe un subespacio no trivial R C
L(X,Y), R # {0}, tal que L(X,Y) = K(X,Y) Boc R y sea T' € R con ||T| = 1. Sea
0 < e <1,z € Sx tal que ||[Txo|| > 1 — ¢, y sea z§ € Sx- tal que zi(xo) = 1.

Definimos S € K(X,Y) dado por Sz = z(x)T'zo. Entonces, ||S| < 1 y por lo tanto
15+ Tl = méx{[|S], [T} = 1.
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Por otro lado, ||(S + T)zo|| = 2||Txo|| > 2 — 2¢, lo que nos lleva a un absurdo pues
Ty € Sx. ]

2.2. Distancia de un operador a £(X,Y).

Los operadores compactos entre dos espacios de Banach son importantes por las diver-
sas propiedades que poseen. Sin embargo, no siempre podemos trabajar con operadores
compactos. Aun asi, podemos preguntarnos cuan cerca estd un operador de ser compacto.
Para esto se define la norma esencial de un operador 7' € £L(X,Y) como su distancia a
K(X,Y).

Definicion 2.2.1. Sea T': X — Y un operador lineal y acotado. La norma esencial de T’

sera el numero
[T]e =: d(T, K(X,Y)) = nf{||T - K| : K € K(X,Y)}.

Observacién 2.2.2. Podemos pensar ||T||e como una norma cociente, la de la clase de
T en L(X,Y)/K(X,Y). Como (E/S)* = S*, siempre podemos encontrar 1) € Bio(xyyt
tal que Y(T) = ||T|e-

Definicion 2.2.3. Sea X un espacio de Banach y C' C X* un subconjunto acotado. Un
conjunto B C C' se dice frontera de James para C' si para todo z € X existe ¥ € B tal
que ¥(x) = sup{p(x) : ¢ € C'}. Un subconjunto B C Bx~ se dice frontera de James de X

si es una frontera de James para Bx=.

Notemos que si B C By« es una frontera de James de X, entonces todo z € X realiza
su norma a través de una funcién de B. Todo espacio de Banach tiene como frontera de
James al conjunto Ezt(Bx~). Una demostracién de este hecho se puede ver en [FHHMPZ,

Pag. 80]. Con esto y la Observacién 2.2.2, tenemos el siguiente corolario.

Corolario 2.2.4. Sean X, Y espacios de Banach tales que K(X,Y) es un M-ideal en
L(X,Y). Entonces, para todo T € L(X,Y) existe ¢ € El’t(BK()Qy)L) tal que Y(T) =
1T

Introducimos ahora un par de lemas 1tiles; el primero de ellos es una versién reciproca
del teorema de Kreim-Milman, [FHHMPZ, Teorema 3.41]. Notaremos por co(B) la capsula
convexa de un conjunto B, que es el conjunto de las combinaciones lineales finitas convexas

de los elementos de B.

Lema 2.2.5. Sea X un espacio de Banach y sea C C X un subconjunto w*-compacto y
convezo. Sea B C C tal que co(B) = C. Entonces Ext(C) C B .
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Demostracién. Supongamos que existe = € Ext(C) tal que x ¢ B“". Entonces por el
teorema de Kreim-Milman, existe ¢ € X* y a € R tal que R(¢(x)) > a > sup R(p(y)).
yeB
Como ¢ es lineal tenemos que sup R(p(y)) = sup R(p(y)). En efecto, como B C co(B),
yeB yeco(B)

supR(¢(y)) < sup R(p(y)). Por otro lado, siy € co(B) y € > 0 existe yo € co(B) tal que
yeB yEco(B)

ly —yol| <e.Sean A1,...,Axn € Ceyy...,yn € B tales que yo = >_ Niy; con »_ \; = 1.

Entonces,
R(e(yo)) = > R(Xip(wi))
= 2 RO)R(p(yi) — SA)S(e(yi)
< ¥ %(Al)iggﬂ?(@(z )+ %()\z)?elg%(<ﬁ(z))
= supR(p(2)).
z€EB
Luego,

Rp(y)) = Rie(y — o)) + Re(yo)) < llwlle + sup Rp(2)).

z€B
Como esto vale para cualquier € > 0, se obtiene lo buscado. Sin embargo, el hecho de que

sup R(¢(y)) = sup R(e(y)) sumado a que = € C, contradice co(B) = C. O
yEB y€Eco(B)

Proposiciéon 2.2.6. Sean X, Y espacios de Banach. Entonces,

E$t(B£(X7y)*) - {y* ®x:y* € By~,x € Bx}w .
Acd estamos viendo a y* ® x como elemento de L(X,Y)* mediante y* ® x(T) =: y*(Tx).

Demostracion. Llamamos B = {y* ® x : y* € By+,x € Bx}. Por el Lema 2.2.5, basta
probar que W = Br(x,y)*-

Sean y* € By« y x € Bx. SiT € L(X,Y), entonces |y* ® z(T)| < ||T||. Luego, B C
Br(x,y)« y por lo tanto W C Br(x,y)+- Para mostrar la otra inclusién, supongamos
que existe una ¢ € Br(xy) \m Como Bg(x,y)- es w*-compacto, por el teorema
de Hahn-Banach geométrico, podemos encontrar un operador 7' € L(X,Y), ||[T|| =1y

r > 7 > 0 tales que para todo y* € By«, x € Bx

<y*®x,T> <r<r< <g0,T> <1.

Entonces
1=|T| = sup vy (Tz) <71 <1
y*®$€By* ®BX
teniendo una contradiccién. Luego, el resultado es cierto. O

Lema 2.2.7. Sean X, Y espacios de Banach, y sean xj* € X**, y5 € Y* tales que
x§*(K*ys) = 0 para todo K € K(X,Y) de la forma K(x) = 2*(z).y conz* € X* ey e Y.

Entonces z5* =0 o y5 = 0.
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Demostracion. Supongamos que " # 0 e y; # 0; entonces existen z5 € X* e ygp € Y
tales que z§*(zf) = 1y yg(vo) = 1.
Definimos K : X — Y en la forma K (x) =: 2{(z).yo. Este es un operador lineal, continuo

y compacto (al ser de rango finito). Si y* € Y* y z € X, tenemos que
K*(y")(@) = y" (Kxz) = x3(2) .y (o).

Con lo cual, K*(y$) = z§ v, por lo tanto x§*(K*yj) = 1 # 0 llegando a una contradiccién.

Luego, el lema queda probado. O

Dado un operador, no es facil calcular su norma esencial, sin embargo, vamos a ver
que si £(X,Y) es un M-ideal en £L(X,Y), tenemos una forma alternativa para hallar ||T||.
cualquiera sea T' € L(X,Y).

Proposicién 2.2.8. Sean X, Y espacios de Banach tales que K(X,Y) es un M-ideal en
L(X,Y). Entonces para todo T € L(X,Y)

ITle = méx{w(T), w*(T)},

donde

w(T) = sup{limsup | Tzs| / (o) C Sx ¥ Za Y 0},
w*(T) = sup{limsup [|T*z4]| / (xa) € Sx y a % 0}

Demostracion. Sea K € K(X,Y) y sea (z4) C Sx una red tal que z, — 0. Como K es

compacto, se tiene que Kz, — 0 y por lo tanto

ltmsup (T — K )

limsup ||Tz.| =
< [T - K|

Como esto vale para todo K € K(X,Y) y (zo) C Sx tal que z, — 0, tenemos que
w(T) <|Te-
Por otro lado, si (y¥) CY*, ||yk]l = 1y y% = 0, entonces para todo = € Bx tenemos que

K*ya(z) = yo(Kz) — 0.

Con lo cual K*y} converge a cero puntualmente. Al ser K compacto resulta que K* lo es
y por lo tanto esta convergencia se puede conseguir en norma. Luego, el mismo razonamien-
to hecho para w(T') se aplica para llegar a w*(T') < ||T||e. Asi, ||T]|e > méx{w(T),w*(T)}
(observemos que esta desigualdad se probé sin usar que los operadores compactos formen
un M-ideal dentro de los operadores acotados).
Para probar la otra desigualdad por el Corolario 2.2.4, consideramos ¢ € Ext(By X7y)L>
tal que ¥(T') = ||T|le. Como K(X,Y) C L(X,Y) es un M-ideal, por el Corolario 1.2.13,
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tenemos que ¢ € Ext(Br(x y)-)-

Por la Proposicién 2.2.6 existen redes (z,) € Bx, (y)) € By~ tales que y}, ® x, w3 .
Pasando a subredes, podemos suponer ademads que existe y* € Y* z** € X** tales que
yr N TN g Entonces, para todo K € K(X,Y) de la forma K(z) = z*(x).y con
¥ € X* ey €Y, se tiene que

0 = Y(K)
h'm(yél @ xoa)(K)
limy} (Kz,)
lim 2™ (za)y5 (y)
= lmaz™(z")y"(y)
= lmaz™ (K*y*)

Como esto vale para todo K € K(X,Y) de la forma K(z) = z*(x).y, por Lema 2.2.7,
debe ser 2** =00 y* = 0.

Si 2** = 0 entonces zo — 0y, por lo tanto,

ITlle = »(T)
= 1imy:(To,)
< limsup || Tz ||
< w(T).
Por otro lado, si y* = 0 tenemos ||T||e < w*(T) terminando la demostracion. O

Como aplicacién de la norma esencial para (X,Y) un M-ideal en £(X,Y), tenemos
el siguiente resultado que debe ser leido a la luz del teorema de Bishop-Phelps ([BD, p.
7]), el cual afirma que para todo espacio de Banach X, el conjunto de las funcionales que

alcanzan la norma es denso en X*. Este problema es estudiado en profundidad en [A].

Proposicién 2.2.9. Sean X, Y espacios de Banach tales que K(X,Y) C L(X,Y) es un
M -ideal.

(i) Sea T € L(X,Y) tal que T* no alcanza su norma, entonces ||T| = ||T||e-

(ii) El conjunto de los operadores T' para los cuales T* no alcanzan su norma en By« es
nunca denso en L(X,Y).

Demostracion. Vamos a ver una prueba de estos hechos, apelando a resultados de [HWW]
que no demostraremos.

(i) Sea ¢ € Ext(Bg(x,y)-) tal que ¥(T) = |T|. Por Proposicién 1.2.12 tenemos que
Y € Ext(By(x,y)L) 0¥ € Ext(By(x,y)). Sieste dltimo fuese el caso, por [HWW, Teorema
VI 1.3] existen z** € Ezt(Bx+) e y € Ext(By-+) tales que ||[T*| = ||T] = ¢(T) =
(T**z**,y*) = (¢**, T*y*). Con esto tenemos que ||| < [|a**||||T*y*|| < |T*y*| < || T
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contradiciendo la hipdtesis. Luego 9 € E.%'t(BIC(X7y)L) y por lo tanto

IT[| = H(T) = sup{p(T) : ¢ € Ext(Byx,y)r )}t = [IT]le-

(ii) El conjunto {T" € L(X,Y) : ||T|| = ||T||e} es claramente cerrado y, por (a), contiene
al conjunto de los operadores cuyos adjuntos no alcanzan la norma. Por lo tanto basta
probar que tiene interior vacio.

Notemos que

sup  [¢(T)] < sup  [¢(T)]
YEBy(x,v)* YEBL(x,v)*
= sup [y @x,T)|
y*EByx*,x€Bx
< sup  |¢(T)],
YEBic(x,y)*
y por lo tanto ||T'||= sup |[o(T)].
YEBr(x,v)*

El resultado se obtiene por [HWW, Corolario I1.1.7] y [HWW, Proposicién 11.1.11], to-
mando J = K(X,Y) y notando que si d(T,J) = 1 entonces ||T|| = || T|le = 1 para todo
T € L(X,Y) tal que ||T*| no alcanza la norma. O

2.3. Bases incondicionales.

En esta seccién desarrollamos, brevemente, conceptos elementales sobre la teoria de
bases incondicionales que necesitamos para poder estudiar estructuras de M-ideales cuan-
do trabajamos con los espacios de Lorentz (Ver seccién 2.4). Comenzamos con algunas

definiciones.

Definicién 2.3.1. Sea X un espacio de Banach y sea (z,) C X una sucesién. Decimos que
la serie )  x,, converge incondicionalmente si la serie ) _ x,(,,) converge para toda o € S(N),

siendo S(N) el conjunto de las permutaciones de los naturales.

El Teorema de Riemann de reordenamiento de una serie demuestra que en el caso
de K la nocién de convergencia incondicional y absoluta son equivalentes. Esto muestra
que, en el caso de trabajar sobre K todo reordenamiento de una serie incondicionalmente
convergente suma lo mismo. Al pasar a espacios de Banach arbitrarios, no es cierto que la
convergencia incondicional implique la convergencia absoluta, sin embargo sigue valiendo

que todo reordenamiento suma lo mismo.

Lema 2.3.2. Sea X un espacio de Banach y (x) C X tal que Yz converge incondicio-

nalmente. Entonces, para toda permutacion o € S(N) tenemos que ) T = Y To(k)-

Demostracion. Sea ¢ € X*. Entonces, Y ¢(zx) es una serie incondicionalmente conver-

gente en K y por lo tanto todo reordenamiento suma lo mismo. Como X* separa puntos

y o> xk) = > o(zk), el lema queda probado. O
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Llamamos una subserie de una serie ) x, a una serie de la forma ) z,,, n; una

sucesion creciente infinita de N.

Proposicion 2.3.3. Son equivalentes:

(i) La serie Y x, converge incondicionalmente.

(ii) Toda subserie es convergente.

Demostracion. Supongamos que la serie ) x, converge incondicionalmente y que Yz,

es una subserie que no converge. Entonces la sucesion de sumas parciales no es de Cauchy,

y por lo tanto, existen € > 0y p1 < ¢ < p2 < ..., tales que
4
I Z Tnill > € para todo j € N (2.1)
k=p;
Consideramos la sucesién de términos (y,) que no estan en ningin bloque {xpj, ey g }
y tomamos el reordenamiento xp,, ..., g, Y1, Tpyy- -+, Tges Y2, - - .- Este reordenamiento no

converge. En efecto, para ¢ > 0, por (2.1), la cola de la serie nunca es menor que .
Asi tenemos (ii) a partir de (i).

Para mostrar la reciproca, supongamos que existe una permutacién o € S(N) tal que
Y Ty(n) MO converge. Entonces, existe ¢ > 0 y una sucesién p; < ¢; < pj4+1 < ..., tales

que para todo 7,

Podemos suponer que o(g;) < o(pj+1) para todo j, sino, podemos elegir una subsuce-

sién conveniente para que esta condicién se cumpla. Consideramos los bloques dados por

{o(pj),...,0(q;)} y suponemos que para todo j, o(g;) < o(pj4+1). Asi,
qj
DD
Jj n=pj
es una subserie que no converge, lo que contradice (ii). O

Definicién 2.3.4. Una base (e,) de un espacio de Banach X se dice incondicional si

(€s(n)) €s una base para toda permutacién o € S(N).

Por el lema previo, esta definicién es equivalente a pedir que toda serie ) _ ane,, converge
incondicionalmente.

Para cada # € By, y X con base incondicional (e,), se considera el operador My :

MQ(Z anen) = Z anOnen

X — X en la forma
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Estos operadores resultan ser lineales y continuos. En efecto, son limite puntual de los

operadores continuos Mév que provienen de componer

[e'] N N
Mévz E Anen — g anen — g anBnen.
n=1 n=1 n=1

Por el Principio de Acotacién Uniforme, los operadores My estan uniformemente aco-
tados. Definimos asi la constante incondicional de la base (e,) como el nimero k =

supgep, _ |[Mpl|. Observemos que si 6, = 1 para todo n, entonces x > [|Mp|| = 1.

Definicién 2.3.5. Una base (e, ) de un espacio de Banach X se dice una base k-incondicional

si es una base incondicional con constante incondicional k.

Proposicién 2.3.6. Sea X un espacio de Banach con una base (e,). Encontes, son equi-

valentes:

(i) (en) es una base k-incondicional.

(ii) Para todo N € N, ay,...,an y b1,...,by escalares tales que |a;| < |b;| para todo

i=1,...,N, se tiene

N N
1> anenll < wlD bueal.
n=1 n=1

Demostracion. Supongamos que (ey) es una base s-incondicional. Entonces 0 = (6,) =:

($*) € By, (donde |ay| > 0 implica |b,| > 0), y tenemos que

N N
| ZanenH =l anenenH = ||M0(Z bnen) || < K| anenll
n=1 n=1

como queriamos ver.
Para probar el reciproco, notemos que, por la Proposicion 2.3.3, basta ver que toda subserie
converge. Sea Y an, €, una subserie y sea ¢ > 0. Como ) ane, converge, existe ng tal

que para todo ¢ > p > ng
q

1Y ajell < =
K

Jj=p+1
Ahora, para todo [, tenemos que {ngi1,...,ng+1} C {ng +1,...,nk4}. Luego, usando la
hipétesis para |a,| > 0 tenemos que
k+1 N+l
| Z anjenjH < K|l Z a’jejH <e
j=k+1 j=ng+1

Asi, la serie ) ap, ep, es de Cauchy y por lo tanto, converge. O
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Proposicién 2.3.7. Sea X un espacio de Banach complejo y sea (x,) C X una base k-

incondicional. Sea (a,) C C tal que > aney, converge, y sea (A,) C C acotada. Entonces,

1) Ananen|l < 26sup Al D anen-

Demostracion. Sea x* € X*, ||lz*|| = 1 tal que
Z)\nan‘r*(en) = H Z )\nanenHa
y sean (6,),(n,) € {£1} definidas como 6, = 1 si R(apz*(ey)) > 0y 6, = —1 si
R(anz*(en)) < 0y np = 1 si S(anz*(en)) > 0y ny = —1 si S(apz*(en)) < 0. Enton-
ces,
| 22 Ananenl| sup [An| 2 lanz™(€n)|

<

< sup Aal 2 [R(@na” (en))] + [S(ana™ (en)]

= Sup ’)‘n‘ Z (%(Hnancc*(en)) + %(nnanfﬁ(en)))
= sup ol (" (Mo (X anen)) + 2 (My (S anen))
< sup|Aaf26] 3 anenll,

obteniendo asi lo enunciado. O

2.4. M-ideales en espacios de operadores sobre espacios de
sucesiones.

Queremos estudiar cuando los operadores compactos forman un M-ideal en el espacio
de los operadores lineales y acotados. Nuestra primera aproximacién seran los operadores
sobre espacios de sucesiones clésicos como lo son ¢, y los espacios de Lorentz dado que
estos tienen base incondicional.

Comenzamos por dar la definiciéon de los espacios de Lorentz.

Para cada p > 1 y cada sucesién de nimeros positivos no creciente w = (wy,) tal que

wy = 1, consideramos el conjunto
d(w,p) =:{z = (xx) : supz |Z () [P0 < 00},

sip# 00,y
d(w,p) =: {x = (z) : sup ||3;U(k)wkHoo < oo},
si p = oo; donde el supremo lo tomamos sobre todas las permutaciones o € Sy.
1
Para = € d(w,p), definimos ||z| =: sup (Z |Zo(ky|Pwr) P, que resulta ser una norma que
ocESN

hace de d(w, p) un espacio de Banach para todo 1 < p < co. De forma anéloga se define

la norma para p = oc.
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Observacién 2.4.1. Si z € d(w,p) y o € Sy, entonces

YolzewylPwr < Y0 |To@)lP
= > |wlP;

donde la primera desigualdad se debe a que wy < 1 para todo k.

Asi, Id : £, — d(w, p) es continua si 1 < p < co. De la misma forma Id : {oc — d(w, 00)
es continua. Con lo cual se tiene que si inf wy, > 0 entonces, d(w,p) = £, y si > wy < 00

resulta d(w, p) =~ loo.

En adelante, llamaremos sucesién admisible a una sucesién (wy) € ¢, de términos
positivos tal que wy, es no creciente, w; = 1, limwg, =0y Y wy = oo.

Ahora definimos los espacios de Lorentz (que seran espacios distintos de los £,,) como sigue.

Definicién 2.4.2. Sea p > 1, w = (wy) una sucesion admisible. Se define el espacio de

Lorentz asociado a w mediante

d(w,p) = {x = (x1)/||#ll4wp) < o0}

donde
1
2]l dwp) = Sup OO o Pwi)?
€SN
sip # 00,y
12 lagwp) = SUP |6 (k)W oo
oESN

si p = oo.

Notar que los vectores canénicos forman una base de d(w,p) que ademas es incondi-
cional de constante kK = 1.

La siguiente definicién permite comparar sucesiones entre espacios de Banach.

Definicién 2.4.3. Sean X, Y espacios de Banach, (zx) C X e (yx) C Y dos sucesiones.
Decimos que (zj) domina a (y) si existe T € L£(X,Y") tal que Tz}, = yj, para todo k € N.

En este caso notamos (xx) > (yx)-

Observacién 2.4.4. Por la Observacion 2.4.1, la base candnica de £, domina a la base

candnica de d(w,p) para todo 1 < p < oco.

Definicién 2.4.5. Dos bases (z,,), (yn) de X e Y respectivamente se dicen equivalentes

si anZn converge siy sélo si Y any, converge.
)

Por el teorema del gréfico cerrado se tiene que dos bases (zx) e (yx) son equivalentes
si y solo si (zr) > (yx) e (yx) > (x). En efecto, es claro que si (z) > (yx) e (yr) > (xk)

las bases son equivalentes. Reciprocamente, definimos 7" : [z,,] — [y,] mediante Tz, =: yj,
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v lo extendemos por linealidad. Para ver que T resulta ser un operador acotado, tomamos
(zn) C X, z€ X ey € X tales que z, — 2y T(z,) = y. Queremos ver que Tz = y.
Si (z}) e (yr) son las bases duales de (z,,) e (y,) respectivamente, escribimos z, =
Y@ (zn)zj y T(zn) = >°x}(2n)y;. Asi, para todo k € N se tiene que
zj,(2) = Mm@ (2n) = lim g (3 @5 (2n)g) = Ui yi(T(20)) = vi(y)
j
Luego, 27 (z) = y;(y) para todo k € N; y con lo cual, T'(2) = > z;(2)ys = D yp(W)yx = ¥

como queriamos ver.

Ejemplo 2.4.6. Sean 1 < p, ¢ < 0o y sean (ey), (fx) las bases candnicas de ¢, y {4

respectivamente. Entonces (er) > (fi) si y sélo sip < q.

En efecto, si p < ¢ la inclusién de ¢, en ¢, resulta continua y cumple la definicién.
Reciprocamente, supongamos que p > ¢ y que existe T' € L({,,{,) tal que Te, = fi.
Como p > ¢ existe una sucesién (ax) € ¢p \ ¢4. Escribimos a = ) apey. Entonces, por
definicién de T', tenemos que ) ay fr, = > apTer, = Ta € £y, lo cual es absurdo.

La siguiente proposicion, basada en comparacion de sucesiones, da un criterio para

asegurar que todo operador continuo es compacto.

Proposicién 2.4.7. Sean (ex) € X, (fx) C Y sucesiones tales que (fi) £ (ex). Su-
pongamos que para toda (xy) débil nula, ||zk|| - 0, existe una subsucesion (xn, ) tal que
(n,,) < (er) y para toda sucesion (yi) débil nula, ||yk|| - 0, existe una subsucesion (yn, )
tal que (Yn,) > (fr). Entonces K(X,Y) = L(X,Y).

Demostracion. Supongamos que existe 7' € L£(X,Y) \ K(X,Y). Entonces existe a > 0 y
(rx) € X débil nula tal que ||[Tzk|| > a > 0. Como T es continua, entonces 1" es w-w
continua y por lo tanto Tz — 0. Como || Txy| + 0y ||zg| > ﬁ, entonces ||zg| - 0. Por
hipétesis, y pasando por subsucesiones de ser necesario, podemos pensar que (e) > ()

y (T'zx) > (fr). Pero esto es absurdo al ser > una relacién transitiva. O

Corolario 2.4.8. Sip > q, entonces K({p,ly) = L({p, {q)

Demostracion. Por [LT, Pag. 53] se tiene que toda sucesion (z) C ¢, débil nula tal que
|zk|| - O tiene una subsucesion equivalente a (ey), la base canénica de £,,. Por otro lado,

como p > q, por el Ejemplo 2.4.6, (ex) % (fx)- O

Ahora estudiaremos condiciones necesarias y suficientes para que IC(¢,, d(w, ¢)) sea un
M-ideal en L(¢,,d(w,q)) en el caso en que p > ¢. En este caso, vamos a ver que para
toda sucesion admisible tal que w ¢ ¢_»_, K(¢p,d(w,q)) = L({p,d(w,q)) y que, por el
contrario, si w € £ _»_ entonces no sélo gxfste un operador acotado no compacto sino que
Ky, d(w,q)) no e: lqul M-ideal en L(¢p,d(w,q)). Notemos que, como p > ¢, resulta que
1<p’%q<ooy(€§)*:€L.

pP—q
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Lema 2.4.9. Seap > q, w ¢ {_»_ una sucesion admisible y sean (er) C £, y (fr) € d(w, q)
q

=
las bases candnicas. Entonces (er) # (fi)-

Demostracion. Como w ¢ ¢_p_, por la dualidad de los espacios £, existe b = (b) € ¢z tal
r—q q

que Y wg|bg| = co. Luego, no puede existir una constante C' > 0 tal que para todo N € N

N N
1Y~ 0)7 fillagwg) < CID (Br) 7 elle, - (2.2)

En efecto, si esta constante existiera, se tendria que

N N
p 1 1
CO Iel)r = CI (0k) 7 ekllawp)
N
1
> D ()7 fillaqug
N

= sup ) _wilby()]

N
> wilbl,

v

llegando a un absurdo al hacer N — oo.
Ahora, supongamos que (fx) esta dominada por (ej). Entonces existe un operador
acotado T' : £, — d(w, q) tal que Te, = fj. Pero entonces C' = ||T'|| cumple (2.2), lo que

es una contradiccién. O

Observacion 2.4.10. Observemos que esto no lo podemos hacer en el caso en que w sea
una sucesion admisible tal que w € {_p»_. En este caso se tiene que (er) > (fk)-

rP—q
Para verlo, alcanza con notar que para cualquier eleccion de escalares aq,...,ay, se tiene

N N, N 1
O wrlan] e < O wi ) v (O faxl?)r.

Con lo cual, definiendo Tex, =: fi y extendiendo por linealidad, resulta ser
_p

T : ¢, — d(w,q) continua, con ||T| = (ZN w,f*q)%.

Proposicién 2.4.11. Sea p > q y sea w ¢ {_»_ una sucesion admisible. Entonces
p—q
K(lp, d(w,q)) = L(lp, d(w, q))-

Demostracion. Sean (ex) y (fr) las bases candnicas de £, y ¢, respectivamente. Por el Lema
2.4.9, (er) # (fr). Por la Proposicién 2.4.7, basta probar que toda sucesién (y,) € d(w, q)
débil nula tal que ||y, || - 0 tiene una subsucesién (yn, ) tal que (yn,) > (fx)-

Sea (yn) € d(w,q) débil nula tal que |y,|| - 0. Por [LT, Proposicién 1.a.12.], (y,) es
equivalente a una base normalizada (u,) de bloques de la base (f;) C d(w, ¢). Supongamos

que u, es de la forma
Mmn41

Up = Z apfr - (2.3)

k=mn+1
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Siap — 0, por [LT, Proposicién 4.e.3.], resulta que (uy) es equivalente a (e,,) la base de £,,.
Pero, por la Observacién 2.4.4, ésta domina a (fy,) y por lo tanto existe una subsucesién
(o) > (fu):

Si ay, - 0, existe una subsucesion a;j, y € > 0 tal que |a;, | > € para todo k. Tomando una
subsucesién de los (uy) podemos suponer que en la escritura (2.3) aparece un coeficiente
aj, y por lo tanto, para todo n € N existe k(n) € {m, +1,...,mpy1} tal que |aym)| > ¢
Como (fy) es una base incondicional con constante incondicional 1, por la Proposicién

2.3.6, se tiene que para todo N € Ny by,...,by escalares,

N N N
el bntumll = 1D ebafieml < 17D asgmybn fum . (2.4)
n=1 n=1 n=1
Tomando A\, =1 si n =n(k) y A, = 0 si no, podemos reescribir (2.4) para obtener
Mn+1
Hzak bn il = HZ > Anarbn fll
n= lk mnp+1
Mn+1
< 2\\2 ST abfill,
n=1k=my+1
donde la ultima desigualdad se debe a la Proposicién 2.3.7 notando que sup |\,| = 1.
N mnp41
Luego, 2||Z Z arbn fr|| > || anfk m |l ¥ por lo tanto, recordando el Lema 2.3.2,
n=1k=my,+1 n=1
tenemos que
Mnp+1 e N
|| anunn IS S abanl I anfk = S badal.
n=1k=mn+1 n=1

Luego, definir T'u,, = f,, nos da un operador continuo y por lo tanto (u,) > (f,). Como

(up) es equivalente a una subsucesién de (y,) obtenemos lo buscado. O

Para terminar esta seccién, vamos a ver que K (€, d(w, ¢)) no es un M-ideal en L(¢p, d(w, q))

sip>qyw €l _» . Para esto, necesitamos la siguiente proposicion.
pP—q

Proposicién 2.4.12. Sea (e,,) base de X y sea (fy,) base incondicional de'Y con constante
incondicional 1, tal que (en) > (fn) y sea T € L(X,Y) tal que Te,, = f, para todo n € N.
Supongamos ademds que existe D € K(X,Y) y § > 0 tal que |D|| < ||T|| < § y para todo
neN

|P™"T — D|| >,

donde P" :' Y — Y esta dada por P"(3_ arfr) = Y pep i1 akfr- Entonces K(X,Y) C
L(X,Y) no es un semi-M -ideal.

Demostracion. Sean P, = I — P™ las proyecciones a las primeras coordenadas. Como D

es compacto, se tiene que ||P,D — D|| — 0. Dado € > 0 tal que |T|| < § —e = 4, existe
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m > N tal que |[P"T + P,,D| > 6. Con lo cual podemos suponer que D = P,,D.
Vamos a construir dos bolas en £(X,Y), By y Bs tales que BiNBy # 0, BiINK(X,Y) # 0
y BonN K(X,Y) # 0 pero BiN B2 NK(X,Y) = . Con lo cual, no se cumple la 2-ball
property y K(X,Y) no puede ser un M-ideal en £(X,Y).
Sea By = B(P™T + D;|T||) y Ba = B(P™I' — D;||T||). Por hipétesis, se tiene que
P™T € BN By. Como ||P™|| <1, tenemos que D € B1NK(X,Y)y —D € BoNK(X,Y).
Supongamos que existe

A€ BiNBynK(X,Y). (2.5)

Nuevamente, podemos suponer que A = P, A para algin n > m. Ahora,
20 < ||2(P"T + D)|| < ||P"T + D — P, A| + |P"T + D + P,A]|. (2.6)
Como n > m, P"P™ = P". Ademaés P,,P"™ = 0 y por lo tanto se tiene que
P'T'+D— P,A=(P,+P")(P"T+D-—A).

Por otro lado, como la constante incondicional de Y es 1, se tiene que |P"T+ D+ P, Al =
| — P"T + D + P, Al. Se sigue de (2.6) que

25 < (P +P")(P"T +D— A)|| + || — P'T + D + P, A|
< [Py + P Sy T
S ||Tg+5+ HTQ—HS
= ||+
< 20.

Como esto es un absurdo, tenemos entonces que no puede existir un A cumpliendo (2.5),
mostrando que K(X,Y) C £(X,Y) no es un semi-M-ideal. O

Corolario 2.4.13. Sea p > q, w € {_»_ una sucesion admisible. Entonces K(¢,,d(w, q))
no es un semi-M-ideal en L({p, d(w, qp))q, y por lo tanto, no es un M-ideal.
Demostracidn. Sean (ey), (fx) las bases candnicas de £, y d(w, q) respectivamente. Como
w € £_p_, por la Observacién 2.4.10, existe T' € L({}, d(w, q)) tal que Tey = fi para todo
ke NZ.D ]Seﬁnimos D € K(¢p,d(w,q)) en la forma: De; =: || T|| f1 y De; = 0 para todo i > 2.
Ast, [|D|| = ||T|-

Sea

_p_ 1
Sea W =3 w;/ " y a > Wr. Entonces

1
laer + xp|lp = (P + W —1)p =:b

- 1
|(P"T + D)(aer + 2n)llaw.g) > @W'F + W - 1)1 = ¢,
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Notar que W 5t = ||T|.

Si pensamos a b y ¢ como funciones en a, el cociente 7 tiende a W = |T|| cuando a
crece. Mas atin, § decrece a || T'||; con lo cual, podemos elegir a suficientemente grande de
modo que si § =: 7, entonces § > |||

Por dltimo, notamos que

ael + T c

|P"T + D| = | (P"T + D)(*m) = 2,

obteniendose asi el resultado gracias a la Proposiciéon 2.4.12. O

Cabe mencionar que la situacién para operadores entre espacios de Lorentz fue estu-
diada parcialmente por [O], en donde se muestra que si p > (p — 1)q y d(v,p)* C d(w, q),
entonces K(d(v,p)*, d(w, q)) no es un semi-M-ideal en L£(d(v,p)*,d(w,q)).



Capitulo 3

Propiedades (M) y (M™)

En este capitulo trataremos de clasificar los espacios de Banach X para los cuales (X))
es un M-ideal en £(X). El resultado principal es el Teorema 3.2.3 en el que damos varias
equivalencias. La conclusién més importante (condicién (v)) es que un espacio de Banach
X tiene la propiedad de que K(X) es un M-ideal en £(X) si y sélo si X satisface una
condicién estructural, llamada (M)-propiedad o propiedad (M) junto con la existencia
de una red de operadores compactos (K, ), tales que tanto K, como K aproximan

puntualmente a la identidad y se satisface que lim ||[I — 2K,|| = 1.

3.1. La propiedad (M) y la estructura de M-ideal

La propiedad (M) se define como sigue:

Definicién 3.1.1. Sea X un espacio de Banach. Decimos que X tiene la propiedad (M)

si para todo u, v € X; ||u|| = ||v|| y toda red (z,) C X acotada débil nula, se tiene
limsup ||u + 24| = limsup ||v + z4||.

Definicién 3.1.2. Sea (z,) C X una red. Decimos que la red es relativamente compacta
en norma si {z,} tiene clausura compacta; es decir, si existe una subred convergente en

norma.
Lema 3.1.3. Sea X un espacio de Banach. Son equivalentes:
(i) X tiene la propiedad (M).

(ii) Para todo u,v € X, |lu]| = ||v| vy toda red (zo) C X acotada débil nula tal que

lim ||u + x4 || eziste; se tiene que lim ||v + x| existe y ambos limites coinciden.

(iii) Para todo u,v € X, ||u|| < ||v]| y toda red (x4) C X acotada débil nula se tiene que
limsup ||u + x4 || < limsup [|v + z4]|.

39
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(iv) Si (uw), (va) € X son redes relativamente compactas en norma tal que ||uq| < ||val|

para todo a y (x4) C X es una red acotada débil nula, entonces

lim sup ||ug + 24| < limsup ||ve + Z4]|-

Demostracion. Supongamos que X tiene la propiedad (M) y sean u, v € X y (z4) € X
red acotada débil nula, tales que lim ||u + 74| existe y por lo tanto coincide con su limite

superior. Entonces
lim ||u + x4 || = Hmsup ||u + x4 || = imsup ||v + z4]|-

Con lo cual lim ||v + x| existe y coincide con lim ||u + x||. Luego (i) implica (ii).
Veamos que podemos obtener (i) a partir de (ii). Supongamos que existen u, v € X y

(zo) € X red acotada débil nula tales que
limsup ||u + 24| < limsup |[v + 24|

Entonces, como el limite superior es el supremos de los limites de todas las subredes
convergentes, existe una subred (z.,) convergente a x tal que limsup ||u + zo| < lim [[v +
Tq, ||. Por hipdtesis, lim [|u + z,, || existe y coincide con lim [[v + x4, .
Pero entonces limsup |[u + zo|| < lim |[v + 24, || = lim [[u + 2, || < limsup [Ju + 24|
Vamos a ver que (iv)=-(i)=(iii)=-(iv). Es facil ver que (iv)=-(iii) y (iii)=(i). Luego
(iv) implica (i). Para probar que (i) implica (iii) tomamos u, v como en (i) y A > 1 tal
que [[Aul| = ||v||. Al ser A > 1, u+ z, es una combinacién convexa de A\u+ x4 y —Au+ 24,
luego se tiene que

[u+ zall < max{[|Adu + za ;[0 — Aull},

con lo cual
limsup [|[u + zo| < max{limsup || Au + z||; limsup ||xo — Aul|}
= max{limsup ||v + zo|; lim sup ||zs — v||}.
Usando otra vez que X tiene la propiedad (M), tenemos que lim sup ||z, —v|| = lim sup ||v+
Zql| y se sigue el resultado.
Por 1ltimo, veamos que (iv) se obtiene de (iii). Supongamos que (iv) es falso. Entonces,
como las redes son relativamente compactas en normas, podemos encontrar subredes (uq,, ),

(Vay,) € X y u, v € X tales que uq, — uy vo, — v, cumpliendo
lim sup |[uq, + Za, || > Hmsup ||ve, + Za, |-

Pero como ||uq || < ||va] se tiene que ||u|| < |Jv]|; con lo cual resulta ser falso (iii) para este

u, v contradiciendo las hipétesis. O

El siguiente lema vincula la propiedad (M) de un espacio X con los operadores

contractiles sobre X.
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Lema 3.1.4. Sea X un espacio de Banach con la propiedad (M) y sea T € L(X); ||T|| < 1.
Sean (uq), (va) € X redes relativamente compactas en norma tales que ||uqs| < ||vall v

sea (xq) € X red acotada débil nula. Entonces,
limsup ||uq + Tzo| < lmsup ||ve + za |-

Demostracion. Supongamos que ||T|| = 1y para cada A < 1, w € X, sea ||w| = 1, tal que
|ITw| > A\ Sean wy = ||va||w. Entonces, como || Auq| < [|[Tw||||vall = |[Twal| y (Txq) es
acotada y débil nula, por Lema 3.1.3 tenemos que

limsup [[Aug + Txo|| < limsup||Tws + Txol|

lim sup ||wa + Za||
lim sup ||vg + Za |-

VA

Haciendo A — 1 obtenemos lo buscado.

Supongamos ahora que ||T']| < 1 y escribimos 7" = AL donde A\ = ||T']| y || L] = 1.
Nuevamente considerando combinaciones convexas y, utilizando el caso anterior para L,
tenemos que

max{limsup ||uq + Lxo||; imsup ||uq — Lz ||}

<
< méx{limsup ||vy + xo||; imsup || — ve + zao ||}
= limsup ||vey + Zo]

lim sup ||uq + Tzo||

como queriamos probar. O

Andlogamente a la definicién de propiedad (M), se define la condicién (M*). Decimos
que X tiene la propiedad (M™*) si para todo u*, v* € X*; ||u*|| = ||v*|| y todared (z}) C X*

acotada débil* nula, se tiene
lim sup ||u* + 2 || = lHmsup ||v* + 2.
Lema 3.1.5. Para la propiedad (M*) se tiene un resultado similar al Lema 3.1.3

Demostracion. La demostracién es andloga a la hecha para el Lema 3.1.3. O

Podemos preguntarnos si hay alguna relacién entre la propiedad (M) y la propiedad
(M*). A continuacién mostraremos que la propiedad (M*) implica la propiedad (M) pero
no al revés. Aunque estas dos propiedades son equivalentes si el espacio tiene una aproxi-

macién compacta achicante de la identidad, como muestra el Teorema 3.2.3.

Proposicién 3.1.6. Sea X un espacio de Banach con la propiedad (M*), entonces X

tiene la propiedad (M).

Demostracion. Haremos la demostracion en el caso en que X sea un espacio de Banach
real.

Supongamos que existen ||ul| = ||v]| y (x4) acotada débil nula tales que

limsup ||u + x| > lmsup ||v + 24,
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y sea (x}) C By~ tal que z}(u + z,) = ||u + z4|| para cada «. Pasando por subredes,
podemos suponer que (z}) converge débil* a z*. Sea v* € X* tal que ||[v*| = [|z*| ¥
vt (v) = [lz*[l[|v]]. Entonces &*(u) < [lz*[|[|u]| = [[v*[|[|v]] = v*(v) y por lo tanto

limsup zf(u+ x4)
x*(u) + limsup(x}, — 2*)(zq)

lim sup ||u + z4 ||

< v*(v) + limsup(z), — %) (zq)
= limsup(v* + 2}, — z*)(v + z4)
< limsup ||[v* + 2}, — 2*||||v + 2o ||
< tmsupllo + zal,
pues la propiedad (M*) implica que lim sup ||v* +x}, —2*| = limsup ||z* 4+, —2*|| < 1. O

Ejemplo 3.1.7. No todo espacio que cumple la propiedad (M), cumple la propiedad (M™*).
En efecto, veamos que ¢; es un ejemplo de esta situacion.
Si tomamos (e") la sucesién candnica de foo = (£1)*; esta sucesién es débil* nula, pero si

consideramos v = (1,...,1,...,) en £, tenemos que |le1||cc = ||v]|cc aunque si n > 1,
ler +eloo =1 <2 = [lu+e"],

mostrandonos que ¢; no posee la propiedad (M™).
Para ver que este espacio si cumple la propiedad (M), vamos a definir una propiedad més

general que la propiedad (M).

Definiciéon 3.1.8. Dado 1 < p < oo. Decimos que un espacio de Banach X tiene la

propiedad m,, si para todo x € X y toda red acotada débil nula (z,) C X se tiene que
limsup ||z + 2o = (||z]|” + lim sup Hxa”p)%

Asi mismo decimos que X tiene la propiedad meo si
limsup ||z + x4 || = max{||z||, im sup ||z4||}.

Observemos que por la Definicién 3.1.1 todo espacio con la propiedad m, inmediata-
mente cumple la propiedad (M). Luego para probar que ¢; tiene la propiedad (M), basta
mostrar que tiene la propiedad m,, para algin p. Mds en general tenemos la siguiente

proposicién.

Proposicién 3.1.9. Si 1 < p < oo, entonces £, tiene la propiedad my,, ademds cy tiene

la propiedad myo.

Demostracion. Seax € £y y (z,) C £, acotada débil nula. Para cadan € Nseam, : £, = £,
la proyeccién canonica en las primeras n coordenadas. Sean ¢ > 0y kg € N tal que
|(I — 7))zl < e. Como (x,) es débil nula, existe un «g tal que para todo a > ay,

| Tkozall < €. Entonces, si a > o tenemos que

2+ @all = 7r@ + (I — T )zal| < 2e.



3.1. LA PROPIEDAD (M) Y LA ESTRUCTURA DE M-IDEAL 43

Luego, limsup ||z + 24| = imsup ||7x,z + (I — Tk, )2al|- Por otro lado,
ko 00 00 o)
I + (1 = mw)aall? = (P + zal?) = Dl + D2 (a1 = lal” + D _J«51)
Jj=1 J=ko+1 j=1 j=1
0o ko
= S+ kg
j=ko+1 i=1
< 2P,
1
Con lo cual, limsup ||mg,z + (I — Tk )zall? = ([|2|| + Hmsup ||za[/P)?, probando asf el
resultado. Con una demostracién analoga obtenemos el resultado deseado para cg. ]

Hasta ahora vimos que todo espacio con la propiedad (M*) tiene la propiedad (M).
Ademds mostramos que para £; la reciproca es falsa. El siguiente teorema muestra que £;

es esencialmente el tnico espacio separable con esta propiedad.

Teorema 3.1.10. Sea X un espacio de Banach separable con la propiedad (M) y que no

contiene una copia de 1. Entonces X tiene la propiedad (M*).

Demostracion. Por [KW, Lema 2.5], X* es separable y, por lo tanto, podemos probar la
propiedad (M*) usando sucesiones. Sea (z) € X* una sucesién débil* nula. Por el Lema
3.1.3 (iii) para la versién (M*), es suficiente probar que si para todo z* € X*, lim ||z* 4z ||

existe, entonces para todo y* € X* con ||z*|| = ||y*|l,
¢(2") =: Hm |27 + a7, |

satisface
o(z*) = o(y"). (3.1)

Notemos que ¢ es contréictil ya que |¢(z*) — ¢(y*)| < ||lz* — y*||, luego es continua. Para

mostrar (3.1) vamos a usar la funcién auxiliar g: R>g — R definida por
g(t) = inf{p(") : [|l2"|| = t},

que resulta continua vamos a probar que T = T) para todo 7 =~ para todo
lta continua) y b d(ra) =g todo 7 > 0y para todo z*

de norma 1. Estd claro que si vemos esto, obtenemos (3.1). En efecto, si ||z*| = ||y*|| =1
o ||z*]| = ||ly*|| = 0, no hay nada que mostrar. Si no, z*/||y*|| tiene norma 1 y vale
o(z") = ¢(lly HHT) =gyl = olly*ll 7)) = o(v)-
Ol ly*|
La demostracién de lo que sigue, es técnica. Notemos que ¢(z*) > ||z*| — ¢(0). Luego

g(t) > t—g(0). Con lo cual, g alcanza su minimo en 79 € R>o. Mds atn, ¢g(79) < g(7) para
todo 9 < 7.

Como X* es separable, existen u* € Bx+ y u € Sx tales que u*(u) = 1 y lim [Ju), —u*|| =0
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*|I = limw} (z) = 1, ver [P, p. 80].
Sean 7 >0, Z = {z* € X* : 2*(u) =0} y sea

para toda (u)) € X* satisfaciendo lim ||u

0 =: inf{p(Tv") : v* € u* + Z}.

Sea (F},) una sucesién creciente de subespacios de Z, de dimensién finita, tal que |J F), es

densa en Z. Entonces, para todo k € N
liminf d(tu* + ), Fy,) > 6. (3.2)
n

En efecto, supongamos que existe un kg € N para el cual esto no se cumple. Como (z7) es
w*-nula, por un argumento de compacidad, podemos encontrar una subsucesién (x;ibj) y
f* € Fy, tal que lim|| f* +7u*+a7, || < 0. Pero entonces, ¢(f*+7u*) < 0 lo que contradice
la eleccion de 6. Lilego7 (3.2) se cumple y por lo tanto, existe una subsucesion (y) de (z})
tal que liminf d(7u* 4y, F,) > 6.

Por Hahn—%anach, para todo n € N existe y,, € Bx, tal que f*(y,) = 0 para todo f* € F,
y

h’mninf(Tu*(yn) + vy (yn)) > 0. (3.3)

Como |JF), es densa en Z y f*(y,) = 0 para todo f* € F,, tenemos que si ¥, N &,
entonces 5‘2 =0 y por lo tanto £ € [i].

Como X es reflexivo, By es relativamente débil compacto. Luego, pasando por subsuce-
siones, podemos suponer que (y,,) converge débilmente a au para algin « € K. Escribimos
entonces y, = au + f, con (f,) débil nula y |lul| = 1.

Vamos a usar esta sucesion (y,) para estimar ¢.

Si ||z|| <1, como X tiene la propiedad (M), entonces limsup |az + f,|| = limsup ||ou +

fnll = limsup ||y,|| < 1. Luego, si z* € X*,
Ha™) = i 2 + | = tim Ja* + y]| > Mm(a™ +y2) 0z + f) = 02* (z) + Hmsup g (fo).
Como esto es para todo ||z|| < 1, si = limsupy(f,), tenemos que

¢(z") = lafl|=*]| + B, (3.4)

para todo z* € X*.
Siv* € u* + Z, se tiene que ||[v*|| > v*(u) = 1 y por lo tanto

0 > |a|r + 8.
Por otra parte, por (3.2) tenemos que

0 < liminf(ru*(yn) + vy (yn)) < at + B.
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Concluimos entonces que § = at+ S cona >0y 7 > 0.
Supongamos entonces que T > 79. Como ¢(z*) > a|z*|| + 8 > 3, tenemos que [ < g(19).

Por otro lado, si t > 7y ||x*|| = t, entonces por (3.4)
O=ar+f<oat+h<lalle’] + 6 < oc).
Luego, 0 < g(t) para todo t > 7 y por lo tanto,
0 > inf{g(t):t >7} > g(10)-

Entonces, § = at + 8 > g(19) > 8 y por lo tanto o > 0 al ser 7 > 0.
Sea (v};) C u* + Z tal que ¢(v};) < 6 + . Entonces

1
at|vr||+ 8 <0+ .

y por lo tanto

1
fogll 1< —
Como v (u) = u*(u) = 1 tenemos que lim ||v}|| = 1. Por lo tanto, por la eleccién de u*,
lim ||v} — u*|| = 0. Como ¢ es continua, tenemos que ¢(7u*) =60 = ar + 5.

Por (3.4) tenemos que ¢(7u*) < ¢(7v*) para todo ||[v*|| = 1. Con lo cual, ¢(Tu*) = g(7).
Sea B el subconjunto de Bx+ formado por los puntos w* para los cuales existe w € Bx
tal que w*(w) = 1y, para toda (u}) € X* cumpliendo que lim ||u}| = lim ) (w) = 1, se
tiene que lim ||u} — w*|| = 0. Como u* € By ¢ es convexa, entonces ¢(7z*) < g(7) para
todo z* en la clausura convexa C de B.

Como X* es separable, por [P, p. 80], C' es w*-denso en Bx+ y por [KW, Lema 3.5], es
denso en Bx+. Luego, ¢(rx*) < g(7) para todo ||z*|| < 1. En particular, ¢(rz*) = g(7) si
lz*|| =1y 7> 0.

Por otro lado, si 7 < 79, entonces, por el argumento de recién, ¢(Tx*) < g(t) para todo
|lz*|| = 1y ¢t > 79. Luego, ¢(rx*) < g(79) y, por lo tanto, ¢(rz*) = g(70) < g(7). Asi,
b(ra*) = g(r).

Hemos probado entonces que ¢(7x*) = g(7) para todo 7 > 0 y para todo ||z*|| = 1, lo que
muestra (3.1). O

3.2. La propiedad (M) y M-ideales de operadores.

En esta seccién relacionamos estas dos nuevas nociones con la de M-ideales estudiada
anteriormente. Veremos que todo espacio X que tiene la propiedad (M*) es un M-ideal en
X**. También introduciremos la definicién de una aproximacién compacta achicante de la
identidad que nos ayudara a dar equivalencias para saber cuando K(X,Y’) es un M-ideal
en L(X,Y).
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Proposicién 3.2.1. Sea X un espacio de Banach que tiene la propiedad (M*). Entonces
X es un M-ideal en X**.

Demostracion. Debemos ver que X*** = X1 @ X*. Sea p € X C X*** y sea ¢p € X*
(acd pensamos X* C X***). Vamos a probar que ||¢ + ¢| = ||¢| + ||¢]].

Sean A € R, A < 1y 2™ € By« tales que p(z**) > A||¢||. Tomamos z* € X* tal que
=[] = 1l y 2™ (27) > Allz*[] = Al[|].

Como ¢ € B(=9;||Y + ¢]|) € X**, por el teorema de densidad de Goldstine, existe
(y2) € B(—v; || + ¢||) tal que (y%) converge débil-* a ¢ en X***.

Como p(z**) > A||¢l|, podemos ademds suponer que para todo a, z**(y}) > Al|¢||.

Por tltimo, como ¢ € X+, tenemos que (y) tiende w* a cero en X*; con w* = o(X*, X).

Con todo esto

> lmsup [[¢ + y3 |

= limsup||z* + v ||

> limsup =™ (z* + y)
>

AUII =+ Tleell),
donde la igualdad se debe a que X tiene la propiedad (M*) y ||| = ||=*||. Haciendo A — 1

I + ol|

se obtiene una desigualdad. La proposicién queda probada al notar que |[v+¢l| < ||¢||+||#]|

siempre. ]

Introducimos ahora el concepto de aproximaciones compactas achicantes de la identi-
dad que usaremos junto con los conceptos de propiedad (M) y propiedad (M*) para dar

nuevas equivalencias que nos permitan saber cudndo C(X) C £(X) es un M-ideal.

Definicién 3.2.2. Una red de operadores compactos (K,) sobre un espacio de Banach
X se dice una aproximacién compacta achicante de la identidad (SCAI) si Koz — z y

K}x* — x* para todo z € X y todo z* € X*.

Teorema 3.2.3. Sea X un espacio de Banach de dimension infinita. Son equivalentes:
(i) K(X) es un M-ideal en L(X).
(ii) Ewiste (Ko) una SCAI tal que para todo S, T € L(X)

lmsup [[SKq +T (I — Kao)|| < max{[|S|; [|T1]}-

(iii) Existe (Ko) una SCAI tal que para todo S, T € L(X)

lmsup || Ko S + (I — Kao)T|| < ma&{[[S]; |T]}-

(iv) Emiste (Ko) una SCAI tal que |[Ky|| <1 para todo o y para todo S € By(x)

limsup ||S+ 1 — K,| <1
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(v) X tiene la propiedad (M) y existe (K,) una SCAI tal que

lim | — 2K, = 1.

(vi) X tiene la propiedad (M*) y existe (Ko) una SCAI tal que
lim |1 — 2K,|| = 1.

Antes de demostrar este teorema, se necesitan algunas herramientas acerca de M-
ideales en un dlgebra de Banach. Para la definicién de M-ideal interno a derecha (izquierda)
y M-ideal interno bilétero, referirse a [HWW, Definicién V.3.1.]. Por [HWW, Proposicién
VI.4.10.] se tiene que si K(X) es un M-ideal en £(X), entonces resulta ser un M-ideal
interno bilatero.

Para { un algebra de Banach y e su neutro, decimos que (p,) es una A-aproximacién a

izquierda de la identidad si cumple
o pall <A para todo «
e limpya =a para todo a € 4.

De la misma forma se dice que p, aproxima a derecha si limap, = a para todo a € il

Ademés se tiene el siguiente resultado que también debemos a [HWW].

Teorema 3.2.4. [HWW, Teorema V.3.2.] Sea i\ un dlgebra de Banach con unidad y sea

J C U subespacio. Son equivalentes:

(1) J es un M-ideal interno a izquierda (derecha).

(ii) J es un ideal a izquierda (derecha), un M-ideal y contiene una I1-aprozimacion de la

identidad a la derecha (izquierda).

(iii) J es un ideal a izquierda (derecha) y contiene una aproximacion de la identidad a

derecha (izquierda) (po) C J satisfaciendo
limsup |[spa + t(e — pa)|| <1 Vs, t € By,
donde e es el elemento neutro del dlgebra 1.

Ademds, si J es un M-ideal interno bildtero, entonces se puede elegir (p) una aprozima-

cion bilateral de la identidad, cumpliendo simultdneamente

lim sup ||spa + t(e — pa)| <1

lim sup ||pas + (e — pa)t]| < 1.
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Demostracion. (del teorema 3.2.3)
Veamos primero que (i) y (ii) son equivalentes.
Si (i) es cierto, por lo observado arriba K(X) resulta ser un M-ideal interno bilatero, y por

el Teorema 3.2.4, K(X) contiene una l-aproximacién de la identidad (K,) cumpliendo
limsup [|SK, +T(I — K,)|| <1 VS, T € L(X).

Las equivalencias entre (iv) y (v) del [HWW, Lema VI.4.9.], implican (K), converge
puntualmente a la identidad sobre X*, mostrando que (K,), es una SCAIL

Obetenemos (ii) multiplicando y dividiendo por méax{||S||; ||7]|}-

Usando (iii) = (ii) del Teorema 3.2.3 obtenemos (i) a partir de (ii); siempre recordando
que IC(X) es un ideal bilatero en £(X). De la misma forma se tiene que (ii) implica (iii).
Para probar que (iii) implica (iv), tomamos S = I y T'= 0 y tenemos que ||K,|| < 1 para

todo a. Por ultimo, si S € By (x) entonces
1S+ 1 = Kol < [[KaS + 1 = Ko + [[KaS = S].

Como S es compacto y K, converge puntualmente a la identidad, se tiene que || K, S — S|| — 0.
(iv) = (vi): Observemos que ||[I —2K,|| > 1 para todo a. En efecto, si esto no fuese cierto,
tendriamos que 2K = I — (I — 2K) es inversible pero esto no puede ser pues X es un
espacio de dimensién infinita. Tomando S = —K,, en la hipétesis de (iv), tenemos la otra
desigualdad.

Veamos entonces que X tiene la propiedad (M*). Para esto usaremos el Lema 3.1.5. Su-
pongamos que (azfy) C X™ es una red acotada débil-* nula y sean u*,v* € X* tales que
|lu*|| < ||v*||. Entonces existe un operador S de rango 1 (y por lo tanto compacto) tal que

|S]| <1y S(v*) = u*. En efecto, supongamos que 6 € X** tal que [|0]| = 1y 6(v*) = |[v*|.
Entonces S(z*) = ?ffﬂ*”)

Notemos que || K 27 || — 0 para todo operador compacto K. Asi, si fijamos un indice o,

u* cumple lo buscado.

limsup|lu® + 23| = lim sup)|| S (v* + x3) + (I — K3)z3 ||
gl 7
< [|S+1 - Kj|[limsup|lv* + 27 || + [[(I — K3)v*|.
8!

Tomando limite en o« obtenemos

limsup||u® + 27 || < lim supljv* + 27 |.
2! g
La Proposicién 3.1.6 implica (v) suponiendo que (vi) es cierto.
Por tltimo, probamos (i) a partir de (v) usando la 3-ball property (Teorema 1.2.3). Para

esto, alcanza con ver que si S € Bi(x) y T' € B (x), entonces

limsup ||S +T(I — K,)| < 1. (3.5)



3.2. LA PROPIEDAD (M) Y M-IDEALES DE OPERADORES. 49

En efecto, para mostrar que se cumple la 3-ball property, es necesario encontrar un ope-

rador compacto K cumpliendo
I1Si+T - K| <1+4¢ (3.6)

para S1, S2, S3 € Bi(x), T € Brx) y € > 0. Si (3.5) se cumple, entonces para el € > 0

dado y para S existe a; cumpliendo para todo o > ag
1S1 +T(I — Ku)|| <1+e.

Partiendo de los o > a3, de la misma forma se consiguen as y, luego as, para Se y S
respectivamente. El operador compacto K buscado serd TK,, que cumple con (3.6) para
todos los S;, i =1,2,3.

Probemos entonces (3.5). Fijemos un indice 5. Como ||S+T(I — K,)|| < ||SKg+T (I —
Ko)||+|1S—=SKg| y ||S—SKg|| — 0 es suficiente probar que limsup,, ||SKg+T (I —K,)|| <
1.

Para esto, vamos a usar el lema 3.1.4. Tomemos (z,) C Bx tal que [|[SKz+T (I — K,)|| =
|ISKgxa +T(I — Ko)xall.

Observemos que (Kgxo)q es una red relativamente compacta; ademés, como lim K}z* =
x* para todo z* € X*, se tiene que ((I — Ky)zo) v (T(I — Ku)2o) son redes débil nulas.

Con lo cual, aplicando el Lema 3.1.4 y el item (iii) del Lema 3.1.3 tenemos que
limsup||SKgza + T(I — Ko)zo| < limsup||Kgra +T(1 — Kozl
6% [e3%
< limsup||Kgza + (I — Ka)zol
(0%

< limsup|| K+ I — K,
-

Por tltimo, veamos que limsup||Kg + 1 — K| < |[I —2K3|.
e

Notemos que

|Kg+1— K| < |1 —Ko— Kg+ 2K Kgl|| + 2| KoKz — Kgl|.
Ademés, hmHK Kz —Kgl|| = 0. Luego, basta probar que hmsupHI Ko—Kg+2K,Kg| <
|I —2K3| para todo . Usando que ||I — 2K, ||| —2K3|| > 1 se tiene que

I~ Ko — Ko+ 2KaKgl| = 3T+ (I —2Ka)(I —2Kp)]
< L1+ |1 — 2K, — 2K5])
<

1 = 2Ka|[|[ — 2K5],
y por (v), limsup|[/ — Ko — K3 + 2K, K3g|| < ||[I — 2Kg|| para todo 3. Luego,
[e%

limsup||SKpgza + T (I — Ko)zal < limsup||Kg+ I — Ko
: < lmsup|I — Ko — K5+ 2KaKg|
< limsup|T — 2K, |1 — 26|
< 152K,
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Probamos entonces que para todo S fijo
i supl|S-+T (1~ o) < i supl| S +T (1K) |45~ S Ksl| < |1T-255]+ 15— S K.
Tomando limite en 3, usando (v) y recordando que ||S — SKpg|| — 0 con S se tiene que
limsup||S +T(I — K,)| <1
a

como queriamos probar. d

Ejemplo 3.2.5. En la Proposicién 3.1.9, vimos que para 1 < p < 00, £, y ¢y son espacios
que tienen la propiedad (M). Més atin, las proyecciones (7,,) en las primeras n coordena-
das cumplen el item (v) del Teorema 3.2.3, ddndonos nuevos ejemplos de M-ideales. Sin

embargo, ¢; no tiene la propiedad (M*) y por lo tanto K(¢1) no es un M-ideal en L£(¢y).

Terminamos este capitulo con una aplicacién del Teorema 3.2.3.

Lema 3.2.6. Sean X, Y, espacios de Banach, tales que K(X) C L(X) y K(Y) C L(Y)
son M -ideales, entones K(X,Y) C L(X,Y) es un M-ideal.

Demostracion. Vamos a mostrar la 3-ball property. Sea (K,) una SCAI para X, veamos

entonces que
limsup [|S+T(I — K,)| <1

para todo S € Bi(x,y) Yy 1" € Brix,y)-
Fijamos 8 y elegimos (z,) C Bx tal que ||[SKgzxq +T(I — Ko)zo| = [|[SKg+T(I — Ko)|-
Al igual que en (v) = (i) del Teorema 3.2.3, y notando que (I — K,)zq es débil nula,

podemos probar que
limsup [|SKgzq +T(I — Ko)zo| < limsup ||Kgza + (I — Ko)zal|l <1,
(03 (0%

como queriamos ver. O



Capitulo 4

M-ideales en espacios de
polinomios.

En este capitulo, centramos nuestro estudio en el espacio de polinomios n-homogéneos.
Si bien la definicién podria darse para funciones entre dos espacios vectoriales, vamos a
optar por presentar esta clase de funciones a valores escalares. Después de dar las nociones
bésicas de esta toeria, vamos a estudiar si hay presencia o no de una estructura de M-
ideales. En lo siguiente si X es un espacio de Banach, £(" X)) representara al espacios de

las funciones multilineales acotadas 4 : X" — Y.

4.1. Polinémios n-homogéneos.

Para dar la nociéon de polinomio n-homogéneo, usaremos las funciones multilineales.

Decimos que A es simétrica si para toda permutaciéon o € S,
A(xa(l)v R :I:U(n)) = A(xlv R :En)'

Una funcién multilineal es continua (o acotada) si es continua en cada n-tupla (z1, ..., x,).
Ademas,
[All = sup [JA(z1,...,zn)]

[[z]|<1
resulta ser una norma en el espacio de las funciones multilineales, que lo hace un espacio de
Banach. Notaremos por £("X) al espacio de funciones n-lineales continuas, y por L("X)

al subespacio de las funciones simétricas.

Dada una multilineal A, podemos definir una multilineal simétrica asociada dada por

1
A(xl, cee ,$n) = E Z A(J;U(l)a ce ,xa(n)).
oc€Sh
Definiciéon 4.1.1. Decimos que una funcién P : X — K es un polinomio n-homogéneo

continuo si existe A € L("X) continua tal que P(z) = A(x,...,z).

o1
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Vamos a notar por P("X) al conjunto de polinomios n-homogéneos continuos a valores
en K.

Definicién 4.1.2. Para P polinomio n-homogéneo, definimos ||P|| = sup || P(z)|. Esta
lzll<1
resulta ser una norma en el espacio de polinomios n-homogéneos que lo hace un espacio

de Banach.

A continuacién damos distintas formas de mirar la continuidad de un polinomio. La

demostracién es andloga a la conocida para operadores lineales.
Proposicién 4.1.3. Sea P € P("X), son equivalentes:
(i) P es continuo para cada x € X.
(i) P es continuo en un punto xg € X.
(iii) || P < oo.
(iv) ||P|| = inf{C > 0 tal que ||P(z)| < C||z||"™ para todo z € X}.
Ademds, en el caso en que P es continuo se tiene que ||P(z)|| < ||P]|||z||™ para todo x € X.

Para funciones n-lineales, tenemos un resultado similar a la Proposicién 4.1.3. Ademas,

si A es n-lineal y continua, se tiene que
[AGz1, x| < Azl [l
para todo z1,...,z, € X.

Notar que todo elemento de X* es un polinomio 1-homogéneo. Mas en general, tenemos

los siguientes ejemplos.

Ejemplo 4.1.4. Si ¢ € X*, entonces ©" es un polinomio n-homogéneo asociado a la
n-lineal A : X™ — K dada por

Az, .. xn) = o(1) -« ().

Ademds, si ¢1,...,n € X*, el producto P(x) = pi(x)...on(z) es un polinomio n-

homogéneo. Una n-lineal que lo representa es

Az, ... xn) = 01(x1) ... on(xn) (4.1)

Sip1,. .., 0 €EXF Yy A, ..., A\ €K, entonces
k
P(z) =) \gl(x) (4.2)
j=1

es un polinomio n-homogéneo.
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Los polinomios de la forma (4.2) forman la clase de polinomios distinguida que llama-
remos Polinomios de tipo finito y que notaremos Pr("X). Mas adelante veremos que los
polinomios n-homogéneos asociados a la multilineal de la forma (4.1) también son de tipo
finito.

Si X es un espacio de dimension finita, entonces todo polinomio sobre X es de tipo
finito. Por otro lado, si X tiene dimensién infinita, entonces podemos dar una condicién

necesaria para que un polinomio P sea de tipo finito.

Lema 4.1.5. Sea X un espacio de Banach de dimension infinita y sea P un polinomio

de tipo finito. Entonces P~1(0) posee un subespacio de dimension infinita.

Demostracion. Sean @1,...,0 € X* vy A1,...,A\x € K tales que P(z) = 2?21 Aje ()

para todo z € X. Definimos T : X — K en la forma

T(LU) = ((Pl(f), e 790k(x))7

que T resulta ser un operador lineal y continuo. Como ker7 C P~!(0), basta mostrar
que ker T posee un subespacio de dimension infinita. Pero esto se cumple al ser X/ ker(T")

isomorfo a un subespacio finito de K. O

Este lema nos permite mostrar que no todo polinomio es de tipo finito. En efecto, si
consideramos X = {5 y el polinomio P : ¢5 — R, P(xz) = _ x?, tenemos que P~1(0) = 0.

Notar que P es efectivamente un polinomio si tomamos la funcién 2-lineal A : /5 x 5 — R
o0
Az, y) =) zjy;.
j=1

La desigualdad de Holder muestra que A esta bien definida y es continua.
Recordemos que dada A n-lineal, siempre podemos tomar A para tener una n-lineal
simétrica tal que A(z,...,z) = /Nl(x, ..., x). Luego, dado P polinomio n-homogéneo siem-

pre existe A n-lineal y simétrica que lo define.

. . oy . Qg
Si (aq,...,a,) € N definimos |a| =: a1 + ... + «,. Escribimos x.’ para notar
) ) n M n j
_ ai _
zj,...,x;. Para || = n, notamos A(x{",...,20") = A(z1,...,%1,...,Tn, ..., Tp).
~———
Qaj-veces aq Qn

La férmula de Leibnitz vincula un polinomio con su n-lineal simétrica:
n! o an
Py + ...+ xx) = Z aA(ml e X)),
laj=n
donde a! = aq!...a,!. En particular obtenemos la versién polinomial del binomio de
Newton,

P(x+y) = Zn: <?>A(»’ijynj)‘

J=0
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Por ultimo, la férmula de polarizacién dice cémo recuperar una multilineal simétrica

asociada a un polinomio P.

1
Az, ... xp) = S Zﬂ E1... 5nP(Z €5T5). (4.3)
€i= J

Una demostracién de esta férmula se puede ver en [D, Proposicién 1.5.].

Corolario 4.1.6. Para todo polinomio n-homogéneo P, existe una unica n-lineal simétrica
A tal que P(z) = Az, ..., x).

Estamos ahora en condiciones de mostrar que un polinomio asociado a una n-lineal co-
mo en (4.1) es un polinomio de tipo finito. En efecto, fijo x € X, definimos A : X* x ... x X* — K

la n-lineal dada por A(¢1,...,%y) :=¥1(z) ... Yp(x). Con esto, si P(z) = ¢1(z) ... pn(x),
por (4.3), se tiene que

P(.CI}) = A(‘Phww@n 2”71' Z €1- 6”2 (Ej@j)n(x)a

j=1
mostrando que P es de tipo finito.

El subespacio de polinomios de tipo finito P (" X) no es cerrado en P(" X)) con la norma
supremo. Su clausura se conoce como la clase de polinomios aproximables que notamos
por P4("X). Es decir

Ps("X) =: P;("X).

Ahora mostraremos otras clases de polinomios que surgen de la riqueza de trabajar
sobre dominios de dimension infinita. Para esto, introducimos el operador Tp asociado a
P dado por Tp : X — P("1X),

donde A es la tnica n-lineal simétrica tal que P(x) = A(z").

Proposicion 4.1.7. Un polinomio homogéneo es de tipo finito si y sélo si su operador

asociado es de rango finito.

Demostracion. Si P es n-homogéneo de tipo finito, escribimos P(z Zx\] goj ) donde

A €Ky pj € X*, paratodo j =1,...,k. Consideramos A : X" — K dada por

k
A(zy, ... xn) = Z)\jgoj(a:l) ().
j=1

Es claro que A es simétrica y representa a P. Luego

Z)\JQO] n 1( )7
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y, por lo tanto,
k
Tp(z) = Z )\jQOj(.T), @?717
j=1

mostrando que Rg(Tp) C [80711_17 o 7802_1]-

Reciprocamente, supongamos que dim Rg(T,) < oo0. Como X/kerTp es isomorfo a
Rg(Tp) resulta que X/ ker Tp tiene dimensién finita. Consideramos P : X/ ker Tp — K,
P([z]) =: P(x). Veamos que est4 funcién esta bien definida. Supongamos que [z] = [y]. Si

A es la tinica n-lineal simétrica que representa a P, entonces A, € £("~'X) dada por

Ac(yi, - yn—1) = Az, 41, -+, Yn—1)

es la unica (n — 1)-lineal simétrica que representa a Tp(z). De la misma forma A, serd la
unica (n — 1)-lineal simétrica que representa a Tp(y).

Como [z] = [y], tenemos que Tp(x) = Tp(y) y por lo tanto A, = A,. Luego,

P(x) =

[ [l
<

3\_/\_/

—~
8

~—

Iterando este proceso, obtenemos que P(z) = P(y) mostrando que P esta bien definido y
resulta ser un polinomio n-homogéneo. En efecto, si 7 : X — X/ker Tp es la proyeccién
al cociente, consideramos 7" : X — (X/kerTp)", n"(z) =: (n(z),...,7(x)). Entonces
A =: Ao es la n-lineal simétrica que lo representa.

Como P es un polinomio n-homogéneo sobre un espacio de dimensién finita, debe ser de

tipo finito. Entonces existen A1, ..., A\y € Ky ¥1,..., ¢, € (X/kerTp)* tales que

k
P(lal) = 3° A5 (la)

para todo = € X.

Llegamos al resultado deseado escribiendo
k
Pla) =) ()
j=1

donde ¢; = 1); o 7 y recordando que P([z]) = P(x). O

Corolario 4.1.8. Un polinomio homogéneo es aprorimable si y solo su operador asociado

se aproxima por operadores de rango finito.



56 CAPITULO 4. M-IDEALES EN ESPACIOS DE POLINOMIOS.

Es natural estudiar la clase de operadores cuyo operador asociado es compacto. Esta
clase serd fundamental para estudiar M-estructuras en espacios de polinomios. Aprove-

chamos para dar su definicién.

Definicién 4.1.9. Decimos que un polinomio P € P("X) es w-continuo en acotados si
P(z4) — P(z) para toda red acotada (x,) tal que z, — 2. Notamos por P, ("X) al

conjunto de polinomios débil continuos en acotados.

La equivalencia entre la clase de polinomios homosgéneos w-continuos y la clase de
polinomios cuyo operador asociado es compacto se muestra en [AHV, Teorema 2.9.].

Finalmente, vamos a usar una clase mayor de polinomios que es la siguiente:

Definicién 4.1.10. Decimos que un polinomio P € P("X) es débil continuo en cero si
P(zq) — 0 para toda red acotada (z,) débil nula. Notamos por P,0("X) al conjunto de

polinomios débil continuos en cero.

En general, P("X) # Pu,("X), un ejemplo de esto es el polinomio P : o — K,
o

P(z) = Zm? La base canénica (e;) de ¢2 es débil nula, pero P(e;) = 1 para todo j € N.
j=1
Ademis, Puo("X) # Pw("X) en muchas situaciones, aunque estos espacios coinciden para

grado 2 como se muestra a continuacion.
Proposicién 4.1.11. P, (*X) = Puo(*X) para todo espacio de Banach X.

Demostracion. Sélo hay que probar una inclusién. Sea P € Pu0(2X), queremos ver que
P es débil continuo en acotados de X. Sea (z,) C X una red acotada y sea xg € X tal
que T4 — xg. Sea A € L£(2X) la tinica 2-lineal simétrica tal que A(z,z) = P(x) para todo
z € X. Entonces,

P(xzq) — P(xg) = A(zayxa — x0) + A(20, 2o — 20) = P(xoq — x0) + 2A(20, To — T0)-

Como P es débil continuo en 0, P(x, — x9) — 0. Pero por otra parte, A(xo,-) es un
elemento de X* y por lo tanto A(xg,zo — z9) — 0. Luego P(z,) — P(z0) y por lo tanto,

P es débil continuo en acotados. O

Para n > 2, existen espacios X para los cuales Py, ("X) = Pyuo("X). Para verlo,

usaremos el siguiente resultado.

Lema 4.1.12. Sean 1 < p < oo, (z) C ¥€,, v € {,. Entonces xz 2z siy solo

sup ||znll, < oo ylim x,(k) = (k) para todo k € N.

Demostracion. Podemos suponer que x = 0, sino se considerard y, = x, — .
. w . o . .« s .
Si x, — 0, el principio de acotacién uniforme nos asegura que sup ||z, ||, < co. Obtenemos

lim z,(k) = x(k) para todo k € N usando las funcionales e : ¢, — K, ef(z) =: 4.
n
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Reciprocamente, sea ¢ € (£,)*, ¢ ~ y donde y € ¢, con % + % =1.Seane >0y kg € N

o
tales que Z ly(7)]? < €?. Entonces,

J=ko
ko oo ko (%)
elen)l < | Y any)|+| X2 @by < [ D2yl + D2 )l
Jj=1 Jj=ko+1 j=1 Jj=ko+1

Por hipétesis, ||, || esta uniformemente acotada y x,, tiende débil a cero. Luego, podemos

obtener |¢(xy)| < € para n suficientemente grande. O

Con este lema, podemos obtener que el polinomio P : {s — K dado por P(z) =

1)21’(]’)2 no es débil continuo en z = e;. En efecto, usando el lema vemos que z,, =

e1 + ent1 tiende débil a e, pero P(e;) = 0y P(z,) = 1 para todo n € N. Sin embargo,
este polinomio es débil continuo en x = 0. En efecto, supongamos que z,, es una red débil
nula que estd acotada en norma por una constante C' > 0. Con esto,

o0

7a(1) Y (@a(i)?] < lra(Dl7all2 < 7a(1)C.

Jj=2

[P(za)| =

Como z4(1) — 0, tenemos que P € Puo(*X) \ Pw(®X) con X = ls.

Vimos que, en general, P("X) # P, ("X). Sin embargo, el espacio de polinomios sobre
espacios £,, 1 < p < oo, tiene la siguiente propiedad.
Proposicién 4.1.13. Sea n < p. Entonces P("{)) = Puw("lp).

Para poder ver esto necesitamos primero algunas definiciones y resultados.

Definicién 4.1.14. Sea X un espacio de Banach con base de Schauder (e;). Definimos el

soporte de un elemento x € X, x = ) xje; € E por sop(z) =: {j € N tal que z; # 0}.

Lema 4.1.15. Para todon e N, n>2y1<j<n-—1 se tiene que

(o e

Demostracién. Recordemos que > »_ (3)(—1)" = (1—1)* = 0 para todo s € N. Entonces,

r=0

tomando s =n — j. O
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Proposicién 4.1.16. Sea P € P("X) un polinomio n-homogéneo y sea A su unica n-

lineal simétrica tal que P(x) = A(z™). Entonces, para todo x, y € X

n—1

n _

P) - P6) = X (1) AW (e =)
r=0

Demostracion. Usando el binomio de Newton, escribimos

S(ﬁ)“yr’(‘”‘w"”) = ZZ( ("7 ) Aty

r=0 TO]O

- ]Z Al ") X_j (”) (" ; ) (~1ynrd
D> () (")t awn,

jfl r=1

Il
=
<
gl
&u
@

donde, si j = 0, tenemos que

O

Proposicién 4.1.17. Sea 1 < p < oo y sea (e;) la base candnica de £,. Sea (uy,) C £, una
sucesion de elementos con soportes disjuntos y sean a, b > 0 tales que a < ||uy|| < b para

todo n € N. Entonces el espacio generado por (uy) es isomorfo a £y,.

Demostracion. Supongamos que u, es una sucesiéon de bloques; es decir, u, = ?’;pn un(j)e(y)
con p; < q1 < pa < ....Sivemos que (u,) es equivalente a (e,), entonces los espacios que

generan son isomorfos. Escribimos

I o annll = 1200 325, antin(i)e(3)]
(Zer i, faatn (1)
(X lanP)? (252, [un()P)

= (st lanlllualP)?
n

notando que ( ?:pn anun(j)ej)neN tienen soporte disjuntos para justificar la segunda

3=

igualdad.
N

Como a < ||u,|| < b, entonces a? < |lu,||P < b y por lo tanto se tiene que aHZanenH <

n=1

I Zanunﬂ bl| ZanenH Luego, || Zn | Gnly || converge si y solo si || Zn 1 anen|| lo
n=1
hace. Entonces (uy,) v (e,) son sucesiones equivalentes. O
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Proposicién 4.1.18. Sean 1 < n < p < oo, P € P("Lp) y (e;) la base candnica de ¢,.
Entonces

(P(ej))j el p .

p—n

Mds aun, para todo j € N,

I(Pe)ill 2. < 1Pl

Demostracion. Para cada j elegimos \; € C tal que A} P(e;) = \P(ej)\zﬂ%n. Por [D, Lema
1.57.] tenemos que Y P(z;) = E[P(} s;jz;)] donde E[] es la funcién esperanza y s; son

variables aleatorias continuas en [0, 1] cumpliendo

E[s~ s, } | 1 sis; =s;, paratodo i,r,
(2 7 - .
b " 0 caso contrario.

|sj(t)| =1 para todo ¢ y todo j.
Asi,
Eja Pl = i Pe)
E[P(Z Ajsjes)]
= [iP(ZE N 585 (D)e;)dt
< HPH(ZF1 A7) 7

n _p_
Como A7 P(e;) = [P(e;)|[»~, tenemos que

P p_Pp
n

INF1P(ej)|m = |Peg)| v,

luego
b(_pb _p
IN| = [P(e)| 57D = |P(ej) 7.

Asumiendo que P(ej,) # 0 para algun jy y tomando k > jo tenemos que

P(e; ’P " = H(P(ej)j)"fﬁ < [lPIl,

||M»

de donde se sigue el resultado. O

Observacién 4.1.19. Si P es un polinomio homogéneo e (y;) € £, es equivalente a (e;)
se tiene que (P(y;)) € {_»_. En efecto, sea T : €, — £, lineal y continuo tal que Te; = y;.
p—n

Podemos tomar \j € C cumpliendo
b
AT P(y;) = [P(y;) e
Siguiendo la demostracion de anterior, tenemos 7y |P(y;)|»=— = 325 [P(Tej)|[r—m <
k a .
IPIITN(325=1 IN;[P) » . En este caso se tiene que [[(P(y;));ll < [IPIIT]-
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Veamos ahora que si n < p, todo polinomio continuo P € P("¢,) es débil continuo

sobre acotados de /,,.

Demostracion. (de la Proposicién 4.1.13)
Sea P € P("{,) y sea A : £ — C la tinica n-lineal simétrica tal que A(z") = P(x) para

todo x € £,. Recordemos que

P@»—P@>:Sf(7)uwxx—yw*>

r=0 r
para todo x,y € £,. Luego, como A(y", (x — y)"~") son polinomios (n — r)-homogéneos
en la variable x para todo r, basta probar que P("f,) C Pyuo("¢p). Supongamos que

P & Puo(™lp), entonces existe una sucesiéon (w;) € By, débil nula y un § > 0 tal que
|P(wj)| > 6.

Como P es continuo, ||w;|| no puede tender a cero y por lo tanto, considerando una sub-
sucesion de ser necesario, podemos suponer que existe un v € (0,1) tal que v < [lw;|| <1
para todo j € N.

Hacemos la siguiente construccién basada en el principio de seleccién de Bessaga-Pelczynski.
Tomamos n1 = 1y elegimos 71 € N tal que ||(I — 7, )wp, || < 3. Como (w;) es débil nula
y Ts es compacto para todo s € N, podemos encontrar ny > ny tal que |7, wy,|| < 7.

Ademsds, como P es continuo, es posible elegir ny cumpliendo

5 3
‘P<(I - 7T7“1)wn2)’ > ‘P(wm)’ - |P(7r7“1wm)| >0 — Z = 15'
Ahora elegimos 75 > ry tal que ||(I — 7y, )wy, || < (3)? v luego ng > ny tal que
Irsns | <

3
|P((I - 777’2)71)713)‘ > 15-

De esta forma, se contruyen dos sucesiones crecientes de nimeros naturales, (rg) y (ng),

cumpliendo simultdneamente

)

H(I - Trrk)wnk” < (§)k7

Y
”ﬂ.’fkwnk—o—l H S Z:

P = 7 tmy)] > 56 (14)

para todo k € N.

Si consideramos yy = (7, — T, _, )Wy, , entonces (yi) C £, y se tiene que

ol
Hyk _wnkH = ||(7r1”k _7r7"k71)wnk _wnkH < ||7T7"k71wnk|| + H(I—M)wnkﬂ < -+ 92 4

— 4
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y, por lo tanto,

3y v

llyll >’Y—Z:Z

Como |lyk|| < ||mr, — Trp_ ||[Jwn,]] < 1, usando la Proposicién 4.1.17, tenemos que (yx)
es equivalente a (ey), la base canénica de £,. Por lo tanto, por la Observacién 4.1.19,
(P(yx))r € £_r_.

Por dltimo, si u =: (I — 7, _, )wp, , recordando que [Jyx| <1y v < 1, tenemos que

Z?::(i ANyl l[ur — el
2r=q Al (7 = )"
Z?:okllAll(%)’“(”‘”

M(3)"

| P(ug) — P(yx)l

INIA AN

Luego (P(ux) — P(yk))r € {_r_ al ser v < 1.
p—n

Como ¢_»_ es un espacio vectorial tenemos que (P(ug))r € {_»_, pero esto contradice
p—n p—n

(4.4) y por lo tanto P es débil continuo en acotados. O

4.2. Extensiones al bidual.

En general no existe una versiéon del teorema de Hahn-Banach para polinomios n-
homogéneos si n > 2. Sin embargo, Aron y Berner mostraron en [AB| que es posible

extender polinomios y operadores multilineales al bidual.

Si p € X* podemos definir p € X**, ©(z2) = z(p). Esta @ resulta ser una extension,
ya que si z € X, entonces 9(2) = Z(¢) = ¢(z), donde Z denota la inclusién de X en X*.

Ademss ||p]| = sup ||@(2)]] = sup [|z(@)|| < ||¢|| v al ser ¥ una extensién se obtiene la
llzll<1 [zl <1

igualdad de las normas. Esta misma extension de ¢ se puede lograr por w*-densidad. Esto

es, si 2 € X* y 24 = 2, se define §(2) = w* — lim p(z,).
La idea para extender funciones multilineales es la misma.

Sea A e L("X), sean x1,...,x,—1 € X fijos y sea Ay, . 2, , € X* dada por
Aproan (@) = Az, ..., 21, ).

Si z € X** definimos z : L("X) — L("1X)
Z(A) (21, xn—1) = 2(Agy 1)

Observacién 4.2.1. Observemos que si 1, ...,Tn—1,% € Bx, entonces ||Ag, .. 2, ()| <
[Al[llz1]l - - - lzn-1llllz]l < [[A]l. Luego,

[Z(A) (1, - )l = [12(Azy o) < T2 Az, e < (IZIITA,
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y por lo tanto, ||Z(A)|| < |[[[[|All.

Asi, si A es n-lineal, vamos a definir A € £L("X**) en la forma

A(z1y...,2n) =1 Z10...0Z,(A).

Observacion 4.2.2. En las condiciones de arriba se tiene:

(i) A(&1,...,%n) = A(x1,...,2,) para todo x1,...,x, € X ¥, por lo tanto, A es una

extension de A.

(i) (1Al = [1A].

(iii) A es w*-continua en su primera variable.

Demostracion.

(i) Si z = &, entonces Z(A)(z1,...,2n-1) = T(As1,..0n_) = A(x1,...,2n-1,2). Obtene-
mos lo buscando aplicando esto n veces.

(ii) Por el punto anterior, A resulta ser una extensiéon de A y por lo tanto, ||A|| > ||A]| .

Por otro lado, por la Observacién 4.2.1,

|A(z1,...,2n)| = |Z10...0Z,(A)] < ||A]|

para todo ||z;|| < 1.
(iii) Sea (wq) € X y w € X** tal que w, N w, entonces

Alwea, 29,y 2n) = Wa(Za0...02Z,)(A) = w(Zao...072,)(A) = A(w, 29, ..., 2,),
ex*
completando la demostracién. O

En general, A es w*-continua en la ultima variable que usamos para extender, es decir,

si o € Sy, podemos definir

AO’(Z17 - ,Zn) = 50(1) o... Oza(n)(A)a
y esta sera w*-continua en la variable z,(1).

Definicién 4.2.3. Para A € L£("X) se define su extensién canénica A € L("X**) por
A=A,

Para dar la extensién de un polinomio P € P("X) a X™** tenemos que elegir una n-
lineal que lo define. Es natural considerar la tnica n-lineal simétrica asociada a P. Si bien
no es cierto que esta extension resulte ser simétrica, aun si A lo fuera, tenemos la siguiente

proposiciéon que usaremos mas adelante.
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Proposicién 4.2.4. Sea A € L("X) simélrica, y sea A su extesion candnica a X*, en-

tonces todo elemento de X conmuta con los de X**, es decir

A, 29,00 2n) = A(zo, 8,23, ..., 2n) = Alzo, ..., 2n, T) Ve, e X™i=2,...,nVzxz e X.
Demostracién. Por la definicién de A, basta probar que 2 0 z = z o & para todo = € X,
z e X*.

Observemos que si B es n-lineal, entonces #(B) = B, € £("'X) con lo cual, para todo
A e L("X) tenemos

Toz(A)(z1,...,xn—2) = (2(A)z(x1,...,20-2)
= z(A)(x1,...,Tn-2,7)
= Z(Aazl,...,a:nfz,cc)

Por otro lado B
zoZ(A)(z1,...,xp—2) = zoAy(x1,...,25-2)

= 2((Ao)ar, e )

= 2( Az, 02)

Por tdltimo, como A es simétrica obtenemos la igualdad buscada. O

Definicién 4.2.5. Para P € P("X) se define su extensién canénica P € P("X**) como
P(z) =: A(z") donde A es la extensién candnica de la tnica n-lineal simétrica asociada
a P.

R T .
Notemos que si 2!, — 2* para todo 1 < ¢ < n, entonces

A2 :w*_lgfl“'lrl;gl (s xl)

y por lo tanto, si z es el w*-limite de una red (z,) tenemos que P(x,) — P(z).

Observacién 4.2.6. Dado P n-homogéneo, la extension candnica P es una extension de
P y por lo tanto P(Bx) C P(Bx=++), con lo cual, |P| < ||P||.

A continuacién mostramos que vale la igualdad de las normas.

Teorema 4.2.7. (Davie-Gamelin)

Sea P € P("X) y sea P su extension candnica, entonces ||P|| = || P||.

Demostracién. Por la observacién anterior, ||P|| < ||P]|.

Para mostrar la igualdad, basta probar que P(Bx«) C P(Bx).

Sea z € By« y € > 0, buscamos z € By tal que |P(z) — P(z)| < 2e.

Sea A la tinica n-lineal simétrica que representa a P y sea A su extensién de candnica.
Como By es w*-densa en Bx«+ y A es w*-continua en su primer variable, existe z; € By
tal que

A1, 2"71) = A(Z")] <

3o
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Por la proposicién 4.2.3., los elementos de X conmutan con los de X** para A, con lo cual,

podemos conseguir x3 € Bx cumpliendo simultaneamente

[A(21, 2,2 7%) — Az, 2" )| <

Slo

A(2a, 2" ) — A(2")| < .
n

Con el mismo razonamiento, podemos conseguir x3 € Bx cumpliendo

[A(ws, 271 = A(")| < =,
n
— — _ €
[A(z1,23,2"7%) — Az, 2" )| < .
— — €
|A(z, x3, 2" %) — A(xg, 2" )| < e
y
— _ — _ €
’A(x1>$271‘372n 3) _A(xlvaWZn 2) S E
En general, conseguimos x1,...,x, € Bx cumpliendo
Ay, 2" = A=) < =,
n
— _ — _ €
A2y, 2, 2"77) = Ay, .y, 2" )] < .

para todo r > 0.

Con esto, si j1 < j2 < ... < jp se tiene que

A" = Alp @il <0 JAG") = Alwg, 2l

+|Z(1‘jl,...,xjnil)—Z(mjl,...,xjnﬂ
< n.t=¢e.
SeameNy
Ly s
€T = — €T; .
m mj_l J X

Entonces,

P = Plam)| = [AG") =AY w3 a,)]

J1=1 Jn=1

S CORE SR Sy TR

J1=1 Jn=1

= w1 FaE e
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donde ), es la suma en donde todos los subindices son distintos y ), en donde algin
subindice se repite.

Si todos los subindices son distintos, como A es simétrica, puedo elegirlos de forma tal
que ji < ... < jn sin alterar el valor de A(xj,,...,x;,), con lo cual por lo visto arriba
# Y1 < %€, donde c; es la cantidad de nm-uplas de nimeros distintos entre 1 y m,
ordenadas en forma creciente. Como este nimero es menor estricto que m” (todas las
n-uplas) se tiene que 7 < 1.

Para las uplas en las que hay dos subindices que se repiten, acotamos # Yoo < 22| Afl.
Donde c3 es la cantidad de uplas en las que se repite algtin subindice.

Empleando un razonamiento combinatorio se puede calcular
co=m"—m(m-—1)...(m—(n—1))

pensando que son todas las uplas menos las que no se repiten.
Asf, 2. — 0 si m — oo con lo cual, podemos encontrar m € N tal que [P(z) — P(zy,)| <

2¢. O

Proposicién 4.2.8. Sea P € P, ("X) y sea P su extension candnica. Entonces P es

w*-continua en acotados.

Demostracion. Sea z € X™ y sea € > 0. Queremos probar que existen finitas funcionales
©1,. -5 0m € X*y d > 0tales quesiw € W, s={we X :|(w—2)(¢i)| <oVi=
1,...,m}, entonces |P(z) — P(w)| < e.

Sea (r4) C Bx tal que z, N y sea ag tal que si & > ag, |P(zq) — P(2)| < €.

1yPm;

Para este z,,, como P es débil continuo en acotados, existen ¢1,...,¢m y 6 > 0 tal que
siyeU=:{y € X :|pi(y —Ta,)| £6Vi=1,...,m} entonces |P(y) — P(za,)| < 5.
Como z, = 2, existe a1 > ag tal que |(Za, — 2)(s)| < g para todo i = 1,...,m.

Consideramos W = {w € X** tal que |[(w — 2) (¢;)] < g,Vi =1,...,m}.
Sean w € W e (ya) C X tales que yo — w, y sea ag > a1 tal que [P(w) — P(yay)| < 5 v
|(Fay — w) ()] < g para todo ¢ = 1,..., m. Entonces,

[P(w)=P(2)] < [P(w)=P(ay) |+ P (Yaz) = P(@ay) [+ P(a,) = P(2)] < %Hp(yag)—P(xal)\-

Afirmamos que Yo, € U. En efecto, si 1 <i < m, |0i(Yay — Tay )| < [(Jay —w) ()] + | (w —
2) (i) + [(z = &ay))(@i)| < 6 pues w € W. Luego |P(ya,) — P(7a,)] <

demostrado que P es w*-continuo. ]

5. Con esto queda

En el Capitulo 2, estudiamos cudndo IC(X,Y’) es un M-ideal en £(X,Y). Al pasar a
espacios de polinomios, el rol que tienen los operadores compactos, lo tienen los polinomios
débil continuos sobre acotados. Una razén para esto es que sin = 1, £,(X,Y) = £(X,Y),

como se muestra en la siguiente proposicién.
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Proposicién 4.2.9. £,(X,Y) = K(X,Y) para todo X,Y espacios de Banach.

Demostracion. Sean T' un operador compacto y (z,) € X una red acotada débil nula.
Entonces existe € X y una subred (z,.,) tal que T'(x,,) — T'(z) y por lo tanto T'(x., ) =
T'(z). Como T es continuo, entonces T" es w—w-continuo y como z, es débil nula, T'(z,., ) =
0. Con lo cual T'(x) = 0. Como esto vale para cualquier subred, resulta T'(z,) — 0.

Reciprocamente, sea T débil continuo, queremos probar que m es compacto. Sea
(ro) € Bx, como By« es w*-compacto, existe (z4.,) una subred, tal que (Zo,) es w*-
convergente y por lo tanto w*-Cauchy. Con lo cual, zo, € X es w-Cauchy. Como T es

débil continuo, manda redes w-Cauchy en redes de Cauchy. Luego T'(z,,) converge. [

4.3. M-ideales en espacios de polinomios.

Comenzamos esta seccion extendiendo las proposiciones 2.1.2 y 2.1.3 a la versién po-

linomial.
Proposicion 4.3.1. Sea X un espacio de Banach.

(i) Si Pu("X) C P("X) es M-ideal y E C X es un subespacio 1-complementado,
entonces Py ("E) C P("E) es un M-ideal.

(ii) La clase de los espacios de Banach para los cuales Py("X) C P("X) es un M-ideal,

es cerrada con respecto a la distancia de Banach-Mazur.

Demostracion. Las demostraciones para estas proposiciones son andlogas a las de la Pro-
posicién 2.1.2; teniendo en cuenta en (i) que la restriccién de un polinomio débil continuo
es débil continuo y en (ii) notando que si Tp, T5 son isomorfismos y P débil continuo en

acotados, entonces 17 PT5 es también un polinomio débil continuo en acotados. O
Proposicién 4.3.2. Si P, ("X) es un M-sumando en P("X) entonces Py ("X) = P("X).

Demostracion. La demostracion es similar que la Proposicién 2.1.3 considerando ) €

P("X) en la forma Q(z) = 2*(z)P(x) y notando que @) es débil continuo en acotados. [

La siguiente, es una versiéon polinomial de la Proposicién 2.2.6. Para cada x € X,

consideramos e, € P("X)* dado por e,(P) =: P(x) y se tiene que |e,| < ||z|™.
Proposicion 4.3.3. Sea X un espacio de Banach.

(i) Sea J CP("X) un subespacio tal que Pp("X) C J, entonces

Ext(By+) C {£e,:x € SX}LU*,

donde £ es necesario sdlo en el caso real y w* es la topologia o(J*,J).
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(ii) En el caso especial de (i) en el que J = P, ("X) se tiene que
Ext(Bj+) C{te,: z € Sx=},
donde +£ es necesario s6lo en el caso real.

Demostracion. (i): Por el lema 2.2.5, basta probar que

By« = co{te, : x € Sx}.

Sea z € Sx. Entonces la aplicacién e, definida por e;(P) =: P(x), es de norma 1. Ademas,
como P¢("X) C J, tenemos que los polinomios de la forma " estan en J, con lo cual si
tomamos v € By~ tal que |y(x)| = ||z|| = 1 tenemos la igualdad. Con esto, tenemos que
co{xe, : x € Sx} C By~.

Para ver la otra inclusién, supongamos que existe ¢ € By« \ co{xe, : x € Sx}. Por el

teorema de separacién de Hahn-Banach, existen P € P("X), |[P|| =1,y r > s > 0 tales
que

%(<P,§>) <s<r< §R(<P,cp>)

para todo £ € c,{te, : © € Sx}. En particular si { = sg(P(z))e,, con x € Sx, resulta que
|P(z)] <5 <r <R(P,¢)) <|Pllllell <1.

Luego, || P|| < s < 1, llegando a un absurdo.

(ii): Sea ¢ € Ext(By+). Por el item (i), existe una red (z,) C Sx tal que ey, A ¢. Esta
eleccién de signos es posible dado que, como ||¢|| = 1, existe P € J tal que ¢(P) > 0.
Luego, e, (P) — ¢(P) > 0y, por lo tanto, existen infinitos « para los cuales e, no cambia
de signo. Pasando por una subred, podemos suponer que (Z,) converge en la topologia
o(X**, X*) a una elemento z € Byxx.

Por la Proposisién 4.2.8 tenemos que P(#,) — P(z) para todo P € P,("X) y por lo tanto
€z, wy e, donde w* es la topologia o(J*, J) con J = P, ("X). Como esta topologia w* es
Hausdorff tenemos que ¢ = e,.

Por dltimo, notemos que

L= [loll = llezll = lI=]"-

Usando la Proposicién 4.2.9, podemos extender la Definicién 2.2.1, como sigue.

Definicién 4.3.4. Dado P € P("X) se define su norma esencial por
[1Plle =: d(P,Py(" X)) = inf{||[P - Q| : @ € Pu("X)}.

A continuacién damos la versién polinomial de la Proposisién 2.2.8.
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Proposicién 4.3.5. Supongamos que Py, ("X) C P("X) es un M-ideal y sea P € P("X).
Entonces || P|le = w(P) donde

w(P) =: sup{limsup |P(x,)]| : ||[za]| = 1, T4 = 0}.

Demostracion. Sea Q € Pu("X) v (z4) € X una red acotada débil nula, ||zo| = 1.

Entonces
1P =Ql = [(P - Q)(za)| = |P(za)| — |Q(za)]

y como @ es débil continuo en acotados tenemos que ||[P — Q|| > limsup |P(x,)| y por lo
tanto | P|le > w(P). Esto pasa independientemente de que P, ("X) sea un M-ideal.

Por el Corolario 2.2.4, existe ¢ € Ext(Bp, (nx)L) tal que (P) = ||Pllc. Por el Corolario
1.2.13 tenemos que ¢ € Ext(Bpnx)+) y, por la Proposicién 4.3.3 (i), € {+e, : z € Sx}*",

acd w* es la topologia o(X™**, X*).
Entonces, existe una red (z,) € Sx tal que e, — 1. Pasando por una subred, podemos
suponer que ey, %5 z para algin z € By-«-.

Ahora, si v € X*, entonces 7" € P, ("X) y por lo tanto, como ¢ € P, ("X)",

0 =1(y") = lim(y(za))" = (2(y)",

con lo cual z = 0 y por lo tanto (x,) es débil nula.
Asi
[Plle = 9 (P) = lim ¢z, (P) = imP(z4) < w(P),

completando la demostracién. O
Corolario 4.3.6. Si Py, ("X) es un M-ideal en P("X), entonces Py("X) = Puo("X).

Demostracion. Si P es débil continuo en z = 0, entonces ||P||c = w(P) = 0 y por lo tanto

P es débil continuo. O

El teorema de Bishop-Phelps, afirma que las funcionales que alcanzan la norma son den-
sas en X*. Aron, Garcia y Maestre probaron en [AGM] que los polinomios 2-homogéneos
cuyas extensiones canénicas alcanzan la norma, son densos en P(2X). Es un problema
abierto saber si este resultado se puede generalizar para polinomios n-homogéneos en ge-
neral. Sin embargo, con la fuerte condicién de que P, ("X) C P("X) sea un M-ideal,
tenemos la siguiente proposicion, que resulta ser la versién polinomial de la Proposicion
2.2.9.

Proposiciéon 4.3.7. Sea X wun espacio de Banach, tal que Py,("X) es un M-ideal en
P("X), entonces:

(i) Si P es un polinomio tal que su extension candnica P no alcanza la norma en B+,
entonces ||P|le = || P||-
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(ii) El conjunto de los polinomios P € P("X) cuya extension candnica no alcanza la

norma es nunca denso en P("X).

Demostracion. (i): Sea ¢ € Ext(Bpnx)«) tal que ¢(P) = ||P||. Por el Corolario 1.2.13,
tenemos que ¢ € Ext(Bp, (nx)-) 0 ¢ € Ext(Bp,nx)L). Si ¢ € Ext(Bp,nx)-), por
Propocisién 4.3.3 (ii), resulta que ¢ = e, con z € X**, ||z]| = 1. Asi,

[Pl = Il = ¢(P) = [P(2)],

y por lo tanto, P alcanza su norma.

Como esto no es posible, ¢ € Ext(Bp,(»x)L) y por lo tanto

1P| = ¢(P) = sup{[£(P)] : § € Ext(Bp,(nx)+))} = [ Plle-

(ii): Por (i), el conjunto de los polinomios cuya extensién canénica no alcanza la norma,

esta incluido en
F={PeP("X):[P|=]|Ple}

Como este conjunto es cerrado, basta probar que tiene interior vacio. Por [HWW, Propo-

sicién I1.1.11.], esto pasa si y sélo si

mf{ sup [#(P)|:|Plle =1} =1.
¢€BPM("X)*

Notemos que

sup  [p(P)] < sup |o(P)|
¢€BPw(”X)* ¢€B’p(nx>*

= |17

= sup |P(x)]
JJEBX

= sup [(ex(P))]
r€Bx

< sup  |o(P)].
#EBp,, (n )

Con lo cual

mf{ sup  [p(P)|: [ Plle =1} = mf{[|P]| : [ Plle =1}
(z)EBpw(nX)*

Pero 1 = ||P||l. < ||P|| siempre y si P € F conseguimos
f{ sup  [¢(P)]: [|Plle =1} = 1.
(Z)EBpw(nX)*

O]

Al trabajar con espacios de polinomios, el hecho de que P, ("X) sea un M-ideal en
P("X), condiciona el valor de n € N (Corolario 4.3.9). Esto nos restringe al momento de

buscar M-estructuras en P("X). Se tiene la siguiente situacion.

Proposicién 4.3.8.
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(i) Puw("X) C Puo("X).
(ii) Si Pu(*X) =P(*X) para todo 1 < k < n entonces Py("X) = Puo("X).

(iii) Si existe un polinomio n-homogéneo que no es débil continuo en algin punto x # 0,
entonces Puo("*X) # Py, ("tEX) para todo k.

Demostracion.
(i): Trivial por definicién.

(ii): Sea P € Puo("X) v 2o — 2. Entonces, por la Proposicién 4.1.16,

P(za) — P(z) = i (Z) A((zq — 2)F,2"F) = P(z4 — ) +:Z: (Z)A((xa — z)k g hy.

k=1

Obtenemos lo buscado notando que z, —z — 0y, para todo 1 < k < n,
A(za —2)F, 2" %) € P("FX) = Pu("FX)

(iii): Sea P un polinomio que no es w-continuo en x # 0. Consideremos v € X* tal que
y(x) # 0y Q(z) = v*(z)P(z) € P("**X). Veamos que @Q no es débil continuo en z. Sea
(z4), tal que 24 — x pero P(zs) - P(x) y supongamos que Q(x,) — Q(z). Podemos
suponer, considerando subredes, que v(z,) # 0 para todo .

Asi, P(zq) = ﬁ(é"a)) — Wkgﬁ)(f)(x) lo que contradice la eleccién de (z4,). O

Con lo visto hasta ahora tenemos el siguiente corolario, que usaremos constantemente

en lo que sigue.

Corolario 4.3.9. Sea X un espacio de Banach, entonces P, (*X) = Puo(*X) = P(*X)

para todo k o existe un tnico n tal que
s Pu(*X) = Puo(*X) = P(*X) para todo k < n.
» Pu("X) =Puwo("X) & P("X).
» Pu(*X) & Puo(*X) C P(FX) para todo k > n.

Cuando este dnico n existe, decimos que n es el grado critico de X y lo notamos

n = cd(X). Asi, si existe un polinomio en X que no es débil continuo, resulta que
cd(X) = min{k : P, (*X) # P(*X)}.

Sin =1, entonces P(1 X) = X* = P, (1 X) y por lo tanto, cd(X) > 2 para todo espacio
de Banach X.
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Ejemplo 4.3.10. Si H es un espacio de Hilbert y (e,) es una base ortonormal, entonces

el polinomio

P(x) = Z < Ty eq >

o
es continuo pero no débil continuo en acotados. Luego, cd(H) < 2y por lo tanto, cd(H) = 2

para todo espacio de Hilbert H.

Ejemplo 4.3.11. Si X =/, entonces cd(¢p) es el tinico nimero ng que cumple p < ng <
p+ 1.

En efecto, si k > p podemos considerar el polinomio P(z) = Zw? Como e; 20y
P(ej) =1 para todo j, tenemos que este polinomio no es débil continuo en acotados. Pero
como k > p, P resulta ser continuo y cd(¢,) < ng.

Si k < p vimos, en el Ejemplo 4.1.13, que P("¢,) = Pw("¢p) vy, por lo tanto, cd(£,) = ng
donde p <ng <p+1.

Ejemplo 4.3.12. Sea X = d*(w, p) el espacio dual de un espacio de Lorentz y sea n — 1

el mayor nimero natural estrictamente mas chico que p* donde ]l) + 1% = 1. Supongamos

(5
P

que w ¢ {; donde s = . Entonces [JSP, Proposicién 2.4.] muestra que n = cd(X).

4.4. Aproximaciones compactas.

En esta seccién, estudiaremos como usar las SCAI (Definicién 3.2.2) para ayudarnos a
ver cuando P, ("X) es un M-ideal, y veremos algunos ejemplos que surgirdn a partir del

Corolario 4.4.3. En este caso, por el Corolario 4.3.9, necesitamos la condicién n = cd(X).

Lema 4.4.1. Sea X un espacio de Banach, y sea (Sy) C L(X) tal que Sky — v para todo
v € X*. Entonces, para todo P € Py,("X), |P — P oSy — 0.

Demostracion. Como S} converge puntualmente a la identidad, entonces existe C' > 0 al
que [[Sall = [|S5]l < C para todo a.
Para todo espacio de Banach Y y todo K € K(X,Y') operador compacto,

|K*— K*o S| — 0,

Con lo cual, si P € P,("X) su operador asociado Tp es compacto y por lo tanto, para
todo ||z|| <1,

|P(x) = PoSa(x)] = Y (3)A((x (2))¥, Sa(z)"F)
< X ()l Tpfv— (@) ((z = Salx)1, S (x)"F)
< (TP - PoS 1T = SallF|Sa ™ F |||
< Y ()ITp —TpoSall(1+ C)F1CmF,

que tiende a cero independientemente de x € Byx. ]
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Proposicién 4.4.2. Sea X un espacio de Banach, n = cd(X), y sea (K,) una red acotada

de operadores compactos de X en X satisfaciendo
= K}'v — ~ para toda v € X*.
= Para todo € > 0 y todo «g, existe a > ag tal que para todo x € X
[Koz|" + [z — Kozl < (1+¢)]z(".
Entonces, Py ("X) es un M-ideal en P("X).

Demostracion. Vamos a verificar la 3-ball property para P, ("X) C P("X). Sean Py, P,
Ps € Bp,(nx), @ € Bpnx) y € > 0. Queremos encontrar P € Puw("X) tal que

IQ+ P —P||<1+¢ para i = 1,2, 3. (4.5)
Por la proposicion anterior, podemos elegir un «q tal que si a > «q

| P — P;o Ko < parai=1,2,3.

IR

€
| Kox|™ + ||z — Koz||" < (14 §)HxH” para todo z € X.

Consideramos el polinomio P € P("X)
P(r) = Q(z) — Q(z — Kax)

Vamos a ver que P es débil continuo en acotados y satisface (4.5). Como n = cd(X) basta
ver que P es débil continuo en x = 0.

Sea (z5) € X una red acotada débil nula. Como K, es compacto, existen una subsubred
rg, ey € X tal que lfglKa(l“,Bﬂ,) = y. Entonces K,(7g,) % y. Como K, es continuo,
entonces es w — w-continuo y resulta y = 0 al ser x, débil nula. Luego, K,(z5) — 0
cuando 8 — oo.

Sea B es la n-lineal simétrica tal que Q(z) = B(z"). Entonces, por la Proposicién 4.1.16,

[P(zg)l = [Q(zp) — Qzg — Kazs)|
< X (1) B(Kazp)*, (x5 — Kawp)" ")
< X (WIBIIKazs|*((1+ C1)C2)" — 0,

donde C; es la constante que acota a (Kq)a ¥ C2, la que acota a (z5)s. Luego P es débil

continuo en z = 0. Veamos que verifica (4.5)

Sea x € Bx, entonces, para 5 > 0 existe un « tal que

(@ + Pio Ko — P)z| 1Q(z — Kax) + Fi(Kax)]|
[Kaz||* + [lz = Kox||”

1+ 5.

IAIA I



4.4. APROXIMACIONES COMPACTAS. 73

Con lo cual ||Q + P;o Ko — P|| <1+ § y por lo tanto, si i = 1,2, 3, se tiene que
1Q+ P~ Pl < | < [Q+ProKa— P+ P~ ProKel <1+c
como querfamos ver. m

Un caso particular en el que se cumplen la primera condicién de la Proposicién 4.4.2 es
cuando el espacio de Banach posee una descomposicién achicante de espacios de dimension
finita. Dado un espacio de Banach X, diremos que la sucesién de subespacios cerrados
{X,}jen es una descomposicion de Schauder para X (o simplemente una descomposicién

o0
para X) si todo x € X tiene una unica representacién de la forma z = g uj con u; € X;

=1
para todo j € N. Si todos los subespacios X; tienen dimensién finita, decimos que X

posee una descomposicién de espacios de dimensién finita. Por tltimo, vamos a decir que

la descomposicién es achicante si para todo ¢ € X™ se tiene que h’}fn”gp‘ X, K] | = 0.
I

Corolario 4.4.3. Sea X una espacio de Banach con una descomposicion achicante de

espacios de dimension finita, con proyecciones m; tales que para todo € > 0 y jo, existe

J > jo satisfaciendo
lmjz[" + llz — mjz[" < (L +e)[z]"  Voe X,
Sin = cd(X), entonces Py("X) CP("X) es un M -ideal.

Ejemplo 4.4.4. En el Ejemplo 4.3.10 vimos que cd(H) = 2 para todo espacio de Hilbert
H. Las proyecciones asociadas a la base (e,) cumplen las hipétesis del corolario anterior
y por lo tanto, P, (?H) C P(2H) es un M-ideal para todo H espacio de Hilbert.

Ejemplo 4.4.5. En el Ejemplo 4.3.11 se vi6 que cd({p) es el tinico nimero natural ng
cumpliendo p < ng < p+ 1. Como las proyecciones en las primeras coordenadas cumplen
las hipétesis del Corolario 4.4.3, P, (") es un M-ideal en P("04),).

Ejemplo 4.4.6. Sea X = d*(w, p) el espacio dual de un espacio de Lorentz. Sabemos por
(n=1)"
P
mayor nimero natural estrictamente mas chico que p*. Para este n, se tiene que P, (" X)

Ejemplo 4.3.12 que si s = ( )y w ¢ {5 entonces cd(X) = n cumple que n — 1 es el

es un M-ideal en P("X). En efecto, d*(w, p) tiene una base achicante de Schauder (e;).

Si elejimos (my,) las proyecciones

m
mm(T) = wje;
j=1

tenemos que
n
¥

1T + & = Tma|™ < (Irmal” + |l — mmelP")?

donde la dltima desigualdad se debe a que n > p*.
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4.5. Propiedad (M) para polinomios.

En el Capitulo 3, introdujimos la propiedad (M), junto con la propiedad (M*) y vimos
que existia una relacion entre la teoria de M-ideales y estas propiedades. Al trabajar
con espacios de polinomios, obtenemos una equivalencia (Teorema 4.5.8) que relaciona
nuevamente ambos conceptos. Para ello se define una versién polinomial de la propiedad

(M); pero antes necesitamos algunos resultados.

Lema 4.5.1. Si P, ("X) C P("X) es un M-ideal entonces, para todo P € P("X) existe
una red acotada (P,) C Py("X) tal que Py (2) — P(2) para todo z € X**.

Demostracion. Por [HWW, Remark 1.1.13] tenemos que Bp, (nx) es o(P("X), Py("X)*)
densa en Bpnx), con lo cual para P € Bpx), existe (Pa) C Py("X) tal que Py — P
en la topologia o(P("X), Py, ("X)*). El resultado se obtiene al notar que, para z € X**
la aplicacién e, : P,("X) — K dada por e,(P) =: P(z) es un elemento de P, ("X)*.
En efecto, e, es lineal y cumple |e,(P)| = |P(2)| < ||P|l|z]|* = ||P]/||z]|* para todo
z € Bxs. O

La siguiente proposiciéon es necesaria para demostrar el Teorema 4.5.3

Proposicion 4.5.2. Sea X un espacio de Banach y sea J C X un M-ideal. Entonces
para todo x € X existe red (x,) C J tal que zo — x en la topologia o(X, J*) cumpliendo

limsup ||z 4+ (z — z4)|| < méx{||z|, ||z + J|| + ||z||} Vz e X.
Una demostracion de esto se puede ver en [W, Proposicién 2.3]
Teorema 4.5.3. Sea X un espacio de Banach. Son equivalentes:
(i) Puw("X) CP("X) es un M-ideal.

(ii) Dado P € P("X), existe una red (Py) C Pyu("X) tal que para todo z € X**,
Pa(z) = P(2) y

lmsup |Q + P — Po| < mé{[|Q, [|Qfe + [ PI} VvV QeP("X).

(iii) Dado P € P("X), existe una red (Py) C Pu("X) tal que para todo z € X**,
Pa(z) = P(2) y

lmsup |Q + P — Po| < md{[|Q, [P}  V Q€ Pu("X).
Demostracion. Por el Lema 4.5.1 y la Proposicién 4.5.2 tenemos que (i) implica (ii).

Ademds obtenemos (iii) de (ii) notando que si @ € Py, ("X) entonces ||Q||. = 0.
Para ver que (iii) implica (i), chequeamos la 3-ball property. Sean Pi, P2, P3 € Bp, (nx)
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Y @ € Bp(nx). Por (i) existe una red (Qa) € Pu("X) tal que Q,(z) = Q(z) para todo
z € X* y para todo i = 1,2, 3,

ltmsup |Q + P, — Qul < max{[|Q], | P} < 1.
Fijo P, dado € > 0, podemos entontrar una subred Q4 de @, tal que
1Q+ P —Qal <1+e.
Ahora, partiendo de esta subred procedemos de igual manera con P y luego con P3. [

Ahora si estamos en condiciones de definir la propiedad (M) para polinomios en con-

junto con la propiedad (M) n-polinomial para espacios de Banach X.

Definicién 4.5.4. Decimos que un polinomio P € Bpnx, tiene la propiedad (M) si para
todo A € K, v € X tal que |A| < ||v]|” y toda red acotada (z,) C X débil nula, se tiene
que

limsup |A + P(zq)| < limsup ||v + z4||".

Definicién 4.5.5. Decimos que un espacio de Banach X tiene la propiedad (M) n-

polinomial si todo P € Bp(nx) tiene la propiedad (M).

Extendiendo el Lema 3.1.3 (iv) para la versién polinomial obtenemos el siguiente re-

sultado cuya demostracion es analoga a la ya mostrada.

Lema 4.5.6. Sea P € Bp(nx con la propiedad (M) y sea (va) una red contenida en un
conjunto compacto de X. Entonces, para toda red (Ay) C K tal que |Ao| < ||va||™ para todo

a y toda red acotada (x) € X débil nula, se tiene que
limsup [Ao + P(zq)| < limsup ||vg + zo||".

Proposicién 4.5.7. Sea X un espacio de Banach, n = cd(X) y supongamos que Py, ("X) C
P("X) es un M-ideal. Entonces X tiene la propiedad (M) n-polinomial.

Demostracion. Sea P € Bpnx), v € X y A tal que |A| < ||v[|", y sea (z4) una red acotada
débil nula. Tomamos @ € P, ("X), [|Q] <1 tal que Q(v) =Aye>0.
Por el Teorema 4.5.3 (iii), existe un polinomio R € P, ("X) tal que

P)-RW)|<s y [Q+P-R| <1+

Como Q(v+ z4) = Q(v) y R(x) — 0 tenemos que

limsup |\ + P(z,)| = limsup|Q(v) + P(za)|
= limsup |Q(v + z4) + (P — R)(z4)|
< limsup |Q(v + x4) + (P — R)(xq) + (P — R)(v)| + €.
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Sea A la unica n-lineal simétrica que representa a (P — R).
Entonces, como n = cd(X), por el Corolario 4.3.9, para todo 1 < k < n — 1, P(*X) =
P, (*X) y, por lo tanto,

n—1

(P = R)(v+2a) = (P~ R)(v) + (P = R)(za)]| = | ) AW,z 77)| = 0.
j=1

Luego,
limsup [A+P(zq)| < limsup |[Q(v+x4)+(P—R)(v+zq)|+e < (1+4¢€) limsup ||[v+z4|" +e.
El resultado se obtiene entonces haciendo ¢ — 0. [

El siguiente teorema es la versién polinomial de las equivalencias entre (i) y (v) del

Teorema 3.2.3

Teorema 4.5.8. Sea X un espacio de Banach y sea (K,) una SCAI tal que || I —2K,| — 1
y sea n = cd(X). Entonces Py,("X) C P("X) es un M-ideal si y sélo si X tiene la
propiedad (M) n-polinomial.

Demostracion. La proposicién anterior nos da una de las implicaciones. Para probar la
reciproca, verifiquemos la 5-ball property. Sean Pi, P, Ps € Bp,(nx), @ € Bpnx), € >0
y sea P(x) =: Q(z) — Q(z — Kyx). Como en la demostracién de la Proposicién 4.4.2 se
puede ver que P es débil continuo en acotados. Por el Lema 4.4.1 podemos elegir 3 tal
que

I1-2Ks|" <145y |P-PoKsl<s i=123.

| ™

Como
€
IQ+Fi= Pl < |Q+ PioKg = Pl + [P = Pyo Kgl| < |[Fio Ky + Qo (I = Ko)|| + 3,

basta ver que ||P;o Kg+ Qo (I — K, )|| <1+ 5.
Sea (z) € Bx tal que

1Py o Ks+ Qo (I — Ku)| = |Pu(Ks2a) + Qe — Kaa)l.

Notemos que |Py(Kgzo)| < ||Kpzall™; (Kg2a)a estd contenida en un conjunto compacto y,
como (K, ) es una SCAI, tenemos que (x4 — K4%o) es una red acotada débil nula. Luego,

por el Lema 4.5.6, tenemos que

limsup |P1(Kpza) + Q(za — Kaza)| < limsup ||Kgzq + 20 — Kool
< limsup [|[Kg + I — Kq||"
<

I =2Ks|" <1+ 3,

donde la dltima desigualdad proviene de la demostracién (v) = (i) del Teorema 3.2.3. O
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Proposicién 4.5.9. Sea X un espacio de Banach y sean = cd(X). Si X tiene la propiedad
(M), entonces X tiene la propiedad (M) n-polinomial.

emostiracion. dSea S nxY, € y v e ta que S ||V Yy sea (Ty) Uuna re
Demostracién. Sea P € Bpmx), A € K X tal que [A| < [Jo|" d

acotada débil nula. Queremos probar que
limsup |\ + P(z4)| < limsup |[v + zq||". (4.6)

Supongamos primero que || P|| = 1. Dado € > 0, existe u. € X tal que P(uz) = A(1—¢)y
llue|l < \)\\% < ||v||. En efecto sea y. € Bx tal que |P(y.)| >1—¢cysea0<r <1 tal que
r"|P(y:)| = 1 — . Luego, si 0 = sg(P(y:)) entonces u, = )\%Gryg sirve.

Asi

limsup |A + P(zq)| limsup |P(ue) + P(zqa)| + ||
limsup |P(u: — x4)| + €|}
| P|| Hmsup ||us + zo||™ + €| A|

limsup |[v + zo || + €|A,

INIA I IA

donde la igualdad vale por ser n = c¢d(X) y la tltima desigualdad se debe a que X tiene la
propiedad (M ). Luego tenemos (4.6) para todo | P|| = 1. Ahora, si | P|| < 1, (A4+P(z4)) es

una combinacién convexa de (A+ ”—gn(xa)) y (A= ﬁ(xa)), En efecto, tomando & = %
se tiene que
E0+ (@) + (1 = O (A= o (@) = A+ Plaa).
1P| 1P|
Luego,
limsup |A + P(zq)] < max{limsup |\ + ﬁ(maﬂ; limsup |\ — ”—gn(azaﬂ}
< limsup ||v + zo||™,

como queriamos ver. O

Corolario 4.5.10. Sea X un espacio de Banach yn = cd(X). Si K(X) es un M-ideal en
L(X), entonces Py,("X) C P("X) es un M-ideal.

Demostracion. Por el Teorema 3.2.3, X tiene la propiedad (M) y existe una SCAI (K,)
tal que ||I — 2K,| — 1. El resultado se obtiene entonces a partir del Teorema 4.5.8 y la
Proposicién 4.5.9. ]

La reciproca no es cierta. Un contraejemplo de esto se puede ver en [Dv, Remark 3.12.].
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