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M-estimadores en Modelos de Regresión no Lineales

con Respuestas Faltantes

En los modelos no lineales observamos una muestra aleatoria de n observaciones (yi,xi) ∈ R
p+1

independientes e idénticamente distribuidas (i.i.d.), con yi ∈ R, xi ∈ R
p, siendo

yi = g(xi,θ) + εi, 1 ≤ i ≤ n,

donde los errores εi son variables i.i.d. e independientes de xi con E(εi) = 0 y V ar(εi) = σ2,
y g es una función conocida salvo por un vector de parámetros desconocido θ.

En esta tesis, estamos interesados en estimar dicho parámetro cuando existen respues-
tas faltantes en nuestro conjunto de datos. De esta forma, asumimos que observamos una
muestra (yi,xi, δi), 1 ≤ i ≤ n, en la que δi = 1 si yi es observada y δi = 0 si no lo es.
Asumiremos que la variable de respuesta y presenta observaciones faltantes de forma aleato-
ria (missing at random, mar), es decir, dado x, δ e y son condicionalmente independientes
P (δ = 1|(y,x)) = P (δ = 1|x) = p(x).

Dado que las estimaciones mediante los métodos clásicos, como el de mínimos cuadra-
dos, son sensibles ante la presencia de datos atípicos, el objetivo de esta tesis es estudiar
algunas propiedades de una familia de M–estimadores del parámetro θ para el caso en
que existen valores faltantes en la variable de respuesta, utilizando como estimador incial el
LMS-estimador computado mediante el algoritmo propuesto por Stromberg (1993). Se prue-
ba la Fisher-consistencia de dicho estimador y se deduce su función de influencia. Mediante
un estudio de simulación comparamos su performance con la de los estimadores clásicos.
Ilustramos su comportamiento a través del análisis de un conjunto de datos reales.

Palabras Claves: Modelos no lineales; Respuestas faltantes; Robustez; LMS; Fisher–
consistencia.
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Capítulo 1

Introducción

Uno de los objetivos de la Estadística es encontrar las relaciones, si existen, dentro de
un conjunto de variables cuando al menos una de ellas es aleatoria, siendo estas sujetas a
posibles errores de medición. En los problemas de regresión una de las variables, usualmente
llamada de respuesta o variable dependiente es de particular interés y se la nota y. Las
otras variables x1, x2, . . . , xp llamadas regresoras o variables independientes son aquellas que
explican el comportamiento de y. A menudo, los investigadores se encuentran con expresiones
matemáticas que relacionan la variable de respuesta y las variables regresoras mediante un
modelo no lineal en los parámetros que podría expresarse de la siguiente manera:

yi = g(xi,θ) + εi 1 ≤ i ≤ n , (1.1)

donde (yi,xi) son vectores independientes e idénticamente distribuidos (i.i.d.), con yi ∈ R,
xi ∈ R

p, εi variables i.i.d. e independientes de xi y g conocida, excepto por el vector de
parámetros θ ∈ Θ ⊂ R

s que debe ser estimado.

A continuación ilustraremos con dos modelos no lineales que serán utilizados más ade-
lante en este trabajo. En ambos casos, notamos θ = (α,β).

Modelo Exponencial

yi = βeαxi + εi 1 ≤ i ≤ n , xi ∈ R (1.2)

Este modelo se utiliza con frecuencia para describir crecimientos poblacionales, difusiones
de epidemias, etc.
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Modelo de Michaelis-Menten

Este modelo describe la cinética de las enzimas, relaciona la velocidad inicial de una
reacción enzimática con la concentración del sustrato x a través de la siguiente ecuación

yi =
αxi

eβ + xi
+ εi 1 ≤ i ≤ n , xi ∈ R (1.3)

El método clásico para estimar el parámetro θ es el de mínimos cuadrados, propuesto
por Legendre (1805), cuya solución viene dada por

θ̂ = arg mı́n
t∈Θ

1

n

n
∑

i=1

[yi − g(xi, t)]
2 .

Bajo ciertas condiciones de regularidad, este estimador tiene características óptimas,
incluso coincide con el estimador de máxima verosimilitud si suponemos que εi ∼ N(0, σ2).
Sin embargo, si estas condiciones no se satisfacen, el estimador de mínimos cuadrados es
muy sensible a datos atípicos. Por esta razón, es necesario considerar estimadores robustos,
es decir, estimadores poco sensibles a outliers, que a su vez sean altamente eficientes cuando
los datos sean normales.

Para los modelos de regresión lineal existen varios métodos para obtener estimadores ro-
bustos, entre otros, podemos mencionar los M-estimadores propuestos por Huber (1973), los
LMS-estimadores (Least Median of Squares) y LTS-estimadores (Least Trimmed Squares)
propuestos por Rousseeuw (1984) y (1985), respectivamente, MM-estimadores propuestos
por Yohai (1987), los S-estimadores propuestos por Rousseeuw y Yohai (1984) y τ -estimadores
propuestos por Yohai y Zamar (1988).

En el caso de regresión no lineal, también se propusieron algunos estimadores robustos.
Tiede y Pagano (1979) proponen un algoritmo para el cálculo de M-estimadores aplicados al
análisis de radioinmunoensayos, Fraiman (1983) considera estimadores de influencia acotada,
Carroll y Ruppert (1987) trabajan con métodos robustos para transformaciones no lineales
de los datos. Stromberg (1993) introduce algoritmos para el cálculo de MM-estimadores para
regresión no lineal y Tabatabai y Argyros (1993) extienden el τ -estimador al caso no lineal
proponiendo además un algoritmo para su cálculo. Markatou y Manos (1996) consideran
test de hipótesis en regresión no lineal basados en M-estimadores y Mukherjee (1996) pro-
pone estimadores de mínima distancia. Más recientemente, Stromberg, Hossjer y Hawkins
(2000) introducen el LTD-estimador (Least Trimmed Difference) con la particularidad de
que la distribución del modelo puede ser asimétrica y Sakata y White (2001) trabajan con
S-estimadores para modelos de regresión no lineal con observaciones dependientes. Por úl-
timo, Fasano, Maronna, Sued y Yohai (2012) tratan el problema de la continuidad débil, la
Fisher–consistencia y diferenciabilidad de los funcionales asociados a los estimadores de alto
punto de ruptura tanto en el caso lineal como no lineal, incluyendo S- y MM-estimadores.

En el contexto de regresión no lineal con respuestas faltantes, Müller (2009) estudia el
problema de estimar, mediante un estimador completamente imputado, la esperanza mar-
ginal de una función de la variable de respuesta bajo el supuesto de que las respuestas son
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faltantes al azar, mar. Con el interés de estimar la distribución marginal de la respuesta
en este mismo contexto, Sued y Yohai (2012) proponen un procedimiento que permite esti-
mar en forma consistente cualquier funcional débilmente continuo de la distribución de las
respuestas, que incluye la mediana o M-estimadores y que se basan en la utilización de un
estimador robusto inicial del parámetro de regresión no lineal.

En cuanto a métodos numéricos para el cálculo de estimadores robustos en modelos de
regresión no lineal, Huber (1981) trabaja con M-estimadores y Stromberg (1993) desarrolla
un algoritmo para estimadores de alto punto de ruptura como el LMS, que es el que se ha
implementado en nuestro estudio de Monte Carlo para el cómputo del estimador inicial.

Estos métodos fueron diseñados para conjuntos de datos completos, sin embargo, en la
práctica podemos encontrarnos con datos faltantes. La ausencia de variables de respuesta
puede deberse a que, en ciertas ocasiones, medir la variable y es muy costoso o puede que
la información se pierda por alguna falla en la recolección de los datos.

En este trabajo, nos enfocaremos en la estimación robusta del parámetro de regresión
de un modelo dado por (1.1) cuando faltan observaciones en la variable de respuesta y, pero
las covariables x son completamente observadas. Luego, nuestro conjunto de datos queda
definido a partir de (yi,xi, δi), 1 ≤ i ≤ n donde δi = 1 si yi es observada y δi = 0 si
no lo es. Para esto asumiremos que y presenta observaciones faltantes de forma aleatoria
(missing at random, mar), es decir, dado x, δ e y son condicionalmente independientes
P (δ = 1|(y,x)) = P (δ = 1|x) = p(x).

Ya que las estimaciones mediante el método de mínimos cuadrados son sensibles a la
presencia de datos atípicos, el objetivo de esta tesis es estudiar algunas propiedades de una
familia de M–estimadores del parámetro θ para el caso en que existen valores faltantes
en la variable de respuesta, utilizando como estimador incial el LMS-estimador computado
mediante el algoritmo propuesto por Stromberg (1993).

La tesis está organizada como se describe a continuación. En el Capítulo 2, realizamos un
revisión sobre los modelos de regresión no lineal y los métodos de estimación que se pueden
aplicar en los mismos. En el Capítulo 3, introducimos tanto nociones básicas de la teoría
de robustez como su aplicación a los modelos de regresión no lineales. A su vez, describi-
mos el algoritmo mediante el cual se obtiene el LMS-estimador, tal como fue propuesto por
Stromberg (1993). En el Capítulo 4, presentamos el problema de la estimación robusta en
modelos de regresión no lineales con valores faltantes en la variable de respuesta, propone-
mos un estimador robusto y analizamos su Fisher-consistencia. En el Capítulo 5, realizamos
un estudio de Monte Carlo con el fin de comparar la performance de los estimadores robus-
tos obtenidos con la de los estimadores clásicos de mínimos cuadrados para muestras con
diferentes escenarios de pérdida de datos, contaminadas y sin contaminar. Finalmente, en el
Capítulo 6, analizamos un ejemplo con datos reales.





Capítulo 2

Modelo de regresión no lineal y su
estimación

La regresión lineal es un método poderoso para analizar datos descriptos por un modelo
que sea lineal en los parámetros. A menudo, sin embargo, los investigadores se encuentran
con expresiones matemáticas que relacionan la variable de respuesta y con las variables
regresoras x, mediante modelos que resultan no lineales en los parámetros. En estos casos,
las técnicas de regresión lineal deben ser extendidas, lo cual introduce una complejidad
considerable.

Un modelo de regresión no lineal puede ser escrito de la siguiente manera

yi = g(xi,θ) + εi, 1 ≤ i ≤ n , (2.1)

donde ε mide las fluctuaciones o errores de medición, n es el tamaño de la muestra y g es una
función completamente conocida excepto por θ que es un vector de parámetros desconocidos
que necesita ser estimado. Utilizando la función g podemos predecir y a partir de x, las cuales
pueden ser aleatorias o fijas. Como los parámetros suelen tener interpretaciones físicas,
uno de los principales objetivos de la investigación es estimar dichos parámetros lo más
precisamente posible.

Los modelos no lineales tienden a ser utilizados, o bien cuando son sugeridos mediante
consideraciones teóricas, o bien para construir dentro de un modelo ciertos comportamientos
no lineales ya conocidos. En ocasiones, aún cuando una aproximación lineal pudiera funcionar
bien, el investigador podría preferir un ajuste basado en un modelo no lineal a fin de mantener
una clara interpretación de los parámetros. Los mismos han sido aplicados a un gran rango
de situaciones, incluso en poblaciones finitas. Seber y Wild (1989) dan una completa revisión
sobre estos temas, que abordamos a continuación.
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2.1. Modelo con Variables Regresoras Fijas

2.1.1. Variables Regresoras Fijas

Supongamos que µ es el tamaño esperado de un organismo en el tiempo x. Sin embargo,
debido a fluctuaciones y posibles errores de medición, el tamaño efectivo es y, de modo que,
E(y) = µ. Luego el modelo sería

y = g(x,θ) + ε , (2.2)

donde E(ε) = E(y−µ) = 0. Si el tiempo lo medimos con exactitud de modo que su varianza
es esencialmente cero, o despreciable comparado con var(y), luego uno podría tratar a x
como fija en vez de aleatoria.

2.1.2. Variables Regresoras Condicionales

Existen dos variaciones al enfoque anterior en las cuales x es, de hecho, aleatoria pero
puede ser tratada como si fuera fija. La primera ocurre cuando g es una relación teórica y x
es aleatoria, pero medida con exactitud, i.e. x = x0. Un modelo adecuado podría ser

E(y|x = x0) = g(x0,θ) ,

y (2.2) podría ser interpretado como un modelo de regresión condicional, condicional sobre
el valor observado de x.

La segunda variación ocurre cuando g es elegida empíricamente para modelar la relación
entre y y el valor medido de x (en vez del verdadero), aún cuando x es medida con error. En
este caso (2.2) es usado para modelar la distribución condicional de y, dado el valor medido
de x.

Hay una tercera situación posible, a saber, g es un modelo teórico conectando a y con el
verdadero valor de x, cuando x es medido con error. En este caso el verdadero valor de x es
desconocido y se necesita de una nueva propuesta, como describimos a continuación.

2.2. Modelo con Variables Regresoras Aleatorias con Errores

2.2.1. Relaciones Funcionales

Supongamos que existe una relación funcional exacta

µ = g(ξ,θ) (2.3)

entre las realizaciones ξ y µ de dos variables. Sin embargo, ambas variables son medidas con
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error, de modo que lo que observamos es

y = µ+ ε y x = ξ + δ ,

donde E(ε) = E(δ) = 0. Luego

y = g(ξ,θ) + ε = g(x− δ,θ) + ε. (2.4)

Por el Teorema del Valor Medio,

g(x− δ,θ) = g(x,θ)− δġ(x̃,θ), (2.5)

donde ġ es la derivada de g, y x̃ se encuentra entre x y x − δ. Sustituyendo (2.5) en (2.4)
tenemos que

y = g(x,θ)− δġ(x̃,θ) + ε = g(x,θ) + ε∗ , (2.6)

Este modelo no es el mismo que el (2.2), dado que x ahora es considerada aleatoria y, en
general, E(ε∗) 6= 0 y, además, no es independiente de x. Si lo analizáramos de la misma
manera que (2.2) utilizando mínimos cuadrados, obtendríamos sesgos.

2.2.2. Relaciones Estructurales

Un tipo de modelo diferente es obtenido si la relación (2.3) es una relación entre variables
aleatorias (digamos, u y v) en lugar de sus realizaciones. Luego tenemos lo que llamamos
una relación estructural

v = g(u,θ) ,

con y = v + ε y x = u + δ. Argumentando igual que en (2.5) obtenemos un modelo de
la misma forma que (2.6), pero con una estructura diferente para ε∗. Para el caso lineal
v = α + βu se ha comprobado, que a pesar de su simpleza, existen problemas de identifica-
bilidad al querer estimar parámetros desconocidos.

2.3. Variables Regresoras Controladas con Errores

Ahora estudiaremos un tercer tipo de modelo, comúnmente utilizado en experimentos de
laboratorio. Comenzamos con la relación estructural v = g(u,θ) y tratamos de establecer u
en el valor puntual x0. Sin embargo, x0 no es alcanzado exactamente y en su lugar tenemos
u = x0 + δ, donde E(δ) = 0 y u es desconocida. Para un modelo general,

y = v + ε = g(u,θ) + ε = g(x0 + δ,θ) + ε ,
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el cual puede ser expandido una vez más mediante el Teorema del Valor Medio

y = g(x0,θ) + δġ(x̃,θ) + ε = g(x0,θ) + ε̃,

con x̃ entre x0 y x0 + δ. En general E(ε̃) 6= 0, pero si δ es tan chico que x̃ ≈ x0, entonces
E(ε̃) ≈ 0. En este caso podemos tratar al modelo como un modelo con variables regresoras
fijas.

2.4. Modelos con Errores Autocorrelacionados

En muchos casos en que los modelos de regresión no lineal han sido ajustados para un
conjunto de datos recolectados secuencialmente en el tiempo, gráficos de estos datos revelan
largas rachas de residuos positivos y largas rachas de residuos negativos. Esto puede ser
debido a lo inadecuado del modelo postulado para E(y|x), o puede ser causado por un
alto grado de correlación entre sucesivos términos del error εi. Una simple estructura de
autocorrelación que a veces es aplicada a los datos recolectados en intervalos de tiempo
equiespaciados viene dada por un proceso autoregresivo de orden 1 [AR(1)], digamos

εi = ρεi−1 + ai,

donde los ai son no correlacionados, E(ai) = 0, var(ai) = σ2
a
, y |ρ| < 1. Bajo tal estructura

corr[εi, εj ] = ρ|i−j| ,

de modo que la correlación entre εi y εj decrece exponencialmente a medida que crece la
distancia entre los tiempos en que yi e yj fueron medidas.

2.5. Estimadores de Mínimos Cuadrados

2.5.1. Mínimos Cuadrados no Lineales

Supongamos que tenemos n observaciones (xi, yi), 1 ≤ i ≤ n que satisfacen una relación
no lineal tal que

yi = g(xi,θ
∗) + εi 1 ≤ i ≤ n , (2.7)

donde E[εi] = 0, xi ∈ R
p y el valor verdadero θ∗ de θ se sabe que pertenece a Θ, un

subconjunto de R
s. El estimador de mínimos cuadrados de θ∗, θ̂, minimiza la “suma de

cuadrados residual”

S(θ) =

n
∑

i=1

[yi − g(xi,θ)]
2 (2.8)

respecto de θ ∈ Θ.

Asumiendo que εi son independientes e idénticamente distribuidos con varianza σ2, bajo
ciertos supuestos de regularidad, θ̂ y s2 = S(θ̂)/(n−p) son estimadores consistentes de θ∗ y
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σ2 respectivamente. Con algunas condiciones de regularidad adicionales, la distribución de
θ̂ también es asintóticamente normal para n→ ∞.

Si además suponemos que εi son normalmente distribuidos, entonces θ̂ coincide con el
estimador de máxima verosimilitud.

Cuando g(xi,θ) es diferenciable respecto a θ, y θ̂ pertenece al interior de Θ, θ̂ cumple

∂S(θ)

∂θr θ̂
= 0, 1 ≤ r ≤ p . (2.9)

Usaremos la notación gi(θ) = g(xi,θ),

g(θ) = (g1(θ), g2(θ), . . . , gn(θ))
′ ,

y

G.(θ) =
∂g(θ)

∂θ′ =

[(

∂gi(θ)

∂θj

)]

.

Llamaremos
G. = G.(θ∗) y Ĝ. = G.(θ̂) ,

donde un sólo punto representa la derivada primera y dos puntos la derivada segunda.
Usando la notación anterior podemos escribir

S(θ) = [y − g(θ)]′[y − g(θ)] = ||y − g(θ)||2.

Luego la ecuación (2.9) se puede escribir

n
∑

i=1

{yi − gi(θ)}
∂gi(θ)

∂θr
θ̂

= 0, 1 ≤ r ≤ p,

o
0 = Ĝ.′{y − g(θ̂)} = Ĝ.′ε̂ . (2.10)

Si P̂G = Ĝ.(Ĝ.′Ĝ.)−1Ĝ.′, la matriz idempotente proyecta ortogonalmente R
p sobre R[Ĝ.]

entonces (2.10) puede ser escrito como

P̂Gε̂ = 0 .

Las ecuaciones (2.10) se llaman ecuaciones normales para el modelo no lineal. Para la
mayoría de los modelos no lineales estas no pueden ser resueltas analíticamente y es necesario
recurrir a métodos numéricos iterativos, como veremos a continuación.

2.5.2. Aproximación Lineal

Ahora introduciremos un conjunto de resultados en forma heurística. Comenzaremos
notando que en un entorno pequeño de θ∗, el valor verdadero del parámetro θ, tenemos la
expansión lineal de Taylor dada por

gi(θ) ≈ gi(θ
∗) +

p
∑

r=1

∂gi
∂θr θ∗

(θr − θ∗r),
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o
g(θ) ≈ g(θ∗) +G.(θ − θ∗), (2.11)

donde G. = G.(θ∗). Luego,

S(θ) = ||y − g(θ)||2 ≈ ||y − g(θ∗)−G.(θ − θ∗)||2 = ||z−G.β||2, (2.12)

donde, z = y − g(θ∗) = ε y β = θ − θ∗. Por las propiedades bien conocidas en el modelo
lineal, S(θ) es minimizada cuando β está dado por

β̂ = (G.′G.)−1G.′z

Para n grande, bajo ciertas condiciones de regularidad, es casi seguro que θ̂ pertenecerá a
un pequeño entorno de θ∗, por lo tanto

θ̂ − θ∗ ≈ (G.′G.)−1G.′ε . (2.13)

Más aún, de (2.11) con θ = θ̂,

g(θ̂)− g(θ∗) ≈ G.(θ̂ − θ∗) ≈ G.(G.′G.)−1G.′ε = PGε (2.14)

y los residuos

y − g(θ̂) ≈ y − g(θ∗)−G.(θ̂ − θ∗) ≈ ε−PGε = (In −PG)ε, (2.15)

donde PG = G.(G.′G.)−1G.′ y (In −PG) son simétricas e idempotentes.

Si como es habitual, definimos s2 = S(θ̂)/(n− p), de (2.15) y (2.14) tenemos

(n− p)s2 = S(θ̂) = ||y − g(θ̂)||2 ≈ ||(In −PG)ε||2 = ε′(In −PG)ε, (2.16)

y

||g(θ̂)− g(θ∗)||2 ≈ ||G.(θ̂ − θ∗)||2 = (θ̂ − θ∗)′G.′G.(θ̂ − θ∗) ≈ ||PGε||2 = ε′PGε. (2.17)

Luego, usando (2.16) y (2.17), obtenemos

S(θ∗)− S(θ̂) ≈ ε′ε− ε′(In −PG)ε = ε′PGε ≈ (θ̂ − θ∗)′G.′G.(θ̂ − θ∗). (2.18)

Cuando ε ∼ N(0, σ2In), bajo condiciones apropiadas de regularidad, Seber y Wild (1989)
establecen que para un n suficientemente grande, se cumplen las siguientes aproximaciones

(i) θ̂ − θ∗ ≈ Z ∼ Np(0, σ
2C−1), donde C = G.′G. = G.′(θ∗)G.(θ∗)

(ii) (n− p)s2/σ2 ≈ ε′(In −PG)ε/σ2 ∼ χ2
n−p

(iii) θ̂ es independiente de s2

(iv)
[S(θ∗)− S(θ̂)]/p

S(θ̂)/(n− p)
≈ ε′PGε

ε′(In −PG)ε

n− p

p
∼ Fp,n−p
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No se requiere de la normalidad de ε para demostrar (i) ya que (2.13) implica que
θ̂−θ∗ es asintóticamente una combinación lineal de los errores εi, que son independientes e
idénticamente distribuidos. Luego, una versión apropiada del teorema central de límite nos
da (i).

Finalmente, usando (iv) y (2.18) tenemos, aproximadamente

(θ̂ − θ∗)′G.′G.(θ̂ − θ∗)

ps2
∼ Fp,n−p.

Luego, G. juega el mismo rol que la matriz de diseño X en regresión lineal.

2.5.3. Métodos Numéricos

Supongamos que θ(a) es una aproximación al estimador de mínimos cuadrados θ̂ de un
modelo no lineal. Para θ cerca de θ(a), utilizando la expansión lineal de Taylor

g(θ) ≈ g(θ(a)) +G.(a)(θ − θ(a)), (2.19)

donde G.(a) = G.(θ(a)). Aplicando esto al vector de residuos r(θ), tenemos

r(θ) = y − g(θ) ≈ r(θ(a))−G.(a)(θ − θ(a)).

Sustituyendo en S(θ) = r′(θ)r(θ) obtenemos

S(θ) ≈ r′(θ(a))r(θ(a))− 2r′(θ(a))G.(a)(θ − θ(a)) + (θ − θ(a))′G.(a)′G.(a)(θ − θ(a)). (2.20)

El lado derecho es minimizado respecto a θ cuando

θ − θ(a) = (G.(a)′G.(a))−1G.(a)′r(θ(a)) = δ(a). (2.21)

Esto sugiere un esquema iterativo para obtener θ̂: si en el paso a obtenemos una aproximación
θ(a), la aproximación del siguiente paso debería ser

θ(a+1) = θ(a) + δ(a). (2.22)

La aproximación de S(θ) por la cuadrática (2.20), y las resultantes fórmulas (2.21) y (2.22)
son llamadas usualmente método de Gauss-Newton. El mismo es convergente, o sea, θ(a) → θ̂

cuando a → ∞ siempre que el punto inicial θ(1) esté suficientemente cerca de θ∗ y n sea
suficientemente grande.

Una propuesta más general, que se puede aplicar a cualquier función suficientemente
suave, es el método de Newton, en el cual S(θ) es expandido directamente utilizando una
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expansión de Taylor cuadrática. Sean

h(θ) =
∂S(θ)

∂θ
y

H(θ) =
∂2S(θ)

∂θ ∂θ′

el vector gradiente y la matriz Hessiana de S(θ), respectivamente. Luego, tenemos la apro-
ximación cuadrática

S(θ) ≈ S(θ(a)) + h′(θ(a))(θ − θ(a)) +
1

2
(θ − θ(a))′H(θ(a))(θ − θ(a)), (2.23)

que difiere de (2.20) sólo en que H(θ(a)) es aproximada por 2G.′(θ(a))G.(θ(a)). Sin embargo,
como

∂2S(θ)

∂θr ∂θs
= 2

n
∑

i=1

{

∂gi(θ)

∂θr

∂gi(θ)

∂θs
− [yi − gi(θ)]

∂2gi(θ)

∂θr ∂θs

}

, (2.24)

luego

E

[

∂2S(θ)

∂θ ∂θ′

]

= 2G.′(θ)G.(θ) (2.25)

y H(θ(a)) es aproximado por su valor esperado en θ(a) en (2.20).

El mínimo de la función cuadrática (2.23) con respecto a θ se obtiene cuando

θ − θ(a) = −[H(θ(a))]−1h(θ(a)) = −[H−1h]
θ=θ

(a) . (2.26)

Este es el llamado método de Newton y el término de corrección δ(a) en (2.22) ahora dado
por (2.26) es el llamado Newton step.

2.5.4. Mínimos Cuadrados Generalizados

Mencionaremos una generalización del método de mínimos cuadrados llamado método
de mínimos cuadrados generalizados o pesados (GLS). La función a minimizar ahora es

S(θ) = [y − g(θ)]′V−1[y − g(θ)],

donde V es una matriz conocida y definida positiva. El método de mínimos cuadrados
ordinarios (OLS), que mencionamos previamente, es un caso particular de GLS tomando
V = In. Denotemos por θ̂G al estimador de mínimos cuadrados generalizados que minimiza
a S(θ).

Sea V = U′U la descomposición de Cholesky de V, donde U es una matriz triangular
superior. Multiplicando el modelo no lineal por R = (U′)−1, obtenemos

z = k(θ) + η,
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donde z = Ry,k(θ) = Rg(θ) y η = Rε. Entonces E[η] = 0 y D[η] = σ2RVR′ = σ2In, la
matriz de varianza-covarianza. Así es como nuestro modelo GLS original ha sido transfor-
mado en un modelo (OLS). Más aún,

S(θ) = [y − g(θ)]′V−1[y − g(θ)] = [y − g(θ)]′R′R[y − g(θ)] = [z− k(θ)]′[z− k(θ)].

Por lo tanto, la suma de cuadrados GLS es la misma que la suma de cuadrados OLS para
el modelo transformado, y θ̂G es el estimador OLS del mismo.

Sea K.(θ) = ∂k(θ)/∂θ′ y K̂. = K.(θ̂). Entonces

K.(θ) = R
∂g(θ)

∂θ′ = RG.(θ).

Como θ̂G es el estimador OLS del modelo transformado, para n suficientemente grande,
tiene matriz de varianza-covarianza dada por

D[θ̂G] ≈ σ2[K.′(θ∗)K.(θ∗)]−1 = σ2[G.′(θ∗)R′RG.(θ∗)]−1 = σ2[G.′(θ∗)V−1G.(θ∗)]−1.

Esta matriz es estimada por

D̂[θ̂G] = σ̂2(K̂.′K̂.)−1 = σ̂2(Ĝ.′V−1Ĝ.)−1,

donde

σ̂2 =
1

n− p
[z− k(θ̂G)]

′[z− k(θ̂G)] =
1

n− p
[y − g(θ̂G)]

′V−1[y − g(θ̂G)].

El punto importante de este análisis es que, tratando con el problema transformado como
si fuera un problema ordinario de mínimos cuadrados, el mismo produce los resultados
correctos para el problema de mínimos cuadrados generalizados. Muchas aplicaciones de
este método surgen cuando los errores no son homoscedásticos, pero sí son independientes,
en cuyo caso V es diagonal y el problema es computacionalmente más sencillo.

2.6. Estimadores de Máxima Verosimilitud

Si asumimos conocida la distribución conjunta de εi en el modelo (2.1), entonces el
estimador de máxima verosimilitud θ se obtiene maximizando la función de verosimilitud.
Supongamos que εi son i.i.d. con función de densidad σ−1h(ε/σ), de modo que h es la
distribución del error para errores estandarizados para tener varianza uno. Luego, la función
de verosimilitud es

p(y|θ, σ2) =
n
∏

i=1

[

σ−1h

(

yi − g(xi,θ)

σ

)]

. (2.27)

A continuación, estudiaremos errores distribuidos normalmente y no-normalmente. Encon-
traremos que, bajo normalidad, el estimador de máxima verosimilitud θ coincide con el
estimador de mínimos cuadrados.
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Si los εi son i.i.d. N(0, σ2), entonces (2.27) cumple

p(y|θ, σ2) = (2πσ2)−n/2 exp

(

−1

2

n
∑

i=1

[yi − g(xi,θ)]
2

σ2

)

. (2.28)

Despreciando las constantes, denotamos el logaritmo de la función de verosimilitud por
L(θ, σ2) y obtenemos

L(θ, σ2) = −n
2
log(σ2)− 1

2σ2

n
∑

i=1

[yi − g(xi,θ)]
2 = −n

2
log(σ2)− 1

2σ2
S(θ). (2.29)

Dado σ2, (2.29) es maximizado respecto a θ cuando S(θ) es minimizado, es decir, cuan-
do θ = θ̂ (el estimador de mínimos cuadrados). Es más, ∂L/∂σ2 = 0 tiene solución
σ2 = S(θ)/n, que da un máximo (para un θ dado) al dar negativa la derivada segunda.
Esto sugiere que θ̂ y σ̂2 = S(θ̂)/n son los estimadores de máxima verosimilitud, y podemos
verificarlo directamente. Como S(θ) ≥ S(θ̂),

L(θ̂, σ̂2)− L(θ, σ2) = −n
2
log(σ̂2)− n

2
− L(θ, σ2)

≥ −n
2
log

(

σ̂2

σ2

)

− n

2
+

1

2

S(θ̂)

σ2

= −n
2

(

log

(

σ̂2

σ2

)

+ 1− σ̂2

σ2

)

≥ 0,

pues log(x) ≤ x− 1 para x ≥ 0. Por lo tanto, θ̂ y σ̂2 maximizan L(θ, σ2). El máximo valor
de (2.28) es

p(y|θ̂, σ̂2) = (2πσ̂2)−n/2 exp (−n/2). (2.30)

Jennrich (1969) notó que el estimador de mínimos cuadrados es ahora no sólo el estimador
de máxima verosimilitud sino que, bajo condiciones de regularidad, es también asintótica-
mente eficiente. La teoría asintótica de máxima verosimilitud usual no aplica directamente,
sino que necesita modificaciones, ya que las yi no son i.i.d. teniendo distintas medias. Así si
δ = (θ′, v)′, donde v = σ2, entonces de (2.29) y (2.25) la matriz de información (esperada)
viene dada por

−E
[

∂2L

∂δ ∂δ′

]

=









1
2σ2 E

[

∂2S

∂θ ∂θ
′

]

−E
[

∂2L
∂θ ∂v

]

−E
[

∂2L

∂v ∂θ
′

]

−E
[

∂2L
∂v2

]









=





1
σ2 G.

′(θ∗)G.(θ∗) 0

0′ n
2σ4



 (2.31)

Luego, bajo condiciones de regularidad, tenemos que

ĺım
n→∞

D[
√
nθ̂] = σ2Ω−1 = σ2 ĺım

n→∞
n[G.′(θ∗)G.(θ∗)]−1.
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Al igual que en el caso i.i.d., podemos ver que la matriz de varianza–covarianza del estima-
dor de máxima verosimilitud θ̂ viene dada asintóticamente por la inversa de la matriz de
información dada en (2.31).

Sea δ̂ = (θ̂′, σ̂2)′. Entonces, como ∂S(θ)/∂θ = 0 en θ = θ̂, también tenemos

[

− ∂2L

∂δ ∂δ′

]−1

δ̂

=







1
2σ̂2

[

∂2S

∂δ ∂δ
′

]

θ̂

0

0′ n
2σ̂4







−1

=







2σ̂2
[

∂2S

∂δ∂ δ
′

]−1

θ̂

0

0′ 2σ̂4

n






.

A modo de completitud ahora vamos a alejarnos de nuestro tema principal de modelos
de regresión no lineales y consideraremos el caso en que la función de máxima verosimilitud
es una función general de E[y] = g(θ), digamos L([g(θ)]). Asumiremos que el modelo es
suficientemente regular tal que el estimador de máxima verosimilitud θ̂ sea solución de las
ecuaciones de verosimilitud

0 =
∂L

∂θ
=

(

∂g

∂θ′

)′ ∂L

∂g
.

Sea θ(a) la a-ésima aproximación para θ̂ y consideremos la expansión de Taylor

0 =
∂L

∂θ ˆθ
≈ ∂L

∂θ θ
(a) +

∂2L

∂θ ∂θ′ θ
(a)

(θ̂ − θ(a)).

Luego

θ̂ − θ(a) ≈
[

(

− ∂2L

∂θ ∂θ′

)−1
∂L

∂θ

]

θ
(a)

= δ(a), (2.32)

de modo que un estimador actualizado es θ(a+1) = θ(a) + δ(a). Este es el método de Newton
para resolver las ecuaciones, en este contexto los estadísticos se refieren al mismo como el
método de Newton-Raphson. En general, la matriz negativa de la segunda derivada contiene
variables aleatorias y es recomendable que sean reemplazadas por su valor esperado, la
llamada matriz de información (esperada). Esta técnica es también conocida como algoritmo
de “scoring” de Fisher. Ahora encontraremos la matriz esperada, tenemos que

∂2L

∂θ ∂θ′ =

(

∂g

∂θ′

)′ ∂2L

∂g ∂g′

(

∂g

∂θ′

)

+
∑

i

∂L

∂gi

∂2gi
∂θ ∂θ′ . (2.33)

Asumiendo que el orden de diferenciación respecto a θ y la integral (o suma) con respecto
a y puede ser intercambiada, tenemos (con p(·) la función de densidad de y, y L = log(p))

E

[

∂L

∂g

]

=

∫

1

p

∂p

∂g
p dy =

∂

∂g

∫

p dy = 0, (2.34)
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y, usando un argumento similar

E

[

1

p

∂2p

∂g ∂g′

]

= 0.

Por lo tanto,

E

[

∂2L

∂g ∂g′

]

= E

[

∂

∂g

(

1

p

∂p

∂g′

)]

= E

[

− 1

p2
∂p

∂g

∂p

∂g′
+

1

p

∂2p

∂g ∂g′

]

= E

[

∂L

∂g

∂L

∂g′

]

= −J.

(2.35)

Notemos que J es definida positiva

a′Ja = E

[

(

a′
∂L

∂g

)2
]

≥ 0,

la igualdad sólo vale si a = 0 (bajo condiciones generales sobre L). Aplicando (2.35) y (2.34)
a (2.33) obtenemos

E

[

− ∂2L

∂θ ∂θ′

]

= G.′JG.,

que es definida positiva pues G. es de rango completo y además no singular. Luego, el
algoritmo de scoring de Fisher resulta

θ(a+1) = θ(a) +

(

(G.′JG.)−1∂L

∂θ

)

θ
(a)

. (2.36)

La matriz negativa de la segunda derivada podría no ser definida positiva en todo θ(a), y
esto puede causar que el método de Newton de (2.32) falle. El método de scoring de Fisher,
por lo tanto, utiliza una aproximación de la matriz negativa de la segunda derivada que
es siempre definida positiva. Una ventaja es que sólo requiere de las derivadas primeras de
L, de modo que la aproximación puede, a menudo, ser calculada más rápidamente que la
matriz de la segunda derivada. El precio que se paga por esta ventaja es que el algoritmo
converge más lentamente que el método de Newton.

Si tomamos j = ∂L/∂g, obtenemos de (2.32) y (2.36)

δ(a) = [(G.′JG.)−1G.′j]
θ
(a) = [(G.′V−1G.)−1G.′V−1v]

θ
(a) , (2.37)

donde V = J−1 y v = Vj. Notemos que la ecuación (2.37) representa al estimador de
mínimos cuadrados generalizados δ(a) de δ para el modelo (evaluado en θ(a))
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v = G.(a)δ + v, (2.38)

siendo D[v] = V(a). Usando la misma idea que en la Sección 2.5.4, sea V(a) = U′U la
descomposición de Cholesky de V(a) y sea R = (U′)−1. Entonces multiplicando (2.38) por
R, obtenemos

z = Xδ + η, (2.39)

donde z = Rv, X = RG.(a), y D[η] = σ2In. Por lo tanto, δ(a) puede computarse usando
un programa de OLS y regresión de z sobre X. Un resultado estándar de un programa de
regresión lineal es (X′X)−1, en (2.39)

(X′X)−1 = (G.′V−1G.)−1
θ
(a) .

Luego, el resultado al final de la iteración es

(

E

[

− ∂2L

∂θ ∂θ′

]

θ̂

)−1

que, bajo ciertas condiciones de regularidad, es la matriz asintótica de varianza-covarianza
de θ̂.

Este método es muy general y comunmente se refiere al mismo como mínimos cuadrados
iterativamente pesados (IRLS).





Capítulo 3

Robustez

Todos los métodos estadísticos clásicos de estimación se basan en fuertes supuestos ta-
les como datos que se distribuyen normalmente. A menudo este supuesto vale, pero sólo
aproximadamente, ya que describe el comportamiento de la mayoría de las observaciones,
siendo unas pocas las que siguen un patrón diferente. A estos datos atípicos suele llamárselos
outliers. Pueden deberse a realizaciones del experimento en circunstancias anormales, errores
de medición o una equivocación en la transcripción del dato, entre otros factores. Tienen la
particularidad de que la presencia de sólo unos pocos de ellos pueden afectar severamente los
resultados obtenidos mediante métodos clásicos como, por ejemplo, el de mínimos cuadrados
que es óptimo bajo condiciones de normalidad.

En estos casos, lo ideal sería tener estimadores robustos ya que estos ajustan bien a
la mayoría de los datos. Si la muestra no contiene datos atípicos tienen poca pérdida de
eficiencia respecto de los estimadores clásicos y dan resultados estables aún si la muestra
contiene una cantidad moderada de outliers. Es decir, son estimadores poco sensibles a datos
atípicos y simultáneamente son altamente eficientes cuando los datos son normales.

En principio, estudiaremos los estimadores de posición y dispersión para luego enfocarnos
en estimadores robustos aplicados a los modelos de regresión lineal y no lineal. Maronna,
Martin y Yohai (2006) dan una revisión muy completa de los temas que desarrollamos en
este capítulo.

3.1. Modelo de posición

Sea el modelo de posición

xi = µ+ ui, 1 ≤ i ≤ n (3.1)

donde µ es el parámetro de posición y u1, . . . , un son variables aleatorias.

Si las observaciones son repeticiones independientes del mismo experimento bajo las
mismas condiciones, se asume que

• u1, . . . , un tienen la misma función de distribución F0.

• u1, . . . , un son independientes.
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En este caso, resulta que x1, . . . , xn son independientes con función de distribución

F (x) = F0(x− µ) (3.2)

y decimos que las xi´s son variables aleatorias independientes e idénticamente distribuidas
(i.i.d.). Notaremos x la muestra aleatoria constituida por x1, . . . , xn.

Un estimador µ̂ es una función de las observaciones: µ̂ = µ̂(x1, . . . , xn) = µ̂(x). Lo
que buscamos son estimadores µ̂ tal que en algún sentido estén próximos a µ con alta
probabilidad. Una forma de medir esta aproximación es mediante el Error Cuadrático Medio
(MSE):

MSE(µ̂) = E(µ̂− µ)2 .

Si los datos fueran exactamente normales, la media muestral sería el estimador óptimo: el
Estimador de Máxima Verosimilitud (EMV) y minimizaría al MSE entre todos los estimado-
res insesgados y los equivariantes. Pero los datos raramente tienen tan buen comportamiento.

En la mayoría de las aplicaciones prácticas a lo sumo se puede asegurar que los erro-
res de medición tienen distribución aproximadamente normal. Una forma de determinar
distribuciones aproximadamente normales es considerar que una proporción 1− ε de las ob-
servaciones son generadas por el modelo normal, mientras que una proporción ε es generada
por un mecanismo desconocido. Llamamos distribución normal contaminada a

F = (1− ε)G+ εH (3.3)

donde G = N(µ, σ2) y H una distribución arbitraria.

Supongamos que tenemos el modelo de posición dado por (3.1) donde la distribución
F de los ui es simétrica respecto de 0. Como en este caso µ coincide con la mediana,
un estimador alternativo sería µ̃ = mediana(x1, . . . , xn). Ordenamos los datos x1, . . . , xn de
menor a mayor obteniendo los valores x(1) ≤ . . . ≤ x(n), luego la mediana se define como

µ̃ =







x(m+1) n = 2m+ 1

x(m)+x(m+1)

2 n = 2m

Si bien este estimador es mucho más resistente a outliers que la media muestral, como
contrapartida, es menos eficiente en cuanto a varianza asintótica se refiere. En las siguientes
secciones trataremos de encontrar estimadores que satisfagan en simultáneo las “buenas”
propiedades de estos dos estimadores.

3.1.1. M-estimadores de posición

A continuación, desarrollaremos una familia de estimadores que contienen a la media y
a la mediana como casos especiales.

Consideremos nuevamente al modelo de posición (3.1) y asumamos que F0, la función de
distribución de ui, tiene densidad f0 = F ′

0. Luego, la densidad conjunta de las observaciones,
es decir, la función de verosimilitud es

L(x1, . . . , xn;µ) =

n
∏

i=1

f0(xi − µ) .
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El estimador de máxima verosimilitud (EMV) de µ es el valor µ̂(x1, . . . , xn) que maximiza
L(x1, . . . , xn;µ):

µ̂ = µ̂(x1, . . . , xn) = arg máx
µ

L(x1, . . . , xn;µ) . (3.4)

Si f0 es positiva en todos lados, como el logaritmo es una función creciente, podemos escribir
(3.4) como

µ̂ = arg mı́n
µ

n
∑

i=1

ρ(xi − µ) , (3.5)

donde
ρ = − log f0 .

Si ρ es diferenciable, diferenciando (3.5) respecto a µ obtenemos

n
∑

i=1

ψ(xi − µ̂) = 0 (3.6)

con ψ = ρ′. Notemos que si f0 es simétrica, entonces ρ es par y por lo tanto ψ es impar.

Si ρ(x) = x2/2, entonces ψ(x) = x, y (3.6) sería

n
∑

i=1

(xi − µ̂) = 0 ,

cuya solución viene dada por µ̂ = x̄. Y para ρ(x) = |x|, se puede demostrar que la mediana
de las observaciones es solución de (3.5).

Por lo tanto, dada una función ρ, un M-estimador de posición es una solución de (3.5).
La función ρ deberá ser elegida de manera tal que el estimador sea

(A) “cercanamente óptimo” cuando F0 es exactamente normal, y

(B) “cercanamente óptimo” cuando F0 es aproximadamente normal.

Asumiendo que ψ es monótona no decreciente, con ψ(−∞) < 0 < ψ(∞) resulta que (3.6),
y por lo tanto (3.5), siempre tiene solución y si ψ es continua y estrictamente creciente, la
solución es única.

Supongamos que ψ es estrictamente creciente. Dada una distribución F , definimos µ0 = µ0(F )
como la solución de

EF [ψ(x− µ0)] = 0 .

Puede demostrarse que cuando n → ∞, µ̂ →p µ0 (decimos que µ̂ es consistente para µ0),
y la distribución de µ̂ es aproximadamente

N
(

µ0,
v

n

)

con v =
EF [ψ(x− µ0)

2]

(EF [ψ′(x− µ0)])2
. (3.7)

Notemos que bajo el modelo (3.2) v no depende de µ0, es decir

v =
EF0 [ψ(x)

2]

(EF0 [ψ
′(x)])2

.
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Si la distribución de un estimador µ̂ es aproximadamente N(µ0, v/n) para un n grande,
decimos que µ̂ es asintóticamente normal, con valor asintótico µ0 y varianza asintótica v. La
eficiencia asintótica de µ̂ es la proporción

Eff(µ̂) =
v0
v
,

donde v0 es la varianza asintótica del EMV y mide cuán cerca está µ̂ del óptimo. La expresión
de v en (3.7) se llama la varianza asintótica de µ̂.

Huber (1964) propuso una familia de funciones-ρ con importantes propiedades

ρ(x) =

{

x2 si |x| ≤ k
2k|x| − k2 si |x| > k

(3.8)

con derivada 2ψ(x), donde

ψ(x) =

{

x si |x| ≤ k
sgn(x)k si |x| > k

,

siendo k una constante de calibración que es elegida de manera de obtener una eficiencia
determinada. Los M-estimadores correspondientes a los casos límites k → ∞ y k → 0 son
la media y la mediana respectivamente, y se define ψ(x) como sgn(x).

M-estimadores redescendientes

Una elección popular de funciones-ρ y ψ es la familia de funciones bicuadrada dada por

ρ(x) =

{

1− [1− (x/k)2]3 si |x| ≤ k
1 si |x| > k

, (3.9)

con derivada ρ′(x) = 6ψ(x)/k2 donde

ψ(x) = x[1− (x/k)2]2 I(|x| ≤ k) . (3.10)

Llamaremos “M-estimadores monótonos” a aquellos estimadores definidos como solución
de (3.6) con ψ monótona y “M-estimadores redescendiente” a los definidos mediante (3.5)
cuando ψ no es monótona. Los estimadores redescendientes son más robustos frente a una
gran cantidad de outliers.

Definición 3.1. Llamaremos función-ρ a una función ρ que satisfaga

R1. ρ(x) es una función no decreciente de |x|

R2. ρ(0) = 0

R3. ρ(x) es estrictamente creciente para x > 0 tal que ρ(x) < ||ρ||∞

R4. Si ρ es acotada, también se asume que ||ρ||∞ = 1



Capítulo 3: Robustez 33

Definición 3.2. Una función-ψ denotará una función ψ que es la derivada de un función-ρ,
que implica en particular que

Ψ1. ψ es impar y ψ(x) ≥ 0 para x ≥ 0.

3.2. Estimadores de dispersión

La forma clásica de medir la variabilidad de un conjunto de datos x es con la desviación
standard (SD)

SD(x) =

[

1

n− 1

n
∑

i=1

(xi − x̄)2

]1/2

.

Para cualquier constante c el SD es invariante por traslaciones y cambios de escala, es
decir,

SD(x+ c) = SD(x), SD(cx) = |c|SD(x) . (3.11)

Cualquier estadístico que satisfaga (3.11) será un estimador de dispersión.

Una alternativa al SD es la desviación media absoluta (MD)

MD(x) =
1

n

n
∑

i=1

|xi − x̄| , (3.12)

que también es sensible a la presencia de datos atípicos en tanto está basada en promedios
muestrales.

Una alternativa robusta es reemplazar los promedios muestrales por las medianas, defi-
niendo de esta forma la desviación mediana absoluta respecto de la mediana (MAD)

MAD(x) = Med(|x−Med(x)|) , (3.13)

que claramente satisface (3.11).

De la misma manera que en (3.12) y (3.13) definimos las desviaciones medias y medianas
de una variable aleatoria x como

MD(x) = E(|x− E(x)|)

y

MAD(x) = Med(|x−Med(x)|) ,

respectivamente.

Notemos que si x ∼ N(µ, σ2) entonces SD(x) = σ por definición, mientras que MD(x) y
MAD(x) son múltiplos de σ

MD(x) = 2ϕ(0)σ y MAD(x) = Φ−1(0.75)σ .
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Si quisiéramos un estimador de dispersión que midiera lo mismo que el SD bajo normalidad
deberíamos normalizar la MAD dividiéndola por c ≈ 0.675. La “MAD normalizada” (MADN)
se define entonces como

MADN(x) =
MAD(x)

0.675

3.3. M-estimadores de escala

Consideremos observaciones xi que satisfagan el modelo multiplicativo

xi = σui , (3.14)

donde las ui’s son i.i.d. con función de densidad f0 y σ > 0 es el parámetro desconocido.
Las distribuciones de las xi’s constituyen una familia de escala con densidad

1

σ
f0

(x

σ

)

.

El EMV de σ en (3.14) es

σ̂ = argmáx
σ

1

σn

n
∏

i=1

f0

(xi
σ

)

.

Tomando logaritmo y diferenciando respecto a σ se tiene que

1

n

n
∑

i=1

ρ
(xi
σ̂

)

= 1 ,

donde ρ(t) = tψ(t), con ψ = −f ′0/f0. En general, a cualquier estimador que satisfaga una

ecuación de la forma
1

n

n
∑

i=1

ρ
(xi
σ̂

)

= δ, (3.15)

donde ρ es una función-ρ y δ es una constante positiva, lo llamaremos un M-estimador de
escala. Notemos que para tener solución en (3.15) debemos tener 0 < δ < ||ρ||∞. Luego, si
ρ es acotada asumiremos, sin pérdida de generalidad, que

||ρ||∞ = 1, δ ∈ (0, 1).

Se puede verificar fácilmente que los M-estimadores de escala son equivariantes en el
sentido de que σ̂(cx) = cσ̂(x) para cualquier c > 0, y si ρ es par entonces

σ̂(cx) = |c| σ̂(x)
para cualquier c.

Para un n grande, la sucesión de estimadores de (3.15) converge a la solución de

E
[

ρ
(x

σ

)]

= δ

si es única.

Notemos que usando ρ(x/c) en lugar de ρ(x) en (3.15) se obtiene σ̂/c. Esto se usa para
normalizar σ̂ y obtener un valor asintótico dado.
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3.4. M-estimadores de posición con escala desconocida

Los estimadores definidos en (3.5) no son en general equivariantes por cambio de escala, lo
cual implica que nuestros resultados dependen fuertemente de nuestras unidades de medida.

Para fijar ideas, supongamos que queremos estimar µ en el modelo (3.1) donde F viene
dada por (3.3) con G = N(µ, σ2). Si σ fuese conocida, lo natural sería dividir (3.1) por σ y
así reducir el problema al caso σ = 1, lo cual implica estimar a µ mediante

µ̂ = argmı́n
µ

n
∑

i=1

ρ

(

xi − µ

σ

)

.

Para obtener M-estimadores de posición que sean equivariantes por cambios de escala,
una propuesta intuitiva sería usar

µ̂ = argmı́n
µ

n
∑

i=1

ρ

(

xi − µ

σ̂

)

, (3.16)

donde σ̂ es un estimador de dispersión computado previamente, que deberá ser robusto. Es
fácil de verificar que µ̂ es realmente invariante por cambios de escala. Como σ̂ no depende
de µ, (3.16) implica que µ̂ es una solución de

n
∑

i=1

ψ

(

xi − µ̂

σ̂

)

= 0.

Otra posibilidad es considerar un modelo de posición-dispersión, con dos parámetros
desconocidos y estimarlos simultáneamente (ver Maronna, Martin y Yohai, 2006), pero en
general, la estimación con cómputo previo del parámetro de dispersión, suele ser más robusto
que la estimación simultánea.

3.5. Punto de Ruptura

Entre las medidas de robustez más usadas se encuentra el punto de ruptura. Hampel (1971)
formaliza esta noción de punto de ruptura de un estimador θ̂ del parámetro θ como la mayor
cantidad de contaminación que pueden contener los datos de manera tal que θ̂ siga dando
información sobre θ.

Sea θ ∈ Θ, Θ el espacio de parámetros. Para que el estimador θ̂ dé información sobre θ,
la contaminación no deberá conducir a θ̂ a infinito o a la frontera de Θ.

Luego, se define el punto de ruptura de contaminación asintótico de θ̂ en F , denotado
por ε∗(θ̂, F ) como el mayor valor ε∗ ∈ (0, 1) tal que ∀ε < ε∗, θ̂∞((1−ε)F +εG) se mantiene
acotado en función de G y también lejos de la frontera de Θ.

Para que un estimador sea razonable es claramente intuitivo que debe haber mayor
cantidad de datos “típicos” que “atípicos”, por esto ε∗ ≤ 1/2.
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A modo de ejemplo, los M-estimadores de posición y escala conocida con ψ monótona
no necesariamente impar y

k1 = −ψ(−∞), k2 = ψ(∞)

finitos. Se puede ver que

ε∗ =
mı́n(k1, k2)

k1 + k2

Si ψ fuese impar, entonces k1 = k2 y por lo tanto ε∗ = 1/2, cota que también alcanzan
los estimadores redescendientes. En el caso de estimadores de dispersión tenemos que SD y
MAD tienen punto de ruptura igual a 0 y 1/2, respectivamente.

3.6. Modelo de regresión lineal con predictores fijos

Supongamos que se tienen n observaciones (xi1, ..., xip, yi), donde xi = (xi1, ..., xip)
′ son

variables predictoras (o variables independientes) e yi es una variable de respuesta (o variable
dependiente) que cumplen el siguiente modelo lineal

yi =

p
∑

i=1

xijβj + ui, 1 ≤ i ≤ n, (3.17)

donde β1, ..., βp son los parámetros desconocidos a ser estimados y los errores ui son variables
aleatorias i.i.d., que no dependen de xi. En esta sección, consideramos a xi fijos, es decir,
determinados antes de realizar el experimento. Llamando β al vector columna (β1, ..., βp)

′,
el modelo puede ser escrito de la siguiente forma

yi = x′
iβ + ui . (3.18)

Si llamamos X a la matriz de n× p con elementos xij y por otro lado, y y u a los vectores
con elementos yi y ui, respectivamente, el modelo lineal puede ser escrito en forma matricial
como

y = Xβ + u. (3.19)

3.6.1. M-estimadores

Asumamos que se cumple el modelo (3.19), donde ui tiene densidad

1

σ
f0

(u

σ

)

y σ es el parámetro de escala. En el modelo lineal (3.19), las yi son independientes pero no
idénticamente distribuidas, de hecho cada yi tiene densidad

1

σ
f0

(

y − x′
iβ

σ

)



Capítulo 3: Robustez 37

y por lo tanto, la función de verosimilitud para β, asumiendo fijo el valor de σ es

L(β) =
1

σn

n
∏

i=1

f0

(

y − x′
iβ

σ

)

.

Calcular el EMV maximizando L(b) es equivalente a encontrar β̂n tal que minimice

1

n

n
∑

i=1

ρ0

(

ri(b)

σ

)

+ log(σ) ,

donde ρ0 = − log f0. Derivando respecto a b obtenemos el equivalente a las ecuaciones
normales

n
∑

i=1

ψ0

(

ri(b)

σ

)

xi = 0 ,

donde ψ0 = ρ′o = −f ′0/f0.
Dada una función de pérdida ρ que satisface la Definición 3.1, definimos un M -estimador

de regresión como

β̂n = arg mı́n
b

n
∑

i=1

ρ

(

ri(b)

σ̂

)

, (3.20)

donde σ̂ es un estimador de escala.

Derivando respecto a b, obtenemos

n
∑

i=1

ψ

(

ri(b)

σ̂

)

xi = 0 , (3.21)

donde ψ = ρ′. Como antes, esta última ecuación no tiene que ser necesariamente la ecuación
de un estimador de máxima verosimilitud. Asumimos que la matriz de diseño X tiene rango
completo. En el caso particular en que σ es conocido, se puede verificar que el M-estimador
es de regresión, invariante por traslaciones y equivariante por cambio de escala.

Las soluciones de (3.21) con ψ monótona (respectivamente redescendiente) son llamadas
M-estimadores monótonos de regresión (respectivamente redescendientes).

Las soluciones de (3.20) son soluciones de (3.21) y si ψ es estrictamente creciente, la solu-
ción es única. En el caso de regresión lineal como en el modelo de posición, los M-estimadores
redescendientes tienen un mejor balance entre eficiencia y robustez que los M-estimadores
monótonos. Por este motivo, en general se utiliza un M-estimador monótono como punto
inicial necesario para computar un M-estimador redescendiente.

Asumiendo que se cumple el modelo (3.18), con u tal que

E
[

ψ
(u

σ

)]

= 0

y bajo condiciones de regularidad, β̂n es consistente a β y además

√
n(β̂n − β)

D−→ Np(0, v(XX′)−1) , (3.22)
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donde v esta dado por

v = σ2
E[ψ(u/σ)2]

(E[ψ′(u/σ)])2
. (3.23)

Una demostración general puede encontarse en Maronna y Yohai (1979).

3.7. Modelo de regresión lineal con predictores aleatorios

Asumimos que observamos n vectores aleatorios i.i.d. (x′
i, yi) de dimensión p, que satis-

facen el modelo
yi = x′

iβ + ui ,

donde los errores ui son i.i.d. e independientes de las covariables xi. Sea x un vector aleatorio
con la misma distribución que las covariables xi. En este contexto, el análogo de asumir que
X tiene rango completo, es asumir que la distribución de x no se concentra en ningún
subespacio, es decir, P (a′x = 0) < 1 ∀a 6= 0.

Bajo estas condiciones, suponiendo que las xi tienen varianza finita y que σ̂ es consistente
a σ, se puede probar que el estimador β̂n definido en (3.20) es consistente y asintóticamente
normal, más aún

√
n(β̂n − β)

D−→ Np(0, vV
−1
x ) ,

donde Vx = E(xx′) y v fue definido en (3.23).

3.8. Modelo de regresión no lineal

Consideremos un modelo de regresión no lineal dado por

yi = g(xi,θ) + εi, 1 ≤ i ≤ n , (3.24)

donde xi son los vectores de variables regresoras, θ es el vector de parámetros desconocidos
a ser estimados, εi representan los errores y n el tamaño de la muestra. Dado t ∈ Θ, siendo
Θ el espacio paramétrico, definimos los residuos correspondientes a t como

ri(t) = yi − g(xi, t) .

A continuación presentamos dos familias de estimadores bajo el marco de la regresión no
lineal: los M-estimadores y los LMS-estimadores.

3.8.1. M-estimadores

Supongamos que se cumple el modelo (3.24) donde εi tiene densidad

1

σ
f0

( ε

σ

)

,
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y σ es un parámetro de escala. En este modelo, las yi son independientes pero no idéntica-
mente distribuidas, de hecho cada yi tiene densidad

1

σ
f0

(

yi − g(xi,θ)

σ

)

y la función de verosimilitud para θ, fijando σ, es

L(θ) =
1

σn

n
∏

i=1

f0

(

yi − g(xi,θ)

σ

)

.

Calcular el EMV maximizando L(t) es equivalente a encontrar (θ̂, σ̂) tal que minimice

1

n

n
∑

i=1

ρ0

(

ri(t)

σ

)

+ log(σ) ,

donde ρ0 = − log f0. Luego, derivando respecto de t y dejando fijo el valor de σ, obtenemos

n
∑

i=1

ψ0

(

ri(t)

σ

)

∂gi(t)

∂tr
= 0, 1 ≤ r ≤ p,

donde ψ0 = ρ′0 = −f ′0/f0. Definimos a los M-estimadores de regresión como

θ̂n = argmı́n
t∈Θ

n
∑

i=1

ρ

(

yi − g(xi, t)

σ̂

)

, (3.25)

donde ρ es una función-ρ como la de la Definición 3.1 y σ̂ es un estimador de la escala σ de
los residuos, es decir,

1

n

n
∑

i=1

ρ

(

ri(t)

σ̂

)

= δ ,

siendo δ una constante entre 0 y 1. Diferenciando (3.25) obtenemos las ecuaciones

n
∑

i=1

ψ

(

ri(t)

σ̂

)

∂gi(t)

∂tr
= 0, 1 ≤ r ≤ p, (3.26)

donde ψ = ρ′ y es una función-ψ como la de la Definición 3.2.

Fasano (2009) estudia el comportamiento asintótico de estos estimadores bajo condicio-
nes de regularidad, en particular, deriva su distribución asintótica bajo los supuestos que
detallamos a continuación.

A fin de que los parámetros sean identificables, asume que la función de regresión g
satisface la siguiente condición

t 6= θ ⇒ P{g(x, t) = g(x,θ)} < 1 .

Por otro lado, supongamos que x, y y ε tienen la misma distribución que xi, yi y εi,
respectivamente. Sea G0(x) la distribución de las x y F0(ε) la de ε, entonces la distribución
de z = (x, y) está dada por

H0(z) = G0(x)F0(y − g(x,θ)) .
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Consideremos los siguientes supuestos

A. E(|ρ(y − g(θ))|) <∞, ∀θ ∈ Θ

B. La distribución F0 tiene densidad f0 con las siguientes propiedades:

i) f0 es par.

ii) f0(|ε|) monótona creciente.

iii) f0(|ε|) estrictamente decreciente en un entorno de 0.

Sea ġ el gradiente de g, ψ = ρ′ y tomemos, sin pérdida de generalidad, σ = 1, luego se tiene
que θ̂n es solución de

n
∑

i=1

ψ(yi − g(xi,θ))ġ(xi,θ) = 0 .

Bajo las condiciones A y B y la suposición de que, o bien, Θ es compacto o se cumple que

P

{

sup
θ

|g(x,θ)| <∞
}

= 1 , (3.27)

Fasano (2009) prueba que el M-estimador θ̂n definido en (3.25) es consistente a θ. Si ade-
más, las dos primeras derivadas de g son F0-integrables, la matriz V= E[ġ(x,θ)ġ(x,θ)′] es
definida positiva con probabilidad uno y la función ψ es continua, acotada y tiene derivada
acotada, entonces

√
n(θ̂n − θ)

D−→ N

(

0,
E[ψ2(ε)]

(E[ψ′(ε)])2
V−1

)

.

3.8.2. LMS-estimadores

Rousseeuw (1984), basándose en algunas ideas de Hampel (1975), definió el primer esti-
mador de regresión con el mayor punto de ruptura posible, 1/2. Es decir, el mismo resiste los
efectos de aproximadamente un 50 % de datos contaminados, que es lo mejor que se puede
esperar de un estimador. Este es el llamado LMS-estimador y denotado θ̂LMS.

Consideremos nuevamente el modelo de regresión lineal dado por

yi = xi
′θ + εi, 1 ≤ i ≤ n ,

donde los xi son vectores p-dimensionales de variables explicativas y los εi son independientes
con distribución F , simétrica y fuertemente unimodal. Se define θ̂LMS como

θ̂LMS = arg mı́n
θ∈Θ

med
1≤i≤n

(yi − xi
′θ)2,

donde la mediana es definida como el [[n/2]] + [[(p + 1)/2]] estadístico de orden y [[·]] es la
parte entera.

Rousseeuw probó que θ̂LMS siempre existe y que cualquier conjunto de p observaciones
determina un único valor de θ̂LMS. Además, para una muestra finita, el punto de ruptura del
método LMS en el caso de regresión lineal es ([[(n− p)/2]] + 1)/n .
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Kim y Pollard (1990) probaron que el orden de convergencia para el estimador LMS en
regresión lineal es Op(n

−1/3), lo cual implica que la eficiencia asintótica de este estimador
es 0. Es por esto que, generalmente, este estimador se utiliza solamente para detectar un
posible problema de outliers o de enmascaramiento que otras técnicas de diagnóstico pasan
por alto (Rousseeuw y van Zomeren, 1990) y no para inferencia. O, alternativamente, como
primer paso a la hora de aplicar un estimador robusto más eficiente como, por ejemplo, un
M-estimador (Jureckova y Portnoy, 1987 y Simpson, Ruppert, y Carroll, 1991).

La definición del LMS-estimador puede ser fácilmente generalizada para su uso en mo-
delos de regresión no lineal de la siguiente manera

θ̂LMS = arg mı́n
θ∈Θ

med
1≤i≤n

(yi − g(xi,θ))
2. (3.28)

Sin embargo, deben tenerse en cuenta varios temas importantes que justifiquen su uso en la
práctica. Stromberg y Ruppert (1992) analizaron las propiedades del punto de ruptura en el
caso de regresión no lineal y Stromberg (1995) da una demostración de la consistencia débil
del θ̂LMS en modelos de regresión no lineal.

Aspectos computacionales

Rousseeuw y Leroy (1987) utilizaron el algoritmo PROGRESS para aproximar al θ̂LMS.
Este algoritmo puede resumirse de la siguiente manera: en un primer paso se calcula el ajuste
exacto a p puntos, denotamos esto θ̂ex y luego se calcula la mediana residual en θ̂ex. Lo ideal
es repetir este procedimiento para los

(

n
p

)

posibles subconjuntos de p-elementos y el valor

de θ̂ex que produzca la menor mediana residual utilizarlo para encontrar el estimador LMS.
Si repetir

(

n
p

)

veces es computacionalmente difícil, Rousseeuw y Leroy sugieren un método
diferente para elegir el número de submuestras: si la proporción de outliers es ξ, entonces el
número de submuestras puede ser elegido para asegurar, con alta probabilidad, que al menos
una de las submuestras no contiene ninguno de los outliers. Ellos notan que para n/p, esta
probabilidad es aproximada por

1− (1− (1− ξ)p)k , (3.29)

donde k es el número de submuestras.

Sugieren que k debería ser elegido para asegurar que (3.29) sea al menos 0.95, pero en
su algoritmo eligen k dependiendo de p de la siguiente manera

p : 1 2 3 4 5 ≥ 6

max k : 500 1000 1500 2000 2500 3000

Elegir un gran número de submuestras podría requerir mucho tiempo de computación
en regresión no lineal, por esto, Stromberg (1993) modificó el algoritmo PROGRESS para
encontrar un estimador del estimador LMS en el marco de regresión no lineal.

Este algoritmo es un procedimiento en varias etapas. En cada etapa se procura mejorar
el mejor estimador presente, denotado por θ̂, de θ̂LMS.
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El algoritmo introducido por Stromberg (1993) se resume de la siguiente manera:

Paso 0: el θ̂ inicial es el estimador de mínimos cuadrados para la muestra completa.

Paso 1: Se computa el estimador de mínimos cuadrados, θ̂LS, para p puntos elegidos
aleatoriamente. Si el cuadrado de la mediana residual en θ̂LS es menor que el cuadrado
de la mediana residual en θ̂, el θ̂LS reemplaza θ̂ como el estimador actual de θ̂LMS. Este
procedimiento se repite k veces, donde k es especificado por el usuario. El método por
defecto para computar θ̂LS es el método de Newton-Raphson con punto inicial θ̂, pero si θ̂LS

puede ser hallado algebraicamente es preferible hacerlo ya que se gana tiempo de cómputos.
La cantidad de ajustes de mínimos cuadrados se elige tal que (3.29) sea al menos 0.999
cuando ξ = 50%.

Paso 2: Este paso toma ventaja del hecho de que θ̂LMS está básicamente tratando de
encontrar un buen ajuste a la mitad de la muestra. θ̂ se usa como valor inicial para cal-
cular el ajuste de mínimos cuadrados, denotado θ̂∗

LS, para los puntos de la muestra tal
que r2i (θ̂) ≤ med

1≤i≤n
r2i (θ̂). Si med

1≤i≤n
r2i (θ̂

∗
LS) < med

1≤i≤n
r2i (θ̂), entonces θ̂∗

LS reemplaza a θ̂ como el

estimador actual de θ̂LMS.

Paso 3: Para encontrar aún un mejor estimador de θ̂LMS, el algoritmo simplex de Nelder-
Mead (Nelder y Mead, 1965), se utiliza para minimizar med

1≤i≤n
r2i (θ), usando θ̂ como valor ini-

cial. El algoritmo se implementa como en Press, Flannery, Teukolsky, and Vetterling (1986),
con tolerancia fraccionaria 10−4.

Este algoritmo se utilizó para computar los estimadores iniciales en nuestro estudio de
Monte Carlo que desarrollaremos a continuación en el Capítulo 5.



Capítulo 4

Estimación robusta en el modelo de
regresión no lineal con respuestas
faltantes

4.1. Introducción

Como fue mencionado en los capítulos anteriores, en los modelos no lineales asumimos
que observamos n vectores aleatorios (yi,xi) ∈ R

p+1 independientes e idénticamente distri-
buidos (i.i.d.), con yi ∈ R, xi ∈ R

p, siendo

yi = g(xi,θ) + εi, 1 ≤ i ≤ n ,

donde los errores εi son variables i.i.d. e independientes de xi y g una función conocida
salvo por el parámetro θ a estimar. En la teoría clásica, se supone que con E(εi) = 0 y
V ar(εi) = σ2. En nuestro contexto, asumiremos que los errores tienen distribución simétrica
alrededor del 0 con densidad

1

σ
f0

( ε

σ

)

,

siendo σ un parámetro de escala.

Nuestro objetivo es estimar el parámetro θ cuando existen respuestas faltantes en el
conjunto de datos a tratar, que queda definido a partir de (yi,xi, δi), 1 ≤ i ≤ n donde
δi = 1 si yi es observada y δi = 0 si no lo es. Sea (Y,X, δ) un vector aleatorio con la misma
distribución que (yi,xi, δi), asumiremos que la variable de respuesta presenta observaciones
faltantes al azar (missing at random, mar), es decir, dado X, δ e Y son condicionalmente
independientes

P (δ = 1|(Y,X)) = P (δ = 1|X) = p(X) . (4.1)

Como las estimaciones mediante métodos clásicos, como el de mínimos cuadrados, son sensi-
bles a la presencia de datos atípicos, resulta necesaria la utilización de métodos robustos. En
este contexto, Sued y Yohai (2012) estiman la distribución marginal de la respuesta mediante



44 Capítulo 4: Estimación Robusta

un procedimiento que permite estimar en forma consistente cualquier funcional débilmente
continuo de la distribución de la respuesta Y . Para este propósito utilizan como estimador
robusto inicial del parámetro de regresión no lineal θ, MM-estimadores, de los que estudian
sus propiedades asintóticas.

En el presente trabajo, proponemos estimar el parámetro de regresión no lineal cuando
existen datos faltantes en la variable de respuesta mediante una familia de M-estimadores y
estudiar algunas de sus propiedades.

4.2. M-estimadores

Consideremos la función de pérdida ρc(t), donde ρc es una función-ρ como las definidas
en el capítulo anterior, siendo c el parámetro de calibración. Definimos

Sn(t) =
1

n

n
∑

i=1

δi ρc

(

yi − g(xi, t)

σ̂

)

, (4.2)

donde σ̂ es un estimador preliminar de la escala σ.

Luego, definimos el M-estimador simplificado θ̂ del parámetro de regresión como

θ̂ = argmı́n
t
Sn(t) . (4.3)

Cuando ρ es continuamente diferenciable, con ψ(y, u, t) = ∂ρ(y, u, t)/∂u, θ̂ satisface las
ecuaciones diferenciales

S(1)
n (t) =

1

n

n
∑

i=1

δi ψc

(

yi − g(xi, t)

σ̂

)

∂g(xi, t)

∂t
= 0 . (4.4)

Un aspecto crítico en todo problema no lineal de estimación es la elección de los puntos
iniciales del algoritmo de cómputo. Esto ocurre tanto si se intenta buscar el mínimo de (4.2)
como si se intenta resolver (4.4). Por esta razón, proponemos utilizar como punto inicial en
la búsqueda del M-estimador, el estimador LMS computado mediante una adaptación del
algoritmo basado en la propuesta de Stromberg (1993), que a la vez permite calcular un
estimador preliminar robusto de la escala σ.

Proponemos el siguiente procedimiento para la estimación del parámetro de regresión:

Paso 1: Calcular el estimador de mínimos cuadrados tomando un valor inicial θ0

θ̂LS = arg mı́n
t∈Θ

n
∑

i=1

δi(yi − g(xi, t))
2.

Paso 2: Calcular el LMS-estimador mediante el algoritmo de Stromberg (1993) to-
mando como valor inicial θ̂LS

θ̂LMS = arg mı́n
t∈Θ

med
δi=1
1≤i≤n

(yi − g(xi, t))
2.
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Paso 3: Para las observaciones completas, sean los residuos

rLMSi = yi − g(xi, θ̂LMS) .

Calcular

σ̂LMS = κ · med
δi=1
1≤i≤n

(|rLMSi − med
δi=1
1≤i≤n

(rLMSi)|), κ = 1.4826,

para utilizarla como escala preliminar en (4.4), siendo κ una constante de calibración.

Paso 4: Estimar θ mediante un M-estimador, tomando como punto inicial θ̂LMS,
minimizando

θ̂M = arg mı́n
θ∈Θ

n
∑

i=1

δi ρc

(

yi − g(xi,θ)

σ̂LMS

)

.

Observación 4.2. En el estudio de simulación tomamos como función-ρ la función bicua-
drada de Tukey definida por

ρ(t) = mı́n
{

1, 1− (1− t2)3
}

.

Cabe mencionar que después del Paso 3 podría computarse un M-estimador de escala
como los definidos en la Sección 3.3. de manera de utilizar en el Paso 4 un estimador de σ,
σ̂, que sea más eficiente.

4.2.1. Fisher-consistencia del parámetro θ

Consideremos el funcional asociado al M-estimador propuesto definido por

θ(F ) = arg mı́n
t∈Θ

E

[

δ ρ

(

y − g(x, t)

σ

)]

.

Veremos que bajo ciertas condiciones de regularidad el funcional es Fisher-consistente, es
decir, si

S(t) = E

[

δ ρ

(

y − g(x, t)

σ

)]

,

entonces θ(F ) = θ, en otras palabras, el verdadero valor del parámetro minimiza la función
objetivo planteada en términos de la esperanza.

El siguiente lema establece condiciones suficientes para asegurar la Fisher-consistencia
del funcional asociado al M-estimador.

Asumiremos la siguiente condición sobre la función de pérdida ρ.

A0. Dado σ > 0, tenemos que E(ρ((ε− a)/σ)) > E(ρ(ε/σ)).
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Observación 4.1. El uso de funciones de pérdida acotadas para controlar el crecimiento de
los residuos requiere condiciones más exigentes para obtener la unicidad, tales como simetría
y unimodalidad de la distribución de los residuos. De hecho, sea ρ una función-ρ como las
descriptas anteriormente y acotada. Si denotamos λ(a, τ) = E(ρ ((y − a)/τ)), entonces ν
se define como ν = arg mı́na λ(a, τ0) con τ0 la escala marginal. Por el Teorema 10.2 en
Maronna, Martin y Yohai (2006), si y tiene una densidad f que es una función decreciente
en |y− ν| y ρ es cualquier función-ρ, entonces, λ(a, τ) tiene un único mínimo en a = ν para
cualquier τ > 0.

Lema 4.1. Supongamos que (Y,X, δ) es tal que Y = g(X,θ) + ε, donde ε es independiente

de X y satisface la condición mar dada en (4.1). Si la función de pérdida ρ es una función-ρ

que cumple la condición A0 entonces, el funcional θ(F ) = arg mı́n
t

EF

[

δρ

(

Y − g(X, t)

σ

)]

es Fisher–consistente.

Dem. Dado que se cumple (4.1), tenemos que Y y δ son condicionalmente independientes
dado X, por lo tanto

E

[

δρ

(

Y − g(X, t)

σ

)]

= E

[

p(X)ρ

(

Y − g(X, t)

σ

)]

= E

[

p(X)ρ

(

Y − g(X,θ) + g(X,θ)− g(X, t)

σ

)]

= E

[

p(X)ρ

(

ε− (g(X, t)− g(X,θ))

σ

)]

= E

[

p(X)E

{

ρ

(

ε− (g(X, t)− g(X,θ))

σ

)

X

}]

De la independencia entre los errores y las covariables y la condición A0, se concluye que

E

{

ρ

(

ε− (g(X, t)− g(X,θ))

σ

)

X

}

= E

{

ρ

(

ε− (g(X, t)− g(X,θ))

σ

)

X=x

}

= E

{

ρ

(

ε− (g(x, t)− g(x,θ))

σ

)}

> E
{

ρ
(ε

σ

)}

Luego, θ(F ) es un estimador Fisher-consistente de θ.

4.2.2. Función de Influencia

La función de influencia mide la robustez con respecto a un outlier y permite estudiar
la robustez local. Puede pensarse como la derivada del estimador y bajo condiciones de
regularidad, permite derivar la matriz de covarianza asintótica del mismo, de manera que
provee un criterio racional para elegir la constante de calibración.
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Sea T (F ) un funcional. La función de influencia de T (F ) se define como

IF(w0, T, F ) = ĺım
ǫ→0

T (Fw0,ǫ)− T (F )

ǫ
,

donde Fw0,ǫ = (1 − ǫ)F + ǫ∆w0 representa el modelo contaminado, siendo ∆w0 la medida
de probabilidad que pone masa 1 en el punto w0 = (y0,x

′
0, δ0).

Bajo condiciones de regularidad (Fernholz, 1983), tenemos la siguiente expansión

√
n {T (Fn)− T (F )} =

1√
n

n
∑

i=1

IF (wi, T, F ) + op(1) ,

siendo Fn la distribución empírica de wi, 1 ≤ i ≤ n. Luego, la varianza asintótica del
estimador puede expresarse como

AV (T, F ) = EF

{

IF (w1, T, F ) IF (w1, T, F )
′} . (4.5)

Sea F1 una distribución sobre Rk+1×{0, 1} y denotemos por θ(F1) y σ(F1) los funcionales
asociados a θ̂ y σ̂, respectivamente.

Asumimos que θ(F1) es solución de S(1)(b, τ(F1), F1) = 0 donde

S(1)(t, u, F1) = EF1

(

δ ψ

(

Y − g(X, t)

u

)

∂g(X, t)

∂t

)

.

Supongamos, además, que θ(F1) es un funcional Fisher-consistente en F , es decir, θ(F ) = θ.
En la siguiente proposición damos la función de influencia del funcional simplificado θ(F1)
en F1 = F .

Proposición 4.1. Supongamos que IF(w0, σ, F ) existe y que son válidas las siguientes

condiciones

A1. ψ(s) es continuamente diferenciable,
∂ψ (y, x, t, u)

∂t
es continua y ε tiene distribución

simétrica alrededor del 0.

A2. La matriz

A = E
(

ψ′
( ε

σ

))

E

[

∂g(X,θ)

∂t

∂g(X,θ)

∂t

′

p(X)

]

es no singular.

Luego, IF (w0,θ, F ) existe y cuando σ(F ) = σ, tenemos que

IF(w0,θ, F ) = −σδ0ψ

(

y0 − g(x0,θ(F ))

σ

)

A−1∂g(x0,θ(F ))

∂t
.
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Dem. Notemos que

EFw0,ǫ

(

δ ψ

(

Y − g(X,θ(Fw0,ǫ))

σ(Fw0,ǫ)

)

∂g(X,θ(Fw0,ǫ))

∂t

)

= 0k ,

luego

0k = (1− ǫ)EF

(

δ ψ

(

Y − g(X,θ(Fw0,ǫ))

σ(Fw0,ǫ)

)

∂g(X,θ(Fw0,ǫ))

∂t

)

+ ǫ δ0

(

ψ

(

y0 − g(x0,θ(Fw0,ǫ))

σ(Fw0,ǫ)

)

∂g(x0,θ(Fw0,ǫ))

∂t

)

. (4.6)

Entonces, diferenciando (4.6) con respecto a ǫ y evaluando en ǫ = 0, resulta

0k = −EF

(

δ ψ

(

Y − g(X,θ(F ))

σ(F )

)

∂g(X,θ(F ))

∂t

)

+ EF

(

δ ψ

(

Y − g(X,θ(F ))

σ(F )

)

∂2g(X,θ(F ))

∂t2

)

IF(w0,θ, F )

− EF

(

δ ψ′

(

Y − g(X,θ(F ))

σ(F )

)

∂g(X,θ(F ))

∂t

∂g(X,θ(F ))

∂t

′) 1

σ(F )
IF(w0,θ, F )

− EF

(

δ ψ′

(

Y − g(X,θ(F ))

σ(F )

)

∂g(X,θ(F ))

∂t

(Y − g(X,θ(F ))

σ(F )

)

1

σ(F )
IF(w0, σ, F )

+ δ0

(

ψ

(

y0 − g(x0,θ(F ))

σ(F )

)

∂g(x0,θ(F ))

∂t

)

.

Teniendo en cuenta que se cumple la condición de mar dada en (4.1), que ε tiene distribución
simétrica alrededor del 0, que ψ y ψ′(s) son funciones impares, obtenemos que

0k = −EF

(

δ ψ′

(

Y − g(X,θ(F ))

σ(F )

)

∂g(X,θ(F ))

∂t

∂g(X,θ(F ))

∂t

′) 1

σ(F )
IF(w0,θ, F )

+ δ0

(

ψ

(

y0 − g(x0,θ(F ))

σ(F )

)

∂g(x0,θ(F ))

∂t

)

,

de donde resulta la proposición.

Vale la pena observar que la función de influencia obtenida depende de una variable
dicotómica que toma el valor 0 cuando la variable de respuesta está ausente. Por esta razón,
como en Bianco, Boente y Rodrigues (2012) consideramos la esperanza de la función de
influencia que denotamos EIF(w0, T, F ), de manera tal que

EIF(w∗
0, T, F ) = E(IF(w∗

0, T, F )|(y0,x0))

Para el caso del funcional en estudio, obtenemos que

EIF(w∗
0,θ, F ) = −σp(x0)ψ

(

y0 − g(x0,θ(F ))

σ

)

A−1∂g(x0,θ(F ))

∂t
.
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Para ilustrar el comportamiento de la medida EIF, consideramos en primer lugar el
modelo de crecimiento exponencial, como en Fasano (2009), dado por

y = β exp (αx) + ε,

donde (α, β) = (2, 5) y tomamos 3 modelos diferentes para la probabilidad de ausencia dados
por

p ≡ 1 : sin respuestas faltantes

p(x) =
1

1 + exp (−2x− 2)
: modelo logístico

p(x) = 0.7 + 0.2(cos(2x+ 0.4))2

En las Figuras 4.1, 4.2 y 4.3, graficamos las superficies obtenidas para el M-estimador cuando
se utiliza la función de pérdida bicuadrada con constante de calibración c = 4 y la del
estimador de mínimos cuadrados que resulta de tomar ρ(s) = s2. En estas figuras, se puede
apreciar el efecto de aplicar una función de pérdida ρ acotada sobre los residuos, pues
mantiene dominada la influencia controlando el crecimiento de los residuos en una gran
región donde la norma de la función de influencia de mínimos cuadrados toma valores muy
elevados.

θ̂LS θ̂M

Figura 4.1: ‖EIF‖ cuando p ≡ 1
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θ̂LS θ̂M

Figura 4.2: ‖EIF‖ cuando p(x) =
1

1 + exp (−2x− 2)

θ̂LS θ̂M

Figura 4.3: ‖EIF‖ cuando p(x) = 0.7 + 0.2(cos(2x+ 0.4))2
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En segundo término, consideramos el modelo de Michaelis–Menten parametrizado de la
siguiente forma

y =
αx

β + x
+ ε,

con (α, β) = (10, 1), x ∼ U(0, 1) y ε ∼ N(0, 1) y las mismas probabilidades de ausencia
que en el ejemplo anterior. En las Figuras 4.4, 4.5 y 4.6, graficamos las superficies obtenidas
para el M-estimador cuando se utiliza la función de pérdida bicuadrada con constante de
calibración c = 4 y la del estimador de mínimos cuadrados. En estas figuras, además de
apreciar el efecto de aplicar una función de pérdida ρ acotada sobre los residuos, se observa
claramente el efecto de la función de ausencia p sobre la esperanza de la función de influencia.
En particular, en la Figura 4.6 se evidencia el efecto del coseno que introduce una fluctuación
en la curva de influencia esperada.

θ̂LS θ̂M

Figura 4.4: ‖EIF‖ cuando p ≡ 1
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θ̂LS θ̂M

Figura 4.5: ‖EIF‖ cuando p(x) =
1

1 + exp (−2x− 2)

θ̂LS θ̂M

Figura 4.6: ‖EIF‖ cuando p(x) = 0.7 + 0.2(cos(2x+ 0.4))2



Capítulo 5

Estudio de Monte Carlo

Con el fin de investigar el comportamiento del método bajo estudio en muestras finitas se
realizó un estudio de simulación. Asimismo, en este análisis se compara el comportamiento
del estimador clásico de mínimos cuadrados con la alternativa robusta propuesta.

Se consideran los modelos Exponencial y de Michaelis-Menten. Para ambos modelos
se plantearon diferentes escenarios de análisis, considerando muestras con y sin datos atípicos
y diferentes patrones de ausencia o pérdida de respuestas.

Las cuatro funciones de ausencia consideradas son:

p ≡ 1 : sin respuestas faltantes

p ≡ 0.8 : faltante de respuestas completamente al azar

p(x) =
1

1 + exp (−2x− 2)
: modelo logístico

p(x) = 0.7 + 0.2(cos(2x+ 0.4))2

Para el cálculo de los M-estimadores se tomó como función-ρ la función bicuadrada cuya
expresión se encuentra en (3.9). En cuanto a la constante c, elegimos c = 3.25 y c = 4, que
corresponden a un valor de eficiencia de 0.82 y 0.90 respectivamente, bajo el modelo con
datos completos. Sin embargo, mostraremos los resultados correspondientes a c = 4, ya que
no hallamos diferencias importantes.

5.1. Modelo Exponencial

Se consideró el modelo de crecimiento exponencial analizado en el estudio de simulación
de Fasano (2009), dado por

yi = β exp (αxi) + εi, 1 ≤ i ≤ n , (5.1)

con θ0 = (α0, β0) = (2, 5). La simulación se llevó a cabo generando 1000 muestras indepen-
dientes de tamaño n = 100, siendo xi ∼ U(0, 1) y εi ∼ N(0, 1).
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En función de comparar el comportamiento de los estimadores bajo pérdida de datos,
se consideraron las cuatro funciones de ausencia p antes mencionadas, así como muestras
sin outliers y muestras contaminadas con un 10 % de datos atípicos. Si bien se consideraron
diversas contaminaciones, mostraremos a modo de ejemplo una de ellas, que ejemplifica las
situaciones consideradas. Se mostrarán los resultados correspondientes a datos contaminados
de la siguiente forma

yj = (β exp (αxj)) · 1.5 90 ≤ j ≤ 100

donde xj = 1.09 + 0.0001 · Z, siendo Z un número aleatorio entre -1 y 2. Este modelo de
contaminación corresponde al que introdujo un mayor crecimiento en el error cuadrático
medio en el estudio numérico de Fasano (2009).

Una vez obtenidos todos los estimadores de α y β se midió su performance mediante las
siguientes medidas: Media, Mediana, Varianza, MAD y MSE (error cuadrático medio), que
presentamos en las siguientes tablas. Notaremos por LS.cg y LS.nlm al estimador clásico de
mínimos cuadrados calculado mediante dos algoritmos diferentes. Por otra parte, indicare-
mos por LMS y M.cg al LMS-estimador y al M-estimador, respectivamente. Cabe destacar
que si bien se consideraron diferentes algoritmos para la minimización del estimador de mí-
nimos cuadrados y del M-estimador, sólo mostraremos los resultados obtenidos para dos de
los estimadores calculados en el caso del LS y uno en el caso del M-estimador, ya que son
representativos del resto.

En las Tablas 5.1 y 5.2 se presentan los valores obtenidos para α y β respectivamente,
cuando no se consideran muestras sin contaminar y en las Tablas 5.3 y 5.4 cuando se intro-
ducen datos atípicos en la muestra. En cada tabla se tomó c = 4 y se tuvo en cuenta cada
una de las funciones de pérdida, nombradas anteriormente.

En la Figura 5.1 se muestran los boxplots de los estimadores de α y β cuando p ≡ 1,
tanto para muestras sin datos atípicos como para muestras contaminadas. Análogamente,
en las Figuras 5.2, 5.3 y 5.4 se presentan los mismos boxplots para las funciones p ≡ 0.8,
p(x) = [1 + exp (−2x− 2)]−1 y p(x) = 0.7 + 0.2(cos(2x+ 0.4))2, respectivamente.

5.2. Modelo de Michaelis-Menten

En segunda instancia, consideramos el modelo de Michaelis-Menten, según la parame-
trización de Ratkowsky (1983) dado por

yi =
αxi

exp (β) + xi
+ εi . (5.2)

siguiendo los parámetros de simulación tomados en Stromberg (1993). La simulación se llevó
a cabo generando 1000 muestras independientes de tamaño n = 100, siendo θ0 = (α0, β0) = (10, 0),
xi ∼ U(0, 10) y εi ∼ N(0, 1).

Para comparar el comportamiento de los estimadores bajo pérdida de datos, se conside-
raron las cuatro funciones de p, muestras sin outliers y muestras contaminadas con un 20 %
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de datos atípicos que fueron generados a la manera de Stromberg (1993), primero ordenan-
do los datos de menor a mayor según las variables regresoras xi y luego sumando 20 a los
correspondientes valores de respuesta yi.

Se consideraron los mismos estimadores que para el modelo de crecimiento exponencial.
Al igual que en ese caso, una vez obtenidos todos los estimadores de α y β se midió su
performance mediante la Media, Mediana, Varianza, MAD y MSE (error cuadrático medio),
que presentamos a continuación en las siguientes tablas. Notaremos por LS.cg y LS.nlm al
estimador clásico de mínimos cuadrados calculado mediante dos algoritmos diferentes. Por
otra parte, indicaremos por LMS y M.cg al LMS-estimador y al M-estimador, respectiva-
mente. Nuevamente, cabe destacar que sólo mostraremos los resultados obtenidos para dos
de los estimadores calculados en el caso del LS y uno en el caso del M-estimador, ya que los
valores que se obtuvieron con el resto de los algoritmos eran prácticamente idénticos.

En las Tablas 5.5 y 5.6 se presentan los valores obtenidos para α y β respectivamente,
cuando no se consideran datos atípicos dentro de la muestra y en las Tablas 5.7 y 5.8 cuando
se contaminan las muestras.

En la Figura 5.5 se muestran los boxplots de los estimadores de α y β cuando p ≡ 1, tanto
para muestras sin datos atípicos como para muestras con datos atípicos. Análogamente, en
las Figuras 5.6, 5.7 y 5.8 se presentan los boxplots correspondientes a las funciones p ≡ 0.8,
p(x) = [1 + exp (−2x− 2)]−1 y p(x) = 0.7 + 0.2(cos(2x+ 0.4))2, respectivamente.

5.3. Conclusiones

Tal como es de esperar, para el modelo exponencial como para el modelo de Michaelis-
Menten, al considerar muestras sin datos atípicos observamos que la performance de los
estimadores clásicos es mejor que la de los robustos en cuanto a la dispersión de las esti-
maciones. Sin embargo, no hay una pérdida importante al comparar los errores cuadráticos
medios y al comparar media y mediana, son muy similares. Además, este comportamiento
es parecido a través de las cuatro funciones de p que se han planteado.

En este estudio de Monte Carlo hemos podido comprobar en los dos modelos que el com-
portamiento del estimador clásico de mínimos cuadrados es muy inestable ante la presencia
de datos atípicos en los cuatro escenarios planteados para la función de p, mientras que los
M-estimadores se muestran muy estables y por lo tanto, superan en perfomance al estimador
clásico, aún cuando se introducen 20 % de observaciones atípicas como en el caso del modelo
de Michaelis-Menten. Más aún, vemos que hay diferencias entre el comportamiento de los
estimadores de mínimos cuadrados según el método que se utilice para su cómputo cuando
las muestras son contaminadas.

En el modelo de Michaelis-Menten se refleja más claramente el pobre comportamiento
del estimador clásico, el cual se ve sumamente afectado por la presencia de datos atípicos.
Los estimadores obtenidos distan considerablemente de los valores reales de los parámetros,
en especial del parámetro α, los cuales presentan estimaciones de gran magnitud. En este
caso, uno de los algoritmos empleados en la estimación por el método de mínimos cuadrados
(LS.nlm) mejora la performance del estimador respecto del otro (LS.cg) pero, aún así, estima
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valores muy alejados del valor real del parámetro. Por el contrario, los estimadores robustos
no se ven afectados, sea cual fuere la función p considerada.

Respecto al LMS-estimador, podemos concluir, que es resistente a los datos atípicos
debido a su alto punto de ruptura. Sin embargo, dado que no son altamente eficientes, su
cálculo no resulta satisfactorio como estimador final del parámetro θ, pero sí como estimador
inicial en el primer paso del algoritmo para obtener el M-estimador, el cual, heredando los
beneficios del alto punto de ruptura del LMS resulta robusto y, debido a la constante c = 4
considerada, también eficiente.
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5.4. Tablas

LS.cg LS.nlm LMS M.cg Función de pérdida

Media 1.9995 1.9995 2.0019 1.9993

Mediana 1.9991 1.999 2.0003 1.9989

Varianza 0.0007 0.0007 0.0044 0.0007 p ≡ 1
MAD 0.0245 0.0245 0.0657 0.0275

MSE 0.0007 0.0007 0.0044 0.0007

Media 2.0011 2.0011 1.9992 2.0011

Mediana 2.0009 2.0009 1.9959 1.9995

Varianza 0.0008 0.0008 0.0051 0.0009 p ≡ 0.8
MAD 0.0265 0.0265 0.0714 0.0297

MSE 0.0008 0.0008 0.0051 0.0009

Media 2.0009 2.0009 2.0007 2.0009

Mediana 1.9997 1.9997 1.9991 1.9994

Varianza 0.0007 0.0007 0.0049 0.0008 p(x) =
1

1 + exp (−2x− 2)
MAD 0.0256 0.0256 0.0689 0.0279

MSE 0.0007 0.0007 0.0048 0.0008

Media 2.0008 2.0008 1.9992 2.0007

Mediana 2 2 1.9972 1.9998

Varianza 0.0008 0.0008 0.0054 0.001 p(x) = 0.7 + 0.2(cos(2x+ 0.4))2

MAD 0.0278 0.0278 0.0756 0.0304

MSE 0.0008 0.0008 0.0054 0.001

Tabla 5.1: Estimación de α con α0 = 2 y c = 4, para el Modelo Exponencial, sin outliers.

LS.cg LS.nlm LMS M.cg Función de pérdida

Media 5.0026 5.0027 4.9982 5.0031

Mediana 5.0043 5.0043 4.994 5.0046

Varianza 0.0105 0.0105 0.0692 0.0116 p ≡ 1
MAD 0.103 0.103 0.2744 0.1116

MSE 0.0105 0.0105 0.0691 0.0116

Media 4.9979 4.9979 5.0111 4.9979

Mediana 4.9971 4.9971 5.0153 4.9999

Varianza 0.0128 0.0128 0.0811 0.0145 p ≡ 0.8
MAD 0.1074 0.1074 0.2919 0.1199

MSE 0.0128 0.0128 0.0812 0.0144

Media 4.9983 4.9983 5.0064 4.9983

Mediana 5.0009 5.0009 5.0025 5.0025

Varianza 0.0108 0.0108 0.0791 0.0122 p(x) =
1

1 + exp (−2x− 2)
MAD 0.1018 0.1018 0.2789 0.1075

MSE 0.0107 0.0107 0.0791 0.0122

Media 4.9995 4.9995 5.012 4.9998

Mediana 5 5 5.0205 4.9997

Varianza 0.0133 0.0133 0.0879 0.0151 p(x) = 0.7 + 0.2(cos(2x+ 0.4))2

MAD 0.1134 0.1134 0.3056 0.1233

MSE 0.0133 0.0133 0.0879 0.0151

Tabla 5.2: Estimación de β con β0 = 5 y c = 4, para el Modelo Exponencial, sin outliers.
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LS.cg LS.nlm LMS M.cg Función de pérdida

Media 2.8376 2.8352 2.0021 1.9998

Mediana 2.837 2.8356 2.0015 1.9981

Varianza 0.0023 0.0028 0.0044 0.0011 p ≡ 1
MAD 0.0471 0.0467 0.0638 0.0263

MSE 0.7039 0.7004 0.0044 0.0011

Media 2.8329 2.832 1.9999 2.0007

Mediana 2.83 2.8298 1.9992 2.0005

Varianza 0.0045 0.0046 0.0046 0.001 p ≡ 0.8
MAD 0.0626 0.0627 0.0688 0.0293

MSE 0.6983 0.6967 0.0046 0.001

Media 2.8415 2.8395 2.0006 2.0006

Mediana 2.8397 2.8393 2.0005 1.9997

Varianza 0.0027 0.0033 0.0043 0.0008 p(x) =
1

1 + exp (−2x− 2)
MAD 0.0495 0.0492 0.0641 0.0281

MSE 0.7108 0.7081 0.0043 0.0008

Media 2.8311 2.8293 2.0025 2.0015

Mediana 2.8291 2.8288 2.0031 2.0003

Varianza 0.0053 0.0056 0.0053 0.0017 p(x) = 0.7 + 0.2(cos(2x+ 0.4))2

MAD 0.0689 0.0684 0.067 0.0312

MSE 0.6961 0.6933 0.0053 0.0017

Tabla 5.3: Estimación de α con α0 = 2 y c = 4, para el Modelo Exponencial, con outliers.

LS.cg LS.nlm LMS M.cg Función de pérdida

Media 2.7802 2.7882 4.9975 5.003

Mediana 2.782 2.7847 4.9841 5.0036

Varianza 0.0226 0.0287 0.0651 0.0131 p ≡ 1
MAD 0.1527 0.1529 0.262 0.1116

MSE 4.9501 4.9208 0.065 0.0131

Media 2.7945 2.7977 5.007 5.0004

Mediana 2.7987 2.7996 5.0071 4.9991

Varianza 0.0352 0.0371 0.0744 0.0149 p ≡ 0.8
MAD 0.1751 0.1751 0.2831 0.1204

MSE 4.8992 4.8874 0.0743 0.0149

Media 2.7651 2.7717 5.0045 5

Mediana 2.765 2.7662 4.9952 5.0033

Varianza 0.0242 0.0322 0.0699 0.0124 p(x) =
1

1 + exp (−2x− 2)
MAD 0.1537 0.154 0.2664 0.1095

MSE 5.0189 4.9973 0.0699 0.0124

Media 2.7945 2.8006 5.0004 5

Mediana 2.7945 2.7957 4.9904 5.0026

Varianza 0.0408 0.0459 0.079 0.0182 p(x) = 0.7 + 0.2(cos(2x+ 0.4))2

MAD 0.194 0.1925 0.2797 0.1293

MSE 4.9051 4.8832 0.0789 0.0182

Tabla 5.4: Estimación de β con β0 = 5 y c = 4, para el Modelo Exponencial, con outliers.
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LS.cg LS.nlm LMS M.cg Función de pérdida

Media 10.0077 10.0077 10.0758 10.0051

Mediana 10.01 10.01 10.021 10.0004

Varianza 0.0623 0.0623 0.4853 0.0725 p ≡ 1
MAD 0.2487 0.2487 0.6444 0.2659

MSE 0.0623 0.0623 0.4906 0.0725

Media 10.0205 10.0205 10.1052 10.0191

Mediana 10.0199 10.0199 10.068 10.0096

Varianza 0.083 0.083 0.5668 0.0957 p ≡ 0.8
MAD 0.2847 0.2847 0.7538 0.3109

MSE 0.0833 0.0833 0.5773 0.096

Media 10.0199 10.0199 10.086 10.0175

Mediana 10.0206 10.0206 10.033 10.0093

Varianza 0.0677 0.0677 0.5058 0.0767 p(x) =
1

1 + exp (−2x− 2)
MAD 0.2457 0.2457 0.6664 0.2606

MSE 0.0681 0.0681 0.5126 0.0769

Media 10.026 10.026 10.1071 10.0239

Mediana 10.0162 10.0162 10.0678 10.0081

Varianza 0.0873 0.0873 0.6162 0.1011 p(x) = 0.7 + 0.2(cos(2x+ 0.4))2

MAD 0.288 0.288 0.7294 0.3161

MSE 0.0879 0.0879 0.6271 0.1015

Tabla 5.5: Estimación de α con α0 = 10 y c = 4, para el Modelo de Michaelis-Menten, sin
outliers.

LS.cg LS.nlm LMS M.cg Función de pérdida

Media -0.0034 -0.0035 -0.0061 -0.0054

Mediana 0.0006 0.0006 -0.0118 -0.0007

Varianza 0.0158 0.0158 0.1031 0.018 p ≡ 1
MAD 0.1203 0.1204 0.2982 0.1323

MSE 0.0158 0.0158 0.1031 0.018

Media 0.0013 0.0013 -0.0037 -0.0005

Mediana 0.001 0.001 0.0104 0.0002

Varianza 0.0198 0.0198 0.1293 0.0227 p ≡ 0.8
MAD 0.1351 0.1351 0.3284 0.1482

MSE 0.0198 0.0198 0.1292 0.0227

Media 0.0027 0.0027 0.0009 0.0007

Mediana 0.0047 0.0047 -0.0036 -0.0029

Varianza 0.0168 0.0168 0.1094 0.019 p(x) =
1

1 + exp (−2x− 2)
MAD 0.123 0.123 0.3128 0.1339

MSE 0.0168 0.0168 0.1092 0.019

Media 0.0026 0.0026 0.006 0.0005

Mediana 0.0002 0.0002 0.0137 -0.0005

Varianza 0.0199 0.0199 0.1218 0.0229 p(x) = 0.7 + 0.2(cos(2x+ 0.4))2

MAD 0.134 0.134 0.3232 0.1468

MSE 0.0199 0.0199 0.1217 0.0229

Tabla 5.6: Estimación de β con β0 = 0 y c = 4, para el Modelo de Michaelis-Menten, sin
outliers.
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LS.cg LS.nlm LMS M.cg Función de pérdida

Media 28559.8791 2428.4303 10.0675 10.0134

Mediana 28338.222 1998.2602 10.0208 10.0164

Varianza 18572833.03 4637701.681 0.5281 0.1131 p ≡ 1
MAD 4108.7444 2496.2846 0.6766 0.3372

MSE 833649855.6 10481868.98 0.5322 0.1132

Media 28653.1961 2390.9281 10.0817 10.0181

Mediana 28517.4606 1865.745 10.0284 10.0133

Varianza 21152741.13 5010523.279 0.6099 0.1412 p ≡ 0.8
MAD 4551.7156 2595.2335 0.7632 0.356

MSE 841564269.7 10674331.35 0.6159 0.1413

Media 28682.3095 2016.8827 10.0828 10.0231

Mediana 28542.3652 1346.5702 10.0126 10.0131

Varianza 18394459.03 4468029.051 0.5432 0.1183 p(x) =
1

1 + exp (−2x− 2)
MAD 4071.7761 1977.8179 0.6913 0.323

MSE 840477398.2 8491139.12 0.5495 0.1187

Media 28361.9394 2953.2454 10.0867 10.0263

Mediana 28297.6178 2818.1634 10.0272 10.0176

Varianza 20541014.45 5641706.759 0.6117 0.1515 p(x) = 0.7 + 0.2(cos(2x+ 0.4))2

MAD 4611.8096 2932.2468 0.7313 0.3909

MSE 824352942.6 14298758.28 0.6187 0.1521

Tabla 5.7: Estimación de α con α0 = 10 y c = 4, para el Modelo de Michaelis-Menten, con
outliers.

LS.cg LS.nlm LMS M.cg Función de pérdida

Media 9.3725 5.0544 -0.0023 -0.0044

Mediana 9.3791 6.717 -0.0041 0.0077

Varianza 0.0224 18.0858 0.0893 0.0219 p ≡ 1
MAD 0.1378 1.2066 0.2735 0.1413

MSE 87.8652 43.6151 0.0892 0.0219

Media 9.3743 4.3787 -0.0003 -0.0028

Mediana 9.3792 6.6634 0.003 0.002

Varianza 0.0237 26.3912 0.1091 0.0264 p ≡ 0.8
MAD 0.1452 1.3846 0.3211 0.1522

MSE 87.902 45.5378 0.109 0.0263

Media 9.3752 3.833 0.0079 0.0007

Mediana 9.381 6.3119 0.0112 0.0004

Varianza 0.0213 28.592 0.0932 0.0225 p(x) =
1

1 + exp (−2x− 2)
MAD 0.1425 1.7559 0.2885 0.1405

MSE 87.9148 43.2553 0.0932 0.0225

Media 9.3516 5.1931 -0.0036 -0.0007

Mediana 9.3551 7.0439 -0.0001 -0.0008

Varianza 0.0247 20.3028 0.1037 0.0269 p(x) = 0.7 + 0.2(cos(2x+ 0.4))2

MAD 0.1501 1.0365 0.3049 0.16

MSE 87.4777 47.2512 0.1036 0.0268

Tabla 5.8: Estimación de β con β0 = 0 y c = 4, para el Modelo de Michaelis-Menten, con
outliers.
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5.5. Boxplots

α β

α β

Figura 5.1: Boxplots de los estimadores de α y β para datos sin outliers en la primera línea
y con outliers en la segunda, con c = 4 y p ≡ 1, para el Modelo Exponencial.
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α β

α β

Figura 5.2: Boxplots de los estimadores de α y β para datos sin outliers en la primera línea
y con outliers en la segunda, con c = 4 y p ≡ 0.8, para el Modelo Exponencial.
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α β

α β

Figura 5.3: Boxplots de los estimadores de α y β para datos sin outliers en la primera línea
y con outliers en la segunda, con c = 4 y p(x) = 1

1+exp (−2x−2) , para el Modelo Exponencial.
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α β

α β

Figura 5.4: Boxplots de los estimadores de α y β para datos sin outliers en la primera línea
y con outliers en la segunda, con c = 4 y p(x) = 0.7 + 0.2(cos(2x+ 0.4))2 , para el Modelo
Exponencial.
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α β

α β

Figura 5.5: Boxplots de los estimadores de α y β para datos sin outliers en la primera línea
y con outliers en la segunda, con c = 4 y p ≡ 1, para el Modelo de Michaelis-Menten.
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α β

α β

Figura 5.6: Boxplots de los estimadores de α y β para datos sin outliers en la primera línea
y con outliers en la segunda, con c = 4 y p ≡ 0.8, para el Modelo de Michaelis-Menten.
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α β

α β

Figura 5.7: Boxplots de los estimadores de α y β para datos sin outliers en la primera
línea y con outliers en la segunda, con c = 4 y p(x) = 1

1+exp (−2x−2) , para el Modelo de
Michaelis-Menten.
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α β

α β

Figura 5.8: Boxplots de los estimadores de α y β para datos sin outliers en la primera línea
y con outliers en la segunda, con c = 4 y p(x) = 0.7 + 0.2(cos(2x+ 0.4))2 , para el Modelo
de Michaelis-Menten.
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Ejemplo

Edad de los Conejos Medida “Por el Ojo”

El conejo europeo Oryctolagus cuniculus es una de las principales plagas en Australia. Un
método fiable de determinación de la edad para los conejos capturados en el medio silvestre
sería de importancia en los estudios ecológicos. En un estudio realizado por Dudzinski y
Mykytowycz (1961), se midió el peso seco de la lente del ojo para 71 conejos salvajes, con
edades conocidas, viviendo a la intemperie. Como el peso de la lente del ojo tiende a variar
mucho menos con las condiciones ambientales que el peso total del cuerpo es, por lo tanto,
un mejor indicador de la edad.

Los conejos nacieron y vivieron libres en un recinto de 1.7 acre 1 en Gungahlin, ACT. La
información sobre el nacimiento y la historia de cada individuo fue conocida con exactitud.
Los conejos que vivían en dicho recinto dependían de la fuente de alimento natural. En este
experimento 18 de las lentes oculares se obtuvieron de conejos que murieron en el transcurso
de este estudio de varias causas como coccidiosis, depredación de aves o inanición. Los
restantes 35 conejos fueron sacrificados deliberadamente, inmediatamente luego de haber
sido capturados en el recinto o de haber sido mantenidos durante algún tiempo en jaulas.
Las lentes se conservaron y se determinó su peso seco.

Sean

Lens = peso de la lente del ojo en mg.

Age = edad en días.

Dudzinski y Mykytowycz (1961) sugieren la relación determinística

E(Lens) = θ1 exp

( −θ2

θ3 +Age

)

,

pero este modelo no resulta homocedástico.

11 acre ≈ 4.047 m2
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Un modelo apropiado para este caso sería

E(log(Lens)) = θ1 −
θ2

θ3 +Age
,

el cual sí resulta homocedástico.

Con el fin de comparar, nuevamente, la performance del estimador robusto propuesto
frente al estimador clásico se procedió a realizar una estimación del parámetro θ a partir de
los datos Lens y Age. Para lo cual, se consideraron los mismos de forma completa como así
también con ciertas pérdidas en la variable Lens mediante las siguientes funciones:

p ≡ 1: sin respuestas faltantes

p ≡ 0.8: faltante de respuestas completamente al azar

p(x) =
1

1 + exp(−0.5x− 1)
: modelo logístico (se introducen aproximadamente un 25 %

de respuestas faltantes)

A su vez, se contaminaron las últimas cinco observaciones de la variable log(Lens), en
los tres escenarios planteados, de la siguiente manera:

log(Lens)67 = 7

log(Lens)68 = 7.01

log(Lens)69 = 7.02

log(Lens)70 = 7.03

log(Lens)71 = 7.05

En la Tabla 6.1 presentamos los estimadores obtenidos mediante el método de mínimos
cuadrados y el método robusto propuesto para la tres funciones de pérdida planteadas bajo

C0: datos sin contaminar

C1: datos contaminados

Podemos observar que, si bien, con el estimador de mínimos cuadrados se obtienen
estimaciones muy parecidas entre sí, al cambiar la probabilidad p, su comportamiento es
errático al introducir sólo 5 outliers, mientras que el M-estimador se mantiene muy estable.
En particular, se puede observar que bajo la contaminación C1, la performance del estimador
de mínimos cuadrados empeora notablemente para el segundo parámetro θ̂LS,2 mientras que
la del M-estimador permanece prácticamente invariante.

En las Figuras 6.1 y 6.2, presentamos de manera gráfica el ajuste de los datos completos
con ambos métodos para C0 y C1, donde se puede apreciar lo mencionado anteriormente. En
la Figura 6.1 podemos ver cómo ambos estimadores ajustan apropiadamente los datos y que
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θ̂LS,1 θ̂LS,2 θ̂LS,3 θ̂M,1 θ̂M,2 θ̂M,3 Función de Pérdida

C0 5.6399 130.5836 37.6028 5.6317 126.9005 35.8215 p ≡ 1
C1 6.9746 800.5597 221.2196 5.6349 128.5574 36.6739

C0 5.6435 130.2084 37.4053 5.6372 126.9601 35.5521 p ≡ 0.8
C1 7.2931 1043.2669 265.7357 5.6411 128.536 36.4145

C0 5.641 130.0265 37.0525 5.6319 125.3534 34.6558 p(x) =
1

1 + exp(−0.5x− 1)
C1 7.2765 1016.3011 258.0013 5.6383 128.6059 36.3316

Tabla 6.1: Estimación del parámetro θ mediante el LS-estimador y el M-estimador

tanto las estimaciones proporcionadas por el método clásico como por el método robusto
dan ajustes prácticamente coincidentes. En la Figura 6.2, notamos cómo las observaciones
atípicas influyen en el ajuste mediante el LS-estimador, pero no mediante el M-estimador.
Sólo mostramos las gráficas para el caso con datos completos ya que para las restantes
funciones de pérdida se observaron resultados análogos.

Por último, se analizó el comportamiento de ambos estimadores al contaminar únicamen-
te la observación número 6 de la variable log(Lens) cuyo valor original es log(Lens)6 = 3.7.
Los valores que se le asignaron fueron:

log(Lens) = 2

log(Lens) = 3

log(Lens) = 3.7

log(Lens) = 6

log(Lens) = 8

para las tres funciones de pérdida por igual.

En las Figuras 6.3, 6.4 y 6.5 mostramos cómo los estimadores se ven afectados por esta
contaminación. A simple vista, podemos ver que es el estimador de mínimos cuadrados θ̂LS

el que sufre variaciones significativas a medida que cambiamos el valor de log(Lens)6, para
cualquiera de las funciones de pérdida y en especial para el párametro θ̂2. Sin embargo,
el comportamiento del M-estimador θ̂M se mantiene prácticamente invariante, de hecho,
los gráficos muestran una función casi constante respecto a los tres parámetros por igual.
Simplemente, por una cuestión de escala, se aprecia más para θ̂1 en los tres escenarios de
pérdida planteados.

En conclusión, pudimos observar mediante un ejemplo con datos reales, que al igual que
trabajando con datos simulados, la performance del estimador clásico resulta mejor cuando
el modelo no se encuentra contaminado pero que ante la mínima presencia de outliers su
comportamiento resulta sumamente afectado. Mientras que el estimador robusto propuesto
tiene una performance similar al de mínimos cuadrados cuando la muestra no posee datos
atípicos y que, gracias a su eficiencia y robustez, al contaminarse la misma no se ven afectados
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en lo absoluto. Y esto lo pudimos observar tanto en muestras completas como en muestras
con distintos porcentajes de respuestas faltantes.

Figura 6.1: Ajuste del modelo mediante método de mínimos cuadrados (azul) y método
robusto (rojo) sin outliers.

Figura 6.2: Ajuste del modelo mediante método de mínimos cuadrados (azul) y método
robusto (rojo) con outliers.
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θ̂1 θ̂2 θ̂3

Figura 6.3: Gráfico de θ̂LS vs. log(Lens)6, en la primera línea, y de θ̂M vs. log(Lens)6 en la
segunda, para p ≡ 1.

θ̂1 θ̂2 θ̂3

Figura 6.4: Gráfico de θ̂LS vs. log(Lens)6, en la primera línea, y de θ̂M vs. log(Lens)6 en la
segunda, para p ≡ 0.8.
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θ̂1 θ̂2 θ̂3

Figura 6.5: Gráfico de θ̂LS vs. log(Lens)6, en la segunda línea, y de θ̂M vs. log(Lens)6 en la
segunda, para p(x) = 1

1+exp(−0.5x−1) .
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