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M-estimadores en Modelos de Regresiéon no Lineales

con Respuestas Faltantes

En los modelos no lineales observamos una muestra aleatoria de n observaciones (y;,x;) € RPT!

independientes e idénticamente distribuidas (i.i.d.), con y; € R, x; € RP| siendo

yl:g(xlao)+5lv ]-SZSnu
donde los errores ¢; son variables i.i.d. e independientes de x; con E(g;) = 0y Var(e;) = o2,
y ¢ es una funcién conocida salvo por un vector de parametros desconocido 6.

En esta tesis, estamos interesados en estimar dicho pardmetro cuando existen respues-
tas faltantes en nuestro conjunto de datos. De esta forma, asumimos que observamos una
muestra (y;,X;,0;), 1 < i < n, en la que §; = 1 si y; es observada y J; = 0 si no lo es.
Asumiremos que la variable de respuesta y presenta observaciones faltantes de forma aleato-
ria (missing at random, MAR), es decir, dado x, ¢ e y son condicionalmente independientes
P(5 = 1/(y.%)) = P(5 = 1}x) = p(x).

Dado que las estimaciones mediante los métodos clasicos, como el de minimos cuadra-
dos, son sensibles ante la presencia de datos atipicos, el objetivo de esta tesis es estudiar
algunas propiedades de una familia de M—estimadores del pardmetro 6 para el caso en
que existen valores faltantes en la variable de respuesta, utilizando como estimador incial el
LMS-estimador computado mediante el algoritmo propuesto por Stromberg (1993). Se prue-
ba la Fisher-consistencia de dicho estimador y se deduce su funciéon de influencia. Mediante
un estudio de simulacién comparamos su performance con la de los estimadores clésicos.
[lustramos su comportamiento a través del anélisis de un conjunto de datos reales.

Palabras Claves: Modelos no lineales; Respuestas faltantes; Robustez; LMS; Fisher—
consistencia.
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Capitulo 1

Introduccion

Uno de los objetivos de la Estadistica es encontrar las relaciones, si existen, dentro de
un conjunto de variables cuando al menos una de ellas es aleatoria, siendo estas sujetas a
posibles errores de medicién. En los problemas de regresién una de las variables, usualmente
llamada de respuesta o variable dependiente es de particular interés y se la nota y. Las
otras variables x1, x2, ..., x, llamadas regresoras o variables independientes son aquellas que
explican el comportamiento de y. A menudo, los investigadores se encuentran con expresiones
mateméticas que relacionan la variable de respuesta y las variables regresoras mediante un
modelo no lineal en los parametros que podria expresarse de la siguiente manera:

yi = 9(xi,0) +& 1<i<n, (1.1)

donde (y;,x;) son vectores independientes e idénticamente distribuidos (i.i.d.), con y; € R,
X; € RP, g; variables i.i.d. e independientes de x; y g conocida, excepto por el vector de
parametros 6 € © C R® que debe ser estimado.

A continuacién ilustraremos con dos modelos no lineales que seran utilizados més ade-
lante en este trabajo. En ambos casos, notamos 0 = (a, 3).

Modelo Exponencial

Yyi = B + & 1<i<n, x€R (1.2)

Este modelo se utiliza con frecuencia para describir crecimientos poblacionales, difusiones
de epidemias, etc.
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Modelo de Michaelis-Menten

Este modelo describe la cinética de las enzimas, relaciona la velocidad inicial de una
reaccién enzimatica con la concentracion del sustrato x a través de la siguiente ecuacién

ax;
el + X;

Yi + & 1<i<n, x;€R (1.3)

El método cléasico para estimar el parametro 6 es el de minimos cuadrados, propuesto
por Legendre (1805), cuya solucién viene dada por

n

o 3 1 9
6 =arg min— 3 [y — g(xi, )]

=1

Bajo ciertas condiciones de regularidad, este estimador tiene caracteristicas 6ptimas,
incluso coincide con el estimador de maxima verosimilitud si suponemos que g; ~ N(0, ?).
Sin embargo, si estas condiciones no se satisfacen, el estimador de minimos cuadrados es
muy sensible a datos atipicos. Por esta razén, es necesario considerar estimadores robustos,
es decir, estimadores poco sensibles a outliers, que a su vez sean altamente eficientes cuando
los datos sean normales.

Para los modelos de regresion lineal existen varios métodos para obtener estimadores ro-
bustos, entre otros, podemos mencionar los M-estimadores propuestos por Huber (1973), los
LMS-estimadores (Least Median of Squares) y LTS-estimadores (Least Trimmed Squares)
propuestos por Rousseeuw (1984) y (1985), respectivamente, MM-estimadores propuestos
por Yohai (1987), los S-estimadores propuestos por Rousseeuw y Yohai (1984) y 7-estimadores
propuestos por Yohai y Zamar (1988).

En el caso de regresiéon no lineal, también se propusieron algunos estimadores robustos.
Tiede y Pagano (1979) proponen un algoritmo para el calculo de M-estimadores aplicados al
analisis de radioinmunoensayos, Fraiman (1983) considera estimadores de influencia acotada,
Carroll y Ruppert (1987) trabajan con métodos robustos para transformaciones no lineales
de los datos. Stromberg (1993) introduce algoritmos para el cédlculo de MM-estimadores para
regresion no lineal y Tabatabai y Argyros (1993) extienden el 7-estimador al caso no lineal
proponiendo ademés un algoritmo para su calculo. Markatou y Manos (1996) consideran
test de hipodtesis en regresion no lineal basados en M-estimadores y Mukherjee (1996) pro-
pone estimadores de minima distancia. Mas recientemente, Stromberg, Hossjer y Hawkins
(2000) introducen el LTD-estimador (Least Trimmed Difference) con la particularidad de
que la distribucion del modelo puede ser asimétrica y Sakata y White (2001) trabajan con
S-estimadores para modelos de regresiéon no lineal con observaciones dependientes. Por 1l-
timo, Fasano, Maronna, Sued y Yohai (2012) tratan el problema de la continuidad débil, la
Fisher—consistencia y diferenciabilidad de los funcionales asociados a los estimadores de alto
punto de ruptura tanto en el caso lineal como no lineal, incluyendo S- y MM-estimadores.

En el contexto de regresion no lineal con respuestas faltantes, Miiller (2009) estudia el
problema de estimar, mediante un estimador completamente imputado, la esperanza mar-
ginal de una funcién de la variable de respuesta bajo el supuesto de que las respuestas son
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faltantes al azar, MAR. Con el interés de estimar la distribuciéon marginal de la respuesta
en este mismo contexto, Sued y Yohai (2012) proponen un procedimiento que permite esti-
mar en forma consistente cualquier funcional débilmente continuo de la distribucién de las
respuestas, que incluye la mediana o M-estimadores y que se basan en la utilizaciéon de un
estimador robusto inicial del parametro de regresiéon no lineal.

En cuanto a métodos numeéricos para el célculo de estimadores robustos en modelos de
regresion no lineal, Huber (1981) trabaja con M-estimadores y Stromberg (1993) desarrolla
un algoritmo para estimadores de alto punto de ruptura como el LMS, que es el que se ha
implementado en nuestro estudio de Monte Carlo para el computo del estimador inicial.

Estos métodos fueron disenados para conjuntos de datos completos, sin embargo, en la
practica podemos encontrarnos con datos faltantes. La ausencia de variables de respuesta
puede deberse a que, en ciertas ocasiones, medir la variable y es muy costoso o puede que
la informacién se pierda por alguna falla en la recolecciéon de los datos.

En este trabajo, nos enfocaremos en la estimacion robusta del parametro de regresion
de un modelo dado por (1.1) cuando faltan observaciones en la variable de respuesta y, pero
las covariables x son completamente observadas. Luego, nuestro conjunto de datos queda
definido a partir de (y;,%;,0;), 1 < i < n donde §; = 1 si y; es observada y §; = 0 si
no lo es. Para esto asumiremos que y presenta observaciones faltantes de forma aleatoria
(missing at random, MAR), es decir, dado x, § e y son condicionalmente independientes

P(5 = 1|(y.x)) = P(5 = 1]x) = p(x).

Ya que las estimaciones mediante el método de minimos cuadrados son sensibles a la
presencia de datos atipicos, el objetivo de esta tesis es estudiar algunas propiedades de una
familia de M-estimadores del parametro € para el caso en que existen valores faltantes
en la variable de respuesta, utilizando como estimador incial el LMS-estimador computado
mediante el algoritmo propuesto por Stromberg (1993).

La tesis esta organizada como se describe a continuacion. En el Capitulo 2, realizamos un
revision sobre los modelos de regresion no lineal y los métodos de estimacion que se pueden
aplicar en los mismos. En el Capitulo 3, introducimos tanto nociones béasicas de la teoria
de robustez como su aplicaciéon a los modelos de regresion no lineales. A su vez, describi-
mos el algoritmo mediante el cual se obtiene el LMS-estimador, tal como fue propuesto por
Stromberg (1993). En el Capitulo 4, presentamos el problema de la estimacion robusta en
modelos de regresion no lineales con valores faltantes en la variable de respuesta, propone-
mos un estimador robusto y analizamos su Fisher-consistencia. En el Capitulo 5, realizamos
un estudio de Monte Carlo con el fin de comparar la performance de los estimadores robus-
tos obtenidos con la de los estimadores clasicos de minimos cuadrados para muestras con
diferentes escenarios de pérdida de datos, contaminadas y sin contaminar. Finalmente, en el
Capitulo 6, analizamos un ejemplo con datos reales.






Capitulo 2

Modelo de regresion no lineal y su
estimacion

La regresion lineal es un método poderoso para analizar datos descriptos por un modelo
que sea lineal en los pardmetros. A menudo, sin embargo, los investigadores se encuentran
con expresiones matematicas que relacionan la variable de respuesta y con las variables
regresoras x, mediante modelos que resultan no lineales en los parametros. En estos casos,
las técnicas de regresion lineal deben ser extendidas, lo cual introduce una complejidad
considerable.

Un modelo de regresion no lineal puede ser escrito de la siguiente manera

yi = 9(xi,0) +&, 1<i<n, (2.1)

donde € mide las fluctuaciones o errores de medicion, n es el tamafio de la muestra y g es una
funcién completamente conocida excepto por 8 que es un vector de parametros desconocidos
que necesita ser estimado. Utilizando la funcién g podemos predecir y a partir de x, las cuales
pueden ser aleatorias o fijas. Como los pardmetros suelen tener interpretaciones fisicas,
uno de los principales objetivos de la investigacion es estimar dichos parametros lo més
precisamente posible.

Los modelos no lineales tienden a ser utilizados, o bien cuando son sugeridos mediante
consideraciones tedricas, o bien para construir dentro de un modelo ciertos comportamientos
no lineales ya conocidos. En ocasiones, atin cuando una aproximacion lineal pudiera funcionar
bien, el investigador podria preferir un ajuste basado en un modelo no lineal a fin de mantener
una clara interpretaciéon de los parametros. Los mismos han sido aplicados a un gran rango
de situaciones, incluso en poblaciones finitas. Seber y Wild (1989) dan una completa revision
sobre estos temas, que abordamos a continuacién.
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2.1. Modelo con Variables Regresoras Fijas

2.1.1. Variables Regresoras Fijas

Supongamos que y es el tamarnio esperado de un organismo en el tiempo x. Sin embargo,
debido a fluctuaciones y posibles errores de medicion, el tamano efectivo es y, de modo que,
E(y) = p. Luego el modelo seria

y=g(z,0)+¢, (2.2)

donde E(e) = E(y—u) = 0. Si el tiempo lo medimos con exactitud de modo que su varianza
es esencialmente cero, o despreciable comparado con var(y), luego uno podria tratar a x
como fija en vez de aleatoria.

2.1.2. Variables Regresoras Condicionales

Existen dos variaciones al enfoque anterior en las cuales = es, de hecho, aleatoria pero
puede ser tratada como si fuera fija. La primera ocurre cuando g es una relaciéon tedrica y x
es aleatoria, pero medida con exactitud, i.e. x = x¢. Un modelo adecuado podria ser

E(ylr = x0) = g(x0,0),

y (2.2) podria ser interpretado como un modelo de regresion condicional, condicional sobre
el valor observado de .

La segunda variacién ocurre cuando g es elegida empiricamente para modelar la relacion
entre y y el valor medido de z (en vez del verdadero), atin cuando z es medida con error. En
este caso (2.2) es usado para modelar la distribuciéon condicional de y, dado el valor medido
de x.

Hay una tercera situaciéon posible, a saber, g es un modelo teérico conectando a y con el
verdadero valor de x, cuando x es medido con error. En este caso el verdadero valor de x es
desconocido y se necesita de una nueva propuesta, como describimos a continuacion.

2.2. Modelo con Variables Regresoras Aleatorias con Errores

2.2.1. Relaciones Funcionales

Supongamos que existe una relacion funcional exacta

p=g(,0) (2.3)

entre las realizaciones £ y p de dos variables. Sin embargo, ambas variables son medidas con
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error, de modo que lo que observamos es
y=p+e y xz=&+6,
donde E(e) = E(6) = 0. Luego
y=9(,0)+ec=g(xr—10,0)+c. (2.4)

Por el Teorema del Valor Medio,

donde ¢ es la derivada de g, y & se encuentra entre z y x — d. Sustituyendo (2.5) en (2.4)
tenemos que

y=g(z,0)—069(2,0) +e=g(x,0)+ ", (2.6)

Este modelo no es el mismo que el (2.2), dado que z ahora es considerada aleatoria y, en
general, E(e*) # 0 y, ademés, no es independiente de z. Si lo analizaramos de la misma
manera que (2.2) utilizando minimos cuadrados, obtendriamos sesgos.

2.2.2. Relaciones Estructurales

Un tipo de modelo diferente es obtenido si la relacion (2.3) es una relacion entre variables
aleatorias (digamos, u y v) en lugar de sus realizaciones. Luego tenemos lo que llamamos
una relaciéon estructural

v=g(u,0),

cony =v + eyx=u -+ 0. Argumentando igual que en (2.5) obtenemos un modelo de
la misma forma que (2.6), pero con una estructura diferente para £*. Para el caso lineal
v = a + Bu se ha comprobado, que a pesar de su simpleza, existen problemas de identifica-
bilidad al querer estimar parametros desconocidos.

2.3. Variables Regresoras Controladas con Errores

Ahora estudiaremos un tercer tipo de modelo, cominmente utilizado en experimentos de
laboratorio. Comenzamos con la relacion estructural v = g(u, 0) y tratamos de establecer u
en el valor puntual zg. Sin embargo, g no es alcanzado exactamente y en su lugar tenemos
u =z + 9, donde E(5) =0y u es desconocida. Para un modelo general,

y=v+e=g(u,b)+ec=g(xo+9,0)+e¢,
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el cual puede ser expandido una vez méas mediante el Teorema del Valor Medio
Y= g(l’o, 0) + 59(1'7 0) +e= g(m()v 0) + ga

con I entre xog y xg + ¢. En general E(¢) # 0, pero si § es tan chico que & ~ z, entonces
E(é) ~ 0. En este caso podemos tratar al modelo como un modelo con variables regresoras
fijas.

2.4. Modelos con Errores Autocorrelacionados

En muchos casos en que los modelos de regresiéon no lineal han sido ajustados para un
conjunto de datos recolectados secuencialmente en el tiempo, graficos de estos datos revelan
largas rachas de residuos positivos y largas rachas de residuos negativos. Esto puede ser
debido a lo inadecuado del modelo postulado para E(y|z), o puede ser causado por un
alto grado de correlaciéon entre sucesivos términos del error g;. Una simple estructura de
autocorrelaciéon que a veces es aplicada a los datos recolectados en intervalos de tiempo
equiespaciados viene dada por un proceso autoregresivo de orden 1 [AR(1)], digamos

€; = P€i—1 + a4,
donde los a; son no correlacionados, E(a;) = 0, var(a;) = o2,y |p| < 1. Bajo tal estructura
corrle;,e5] = p'ifj‘ ,

de modo que la correlacion entre &; y €; decrece exponencialmente a medida que crece la
distancia entre los tiempos en que y; e y; fueron medidas.

2.5. Estimadores de Minimos Cuadrados

2.5.1. Minimos Cuadrados no Lineales

Supongamos que tenemos n observaciones (x;,¥;), 1 < i < n que satisfacen una relacion
no lineal tal que
yi =9(x;,0") +e 1<i<n, (2.7)

donde FE[e;] = 0, x; € RP y el valor verdadero 8* de 6 se sabe que pertenece a ©, un
subconjunto de R®. El estimador de minimos cuadrados de 6*, 6, minimiza la “suma de

cuadrados residual”
n

S(0) =) [yi — g(xi,0)]? (2.8)

i=1
respecto de 8 € ©.

Asumiendo que ¢; son independientes e idénticamente distribuidos con varianza o2, bajo
ciertos supuestos de regularidad, 8 y s> = S(0)/(n—p) son estimadores consistentes de 8* y
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o2 respectivamente. Con algunas condiciones de regularidad adicionales, la distribucion de

0 también es asintOticamente normal para n — oo.

Si ademés suponemos que &; son normalmente distribuidos, entonces € coincide con el
estimador de méaxima verosimilitud.

Cuando g(x;, 0) es diferenciable respecto a 0,y 0 pertenece al interior de O, 0 cumple

8S(0)
90,

=0, 1<r<p. (2.9)

0

Usaremos la notacion ¢;(0) = g(x;, 0),

g(0) = (91(8), 92(0), . .. 7971(0))/ )

co- 50 (%)

Llamaremos

G.=G.(0")yG. = G.(0),

donde un sélo punto representa la derivada primera y dos puntos la derivada segunda.
Usando la notacién anterior podemos escribir

S(0) =[y —g®)ly —g®)] =y — @)

Luego la ecuacion (2.9) se puede escribir

> {yi - a@y220 _o <<y
; a0, |.
=1 (7]
O ~ ~ ~
0=G/{y—-g0)}=G'¢. (2.10)

Si Pg = G.(G/G.)"'G/, la matriz idempotente proyecta ortogonalmente R? sobre R[G.]
entonces (2.10) puede ser escrito como

Pgé=0.

Las ecuaciones (2.10) se llaman ecuaciones normales para el modelo no lineal. Para la
mayoria de los modelos no lineales estas no pueden ser resueltas analiticamente y es necesario
recurrir a métodos numéricos iterativos, como veremos a continuacion.

2.5.2. Aproximacién Lineal

Ahora introduciremos un conjunto de resultados en forma heuristica. Comenzaremos
notando que en un entorno pequenio de 8%, el valor verdadero del parametro 6, tenemos la
expansion lineal de Taylor dada por

L o

gi(0) ~ g;(0") + a0, |g

N (97” - 9:)7
r=1
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g(0) ~g(0")+G.(6 —6"), (2.11)
donde G. = G.(6"). Luego,

S(0) =ly — g(0)I* = |ly — g(6") — G.(6 — 6")[|> = ||z - G.8I, (2.12)

donde, z=y — g(0*) = e y B =6 — 0*. Por las propiedades bien conocidas en el modelo
lineal, S(@) es minimizada cuando B esta dado por

B=(G'G) G/ z

Para n grande, bajo ciertas condiciones de regularidad, es casi seguro que 0 pertenecera a
un pequeiio entorno de 8%, por lo tanto

6-0"~(G'G)'Ge. (2.13)
Mas atin, de (2.11) con = 6,
g(0) —g(0")~ G.(0 —6") ~ G.(G/G.)'G./e = Pge (2.14)
y los residuos
y—g(0) ~y —g(6") - G.(0 - 6") ~e — Pge = (I. — Pg)e, (2.15)

donde Pg = G.(G/G.)"'G." y (I, — Pg) son simétricas e idempotentes.
Si como es habitual, definimos s2 = S(0)/(n — p), de (2.15) y (2.14) tenemos

(n—p)s* =S(8) = |ly - g(0)|* = ||(In — Pg)e||* = ¢'(In — Po)e, (2.16)
y
18(6) — &(6")|* ~ [|G.(6 — 6%)[]* = (6 — 6")G./G.(6 — 6") ~ ||Pgel|> = €'Pge. (2.17)
Luego, usando (2.16) y (2.17), obtenemos

S(0*) —S(0) x e'e —/(I, — Pg)e = €'Pge ~ (0 — 0")G.G.(0 — 6%). (2.18)

Cuando € ~ N(0, 0°I,), bajo condiciones apropiadas de regularidad, Seber y Wild (1989)
establecen que para un n suficientemente grande, se cumplen las siguientes aproximaciones

(i) @ — 0"~ Z ~ N,(0,6°C~"), donde C = G/G. = G."(6*)G.(6")
(ii) (n—p)s®/o* ~ € (In —Pa)e/o? ~ x5,
(i7i) @ es independiente de s

[S(0") —S(8)]/p . _ €Pge n-—p
S@)/(n—-p)  €In—Pgle p

(iv)

~ Fpn—p
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No se requiere de la normalidad de e para demostrar (i) ya que (2.13) implica que
0 — 0" es asintoticamente una combinacion lineal de los errores g;, que son independientes e
idénticamente distribuidos. Luego, una versién apropiada del teorema central de limite nos

da (7).

Finalmente, usando (iv) y (2.18) tenemos, aproximadamente

(6 —6")G.'G.(6 — 6%
e ~ Fpn_p

Luego, G. juega el mismo rol que la matriz de disefio X en regresion lineal.

2.5.3. Métodos Numéricos

Supongamos que ' es una aproximacion al estimador de minimos cuadrados € de un
modelo no lineal. Para 0 cerca de 8, utilizando la expansiéon lineal de Taylor

g(0) ~g(0) +G. (0 —06), (2.19)

donde G.» = G.(0'®). Aplicando esto al vector de residuos r(), tenemos

r(0) =y —g(0) ~r(0) - G.0 — 6).

Sustituyendo en S(0) = r/(0)r(0) obtenemos

S(0) ~r'(6)r(8) — 2r' (0)G." (0 — 0'“)) + (0 — 0(“))’G.(“)/G.<“)(0 - 0). (2.20)
El lado derecho es minimizado respecto a 8 cuando
6 -0 =(G.VG.)1G. WO W) =§. (2.21)

Esto sugiere un esquema iterativo para obtener 6: si en el paso a obtenemos una aproximacion
0, la aproximacion del siguiente paso deberia ser

9+ = 9@ 4 §(@ (2.22)

La aproximacion de S(0) por la cuadratica (2.20), y las resultantes formulas (2.21) y (2.22)
son llamadas usualmente método de Gauss-Newton. El mismo es convergente, o sea, 8 — 6
cuando a — oo siempre que el punto inicial 0™ esté suficientemente cerca de 6* y n sea

suficientemente grande.

Una propuesta mas general, que se puede aplicar a cualquier funcién suficientemente
suave, es el método de Newton, en el cual S(0) es expandido directamente utilizando una
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expansion de Taylor cuadratica. Sean

' 925(0)
H) = Zg00

el vector gradiente y la matriz Hessiana de S(8), respectivamente. Luego, tenemos la apro-
ximacién cuadratica

S(0) ~ S(6') +h'(6) (0 — 6'“) + %(0 —0'“)H(0')(6 — 0'V), (2.23)

que difiere de (2.20) solo en que H(6*) es aproximada por 2G.'(0”)G.(0'®). Sin embargo,
como

0°8(8) _ ., N~ [ 99:(6) 99:(0) 9%g:(0)
90,00, 2223 {&or 20, [vi — 9i(0)] 29, 90, } (2.24)
luego
2
[?9085()3’) ] =2G./(6)G.(9) (2.25)

y H(0') es aproximado por su valor esperado en 8 en (2.20).
El minimo de la funcion cuadratica (2.23) con respecto a 6 se obtiene cuando
6— 6 = —[H(6")]"'h(6"”) = —[H "hl,_0. (2.26)

Este es el llamado método de Newton y el término de correccion 8 en (2.22) ahora dado
por (2.26) es el llamado Newton step.

2.5.4. Minimos Cuadrados Generalizados

Mencionaremos una generalizaciéon del método de minimos cuadrados llamado método
de minimos cuadrados generalizados o pesados (GLS). La funcién a minimizar ahora es

S(0) =[y—g@)V 'y —g®),

donde V es una matriz conocida y definida positiva. El método de minimos cuadrados
ordinarios (OLS), que mencionamos previamente, es un caso particular de GLS tomando
V =1,,. Denotemos por O al estimador de minimos cuadrados generalizados que minimiza

a S(0).

Sea V = U'U la descomposicion de Cholesky de V, donde U es una matriz triangular
superior. Multiplicando el modelo no lineal por R = (U’)~!, obtenemos

z =k(0) +n,
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donde z = Ry, k(0) = Rg(0) y n = Re. Entonces E[n] = 0y D[n] = ¢’RVR/ = 021, la
matriz de varianza-covarianza. Asi es como nuestro modelo GLS original ha sido transfor-
mado en un modelo (OLS). Mas atn,

S(0) =[y —g6)]V 'y —g(0)] = [y — g(0)R'R[y — g(0)] = [z — k(6)]'[z — k(6)].
Por lo tanto, la suma de cuadrados GLS es la misma que la suma de cuadrados OLS para
el modelo transformado, y @¢ es el estimador OLS del mismo.

Sea K.(8) = 0k(0)/06" y K. = K.(8). Entonces

5 08(0)
K.(6) =R~

— RG.(0).

Como B¢ es el estimador OLS del modelo transformado, para n suficientemente grande,
tiene matriz de varianza-covarianza dada por

D[Oc] ~ o?[K. (6)K.(0")] ' = ¢*[G./(6*) R'RG.(6%)] ! = o?[G./(0" )V 1G.(6") "
Esta matriz es estimada por
D[] = 6 (K/'K.)™t =64G/VIG.)™,

donde

0t = 1p[z —k(00)]' [z — k(8c)] = 1p[y —g(0)]'V 1y — g(84)].

El punto importante de este anélisis es que, tratando con el problema transformado como
si fuera un problema ordinario de minimos cuadrados, el mismo produce los resultados
correctos para el problema de minimos cuadrados generalizados. Muchas aplicaciones de
este método surgen cuando los errores no son homoscedésticos, pero si son independientes,
en cuyo caso V es diagonal y el problema es computacionalmente mas sencillo.

2.6. Estimadores de Maxima Verosimilitud

Si asumimos conocida la distribuciéon conjunta de €; en el modelo (2.1), entonces el
estimador de maxima verosimilitud @ se obtiene maximizando la funcién de verosimilitud.
Supongamos que &; son i.i.d. con funciéon de densidad o~'h(e/c), de modo que h es la
distribucién del error para errores estandarizados para tener varianza uno. Luego, la funcién

de verosimilitud es "
p(yl6,0%) =] {o_lh (3/_9("9)” (2.27)

. g
=1

A continuacion, estudiaremos errores distribuidos normalmente y no-normalmente. Encon-
traremos que, bajo normalidad, el estimador de méaxima verosimilitud @ coincide con el
estimador de minimos cuadrados.
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Si los €; son i.i.d. N(0,0?), entonces (2.27) cumple

" s — a(xi. 0)]2
p(y|0,0%) = (270?) % exp (—; Z lyi = 9(xi, O)1° 9(52”9)] > : (2.28)

i=1

Despreciando las constantes, denotamos el logaritmo de la funcién de verosimilitud por
L(0,0?) y obtenemos

n

1 n 1
L(6,0%) = —3 log ~ 5,2 Z 9(xi,0))* = —§log(02) - ﬁS(e). (2.29)

Dado 02, (2.29) es maximizado respecto a @ cuando S(8) es minimizado, es decir, cuan-

do 6 =6 (el estimador de minimos cuadrados). Es més, OL/0c? = 0 tiene solucién
o2 =S(0)/n, que da un maximo (para un @ dado) al dar negativa la derivada segunda.
Esto sugiere que 0 y 62 = ( )/n son los estimadores de méxima verosimilitud, y podemos

verificarlo directamente. Como S(6) > S(0),

L(8,6%) - L(6,0%) = —g log(52) — g —L(8,0%)
S e (), 18(0)
= T2\ \2) T2,

n 52 &2
5 (o (32) +1-2)
> 0,

pues log(x) < & — 1 para z > 0. Por lo tanto, 8 y 62 maximizan L(6,02). El méximo valor
de (2.28) es
p(y|6,6%) = (276%) "2 exp (—n/2). (2.30)

Jennrich (1969) not6 que el estimador de minimos cuadrados es ahora no solo el estimador
de méaxima verosimilitud sino que, bajo condiciones de regularidad, es también asintética-
mente eficiente. La teoria asintotica de méxima verosimilitud usual no aplica directamente,
sino que necesita modificaciones, ya que las y; no son i.i.d. teniendo distintas medias. Asi si
d = (0',v), donde v = 02, entonces de (2.29) y (2.25) la matriz de informacién (esperada)
viene dada por

or 1 | 2 Elese| “Elin] | [ Eerence) o
[W] - = (2.31)
bt ©

Luego, bajo condiciones de regularidad, tenemos que

lim D[vnb] = o?Q~! = ¢ lim n[G.(6*)G.(6*)] "

n—0o0 n—oo
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Al igual que en el caso i.i.d., podemos ver que la matriz de varianza—covarianza del estima-
dor de méaxima verosimilitud € viene dada asintéticamente por la inversa de la matriz de
informacion dada en (2.31).

Sea & = (0',52)". Entonces, como dS(0)/860 = 0 en 6 = 6, también tenemos

1 | _&%s -t ~2 | _8%8 !
[ O*L ]_1 | [8585/}9 0 _ 20 [8585/}9 0
— =
8685 :5 O/ ﬁ OI 224

A modo de completitud ahora vamos a alejarnos de nuestro tema principal de modelos
de regresion no lineales y consideraremos el caso en que la funciéon de maxima verosimilitud
es una funcion general de Ely] = g(0), digamos L([g(0)]). Asumiremos que el modelo es
suficientemente regular tal que el estimador de maxima verosimilitud 6 sea solucion de las
ecuaciones de verosimilitud

o_ 9L _ (98) 0L
~ o0 \00) og

Sea 0'“ la a-ésima aproximacion para 6 y consideremos la expansion de Taylor

OL OL 0L .
=—| ~__ — 0—6').
9016~ 9010« T 5000 |9 )
Luego
) 2L \ oL
e~ |- b —§@ .
o—0 [( aoaa’> aa] " 50, (2.32)

de modo que un estimador actualizado es ") = 8(*) + §“. Este es el método de Newton
para resolver las ecuaciones, en este contexto los estadisticos se refieren al mismo como el
método de Newton-Raphson. En general, la matriz negativa de la segunda derivada contiene
variables aleatorias y es recomendable que sean reemplazadas por su valor esperado, la
llamada matriz de informacion (esperada). Esta técnica es también conocida como algoritmo
de “scoring” de Fisher. Ahora encontraremos la matriz esperada, tenemos que

0*L og\' 0’L g 0L 0%g;
_ o8 _ 2.
9006’ <ae’> dg 0g/ (ao’) * Z D 00 00 (2:33)

Asumiendo que el orden de diferenciacion respecto a 6 y la integral (o suma) con respecto
a y puede ser intercambiada, tenemos (con p(-) la funcion de densidad de y, y L = log(p))

oL /1ap a/
E|=|= [ =Zpdy=— [ pdy =0, 2.34
[Og] pog’ ™ “og | P (2:34)



26 CAPITULO 2: MODELO DE REGRESION NO LINEAL Y ESTIMACION

y, usando un argumento similar

1 0%
E _ =
[p og 8g’} 0

Por lo tanto,

0’L o (10p 10pdp 1 0% OL 0L
E —E|— (-2 )| =F |- 4 = —p |2 - g
[3gag’} {ag (pag’>] [ p* 0g og/ +p8g8g’} [8g 8g’} I

(2.35)

Notemos que J es definida positiva

aJa=F

oL\ 2

/

- >
<a 0g> ] =0

la igualdad solo vale si a = 0 (bajo condiciones generales sobre L). Aplicando (2.35) y (2.34)
a (2.33) obtenemos

0?L ,
E |:_8080/:| —_— G. JG’-,

que es definida positiva pues G. es de rango completo y ademas no singular. Luego, el
algoritmo de scoring de Fisher resulta

gL+ — glo) 4 (G'/Jg_)—laiL . (2.36)
80 o(a)

La matriz negativa de la segunda derivada podria no ser definida positiva en todo 8, y
esto puede causar que el método de Newton de (2.32) falle. El método de scoring de Fisher,
por lo tanto, utiliza una aproximacién de la matriz negativa de la segunda derivada que
es siempre definida positiva. Una ventaja es que solo requiere de las derivadas primeras de
L, de modo que la aproximacién puede, a menudo, ser calculada més rapidamente que la
matriz de la segunda derivada. El precio que se paga por esta ventaja es que el algoritmo
converge mas lentamente que el método de Newton.

Si tomamos j = 0L/0g, obtenemos de (2.32) y (2.36)
8 =[(G/IG) G/ jlyw = (G VIG) G/ VTIV], (), (2.37)

donde V = J~! y v = Vj. Notemos que la ecuacién (2.37) representa al estimador de
minimos cuadrados generalizados §'* de & para el modelo (evaluado en ')
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v=G.[M§ +v, (2.38)

siendo D[v] = V. Usando la misma idea que en la Secciéon 2.5.4, sea V@ = U'U la
descomposicion de Cholesky de V(@ y sea R = (U’)~!. Entonces multiplicando (2.38) por
R, obtenemos

z = X6 + n, (2.39)

donde z = Rv, X = RG.“, y D[n] = o°I,. Por lo tanto, §” puede computarse usando
un programa de OLS y regresion de z sobre X. Un resultado estdndar de un programa de
regresion lineal es (X/X)™!, en (2.39)

(X'X)"' = (G/'VIG) .

Luego, el resultado al final de la iteracién es

2L 1\
Bl
00 00" |,
que, bajo ciertas condiciones de regularidad, es la matriz asintética de varianza-covarianza

de 6.

Este método es muy general y comunmente se refiere al mismo como minimos cuadrados
iterativamente pesados (IRLS).






Capitulo 3

Robustez

Todos los métodos estadisticos clésicos de estimacién se basan en fuertes supuestos ta-
les como datos que se distribuyen normalmente. A menudo este supuesto vale, pero solo
aproximadamente, ya que describe el comportamiento de la mayoria de las observaciones,
siendo unas pocas las que siguen un patron diferente. A estos datos atipicos suele llamarselos
outliers. Pueden deberse a realizaciones del experimento en circunstancias anormales, errores
de medicién o una equivocacién en la transcripcion del dato, entre otros factores. Tienen la
particularidad de que la presencia de s6lo unos pocos de ellos pueden afectar severamente los
resultados obtenidos mediante métodos clésicos como, por ejemplo, el de minimos cuadrados
que es 6ptimo bajo condiciones de normalidad.

En estos casos, lo ideal seria tener estimadores robustos ya que estos ajustan bien a
la mayoria de los datos. Si la muestra no contiene datos atipicos tienen poca pérdida de
eficiencia respecto de los estimadores clasicos y dan resultados estables aun si la muestra
contiene una cantidad moderada de outliers. Es decir, son estimadores poco sensibles a datos
atipicos y simultdaneamente son altamente eficientes cuando los datos son normales.

En principio, estudiaremos los estimadores de posicién y dispersion para luego enfocarnos
en estimadores robustos aplicados a los modelos de regresiéon lineal y no lineal. Maronna,
Martin y Yohai (2006) dan una revision muy completa de los temas que desarrollamos en
este capitulo.

3.1. Modelo de posicién

Sea el modelo de posicion
T = [+ u;, 1<i<n (3.1)
donde p es el parametro de posicion y ug,...,u, son variables aleatorias.

Si las observaciones son repeticiones independientes del mismo experimento bajo las
mismas condiciones, se asume que

® uy,...,up tienen la misma funcién de distribucién Fjp.
® uj,..., U, son independientes.



30 CAPITULO 3: ROBUSTEZ

En este caso, resulta que z1,...,z, son independientes con funcién de distribucion
F(z) = Fo(r —p) (3.2)

y decimos que las x; “s son variables aleatorias independientes e idénticamente distribuidas
(i.i.d.). Notaremos x la muestra aleatoria constituida por 1, ..., z,.

Un estimador i es una funcion de las observaciones: fi = fi(x1,...,2,) = f(x). Lo
que buscamos son estimadores fi tal que en algin sentido estén préoximos a p con alta
probabilidad. Una forma de medir esta aproximacién es mediante el Error Cuadrdtico Medio
(MSE):

MSE(f) = Bt — 1)?.
Si los datos fueran exactamente normales, la media muestral seria el estimador éptimo: el
Estimador de Maxima Verosimilitud (EMV) y minimizaria al MSE entre todos los estimado-
res insesgados y los equivariantes. Pero los datos raramente tienen tan buen comportamiento.

En la mayoria de las aplicaciones practicas a lo sumo se puede asegurar que los erro-
res de medicion tienen distribucién aproximadamente normal. Una forma de determinar
distribuciones aproximadamente normales es considerar que una proporcién 1 — e de las ob-
servaciones son generadas por el modelo normal, mientras que una proporcion € es generada
por un mecanismo desconocido. Llamamos distribucion normal contaminada a

F=(01-¢)G+cH (3.3)
donde G = N(,0?) y H una distribucién arbitraria.

Supongamos que tenemos el modelo de posicién dado por (3.1) donde la distribucion
F de los u; es simétrica respecto de 0. Como en este caso p coincide con la mediana,
un estimador alternativo seria i = mediana(zy,...,zy,). Ordenamos los datos z1,...,z, de
menor a mayor obteniendo los valores z(;) < ... < (), luego la mediana se define como

T(m+1) n=2m+1
la =

7x<m)+§(m“> n=2m

Si bien este estimador es mucho més resistente a outliers que la media muestral, como
contrapartida, es menos eficiente en cuanto a varianza asintética se refiere. En las siguientes
secciones trataremos de encontrar estimadores que satisfagan en simultdneo las “buenas”
propiedades de estos dos estimadores.

3.1.1. M-estimadores de posicion

A continuacioén, desarrollaremos una familia de estimadores que contienen a la media y
a la mediana como casos especiales.

Consideremos nuevamente al modelo de posicion (3.1) y asumamos que Fp, la funcion de
distribucion de u;, tiene densidad fy = F{. Luego, la densidad conjunta de las observaciones,
es decir, la funcion de verosimilitud es

n

L(xy, ... an; ) = [ folzi — ) -

=1
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El estimador de mdzima verosimilitud (EMV) de u es el valor fi(z1,...,%,) que maximiza
L(z1,...,xp;p):
ﬂ:ﬂ(xlv"'axn):arg m;?XL(xlv"'?xn;/’L)' (34)

Si fp es positiva en todos lados, como el logaritmo es una funcién creciente, podemos escribir
(3.4) como

n
o= arg miny_ p(wi = pr), (3.5)
i=1

donde
p=—logfo.
Si p es diferenciable, diferenciando (3.5) respecto a p obtenemos

n

Y@ — 1) =0 (3.6)

i=1

con ¢ = p’. Notemos que si fy es simétrica, entonces p es par y por lo tanto v es impar.

Si p(z) = x2/2, entonces ¥ (x) = z, y (3.6) seria

cuya solucion viene dada por i = Z. Y para p(z) = |z|, se puede demostrar que la mediana
de las observaciones es solucion de (3.5).

Por lo tanto, dada una funcion p, un M-estimador de posicion es una solucion de (3.5).
La funcion p debera ser elegida de manera tal que el estimador sea

(A) “cercanamente 6ptimo” cuando Fj es exactamente normal, y

(B) “cercanamente 6ptimo” cuando Fy es aproximadamente normal.

Asumiendo que ¥ es monétona no decreciente, con 1(—o0) < 0 < (00) resulta que (3.6),
y por lo tanto (3.5), siempre tiene solucion y si ¢ es continua y estrictamente creciente, la
solucién es tnica.

Supongamos que ¥ es estrictamente creciente. Dada una distribucion F', definimos pg = po(F)
como la soluciéon de

Er[y(x — po)] = 0.

Puede demostrarse que cuando n — oo, i —, po (decimos que fi es consistente para p),
y la distribucién de i es aproximadamente

Ep[y(z — po)’]
(Er[v'(z = po)])*

Notemos que bajo el modelo (3.2) v no depende de pg, es decir

EFO W(%ﬂ
(Er [ (2)])?

N (Mo, %) con v = (3.7)

v =
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Si la distribucion de un estimador fi es aproximadamente N(ug,v/n) para un n grande,
decimos que [ es asintoticamente normal, con valor asintético ug y varianza asintética v. La
eficiencia asintdtica de fi es la proporcion

Eff () = —2,

(Y

donde vy es la varianza asintotica del EMV y mide cuéan cerca esté fi del 6ptimo. La expresion
de v en (3.7) se llama la varianza asintdtica de fi.

Huber (1964) propuso una familia de funciones-p con importantes propiedades

x? si|x| <k
plz) = { Shlz| — K2 si|x| > k (38)

con derivada 2¢(x), donde

w(x)={ T si x| <k

sgn(z)k si|z| >k’

siendo k una constante de calibracién que es elegida de manera de obtener una eficiencia
determinada. Los M-estimadores correspondientes a los casos limites & — ooy k& — 0 son
la media y la mediana respectivamente, y se define 1(z) como sgn(z).

M-estimadores redescendientes

Una eleccién popular de funciones-p y ¢ es la familia de funciones bicuadrada dada por

1—[1—(z/k)?? silz|<k
ple) = { | silz| >k (3.9)

con derivada p'(z) = 6¢(x)/k* donde

d(@) = [l = (x/k))? 12| < k). (3.10)
Llamaremos “M-estimadores mondtonos” a aquellos estimadores definidos como solucién
de (3.6) con 1) monotona y “M-estimadores redescendiente” a los definidos mediante (3.5)

cuando ¥ no es mondtona. Los estimadores redescendientes son mas robustos frente a una
gran cantidad de outliers.

Definicion 3.1. Llamaremos funcién-p a una funcién p que satisfaga

R1. p(z) es una funcién no decreciente de |z|
R2. p(0) =0
R3. p(z) es estrictamente creciente para x > 0 tal que p(z) < ||p||oo

R4. Si p es acotada, también se asume que ||p|loc = 1
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Definiciéon 3.2. Una funcién-y denotard una funcién ¢ que es la derivada de un funcién-p,
que implica en particular que

W1. ¢ es impary ¥(x) > 0 para x > 0.

3.2. Estimadores de dispersiéon

La forma clésica de medir la variabilidad de un conjunto de datos x es con la desviacion
standard (SD)

Para cualquier constante ¢ el SD es invariante por traslaciones y cambios de escala, es
decir,
SD(x + ¢) = SD(x), SD(ex) = |¢|SD(x) . (3.11)

Cualquier estadistico que satisfaga (3.11) serd un estimador de dispersion.

Una alternativa al SD es la desviacion media absoluta (MD)

1 n
MD(x) = EZm — 7|, (3.12)
=1

que también es sensible a la presencia de datos atipicos en tanto estd basada en promedios
muestrales.

Una alternativa robusta es reemplazar los promedios muestrales por las medianas, defi-
niendo de esta forma la desviacion mediana absoluta respecto de la mediana (MAD)

MAD(x) = Med(|x — Med(x)|), (3.13)
que claramente satisface (3.11).

De la misma manera que en (3.12) y (3.13) definimos las desviaciones medias y medianas
de una variable aleatoria x como

MD(z) = E(|z — E(x)[)

MAD(z) = Med(|z — Med(z)]),
respectivamente.

Notemos que si  ~ N(u, 0?) entonces SD(x) = o por definicién, mientras que MD(z) y
MAD(z) son multiplos de o

MD(z) = 2p(0)c y MAD(z) = ®71(0.75)0 .
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Si quisiéramos un estimador de dispersion que midiera lo mismo que el SD bajo normalidad
deberfamos normalizar la MAD dividiéndola por ¢ ~ 0.675. La “MAD normalizada” (MADN)
se define entonces como

MAD(zx
MADN(z) = 0.67(5 )

3.3. M-estimadores de escala

Consideremos observaciones x; que satisfagan el modelo multiplicativo
Ty = O0Uy, (3.14)

donde las u;’s son i.i.d. con funcién de densidad fy y o > 0 es el pardmetro desconocido.
Las distribuciones de las z;’s constituyen una familia de escala con densidad

o)

El EMV de ¢ en (3.14) es

N , 1 - Z;
o= argmgxﬁ r[lfg (;) .
1=

Tomando logaritmo y diferenciando respecto a o se tiene que
1 & z;
n 4 o
=1

donde p(t) = t(t), con ¥ = —fl/fo. En general, a cualquier estimador que satisfaga una

Fe(3) = 019
i=1

donde p es una funcién-p y d es una constante positiva, lo llamaremos un M-estimador de
escala. Notemos que para tener solucion en (3.15) debemos tener 0 < § < ||p||oo. Luego, si
p es acotada asumiremos, sin pérdida de generalidad, que

lpllo =1, 0€(0,1).

ecuacion de la forma

Se puede verificar facilmente que los M-estimadores de escala son equivariantes en el
sentido de que d(cx) = ¢4 (x) para cualquier ¢ > 0, y si p es par entonces

&(cx) = |c|o(x)
para cualquier c.

Para un n grande, la sucesion de estimadores de (3.15) converge a la solucion de
£l (G)] =0
o

Notemos que usando p(z/c) en lugar de p(z) en (3.15) se obtiene &/c. Esto se usa para
normalizar 6 y obtener un valor asintotico dado.

si es Unica.
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3.4. M-estimadores de posicién con escala desconocida

Los estimadores definidos en (3.5) no son en general equivariantes por cambio de escala, lo
cual implica que nuestros resultados dependen fuertemente de nuestras unidades de medida.

Para fijar ideas, supongamos que queremos estimar p en el modelo (3.1) donde F' viene
dada por (3.3) con G = N(u,0?). Si o fuese conocida, lo natural serfa dividir (3.1) por o y
asi reducir el problema al caso ¢ = 1, lo cual implica estimar a p mediante

n
X ) T —
= arg min .
p = argmf ;:1/)( - )

Para obtener M-estimadores de posicidén que sean equivariantes por cambios de escala,
una propuesta intuitiva seria usar

n
o ; Tgy — M
- 3.16
fi argHLmE p< P > (3.16)

1=1

donde & es un estimador de dispersion computado previamente, que deberé ser robusto. Es
facil de verificar que i es realmente invariante por cambios de escala. Como ¢ no depende
de pu, (3.16) implica que /i es una solucion de

S o
=1

Otra posibilidad es considerar un modelo de posicién-dispersion, con dos pardametros
desconocidos y estimarlos simultaneamente (ver Maronna, Martin y Yohai, 2006), pero en
general, la estimacién con computo previo del parametro de dispersion, suele ser méas robusto
que la estimacién simulténea.

3.5. Punto de Ruptura

Entre las medidas de robustez mas usadas se encuentra el punto de ruptura. Hampel (1971)
formaliza esta nocion de punto de ruptura de un estimador 0 del pardmetro € como la mayor
cantidad de contaminacién que pueden contener los datos de manera tal que 0 siga dando
informacién sobre 6.

Sea 8 € ©, O el espacio de parametros. Para que el estimador 6 dé informacion sobre 0,
la contaminacién no deberé conducir a @ a infinito o a la frontera de ©.

Luego, se define el punto de ruptura de contaminacion asintdtico de 0 en F, denotado
por €*(8, F') como el mayor valor ¢* € (0,1) tal que Ve < €%, 0 ((1 —¢)F 4+ eG) se mantiene
acotado en funcién de G y también lejos de la frontera de ©.

Para que un estimador sea razonable es claramente intuitivo que debe haber mayor
cantidad de datos “tipicos” que “atipicos”, por esto e* < 1/2.
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A modo de ejemplo, los M-estimadores de posicion y escala conocida con ¥ mondtona
no necesariamente impar y

k1= —9(-00), kg =1(c0)

finitos. Se puede ver que
_ min(kl,kg)
k1 + ko
Si 9 fuese impar, entonces k1 = ko y por lo tanto £* = 1/2, cota que también alcanzan

los estimadores redescendientes. En el caso de estimadores de dispersion tenemos que SD y
MAD tienen punto de ruptura igual a 0 y 1/2, respectivamente.

3.6. Modelo de regresion lineal con predictores fijos

Supongamos que se tienen n observaciones (1, ..., Zip, ¥i), donde x; = (%1, ..., T;p)’ son
variables predictoras (o variables independientes) e y; es una variable de respuesta (o variable
dependiente) que cumplen el siguiente modelo lineal

p
Yi = injﬁj -+ Uy, 1<1<n, (3.17)
=1

donde f31, ..., 3, son los parametros desconocidos a ser estimados y los errores u; son variables
aleatorias i.i.d., que no dependen de x;. En esta seccién, consideramos a x; fijos, es decir,
determinados antes de realizar el experimento. Llamando 3 al vector columna (3, ..., 5p)’,
el modelo puede ser escrito de la siguiente forma

Yi = X8+ u; . (3.18)

Si llamamos X a la matriz de n X p con elementos x;; y por otro lado, y y u a los vectores
con elementos y; v u;, respectivamente, el modelo lineal puede ser escrito en forma matricial
como

y=XG+u. (3.19)

3.6.1. M-estimadores

Asumamos que se cumple el modelo (3.19), donde u; tiene densidad

1 U

~o (%)

o o
y o es el parametro de escala. En el modelo lineal (3.19), las y; son independientes pero no
idénticamente distribuidas, de hecho cada y; tiene densidad

lfo (y — Xlﬂ)
o g
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y por lo tanto, la funcion de verosimilitud para 3, asumiendo fijo el valor de o es
y —xi8
el (V).

Calcular el EMV maximizando L(b) es equivalente a encontrar 3,, tal que minimice

Zj( 2 4 (o),

donde pg = —log fo. Derivando respecto a b obtenemos el equivalente a las ecuaciones

b)>x,~:0,

izn;% <Tii_

normales

donde o = p, = —f}/ fo-

Dada una funcién de pérdida p que satisface la Definicion 3.1, definimos un M -estimador

. ~—~ (ri(b)
Bn—argmgn;p< p

donde ¢ es un estimador de escala.

de regresion como

> : (3.20)

Derivando respecto a b, obtenemos

f:w <rgb)> x; =0, (3.21)
=1

donde 1 = p’. Como antes, esta tltima ecuacion no tiene que ser necesariamente la ecuacion
de un estimador de méxima verosimilitud. Asumimos que la matriz de diseno X tiene rango
completo. En el caso particular en que o es conocido, se puede verificar que el M-estimador
es de regresion, invariante por traslaciones y equivariante por cambio de escala.

Las soluciones de (3.21) con 1 monotona (respectivamente redescendiente) son llamadas
M-estimadores mondtonos de regresion (respectivamente redescendientes).

Las soluciones de (3.20) son soluciones de (3.21) y si ¢ es estrictamente creciente, la solu-
ciéon es Unica. En el caso de regresion lineal como en el modelo de posicién, los M-estimadores
redescendientes tienen un mejor balance entre eficiencia y robustez que los M-estimadores
monoétonos. Por este motivo, en general se utiliza un M-estimador monétono como punto
inicial necesario para computar un M-estimador redescendiente.

Asumiendo que se cumple el modelo (3.18), con u tal que

[v () -

y bajo condiciones de regularidad, Bn es consistente a B y ademas

VB, — B) 25 N, (0,v(XX) 1), (3.22)
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donde v esta dado por
s El(ufo)’
(B[ (u/o)])?

Una demostracion general puede encontarse en Maronna y Yohai (1979).

(3.23)

3.7. Modelo de regresion lineal con predictores aleatorios

Asumimos que observamos n vectores aleatorios i.i.d. (x},y;) de dimension p, que satis-
facen el modelo

/
donde los errores u; son i.i.d. e independientes de las covariables x;. Sea x un vector aleatorio
con la misma distribucién que las covariables x;. En este contexto, el andlogo de asumir que
X tiene rango completo, es asumir que la distribucién de x no se concentra en ningin
subespacio, es decir, P(a’x = 0) < 1 Va # 0.

Bajo estas condiciones, suponiendo que las x; tienen varianza finita y que ¢ es consistente
a o, se puede probar que el estimador 3,, definido en (3.20) es consistente y asintoticamente
normal, mas atn

\/ﬁ(lén - 18) £> NP(O7UV;1> I

donde Vx = E(xx’) y v fue definido en (3.23).

3.8. Modelo de regresiéon no lineal

Consideremos un modelo de regresiéon no lineal dado por
yi =9(x;,0) +¢e, 1<i<n, (3.24)

donde x; son los vectores de variables regresoras, 0 es el vector de pardametros desconocidos
a ser estimados, €; representan los errores y n el tamano de la muestra. Dado t € O, siendo
O el espacio paramétrico, definimos los residuos correspondientes a t como

ri(t) = yi — g9(xi,t).

A continuacion presentamos dos familias de estimadores bajo el marco de la regresiéon no
lineal: los M-estimadores y los LMS-estimadores.

3.8.1. M-estimadores

Supongamos que se cumple el modelo (3.24) donde ¢; tiene densidad

0 (5)
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y o es un pardmetro de escala. En este modelo, las y; son independientes pero no idéntica-
mente distribuidas, de hecho cada y; tiene densidad

lfo <Z/i — g(xi, 9)>

g g

y la funcién de verosimilitud para 6, fijando o, es
1y yi — 9(x;,0)
L(@)=— LA AR N
) wgh( (

Calcular el EMV maximizando L(t) es equivalente a encontrar (@, &) tal que minimice

;ngfv+mw,

donde py = —log fo. Luego, derivando respecto de t y dejando fijo el valor de o, obtenemos

S 4o (”fﬁ) WO o, 1<r<p,
i=1 T

donde vy = pfy = —f}/ fo. Definimos a los M-estimadores de regresion como
n
> ) Yyi — 9(xi, t)
0, = _ 3.25
n = argmin ;_1 P ( 5 > ; (3.25)

donde p es una funcién-p como la de la Definiciéon 3.1 y & es un estimador de la escala o de

los residuos, es decir,
1 « (t
n 4 o
=1

siendo § una constante entre 0 y 1. Diferenciando (3.25) obtenemos las ecuaciones

v (") % =0 1srsn (520
i=1 "

donde v = p’ y es una funcién-) como la de la Definicién 3.2.

Fasano (2009) estudia el comportamiento asintotico de estos estimadores bajo condicio-
nes de regularidad, en particular, deriva su distribucién asintética bajo los supuestos que
detallamos a continuacion.

A fin de que los parametros sean identificables, asume que la funcién de regresion g
satisface la siguiente condicién

t#0 = P{g(X,t) =g(x,0)} <1.
Por otro lado, supongamos que x, y y € tienen la misma distribucién que x;, y; y €,

respectivamente. Sea Gp(x) la distribucion de las x y Fy(e) la de ¢, entonces la distribucion
de z = (x,y) esta dada por

Hy(z) = Go(x)Fo(y — 9(x,0)).
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Consideremos los siguientes supuestos

A. E(lp(y — 9(8))]) < oo, VO €O

B. La distribucion Fj tiene densidad fy con las siguientes propiedades:

i) fo es par.
ii) fo(le]) monotona creciente.

iii) fo(|e|) estrictamente decreciente en un entorno de 0.

Sea g el gradiente de g, 1 = p’ y tomemos, sin pérdida de generalidad, o = 1, luego se tiene
que @, es solucién de

> w(yi — g(xi,0)i(x:,0) = 0.
i=1

Bajo las condiciones A y B y la suposicion de que, o bien, © es compacto o se cumple que
P {sup lg(x,0)] < oo} =1, (3.27)
o

Fasano (2009) prueba que el M-estimador 8,, definido en (3.25) es consistente a 6. Si ade-
maés, las dos primeras derivadas de g son Fy-integrables, la matriz V= E[g(x, 0)g(x, 0)'] es
definida positiva con probabilidad uno y la funcién 1 es continua, acotada y tiene derivada
acotada, entonces

3.8.2. LMS-estimadores

Rousseeuw (1984), basandose en algunas ideas de Hampel (1975), defini6 el primer esti-
mador de regresioén con el mayor punto de ruptura posible, 1/2. Es decir, el mismo resiste los
efectos de aproximadamente un 50 % de datos contaminados, que es lo mejor que se puede
esperar de un estimador. Este es el llamado LMS-estimador y denotado éLMS.

Consideremos nuevamente el modelo de regresion lineal dado por
yi=xi0+¢g, 1<i<n,

donde los x; son vectores p-dimensionales de variables explicativas y los €; son independientes
con distribucién F', simétrica y fuertemente unimodal. Se define 8,5 como

O1ais = arg min med (y; — xi'0)2,

Oco 1<i=n
donde la mediana es definida como el [n/2] 4+ [(p + 1)/2] estadistico de orden y [-] es la
parte entera.

Rousseeuw probé que 9LMS siempre existe y que cualquier conjunto de p observaciones
determina un tinico valor de 6,,5. Ademas, para una muestra finita, el punto de ruptura del
método LMS en el caso de regresion lineal es ([(n —p)/2] +1)/n.
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Kim y Pollard (1990) probaron que el orden de convergencia para el estimador LMS en
regresion lineal es Op(nfl/ 3), lo cual implica que la eficiencia asintética de este estimador
es 0. Es por esto que, generalmente, este estimador se utiliza solamente para detectar un
posible problema de outliers o de enmascaramiento que otras técnicas de diagnéstico pasan
por alto (Rousseeuw y van Zomeren, 1990) y no para inferencia. O, alternativamente, como
primer paso a la hora de aplicar un estimador robusto mas eficiente como, por ejemplo, un
M-estimador (Jureckova y Portnoy, 1987 y Simpson, Ruppert, y Carroll, 1991).

La definicion del LMS-estimador puede ser facilmente generalizada para su uso en mo-
delos de regresién no lineal de la siguiente manera

0 =a { ed (y; — ., 0))2 3.28
s = argnin o d (v — 9(x:, 6)) (3.28)
Sin embargo, deben tenerse en cuenta varios temas importantes que justifiquen su uso en la
practica. Stromberg y Ruppert (1992) analizaron las propiedades del punto de ruptura en el
caso de regresion no lineal y Stromberg (1995) da una demostracion de la consistencia débil
del 0. ,s en modelos de regresién no lineal.

Aspectos computacionales

Rousseeuw y Leroy (1987) utilizaron el algoritmo PROGRESS para aproximar al @y ys.
Este algoritmo puede resumirse de la siguiente manera: en un primer paso se calcula el ajuste
exacto a p puntos, denotamos esto 0., y luego se calcula la mediana residual en 0.,. Lo ideal

es repetir este procedimiento para los (Z) posibles subconjuntos de p-elementos y el valor

de 9ex que produzca la menor mediana residual utilizarlo para encontrar el estimador LMS.
Si repetir (n) veces es computacionalmente dificil, Rousseeuw y Leroy sugieren un método
diferente para elegir el nimero de submuestras: si la proporcién de outliers es &, entonces el
ntmero de submuestras puede ser elegido para asegurar, con alta probabilidad, que al menos
una de las submuestras no contiene ninguno de los outliers. Ellos notan que para n/p, esta
probabilidad es aproximada por

1—(1—(1-&"F, (3.29)

donde k es el niimero de submuestras.

Sugieren que k deberia ser elegido para asegurar que (3.29) sea al menos 0.95, pero en
su algoritmo eligen k& dependiendo de p de la siguiente manera

p: 1 2 3 1 5 >6
max k: 500 1000 1500 2000 2500 3000

Elegir un gran niamero de submuestras podria requerir mucho tiempo de computaciéon
en regresion no lineal, por esto, Stromberg (1993) modifico el algoritmo PROGRESS para
encontrar un estimador del estimador LMS en el marco de regresiéon no lineal.

Este algoritmo es un procedimiento en varias etapas. En cada etapa se procura mejorar
el mejor estimador presente, denotado por 8, de O ,s.
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El algoritmo introducido por Stromberg (1993) se resume de la siguiente manera:
Paso 0: el  inicial es el estimador de minimos cuadrados para la muestra completa.

Paso 1: Se computa el estimador de minimos cuadrados, 9Ls, para p puntos elegidos
aleatoriamente. Si el cuadrado de la mediana residual en 9Ls es menor que el cuadrado
de la mediana residual en 9 el éLS reemplaza 0 como el estimador actual de 9LMS Este
procedimiento se repite k veces, donde k es especificado por el usuario. El método por
defecto para computar 6.5 es el método de Newton- Raphson con punto inicial 0, pero si 0.5
puede ser hallado algebraicamente es preferible hacerlo ya que se gana tiempo de cémputos.
La cantidad de ajustes de minimos cuadrados se elige tal que (3.29) sea al menos 0.999
cuando & = 50 %.

Paso 2: Este paso toma ventaja del hecho de que O, esta basicamente tratando de
encontrar un buen ajuste a la mitad de la muestra. 6 se usa como valor inicial para cal-
cular el ajuste de mlmmos cuadrados, denotado HLS, para los puntos de la muestra tal
que r2(6) < med r2(0). Si 1n<azed r3(0F,) < Ined r2(0), entonces 07, reemplaza a @ como el

estimador actual de HLMS.

Paso 3: Para encontrar atin un mejor estimador de éLMS, el algoritmo simplex de Nelder-

Mead (Nelder y Mead, 1965), se utiliza para minimizar 1med r2(6), usando 6 como valor ini-
<i<n

cial. El algoritmo se implementa como en Press, Flannery, Teukolsky, and Vetterling (1986),
con tolerancia fraccionaria 1074,

Este algoritmo se utiliz6 para computar los estimadores iniciales en nuestro estudio de
Monte Carlo que desarrollaremos a continuacion en el Capitulo 5



Capitulo 4

Estimaciéon robusta en el modelo de
regresion no lineal con respuestas
faltantes

4.1. Introduccion

Como fue mencionado en los capitulos anteriores, en los modelos no lineales asumimos
que observamos n vectores aleatorios (y;,%;) € RPT! independientes e idénticamente distri-
buidos (i.i.d.), con y; € R, x; € RP, siendo

yi = 9(xi,0) + ¢4, 1<i<n,

donde los errores g; son variables i.¢.d. e independientes de x; y g una funcién conocida
salvo por el parametro € a estimar. En la teoria cléasica, se supone que con E(g;) = 0y
Var(g;) = . En nuestro contexto, asumiremos que los errores tienen distribuciéon simétrica

alrededor del 0 con densidad
1 €
7f0 (7) )
o o

Nuestro objetivo es estimar el parametro @ cuando existen respuestas faltantes en el
conjunto de datos a tratar, que queda definido a partir de (y;,%;,d;), 1 < @ < n donde
d; = 1 si y; es observada y 6; = 0 si no lo es. Sea (Y, X, ) un vector aleatorio con la misma
distribucion que (y;, X, 0;), asumiremos que la variable de respuesta presenta observaciones
faltantes al azar (missing at random, MAR), es decir, dado X, § e Y son condicionalmente
independientes

siendo ¢ un parametro de escala.

P =1|(Y,X)) = P(6 = 1|X) = p(X). (4.1)

Como las estimaciones mediante métodos clasicos, como el de minimos cuadrados, son sensi-
bles a la presencia de datos atipicos, resulta necesaria la utilizaciéon de métodos robustos. En
este contexto, Sued y Yohai (2012) estiman la distribuciéon marginal de la respuesta mediante
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un procedimiento que permite estimar en forma consistente cualquier funcional débilmente
continuo de la distribucién de la respuesta Y. Para este propoésito utilizan como estimador
robusto inicial del pardmetro de regresiéon no lineal 8, MM-estimadores, de los que estudian
sus propiedades asintoticas.

En el presente trabajo, proponemos estimar el parametro de regresiéon no lineal cuando
existen datos faltantes en la variable de respuesta mediante una familia de M-estimadores y
estudiar algunas de sus propiedades.

4.2. Me-estimadores

Consideremos la funcién de pérdida p.(t), donde p. es una funciéon-p como las definidas
en el capitulo anterior, siendo ¢ el parametro de calibracién. Definimos

5.6 = o > odipe (10, (4.2
i=1

a

donde & es un estimador preliminar de la escala o.

Luego, definimos el M-estimador simplificado 6 del parametro de regresiéon como

A~

0 = arg mtl’n Sn(t) . (4.3)

Cuando p es continuamente diferenciable, con ¥ (y,u,t) = dp(y,u,t)/du, O satisface las
ecuaciones diferenciales

Sr(Ll)(t) — %Z& wc (yl - Q;Xivt)> ag(géat) =0. (44)
=1

Un aspecto critico en todo problema no lineal de estimaciéon es la elecciéon de los puntos
iniciales del algoritmo de computo. Esto ocurre tanto si se intenta buscar el minimo de (4.2)
como si se intenta resolver (4.4). Por esta razén, proponemos utilizar como punto inicial en
la busqueda del M-estimador, el estimador LMS computado mediante una adaptaciéon del
algoritmo basado en la propuesta de Stromberg (1993), que a la vez permite calcular un
estimador preliminar robusto de la escala o.

Proponemos el siguiente procedimiento para la estimacién del parametro de regresion:

s Paso 1: Calcular el estimador de minimos cuadrados tomando un valor inicial 6

n

0,5 = arg min 1 6i(yi — g(xi,t))%.
1=

» Paso 2: Calcular el LMS-estimador mediante el algoritmo de Stromberg (1993) to-
mando como valor inicial 0
éLMS = arg min med (y; — Q(Xiat))Z‘

tcO® 4,=1
1<i<n
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= Paso 3: Para las observaciones completas, sean los residuos

TLmsi = Yi — g(xz‘, éLMS) .

Calcular
a-LMS = K- %nﬁ(]:_l (|TLMSZ' - I;Sngii (TLMSi)D; R = 14826,
1<i<n 1<i<n

para utilizarla como escala preliminar en (4.4), siendo k una constante de calibracion.

s Paso 4: Estimar 8 mediante un M-estimador, tomando como punto inicial Oy,
minimizando

by = arg min 34, p<y—9<x9>> .

g
Oco ) LMS

Observacion 4.2. En el estudio de simulaciéon tomamos como funcion-p la funcién bicua-
drada de Tukey definida por

p(t) =min {1,1— (1 - t2)3} .
Cabe mencionar que después del Paso 3 podria computarse un M-estimador de escala

como los definidos en la Seccion 3.3. de manera de utilizar en el Paso 4 un estimador de o,
0, que sea mas eficiente.

4.2.1. Fisher-consistencia del parametro 6

Consideremos el funcional asociado al M-estimador propuesto definido por
; Yy— g(X’ t)
O(F) = Elldp|————=)]|.
(£) = arg min {p< . )]

Veremos que bajo ciertas condiciones de regularidad el funcional es Fisher-consistente, es

o=l

entonces O(F') = 0, en otras palabras, el verdadero valor del parametro minimiza la funcion
objetivo planteada en términos de la esperanza.

decir, si

El siguiente lema establece condiciones suficientes para asegurar la Fisher-consistencia
del funcional asociado al M-estimador.

Asumiremos la siguiente condicién sobre la funcion de pérdida p.

AO0. Dado o > 0, tenemos que E(p((e —a)/o)) > E(p(g/0)).
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Observacion 4.1. El uso de funciones de pérdida acotadas para controlar el crecimiento de
los residuos requiere condiciones mas exigentes para obtener la unicidad, tales como simetria
y unimodalidad de la distribuciéon de los residuos. De hecho, sea p una funcién-p como las
descriptas anteriormente y acotada. Si denotamos A(a,7) = E(p((y —a)/7)), entonces v
se define como v = arg min, A(a,7) con 7y la escala marginal. Por el Teorema 10.2 en
Maronna, Martin y Yohai (2006), si y tiene una densidad f que es una funcion decreciente
en |y —v| y p es cualquier funcion-p, entonces, A(a,7) tiene un tnico minimo en a = v para
cualquier 7 > 0.

Lema 4.1. Supongamos que (Y, X, ) es tal que Y = g(X, 0) + ¢, donde ¢ es independiente
de X y satisface la condicion MAR dada en (4.1). Si la funcién de pérdida p es una funcién-p

Y —g(X,t))]

que cumple la condicién AQ entonces, el funcional O(F') = arg mtl’n Er [5;} <
o

es Fisher—consistente.
DEM. Dado que se cumple (4.1), tenemos que Y y § son condicionalmente independientes
dado X, por lo tanto
Y —g(X,t [ Y —g(X,t
el (5] = p oo (22
o i o
[ Y —¢9(X,0)+9(X,0) — g(X,t
[0y (0K 000 oK)
i — (g(X,t) — g(X,0
(X)) (g( <)7 9l ))ﬂ
r e— (g(X,t) — g(X,0

De la independencia entre los errores y las covariables y la condicién AOQ, se concluye que

pfp(ETUXUZgOY _ pf, (ly—go)), )

g g

_ E{p (6 - (g(x,t()j—g(Xﬁ)))}

Luego, 8(F) es un estimador Fisher-consistente de 6. J

<
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4.2.2. Funcion de Influencia

La funcion de influencia mide la robustez con respecto a un outlier y permite estudiar
la robustez local. Puede pensarse como la derivada del estimador y bajo condiciones de
regularidad, permite derivar la matriz de covarianza asintética del mismo, de manera que
provee un criterio racional para elegir la constante de calibracién.
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Sea T'(F') un funcional. La funcion de influencia de T'(F) se define como

T(Fuye) —T(F
IF(wo, T, F) = lim (Fwo.c) ( ),

e—0 €

donde Fy, = (1 — €)F + €Ay, representa el modelo contaminado, siendo Ay, la medida
de probabilidad que pone masa 1 en el punto wo = (yo, X, do)-

Bajo condiciones de regularidad (Fernholz, 1983), tenemos la siguiente expansion

Va{T(E,) - T(F)} = \}ﬁ SOIF (Wi, T, F) + 0,(1)
=1

siendo F;, la distribucién empirica de w;, 1 < i < n. Luego, la varianza asintotica del
estimador puede expresarse como

AV (T,F) = Ep {IF (w, T, F)IF (w1, T,F)"} . (4.5)

Sea I} una distribuciéon sobre R¥T1x {0, 1} y denotemos por 8(F) y o(Fy) los funcionales
asociados a @ y &, respectivamente.

Asumimos que 8(F}) es solucion de S (b, 7(Fy), F1) = 0 donde

Y —gu(X,t)> 89(X,t)> .

S(l)(tauu Fl) = EFl (61/} < at

Supongamos, ademas, que @(F}) es un funcional Fisher-consistente en F', es decir, 8(F) = 6.
En la siguiente proposicion damos la funcion de influencia del funcional simplificado @(F})
en I =F.

Proposicion 4.1. Supongamos que IF(wq,o, F) existe y que son vélidas las siguientes
condiciones

oY (y,x,t,u)
ot

A1l. (s) es continuamente diferenciable, es continua y ¢ tiene distribucién

simétrica alrededor del 0.

A2. La matriz

A-p (v () 5 [25 R A )

es no singular.

Luego, IF (wy, 8, F') existe y cuando o(F') = o, tenemos que

[F(wo,0, F) = — odot) (yo - g(};O’o(F))>A_1(W'
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DeEM. Notemos que

o () )

luego

00 = (1-0Fr (m(y 9(X. 6( woe>>> 09(X, 8(Fuy. )))

0(Fwg,e) ot
Yo — 9(%0, 0(Fwy,e)) \ 99(x0, 0(Fwp.e))
o e (v (BT ) et o

Entonces, diferenciando (4.6) con respecto a € y evaluando en € = 0, resulta

0, — _EF<5¢<Y 9(X, 0(F ))> 0g(X, 6(F ))>

o(F) 8t
L Ep (M (Y g X 0 ) >IF(W0,9,F)

~ Er (W (Y « X 9 ) ag (Xéf (F))I) U(IF) IF (w0, 6, F)

- o (o (PG ML) s e

o (v <>(<o,)0< ) o X%’f( >>> |

Teniendo en cuenta que se cumple la condicién de MAR dada en (4.1), que ¢ tiene distribucion
simétrica alrededor del 0, que v y ¢’(s) son funciones impares, obtenemos que

B (Y —g(X,0(F))\ 99(X,0(F)) 0g(X,0(F))"\ 1
O = —Er <M’ ( o (F) ) ot ot >0(F) IF(wo, 0. F)
Yo — 9(x0,0(F))\ dg(x0,0(F))
T (1”( o(F) ) ot )

de donde resulta la proposicién. [

Vale la pena observar que la funcién de influencia obtenida depende de una variable
dicotémica que toma el valor 0 cuando la variable de respuesta esté ausente. Por esta razon,
como en Bianco, Boente y Rodrigues (2012) consideramos la esperanza de la funciéon de
influencia que denotamos EIF (wq, T, F'), de manera tal que

EIF(W37T7 F) = E(IF(W37T7 F)|(y07XO)>

Para el caso del funcional en estudio, obtenemos que

EIF(w(, 0, F) = — op(xo)t) (yo - 9(320,9( )>>A 109(%0, 0(F)) .

ot
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Para ilustrar el comportamiento de la medida EIF, consideramos en primer lugar el
modelo de crecimiento exponencial, como en Fasano (2009), dado por
y = fexp (ax) + ¢,

donde (o, 8) = (2,5) y tomamos 3 modelos diferentes para la probabilidad de ausencia dados
por

p =1 : sin respuestas faltantes

1
p(x) = T oxp(—20 _2) : modelo logistico

p(z) = 0.7 + 0.2(cos(2x + 0.4))?

En las Figuras 4.1, 4.2 y 4.3, graficamos las superficies obtenidas para el M-estimador cuando
se utiliza la funcién de pérdida bicuadrada con constante de calibracion ¢ = 4 y la del
estimador de minimos cuadrados que resulta de tomar p(s) = s2. En estas figuras, se puede
apreciar el efecto de aplicar una funcién de pérdida p acotada sobre los residuos, pues
mantiene dominada la influencia controlando el crecimiento de los residuos en una gran
region donde la norma de la funcién de influencia de minimos cuadrados toma valores muy

elevados.
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En segundo término, consideramos el modelo de Michaelis—Menten parametrizado de la

siguiente forma
ar
= — 87
Y B+

con (o, ) = (10,1), x ~ U(0,1) y € ~ N(0,1) y las mismas probabilidades de ausencia

que en el ejemplo anterior. En las Figuras 4.4, 4.5 y 4.6, graficamos las superficies obtenidas

para el M-estimador cuando se utiliza la funcién de pérdida bicuadrada con constante de
calibracién ¢ = 4 y la del estimador de minimos cuadrados. En estas figuras, ademas de
apreciar el efecto de aplicar una funciéon de pérdida p acotada sobre los residuos, se observa

claramente el efecto de la funcién de ausencia p sobre la esperanza. de la funcién de influencia.
En particular, en la Figura 4.6 se evidencia el efecto del coseno que introduce una fluctuaciéon

en la curva de influencia esperada.
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Capitulo 5

Estudio de Monte Carlo

Con el fin de investigar el comportamiento del método bajo estudio en muestras finitas se
realizé un estudio de simulacion. Asimismo, en este analisis se compara el comportamiento
del estimador clasico de minimos cuadrados con la alternativa robusta propuesta.

Se consideran los modelos Exponencial y de Michaelis-Menten. Para ambos modelos
se plantearon diferentes escenarios de anélisis, considerando muestras con y sin datos atipicos
y diferentes patrones de ausencia o pérdida de respuestas.

Las cuatro funciones de ausencia consideradas son:

= p =1 : sin respuestas faltantes

= p = 0.8 : faltante de respuestas completamente al azar

1
= plz) = 1+exp(—2z—2)

= p(z) = 0.7+ 0.2(cos(2z + 0.4))?

: modelo logistico

Para el calculo de los M-estimadores se tom6 como funcién-p la funcién bicuadrada cuya
expresion se encuentra en (3.9). En cuanto a la constante ¢, elegimos ¢ = 3.25 y ¢ = 4, que
corresponden a un valor de eficiencia de 0.82 y 0.90 respectivamente, bajo el modelo con
datos completos. Sin embargo, mostraremos los resultados correspondientes a ¢ = 4, ya que
no hallamos diferencias importantes.

5.1. Modelo Exponencial

Se considerd el modelo de crecimiento exponencial analizado en el estudio de simulaciéon
de Fasano (2009), dado por

y; = PBexp (ax;) e, 1<i<n, (5.1)

con Oy = (ap, Bo) = (2,5). La simulacion se llevo a cabo generando 1000 muestras indepen-
dientes de tamano n = 100, siendo x; ~ U(0,1) y &; ~ N(0,1).
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En funcién de comparar el comportamiento de los estimadores bajo pérdida de datos,
se consideraron las cuatro funciones de ausencia p antes mencionadas, asi como muestras
sin outliers y muestras contaminadas con un 10 % de datos atipicos. Si bien se consideraron
diversas contaminaciones, mostraremos a modo de ejemplo una de ellas, que ejemplifica las
situaciones consideradas. Se mostraran los resultados correspondientes a datos contaminados
de la siguiente forma

yj = (Bexp (axy)) - 1.5 90 < j <100

donde z; = 1.09 + 0.0001 - Z, siendo Z un ntmero aleatorio entre -1 y 2. Este modelo de
contaminacién corresponde al que introdujo un mayor crecimiento en el error cuadrético
medio en el estudio numeérico de Fasano (2009).

Una vez obtenidos todos los estimadores de v y 8 se midi6 su performance mediante las
siguientes medidas: Media, Mediana, Varianza, MAD y MSE (error cuadratico medio), que
presentamos en las siguientes tablas. Notaremos por LS.cg y LS.nlm al estimador clasico de
minimos cuadrados calculado mediante dos algoritmos diferentes. Por otra parte, indicare-
mos por LMS y M.cg al LMS-estimador y al M-estimador, respectivamente. Cabe destacar
que si bien se consideraron diferentes algoritmos para la minimizacién del estimador de mi-
nimos cuadrados y del M-estimador, s6lo mostraremos los resultados obtenidos para dos de
los estimadores calculados en el caso del LS y uno en el caso del M-estimador, ya que son
representativos del resto.

En las Tablas 5.1 y 5.2 se presentan los valores obtenidos para « y 8 respectivamente,
cuando no se consideran muestras sin contaminar y en las Tablas 5.3 y 5.4 cuando se intro-
ducen datos atipicos en la muestra. En cada tabla se tomé ¢ = 4 y se tuvo en cuenta cada
una de las funciones de pérdida, nombradas anteriormente.

En la Figura 5.1 se muestran los boxplots de los estimadores de o y 8 cuando p = 1,
tanto para muestras sin datos atipicos como para muestras contaminadas. Analogamente,
en las Figuras 5.2, 5.3 y 5.4 se presentan los mismos boxplots para las funciones p = 0.8,
p(z) = [1+exp (—2z —2)]7! y p(x) = 0.7 4+ 0.2(cos(2z + 0.4))?, respectivamente.

5.2. Modelo de Michaelis-Menten

FEn segunda instancia, consideramos el modelo de Michaelis-Menten, segtin la parame-
trizacion de Ratkowsky (1983) dado por

AT,

76Xp (ﬂ) T +&;. (5'2)

Yi =

siguiendo los parametros de simulacion tomados en Stromberg (1993). La simulacion se llevo
a cabo generando 1000 muestras independientes de tamafio n = 100, siendo 6y = (o, Bo) = (10,0),
x; ~U(0,10) y €, ~ N(0,1).

Para comparar el comportamiento de los estimadores bajo pérdida de datos, se conside-
raron las cuatro funciones de p, muestras sin outliers y muestras contaminadas con un 20 %



CAPITULO 5: EsTUDIO DE MONTE CARLO 55

de datos atipicos que fueron generados a la manera de Stromberg (1993), primero ordenan-
do los datos de menor a mayor segin las variables regresoras x; y luego sumando 20 a los
correspondientes valores de respuesta y;.

Se consideraron los mismos estimadores que para el modelo de crecimiento exponencial.
Al igual que en ese caso, una vez obtenidos todos los estimadores de o y § se midié su
performance mediante la Media, Mediana, Varianza, MAD y MSE (error cuadratico medio),
que presentamos a continuacion en las siguientes tablas. Notaremos por LS.cg y LS.nlm al
estimador clasico de minimos cuadrados calculado mediante dos algoritmos diferentes. Por
otra parte, indicaremos por LMS y M.cg al LMS-estimador y al M-estimador, respectiva-
mente. Nuevamente, cabe destacar que s6lo mostraremos los resultados obtenidos para dos
de los estimadores calculados en el caso del LS y uno en el caso del M-estimador, ya que los
valores que se obtuvieron con el resto de los algoritmos eran practicamente idénticos.

En las Tablas 5.5 y 5.6 se presentan los valores obtenidos para a y 3 respectivamente,
cuando no se consideran datos atipicos dentro de la muestra y en las Tablas 5.7 y 5.8 cuando
se contaminan las muestras.

En la Figura 5.5 se muestran los boxplots de los estimadores de o y 8 cuando p = 1, tanto
para muestras sin datos atipicos como para muestras con datos atipicos. Analogamente, en
las Figuras 5.6, 5.7 y 5.8 se presentan los boxplots correspondientes a las funciones p = 0.8,
p(z) = [1 +exp (—2z — 2)]7' y p(z) = 0.7 4+ 0.2(cos(2z + 0.4))?, respectivamente.

5.3. Conclusiones

Tal como es de esperar, para el modelo exponencial como para el modelo de Michaelis-
Menten, al considerar muestras sin datos atipicos observamos que la performance de los
estimadores clasicos es mejor que la de los robustos en cuanto a la dispersion de las esti-
maciones. Sin embargo, no hay una pérdida importante al comparar los errores cuadraticos
medios y al comparar media y mediana, son muy similares. Ademas, este comportamiento
es parecido a través de las cuatro funciones de p que se han planteado.

En este estudio de Monte Carlo hemos podido comprobar en los dos modelos que el com-
portamiento del estimador clasico de minimos cuadrados es muy inestable ante la presencia
de datos atipicos en los cuatro escenarios planteados para la funcién de p, mientras que los
M-estimadores se muestran muy estables y por lo tanto, superan en perfomance al estimador
clasico, aun cuando se introducen 20 % de observaciones atipicas como en el caso del modelo
de Michaelis-Menten. Més atn, vemos que hay diferencias entre el comportamiento de los
estimadores de minimos cuadrados segiin el método que se utilice para su computo cuando
las muestras son contaminadas.

En el modelo de Michaelis-Menten se refleja més claramente el pobre comportamiento
del estimador clasico, el cual se ve sumamente afectado por la presencia de datos atipicos.
Los estimadores obtenidos distan considerablemente de los valores reales de los parametros,
en especial del parametro «, los cuales presentan estimaciones de gran magnitud. En este
caso, uno de los algoritmos empleados en la estimacién por el método de minimos cuadrados
(LS.nlm) mejora la performance del estimador respecto del otro (LS.cg) pero, atin asi, estima
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valores muy alejados del valor real del parametro. Por el contrario, los estimadores robustos
no se ven afectados, sea cual fuere la funcién p considerada.

Respecto al LMS-estimador, podemos concluir, que es resistente a los datos atipicos
debido a su alto punto de ruptura. Sin embargo, dado que no son altamente eficientes, su
célculo no resulta satisfactorio como estimador final del pardmetro @, pero si como estimador
inicial en el primer paso del algoritmo para obtener el M-estimador, el cual, heredando los
beneficios del alto punto de ruptura del LMS resulta robusto y, debido a la constante ¢ = 4
considerada, también eficiente.
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5.4. Tablas

o7

LS.cg LS.nlm LMS M.cg Funcion de pérdida
Media  1.9995 1.9995  2.0019  1.9993
Mediana  1.9991 1.999 2.0003  1.9989
Varianza  0.0007  0.0007 0.0044 0.0007 p=1
MAD  0.0245 0.0245 0.0657  0.0275
MSE 0.0007 0.0007 0.0044 0.0007
Media  2.0011 2.0011 1.9992  2.0011
Mediana  2.0009  2.0009  1.9959  1.9995
Varianza 0.0008  0.0008 0.0051 0.0009 p=0.8
MAD 0.0265 0.0265 0.0714 0.0297
MSE 0.0008 0.0008 0.0051 0.0009
Media  2.0009 2.0009 2.0007  2.0009
Mediana  1.9997  1.9997  1.9991 1.9994
Varianza  0.0007  0.0007 0.0049 0.0008 p(z) = .
14 exp (—2z —2)
MAD 0.0256 0.0256 0.0689  0.0279
MSE  0.0007 0.0007 0.0048 0.0008
Media  2.0008  2.0008  1.9992  2.0007
Mediana 2 2 1.9972  1.9998
Varianza ~ 0.0008  0.0008  0.0054  0.001  p(x) = 0.7 4 0.2(cos(2z + 0.4))?
MAD 0.0278 0.0278 0.0756  0.0304
MSE 0.0008 0.0008 0.0054  0.001

Tabla 5.1: Estimacion de a. con ag

= 2y ¢ = 4, para el Modelo Exponencial, sin outliers.

LS.cg LS.nlm LMS M.cg Funcion de pérdida
Media  5.0026  5.0027  4.9982  5.0031
Mediana  5.0043  5.0043 4.994  5.0046
Varianza  0.0105 0.0105 0.0692 0.0116 p=1
MAD  0.103 0.103 0.2744 0.1116
MSE 0.0105 0.0105 0.0691 0.0116
Media  4.9979  4.9979  5.0111  4.9979
Mediana  4.9971  4.9971  5.0153  4.9999
Varianza  0.0128 0.0128 0.0811 0.0145 p=0.8
MAD 0.1074 0.1074  0.2919 0.1199
MSE 0.0128 0.0128 0.0812 0.0144
Media  4.9983  4.9983  5.0064 4.9983
Mediana  5.0009  5.0009  5.0025 5.0025
Varianza 0.0108  0.0108 0.0791 0.0122 p(z) = .
1+ exp (—2z — 2)
MAD 0.1018 0.1018 0.2789 0.1075
MSE 0.0107 0.0107 0.0791 0.0122
Media  4.9995  4.9995 5.012  4.9998
Mediana 5 5 5.0205  4.9997
Varianza ~ 0.0133  0.0133  0.0879  0.0151  p(z) = 0.7 + 0.2(cos(2z + 0.4))?
MAD 0.1134 0.1134 0.3056 0.1233
MSE 0.0133 0.0133  0.0879 0.0151

Tabla 5.2: Estimacion de 8 con Sy =5 y ¢ = 4, para el Modelo Exponencial, sin outliers.
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LS.cg LS.nlm LMS M.cg Funcion de pérdida
Media  2.8376 2.8352 2.0021 1.9998
Mediana  2.837 2.8356  2.0015  1.9981
Varianza  0.0023  0.0028 0.0044 0.0011 p=1
MAD 0.0471 0.0467 0.0638 0.0263
MSE 0.7039  0.7004 0.0044 0.0011
Media  2.8329 2.832 1.9999  2.0007
Mediana 2.83 2.8298 1.9992  2.0005
Varianza  0.0045 0.0046 0.0046 0.001 p=0.8
MAD 0.0626 0.0627  0.0688  0.0293
MSE 0.6983 0.6967 0.0046  0.001
Media  2.8415 2.8395  2.0006 2.0006
Mediana  2.8397  2.8393  2.0005 1.9997
Varianza  0.0027  0.0033  0.0043 0.0008 p(z) = -
14 exp(—2z —2)
MAD 0.0495 0.0492 0.0641 0.0281
MSE 0.7108 0.7081  0.0043 0.0008
Media 2.8311 2.8293  2.0025 2.0015
Mediana  2.8291  2.8288  2.0031  2.0003
Varianza  0.0053  0.0056  0.0053 0.0017 p(x) = 0.7 4 0.2(cos(2z + 0.4))2
MAD 0.0689 0.0684 0.067  0.0312
MSE  0.6961 0.6933 0.0053  0.0017

Tabla 5.3: Estimacion de a con «g

2 v ¢ = 4, para el Modelo Exponencial, con outliers.

LS.cg LS.nlm LMS M.cg Funcion de pérdida
Media 2.7802  2.7882  4.9975 5.003
Mediana  2.782 2.7847  4.9841  5.0036
Varianza  0.0226  0.0287  0.0651 0.0131 p=1
MAD  0.1527 0.1529 0.262 0.1116
MSE 4.9501  4.9208 0.065 0.0131
Media 2.7945  2.7977 5.007 5.0004
Mediana  2.7987 2.7996 5.0071  4.9991
Varianza 0.0352 0.0371 0.0744 0.0149 p=0.8
MAD 0.1751  0.1751 0.2831  0.1204
MSE 4.8992 4.8874 0.0743 0.0149
Media 2.7651  2.7717  5.0045 5
Mediana  2.765 2.7662  4.9952  5.0033
Varianza  0.0242  0.0322  0.0699 0.0124 p(z) = %
1+ exp(—2z —2)
MAD  0.1537 0.154 0.2664  0.1095
MSE 5.0189 4.9973  0.0699 0.0124
Media  2.7945 2.8006 5.0004 5
Mediana  2.7945  2.7957  4.9904 5.0026
Varianza  0.0408  0.0459 0.079  0.0182 p(x) = 0.7 + 0.2(cos(2z + 0.4))2
MAD 0.194 0.1925  0.2797 0.1293
MSE 4.9051 4.8832  0.0789 0.0182

Tabla 5.4: Estimacion de 8 con g =5 y ¢ = 4, para el Modelo Exponencial, con outliers.
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LS.cg LS.nlm

LMS M.cg Funcién de pérdida

Media  10.0077  10.0077
Mediana 10.01 10.01
Varianza 0.0623 0.0623

MAD 0.2487 0.2487
MSE 0.0623 0.0623

Media  10.0205 10.0205
Mediana  10.0199  10.0199
Varianza 0.083 0.083

MAD 0.2847 0.2847
MSE 0.0833 0.0833

Media  10.0199  10.0199
Mediana  10.0206  10.0206

Varianza 0.0677 0.0677

MAD  0.2457 0.2457
MSE  0.0681 0.0681

Media 10.026 10.026
Mediana  10.0162  10.0162
Varianza 0.0873 0.0873

MAD 0.288 0.288
MSE 0.0879 0.0879

10.0758  10.0051
10.021 10.0004
0.4853 0.0725 p=1
0.6444 0.2659
0.4906 0.0725

10.1052  10.0191

10.068 10.0096

0.5668 0.0957 p=0.8
0.7538 0.3109

0.5773 0.096

10.086 10.0175
10.033 10.0093

1
0.5058  0.0767 pla)= ——
14 exp(—2z —2)
0.6664 0.2606

0.5126 0.0769

10.1071  10.0239
10.0678  10.0081
0.6162  0.1011  p(x) = 0.7 + 0.2(cos(2x + 0.4))2
0.7294  0.3161
0.6271  0.1015

Tabla 5.5: Estimacién de « con ag
outliers.

10 y ¢ = 4, para el Modelo de Michaelis-Menten, sin

LS.cg LS.nlm

LMS M.cg Funcion de pérdida

Media  -0.0034 -0.0035
Mediana  0.0006 0.0006
Varianza 0.0158 0.0158

MAD  0.1203 0.1204

MSE  0.0158 0.0158

Media  0.0013 0.0013
Mediana 0.001 0.001
Varianza 0.0198 0.0198

MAD  0.1351 0.1351

MSE  0.0198 0.0198

Media  0.0027 0.0027
Mediana  0.0047 0.0047

Varianza 0.0168 0.0168

MAD 0.123 0.123
MSE  0.0168 0.0168

Media  0.0026 0.0026
Mediana  0.0002 0.0002
Varianza 0.0199 0.0199

MAD 0.134 0.134

MSE  0.0199 0.0199

-0.0061  -0.0054
-0.0118  -0.0007
0.1031 0.018 P
0.2982 0.1323
0.1031 0.018

Il
—

-0.0037  -0.0005
0.0104 0.0002
0.1293 0.0227 p=0.8
0.3284 0.1482
0.1292 0.0227

0.0009  0.0007
-0.0036  -0.0029
0.1094  0.019  p(x)

0.3128 0.1339
0.1092 0.019

1
T 14exp(—2z—2)

0.006  0.0005
0.0137  -0.0005
0.1218  0.0229  p(z) = 0.7 + 0.2(cos(2x + 0.4))2
0.3232  0.1468
0.1217  0.0229

Tabla 5.6: Estimacion de 8 con Sy = 0y ¢ = 4, para el Modelo de Michaelis-Menten, sin

outliers.
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LS.cg LS.nlm LMS M.cg Funcién de pérdida
Media  28559.8791 2428.4303 10.0675  10.0134
Mediana 28338.222 1998.2602 10.0208  10.0164
Varianza  18572833.03 4637701.681  0.5281 0.1131 p=1
MAD 4108.7444 2496.2846 0.6766 0.3372
MSE  833649855.6 10481868.98  0.5322 0.1132

Media  28653.1961 2390.9281 10.0817  10.0181
Mediana ~ 28517.4606 1865.745 10.0284  10.0133
Varianza  21152741.13  5010523.279  0.6099 0.1412 p=0.8
MAD 4551.7156 2595.2335 0.7632 0.356
MSE  841564269.7 10674331.35  0.6159 0.1413

Media  28682.3095 2016.8827 10.0828  10.0231
Mediana  28542.3652 1346.5702 10.0126  10.0131
Varianza ~ 18394459.03  4468029.051 0.5432 0.1183  p(x)

MAD 4071.7761 1977.8179 0.6913 0.323
MSE  840477398.2  8491139.12 0.5495 0.1187

1
 14exp(—2z—2)

Media  28361.9394 2953.2454 10.0867  10.0263
Mediana  28297.6178 2818.1634 10.0272  10.0176
Varianza  20541014.45  5641706.759 0.6117 0.1515  p(x) = 0.7 + 0.2(cos(2x + 0.4))?
MAD 4611.8096 2932.2468 0.7313 0.3909
MSE  824352942.6  14298758.28 0.6187 0.1521

Tabla 5.7: Estimaciéon de a con ag = 10 y ¢ = 4, para el Modelo de Michaelis-Menten, con
outliers.

LS.cg LS.nlm LMS M.cg Funcion de pérdida
Media  9.3725 5.05644  -0.0023 -0.0044
Mediana ~ 9.3791 6.717 -0.0041  0.0077
Varianza  0.0224  18.0858  0.0893 0.0219 p
MAD  0.1378 1.2066 0.2735 0.1413
MSE 87.8652 43.6151  0.0892 0.0219

Il
—

Media  9.3743 4.3787  -0.0003  -0.0028
Mediana  9.3792 6.6634 0.003 0.002
Varianza ~ 0.0237  26.3912  0.1091 0.0264 p=0.8
MAD  0.1452 1.3846 0.3211 0.1522
MSE  87.902  45.5378 0.109 0.0263

Media  9.3752 3.833 0.0079 0.0007
Mediana 9.381 6.3119 0.0112 0.0004
Varianza  0.0213 28.592 0.0932  0.0225 p(z) =

MAD  0.1425 1.7559 0.2885 0.1405
MSE 87.9148 43.2553  0.0932 0.0225

1
1+exp(—2z —2)

Media 9.3516 5.1931 -0.0036  -0.0007
Mediana  9.3551 7.0439  -0.0001  -0.0008
Varianza ~ 0.0247  20.3028  0.1037  0.0269  p(x) = 0.7 + 0.2(cos(2x + 0.4))?
MAD 0.1501 1.0365 0.3049 0.16
MSE  87.4777 47.2512  0.1036 0.0268

Tabla 5.8: Estimacion de 8 con By = 0y ¢ = 4, para el Modelo de Michaelis-Menten, con
outliers.



CAPITULO 5: EsTUDIO DE MONTE CARLO 61

5.5. Boxplots
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Figura 5.1: Boxplots de los estimadores de o y 8 para datos sin outliers en la primera linea
y con outliers en la segunda, con ¢ =4 y p = 1, para el Modelo Exponencial.
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Figura 5.2: Boxplots de los estimadores de o y § para datos sin outliers en la primera linea
y con outliers en la segunda, con ¢ =4 y p = 0.8, para el Modelo Exponencial.
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Figura 5.3: Boxplots de los estimadores de o y 8 para datos sin outliers en la primera linea

y con outliers en la segunda, con ¢ =4 y p(z) =
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, para el Modelo Exponencial.
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Figura 5.4: Boxplots de los estimadores de o y 8 para datos sin outliers en la primera linea
y con outliers en la segunda, con ¢ = 4 y p(x) = 0.7 + 0.2(cos(2x + 0.4))? , para el Modelo
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Figura 5.5: Boxplots de los estimadores de o y § para datos sin outliers en la primera linea
y con outliers en la segunda, con ¢ =4 y p = 1, para el Modelo de Michaelis-Menten.
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Capitulo 6

Ejemplo

Edad de los Conejos Medida “Por el Ojo”

El conejo europeo Oryctolagus cuniculus es una de las principales plagas en Australia. Un
método fiable de determinacion de la edad para los conejos capturados en el medio silvestre
seria de importancia en los estudios ecolégicos. En un estudio realizado por Dudzinski y
Mykytowycz (1961), se midi6 el peso seco de la lente del ojo para 71 conejos salvajes, con
edades conocidas, viviendo a la intemperie. Como el peso de la lente del ojo tiende a variar
mucho menos con las condiciones ambientales que el peso total del cuerpo es, por lo tanto,
un mejor indicador de la edad.

Los conejos nacieron y vivieron libres en un recinto de 1.7 acre ! en Gungahlin, ACT. La
informacion sobre el nacimiento y la historia de cada individuo fue conocida con exactitud.
Los conejos que vivian en dicho recinto dependian de la fuente de alimento natural. En este
experimento 18 de las lentes oculares se obtuvieron de conejos que murieron en el transcurso
de este estudio de varias causas como coccidiosis, depredaciéon de aves o inaniciéon. Los
restantes 35 conejos fueron sacrificados deliberadamente, inmediatamente luego de haber
sido capturados en el recinto o de haber sido mantenidos durante algin tiempo en jaulas.
Las lentes se conservaron y se determiné su peso seco.

Sean
s Lens = peso de la lente del ojo en mg.
= Age = edad en dias.

Dudzinski y Mykytowycz (1961) sugieren la relacion deterministica

E(Lens) = 01 exp <03j|—0jlge) )

pero este modelo no resulta homocedastico.

11 acre &~ 4.047 m?
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Un modelo apropiado para este caso seria

0,

E(log(L =0 — ———
(Og( ens)) 1 03+Age’

el cual si resulta homocedastico.

Con el fin de comparar, nuevamente, la performance del estimador robusto propuesto
frente al estimador clésico se procedid a realizar una estimacién del pardmetro 0 a partir de
los datos Lens y Age. Para lo cual, se consideraron los mismos de forma completa como asi
también con ciertas pérdidas en la variable Lens mediante las siguientes funciones:

= p = 1: sin respuestas faltantes

= p = 0.8: faltante de respuestas completamente al azar

() :

] xTr) =

P 1+ exp(—0.5z — 1)
de respuestas faltantes)

: modelo logistico (se introducen aproximadamente un 25 %

A su vez, se contaminaron las ultimas cinco observaciones de la variable log(Lens), en
los tres escenarios planteados, de la siguiente manera:

» log(Lens)gr =7

g(Lens)gg = 7.01

)

log(Lens)
= log(Lens)gg = 7.02
log(Lens)7o = 7.03
(Lens)

» log(Lens)7; = 7.05

En la Tabla 6.1 presentamos los estimadores obtenidos mediante el método de minimos
cuadrados y el método robusto propuesto para la tres funciones de pérdida planteadas bajo

= (Cy: datos sin contaminar

s (]: datos contaminados

Podemos observar que, si bien, con el estimador de minimos cuadrados se obtienen
estimaciones muy parecidas entre si, al cambiar la probabilidad p, su comportamiento es
erratico al introducir sélo 5 outliers, mientras que el M-estimador se mantiene muy estable.
En particular, se puede observar que bajo la contaminacion Cy, la performance del estimador
de minimos cuadrados empeora notablemente para el segundo parametro 9LS,2 mientras que
la del M-estimador permanece practicamente invariante.

En las Figuras 6.1 y 6.2, presentamos de manera gréfica el ajuste de los datos completos
con ambos métodos para Cy y C1, donde se puede apreciar lo mencionado anteriormente. En
la Figura 6.1 podemos ver cémo ambos estimadores ajustan apropiadamente los datos y que
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GLS,I OLS,Q eLs’g 9M,1 9M,2 0M,3 Funcién de Pérdida
Co 5.6399  130.5836 37.6028  5.6317 126.9005 35.8215 p=1
Ci1 6.9746  800.5597  221.2196 5.6349 128.5574 36.6739

Co 5.6435 130.2084 37.4053  5.6372 126.9601 35.5521 p=0.8
Ci1  7.2931 1043.2669 265.7357 5.6411  128.536  36.4145

1
" 1+ exp(-0.5z — 1)

Co  5.641 130.0265 37.0525 5.6319 125.3534 34.6558 p(z)
Ci1 7.2765 1016.3011 258.0013 5.6383 128.6059 36.3316

Tabla 6.1: Estimacion del pardmetro 8 mediante el LS-estimador y el M-estimador

tanto las estimaciones proporcionadas por el método clasico como por el método robusto
dan ajustes practicamente coincidentes. En la Figura 6.2, notamos céomo las observaciones
atipicas influyen en el ajuste mediante el LS-estimador, pero no mediante el M-estimador.
So6lo mostramos las graficas para el caso con datos completos ya que para las restantes
funciones de pérdida se observaron resultados analogos.

Por tltimo, se analiz6 el comportamiento de ambos estimadores al contaminar inicamen-
te la observacion ntmero 6 de la variable log(Lens) cuyo valor original es log(Lens)g = 3.7.
Los valores que se le asignaron fueron:

para las tres funciones de pérdida por igual.

En las Figuras 6.3, 6.4 y 6.5 mostramos como los estimadores se ven afectados por esta
contaminacion. A simple vista, podemos ver que es el estimador de minimos cuadrados 0.5
el que sufre variaciones significativas a medida que cambiamos el valor de log(Lens)g, para
cualquiera de las funciones de pérdida y en especial para el parametro 5. Sin embargo,
el comportamiento del M-estimador 0, se mantiene practicamente invariante, de hecho,
los graficos muestran una funcion casi constante respecto a los tres parametros por igual.
Simplemente, por una cuestion de escala, se aprecia mas para ;1 en los tres escenarios de
pérdida planteados.

En conclusion, pudimos observar mediante un ejemplo con datos reales, que al igual que
trabajando con datos simulados, la performance del estimador clésico resulta mejor cuando
el modelo no se encuentra contaminado pero que ante la minima presencia de outliers su
comportamiento resulta sumamente afectado. Mientras que el estimador robusto propuesto
tiene una performance similar al de minimos cuadrados cuando la muestra no posee datos
atipicos y que, gracias a su eficiencia y robustez, al contaminarse la misma no se ven afectados
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en lo absoluto. Y esto lo pudimos observar tanto en muestras completas como en muestras
con distintos porcentajes de respuestas faltantes.
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Figura 6.1: Ajuste del modelo mediante método de minimos cuadrados (azul) y método
robusto (rojo) sin outliers.
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Figura 6.2: Ajuste del modelo mediante método de minimos cuadrados (azul) y método
robusto (rojo) con outliers.
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Figura 6.3: Grafico de 05 vs. log(Lens)g, en la primera linea, y de 0y vs. log(Lens)g en la
segunda, para p = 1.
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Figura 6.4: Grafico de 0,5 vs. log(Lens)g, en la primera linea, y de 8y, vs. log(Lens)g en la
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