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2.4. Estimación por máxima verosimilitud . . . . . . . . . . . . . . . . . . 16

3. Estimación no paramétrica de la densidad circular 21

3.1. Histograma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
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Caṕıtulo 1

Introducción

En diversos campos surgen problemas estad́ısticos donde las variables aleatorias
involucradas, en lugar de tomar valores en todo IRd, toman valores en un espacio
de dimensión menor, por ejemplo en una determinada superficie. Tal es el caso en
donde, por la particularidad del problema, las variables se encuentran concentradas
en la esfera unidad. Este tipo de datos recibe el nombre de datos direccionales. Los
datos circulares constituyen el caso más simple de esta categoŕıa y están asocia-
dos directamente a ángulos en el plano. Si, en cambio, consideramos direcciones en
el espacio, a este tipo de variables se las conoce como datos esféricos. Los mismos
se encuentran comúnmente en bioloǵıa, geoloǵıa, medicina, meteoroloǵıa, ecoloǵıa,
oceanograf́ıa y muchas otras áreas. Los ejemplos t́ıpicos incluyen direcciones de vuelo
de aves, movimientos direccionales de animales en respuesta a ciertos est́ımulos, o las
direcciones del viento y de las corrientes marinas.

Los datos direccionales tienen una serie de caracteŕısticas que los hacen distintos
de los datos lineales y por tanto, el análisis direccional es sustancialmente diferente
del análisis estad́ıstico “lineal” estándar ya que la propia naturaleza de los datos
obliga a replantear aspectos tan básicos como la medición de distancias o la inclusión
de su naturaleza periódica. El análisis de los datos direccionales dio lugar a una
serie de nuevos problemas estad́ısticos que propulsaron, en los últimos 20 años, el
desarrollo de métodos espećıficos. Varios modelos paramétricos y no paramétricos
han sido ampliamente discutidos en este contexto. Para una revisión sobre este tema
ver Mardia y Jupp [10], Batschelet [3], Watson [15], Fisher [5], Rao [13], He [7], Hall
et al. [6], Bai et al. [2], entre otros.

Una práctica muy común en estad́ıstica es suponer que los datos han sido gene-
rados por un mecanismo aleatorio y que éste puede ser representado por un miembro
de una familia paramétrica de funciones de distribución. La caracteŕıstica más sobre-
saliente de estos modelos matemáticos es la suposición de que el mecanismo aleatorio
que generó las observaciones es totalmente conocido a excepción de un parámetro.
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2 introducción

Naturalmente, el principal problema en estos casos es la estimación del parámetro des-
conocido con buenas propiedades estad́ısticas como sesgo pequeño o nulo y varianza
pequeña. Un método que, en general, satisface estos requerimientos es el método de
máxima verosimilitud.

Sin embargo, en algunos casos el estimador de máxima verosimilitud no resul-
ta adecuado. Un ejemplo sencillo donde falla dicho método consiste en considerar
una muestra distribúıda como una mezcla de dos poblaciones normales. Éste y otros
ejemplos no tan sencillos son expuestos por Le Cam [9].

Una alternativa a la estimación por máxima verosimilitud la constituyen los esti-
madores de mı́mima distancia que a su vez, bajo condiciones bastante amplias, tienen
propiedades de robustez frente a desv́ıos del modelo paramétrico considerado. Algu-
nas referencias clásicas sobre estimadores de mı́nima distancia pueden encontrarse en
el trabajo seminal de Wolfowitz [16] y en el trabajo de Parr y Schucany [11], mientras
que una versión suavizada fue estudiada por Cao et al. [4], siempre para datos en
espacios eucĺıdeos.

En esta tesis, definiremos estimadores de mı́nima distancia para datos direccionales
bajo el supuesto de que las variables poseen una densidad perteneciente a una familia
paramétrica cuyos paramétros se desconocen. La propuesta es considerar una distan-
cia entre un estimador no paramétrico de la densidad para datos direccionales y la
densidad paramétrica correspondiente. Aquellos parámetros que hagan mı́nima esta
distancia es lo que definiremos como el estimador de los paramétros desconocidos.
Para el estimador definido evaluaremos su comportamiento a través de un estudio de
simulación y estudiaremos su consitencia.

El trabajo se organiza en tres caṕıtulos. El Caṕıtulo 2 contiene un resumen sobre
conceptos definidos en variables aleatorias que toman valores en el ćırculo unitario,
aśı como también algunos modelos circulares importantes. En el Caṕıtulo 3, daremos
un breve resumen de los estimadores no paramétricos de la función de densidad de
variables aleatorias reales y exhibiremos su extensión al caso de variables aleatorias
circulares. Por último, en el Caṕıtulo 4 presentaremos los estimadores de mı́nima
distancia para el caso de datos reales y estudiaremos una propuesta para datos cir-
culares finalizando nuestro trabajo con un estudio de simulación que permita evaluar
el comportamiento de la misma.





Caṕıtulo 2

Datos Circulares

Los datos circulares aparecen en muchos contextos y se obtienen de diversas for-
mas. Las principales corresponden a los instrumentos de medición circular clásicos: la
brújula y el reloj. Entre las observaciones t́ıpicas medidas por la brújula se encuen-
tran las direcciones del viento o las direcciones del vuelo migratorio de las aves, como
aśı también, la dirección del polo magnético de la tierra. En el caso del reloj podŕıan
ser de interés, por ejemplo, los horarios más frecuentes de llegada de los pacientes a
la guardia de un hospital.

Las direcciones en el plano pueden representarse a través de vectores unitarios
(i.e. direcciones) o como puntos en el ćırculo unidad. También podŕıamos pensar una
dirección como un ángulo o bien como un número complejo unitario. En estos dos
últimos casos es preciso fijar una dirección inicial y un sentido de rotación para evitar
ambigüedades en la representación. De esta manera, dado un ángulo, un punto en el
plano puede representarse como,

x = (cos θ, sen θ)T

z = eiθ = cos θ + i sen θ

Como en el caso de observaciones correspondientes a puntos sobre la recta real, una
primera forma de obtener algún tipo de información sobre ellos es a través de un gráfi-
co. Para el caso de datos circulares, el gráfico más simple es un circular raw data plot,
en el cual cada observación está representada por un punto en el ćırculo unidad. La
Figura 2.1 ilustra este método para el siguiente ejemplo:

Ejemplo 2.0.1. Se hace girar una ruleta 9 veces y se registran las posiciones en las
que se detuvo. Las mismas, medidas en grados, resultaron ser:
43◦, 45◦, 52◦, 61◦, 75◦, 88◦, 88◦, 279◦ y 357◦. El circular raw data plot de la Figura 2.1
sugiere la tendencia de los datos hacia una dirección particular.
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caṕıtulo 2: Datos Circulares 5
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Figura 2.1: Circular plot para los datos del Ejemplo 2.0.1

Una vez obtenido el gráfico será de utilidad resumir la información mediante me-
didas estad́ısticas descriptivas. Resulta tentador cortar el ćırculo en algún punto y
hacer uso de las medidas estad́ısticas conocidas para el caso lineal. El problema que
trae tratar a los datos circulares de esta manera es que las medidas estad́ısticas re-
sultantes van a depender fuertemente del punto en que hayamos decidido cortar al
ćırculo. Como un ejemplo de esta situación consideremos una muestra de sólo 2 datos,
formada por los ángulos 1o y 359o. Si cortamos el ćırculo en el 0o obtendremos una
media igual a 180o y un desv́ıo estándar de 179o. En cambio, si cortamos el ćırculo en
180o, es decir consideramos valores en el intervalo (−180o, 180o), tendremos una media
igual a 0o y un desv́ıo estándar de 1o. Surge entonces la necesidad de definir medidas
estad́ısticas que sean independientes de la posición que hayamos elegido como inicial.

En este caṕıtulo, en las Secciones 2.1 y 2.2, presentaremos una descripción de las
medidas de posición, concentración y dispersión para datos circulares. En la Sección
2.3, nos centraremos en las principales distribuciones circulares y finalmente, en la
Sección 2.4, haremos referencia a la utilización del método de estimación de paráme-
tros desconocidos por máxima verosimilitud en el caso de este tipo de distribuciones.

2.1. Medidas de Posición

Sean x1, . . . ,xn vectores unitarios que se corresponden con los ángulos θj, j=1,. . . ,n.
Se define la dirección media θ̄ de θ1,. . . ,θn como la dirección de la resultante
x1 + . . .+ xn, que coincide con la dirección del centro de masa x̄ de x1,. . . ,xn. Dado
que las coordenadas cartesianas de xj son (cos θj,sen θj) para j=1,. . . ,n, se tiene que
las coordenadas del centro de masa serán (C̄, S̄), donde
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C̄ =
1

n

n
∑

j=1

cos θj, S̄ =
1

n

n
∑

j=1

sen θj

Si definimos la longitud media resultante R̄ como

R̄ = (C̄2 + S̄2)1/2

resulta que θ̄ es solución de las ecuaciones

C̄ = R̄ cos θ̄, S̄ = R̄ sen θ̄ (2.1)

Esto es válido siempre y cuando R̄ > 0. En el caso en que R̄ = 0, θ̄ no está definida.

Teniendo en cuenta estas nuevas definiciones, queda claro que en el contexto de
datos circulares θ̄ no es lo mismo que (θ1+ ...+ θn)/n, y que θ̄ constituye una medida
más apropiada que (θ1 + ...+ θn)/n ya que no depende de la elección de la dirección
inicial.

Ejemplo 2.1.1. Para los datos del Ejemplo 2.0.1 se tiene que C̄ = 0.447 y S̄ = 0.553,
por lo tanto, la dirección media θ̄ y la longitud media resultante son:

θ̄ = 51o y R̄ = 0.711

La Figura 2.2 muestra los resultados obtenidos para dicho conjunto de datos.

Consideremos ahora el efecto de las rotaciones sobre la dirección media. Suponga-
mos que se elige una nueva dirección inicial que forma un ángulo α con la dirección
original. Entonces, ahora, los ángulos correspondientes a los datos en el nuevo sistema
de referencia serán

θ′j = θj − α, j = 1, . . . , n.

donde

C̄ ′ =
1

n

n
∑

j=1

cos θ′j, S̄ ′ =
1

n

n
∑

j=1

sen θ′j.

Si reescribimos C̄ ′ y S̄ ′, obtenemos lo siguiente:

C̄ ′ =
1

n

n
∑

j=1

cos θ′j =
1

n

n
∑

j=1

cos(θj−α) =
1

n

n
∑

j=1

[cos θj cosα+sen θj senα] = C̄ cosα+S̄ senα,
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Figura 2.2: Dirección media θ̄ y longitud media resultante R̄ para los datos del Ejemplo
2.1.1

S̄ ′ =
1

n

n
∑

j=1

sen θ′j =
1

n

n
∑

j=1

sen(θj−α) =
1

n

n
∑

j=1

[sen θj cosα−cos θj senα] = S̄ cosα−C̄ senα.

Usando la definición de longitud media resultante R̄′ para el nuevo sistema de
referencia tenemos que

R̄′ = (C̄ ′
2
+ S̄ ′

2
)1/2 = [(S̄ cosα− C̄ senα)2 + (C̄ cosα + S̄ senα)2]1/2

= [S̄2 cos2 α + C̄2 sen2 α− 2S̄ cosαC̄ senα + C̄2 cos2 α + S̄2 sen2 α + 2C̄ cosαS̄ senα]1/2

= [(S̄2 + C̄2)(cos2 α + sen2 α))]1/2 = [(S̄2 + C̄2)]1/2 = R̄.

Luego,
R̄′ = R̄. (2.2)

Si las coordenadas polares de (C̄ ′, S̄ ′) son (R̄′, θ̄′), tenemos que

C̄ ′ = R̄′ cos θ̄′, S̄ ′ = R̄′ sen θ̄′ (2.3)

Por otro lado, si reemplazamos las ecuaciones (2.1) en las expresiones obtenidas
anteriormente para C̄ ′ y S̄ ′ nos queda que
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C̄ ′ = R̄ cos θ̄ cosα + R̄ sen θ̄ senα = R̄ cos(θ̄ − α)

S̄ ′ = R̄ sen θ̄ cosα− R̄ cos θ̄ senα = R̄ sen(θ̄ − α).

y por lo tanto de (2.2) y (2.3) se deduce que

θ̄′ = θ̄ − α.

De esta forma, la dirección media de θ1−α, . . . , θn−α es θ̄−α, es decir, la direc-
ción media de la muestra es equivariante por rotaciones. Esta propiedad es análoga a
la equivariancia por traslación de la media de un conjunto de datos lineales. La im-
portancia de haber definido en el ćırculo (como en la recta) una medida que cumpla
con esta propiedad, es lograr un acuerdo acerca de la ubicación de la media muestral,
independientemente del sistema de referencia escogido.

Para ciertos casos (por ejemplo, la estimación robusta) es útil tener una versión
de la mediana muestral adaptada al caso de datos circulares. Se define la dirección
mediana muestral θ̃ de θ1,...,θn como un ángulo φ que verifique:

la mitad de los datos caen dentro del arco [φ, φ+ π] y,

la mayoŕıa de los datos están más cerca de φ que de φ+ π

Cuando el tamaño de la muestra es un número impar, la mediana muestral coincide
con uno de los datos. Cuando es par, es conveniente tomar como mediana muestral
el punto medio entre dos datos adyacentes apropiados.

Ejemplo 2.1.2. Volvamos al ejemplo de la ruleta. Considerando las medidas obtenidas,
se puede calcular la dirección de la mediana muestral, que resulta, θ̃ = 52o, valor muy
cercano a la dirección media θ̄ = 51o que calculamos en el Ejemplo 2.1.1

2.2. Medidas de Concentración y Dispersión

En la Sección 2.1 definimos la longitud media resultante R̄ como la longitud del
centro de masa x̄, dada por

R̄ = (C̄2 + S̄2)1/2.

Dado que x1, . . . ,xn son vectores unitarios, se tiene que
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0 ≤ R̄ ≤ 1.

Si las direcciones θ1,. . . ,θn están estrechamente agrupadas, el valor de R̄ será muy
cercano a 1. Por otro lado, si θ1,. . . ,θn están muy dispersos, R̄ tendrá un valor cercano
a 0. Por lo tanto, R̄ es una medida de concentración del conjunto de datos. La ecuación
(2.2) muestra que R̄ es invariante por rotaciones.

Si bien la longitud media resultante R̄ es una medida útil, muchas veces se utilizan
otras medidas de dispersión que resultan análogas a las utilizadas para datos en la
recta real. La más simple de estas medidas es la varianza muestral circular definida
por

V = 1− R̄,

que también satisface
0 ≤ V ≤ 1.

También podemos definir la desviación circular standard como

υ = [−2 log(1− V )]1/2 = [−2 log R̄]1/2.

Notar que υ toma valores en [0,∞] mientras que V lo hace en [0, 1].

Una manera de medir la distancia entre dos ángulos θ y ξ es considerar

1− cos(θ − ξ).

Luego, una forma de medir la dispersión de ángulos θ1, . . . , θn con respecto a un
α dado es con

D(α) =
1

n

n
∑

i=1

[1− cos(θi − α)]

y resulta que D(θ̄) = V.

2.3. Modelos Circulares

Una forma de especificar una distribución en el ćırculo unidad es por medio de su
función de distribución. Suponemos que han sido escogidas una dirección y orientación
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iniciales. Luego, podemos considerar un ángulo aleatorio Θ cuya función de distribución
F es una función definida en toda la recta real dada por

F (x) = P (0 < Θ ≤ x) 0 ≤ x ≤ 2π,

y
F (x+ 2π)− F (x) = 1 −∞ < x < ∞.

Esta última ecuación afirma que todo arco de longitud 2π en el ćırculo unidad
tiene probabilidad 1. Este arco es exactamente el peŕımetro de todo el ćırculo unidad.

Para α ≤ β ≤ α + 2π,

P (α < Θ ≤ β) = F (β)− F (α) =

∫ β

α

dF (θ). (2.4)

La función de distribución es continua a derecha. A diferencia de las funciones de
distribución en la recta se tiene que

ĺım
x→∞

F (x) = ∞, ĺım
x→−∞

F (x) = −∞.

Por definición,

F (0) = 0, F (2π) = 1.

Observemos que, aunque la función F depende de la elección de la dirección inicial,
la ecuación (2.4) muestra que F (β)−F (α) es independiente de dicha elección. Luego,
cambiar la dirección inicial sólo agrega una constante a F .

Si la función de distribución F es absolutamente continua, F tiene una función de
densidad f dada por

∫ β

α

f(θ) dθ = F (β)− F (α), −∞ < α ≤ β < ∞.

Una función f es la función de densidad de una distribución absolutamente con-
tinua si y sólo si

1. f(θ) ≥ 0 en casi todo punto de (−∞,∞),

2. f(θ + 2π) = f(θ) en casi todo punto de (−∞,∞),

3.
∫ 2π

0
f(θ) dθ = 1.

En lo que sigue describiremos algunas de las familias más importantes de distribu-
ciones en el ćırculo.
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2.3.1. Distribución Uniforme

La distribución uniforme es la distribución más básica en el ćırculo y a menudo se
utiliza como modelo nulo. Esta es la única distribución en el ćırculo que es invariante
bajo rotaciones y reflexiones. Su función de densidad es

f(θ) =
1

2π
.

Luego, para α ≤ β ≤ α + 2π

P (α < θ ≤ β) =
β − α

2π
,

es decir, la probabilidad es proporcional a la longitud de arco.

2.3.2. Distribución Von Mises

Desde el punto de vista de la inferencia estad́ıstica, una de las distribuciones de
probabilidad circulares más utilizada es la distribución Von Mises VM(µ, κ), análoga
a las distribuciones normales en la recta. Su función de densidad está dada por

f(θ;µ, κ) =
1

2πI0(κ)
eκcos(θ−µ),

donde I0 denota la función de Bessel modificada de primer tipo y orden 0, definida
por

I0(κ) =
1

2π

∫ 2π

0

eκcosθdθ.

El parámetro µ ∈ [0, 2π) es la dirección media y el parámetro κ ≥ 0 recibe el
nombre de parámetro de concentración. Esta distribución es unimodal y simétrica
con respecto a θ = µ. La moda se escuentra en θ = µ y la antimoda en θ = µ + π.
El cociente entre el valor de la densidad en la moda y el valor de la densidad en la
antimoda es e2κ, aśı que cuanto mayor sea el valor de κ, mayor será la concentración
alrededor de la moda.

En la Figura 2.3 se muestran los gráficos de varias distribuciones Von Mises para
distintos valores del parámetro κ.

Mezcla de Von Mises

Al igual que en el caso de datos lineales, las mezclas finitas de distribuciones Von
Mises, VM(µi, κi), con parámetros de mezcla pi, i = 1, . . . , n, proporcionan una clase
mucho más rica de modelos circulares.
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0
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0
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Densidad Von Mises

Figura 2.3: Densidad Von Mises VM(π, κ) para κ = 4 (rojo), κ = 2 (azul), κ = 1 (verde),
κ = 0.5 (naranja), κ = 0 (negro). Para el valor κ = 0 esta distribución coincide con la
uniforme.

Su función de densidad es

f(θ) =
n

∑

i=1

pi
1

2πI0(κi)
eκicos(θ−µi)

donde pi ≥ 0 ∀i y p1 + . . .+ pn = 1.

Utilizaremos la notación VM(µ1, µ2, κ1, κ2, p) para denotar la mezcla de dos Von
Mises, VM(µ1, κ1) y VM(µ2, κ2), con proporciones de mezcla p1 = p y p2 = 1− p.

En la Figura 2.4 se muestran los gráficos de algunas mezclas de distribuciones Von
Mises.

2.3.3. Distribución Cardioide

La perturbación de la densidad uniforme por la función coseno da lugar a una
distribución llamada cardioide C(µ, ρ), cuya función de densidad está dada por

f(θ) =
1

2π
[1 + 2ρ cos(θ − µ)], |ρ| < 1

2
.

La longitud media resultante de una distribución C(µ, ρ) es ρ y si ρ > 0, la
dirección media es µ. Esta es una distribución simétrica y unimodal con moda en µ
cuando ρ > 0. Si ρ = 0, la distribución cardioide se reduce a la uniforme.
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Figura 2.4: Mezclas de distribuciones Von Mises: a)VM(0, π, 4, 4, 0.5),
b) VM(0, π/2, 5, 5, 0.2), c) VM(2, 3, 5, 5, 0.5) y d) VM(0, π, 3, 1, 0.75)
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En la Figura 2.5 se muestran los gráficos de varias distribuciones Cardioide para
distintos valores del parámetro ρ.
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.0

5
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0
0
.1

5
0
.2

0
0
.2

5
0
.3

0

Densidad Cardioide

Figura 2.5: Densidad Cardioide C(π, ρ), para ρ = 0.5 (rojo), ρ = 0.4 (azul), ρ = 0.3 (verde),
ρ = 0.2 (naranja), ρ = 0.1 (amarillo), ρ = 0 (negro). Este último valor de ρ da lugar a la
distribución uniforme.

2.3.4. Distribución Normal Proyectada

Una manera de obtener distribuciones en el ćırculo es proyectando radialmente dis-
tribuciones en el plano. Sea x un vector aleatorio bidimensional tal que
P (x = 0) = 0. Entonces ∥x∥−1x en un punto aleatorio sobre el ćırculo unitario.
Un ejemplo interesante es cuando el vector x tiene una distribución normal bivariada
N2(µ,Σ), en cuyo caso se dice que ∥x∥−1x tiene una distribución normal proyectada
PN2(µ,Σ). Su función de densidad está dada por

f(θ;µ,Σ) =
φ2(θ;0,Σ) + |Σ|−1/2D(θ)Φ(D(θ))φ1(|Σ|−1/2)(xTΣ−1x)−1/2µ ∧ x

xTΣ−1x

donde

φ2(.;0,Σ) denota la función de densidad de N2(0,Σ),

φ1 y Φ se refieren a la función de densidad y de distribución de N(0, 1), respec-
tivamente,
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x = (cos θ, sen θ)T ,

D(θ) = x
TΣ−1

x

(xTΣ−1
x)

1/2 ,

µ ∧ x = µ1 sen θ − µ2 cos θ, con µ = (µ1, µ2)
T

2.3.5. Distribución Wrapped

Dada una distribución cualquiera en la recta real, es posible envolverla alrededor
de la circunferencia del ćırculo unitario. Es decir, si X es una variable aleatoria en la
recta, la correspondiente variable aleatoria Xω de la distribución wrapped viene dada
por

Xω = X (mod 2π).

Si el ćırculo es identificado con el conjunto de números complejos de módulo 1,
entonces la función que envuelve se puede escribir como

X 7→ eiX.

Si X tiene función de distribución F , la función de distribución Fω de Xω está dada
por

Fω(θ) =
∞
∑

k=−∞

[F (θ + 2πk)− F (2πk)], 0 ≤ θ ≤ 2π

En particular, si la variable aleatoria X tiene función de densidad f , la correspon-
diente función de densidad fω de Xω es

fω(θ) =
∞
∑

k=−∞

f(θ + 2πk).

Distribución Wrapped Normal

Como ejemplo de este último tipo de distribuciones podemos considerar la
distribución wrapped normal WN(µ, ρ), que se obtiene envolviendo en el ćırculo una
distribución N(µ, σ2), donde

σ2 = −2 log ρ
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es decir,

ρ = e−σ2/2.

Resulta entonces, que la función de densidad de una distribución WN(µ, ρ) es

φω(θ;µ, ρ) =
1

σ
√
2π

∞
∑

k=−∞

e
−(θ−µ+2πk)2

2σ2 .

2.4. Estimación por máxima verosimilitud

Supongamos que se observa un vector muestra X = (X1,X2, . . . ,Xn)
T discreto o

continuo cuya función de densidad discreta o continua pertenece a una familia p(X, λ),
λ ∈ Λ y se quiere estimar λ. Diremos que λ̂(X) es un estimador de máxima verosimilitud
de λ si se cumple que

p(X, λ̂(X)) = máx
λ∈Λ

p(X, λ).

Por lo tanto, para hallar λ̂(X) se debe maximizar la llamada función de verosimilitud
dada por

L(λ;X) = p(X, λ) = p(X1, X2, . . . , Xn, λ) =
n
∏

j=1

p(Xj, λ).

Cuando el soporte de p(X, λ) no depende de λ, como la función ln(x) es monótona
creciente, maximizar L(λ;X) resulta equivalente a maximizar lnL(λ;X), que gracias
a las propiedades del logaritmo lleva a una expresión más sencilla para hacer cálculos,
esto es

lnL(λ;X) = ln p(X, λ) =
n

∑

j=1

ln p(Xj, λ).

Veamos, por ejemplo el caso de una distribución VM(µ, κ). La función de verosimili-
tud viene dada por

L(µ, κ;θ) =
n
∏

j=1

1

2πI0(κ)
eκ cos(θj−µ) =

1

(2πI0(κ))n
e
∑n

j=1 κ cos(θj−µ).

Observemos que aqúı estamos notando con θ la muestra correspondiente a los ángulos
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de X. Luego, al tomar logaritmo nos queda

lnL(µ, κ;θ) = −n ln(2πI0(κ)) + κ
n

∑

j=1

cos(θj − µ)

= −n ln(2πI0(κ)) + κ

n
∑

j=1

[cos θj cosµ+ sen θj senµ]

= −n ln(2πI0(κ)) + κ [cosµ
n

∑

j=1

cos θj + senµ
n

∑

j=1

sen θj].

Usando las definiciones de C̄ y S̄ dadas en la Sección 2.1 y la ecuación (2.1) se
tiene

lnL(µ, κ;θ) = −n ln(2πI0(κ)) + nκ R̄ cos(θ̄ − µ).

Como la función cos(x) alcanza su valor máximo cuando x = 0, el estimador de
máxima verosimilitud de µ será

µ̂ = θ̄.

Ahora para hallar el estimador κ̂ derivamos la función anterior con respecto a κ e
igualamos a cero, obteniendo

∂ lnL(µ, κ;θ)

∂κ
= − n

I0(κ)

∂I0(κ)

∂κ
+ nR̄ cos(θ̄ − µ).

Teniendo en cuenta que
∂I0(κ)

∂κ
= I1(κ), donde

I1(κ) =
1

2π

∫ 2π

0

cos θ eκ cos θ dθ

es la función de Bessel modificada de orden 1, y llamando A(κ) =
I1(κ)

I0(κ)
, obtenemos

la ecuación

−nA(κ̂) + nR̄ cos(θ̄ − µ̂) = 0.

Si ahora reemplazamos µ̂ por θ̄, nos queda que el estimador de máxima verosimili-
tud κ̂ de κ es el valor solución de

A(κ̂) = R̄.
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Para el caso de una variable aleatoria cuya distribución corresponde a una mezcla
de k Von Mises, donde su función de densidad está dada por

f(θ) =
k

∑

i=1

pi
1

2πI0(κi)
eκicos(θ−µi) pi ≥ 0 ∀i, p1 + . . .+ pk = 1,

existen algoritmos que permiten estimar los parámetros (µ1, κ1, p1), . . . , (µk, κk, pk)
por máxima verosimilitud, aśı como también una alternativa a este método para el
caso de una mezcla de solamente dos Von Mises (ver Mardia y Jupp [10]).

Como último ejemplo consideremos una variable aleatoria con distribuciónWrapped
Cauchy WC(µ, ρ) con función de densidad

f(θ;µ, ρ) =

√

1− ∥µ∥2
2π(1− µTx)

,

donde

x = (cos θ, sen θ)T , µ =
2ρ

1 + ρ2
(cosµ, senµ)T ,

de manera tal que ∥µ∥ < 1.

La función de verosimilitud, basada en observaciones independientes θ = (θ1, . . . , θn)
T

está dada por

L(µ,θ) =
n
∏

j=1

√

1− ∥µ∥2
2π(1− µTxj)

=
(

√

1− ∥µ∥2
2π

)n
n
∏

j=1

1

1− µTxj

,

donde xj = (cos θj, sen θj)
T .

Si ahora tomamos logaritmo nos queda

lnL(µ,θ) = −n ln(2π) +
n

2
ln(1− ∥µ∥2)−

n
∑

j=1

ln(1− µTxj).

El estimador µ̂ se puede calcular usando un algoritmo iterativo (ver Mardia y
Jupp [10]) que bajo ciertas condiciones converge al estimador de máxima verosimilitud
µ̂ = (µ̂1, µ̂2)

T . Los estimadores de los parámetros originales µ y ρ están dados por

µ̂ = tan−1
( µ̂2

µ̂1

)

, ρ̂ =
1−

√

1− ∥µ̂∥2
∥µ̂∥ .
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Para el caso de variables aleatorias con distribuciones en la recta real sabemos
que, bajo condiciones de regularidad, los estimadores de máxima verosimilitud son
fuertemente consistentes y asintóticamente normales y eficientes. Recordemos que esto
último quiere decir que si λ̂(X1, . . . ,Xn) es el estimador de máxima verosimilitud de λ,
para n grande el estimador se comporta aproximadamente como si tuviese distribución
N(λ, 1/nI1(λ)), donde I1(λ) es el número de información de Fisher para X1. Es decir,
que su comportamiento es como si fuera insesgado con varianza 1/nI1(λ), que es la
menor varianza posible de acuerdo con el Teorema de Rao-Cramer.

Resultados análogos se obtienen para el caso en que la variable aleatoria tenga
distribución en el ćırculo unitario. (Ver Mardia y Jupp [10]).





Caṕıtulo 3

Estimación no paramétrica de la
densidad circular

Una caracteŕıstica básica que describe el comportamiento de una variable aleatoria
X es su función de densidad, pero en la mayoŕıa de los estudios prácticos no se la
conoce directamente. En su lugar sólo se cuenta con un conjunto de observaciones
X1, . . . ,Xn, que suponemos independientes, idénticamente distribúıdas y con función
de densidad desconocida. Un problema fundamental de la estad́ıstica es la estimación
de dicha función de densidad a partir de la información proporcionada por la muestra.
Dicho problema se puede enfocar de dos formas. Un enfoque consiste en considerar que
la función de densidad que deseamos estimar pertenece a una determinada familia,
por ejemplo, Normal, Exponencial, etc. Bajo este enfoque, la estimación se reduce a
determinar el valor de los parámetros desconocidos del modelo a partir de la muestra.
Este tipo de estimación se denomina estimación paramétrica de la densidad. Una
segunda alternativa consiste en no predeterminar a priori ninguna condición para la
función de densidad, salvo las condiciones impuestas a las funciones de densidad para
ser consideradas como tales. Este enfoque se denomina estimación no paramétrica de
la densidad y es en el que nos centraremos en este caṕıtulo.

3.1. Histograma

El método clásico para la estimación de la densidad a partir de un conjunto de
observaciones es el histograma. Si se supone X ∈ IR y se desea estimar su densidad
en el intervalo I = (a, b], el método consiste en dividir el intervalo en k subintervalos
disjuntos, del mismo largo de forma tal que la unión de los mismos sea igual a I y
contar las ocurrencias de los Xi en los intervalos.

21
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Figura 3.1: Histograma para una muestra de una variable X ∼ N(0, 1) (100 particiones)

Si llamamos Ij al j-ésimo intervalo

Ij = (a+ (j − 1)
(b− a)

k
, a+ j

(b− a)

k
],

entonces el histograma puede definirse como

ĝn(x) =
1

n

n
∑

i=1

IIj(Xi) si x ∈ Ij.

Este estimador tiene una serie de problemas, el más notable es que ĝn es continua
a trozos cuando g, por lo general, es continua. Por otra parte, es sensible tanto a
la cantidad de elementos de la partición como al punto inicial de la partición. (Ver
Figura 3.1).

3.2. Histograma móvil

Un método que intenta suavizar la estimación obtenida por el histograma es el
llamado histograma móvil. En este caso, en lugar de dividir el intervalo de interés en
subintervalos fijos, se considera, para un valor h > 0 dado, un intervalo o ventana de
ancho 2h centrado en el punto en el que se desea realizar la estimación de la densidad.
De esta forma la estimación resulta
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Figura 3.2: Histograma móvil para la muestra de la Figura 3.1 con h=0.5

ĝn(x) =
1

2nh

n
∑

i=1

I(x−h,x+h](Xi). (3.1)

Si bien esta estimación también es continua a trozos, es más suave que el histogra-
ma (ver Figura 3.2) y es quién va a dar lugar a la estimación por núcleos.

El estimador dado en (3.1) puede reescribirse de la siguiente manera:

ĝn(x) =
1

2nh

n
∑

i=1

I(x−h,x+h](Xi) =
1

nh

n
∑

i=1

1

2
I[−1,1)

(x− Xi

h

)

.

Si llamamos ω a la densidad de una variable aleatoria con distribución uniforme
en [-1,1), es decir

ω(t) =
1

2
I[−1,1)(t),

y la reemplazamos en la expresión de ĝn(x) nos queda que

ĝn(x) =
1

nh

n
∑

i=1

ω
(x− Xi

h

)

=
1

n

n
∑

i=1

1

h
ω
(x− Xi

h

)

. (3.2)

Notemos que

ω ≥ 0
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∫

ω(t) dt = 1.

Además, para cada 1 ≤ i ≤ n, tenemos que

ω
(x− Xi

h

)

=
1

2
⇔ Xi ∈ (x− h, x+ h],

es decir, la función ω le otorga un peso uniforme a todas las observaciones del intervalo
(x− h, x+ h].

3.3. Estimación por núcleos de la densidad para

datos lineales

En la Sección anterior, obtuvimos una expresión para el estimador por histogra-
ma móvil que resultará de gran utilidad para definir el estimador por núcleos de la
densidad.

Una manera de generalizar (3.2) seŕıa reemplazar la función ω por una función
continua K, no negativa y que verifique la condición

∫

K(t) dt = 1.

De esta manera obtenemos el estimador de la densidad por núcleos definido por
Rosenblatt [14] y Parzen [12] dado por

f̂n(x) =
1

n

n
∑

i=1

1

h
K
(x− Xi

h

)

, (3.3)

donde h = hn es llamado parámetro de suavizado o ancho de ventana y satisface
hn → 0 si n → ∞.

Por lo tanto, la estimación de la densidad por núcleos no es otra cosa que un
promedio ponderado por la distancia de las observaciones al punto que deseamos esti-
mar. Cuanto mayor sea la distancia de la observación al punto, menor será su peso en
la estimación. El peso lo determinarán el núcleo elegido y el valor de h. Cuanto mayor
sea el valor de h, se le dará más peso a las observaciones que se encuentren alejadas del
punto, dando resultados con un sesgo alto. Valores de h demasiado pequeños tienen
como efecto que la varianza del estimador aumente, pues son pocas las observaciones
consideradas por punto. Por lo tanto, determinar el valor de h constituye un punto
muy importante en el proceso de estimación. (Ver Figura 3.3).

Se puede demostrar que si K cumple las siguientes condiciones

K(−t) = K(t) ∀t
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∫

|K(t)|dt < ∞

|tK(t)| → 0 si |t| → ∞

se tiene que

E(f̂n(x)) → f(x) si h → 0 y V ar(f̂n(x)) → 0 si h → 0, nh → ∞,

es decir, f̂n(x) es débilmente consistente a f(x) para cada x.

A continuación, mencionaremos algunos ejemplos de posibles núcleos.

Núcleo Rectangular: es el utilizado en el caso de los histogramas móviles

K(t) =
1

2
I(−1,1](t).

Núcleo triangular: llamado aśı por su gráfica

K(t) =

{

1− |t| |t| ≤ 1
0 |t| > 1.

Núcleo Gaussiano: asociado a la densidad de una variable aleatoria con dis-
tribución N(0, 1)

K(t) = e−
1
2
t2 .

Núcleo de Epanechnikov: con este núcleo se obtienen los mejores resultados
en términos de error cuadrático medio (ECM)

K(t) =

{

3
4
(1− t2) |t| ≤ 1

0 |t| > 1.

3.4. Estimación por núcleos de la densidad para

datos circulares

En la Sección anterior, obtuvimos el estimador de la densidad por núcleos para
el caso de datos lineales. Si en lugar de tener una muestra de variables aleatorias
X1, . . . ,Xn, tenemos vectores aleatorios (q+1)-dimensionalesX1, . . . ,Xn, el estimador
(3.3) se escribe como
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Figura 3.3: Estimación de la densidad de una variable N(0, 1) (negro) por núcleo de
Epanechnikov para h = 0.02 (rojo), h = 0.5 (azul) y h = 3 (verde).

f̂n(x) =
1

nhq+1

n
∑

i=1

K[(x−Xi)/h], x ∈ IRq+1. (3.4)

Este estimador puede extenderse fácilmente a datos circulares. Al trabajar con
puntos en el ćırculo, o con datos direccionales en general, podemos medir la distancia
entre dos puntos por

∥x−Xi∥2 = (x−Xi)
T (x−Xi) = xTx− 2xTXi +XT

i Xi

= ∥x∥2 − 2xTXi + ∥Xi∥2.

Como estamos considerando el ćırculo unitario resulta que

∥x−Xi∥2 = 2− 2xTXi = 2(1− xTXi). (3.5)

Dada una muestra aleatoria de ángulos θ1, . . . , θn en [0, 2π), consideramos los vec-
tores aleatorios XT

i = (cos θi, sen θi). Para estimar la densidad circular en un ángulo
θ, Hall et al. [6] proponen el estimador por núcleos dado por

f̂n(x) =
1

n
c0(κ)

n
∑

i=1

K(κ xTXi), (3.6)
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donde xT = (cos θ, sen θ), el nuevo parámetro de suavizado κ reemplaza a h−1 y
c0(κ) se elige de manera tal que el estimador f̂n integre 1, es decir resulte también
una función de densidad. En el citado trabajo, se demuestra, mediante un cambio de
variables, que la integral de K(κ xTXi) no depende de i.

De (3.5) se deduce que si x está cerca de Xi, x − Xi es cercano a 0, pero xTXi

es cercano a 1. Luego, los estimadores (3.4) y (3.6) tienen caracteŕısticas distintas lo
que lleva a tener que usar núcleos diferentes. Una alternativa más semejante al caso
del estimador de Rosenblatt y Parzen dado en (3.4) es

f̂n(x) =
1

n
d0(κ)

n
∑

i=1

K[κ(1− xTXi)], (3.7)

donde nuevamente d0(κ) se elige de manera que el estimador integre 1.

Otro estimador posible, y con el cual vamos a trabajar en el Caṕıtulo siguiente,
es el propuesto por Bai et al. [2] dado por

f̂n(x) =
1

n
C(h)

n
∑

i=1

K[(1− xTXi)/h
2], (3.8)

eligiendo C(h) de la misma manera que en los casos anteriores.

En los trabajos citados en [6] y [2] se estudian las propiedades asintóticas de los
estimadores expuestos. En particular, Bai et al. obtienen resultados de consistencia
fuerte puntual, consistencia fuerte uniforme y consistencia fuerte en norma L1.





Caṕıtulo 4

Estimadores de mı́nima distancia
para datos circulares

Los estimadores de mı́nima distancia ocupan un lugar destacado entre las alter-
nativas robustas al método clásico de estimación puntual por máxima verosimilitud
descripto en el Caṕıtulo 2. Esto se debe a que proporcionan el valor del parámetro
buscado que más se acerca a la información suministrada por la muestra, aún en el
caso en que el modelo que hayamos asumido no represente exactamente la situación
real.

En el caso de datos lineales, la manera usual de definir un estimador de mı́nima
distancia λ̂n, es

λ̂n = argmin δ(Fn, Fλ),

donde Fn es la distribución emṕırica, Fλ es la distribución del modelo asumido, λ ∈ IRp

es el parámetro que deseamos estimar y δ es alguna discrepancia entre distribuciones.
Como en la mayoŕıa de los casos Fλ corresponde a una distribución absolutamente con-
tinua dada en términos de su función de densidad fλ, una idea natural seŕıa suavizar la
distribución emṕırica Fn y definir aśı un estimador de mı́nima distancia de la siguiente
manera

λ̂n = argmin D(f̂n, fλ) (4.1)

donde f̂n es un estimador no paramétrico de la densidad, por ejemplo el estimador
por núcleos definido en la Sección 3.3, y D es una distancia entre funciones de densi-
dad. Las elecciones estándar para D corresponden a las métricas L1, L2 y L∞, siendo
D1(f̂n, f) =

∫

|f̂n − f |, D2(f̂n, f) = (
∫

(f̂n − f)2)1/2 y D∞(f̂n, f) = supt |f̂n(t)−f(t)|.

Para evitar problemas de existencia en la definición (4.1), podemos definir el es-
timador λ̂n como cualquier valor que satisfaga

D(λ̂n, fλ̂n
) ≤ ı́nf

λ
D(f̂n, fλ) + εn (4.2)

29
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donde εn → 0 cuando n → ∞
En Cao et al. [4] se estudia la consistencia fuerte de los estimadores definidos en

(4.1), aśı como también su distribución asintótica. Por otro lado, los autores muestran
que el funcional que define los estimadores propuestos es continuo respecto de la
métrica de Prokhorov, obteniendo aśı la robustez cualitativa de los mismos. Se des-
criben, además, algunas técnicas de selección del ancho de ventana h, por ejemplo el
que usaremos en la Sección 4.2 llamado ancho de ventana de mı́nima distancia hMD.
Este valor hMD es aquel que minimiza, junto con λ̂n, la distancia entre la densidad
del modelo que hayamos asumido y su estimación por núcleos, es decir

(λ̂n, hMD) = argmin D(f̂n(·, h), fλ). (4.3)

Nuestra propuesta

Para el caso de datos circulares, podemos definir el estimador de mı́nima distancia
de la misma manera que lo hicimos en (4.1), es decir

λ̂n = argmin D(f̂n, fλ), (4.4)

donde ahora f̂n es un estimador no paramétrico de la densidad circular, definido en
la Sección 3.4.

El análisis de las propiedades y comportamiento asintótico de este tipo de esti-
madores resulta análogo al estudiado en el caso lineal por Cao et al. [4]. En la siguiente
Sección analizaremos su consistencia.

4.1. Consistencia

Vamos a considerar las siguientes hipótesis bajo las cuales es posible obtener la
consistencia fuerte del estimador propuesto.

(H1) La distancia D y el estimador no paramétrico de la densidad circular f̂n veri-
fican que D(f̂n, fλ) → 0 c.t.p.

(H2) ∀ λ0 ∈ Λ y {λr} ∈ Λ se tiene que ĺım
r→∞

D(fλ, fλr) = D(fλ, fλ0) ⇒ ĺım
r→∞

λr = λ0.

La hipótesis (H1) fue estudiada por Bai et al. [2] paraD1 yD∞. Más precisamente,
si K es acotado en IR>0 y verifica

∫

∞

0

sup{K(u) : |
√
u−

√
v| < 1}v(q−2)/2 dv < ∞,



caṕıtulo 4: Estimadores de ḿınima distancia para datos circulares 31

y si hn → 0 y
nhq

n

log n
→ ∞ cuando n → ∞, en el citado trabajo se demuestra que

D∞(f̂n, fλ) → 0 c.t.p.

Además, se demuestra que

D1(f̂n, fλ) → 0 c.t.p.,

suponiendo que hn → 0 y nhq
n → ∞ cuando n → ∞ y que

∫

∞

0
v(q−2)/2K(v) dv < ∞.

También es fácil ver que D2(f̂n, fλ) → 0 c.t.p., ya que, en nuestro caso

D2(f̂n, fλ)
2 =

∫ 2π

0

(f̂n(θ)− fλ(θ))
2 dθ =

∫ 2π

0

|f̂n(θ)− fλ(θ)|2 dθ

≤
∫ 2π

0

D∞(f̂n, fλ)
2 dθ = 2π D∞(f̂n, fλ)

2 → 0 c.t.p.

Por otro lado, si la familia de densidades fλ admite una parametrización razonable
la hipótesis (H2) queda garantizada.

Ahora estamos en condiciones de enunciar el siguiente Teorema cuya demostración
es análoga a la obtenida en Cao et al. [4].

Teorema 4.1.1. Sea {λ̂n} una sucesión de estimadores de mı́nima distancia de λ
como los definidos en (4.2). Bajo las hipótesis H1 y H2, {λ̂n} resulta fuertemente
consistente, es decir

ĺım
n→∞

λ̂n = λ c.t.p.

4.2. Estudio de Monte Carlo

En esta Sección, mostraremos los resultados de un estudio de simulación realizado
con el objeto de evaluar el estimador propuesto y de compararlo con el de máxima
verosimilitud. Usaremos como estimador de la densidad circular el dado en la ecuación
(3.8), es decir

f̂n(x) =
1

n
C(h)

n
∑

i=1

K[(1− xTXi)/h
2],

escogiendo el núcleo de Epanechnikov, de manera que el estimador f̂n resulta
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f̂n(x) =
1

n
C(h)

n
∑

i=1

3

4
[1− [(1− xTXi)/h

2]2] I(−1,1)((1− xTXi)/h
2).

Para obtener el valor de C(h), que recordemos deb́ıa ser escogido de manera tal que
el estimador f̂n integre 1, recurrimos al trabajo de Zhao y Wu [17]. Alĺı se establece
que, suponiendo que h = hn → 0 si n → ∞,

C(h)−1 ∼ λhq, con λ = 2q/2−1ωq−1

∫

∞

0
K(t) tq/2−1dt,

donde C(h)−1 ∼ λhq significa que C(h)−1/λhq → 1 si n → ∞ y

ωq−1 = 2πq/2/ Γ(q/2), q ≥ 1,

siendo Ωq ∈ IRq+1 una esfera unitaria q-dimensional en la cual toma valores la muestra
aleatoria que se está analizando.

En nuestro caso estamos considerando datos circulares, por lo tanto q = 1. Luego,

ω0 = 2π1/2/ Γ(1/2) = 2
√
π/

√
π = 2,

∫

∞

0

3

4
(1− t2)I(|t| < 1) t1/2−1dt =

∫ 1

0

3

4
(1− t2) t−1/2dt =

6

5

y

λ = 21/2−1 2
6

5
=

6

5

√
2.

Usando esta aproximación para C(h) nuestro estimador resulta

f̂n(x) =
1

nh

(6

5

√
2
)

−1
n

∑

i=1

3

4
[1− [(1− xTXi)/h

2]2] I(−1,1)((1− xTXi)/h
2). (4.5)

Para nuestro estudio hemos considerado los siguientes modelos:

Modelo 1

En cada escenario se generaron 1000 muestras de tamaño n = 100 de una variable
aleatoria con distribución VM(π/2, 2). Primero consideramos 10 valores distintos para
el parámetro de suavizado h (ver Cuadro 4.1). Luego, repetimos el estudio consideran-
do el ancho de ventana mı́nimo hMD definido en (4.3). Además, con el propósito de
evaluar el comportamiento del estimador propuesto bajo distintas contaminaciones se
generaron 1000 muestras de tamaño n = 100 para cada uno de los siguientes esquemas
de contaminación del modelo original (ver Figura 4.1):
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Contaminación 1: 0.9VM(π/2, 2) + 0.1WC(5, e−0.001)

Contaminación 2: 0.9VM(π/2, 2) + 0.1WC(π/2, e−100)

Contaminación 3: 0.9VM(π/2, 2) + 0.1WC(3π/2, e−0.05).

VM(π/2, 2) Contaminación 1

0

π

2

π

3π

2

+ 0

π

2

π

3π

2

+

Contaminación 2 Contaminación 3

0

π

2

π

3π

2

+ 0

π

2

π

3π

2

+

Figura 4.1: Gráficos correspondientes a las distribuciones del Modelo 1.

Los resultados obtenidos pueden verse en el Cuadro 4.2. Los Cuadros 4.3 y 4.4
reflejan distintas relaciones, en términos del ECM , entre los estimadores obtenidos.
En el Cuadro 4.3, puede verse la relación entre los estimadores de mı́nima distancia
y el obtenido mediante el método de máxima verosimilitud, para cada una de las
distribuciones consideradas; mientras que en el Cuadro 4.4, se manifiesta, para cada
uno de los estimadores, la relación entre el obtenido en el modelo contaminado y el
obtenido bajo el modelo sin contaminar.
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Modelo 2

Se generaron 1000 muestras de tamaño n = 100 de una variable aleatoria cuya
distribución es una mezcla de dos Von Mises VM(π/2, 3π/2, 1, 2, 0.5) (ver Figura 4.2),
considerando también en este caso distintos valores de h. Los resultados obtenidos en
la estimación pueden verse en el Cuadro 4.5. Análogamente a lo realizado en el Mo-
delo 1, en este caso también consideramos la relación existente entre los estimadores de
mı́nima distancia y los correspondientes obtenidos por máxima verosimilitud. Dicha
relación, en términos del ECM, está reflejada en el Cuadro 4.6.

0

π

2

π

3π

2

+

Figura 4.2: Gráfico correspondiente a la distribución del Modelo 2

Para analizar la efectividad del estimador propuesto, se consideraron las siguientes
medidas de resumen:

media(λ̂) =
¯̂
λ =

1

N

N
∑

j=1

λ̂j

sd(λ̂) =
1

N

N
∑

j=1

(λ̂j − ¯̂
λ)2

ECM(λ̂) =
1

N

N
∑

j=1

(λ̂j − λ0)
2,

donde λ0 representa el verdadero valor del parámetro y N = 1000 en todos los casos.

En todos los casos la distancia ”D”que hemos considerado para calcular el es-
timador de mı́nima distancia es la correspondiente a la métrica L2 y obtuvimos el
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estimador definido en (4.4) minimizando el cuadrado de dicha distancia, es decir la
función

∫ 2π

0

(f̂n(θ)− f(θ))2 dθ,

donde, haciendo un abuso de notación, llamamos f̂n(θ) al estimador de la densidad
circular definido en (4.5) con x = (cos θ, sen θ)T y f representa la densidad corres-
pondiente a la distribución considerada en cada uno de los modelos. Con el fin de
evaluar diferencias entre distintas métricas, en el Modelo 1 se consideró, además de
la ya mencionada, la métrica L1. Es decir que obtuvimos el estimador de mı́nima
distancia, pero en este caso minimizando la función

∫ 2π

0

|f̂n(θ)− f(θ)| dθ,

con f̂n y f iguales al caso anterior. En cualquiera de los dos casos, las integrales
se obtuvieron promediando el valor de la función sobre una grilla de 1000 valores
equidistantes entre 0 y 2π.

Cabe destacar que, en nuestro estudio, los parámetros estimados fueron la direc-
ción media µ en el caso del Modelo 1 y µ1, µ2 y la proporción de mezcla p en el caso
del Modelo 2. En ningún modelo se estimó el parámetro de concentración κ. Debido
a su estrecha relación con el ancho de ventana h, los resultados en la estimación del
mismo no son adecuados cuando se utilizan este tipo de estimadores, ya que se pro-
duce un problema de identificación entre el parámetro de suavizado y el parámetro
de concentración.

Para el Modelo 1, hemos inclúıdo también una comparación con los estimadores in-
troducidos por Agostinelli [1]. En el mismo, se proponen estimadores robustos basados
en máxima verosimilitud pesada para datos circulares, que se encuentra implementa-
da en la libreŕıa wle de R. El Cuadro 4.2 incluye un resumen de dichos estimadores
que denotamos con µ̂Agos. Por último, hemos comparado nuestra propuesta con una
opción intermedia que consistió en aplicar nuestro estimador de mı́nima distancia,
con distancia L1, pero tomando como parámetro de concentración κ al obtenido me-
diante la estimación propuesta por Agostinelli. Los estimadores obtenidos bajo esta
alternativa los hemos denotado por µ̂md,Agos. También consideramos apropiado in-
cluir, además de los resultados numéricos, boxplots correspondientes a cada una de
las diferentes estimaciones, con el fin de apreciar las diferencias obtenidas en cada
caso. Dichos gráficos corresponden a las Figuras 4.3, 4.4 y 4.5.
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4.3. Resultados Numéricos

h
0.01 0.706 1.403 2.1 2.796 3.493 4.19 4.886 5.583 6.28

media(µ̂) 1.5769 1.5773 1.5759 1.5650 1.5422 1.5124 1.4942 1.5022 1.5312 1.5704
sd(µ̂) 0.0955 0.0867 0.0842 0.0849 0.0841 0.0762 0.0587 0.0401 0.0271 0.0192

ECM(µ̂) 0.0091 0.0075 0.0071 0.0072 0.0078 0.0092 0.0093 0.0063 0.0023 0.0003

Cuadro 4.1: Modelo 1. Resultados de la estimación de la dirección media µ de una dis-
tribución VM(π/2, 2) para distintos valores de h.

VM(π/2, 2) µ̂md,L2 µ̂md,L1 µ̂mv µ̂Agos µ̂md,Agos

media 1.5772 1.5769 1.5777 1.5743 1.5736
sd 0.0907 0.0930 0.0820 0.0853 0.0964

ECM 0.0082 0.0086 0.0067 0.0072 0.0093

Contaminación 1 µ̂md,L2 µ̂md,L1 µ̂mv µ̂Agos µ̂md,Agos

media 1.5690 1.5716 1.5209 1.5481 1.5629
sd 0.0981 0.0958 0.1098 0.0972 0.0948

ECM 0.0096 0.0091 0.0145 0.0099 0.0090

Contaminación 2 µ̂md,L2 µ̂md,L1 µ̂mv µ̂Agos µ̂md,Agos

media 1.5714 1.5707 1.5743 1.5722 1.5688
sd 0.0997 0.1005 0.0921 0.0940 0.1001

ECM 0.0099 0.0100 0.0084 0.0088 0.0100

Contaminación 3 µ̂md,L2 µ̂md,L1 µ̂mv µ̂Agos µ̂md,Agos

media 1.5726 1.5740 1.5758 1.5716 1.5703
sd 0.0981 0.0963 0.1065 0.0984 0.0957

ECM 0.0096 0.0092 0.0113 0.0096 0.0091

Cuadro 4.2: Modelo 1. Resultados de la estimación del parámetro µ utilizando el ancho
de ventana mı́nimo hMD.

ECM(µ̂md,L2)

ECM(µ̂mv)

ECM(µ̂md,L1)

ECM(µ̂mv)

ECM(µ̂Agos)

ECM(µ̂mv)

ECM(µ̂md,Agos)

ECM(µ̂mv)
VM(π/2, 2) 1.2206 1.2806 1.0755 1.3731

Contaminación 1 0.6618 0.6316 0.6855 0.6222
Contaminación 2 1.1703 1.1890 1.0403 1.1796
Contaminación 3 0.8478 0.8169 0.8522 0.8051

Cuadro 4.3: Modelo 1. Cocientes de los ECM del estimador propuesto y del obtenido por
máxima verosimilitud.
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µ̂md,L2 µ̂md,L1 µ̂mv µ̂Agos µ̂md,Agos

Contaminación 1 1.1707 1.0581 2.1641 1.3750 0.9677
Contaminación 2 1.2073 1.1627 1.2537 1.2222 1.0752
Contaminación 3 1.1707 1.0697 1.6865 1.3333 0.9784

Cuadro 4.4: Modelo 1. Cada columna representa el cociente entre los ECM del estimador
obtenido en cada una de las distintas contaminaciones y el obtenido bajo el modelo sin
contaminar.

¯̂µ1 sd(µ̂1) ECM(µ̂1) ¯̂µ2 sd(µ̂2) ECM(µ̂2) ¯̂p sd(p̂) ECM(p̂)

h Estimación por mı́nima distancia

0.01 1.583 0.407 0.166 4.691 0.301 0.091 0.502 0.073 0.005
0.04 1.579 0.394 0.155 4.695 0.282 0.080 0.503 0.073 0.005
0.706 1.679 0.668 0.458 4.660 0.545 0.300 0.539 0.076 0.007
1 1.871 0.926 0.948 4.891 0.543 0.326 0.586 0.070 0.012

Estimación por máxima verosimilitud

1.771 0.819 0.711 4.505 0.812 0.702 0.523 0.096 0.009

Cuadro 4.5: Modelo 2. Resultados de la estimación de las direcciones medias µ1, µ2 y del
parámetro p para la distribución VM(π/2, 3π/2, 1, 2, 0.5).

h
ECM(µ̂1,md)

ECM(µ̂1,mv)

ECM(µ̂2,md)

ECM(µ̂2,mv)

ECM(p̂md)

ECM(p̂mv)
0.01 0.233 0.129 0.553
0.04 0.218 0.114 0.545
0.706 0.645 0.427 0.753
1 1.333 0.465 1.264

Cuadro 4.6: Modelo 2. Relación entre los estimadores de mı́nima distancia y los obtenidos
mediante el método de máxima verosimilitud.
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Figura 4.3: Modelo 1. Boxplots de los estimadores de µ obtenidos en el Cuadro 4.1.
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Figura 4.4: Modelo 1. Boxplots de los estimadores obtenidos en el Cuadro 4.2.
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Figura 4.5: Modelo 2. Boxplots de los estimadores obtenidos en el Cuadro 4.4.

4.4. Conclusiones

El estudio de simulación llevado a cabo, aparte de evaluar el estimador propuesto frente
a las alternativas existentes, fue diseñado para estudiar tres diferentes aspectos. Por un lado,
la sensibilidad de la elección del ancho de ventana, como aśı también el comportamiento
frente a diferentes desv́ıos del modelo original y el uso de distintas métricas.

Respecto a la elección del parámetro de suavizado necesario en el procedimiento de
estimación no paramétrico, se puede observar que el estimador de mı́nima distancia resulta
sensible a los diferentes valores del ancho de ventana. En el Modelo 1 (Cuadro 4.1 y Figura
4.3) la estimación fue adecuada para la mayoŕıa de los valores de h considerados, pero
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algunos producen estimadores sesgados. Los resultados obtenidos para el Modelo 2 (Cuadro
4.5 y Figura 4.5) producen resultados similares. Estos resultados muestran la necesidad de
utilizar un método de selección de ventana.

Para el Modelo 1, hemos implementado los estimadores introducidos en (4.3), que es-
timan los parámetros desconocidos junto con el parámetro de suavizado. Este estimador,
aparte de automatizar la elección del ancho de ventana, arroja mejores resultados (ver
Cuadro 4.2 y Figura 4.4). También hemos conservado los valores de ventana seleccionados
aunque no han sido reportados en los cuadros y figuras. En general, los valores obtenidos se
mantuvieron siempre entre 0.4 y 0.5 siendo consistentes con lo observado en la Figura 4.3.
Debido al tiempo que demanda su cálculo no hemos podido obtener resultados de selección
de ventana para el Modelo 2.

Para evaluar las propiedades de robustez del estimador propuesto se han considerado
tres contaminaciones distintas. Antes de continuar, es importante destacar que, en todos los
casos, los parámetros estimados corresponden a ángulos, tomando por lo tanto sus valores
en un intervalo acotado. Como podemos apreciar en el trabajo de Agostinelli [1] o Kato y
Eguchi [8], el principal motivo de la falta de robustez en modelos de datos circulares se debe
a perturbaciones que afectan al parámetro de concentración más que al de posición.

Por una cuestión de tiempo de cálculo nos hemos concentrado solo en el Modelo 1.
En los resultados podemos apreciar que las contaminaciones 1 y 3 fueron las que más
afectaron la estimación obtenida por máxima verosimilitud. En el caso de la Contaminación
1, en la cual se considera prácticamente una masa puntual, el buen desempeño de nuestra
propuesta queda claramente evidenciada tanto en los valores numéricos obtenidos en el
Cuadro 4.2, como en el Boxplot correspondiente representado en la Figura 4.4. En el caso
de la Contaminación 3, si bien los Boxplots no muestran una significativa diferencia entre
las distintas opciones, con respecto a la media, el efecto que causa esta contaminación en
la estimación por máxima verosimilitud queda evidenciada en el Cuadro 4.4. Alĺı puede
observarse que los cocientes que corresponden al estimador de máxima verosimilitud se
alejan bastante de 1, en relación al resto, evidenciando el creciemiento del ECM en el caso
del modelo contaminado. En la Contaminación 2, si bien el desempeño de nuestro estimador
fue satisfactorio, el Cuadro 4.3 pone de manifiesto que el estimador de máxima verosimilitud
no se ve fuertemente afectado por dicha contaminación.

Lógicamente y como se esperaba, en el Cuadro 4.3 se puede apreciar que el estimador
de mı́nima distancia pierde eficiencia frente al estimador de máxima verosimilitud bajo
el modelo sin contaminación. Lo mismo ocurre con el estimador de máxima verosimilitud
pesado propuesto por Agostinelli, que tiene un comportamiento adecuado bajo el modelo
original y bajo las Contaminaciones 2 y 3, pero que se ve afectado bajo la Contaminación
1. Como alternativa intermedia, y en caso de ser necesaria una estimación del parámetro de
concentración, hemos combinado el estimador propuesto por Agostinelli del parámetro de
concentración con nuestra propuesta, obteniendo un buen resultado como podemos apreciar
en el Cuadro 4.2 y la Figura 4.4. También es importante destacar que los estimadores de
mı́nima distancia resultan mucho más estables, en términos de ECM, que la opción por
máxima verosimiltud. Esto puede verse en el Cuadro 4.4. Los cocientes correspondientes a
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nuestra propuesta permanecen todos cercanos a 1, mientras que esto no sucede en el caso de
máxima verosimilitud, presentando mayor variabilidad. Otro de los datos a observar en el
Cuadro 4.4, es el hecho de que para cualquiera de las 3 contaminaciones, resulta más eficiente
estimar la dirección media µ utilizando un estimador del parámetro de concentración de κ,
en lugar del verdadero valor del mismo.

En lo referente al Modelo 2, podemos concluir que, análogamente a lo expuesto por Le
Cam, el estimador de máxima verosimilitud no resulta efectivo en el caso de una mezcla de
dos Von Mises (ver Cuadro 4.4 y Figura 4.5). En cambio, nuestra propuesta arroja resul-
tados satisfactorios, siempre y cuando se consideren valores de ventana pequeños. Resulta
conveniente aclarar que el notorio sesgo reflejado en la Figura 4.5 para la estimación del
parámetro de mezcla, se debe fuertemente a la necesidad computacional de calcular nuestro
estimador minimizando la distancia para distintos valores de dicho parámetro escogidos en
este caso sobre una grilla de longitud 20 equidistantes entre 0 y 1.

Finalmente, respecto a la selección de la métrica, sólo hemos comparado en el Modelo
1 la distancia L2 con la distancia L1. Si bien los Boxplots de la Figura 4.4 no arrojaron
diferencias significativas, el Cuadro 4.4 sugiere una leve ventaja de la distancia L1.
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