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Capitulo 1

Introduccion

En diversos campos surgen problemas estadisticos donde las variables aleatorias
involucradas, en lugar de tomar valores en todo IR?, toman valores en un espacio
de dimensién menor, por ejemplo en una determinada superficie. Tal es el caso en
donde, por la particularidad del problema, las variables se encuentran concentradas
en la esfera unidad. Este tipo de datos recibe el nombre de datos direccionales. Los
datos circulares constituyen el caso més simple de esta categoria y estan asocia-
dos directamente a angulos en el plano. Si, en cambio, consideramos direcciones en
el espacio, a este tipo de variables se las conoce como datos esféricos. Los mismos
se encuentran comunmente en biologia, geologia, medicina, meteorologia, ecologia,
oceanografia y muchas otras areas. Los ejemplos tipicos incluyen direcciones de vuelo
de aves, movimientos direccionales de animales en respuesta a ciertos estimulos, o las
direcciones del viento y de las corrientes marinas.

Los datos direccionales tienen una serie de caracteristicas que los hacen distintos
de los datos lineales y por tanto, el andlisis direccional es sustancialmente diferente
del andlisis estadistico “lineal” estandar ya que la propia naturaleza de los datos
obliga a replantear aspectos tan bésicos como la medicién de distancias o la inclusion
de su naturaleza periddica. El andlisis de los datos direccionales dio lugar a una
serie de nuevos problemas estadisticos que propulsaron, en los ultimos 20 anos, el
desarrollo de métodos especificos. Varios modelos paramétricos y no paramétricos
han sido ampliamente discutidos en este contexto. Para una revisién sobre este tema
ver Mardia y Jupp [10], Batschelet [3], Watson [15], Fisher [5], Rao [13], He [7], Hall
et al. [6], Bai et al. [2], entre otros.

Una practica muy comun en estadistica es suponer que los datos han sido gene-
rados por un mecanismo aleatorio y que éste puede ser representado por un miembro
de una familia paramétrica de funciones de distribucién. La caracteristica mas sobre-
saliente de estos modelos matematicos es la suposicion de que el mecanismo aleatorio
que genero las observaciones es totalmente conocido a excepcion de un parametro.



2 INTRODUCCION

Naturalmente, el principal problema en estos casos es la estimacion del pardametro des-
conocido con buenas propiedades estadisticas como sesgo pequeno o nulo y varianza
pequena. Un método que, en general, satisface estos requerimientos es el método de
maxima verosimilitud.

Sin embargo, en algunos casos el estimador de maxima verosimilitud no resul-
ta adecuado. Un ejemplo sencillo donde falla dicho método consiste en considerar
una muestra distribuida como una mezcla de dos poblaciones normales. Este y otros
ejemplos no tan sencillos son expuestos por Le Cam [9)].

Una alternativa a la estimacion por maxima verosimilitud la constituyen los esti-
madores de mimima distancia que a su vez, bajo condiciones bastante amplias, tienen
propiedades de robustez frente a desvios del modelo paramétrico considerado. Algu-
nas referencias cldsicas sobre estimadores de minima distancia pueden encontrarse en
el trabajo seminal de Wolfowitz [16] y en el trabajo de Parr y Schucany [11], mientras
que una versién suavizada fue estudiada por Cao et al. [4], siempre para datos en
espacios euclideos.

En esta tesis, definiremos estimadores de minima distancia para datos direccionales
bajo el supuesto de que las variables poseen una densidad perteneciente a una familia
paramétrica cuyos paramétros se desconocen. La propuesta es considerar una distan-
cia entre un estimador no paramétrico de la densidad para datos direccionales y la
densidad paramétrica correspondiente. Aquellos parametros que hagan minima esta
distancia es lo que definiremos como el estimador de los paramétros desconocidos.
Para el estimador definido evaluaremos su comportamiento a través de un estudio de
simulacion y estudiaremos su consitencia.

El trabajo se organiza en tres capitulos. El Capitulo 2 contiene un resumen sobre
conceptos definidos en variables aleatorias que toman valores en el circulo unitario,
asi como también algunos modelos circulares importantes. En el Capitulo 3, daremos
un breve resumen de los estimadores no paramétricos de la funcién de densidad de
variables aleatorias reales y exhibiremos su extension al caso de variables aleatorias
circulares. Por 1ultimo, en el Capitulo 4 presentaremos los estimadores de minima
distancia para el caso de datos reales y estudiaremos una propuesta para datos cir-
culares finalizando nuestro trabajo con un estudio de simulacién que permita evaluar
el comportamiento de la misma.






Capitulo 2

Datos Circulares

Los datos circulares aparecen en muchos contextos y se obtienen de diversas for-
mas. Las principales corresponden a los instrumentos de medicién circular cléasicos: la
brujula y el reloj. Entre las observaciones tipicas medidas por la brijula se encuen-
tran las direcciones del viento o las direcciones del vuelo migratorio de las aves, como
asi también, la direccion del polo magnético de la tierra. En el caso del reloj podrian
ser de interés, por ejemplo, los horarios més frecuentes de llegada de los pacientes a
la guardia de un hospital.

Las direcciones en el plano pueden representarse a través de vectores unitarios
(i.e. direcciones) o como puntos en el circulo unidad. También podriamos pensar una
direccion como un angulo o bien como un nimero complejo unitario. En estos dos
ultimos casos es preciso fijar una direccion inicial y un sentido de rotacién para evitar
ambigiiedades en la representacion. De esta manera, dado un angulo, un punto en el
plano puede representarse como,

x = (cosf,sen )"

9 — cosf + isen 6

z=¢"

Como en el caso de observaciones correspondientes a puntos sobre la recta real, una

primera forma de obtener algin tipo de informacion sobre ellos es a través de un grafi-

co. Para el caso de datos circulares, el grafico més simple es un circular raw data plot,

en el cual cada observacion esta representada por un punto en el circulo unidad. La
Figura 2.1 ilustra este método para el siguiente ejemplo:

Ejemplo 2.0.1. Se hace girar una ruleta 9 veces y se registran las posiciones en las
que se detuvo. Las mismas, medidas en  grados, resultaron  ser:
43°,45°,52°,61°,75°,88°,88°,279° y 357°. El circular raw data plot de la Figura 2.1
sugiere la tendencia de los datos hacia una direccion particular.

4
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180 + 0

270

Figura 2.1: Circular plot para los datos del Ejemplo 2.0.1

Una vez obtenido el gréafico sera de utilidad resumir la informacién mediante me-
didas estadisticas descriptivas. Resulta tentador cortar el circulo en algin punto y
hacer uso de las medidas estadisticas conocidas para el caso lineal. El problema que
trae tratar a los datos circulares de esta manera es que las medidas estadisticas re-
sultantes van a depender fuertemente del punto en que hayamos decidido cortar al
circulo. Como un ejemplo de esta situacién consideremos una muestra de sélo 2 datos,
formada por los angulos 1° y 359°. Si cortamos el circulo en el 0° obtendremos una
media igual a 180° y un desvio estandar de 179°. En cambio, si cortamos el circulo en
180°, es decir consideramos valores en el intervalo (—180°, 180°), tendremos una media
igual a 0° y un desvio estandar de 1°. Surge entonces la necesidad de definir medidas
estadisticas que sean independientes de la posicién que hayamos elegido como inicial.

En este capitulo, en las Secciones 2.1 y 2.2, presentaremos una descripcién de las
medidas de posicion, concentracion y dispersion para datos circulares. En la Secciéon
2.3, nos centraremos en las principales distribuciones circulares y finalmente, en la
Seccion 2.4, haremos referencia a la utilizacion del método de estimacion de parame-
tros desconocidos por méaxima verosimilitud en el caso de este tipo de distribuciones.

2.1. Medidas de Posicion

Sean xi, . .., X, vectores unitarios que se corresponden con los angulos 0;, j=1,.. . ,n.
Se define la direccion media 6 de 6i,...,0, como la direccién de la resultante
X1 + ...+ X,, que coincide con la direccién del centro de masa X de xy,...,x,. Dado
que las coordenadas cartesianas de x; son (cos ;,sen §,) para j=1,...,n, se tiene que
las coordenadas del centro de masa seran (C, S), donde
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C_’:

3=

icos@, S = %isené’j
i=1 j=1

Si definimos la longitud media resultante R como

R=(C?+§%)

resulta que 6 es solucion de las ecuaciones

C = Rcosf, S = Rsenf (2.1)
Esto es vélido siempre y cuando R > 0. En el caso en que R = 0, § no estd definida.

Teniendo en cuenta estas nuevas definiciones, queda claro que en el contexto de
datos circulares 6 no es lo mismo que (61 +... +8,)/n, y que § constituye una medida
méas apropiada que (01 + ... + 6,)/n ya que no depende de la eleccién de la direccién
inicial.

Ejemplo 2.1.1. Para los datos del Ejemplo 2.0.1 se tiene que C = 0.447 y S = 0.553,
por lo tanto, la direccion media 0 y la longitud media resultante son:

6=>51°y R=0.711
La Figura 2.2 muestra los resultados obtenidos para dicho conjunto de datos.

Consideremos ahora el efecto de las rotaciones sobre la direccién media. Suponga-
mos que se elige una nueva direccion inicial que forma un angulo « con la direccién
original. Entonces, ahora, los dngulos correspondientes a los datos en el nuevo sistema
de referencia seran

0; = 0; — j=1,...,n.
donde
=15 cost, 9= sent
= cos 0}, = 1se]rl "
=1 i=

Si reescribimos C’ y S’; obtenemos lo siguiente:

W1y BN 1 , i}
Cr== A — 0. —aq) = = 0. 9. _c 5
H;COS J njz:;cos( i—a) nZ[Cos ; cos at-sen 6 sen o cos a+S'sen a,

J=1
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Figura 2.2: Direccién media 6 y longitud media resultante R para los datos del Ejemplo
2.1.1

n

N 1 & 1 _ _
S =~ senf, = — sen(f;—a) = — senf; cosa—cosf;senal = S cosa—C'sen a.
n iT J n J J
j=1 j=1 '

J=1

Usando la definicién de longitud media resultante R’ para el nuevo sistema de
referencia tenemos que

R = (C?4+ 52 = [(Scosa — Csena)® + (Ccosa + Ssena)?]/?
= [S%cos’ a+ C%sen’a — 25 cosaC'sena + C? cos? a + §?sen® o + 2C cos .S sen o] /2
[(S% 4+ C?)(cos® a + sen? a))]Y/2 = [(§% + C?)]V/? = R.

Luego, B B
R' = R. (2.2)

Si las coordenadas polares de (C’, S") son (R/, '), tenemos que
C'=Rcostl, S = Rsent (2.3)

Por otro lado, si reemplazamos las ecuaciones (2.1) en las expresiones obtenidas
anteriormente para C’ y S’ nos queda que
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C'" = Rcosfcosa + Rsenfsena = Rcos(f — a)
S’ = Rsenflcosa — Reosfsena = Rsen(f — a).

y por lo tanto de (2.2) y (2.3) se deduce que

0 =0—a.

De esta forma, la direccién media de §; —a, ... ,0, —a es 6 — o, es decir, la direc-
ciéon media de la muestra es equivariante por rotaciones. Esta propiedad es analoga a
la equivariancia por traslacion de la media de un conjunto de datos lineales. La im-
portancia de haber definido en el circulo (como en la recta) una medida que cumpla
con esta propiedad, es lograr un acuerdo acerca de la ubicacién de la media muestral,
independientemente del sistema de referencia escogido.

Para ciertos casos (por ejemplo, la estimacién robusta) es 1til tener una versién
de la mediana muestral adaptada al caso de datos circulares. Se define la direccion
mediana muestral 6 de 04,....0,, como un angulo ¢ que verifique:

» la mitad de los datos caen dentro del arco [¢, ¢ + 7] vy,

= la mayoria de los datos estan mas cerca de ¢ que de ¢ + 7

Cuando el tamano de la muestra es un niimero impar, la mediana muestral coincide
con uno de los datos. Cuando es par, es conveniente tomar como mediana muestral
el punto medio entre dos datos adyacentes apropiados.

Ejemplo 2.1.2. Volvamos al ejemplo de la ruleta. Considerando las medidas obtenidas,
se puede calcular la direccion de la mediana muestral, que resulta, 6 = 52°, valor muy
cercano a la direccion media 0 = 51° que calculamos en el Ejemplo 2.1.1

2.2. Medidas de Concentraciéon y Dispersion

En la Seccién 2.1 definimos la longitud media resultante R como la longitud del
centro de masa x, dada por

R=(C?+ 5%~

Dado que x1,...,X, son vectores unitarios, se tiene que
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0<R<I
Si las direcciones 6. . . .0, estan estrechamente agrupadas, el valor de R serd muy
cercano a 1. Por otro lado, si 0;,. .. ,0,, estan muy dispersos, R tendra un valor cercano

a 0. Por lo tanto, R es una medida de concentracion del conjunto de datos. La ecuacion
(2.2) muestra que R es invariante por rotaciones.

Si bien la longitud media resultante R es una medida 1til, muchas veces se utilizan
otras medidas de dispersion que resultan analogas a las utilizadas para datos en la
recta real. La mas simple de estas medidas es la varianza muestral circular definida
por

V=1-R,

que también satisface
0<V <L

También podemos definir la desviacion circular standard como

v =[—2log(1 — V))"/? = [-2log R]"/>.

Notar que v toma valores en [0, co] mientras que V lo hace en [0, 1].

Una manera de medir la distancia entre dos angulos 6 y & es considerar

1 —cos(0 —¢&).
Luego, una forma de medir la dispersiéon de angulos 61, ..., 6, con respecto a un
a dado es con
D(@) = 137 [1 - cos(ti - a)
a) = — — cos(b; —
n -

y resulta que D(0) = V.

2.3. Modelos Circulares

Una forma de especificar una distribucion en el circulo unidad es por medio de su
funcién de distribucion. Suponemos que han sido escogidas una direccion y orientacion
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iniciales. Luego, podemos considerar un angulo aleatorio © cuya funcion de distribucion
F' es una funcién definida en toda la recta real dada por

F(z)=P0<0© <x) 0 <z <2,

Flx+2n)—F(z)=1 — 00 < < 00.

Esta tdltima ecuacién afirma que todo arco de longitud 27 en el circulo unidad
tiene probabilidad 1. Este arco es exactamente el perimetro de todo el circulo unidad.

Para a < 8 < a + 2,

B
Pla<© < B)=F(8)— F(a) = / dF(0). (2.4)

«

La funciéon de distribucién es continua a derecha. A diferencia de las funciones de
distribucion en la recta se tiene que

lim F(x) = oo, lim F(x)= —o0.
T—00 T—>—00
Por definicién,
F(0) =0, F(2r) = 1.

Observemos que, aunque la funciéon F' depende de la elecciéon de la direccién inicial,
la ecuacién (2.4) muestra que F(8) — F(«) es independiente de dicha eleccién. Luego,
cambiar la direccién inicial sélo agrega una constante a F'.

Si la funcién de distribucion F' es absolutamente continua, F' tiene una funcién de
densidad f dada por

B8
/ F0)do = F(B) - Fla),  —00<a<f<oo

Una funcién f es la funcién de densidad de una distribucién absolutamente con-
tinua si y sélo si

1. f(#) > 0 en casi todo punto de (—oo, 00),
2. f(0+27) = f(0) en casi todo punto de (—o0, ),
3. [77 f(0) db = 1.

En lo que sigue describiremos algunas de las familias més importantes de distribu-
ciones en el circulo.
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2.3.1. Distribucion Uniforme

La distribucion uniforme es la distribucion mas basica en el circulo y a menudo se
utiliza como modelo nulo. Esta es la tnica distribucion en el circulo que es invariante
bajo rotaciones y reflexiones. Su funcién de densidad es

1
f0) = o—.
27
Luego, para a < f < a+ 27
b —«
21

es decir, la probabilidad es proporcional a la longitud de arco.

Pla<0<p)=

2.3.2. Distribucion Von Mises

Desde el punto de vista de la inferencia estadistica, una de las distribuciones de
probabilidad circulares mas utilizada es la distribucion Von Mises V M (u, k), andloga
a las distribuciones normales en la recta. Su funcién de densidad esta dada por

1
f: — Keos(0—p)
f( 7ILL7K’) 27T]0<ff)6 bl
donde Iy denota la funciéon de Bessel modificada de primer tipo y orden 0, definida
por

1 o Kkcosl
Iy(k) e dp.
0

" or

El pardmetro p € [0,27) es la direccién media y el pardmetro x > 0 recibe el
nombre de pardametro de concentracion. Esta distribucién es unimodal y simétrica
con respecto a 6§ = u. La moda se escuentra en ¢ = 1 y la antimoda en 0 = u + .
El cociente entre el valor de la densidad en la moda y el valor de la densidad en la
antimoda es e**, asi que cuanto mayor sea el valor de k, mayor serd la concentracién
alrededor de la moda.

En la Figura 2.3 se muestran los graficos de varias distribuciones Von Mises para
distintos valores del parametro k.

Mezcla de Von Mises

Al igual que en el caso de datos lineales, las mezclas finitas de distribuciones Von
Mises, V M (u;, k;), con pardmetros de mezcla p;, i = 1,...,n, proporcionan una clase
mucho maés rica de modelos circulares.
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Densidad Von Mises

0.6
1

0.4
1

0.2
1

0.0

Figura 2.3: Densidad Von Mises VM (m, k) para k = 4 (rojo), k = 2 (azul), k = 1 (verde),
k = 0.5 (naranja), k = 0 (negro). Para el valor K = 0 esta distribucién coincide con la
uniforme.

Su funcién de densidad es

_ 1
0) = —— Kicos(0—pi)
f(9) Z;p TN

1=

donde p; > 0Viypi+... +p, = 1.
Utilizaremos la notacion VM (uy, pe, K1, k2, p) para denotar la mezcla de dos Von
Mises, VM (p1, k1) y VM (s, ke), con proporciones de mezcla py = py pa =1 — p.

En la Figura 2.4 se muestran los graficos de algunas mezclas de distribuciones Von
Mises.

2.3.3. Distribucion Cardioide

La perturbacién de la densidad uniforme por la funcién coseno da lugar a una
distribucién llamada cardioide C'(p, p), cuya funcién de densidad estéd dada por

1

§(0) = 51+ 20 cos(0 - ), ol < 5.

La longitud media resultante de una distribucién C'(u,p) es p y si p > 0, la
direccion media es p. Esta es una distribucién simétrica y unimodal con moda en p
cuando p > 0. Si p = 0, la distribucién cardioide se reduce a la uniforme.
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Figura 2.4: Mezclas de distribuciones Von  Mises:
b) VM(0,7/2,5,5,0.2), ¢) VM (2,3,5,5,0.5) y d) VM (0,,3,1,0.75)

a)VM(0,7,4,4,0.5),
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En la Figura 2.5 se muestran los gréaficos de varias distribuciones Cardioide para
distintos valores del parametro p.

Densidad Cardioide

000 0.05 010 0.15 020 025 0.30
1

Figura 2.5: Densidad Cardioide C(7, p), para p = 0.5 (rojo), p = 0.4 (azul), p = 0.3 (verde),
p = 0.2 (naranja), p = 0.1 (amarillo), p = 0 (negro). Este dltimo valor de p da lugar a la
distribucién uniforme.

2.3.4. Distribucién Normal Proyectada

Una manera de obtener distribuciones en el circulo es proyectando radialmente dis-
tribuciones en el plano. Sea x un vector aleatorio bidimensional tal que
P(x = 0) = 0. Entonces [|x||"'x en un punto aleatorio sobre el circulo unitario.
Un ejemplo interesante es cuando el vector x tiene una distribuciéon normal bivariada
Ny(p, X), en cuyo caso se dice que ||x||7'x tiene una distribucién normal proyectada
PNy(p,%). Su funcién de densidad estda dada por

_ 6a(6:0,5) + [ 72D(0)(D(8)) 6 ([T ) (xT T %)V A x
N xT¥ 1x

[0, %)
donde

" ¢5(.;0,3) denota la funcién de densidad de N»(0,3),

s ¢ y P se refieren a la funcién de densidad y de distribucién de N(0, 1), respec-
tivamente,
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» x = (cosf,sen )7,

_ X3
" D(Q) - (xT271X)1/27

= AX = prysent — pgcos b, con p= (1, piz)"

2.3.5. Distribucion Wrapped

Dada una distribucion cualquiera en la recta real, es posible envolverla alrededor
de la circunferencia del circulo unitario. Es decir, si X es una variable aleatoria en la
recta, la correspondiente variable aleatoria X, de la distribucion wrapped viene dada
por

X, = X (mod 27).
Si el circulo es identificado con el conjunto de niimeros complejos de médulo 1,
entonces la funcién que envuelve se puede escribir como
X e,

Si X tiene funcién de distribucién F, la funcién de distribucién F,, de X, esta dada
por

F,(0) = i [F(0 + 2rk) — F(2rk)], 0<6<2r

k=—o00

En particular, si la variable aleatoria X tiene funcion de densidad f, la correspon-
diente funcién de densidad f,, de X, es

ful0) = > f(0+ 27k).

k=—00

Distribucion Wrapped Normal

Como ejemplo de este ultimo tipo de distribuciones podemos considerar la
distribucion wrapped normal W N (i, p), que se obtiene envolviendo en el circulo una
distribucién N (i, o?), donde

o? = —2logp
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es decir,

Resulta entonces, que la funcién de densidad de una distribucién W N (u, p) es

1 L (0-pt2nk)?
¢ (0; 11, p) = > 22

ov2m ,—

2.4. Estimacién por maxima verosimilitud

Supongamos que se observa un vector muestra X = (X1, X,,..., X,,)? discreto o
continuo cuya funcién de densidad discreta o continua pertenece a una familia p(X, \),
A € Ay se quiere estimar A. Diremos que 5\(X) es un estimador de mdxima verosimilitud
de ) si se cumple que

~

p(X,A(X)) = méxp(X, A).
Por lo tanto, para hallar A(X) se debe maximizar la llamada funcidn de verosimilitud
dada por

L()HX) = p(X,)\) :p(X17X27 s aXna)\> = Hp(Xj’)‘)'

Jj=1

Cuando el soporte de p(X, A) no depende de A, como la funcién In(z) es monétona
creciente, maximizar L(\; X) resulta equivalente a maximizar In L(\; X), que gracias
a las propiedades del logaritmo lleva a una expresién mas sencilla para hacer calculos,
esto es

In LA X) =Inp(X,A) = Y Inp(X;, \).
j=1

Veamos, por ejemplo el caso de una distribucién VM (u, k). La funcién de verosimili-
tud viene dada por

n

1 1
L -0) = K cos(0;—p) _
(nr:0)=]] orlo(k) (27 1(r))"

=1

Xy e cos(0;— 1)

Observemos que aqui estamos notando con 6 la muestra correspondiente a los angulos
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de X. Luego, al tomar logaritmo nos queda
InL(p,k;0) = —nln(2rly(k)) + K Z cos(6; — )
j=1

= —nln2rly(k)) + K Z [cos 0 cos p1 + sen 6 sen ]
j=1

= —nln(2rly(k)) + k [cosp Z cos 0; + sen Z sen 6;].

j=1 j=1

Usando las definiciones de C'y S dadas en la Seccién 2.1 y la ecuacién (2.1) se
tiene

In L(y, k;0) = —nIn(27ly(k)) + nk Recos(d — ).

Como la funcién cos(x) alcanza su valor maximo cuando = = 0, el estimador de
maxima verosimilitud de u serd

f=0.

Ahora para hallar el estimador & derivamos la funcién anterior con respecto a x e
igualamos a cero, obteniendo

0ln L(p, k; 0) n  0ly(k) _ -
= — 0— ).
EP (k) Ox + nRcos(6 — )
1
Teniendo en cuenta que 0 é)(m) = I1(k), donde
K
1 2
Li(k) = %/o cos B % dg
es la funcién de Bessel modificada de orden 1, y llamando A(k) = IIEIZ)’ obtenemos
0

la ecuacion

—nA(k) +nRcos(d — i) = 0.

Si ahora reemplazamos [i por 6, nos queda que el estimador de maxima verosimili-
tud & de k es el valor solucién de

A(R) = R.
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Para el caso de una variable aleatoria cuya distribucién corresponde a una mezcla
de k£ Von Mises, donde su funciéon de densidad estd dada por

k
Z 1 , L ,
— pi—eﬂ1C08(9 /‘L’L) pZ Z O \v//l’ pl _'_ . +pk — 1’
— 2m ],

0(1‘%)

existen algoritmos que permiten estimar los pardmetros (p1,K1,p1),- - -, (g, Kk Dk)
por maxima verosimilitud, asi como también una alternativa a este método para el
caso de una mezcla de solamente dos Von Mises (ver Mardia y Jupp [10]).

Como ultimo ejemplo consideremos una variable aleatoria con distribucion Wrapped
Cauchy WC(p, p) con funcién de densidad

1 — [|p]?
0; ==
donde
2p

= (cos 0, sen 6)7, n= 5 (cos 1, sen w)t,

14p
de manera tal que ||p| < 1.

La funcién de verosimilitud, basada en observaciones independientes @ = (6, ..., 0,)"
estd dada por

)

H\/l—HuP <\/1—Hu!\2>"ﬁ 1
27(1 — p'x;) 27 jzll—uTXj

donde x; = (cosf;,sen 6;)7.

Si ahora tomamos logaritmo nos queda
InL(p,0) = —nln(27) + 3 ln 1 — ||| Zln (1 — p'x;).

El estimador fx se puede calcular usando un algoritmo iterativo (ver Mardia y
Jupp [10]) que bajo ciertas condiciones converge al estimador de maxima verosimilitud
i = (fi1, fiz)T. Los estimadores de los parametros originales u y p estdn dados por

uz) P 1— 1 |a?

fa B g

= tan~ (
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Para el caso de variables aleatorias con distribuciones en la recta real sabemos
que, bajo condiciones de regularidad, los estimadores de maxima verosimilitud son
fuertemente consistentes y asintéticamente normales y eficientes. Recordemos que esto
ultimo quiere decir que si S\(Xl, ..., Xp) es el estimador de maxima verosimilitud de A,
para n grande el estimador se comporta aproximadamente como si tuviese distribucion
N(X, 1/nl (M), donde 1 () es el nimero de informacién de Fisher para X;. Es decir,
que su comportamiento es como si fuera insesgado con varianza 1/nl(\), que es la
menor varianza posible de acuerdo con el Teorema de Rao-Cramer.

Resultados andlogos se obtienen para el caso en que la variable aleatoria tenga
distribucion en el circulo unitario. (Ver Mardia y Jupp [10]).






Capitulo 3

Estimacion no paramétrica de la
densidad circular

Una caracteristica basica que describe el comportamiento de una variable aleatoria
X es su funcion de densidad, pero en la mayoria de los estudios practicos no se la
conoce directamente. En su lugar sélo se cuenta con un conjunto de observaciones
X1, ..., Xy, que suponemos independientes, idénticamente distribuidas y con funcion
de densidad desconocida. Un problema fundamental de la estadistica es la estimacién
de dicha funcion de densidad a partir de la informacién proporcionada por la muestra.
Dicho problema se puede enfocar de dos formas. Un enfoque consiste en considerar que
la funcién de densidad que deseamos estimar pertenece a una determinada familia,
por ejemplo, Normal, Exponencial, etc. Bajo este enfoque, la estimacion se reduce a
determinar el valor de los parametros desconocidos del modelo a partir de la muestra.
Este tipo de estimacion se denomina estimacion paramétrica de la densidad. Una
segunda alternativa consiste en no predeterminar a priori ninguna condiciéon para la
funcién de densidad, salvo las condiciones impuestas a las funciones de densidad para
ser consideradas como tales. Este enfoque se denomina estimacion no paramétrica de
la densidad y es en el que nos centraremos en este capitulo.

3.1. Histograma

El método cléasico para la estimacion de la densidad a partir de un conjunto de
observaciones es el histograma. Si se supone X € IR y se desea estimar su densidad
en el intervalo I = (a, b], el método consiste en dividir el intervalo en k subintervalos
disjuntos, del mismo largo de forma tal que la unién de los mismos sea igual a [y
contar las ocurrencias de los X; en los intervalos.

21
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300 400
1 |

Frequency
200
|

Figura 3.1: Histograma para una muestra de una variable X ~ N(0, 1) (100 particiones)

Si llamamos I; al j-ésimo intervalo

(b—a) (b—a)
L 7G+JT]>

Li=(a+(j—-1)

entonces el histograma puede definirse como

17’L
Jn(x) = — I (X; ' L.
) =3 0K i el

Este estimador tiene una serie de problemas, el més notable es que g, es continua
a trozos cuando g, por lo general, es continua. Por otra parte, es sensible tanto a
la cantidad de elementos de la particién como al punto inicial de la particién. (Ver
Figura 3.1).

3.2. Histograma moévil

Un método que intenta suavizar la estimaciéon obtenida por el histograma es el
llamado histograma movil. En este caso, en lugar de dividir el intervalo de interés en
subintervalos fijos, se considera, para un valor h > 0 dado, un intervalo o ventana de
ancho 2h centrado en el punto en el que se desea realizar la estimacion de la densidad.
De esta forma la estimacién resulta
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0.1

0.0

-4 -2 0 2 4

Figura 3.2: Histograma moévil para la muestra de la Figura 3.1 con h=0.5

. 1 o
gn(x) = h ;I(xh,x+h}(Xi)- (3.1)

Si bien esta estimacion también es continua a trozos, es mas suave que el histogra-
ma (ver Figura 3.2) y es quién va a dar lugar a la estimacién por nucleos.

El estimador dado en (3.1) puede reescribirse de la siguiente manera:

1 & 1 — 1 r— X;
G (2) = ——S T (X)) = — S =T ( )
g (.T) 2nh ; ( h, -‘rh}( ) nh ; 2 [ 171) h

Si llamamos w a la densidad de una variable aleatoria con distribucién uniforme
en [-1,1), es decir

1

w(t) = 51[_1,1)(75);

y la reemplazamos en la expresion de g,(x) nos queda que

)= 2 o) = 1 () 2

1=

Notemos que

nw>0



24 CAPITULO 3: ESTIMACION NO PARAMETRICA DE LA DENSIDAD CIRCULAR

» [w(t)dt =1

Ademas, para cada 1 < i < n, tenemos que

Xy 1
w(m . ):5 o X € (x—hx+h

es decir, la funcién w le otorga un peso uniforme a todas las observaciones del intervalo
(x — h,x + hl.

3.3. Estimacion por nucleos de la densidad para
datos lineales

En la Seccién anterior, obtuvimos una expresién para el estimador por histogra-
ma movil que resultara de gran utilidad para definir el estimador por nicleos de la
densidad.

Una manera de generalizar (3.2) serfa reemplazar la funcién w por una funcién
continua K, no negativa y que verifique la condicién [ K (t) dt = 1.

De esta manera obtenemos el estimador de la densidad por nicleos definido por
Rosenblatt [14] y Parzen [12] dado por

ho =3 k(5

donde h = h, es llamado pardmetro de suavizado o ancho de ventana y satisface
h, — 0 si n — oc.

), (3.3)

Por lo tanto, la estimacién de la densidad por ntcleos no es otra cosa que un
promedio ponderado por la distancia de las observaciones al punto que deseamos esti-
mar. Cuanto mayor sea la distancia de la observacién al punto, menor serd su peso en
la estimacién. El peso lo determinaran el nicleo elegido y el valor de h. Cuanto mayor
sea el valor de h, se le dard més peso a las observaciones que se encuentren alejadas del
punto, dando resultados con un sesgo alto. Valores de h demasiado pequenos tienen
como efecto que la varianza del estimador aumente, pues son pocas las observaciones
consideradas por punto. Por lo tanto, determinar el valor de A constituye un punto
muy importante en el proceso de estimacién. (Ver Figura 3.3).

Se puede demostrar que si K cumple las siguientes condiciones

« K(—t) = K(t)Vt
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» tK(t)] =0 si |t| — o0

se tiene que

~

E(fo(z) = f(2)sih =0 y  Var(fo(x)) = 0si h — 0,nh — oo,

es decir, fn(x) es débilmente consistente a f(x) para cada x.

A continuacién, mencionaremos algunos ejemplos de posibles ntcleos.

Nicleo Rectangular: es el utilizado en el caso de los histogramas moviles

)

K(t) = %f(—l 1 (1).

Nicleo triangular: llamado asi por su grafica

) 1=t it <1
K@)—{o 1 > 1.

Nicleo Gaussiano: asociado a la densidad de una variable aleatoria con dis-
tribucién N(0, 1)

K(t)=e 2"

Nucleo de Epanechnikov: con este nicleo se obtienen los mejores resultados
en términos de error cuadratico medio (ECM)

- <
K(t):{o 1 > 1

3.4. Estimaciéon por nucleos de la densidad para
datos circulares

En la Seccién anterior, obtuvimos el estimador de la densidad por ntcleos para
el caso de datos lineales. Si en lugar de tener una muestra de variables aleatorias
Xi, ..., X,, tenemos vectores aleatorios (¢+1)-dimensionales Xy, ..., X, el estimador
(3.3) se escribe como
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0.4

0.3

0.2

0.1

0.0
1

Figura 3.3: Estimacién de la densidad de una variable N(0,1) (negro) por nicleo de
Epanechnikov para h = 0.02 (rojo), h = 0.5 (azul) y h = 3 (verde).

N

fulk) = = S Kl Xo/H, xe me (3.4)

Este estimador puede extenderse facilmente a datos circulares. Al trabajar con
puntos en el circulo, o con datos direccionales en general, podemos medir la distancia
entre dos puntos por

e = Xill* = (= X)"(x = X)) = xx - X, + XTX
= x)? = 2xTX A+ X%

Como estamos considerando el circulo unitario resulta que

[x — X;||? =2 —2x"X; = 2(1 — x'X,). (3.5)

Dada una muestra aleatoria de dngulos 6y, ..., 0, en [0, 27), consideramos los vec-
tores aleatorios X! = (cos#;,sen 6;). Para estimar la densidad circular en un angulo
6, Hall et al. [6] proponen el estimador por nucleos dado por

~

fa(x) = % co(k) Z K(k x"X,), (3.6)
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donde x* = (cosf,senf), el nuevo parametro de suavizado s reemplaza a h™! y
co(K) se elige de manera tal que el estimador fn integre 1, es decir resulte también
una funcién de densidad. En el citado trabajo, se demuestra, mediante un cambio de
variables, que la integral de K (x x7X;) no depende de i.

De (3.5) se deduce que si x estd cerca de X;, x — X; es cercano a 0, pero x? X,
es cercano a 1. Luego, los estimadores (3.4) y (3.6) tienen caracteristicas distintas lo
que lleva a tener que usar nucleos diferentes. Una alternativa mas semejante al caso
del estimador de Rosenblatt y Parzen dado en (3.4) es

A

Fo(x) = % o) " K s(1 = XX, (3.7)

donde nuevamente dy(k) se elige de manera que el estimador integre 1.

Otro estimador posible, y con el cual vamos a trabajar en el Capitulo siguiente,
es el propuesto por Bai et al. [2] dado por

~

fulx) = = C(0) 3 K[ = x"X0) /1), (3.5)

eligiendo C'(h) de la misma manera que en los casos anteriores.

En los trabajos citados en [6] y [2] se estudian las propiedades asintéticas de los
estimadores expuestos. En particular, Bai et al. obtienen resultados de consistencia
fuerte puntual, consistencia fuerte uniforme y consistencia fuerte en norma L!.






Capitulo 4

Estimadores de minima distancia
para datos circulares

Los estimadores de minima distancia ocupan un lugar destacado entre las alter-
nativas robustas al método clasico de estimacion puntual por maxima verosimilitud
descripto en el Capitulo 2. Esto se debe a que proporcionan el valor del parametro
buscado que mas se acerca a la informaciéon suministrada por la muestra, ain en el
caso en que el modelo que hayamos asumido no represente exactamente la situacion
real.

En el caso de datos lineales, la manera usual de definir un estimador de minima
distancia A, €S

An = argmin §(F,, F)),
donde F), es la distribuciéon empirica, F) es la distribucion del modelo asumido, A € IR
es el parametro que deseamos estimar y J es alguna discrepancia entre distribuciones.
Como en la mayoria de los casos F) corresponde a una distribucién absolutamente con-
tinua dada en términos de su funcion de densidad fy, una idea natural seria suavizarla
distribucién empirica F), y definir asi un estimador de minima distancia de la siguiente
manera A )

An = argmin D(f,, ) (4.1)
donde fn es un estimador no paramétrico de la densidad, por ejemplo el estimador
por nicleos definido en la Seccién 3.3, y D es una distancia entre funciones de densi-
dad. Las elecciones estdndar para D corresponden a las métricas L', L? y L™, siendo

Di(fus ) = [1fu = fl, Da(fur £) = (f (fu — )% ¥ Doo(fur ) = sup, | ful(t) — £ (1))

Para evitar problemas de existencia en la definicién (4.1), podemos definir el es-
timador A, como cualquier valor que satisfaga

D\, f5,) < f D(fu, f2) +éen (4.2)

29
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donde g, — 0 cuando n — oo

En Cao et al. [4] se estudia la consistencia fuerte de los estimadores definidos en
(4.1), asi como también su distribucién asintdtica. Por otro lado, los autores muestran
que el funcional que define los estimadores propuestos es continuo respecto de la
métrica de Prokhorov, obteniendo asi la robustez cualitativa de los mismos. Se des-
criben, ademés, algunas técnicas de seleccion del ancho de ventana h, por ejemplo el
que usaremos en la Seccién 4.2 llamado ancho de ventana de minima distancia hyp.
Este valor hy;p es aquel que minimiza, junto con ;\n, la distancia entre la densidad
del modelo que hayamos asumido y su estimacion por ntcleos, es decir

(An, harp) = argmin D(fo (-, h), f). (4.3)

Nuestra propuesta

Para el caso de datos circulares, podemos definir el estimador de minima distancia
de la misma manera que lo hicimos en (4.1), es decir

j\n = argmin D(fn, ), (4.4)

donde ahora fn es un estimador no paramétrico de la densidad circular, definido en
la Seccion 3.4.

El analisis de las propiedades y comportamiento asintotico de este tipo de esti-
madores resulta andlogo al estudiado en el caso lineal por Cao et al. [4]. En la siguiente
Seccién analizaremos su consistencia.

4.1. Consistencia

Vamos a considerar las siguientes hipotesis bajo las cuales es posible obtener la
consistencia fuerte del estimador propuesto.

(H1) La distancia D y el estimador no paramétrico de la densidad circular fn veri-
fican que D(f,, fx) = 0 c.t.p.

(H2) V Ao € Ay {\} € A se tiene que lim D(fy, fr.) = D(fr, fro) = lm A, = Ao.

La hipdtesis (H1) fue estudiada por Bai et al. [2] para Dy y Ds,. Mas precisamente,
si K es acotado en IR~ y verifica

/ sup{K (u) : [vu — vv| < 13097272 dy < oo,
0
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q
n

ysih, =0y — oo cuando n — 00, en el citado trabajo se demuestra que

logn
Doo(fn, fr)— 0 ctp.

Ademas, se demuestra que

Dl(fn,f,\) —0 ct.p.,

suponiendo que h, — 0 y nhg — oo cuando n — oo y que [;° 022K (v) dv < oo.

También es facil ver que Da(f,, fr) — 0 c.t.p., ya que, en nuestro caso

Dolfus 1)’ = / " (Ful6) — 11(6)) db = / C17(6) — SO do

< Doo(fo, £)2 d0 = 27 Doo(fon, )2 = 0 c.tp.
0

Por otro lado, si la familia de densidades f) admite una parametrizacion razonable
la hipétesis (H2) queda garantizada.

Ahora estamos en condiciones de enunciar el siguiente Teorema cuya demostracion
es andloga a la obtenida en Cao et al. [4].

Teorema 4.1.1. Sea {S\n} una sucesion de estimadores de minima distancia de A
como los definidos en (4.2). Bajo las hipdtesis H1 y H2, {\,} resulta fuertemente
consistente, es decir

lim A, = A c.t.p.

n—oo

4.2. Estudio de Monte Carlo

En esta Seccién, mostraremos los resultados de un estudio de simulacion realizado
con el objeto de evaluar el estimador propuesto y de compararlo con el de maxima

verosimilitud. Usaremos como estimador de la densidad circular el dado en la ecuacién
(3.8), es decir

~

Fux) = - O YD K1 = xTX0) /12,

escogiendo el niucleo de Epanechnikov, de manera que el estimador fn resulta
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n
N

Fa =3 )y

=1

1= (1 =x"X) /PP Loy (1= 7 X5) /12).

1w

Para obtener el valor de C'(h), que recordemos debia ser escogido de manera tal que
el estimador f, integre 1, recurrimos al trabajo de Zhao y Wu [17]. Alli se establece
que, suponiendo que h = h,, — 0 si n — oo,

C(h)™ ~ Ah?, con X = 2927wy [ K (1) 19271,
donde C(h)~ ~ \h significa que C'(h)™1/Ah? — 1sin — oo y
we1 =277/ T(q/2), q>1,

siendo €, € IR una esfera unitaria ¢g-dimensional en la cual toma valores la muestra
aleatoria que se estd analizando.

En nuestro caso estamos considerando datos circulares, por lo tanto ¢ = 1. Luego,

wo =272/ T(1/2) = 2v/m/v/7w = 2,
o] 1
/ §(1 — ) I(Jt| < 1) t1/2_1dt:/ §(1 — %)t 2at _ 0
0 o 4 5

4
' 6 6
A=2V19 — = —\2
5 5 v
Usando esta aproximacién para C'(h) nuestro estimador resulta
Fu0 = L (Sva) S 2 - X (- XX, (05)
n nh \5 - 4 i (-1,1) 7 . .
Para nuestro estudio hemos considerado los siguientes modelos:
Modelo 1

En cada escenario se generaron 1000 muestras de tamano n = 100 de una variable
aleatoria con distribucion V M (7 /2, 2). Primero consideramos 10 valores distintos para
el parametro de suavizado h (ver Cuadro 4.1). Luego, repetimos el estudio consideran-
do el ancho de ventana minimo hy;p definido en (4.3). Ademads, con el propédsito de
evaluar el comportamiento del estimador propuesto bajo distintas contaminaciones se
generaron 1000 muestras de tamano n = 100 para cada uno de los siguientes esquemas
de contaminacién del modelo original (ver Figura 4.1):
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» Contaminacién 1: 0.9V M (7 /2,2) + 0.1WC(5, e 001)
» Contaminacién 2: 0.9V M (7/2,2) + 0.1WC(x/2, e 1)
» Contaminacién 3: 0.9V M (7/2,2) + 0.1WC(37/2,e70%).

VM(m/2,2) Contaminacién 1

Contaminacién 2 Contaminacién 3

Figura 4.1: Gréficos correspondientes a las distribuciones del Modelo 1.

Los resultados obtenidos pueden verse en el Cuadro 4.2. Los Cuadros 4.3 y 4.4
reflejan distintas relaciones, en términos del EC' M, entre los estimadores obtenidos.
En el Cuadro 4.3, puede verse la relacién entre los estimadores de minima distancia
y el obtenido mediante el método de méaxima verosimilitud, para cada una de las
distribuciones consideradas; mientras que en el Cuadro 4.4, se manifiesta, para cada
uno de los estimadores, la relaciéon entre el obtenido en el modelo contaminado y el
obtenido bajo el modelo sin contaminar.
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Modelo 2

Se generaron 1000 muestras de tamano n = 100 de una variable aleatoria cuya
distribucion es una mezcla de dos Von Mises VM (7/2,37/2,1,2,0.5) (ver Figura 4.2),
considerando también en este caso distintos valores de h. Los resultados obtenidos en
la estimacién pueden verse en el Cuadro 4.5. Anélogamente a lo realizado en el Mo-
delo 1, en este caso también consideramos la relacion existente entre los estimadores de
minima distancia y los correspondientes obtenidos por maxima verosimilitud. Dicha
relacion, en términos del ECM, esté reflejada en el Cuadro 4.6.

Figura 4.2: Gréfico correspondiente a la distribucién del Modelo 2

Para analizar la efectividad del estimador propuesto, se consideraron las siguientes
medidas de resumen:

donde A\ representa el verdadero valor del parametro y N = 1000 en todos los casos.

En todos los casos la distancia ”"D”que hemos considerado para calcular el es-
timador de minima distancia es la correspondiente a la métrica L? y obtuvimos el
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estimador definido en (4.4) minimizando el cuadrado de dicha distancia, es decir la
funcion

/O " (a(0) — £(0))* db,

donde, haciendo un abuso de notacién, llamamos fn(G) al estimador de la densidad
circular definido en (4.5) con x = (cosf,sen )’ y f representa la densidad corres-
pondiente a la distribucién considerada en cada uno de los modelos. Con el fin de
evaluar diferencias entre distintas métricas, en el Modelo 1 se considerd, ademas de
la ya mencionada, la métrica L'. Es decir que obtuvimos el estimador de minima
distancia, pero en este caso minimizando la funcién

/ A0 = £(0) o,

con fn y f iguales al caso anterior. En cualquiera de los dos casos, las integrales
se obtuvieron promediando el valor de la funcién sobre una grilla de 1000 valores
equidistantes entre 0 y 27.

Cabe destacar que, en nuestro estudio, los parametros estimados fueron la direc-
cion media p en el caso del Modelo 1y py, e y la proporcién de mezcla p en el caso
del Modelo 2. En ningtin modelo se estimoé el parametro de concentracién . Debido
a su estrecha relacion con el ancho de ventana h, los resultados en la estimaciéon del
mismo no son adecuados cuando se utilizan este tipo de estimadores, ya que se pro-
duce un problema de identificacién entre el parametro de suavizado y el parametro
de concentracion.

Para el Modelo 1, hemos incluido también una comparaciéon con los estimadores in-
troducidos por Agostinelli [1]. En el mismo, se proponen estimadores robustos basados
en maxima verosimilitud pesada para datos circulares, que se encuentra implementa-
da en la libreria wle de R. El Cuadro 4.2 incluye un resumen de dichos estimadores
que denotamos con fiages. Por ultimo, hemos comparado nuestra propuesta con una
opcién intermedia que consistié en aplicar nuestro estimador de minima distancia,
con distancia L', pero tomando como parametro de concentracién s al obtenido me-
diante la estimacién propuesta por Agostinelli. Los estimadores obtenidos bajo esta
alternativa los hemos denotado por fimq a40s- También consideramos apropiado in-
cluir, ademas de los resultados numéricos, boxplots correspondientes a cada una de
las diferentes estimaciones, con el fin de apreciar las diferencias obtenidas en cada
caso. Dichos graficos corresponden a las Figuras 4.3, 4.4 y 4.5.
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4.3.

Resultados Numéricos

0.01 0.706

1.403

2.1

h

2.796

3.493

4.19 4

886 5.583

6.28

media(ft) | 1.5769 1.5773

sd(j)
ECM(j)

0.0091

1.5759

1.5650
0.0955 0.0867 0.0842 0.0849 0.0841
0.0075 0.0071

1.5422

1.5124

1.4942 1.
0.0762 0.0587 0.0401
0.0072 0.0078 0.0092 0.0093 0.0063 0.0023

5022 1.5312

0.0271

1.5704
0.0192
0.0003

Cuadro 4.1: Modelo 1. Resultados de la estimacién de la direccién media u de una dis-

tribucién V.M (7/2,2) para distintos valores de h.

VM("T/Z 2) ﬂmd,L2 /lmd,L1 P ﬂAgos /lmd,Agos

media 1.5772 1.5769 1.5777 1.5743  1.5736

sd 0.0907 0.0930 0.0820 0.0853  0.0964

ECM 0.0082 0.0086 0.0067 0.0072  0.0093
Contaminacion 1 | figr2  flmart  fw fAgos  Fmd,Agos

media 1.5690 1.5716 1.5209 1.5481  1.5629

sd 0.0981 0.0958 0.1098 0.0972  0.0948

ECM 0.0096 0.0091 0.0145 0.0099 0.0090
Contaminacién 2 fomd, 2 fmd,Lt fhm fAgos  Fmd,Agos

media 1.5714 1.5707 1.5743 1.5722  1.5688

sd 0.0997 0.1005 0.0921 0.0940 0.1001

ECM 0.0099 0.0100 0.0084 0.0088 0.0100
Contaminacion 3 ﬂmd, 12 ﬂmd7 I Ly fAgos  Fmd,Agos

media 1.5726 1.5740 1.5758 1.5716  1.5703

sd 0.0981 0.0963 0.1065 0.0984  0.0957

ECM 0.0096 0.0092 0.0113 0.0096 0.0091

Cuadro 4.2: Modelo 1. Resultados de la estimacién del pardmetro p utilizando el ancho

de ventana minimo hy/p.

ECM(/lmd,LQ) ECM(/lmd,Ll) ECM(ﬂAgos) EOM(/lmd,Agos)
ECM(,&mv) ECM(,&mv) ECM(ﬂmv) ECM(/lmv)
VM(m/2,2) 1.2206 1.2806 1.0755 1.3731
Contaminacién 1 0.6618 0.6316 0.6855 0.6222
Contaminacion 2 1.1703 1.1890 1.0403 1.1796
Contaminacién 3 0.8478 0.8169 0.8522 0.8051

Cuadro 4.3: Modelo 1. Cocientes de los ECM del estimador propuesto y del obtenido por

maxima verosimilitud.
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Mmd, L2 Hmd,L! Hmoy HAgos  Hmd,Agos

Contaminacién 1 | 1.1707 1.0581 2.1641 1.3750  0.9677
Contaminacién 2 | 1.2073 1.1627 1.2537 1.2222  1.0752
Contaminacién 3 | 1.1707 1.0697 1.6865 1.3333 0.9784

Cuadro 4.4: Modelo 1. Cada columna representa el cociente entre los ECM del estimador
obtenido en cada una de las distintas contaminaciones y el obtenido bajo el modelo sin

contaminar.
o sd(in) ECM(in) i sd(in) ECM()  p  sd(p) ECM(p)

h Estimacién por minima distancia
0.01 | 1.583 0.407 0.166 4.691 0.301 0.091 0.502 0.073 0.005
0.04 | 1.579 0.394 0.155 4.695 0.282 0.080 0.503 0.073 0.005
0.706 | 1.679  0.668 0.458 4.660 0.545 0.300 0.539 0.076 0.007
1 1.871  0.926 0.948 4.891 0.543 0.326 0.586 0.070 0.012

Estimacién por maxima verosimilitud

1.771  0.819 0.711 4.505 0.812 0.702 0.523 0.096 0.009

Cuadro 4.5: Modelo 2. Resultados de la estimacion de las direcciones medias p1, po y del
pardametro p para la distribuciéon VM (7 /2,37/2,1,2,0.5).

ECM (jiyma) ECM(fizma) ECM (pmad)

ECM(ﬂl,mv) ECM(ﬂva) ECM(ﬁmv)

0.01
0.04
0.706

0.233 0.129 0.553
0.218 0.114 0.545
0.645 0.427 0.753
1.333 0.465 1.264

Cuadro 4.6: Modelo 2. Relacién entre los estimadores de minima distancia y los obtenidos
mediante el método de maxima verosimilitud.
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Figura 4.3: Modelo 1. Boxplots de los estimadores de p obtenidos en el Cuadro 4.1.
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Figura 4.4: Modelo 1.

Boxplots de los estimadores obtenidos en el Cuadro 4.2.
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Figura 4.5: Modelo 2. Boxplots de los estimadores obtenidos en el Cuadro 4.4.

4.4. Conclusiones

El estudio de simulacién llevado a cabo, aparte de evaluar el estimador propuesto frente
a las alternativas existentes, fue disenado para estudiar tres diferentes aspectos. Por un lado,
la sensibilidad de la elecciéon del ancho de ventana, como asi también el comportamiento
frente a diferentes desvios del modelo original y el uso de distintas métricas.

Respecto a la eleccién del pardametro de suavizado necesario en el procedimiento de
estimacién no paramétrico, se puede observar que el estimador de minima distancia resulta
sensible a los diferentes valores del ancho de ventana. En el Modelo 1 (Cuadro 4.1 y Figura
4.3) la estimacién fue adecuada para la mayoria de los valores de h considerados, pero
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algunos producen estimadores sesgados. Los resultados obtenidos para el Modelo 2 (Cuadro
4.5 y Figura 4.5) producen resultados similares. Estos resultados muestran la necesidad de
utilizar un método de seleccién de ventana.

Para el Modelo 1, hemos implementado los estimadores introducidos en (4.3), que es-
timan los pardametros desconocidos junto con el pardmetro de suavizado. Este estimador,
aparte de automatizar la eleccién del ancho de ventana, arroja mejores resultados (ver
Cuadro 4.2 y Figura 4.4). También hemos conservado los valores de ventana seleccionados
aunque no han sido reportados en los cuadros y figuras. En general, los valores obtenidos se
mantuvieron siempre entre 0.4 y 0.5 siendo consistentes con lo observado en la Figura 4.3.
Debido al tiempo que demanda su calculo no hemos podido obtener resultados de seleccion
de ventana para el Modelo 2.

Para evaluar las propiedades de robustez del estimador propuesto se han considerado
tres contaminaciones distintas. Antes de continuar, es importante destacar que, en todos los
casos, los pardmetros estimados corresponden a dngulos, tomando por lo tanto sus valores
en un intervalo acotado. Como podemos apreciar en el trabajo de Agostinelli [1] o Kato y
Eguchi [8], el principal motivo de la falta de robustez en modelos de datos circulares se debe
a perturbaciones que afectan al pardmetro de concentracién mas que al de posicién.

Por una cuestion de tiempo de calculo nos hemos concentrado solo en el Modelo 1.
En los resultados podemos apreciar que las contaminaciones 1 y 3 fueron las que més
afectaron la estimacion obtenida por méxima verosimilitud. En el caso de la Contaminacion
1, en la cual se considera practicamente una masa puntual, el buen desempeno de nuestra
propuesta queda claramente evidenciada tanto en los valores numéricos obtenidos en el
Cuadro 4.2, como en el Boxplot correspondiente representado en la Figura 4.4. En el caso
de la Contaminacién 3, si bien los Boxplots no muestran una significativa diferencia entre
las distintas opciones, con respecto a la media, el efecto que causa esta contaminacién en
la estimaciéon por maxima verosimilitud queda evidenciada en el Cuadro 4.4. Alli puede
observarse que los cocientes que corresponden al estimador de méxima verosimilitud se
alejan bastante de 1, en relacién al resto, evidenciando el creciemiento del ECM en el caso
del modelo contaminado. En la Contaminacion 2, si bien el desempeno de nuestro estimador
fue satisfactorio, el Cuadro 4.3 pone de manifiesto que el estimador de maxima verosimilitud
no se ve fuertemente afectado por dicha contaminacién.

Légicamente y como se esperaba, en el Cuadro 4.3 se puede apreciar que el estimador
de minima distancia pierde eficiencia frente al estimador de méxima verosimilitud bajo
el modelo sin contaminacién. Lo mismo ocurre con el estimador de maxima verosimilitud
pesado propuesto por Agostinelli, que tiene un comportamiento adecuado bajo el modelo
original y bajo las Contaminaciones 2 y 3, pero que se ve afectado bajo la Contaminacién
1. Como alternativa intermedia, y en caso de ser necesaria una estimacion del parametro de
concentracién, hemos combinado el estimador propuesto por Agostinelli del parametro de
concentracién con nuestra propuesta, obteniendo un buen resultado como podemos apreciar
en el Cuadro 4.2 y la Figura 4.4. También es importante destacar que los estimadores de
minima distancia resultan mucho mas estables, en términos de ECM, que la opcién por
maxima verosimiltud. Esto puede verse en el Cuadro 4.4. Los cocientes correspondientes a
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nuestra propuesta permanecen todos cercanos a 1, mientras que esto no sucede en el caso de
maxima verosimilitud, presentando mayor variabilidad. Otro de los datos a observar en el
Cuadro 4.4, es el hecho de que para cualquiera de las 3 contaminaciones, resulta mas eficiente
estimar la direccién media p utilizando un estimador del parametro de concentracién de &,
en lugar del verdadero valor del mismo.

En lo referente al Modelo 2, podemos concluir que, andlogamente a lo expuesto por Le
Cam, el estimador de maxima verosimilitud no resulta efectivo en el caso de una mezcla de
dos Von Mises (ver Cuadro 4.4 y Figura 4.5). En cambio, nuestra propuesta arroja resul-
tados satisfactorios, siempre y cuando se consideren valores de ventana pequenios. Resulta
conveniente aclarar que el notorio sesgo reflejado en la Figura 4.5 para la estimacion del
parametro de mezcla, se debe fuertemente a la necesidad computacional de calcular nuestro
estimador minimizando la distancia para distintos valores de dicho pardmetro escogidos en
este caso sobre una grilla de longitud 20 equidistantes entre 0 y 1.

Finalmente, respecto a la seleccion de la métrica, sélo hemos comparado en el Modelo
1 la distancia L? con la distancia L'. Si bien los Boxplots de la Figura 4.4 no arrojaron
diferencias significativas, el Cuadro 4.4 sugiere una leve ventaja de la distancia L'.
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