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Introduccion

Uno de los temas centrales en el estudio de cadenas de Markov es el comportamiento de la
cadena para tiempos largos. Bajo condiciones de irreducibilidad y aperiodicidad de estas cade-
nas se tiene existencia y unicidad del comportamiento asintético, lo cual estd dado por la medida
invariante. Esta medida es la Gnica con la siguiente propiedad: si el proceso comienza distribuido
segun ella, para todo los tiempos siguientes la medida del proceso es igual a la inicial. En térmi-
nos de la matriz de transicidn, la medida invariante es caracterizada por el autovector a izquierda
asociado al autovalor 1. Un ejemplo es el paseo al azar en los vértices de un cuadrado. Consid-
eremos entonces los siguientes cuatro puntos de R? : (0,0),(1,0),(1,1),(0,1). Los enumeramos
de 1 a 4 para simplificar la notacion y construiremos un proceso de Markov en el espacio de
estados S = {1,2,3,4}. Nos moveremos por estos cuatro puntos pasando de un vecino al otro.
Una vez que estamos parados en un punto elegimos a uno de los dos vecinos con probabilidad
1/2 para cada uno. Para cada n, X,, denota la esquina en la que estamos parados a tiempo n. O
sea, {X, }nen es una cadena de Markov con probabilidad de transicién

1 1
A
P=[5 141
1(2)()%
2 2

Por la simetria del modelo, la tnica medida invariante es la uniforme, que asigna 1/4 de prob-
abilidad a cada esquina. Es facil ver que este es el autovector a izquierda asociado al autovalor
1.

No obstante, muchos procesos tienen un estado absorbente. Esto significa que tienen un es-
tado del cual el proceso no sale, con lo cual si estudiamos el comportamiento de la cadena para
tiempos grandes, la cadena estard en el estado absorbente. Por ejemplo, podemos considerar un
proceso de nacimiento y muerte cuyo espacio de estados son los naturales. Con probabilidad de
transicion

p(nn+1)=p, pnhn—1)=1—p, neN
y p(0,n) =0,Yn e Ny p(0,0) =1.Si p > % puede verse que, con probabilidad 1, la cadena
serd absorbida en el estado n = 0, y a partir de entonces se quedara constante igual a cero. Este
estado corresponde a la situacion donde murieron todos los individuos de la poblacion.

Otro ejemplo es considerar la siguiente matriz de transicion

1 1
(2 2
P(lo)'
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Hay solamente dos estados § = {1,2}, del primero se salta con probabilidad 1/2 para si mismo,
y con probabilidad 1/2 se salta para el segundo. En el segundo se mantiene con probabilidad 1
en si mismo. Por lo tanto la inica medida invariante es la que pone probabilidad total para el
segundo estado.

Considerando un espacio de estados finito, bajo la hipétesis de irreducibilidad de la matriz sin
el estado absorbente, este serd alcanzado con probabilidad 1 y entonces la versiéon estacionaria
del proceso carece de todo interés ya que se trata de un proceso constantemente igual al estado
absorbente con probabilidad 1. Podemos entonces preguntarnos por la distribucién del proce-
so a tiempos grandes condicionada a que no ha sido absorbido y analizar su comportamiento
asintético. A este limite lo llamamos limite de Yaglom. Definimos una distribucion cuasiesta-
cionaria como una medida de probabilidad que es invariante para la evolucion condicionada a no
ser absorbida. Esta distribucion estd dada por el autovector a izquierda asociado al autovalor de
moédulo méximo de la matriz de transicién sin la fila y columna del estado absorbente. Ademas,
probaremos que el limite de Yaglom es la medida cuasiestacionaria.

Tratamos este problema para procesos de Markov a tiempo discreto. En espacio de estados
finito, la distribucién cuasiestacionaria puede ser calculada usando herramientas del algebra lin-
eal, pero en el caso en que el espacio de estados sea muy grande, esto se torna impracticable.
Aldous, Flannery y Palacios propusieron un método para obtener una muestra (aproximada) de
la distribucion cuasiestacionaria.

La idea central es, dada una cadena de Markov con un estado absorbente, construir otra
cadena de Markov sin estados absorbentes, que nos ayude a aproximar la distribucion cuasi-
estacionaria que buscamos. En palabras, esto se hace de la siguiente manera: dada la cadena de
Markov con un estado absorbente, el nuevo proceso que creamos pasea por los estados hasta que
llega al estado absorbente. En el siguiente paso se vuelve aleatoriamente a uno de los estados no
absorbentes proporcionalmente a la cantidad de veces que ha pasado por cada estado. La canti-
dad normalizada de veces que ha pasado por cada estado se dice medida empirica. Considerando
el vector aleatorio cuya primera entrada corresponde al estado que visita a tiempo n y la segunda,
la medida empirica en ese tiempo, tendremos una cadena de Markov. Hecho esto, encontraremos
una identificacion entre la medida empirica en los tiempos de absorcion y el proceso discreto in-
merso en un proceso de ramificacion multitipo a tiempo continuo en caso super critico, del cual
estudiamos la distribucién asintética de la poblacion. Y con esto obtendremos la convergencia
buscada.

La tesis esté estructurada de la siguiente manera:

En el Capitulo 1, tratamos nociones bdsicas de cadenas de Markov a tiempo discreto en
espacios de estados finito, hacemos una de las construcciones posibles, y vemos que bajo ciertas
condiciones hay existencia y unicidad de la distribucion estacionaria. Por tltimo estudiamos la
convergencia de los promedios empiricos.

En el Capitulo 2, damos una introduccién al estudio de distribuciones cuasiestacionaria, ana-
lizamos existencia y unicidad.

En el Capitulo 3, tratamos procesos de ramificaciéon. Damos la construccion del proceso, ana-
lizamos la extincion de la cadena y en el caso de que esto no ocurra obtenemos el comportamiento
asint6tico del proceso. Esto lo hacemos para distintos casos; comenzamos con tiempo discreto,
luego tiempo continuo y al final analizamos el caso multidimensional a tiempo continuo.
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En el Capitulo 4, estudiamos los procesos de urna y su equivalencia con los procesos de
ramificacidn, ya que esto nos ayudard a estudiar la simulacién propuesta por para la distribucién
cuasiestacionaria de cadenas de Markov con estados absorbentes.
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Capitulo 1

Procesos de Markov

Vamos a comenzar introduciendo algunas nociones sobre procesos estocasticos. Un proceso
estocdstico es una familia de variables aleatorias (X; );ct definidas en un mismo espacio muestral
(Q, F,P) donde

X :Q— S.

Usualmente S se dice espacio de estados mientras que el indice ¢ suele representar al tiempo. En
algunos casos pensaremos en T = N o T = Ny, dando lugar a un proceso estocéstico a tiempo dis-
creto, mientras que hablaremos de procesos a tiempo continuo cuando T = [0, ). Por ejemplo,
una sucesion (X;);cn de variables aleatorias independientes idénticamente distribuidas (en ade-
lante i.i.d.) es un proceso estocdstico. En este capitulo, nos dedicaremos al estudio de procesos a
tiempo discreto tomando valores en espacios de estados finitos, consideraremos § = {sy, .., 5 }.
Esta basado en las notas de Haggstrom [6] y en el libro de Brémaud [3].

1.1. Cadenas de Markov a tiempo discreto

Definicion 1.1. Se dice que el proceso estocdstico (X, )nen es una cadena de Markov si:
P(Xn+1 = Sn+1 |X() =50, ...,Xn = Sn) = P(Xn+1 = Sn+1 ‘Xn = Sn) VneN
si P(Xo = s0,...,Xn = sn) # 0.

Es decir que si conocemos el proceso hasta tiempo 7, la posicion del proceso a tiempo n + 1
solo depende de la posicion a tiempo n y no de todo el pasado.

Definicion 1.2. El proceso (X,),en se dice Markov homogéneo si ademds la probabilidad condi-
cional no depende del tiempo, es decir, para todon € N

P(Xn+1 = Sj’XO =80y Xp = Sl') = P(Xn+1 = Sj‘Xn = Si) = p(si,sj) = Pl]
En lo que sigue, nos restringiremos a considerar procesos homogéneos.
Definicion 1.3. Sea P una matriz con entradas P;j con i, j € {1,..,k}. P se dice matriz de tran-

cision si verifica:

11
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» P;j>0 paratodoi,je{l,. k}.
. Z];':I Pj=1 paratodoic {1,.. k}.
Observemos que,
P(Xo = 50,...-,Xn = sn) = P(Xo = 50)Po1 P12 Py—1n-
Definicién 1.4. Llamamos p o u\©) a la distribucion inicial del proceso,
u® = (1l )0 ) = (P(Xo = 51), P(Xo = $2),..., P(Xo = 51)).

Conociendo la distribucion inicial y y la matriz de transicion P queda caracterizado el proce-
SO.

P(Xo =1i) = i,
P(Xn—H :Sj|Xn :S,') :Pij-

Los vectores, ,u(l),,u(z), ... describen la distribucién de la cadena de Markov a tiempo 1,2.. ,
donde

a0 = ) = (PO = 1), P(X = 52), ., P(Xn = 51)

para todo n € N.

Teorema 1.1. Sea (X,), € N una cadena de Markov definida en S con distribucion inicial ,u(o) y
matriz de transicion P. Para cada n, la distribucion ,u(”) satisface:

Demostracion. Veamos que la igualdad es cierta usando induccion.
Paran =1, seas; € S, se tiene

) =P =)
=Y P(Xi =sj|Xo = s:)P(Xo = 5,
icS
icS
= (uVP);

De donde,

(1) _ ,O0p

p =u

Supongamos que vale para n = m, veamos que es cierto paran =m+ 1
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m+1
WY = P = 5))

=Y P(Xnt1 = 5j|Xim = 5)P(Xpn = 51)
icS

de donde, ™tV =y p. Pero por la hipétesis inductiva, u™ = O pm_entonces

(m+1) _ ,(0) pm+1.

u

1.2. Propiedad de Markov Fuerte

En la seccion anterior vimos la propiedad de Markov, que nos dice que para predecir el futuro
del proceso, conocer sélo el presente nos brinda tanta informaciéon como conocer toda la historia
del proceso hasta el presente. Una formulacion més general es la Propiedad de Markov Fuerte,
aqui sélo la enunciaremos, pero para ello son necesarias unas definiciones previas.

Definicion 1.5. Sea (Q, F,P) un espacio de probabilidad. Sean (F,)nen, O-dlgebras. Se dice
que (Fn)nen es un filtracion, si

fngfn—i-lgg: Vn € N.

La introduccion de filtraciones es importante para el estudio de procesos estocasticos. Pode-
mos pensar que ‘F, representa toda la informacion disponible hasta tiempo n. Un proceso es-
tocastico X = (X, )nen se dice que es adaptado a la filtracion F = (F,),en si para cada n € N,
X, es F,-medible. (Notamos, X;, € F,).

Definicion 1.6. Sea (Q, F) un espacio medible con una filtracion (Fp)nen.

» Un tiempo aleatorio T es una variable aleatoria F -medible, con valores en NU {+coo}.

= Un tiempo aleatorio T se dice tiempo de parada con respecto a la filtracion si {t <n} € F,
para todo n € N.

Teorema 1.2 (Propiedad de Markov Fuerte). Sea (X,),cn una cadena de Markov homogénea
definida en un espacio de estados S y con matriz de transicion P. Sea T un tiempo de parada
respecto a la filtracion F, = 6(X,..,X,) para n € N. Dado cualquier estado s; € S, si Xz = s;,
entonces:

» El proceso después de Ty el proceso antes de T son independientes.
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» El proceso después de T es una cadena de Markov homogénea con matriz de transicion P.
Demostracion. Puede verse en Brémaud [3, Seccion 7.1] . ]

La propiedad fuerte de Markov es, una extension de la propiedad de Markov a tiempos de
parada. Cabe aclarar que, en general, no vale el resultado para tiempos aleatorios cualesquiera.
La estructura particular del tiempo de parada es la que permite al proceso que conocer la posicion
a tiempo T, sea lo mismo que conocer toda la historia del proceso hasta 7.

1.3. Construccion de una Cadena de Markov

Vimos que la distribucién inicial y la matriz de transicion caracterizan una cadena de Markov.
Surge entonces la siguiente pregunta; ;Como simulamos una cadena de Markov (X},),cn en el
espacio de estados .S, con distribucidn inicial 4 y con matriz de transicién P?

Vamos a necesitar Up, Uy, ... variables aleatorias independientes con distribucién uniforme
en el intervalo [0,1] y dos funciones, la primera la llamamos funcién inicial; ¥ : [0,1] — S,
asumimos que cumple lo siguiente:

= particionamos el intervalo [0, 1] en varios subintervalos, y ¥ es constante en cada uno.

= paracadas € S, el largo total de los intervalos con ¥ = s es u(s), es decir, fol Lo (o)=sydx =
u(s).

Con la funcién ¥, podemos generar X( usando la primera de las variables uniformes. Sea Xo =
Y(Up), esto da una correcta distribucion de X pues, para cada s € S;

1
P(Xo=s5)=P(¥ (o) =) = /O Ly =sydx = u(s).

Definamos la funcion inicial:
(51 sixe [0,u®(s)))
s2 six € [uO(s1),u@(s1) +u(s2))

s;i sixée [Z;_:]I ul® (Sj),Z;:pU(O) (s)

s sixe B! u0(s)), 1],

Claramente asi definida verifica ambas condiciones, pues es constante en cada intervalo y
ademds, [o 1pp()—yydx =Xy u(s;) — X' u(s)) = u(s:).

Ya sabemos como generar X, nos falta generar X, | a partir de X, para cualquier n. Para ello
vamos a usar la v.a. U, 11 y una funcién @: § x [0, 1] — S, es decir, la entrada de la funcién es un
elemento de .S y un nimero entre 0 y 1 y la salida un elemento de §. Necesitamos que ¢ cumpla
ciertas propiedades:
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= para s; € S, la funcion ®(s;,x) es constante a trozos (mirdndola solo como funcién de x).
= para s;,5; € S el largo total de los intervalos con ®(s;,x) = s; es p(si,s;).

Al igual que la primer funcion que definimos, podemos reescribir la segunda condicion:

1
/0 1{d>(s,-.,x):sj}dx =P;;.

Si ® satisface esta condicion, entonces P(X, 11 = 5;|X, = 5;) = P(P(s5i,Uns1) = 5j|Xn = 5i) =
P(®(s;,Upt1) = sj) = P;j. Observemos que U, es independiente de Uy, ...,U, y por lo tanto es
independiente de X,,. Luego definimos la funcién actualizadora, para s; € .S;

(51 sixe€[0,Pq)

sp six € [Pi,P1+Pp)

D(sj,x) =< : i j
7 sive [T BT R

sk six € [):]J‘;}Pij, 1].

Por como definimos & claramente cumple ambas condiciones, pues es constante a trozos
y ademas, fol Lig(s; x)=s5;}dX = 2;21 Py — Z{;ll P; = P;;. De esta forma simulamos la cadena de
Markov,

Xo = W(Uo)
X1 = ®(Xo,Uy)
X = ®(X,Us)

y asi sucesivamente.

Esto prueba la existencia de la cadena de Markov a partir de las variables aleatorias inde-
pendientes con distribucidén uniforme definidas en un mismo espacio y de dos funciones, a las
que llamamos funcién inicial (W) y funcion actualizadora (®). Existen otras elecciones posibles
para las funciones ®, y W que pueden tener distintas ventajas. Esta eleccion serda muy util en las
siguientes secciones.

1.4. Cadenas de Markov irreducibles y aperiodicas

En la seccion siguiente vamos a estudiar el comportamiento de las cadenas a largo plazo,
para ello necesitamos hacer ciertas suposiciones sobre las cadenas de Markov. Vamos a consid-
erar cadenas irreducibles y aperiddicas, y analizar sus propiedades. Comencemos con algunas
definiciones.
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Definicion 1.7. Una cadena de Markov (X,)nen en S con matriz de transicion P, se dice irre-
ducible siVs;,sj € S existe n € N tal que (P");; > 0.

El periodo de un estado, s; € S es d(i) = mcd{n > 1/(P");; > 0}.

Un estado s; € S se dice aperiddico si d(i)=1.

Una cadena de Markov se dice aperiodica, si todos sus estados son aperiédicos.

Lema 1.1. Sea (X,)qen una cadena de Markov aperiddica en S = {s1,..,sx} con matriz de
transicion P. Existe N € N tal que (P");; > O parai € {1,.k},Yn > N.

Para demostrar este lema vamos a utilizar el siguiente resultado de teoria de nimeros.

Lema 1.2. Sea A = {ay,az, ...} un conjunto de nimeros naturales, tal que
1. med ={ay,az,..} =1,
2. sia€AyacAentonces a+d e A (cerrado bajo suma).

Entonces existe N € N tal que n € A para todon > N.

Demostracion. Puede verse en el apéndice de Brémaud [3]. ]

Demostracion del Lema 1.1. Para cada s; € S, seaA; = {n > 1/(P");; > 0}, es decir, A; son los
tiempos posibles de retorno del estado s;. Como la cadena de Markov es aperiddica, el estado s;
es aperiddico: med{n > 1/(P"); > 0}=1. Veamos que es cerrado bajo suma, sean a,d € A, por
lo que P(X, = si|Xo = i) > 0y P(Xg+q = si|Xs = si) > 0 luego,
P(Xuta = si|Xo = si) > P(Xata = 5i, Xa = si|lXo = si)

= P(Xa-i-d = Si|Xa =5, X0 = Si)P(Xa = Si|XO = Si)

= P(Xa—Hi = S,”Xa = S,’)P(Xa = S,’|X() = S,’) >0
de donde, a+d € A. Luego A satisface las hipotesis del lema previo, por lo tanto existe N; tal que
(P")ii > 0Vn > N;, tomando N = max{N;,N,, .., Ny} queda demostrado el teorema. O

Corolario 1.1. Sea (X,),en una cadena de Markov irreducible y aperiddica, en un espacio
de estados S = {s1,..,sx} y P matriz de transicion, entonces existe M < oo tal que (P");j >0
Vi, je{1,2,..k} yVn>M.

Demostracion. Por el teorema anterior, existe N € N tal que (P");; >0Vn >N, Vi€ {1,2,..,k}.
Sean s;,5; € S. Como (X,),cn es irreducible, existe n;; tal que (P"/);; > 0. Sea M;j = N + n;j,
para m tal que m —n;; > N
P(Xm = Sj|XO = Si) > P(Xm—nij =5, Xm = Sj|XO = Si)
> P(Xm—nij = si|XO = Si>P<Xm = Sj|Xm—nij = Si)
> 0.

Luego (P™);; > 0 Vm > M;j, el corolario queda demostrado, tomando M = max{M,; : i, j €
{1,2,..,k}}. [
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1.5. Distribuciones estacionarias

Vamos a considerar una de las cuestiones principales en la teoria de Markov, la distribucion
de la cadena a largo plazo. ;Qué podemos decir sobre la cadena de Markov, si la dejamos correr
un largo tiempo? Para empezar veamos la definicion de distribucidn estacionaria.

Definicion 1.8. Sea (X,),cn una cadena de Markov en S = {sy,..sx} con matriz de transicion
P. El vector © = (Ty,...,Ty) se dice que es una distribucion estacionaria de la cadena si:

1. m>0 Vi={l,. .k}yYs m=1
2. P =m, es decir, Zé‘:lﬂ:iPij:ni Vji=A{1,.. .k}

La primera condicién muestra que 7 es una probabilidad en S y la segunda implica que si la
distribucién inicial u(®) es igual a  entonces la distribucion de la cadena a tiempo 1 satisface:
u) =4 Op =P =x, de donde ™ =T, para todo n.

Vamos a probar que si la cadena es irreducible y aperiddica existe una unica distribucion
estacionaria, para ello debemos analizar ciertas propiedades de estas cadenas.

Definicion 1.9. Sea T;; la primera vez que la cadena visita el estado s, siendo que a tiempo 0
comenzo en s;. Si Xy = s;, definimos:

T;j=min{n > 1/X, =s;}

y T;j = o cuando la cadena nunca visita al estado s;. También definimos el tiempo esperado
hasta visitar el estado s, como T;j = E(Tj;).

Lema 1.3. Sea (X,,),en una cadena de Markov irreducible y aperiddica, definida en un espacio
de estados S = {s1,..., Sk}, con matriz de transicion P. Para cualquier estado s;,s; € S, si Xo = s,
entonces P(T;j < o) = 1 y ademds, 7;; es finito.

Demostracién. Por el corolario anterior, existe M < oo tal que (PY); ;> 0 para todo i,j €
{1,...,k}. Sea oo =min{(PM);;/i,j € {1,...,k}}. Notemos que o es positivo. Sean s;,s; dos esta-
dos de S y supongamos que la cadena empieza en s;. Entonces,
P(T,‘j >M) < P(Xo=si,X) # Siyes XM 7 Sj)
< P(Xu #s;)
<1-—a.

También, podemos acotar la probabilidad de no haber llegado a s; a tiempo 2M, condicio-
nando sobre lo sucedido a tiempo M;

P(T;; > 2M) < P(T;; > 2M|T;; > M)P(T;; > M)
< P(Xom # sj|T;; > M)P(T;; > M)
= P(Xom # sj| X1 #s5j,.... Xm # 5;)P(Tij > M)
< P(Xom # 5j|1Xm # 5j)(1 — o)

<(1 —0()2.

N
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Iterando este argumento, para cualquier / tenemos,

P(Tij > lM) < P(Tij >M)P(T,‘j > 2M|T,’j >M)---P(Tij > lM‘Tl'j > (l— 1)M)
(1—a).

IA

Tomando limite cuando / — oo, obtenemos que P(7;; = o) = 0. Veamos que T;; es finito,

o (I+1)M-1
= Z Z P(Tl‘j > n)

=0 n=IM

=0
<MY (1-a)
=0
Yy 1 M <
U l-(1-a) o ’
con lo cual queda demostrado el lema. L

Definicion 1.10. Si Xo = sy, definimos p;, el niimero esperado de visitas al estado i antes de
regresar al estado inicial, es decir, parai=1,..,k,

11

pi=E(Y 1ix, 1)
n=1
Observemos que p; = E(ZZQI Lix,—sy) = E(X0-1 Yix,—s} 11, >n}) que podemos reescribirlo
como Z;o:lP(Xn =si, 111 > n) = Z::OP(Xn =s;,111 > I’l)
Definicion 1.11. Un estado i € S se dice recurrente si
P(Tii < 00) =1.

En otro caso se dice transitorio. Un estado recurrente i € S se dice recurrente positivo si E(T;;) <
oo, Una cadena de Markov se dice recurrente (positiva) si todos sus estados son recurrentes
(positivos).

Observacion 1.1. Sea (X,),cn una cadena de Markov irreducible y aperiddica, definida en un
espacio de estados finito. Entonces, (X,),cN es recurrente positiva.
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Ahora si estamos en condiciones de demostrar la existencia de una distribucion estacionaria.

Teorema 1.3. Para cualquier cadena de Markov irreducible y aperiodica, existe por lo menos
una distribucion estacionaria.

Demostracion. Sea (X,),en una cadena de Markov irreducible y aperiddica, en un espacio de
estados S = {s1,...,5;} y matriz de transiciéon P. Supongamos que la cadena empieza en el estado
s1. El tiempo esperado de retorno T;; es finito, y claramente p; < 711, por lo tanto p; también es
finito para todo i € {1,..,k}. Proponemos,

P P2 Pk
T =(my,...,M) = (—,—,...,— )
T11 T11 T11

Veamos que asi definido, cumple las dos condiciones de la definicién de distribucion estacionaria.

= por como lo definimos, ; > 0 parai = 1,...,k. Veamos que Zﬁzl T, =1;

(oo}

T11 :E(Tll) = ZP(TII > n)
n=0

I
s
M»

P(Xn =s;,111 > n)

3
Il
=
Il
—_

I
-
s

Il
—_
3
Il
o

P(Xn = S,',Tll > n)

I
.[-\g»

I
—_

de modo que,

1 k

ZPiZl-

20

k
Y mi-
=1

= queremos ver que Zi'(:l T;P;j = 7 para todo j = 1,...,k. Veamos primero para j # 1



20

CAPITULO 1. PROCESOS DE MARKOV

n-—_——_—Z P(X,=s;T
/ T11 T11 = (n e 11>n)
n=0

Y P(Xy=sj,Ti1 >n)

n=1

ZP Xn=s;,T11 >n—1)

n=1

11

T11

P(Xp—1 = si, Xy —Sj,T11>l’l—1)

Mg
M»

3
I
—_
-
I
—_

P(Xp—1=s;,Ti1 >n—1)P(Xyy = 5| Xn—1 =s;,T11 >n—1)

.—Mg
M»

N
Il
—

_1=si,T11 >n—1)P(X, :Sj‘Xn,1 :Si)l

I
EUs
Ms
1=

“U

_.
=
-
I
_

8

M*
X
~u

n—1=si,T11 >n—1)

Tlln li=1
k o
= —ZP,'J’ ZP<Xn—1 =s;,T11 >n— 1)
20 ey R
1 &
= — ZP,‘]' Z P(Xn =si, 111 > n)
T iZ1 a0

T ~ ijVi
k

:ZTC,'P,'J'.
i=1

Falta verificar esta condicion para j = 1,

o)

p1=Y P(Xy=s1,T11 >n)=P(T1; >0)=1.
n=0

HTi>n—1}={Xi #s1,... Xu1 # 51}
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Vimos que P(71; < ) = 1, luego

p1=P(T11 <o) = Z (T =n)
n=1

I
gk
=

P(Xy—1 =si,Ti1 =n)

3
Il
—_
=
Il
—_

I
s
M=

P(Xn,I =s3,X, =s51,1T11 >n— 1)

3
Il
_
<
I
—_

I
(agk
-

P(Xn = S1|Xn_1 = S,')P(Xn_l = Si,Tll >n— 1)

3
I
—_
I
—_

I
s
M»

PyP(Xy—1=s;,T11 >n—1)

ﬁ
—_
~.
—

I
1~
>
s

P(Xp—1=si,T11 >n—1)

N
I
—_
3
I
—_

I
=
S
s

P(X, =s;i,T11 > n)

Il
—_
3
Il
=

llpl

I
M»

N
I
—_

por lo tanto,

Con lo cual, probamos que T es una distribucion estacionaria. [

Nos preguntamos si esta distribucion estacionaria es tunica. Pero antes de analizar la unicidad
de la distribucidn estacionaria, podemos responder a la pregunta inicial: ;Qué le pasa a la cade-
na de Markov cuando la dejamos correr un tiempo suficientemente largo? Bajo ciertas hipdtesis
podemos ver que sin tener en cuenta cual sea la distribucidn inicial, la distribucién a tiempos
grandes, se parecera a la distribucion estacionaria. Para ver esto, debemos usar alguna métri-
ca para calcular la distancia entre las distribuciones de probabilidad. Existen varias métricas,
aqui usaremos una llamada distancia de variacion total.

Definicién 1.12. Sean los vectores u'!) = (,ugl), ...,,ul((l)) yu? = (,ugz), ...,,u,(cz)) distribuciones de
probabilidad en S = {s1, ..., ¢ }. Definimos la distancia de variacion total entre ,u(l) y [,1(2) como:

1k
dy (" _EZ
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Si ,u(l),,u(z), ... y u son distribuciones en S, decimos que ,u(")converge a u en variacion total
cuando,
lim dyr(u™,u) =0.
n—oo
Notacién: " n‘;—i: u

Observemos que si dy7(uV),u®) =0 =y = u®. Ademds, puede verse que

dyr (1) ,u®) = sup|uV(4) — @ (4)].
A€eS

Teorema 1.4. Sea (X,)nen una cadena de Markov irreducible y aperiédica en S = {s1,..s},
con matriz de transicion Py una distribucion inicial p°. Entonces para cualquier distribucion
estacionaria T para la matriz P,

(n) VT

— TT.
n—oo

u

Demostracion. Vimos que la cadena de Markov (X,,), podemos obtenerla a partir de variables
aleatorias uniformes en [0, 1] y dos funciones a las que llamamos, funcion de inicializacion('¥,)
y funcion de actualizacion (P). Vamos a usar el método de acoplamiento, es decir, construir
varios procesos en el mismo espacio de probabilidad.

Sea (X)en otra cadena de Markov, con Yy la funcién iniciadora para la distribucion inicial
m, sean (U],Uj,...) otra sucesion de variables aleatorias uniformes en [0,1] (independientes de
las U;). Simulamos X,

Xo=Y(Uy)
X| = ®(X,,Uy)
X; = ®(X],U5)

Como 7 es la distribucion estacionaria, X,; tiene distribucién 1 para todo n. Ademads, las
cadenas (Xi,Xa,...),(X{,X3,...) son independientes. Queremos ver que con probabilidad 1 las
cadenas se encuentran, es decir, que existe un n tal que X,, = X,. Para ello definamos el primer
tiempo de encuentro:

T =min{n/X, =X}

y notamos 7 = oo si las cadenas nunca se encuentran. Sabemos que existe M finito, tal que
(PM);; > 0 para todo i, j = {1,...,k}. Sea oo = min{(PM);; : j,i = {1,...,k}}, claramente o > 0.
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Acotemos la probabilidad de que las cadenas se encuentren antes del tiempo M,

P(T <M) = P(Xy = Xy) > P(Xy = 51, Xy = 51)
= P(Xy = 51)P(X}; = 51)

I
™~

ey

P(Xo = s5i, Xy = 51) ) P(Xy = i, X3y = 51)
i=1

I
™~

I
—_

k
P(Xu = 511Xo = 5i)P(Xo = 1) ) P(Xy = 51|Xg = 5:) P(X = 51)
=1

1

[V
_ R
TP
hac]
5
|
=
7
T
i)
=
1
e
1
@)
[\)

Luego, P(T > M) < 1 — 2. De la misma forma, condicionando a lo que pasé a tiempo M,
podemos acotar P(Xoy = X},,), luego

P(Xom # Xoy|T > M) <1—0a?.
Por lo tanto,
P(T >2M)=P(T >M)P(T >2M|T > M)
< (1 —o®)P(Xaps # X5p|T > M)
< (1—a?)2.
Iterando este argumento, para cualquier /,
P(T >IM) < (1—o?).

Luego,
lim P(T > n) = 0.

n—oo

Es decir, que las dos cadenas se encuentran con probabilidad 1. Vamos a construir una tercer
cadena de Markov (Xj, X/, ...) Sea X/ = Xy y para cada n:

O(X, Unt1) siXy) #X,
X// —
n+1

B(XUL,y) SiX] =X].

En otras palabras, esta nueva cadena es exactamente (Xo, X1, ...) hasta 7', y luego (X}, X, ...).
Observemos que (X, X/, ...) es una cadena de Markov con matriz de transicién P, pues las (Uy)
son independientes de las (U,),en.

La variable X' tiene distribucién inicial 4(*). Luego, para todo n, X,/ tiene distribucién u).
Para cualquier i € {1,..,k}

u — ;= P(X) = 5;) — P(X), = 5i) < P(X)} = s1,X), # 51)
<P(X"#X')=P(T >n).
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Cambiando los roles de X, y X,,, obtenemos
T —,ul(n) < P(T > n).

Luego,

Lo que implica,

]

Teorema 1.5 (Teorema de Unicidad). Para cualquier cadena de Markov irreducible y aperiodica
definida en un espacio de estados finito existe una vnica distribucion estacionaria.

Demostracion. Sea (X,),en una cadena de Markov irreducible y aperiddica, con matriz de tran-
siciéon P. Sabemos que existe al menos una distribucion estacionaria. Sean T y ® dos distribu-
ciones estacionarias de P, veamos que ® = f. Si la cadena empieza con distribucion inicial
1 =7 entonces u") = &, Vn € N. Por otro lado, vimos que lim dyr (y(”) ,) = 0. Como u® =7
es lo mismo que limdyr (%, ) = 0, como dyr (%, ) no depende de n,

dVT (775, TE) = 0,

y por lo tanto,

a
I
a

1.6. Promedios empiricos: el Teorema Ergodico

En esta seccion trataremos el Teorema Ergddico para cadenas de Markov. Vamos a ver condi-
ciones para garantizar la convergencia en probabilidad del promedio empirico.

Definicion 1.13. Si Xy = sy, definimos el tiempo de parada lel, como la k-ésima vez que la
cadena vuelve al estado sy, es decir,

K™ = min{n > T /X, = 51}

Definicion 1.14. Sea C(n) la cantidad de veces que la cadena pasa por el estado s| antes del
tiempo n.

Cn) = Z Lixi=s1}-
i=1
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Lema 1.4. Sea (X,)nen una cadena de Markov irreducible y recurrente en S = {s,..,s1} y sea
f:8 — R. Para cualquier distribucion inicial u;

Iim I
n—oo C(n) 1

l

=

k
f(X) = ;f(sj)Pj c.s.

Demostracion. Seai € {1,..,k}, y supongamos Xy = s1. Consideremos las siguientes variables

aleatorias,
P+1
Tl 1

Up = Z f(Xn)a

_TP
n=Tj,+1

Up depende de XTﬁJrlv""XT{]“’ por lo tanto las variables aleatorias (Up)p>1 son i.i.d. para
cualquier distribucion inicial. Asumimos f > 0y usando la Propiedad de Markov Fuerte 1.2,

T
E,(Up)=E(U))=E (Z f<Xn)>
n=1

T k
=E (Z Y f(Sj)l{xn—j}>

n=1 j=1

Luego,

Como el espacio de estados es finito, y el tiempo esperado de retorno a cualquier estado también
es finito, la esperanza de las Up es finita. Entonces, estamos en condiciones de aplicar la Ley de
los Grandes Nimeros a las variables aleatorias (Up)pen y oObtenemos

Ademas como,

TP+ T+l
1 n 1 n 11 1 11
_ZUP:_Z Z f(Xn) _Zf(Xn)
np= o P =t

y como
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resulta
C (n) C(n)+1
Tl 1

X)) Y X)X fX)
C(n) ST ST

Por otro lado, (X;),cn es recurrente por lo tanto C(n) ~—— 0. Luego,

YV f(X) e &
Jc1< LS

En el caso de una funcién arbitraria f, se puede considerar f* = max{0, f} y f~ = max{0,—f},
tanto £ como — f~ cumplen el lema, y de la diferencia obtenemos el resultado requerido. [

Teorema 1.6 (Teorema Ergddico). Sea (X,),en una cadena de Markov irreducible y aperiddica,
definida en un espacio de estados S = {s1,..,5x} y con distribucion estacionaria 'y sea f : S —
R. Luego, para cualquier distribucion inicial u;

n

k
lim Y f(X) = Y Fls)mi = Ex(£(X1).

e n T i=1

Demostracion. Por el lema anterior,

.1 ¢ B
r}grolo C(n) l_Zlf(Xl) = J; f(sj)p;
Si f=1,
k
N nooo
C(l’l) jZ]pJ T11
Luego,
C(n) 1o o Ty |
r}grolon Zf n C(n) ;f(Xz) = . = j;f(sj)n]



Capitulo 2

Distribuciones Cuasiestacionarias

Muchos procesos estocdsticos tienen un estado absorbente, lo que significa que si el proceso
llega al estado absorbente, se queda ahi para siempre. En un proceso de Markov con un estado
absorbente, buscar la distribucion estacionaria no tiene sentido, ya que si dejamos evolucionar
el proceso un buen rato, el proceso estard en el estado absorbente. Veremos que bajo ciertas
condiciones, si el proceso tiene un estado absorbente, con probabilidad 1 serd absorbido. Por lo
tanto, en estos casos nos interesa estudiar qué ocurre antes de ser absorbido. Si la cadena esta
definida en un espacio de estados §, cualquier elemento o cualquier subconjunto de § podrian
ser estados absorbentes. En este trabajo el estado absorbente serd el 0, s6lo para simplificar la
notacion.

Definicion 2.1. Dada una cadena de Markov definida en un espacio de estados S U{0} con
S = {s1,..,8x} y matriz de transicion P, con entradas P,j, i, j € {0,1,..,k}. Si existe j € {1,...k}
tal que Pjo > 0, decimos que 0 es un estado absorbente si Pyj = 0 para todo j € {1, ..,k}.

Para analizar cudndo el proceso es absorbido, debemos definir el tiempo de absorcion. Luego
veremos que las hipétesis necesarias para asegurarnos que la cadena es absorbida con probabili-
dad 1, son irreducibilidad y aperiodicidad sobre S.

Definicion 2.2. Definimos el tiempo de parada Ty como el tiempo de absorcion, es decir:
To = min{n € N/X, = 0}.
y notamos Ty = oo si X,, # 0 para todo n € Ny.

Sea Ps la matriz P restringida a §, es decir, la matriz P sin la fila y la columna correspondi-
entes al 0.

Lema 2.1. Sea una cadena de Markov, con un estado absorbente definida en el espacio de
estados finito SU {0} con matriz de transicion Py Ps irreducible y aperiédica. Dada u una
distribucion inicial,

Py(To =) = 0.

27
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Demostracion. La matriz Pg es una matriz sub-estocastica, es decir, la suma de las coordenadas
de cada fila es menor a 1, sin embargo como es irreducible y aperiddica podemos usar el Coro-
lario 1.1 pues puede verse en su demostracion que no es necesario que sea una matriz estocdstica.
Por lo tanto existe N € N tal que PZ > 0,Vn > N,Vs;,s; € S. Por otro lado, la probabilidad de ir
de algtin estado de § al 0 es positiva, es decir, Pjp > 0 para algin s; € S . Luego, existe M € N tal
que PYl > 0,Vs; € S. Sean oo = min{Py >0/j={1,...k}} y ula distribuci6n inicial. Entonces
paran € N, P,(Ty > n) = Y, P(Ty > n)y;. Acotemos Pi(Ty > M) para cada i € {1,..,k}

P(To >M) < Pi(X; #0,..,.Xu #0)
<PXy#0)<1-o

Condicionando a lo sucedido a tiempo M obtenemos:

Pi(Ty > 2M) = P(Tp > 2M|Ty > M)P;(To > M)
< P(Xom # 0|To > M)P,(Ty > M)
_»P()Qﬂ1¢20pq4740) (]b:>A4)

< (1—a)%

Iterando,
P(Ty>IM) < (1-a) Yie{l,. k}.

Luego, P,(Ty > IM) =YX P(Toy > n)u; < (1— ) y por lo tanto,
Py(Ty = o0) =0.
[]

Del lema se ve que la cadena es absorbida en un tiempo finito con probabilidad 1 y ademds
que P,(To > n) tiende a cero exponencialmente.

Corolario 2.1. Todos los momentos de Ty son finitos.

Demostracion. Sea u la distribucién inicial,

E(T}) =Y m'P(Th = Z P(Ty>m—1)
m=1 m=1
:Z(n—|—1) (To >n) < Z (n+1) (1 — o) /M1,
n=0 n=0

De donde, para todo / € N, E,,(T) es finito. O
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Para un proceso que empieza con distribucion inicial u, definimos la evolucién del proceso
condicionada a no ser absorbido como:

(pr;(n) = Py(Xn = 5j|To > n)
equivalentemente,

¢"(n) = Pu(Xn = 5) _ Pu(Xn=sj) _ PM(Xn:Sj)
J P(To>n) P(X #0) Z Py(X, = si)

B ):, Py(X, = si|Xo = s;) Py (X()ZSZ)

Zk 12 Pu(Xy = siXo = 52)Pu(Xo = s2)
ZZ_I.UZ(P )j

Z lZz—l:uZ( ")z

_ (WP
X P

De aqui se ve que Zl}:l (p‘;' (n) = 1. Queremos analizar el comportamiento asintético de @y, es
decir, 1im,, o ¢};.

Definicion 2.3. Cuando existe 1im,, ... ¢, y es una medida de probabilidad se lo denomina Limite
de Yaglom para u. Denotamos

v; = lim ¢;(n)

n—o0

Al igual que con las medidas invariantes, cuando este limite existe, es invariante para la
evolucion de la probabilidad condicionada. A estas medidas se las llama distribuciones cuasi-
estacionarias.

Definicion 2.4. El vector v = (Vy,.., Vi) se dice que es una distribucion cuasiestacionaria si
Lvi>0 Vie{l,..k}yYs vi=1,
2. 9%(n)=v; VneNy Vj={l,. k}

La primer condicion nos dice que es una medida y la segunda que es invariante para el proceso
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condicionado. Dada u una distribucion inicial;

(P?(n—f— 1) = Pu(Xp41 = 5[ Xnt1 # 0) = %
_ Y01 P(Xn g1 = 5j1X0 = 5:)Pu(X = 1)
Z];:]P,U<Xn+l =5;)
Yiy P(Xns1 = 5j1X0 = 5i)Pu(X = 57)
]Zczl Zi'{:l P(Xn+l = Sz|Xn = Si)P,U<Xn = Si)
Y P (n) _ Yi | Pl (n)
L XL P (n) X (6 ()X Pe)
_ Ly Pyt (n) _ X 1Pij(P’u
L (¢ ((1=Po))  1-XE, ¢ (n)

Luego se tiene
ZPU(P'U "’Z(PH 10(P'un+l)

Por lo tanto v es una distribucion cuasiestacionaria si y solo si

k k
V= ZPijVi+ ZPiOViVj-
i=1 i=1

Por otra parte si v es el limite de Yaglom, verifica:

k k
=Y Pjvi+ Y Poviv;.
i=1 i=1
y por lo tanto es una distribucién cuasiestacionaria.
Queremos analizar existencia y unicidad de la distribucién cuasiestacionaria, para ello vamos
a utilizar herramientas de dlgebra lineal, ya que el comportamiento de la cadena depende de la
matriz de transicion.

Teorema 2.1 (Perron-Frobenius). Sea A una matriz no negativa e irreducible, de r X r. Entonces,
existe un autovalor My real, positivo, con multiplicidad 1y tal que Ay > |\;| para todo \; au-
tovalor de A. Ademds sean u,v autovectores a izquierda y derecha respectivamente asociados a
A1, podemos elegirlos positivos y tal que |v| =1y u'v = 1. Sean Ay, .., \, los demds autovalores
de A, tales que Ay > |A2| > ... > |A,|. Sea mj la multiplicidad de A ;. Luego,

A" = Nvid +0(n™HA|™), VneN.

Demostracion. Para la demostracion ver Seneta [12]. ]
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Ahora si estamos en condiciones de mostrar existencia de una distribucion cuasiestacionaria.

Teorema 2.2. Para una cadena de Markov, con un estado absorbente definida en un espacio de
estados SU {0}, con § = {s1,..,s¢} y matriz de transicion P, con Ps irreducible y aperiddica,
existe una vnica distribucion cuasiestacionaria, que es el limite de Yaglom.

Demostracion. Por el Teorema de Perron-Frobenius (2.1) aplicado a la matriz Pg, existe un au-
tovalor A real, positivo, con multiplicidad 1 y tal que A; > |A;| para todo A; autovalor de Ps, y
existen u y v autovectores a izquierda y derecha asociados a A; tales que,

(PY)ij = Mviuj+0(n™ 'n|") VneN. 2.1)

Queremos ver que existe el limite de Yaglom, para ello busquemos una expresion para la proba-
bilidad condicionada usando la igualdad de (2.1). Sea u la distribucion inicial,

PuXn=s)) _ Y P(X,=5,)P(Xo=s5,)
P(To>n) Yk P(Ty>n)P(Xo=s:)
o Z 1 (P )lJ.Uz

Zl IZ ( )lz.uz
_ X (Mg + 0™ ha]")

Z{.‘ 12/‘ (k”v,uZ—FO (=1, | )

Zz  Mviupi + 0™ 1|7‘2|n) , 1 Mi

Z 12 7” v,uz,ul—l—O(an 1|7\'2‘ ) 1ZZ—1uz
X Mg+ O™ A"

XA YR Mviug + O (o )k
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Expresemos de otra forma el primer término,
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j uj AMu Z]: Vildi .
con g € L L . Entonces se tiene
g (Z ”z, 212:1“1 o(n"™ 1‘7"2|n)k

uj 1 N Y5 v A"
P.(X, =s:Th > _ J 0 MY Li=1" Omzl ]
u(Xn = 5jTo > n) Z§:1”z éZO(nm271|}\'2|n)k+ (n N )
Luego,
"
lim Py(X, = s;|To >n) = kj =V
e =1 Wi

Por lo tanto, para cualquier distribucion inicial, el Limite de Yaglom es el autovector a
izquierda asociado a A; de Ps:
VPg = A 1V.
Veamos que v es una distribucion cuasiestacionaria. Es una probabilidad ya que, v; > 0, Vj =

k
i uj . . . . e e .
{1,..,k}y Z];:I V= % = 1, y es invariante para la distribucién inicial,

PV(Xn:Sj)
Z Py(Xn = 52)

_ Zi:IPi(Xn:Sj)Vi
N Zk 1Zk Pi(Xy = s7)Vi
Z 1 ( n)ljzki
Z 124 lzki (Pfgl)iz
_ Z?:l”l’(Rs)l’J’
- Y T wi(PY);

Muj
leczlkluz

uj
ZZ 1 Uz

:Vj.

0} (n) =

Con lo cual, probamos que existe una distribucidn cuasiestacionaria. Veamos que es Unica.

Sean v y V dos distribuciones cuasiestacionarias. Si la cadena empieza con distribucién inicial
u =V entonces @*(n) =V, Vn € N.

Por otro lado vimos que para cualquier distribucién inicial g, como lim, .. ¢*(n) =V resulta
que lim, . dyr(¢*(n),v) = 0. Tomando u = V obtenemos limdry (V,v) = 0, como dry (V,V) no
depende de n,

dTV (\7,\’) =0

y por lo tanto,



Capitulo 3

Procesos de Ramificacion

Este capitulo se basa en el estudio de procesos de ramificacion, que nos seran de mucha
utilidad para analizar el comportamiento de un método para simular las distribuciones cuasiesta-
cionarias. Esta basado principalmente en los libros de Harris [7] y en Athreya-Ney [2].

El primer estudio de procesos de ramificacion se dio porque existia la preocupacién de que
los apellidos aristocraticos se estaban extinguiendo. El origen de las investigaciones se atribuye
a los estudios realizados, independientemente, por Bienaymé en Francia y por Galton y Watson
en Inglaterra (1873).

Los procesos de ramificacion han sido utilizados como modelos matematicos para describir
procesos empiricos, relacionados con la Biologia, la Fisica nuclear, la Medicina, las ciencias de
la Computacidn, la Demografia, etc.

La estructura de este capitulo es la siguiente, comenzamos con el proceso de ramificacion
llamado Galton-Watson, es un proceso a tiempo discreto que representa la cantidad de individuos
de las generaciones sucesivas. Estudiamos varias propiedades, calculamos la probabilidad de
extincion, y analizamos el comportamiento del proceso cuando no se extingue. Seguimos con
una generalizacion, que es considerar el tiempo de vida continuo, analizamos propiedades y
vemos la similitud con el caso discreto. Por tltimo, consideramos distintos tipos de individuos,
tratamos el tiempo continuo, y principalmente analizamos el comportamiento del proceso cuando
no se extingue. Varios de los resultados de este ultimo caso pueden encontrarse en Georgii-Baake

[S].

3.1. Proceso de Galton-Watson

Suponemos que el proceso se inicia con un individuo, el cual constituye la generacion cero,
sus hijos forman parte de la primera generacidn, sus nietos la segunda, y asi sucesivamente. De
esta manera denotamos la variable aleatoria Z, como el numero de individuos de la n-ésima
generacion.

Sea p; la probabilidad de que un individuo deje i descendientes, con i € Ny. Para cada j €
N, k € Ny, ﬁ’]‘ representa el ndmero de hijos del j-ésimo miembro de la k-ésima generacion.

33
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Podemos expresar a Z, | a partir de {&’]‘, 0<k<n, j>1},

Zny1 =81 +..+E& .

Asumimos que k., k>0, j > 1} son variables aleatorias i.i.d., donde P =i = pi Vie
q j 1

Np. Si comenzamos con i individuos, notamos Z,gi), n € N. Este proceso es la suma de i procesos
de ramificacion independientes que se inician con un solo individuo. Para evitar situaciones triv-
iales, vamos a suponer que pg+ p1 < 1. Es decir, la probabilidad de tener a lo sumo un individuo
es menor que 1.

Estamos interesados en estudiar si la familia perdura en el tiempo, en este caso nos pregunta-
mos si al pasar las generaciones el apellido seguira existiendo. Para esto tendriamos que conocer
la distribucién de Z,, para asi poder calcular P(Z, = 0) para n suficientemente grande. Pero es-
to es complicado ya que la distribucion de la cantidad de individuos en la generacién n-ésima
depende de las generaciones anteriores.

Una funcién que serd muy ttil en el estudio de procesos de ramificacion es la funcién gener-
adora de momentos de la variable Z;.

Sea ®: [0,1] — R, definida por ®(s) = E(s*!) = E (s&{). Consideramos también sus com-
posiciones,

Do(s) =5 @i(s) = D(s), 3.1)
Dpy1(s) = P(Pu(s)) neN. (3.2)

Proposicion 3.1. La funcion generadora de Z, es ®,(s), es decir, componer n veces la funcion
generadora de 7).

Demostracion. Sea ®,) la funcion generadora asociada a Z,:

= Z P(Z, =

keNy

Como ®(s) = ®(y)(s), basta probar que la sucesion de funciones ®,) cumple una relacion de
recurrencia como (3.2). Por como la definimos,

CID(n_H)(s) = E(SZVL+1) = E(S§r1’+..+§%n) — Z E(I{Zn:k}sall+"+&"z)'
keNy

La variable Z, es independiente de las variables &7, J = 1, por lo tanto,
E(Liz, g5 75 = E(Lyz,_g)E(s5TT5) = P(Z, = k) E(s5T ),

Como las variables, &£f,..,&} son independientes e idénticamente distribuidas

(sEiH+E) = HE (%) = (E(5)* = (@(s))*.
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Luego,
Dp1)(s) = ), P(Z B(5)) = D) (D(s)).

keNy

Estas funciones nos van a ayudar para calcular los momentos del proceso. Cuando estos
existan, los podemos expresar en términos de las derivadas de @, (s) para s = 1.

Teorema 3.1. Para el proceso de ramificacion ya definido, si E(Z1) = m, y V(Z1) = 6° entonces
E(Z,) =m",
sz ( n 1) % 1
V(Z,) = m2—m St n
nc? si m=1
Demostracion. Para la media de la primera generacion tenemos,
=Y pjii= =
JENy
Para la generacion n-ésima,
= Y P(Zy=j)j=Pp(1) = (@y1(D(1))) = @), (2(1))P'(1)
J€No
=@ _(1H)D'(1)=..=(P(1))" =m".

Para calcular la varianza,

®"(1)= Y k(k—1)P(Zy =k) =E(Z})—E(Z)) =V (Z1) + m(m - 1).
keNy

Si 6? =V(Z;). Luego, ®"(1) = 6% +m(m—1)
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p1(1) =@ (1)(@,(1))* + @' (1)@} (1)
= " (1)m* + m®!(1)
=" ()m*" +m[®" (1)m*" 2 + m®"_ | (1)]
=" (1)m* +@" (1)m™" ™! +-m*®);_,(1)]

j=0 j=0
02 n+12mk+m( n+2 m)

Jj=0
Sim=1,

Z+1(1) =0n
Sim#1,

) l’,nn—i-l -1 5
Z+](1) =0 m”+ T—}—mn(m'hL —m)

Como

ni1(1) =V(Zs1) = E(Zus1) + E(Zui1)*.
Obtenemos que sim =1,V (Z,,1) = 6’n. Sim # 1,
n+l 1 n+l 1
V(Zn+1) — GZanrlm—l +mn(mn+2 _m) +mn+1 . [mn+1]2 _ GZanrlm—l
m_ m_

]

Queremos analizar el comportamiento del proceso, para ello necesitamos algunas propieda-
des de la funciones generadoras. Luego, veremos que de lo unico que depende que el proceso se
extinga es de la media. Ademads cuando no se extingue, queremos analizar el comportamiento de
la poblacion.

Lema 3.1. La funcion ® cumple las siguientes propiedades:
1. ® es estrictamente creciente y convexa.
2. ®(0) =py, P(1)=1.

3. Sim <1 entonces ®(s) > s, para todo s € [0,1).
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m<1 m=1 m>1

4. Sim > 1 entonces ®(s) = s tiene una tinica solucion en [0, 1).

Demostracion. 1. Veamos las derivadas de @, como todas las sumas son absolutamente con-
vergentes para |s| < 1 podemos intercambiar los limites.

q)(s) = Zzo:() Pksk,
O (s)=Y7  pekss1 >0  Vse(0,1),
@ (s) = Y5, pik(k—1)s5"2 >0 Vs € (0,1) (pues supusimos po+ p1 < 1).

Por lo tanto P es estrictamente creciente y convexa
2. Es inmediato
3. Consideremos la funcién
g:[0,1] =R g(s) =d(s) —s.

Sus derivadas, g'(s) = @' (s) — 1, g"(s) = ®"(s). Como ® es estrictamente convexa en [0, 1]
y @(1) =1, 1a funcidn g(s) también es estrictamente convexay g(1) = 0. Luego la derivada
g’ (s) es una funcién estrictamente creciente, y si suponemos m < 1, ¢g'(1) =®'(1) — 1 =
m—1 <0, por lo tanto g’ es estrictamente decreciente en [0, 1]. Como g(1) =®(1)—1=0,
g(s)>O0parase [0,1)y P(s) >sen[0,1).

4. Seam > 1,y glafuncién definida anteriormente. Como g”(s) > 0 Vs € (0,1), g es convexa
en (0,1) y ¢’ es estrictamente creciente, por lo tanto g tiene a 1o sumo un punto critico en
(0,1). Como g'(1) =m—1>0y g(1) =P(1) — 1 =0, existe so < 1 con g(sp) < 0. Por
otro lado, g(0) = pp > 0. Luego existe g € (0,1) tal que g(q) =0, es decir, P(q) = g.

O
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Teorema 3.2. Sea (Z,),>0 un proceso de ramificacion. La probabilidad de que la familia se
extinga es q, donde q representa la solucion mds chica de ®(s) = s.

P(U{Zn:0}> =q.
neN

Demostracion. Primero veamos que, ©,(0) " g, cuando n — e. Observemos que P(0) > 0,
y ® es creciente, por lo tanto, 0 < ®(0) < ®(g) = ¢g. Aplicando nuevamente ®, 0 < P(0) <
®,(0) < g. Repitiendo este procedimiento, obtenemos que ®,(0) es creciente y acotada. Sea
L =1im;_,®,(0), L < g. Como P es continua,

@y11(L) = ( 1im @,(0)) = 1im @,.41(0) = L.

n—oo

Luego, L = g. Ahora si calculemos la probabilidad de extincion,

P(3n/Z,=0) :P<U{Zn:0}>

neN

Como {Z, =0} C{Z,41 =0} y ,(0) = P(Z, = 0) tenemos

P < Ui{z. = 0}> = lim P(Z, = 0) = lim ®,(0) = q.

n—oo n—oo
neN

O

Este teorema nos dice que si m < 1 el apellido de la familia se extingue en un tiempo finito con
probabilidad 1. Cuando m < 1 se lo llama caso sub-critico, y cuando m = 1 caso critico. Por otro
lado, si m > 1 (caso super-critico) hay una probabilidad positiva de que los descendientes per-
manezcan en todas las generaciones futuras. Veremos que en este caso, no solo hay probabilidad
positiva de no extinguirse, sino que ademas el tamafio de la poblacion crece exponencialmente.
Para ello debemos introducir el concepto de martingala.

Definicion 3.1. Sea (X,,),en un proceso estocdstico. Se dice que X, es una Martingala, respecto
de la filtracion ( Fn)nen i, para todon > 0

1. E(|Xn]) <eo
2. X, € F
3. E(Xpi1|Fn) = X
Para abreviar, decimos que X, es F,-martingala.

Observacion 3.1. Si X,, es una martingala, E(X,) = E(Xo) para todo n € N.
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Teorema 3.3. Sea (X,),cn una martingala no negativa, respecto a la filtracion F,. Entonces,
casi seguramente, 1im,,_... X, existe y es finito.

Demostracion. La demostracion la vamos a omitir. Puede verse en Durret [4, pag. 234-235]. [

Lema 3.2. Sea ¥, = G( i>1, 1<k<n),ym :E(ﬁf‘) entonces W, = % es una F,—
martingala.

Demostracion. Claramente, W, € F,. Como m" es una constante, E(W,,4+1|%,) = m” E(Zyt1|Fn),
y

N
E(Zy1|Fa) = (Zﬁ"\ﬂ) = (Z 1{igzn}§ﬂ7n> it (1\122021{&2”}@7‘70 :
ieN i=1
La suma es de variables positivas, por lo tanto

E(Zu1|Fn) = Y E (A1i<z,) &1 %) -

ieN

Como 1471 € Fuy &l es independiente de 7,
E(Zui1|Fn) = ) Vji<zy E(E]) = mZ

ieN
Luego,
EWo| ) = et BTt ) = —ymZy = W,
Como E(Wp) =1, E(Wn) = | para todo n. O
Corolario 3.1. Sea W,, = i, existe W una variable aleatoria, tal que

lim W, =W C.S.

n—oo

De esta convergencia se ve que Z, crece como m"W, si W # 0. Si P(W = 0) = 1 nos dice
simplemente que m" crece mas rapido que Z,. Pero en el caso en el cual estamos interesados,
podemos ver que P(W =0) < 1.

Teorema 3.4 (Convergencia en L?). Sea X, una martingala con sup,nE(|X,|’) < e donde
p > 1, entonces existe X tal que X, % X.

Demostracion. La demostracion puede verse en Durret [4, pag. 252-253]. U
Teorema 3.5. Sim > 1,V(Z;)) = 0% < oo vy Zy = 1. Entonces,

1. lim, o E(W,, —W)? = 0.

2. EW)=1.
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3. P(W =0)=P(Z, =0 para algiin n) = q.
Demostracion. Por el Teorema 3.1,

> 2 2,0 (i — 201 —m™
EW2) — E’g’?) _ V(z,,);ran(zn) _c (m_(1>m2n 1) 1o 6(,(711_ 5 ) ey

Como E(W?) es una funcién creciente en n,
2 2 §
supE(W, ) = lim E(W, ) =
sup EQOVE) = Jim E(W) = ——

+1 < oo

Luego, por el Teorema 3.4 existe W’ € L? tal que W, converge a W’ en L?. Por lo tanto W,
converge casi seguramente a W’. Vimos que W, —— W, por unicidad del limite, PW=W)=1.
c.§

Como W, converge a W en L?, E(W,) — E(W) y E(W,) =1paratodonasique E(W)=1y
W no puede ser constantemente 0, es decir, P(W = 0) < 1. Sea r = P(W = 0), tenemos

Z > Z,
P(W =0) :P<lim —_ :0) — ZP(lim = — 0|z :k)P(21 = k).
n—oo =0 n—oo

La distribucién de la cantidad de hijos en la n ésima generacion sabiendo que en la primer gen-

eracion hubo k individuos, es igual a la distribucién de la cantidad de hijos en la n — 1 ésima
generacion de k familias independientes, luego

(k) 1 k
. Zn o . .1 2%71 thl _
P(,}gf; — —0> —P<,}§r;; [mn_l tot | =0
= P(lim W, | +.+Wr , =0)
n—oo

k k
=P (ﬂ{h’m W, = 0}> =[]P(lim W, =0)
i=1 " =1 "

= P(W =0)F =/,

Por lo tanto,
r=PW=0)=Y *P(z,=k) =(r).
k=0

De donde, P(W = 0) = ¢, por el Teorema 3.2 P(Z, >0 ¥n € N) =1—gq. Por otro lado,
{W>0}C{Z,>0 Vn}.Porlo que,

P<ﬂ{Zn>O}\{W>O}> :P(ﬂ{Zn>0}> —P(W >0)=0.

neN neN

]

Es decir, que para casi todo ® en el conjunto {Z, >0 Vn} se tiene W(®) > 0y por lo tanto
Zy ~m".
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3.2. Procesos de ramificacion a tiempo continuo

Una generalizacion al proceso de Galton-Watson, es considerar el tiempo de vida de cada
individuo como una variable aleatoria continua, al término de la cual se muere y se produce
un ndmero aleatorio de individuos descendientes. En lugar de considerar la cadena de Markov
discreta, {Z,, n € N}, tenemos que considerar el proceso, {Z(t), t > 0}, donde Z(¢) es el niimero
de individuos a tiempo t. Ademds, suponemos que la distribucién del tiempo de vida de cada
individuo es la misma, exponencial de pardmetro a y todos los individuos se reproducen segtn la
distribucion de la variable aleatoria N. Cada individuo es independiente de los otros individuos
y de la historia del proceso.

Para empezar daremos la definicién de proceso de Markov a tiempo continuo, y luego defi-
niremos proceso de ramificacién unidimensional a tiempo continuo.

Definicion 3.2. Diremos que el proceso estocdstico X = (X;, t > 0) a valores en el espacio (finito
o numerable) S es Markov si para todo 0 < s <t se tiene

P(X; = x|Xy,u <s)=P(X; = x|Xj), para todo x € §.

Sea P;;(t) la probabilidad de tener j individuos a tiempo ¢, siendo que a tiempo O habia i
individuos.

Definiciéon 3.3. Un proceso estocdstico {Z(t,®),t > 0} en el espacio de probabilidad (Q, F ,P)
se llama proceso de ramificacion markoviano unidimensional a tiempo continuo, si:

1. El espacio de estados es Ny.
2. Es una cadena de Markov homogénea con respecto a la 6-dlgebra, F; = 6{Z(s,®);s <t}.
3. La probabilidad de transicion P;j(t) satisface,
(o] (o] i
Y Pi)sT =1} P(o)s?
j=0 =0
paratodoi >0y |s| < 1.

Esta ultima condicion nos dice que considerar un proceso de ramificacion con i individuos
iniciales, es exactamente lo mismo que considerar la suma de i procesos de ramificacién inde-
pendientes con un individuo inicial.

3.2.1. Construccion

Vamos a construir el proceso de ramificacion con un individuo inicial, por como definimos
procesos de ramificacion, si comenzamos con varios individuos, simplemente es agarrar varias
copias de comenzar con uno solo. Cada individuo vive un tiempo exponencial de pardmetro a >
0. Sea la variable aleatoria N con distribucién p, notamos p; = P(N = i) con i € Ny. La cantidad
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Figura 3.1: Una realizacion del proceso de ramificacion. El conjunto X (s) son las intersecciones
de la linea vertical con las ramas a tiempo s. La cantidad de individuos vivos a ese tiempo es
Z(s). El conjunto X (x,#) consiste en los descendientes de x que estan vivos a tiempo ¢ (indicados

con o). X(xvt) = {(3’ 1)7(372)7(373)7(374)7(4)}

de hijos que tiene cada individuo es una variable aleatoria con distribucién p. Construimos el
arbol genealdgico de la misma forma que lo construye Georgii-Baake [5] para el caso multi-tipo,
la construccidn original puede verse en Harris ([7]). Para empezar consideramos el espacio de
estados,
X= ] X,
neNy

Donde X, describe la generacion n-ésima. Esto es, Xo = 1, X; = Ny un elemento x € X tiene
la forma x = /1, donde /; indica que es el /;-ésimo descendiente de la raiz. Luego para n € N,
definimos X, = N"y x = (I1,...,1,) € X,, es el [,-ésimo hijo de £ = (I1,...,[,—1) € X,,_1. A cada
x € X le asociamos,

= un tiempo de vida aleatorio T,, con distribucidon exponencial de pardmetro a > 0, y

= una variable aleatoria N, € Ny con distribucién p, tal que la familia {T,,Ny,x € X} es
independiente.

La variable N, indican cuantos descendientes tiene x € X. Por lo tanto una realizacién del proceso
es el conjunto X = |J,,c, Xn, que queda definido recursivamente por,

Xo=1X,={x=&1,) €X,,/2 e Xp_1,l, <Nz}

Para cada x € X sea T, el momento en el que x muere y se reproduce, definido recursivamente
por Ty = Tz +T,, con Ty, = T si xo = 1 € Xp. Luego, el intervalo de vida del individuo x es
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[T;,Ty). Por lo tanto, X () = {x € X /T; <t < T, } es la poblacion a tiempo 7. La familia completa
queda determinada por el proceso (X(¢));>0. Cuando 0 < s <ty x € X(s), definimos X (x,¢)
a los descendientes de x que estan vivos a tiempo ¢. Consideramos Z(t) = |X(¢)|, en palabras
Z(t) es la cantidad de individuos a tiempo z. Si no indicamos la cantidad de individuos iniciales,
consideramos que se inicia con un individuo.

Al igual que en el caso discreto estamos interesados en averiguar si la familia se extingue
cuando pasa el tiempo, es decir, analizar el comportamiento de Z(¢) para ¢ suficientemente
grande. Para ello debemos estudiar las probabilidades de transicién; P;;(¢) para ¢ > 0. Pero tener
varios individuos y que cada uno pueda tener hijos en cualquier momento, y estos volver a tener
hijos, hace que calcular las probabilidades de transicion a todo tiempo sea muy complicado. Es
por ello que vamos a estudiar las probabilidades de transicion en tiempos infinitesimales, estas
son mds sencillas de calcular ya que en un tiempo suficientemente pequeno solo un individuo
podra reproducirse. Luego, podremos ver que las probabilidades de transiciéon para cualquier
tiempo son solucion de las ecuaciones de Kolmogorov.

Sea P;j(h,t + h) la probabilidad de transicion P(Z(t + h) = j|Z(h) = i). Asumimos que el
proceso es homogéneo en el tiempo, es decir,

P;j(h,t+h)=P;j(t)  Vt>0.

Calculemos las probabilidades infinitesimales, P;;(h) para & suficientemente pequefio, 7, j € N.

Si el proceso comienza con i individuos, el primer salto de la poblaciéon ocurre cuando el
primero de estos i individuos muere y se reproduce. Si llamamos Y a la duracién aleatoria
del tiempo de vida del k-ésimo individuo, sabemos que Y tiene distribucién exponencial de
parametro a para todo k y son independientes, por lo tanto el primer salto de la poblacién ocurre
con la distribucion de la variable aleatoria min{Y1,...,Y;}, es decir con distribucion exponencial
de parametro ia.

La probabilidad de que no muera ningdn individuo en en el intervalo de tiempo (0,4), es
e~ Y de que muera uno sélo es i(1 — e~ %) (e*)~!, ya que el tiempo de vida de cada individ-
uo es independiente y por lo tanto consideramos que un individuo (entre los i posibles) muera
en el intervalo (0,%) y que los demds no mueran en ese intervalo. Esta probabilidad podemos
expresarla como iah + o(h).

Para h pequefio la probabilidad mueran 2 o mds individuos en el intervalo (0,4) es 1 —
(e~ — (i(1 — e~ ) (e*")I=1) que es del orden de o(h).

Por lo tanto,

P;j(h) = o(h)
para j <i— 1.

La probabilidad de que exactamente uno muera antes de tiempo £ es iah + o(h) y luego el
proceso salta al estado j > i — 1 con probabilidad p; 1, luego

P;j(h) = iahp; i1+ o(h)

si j>i—1,j+# iy hpequefo.
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Para calcular P;(h) debemos considerar los siguientes eventos disjuntos, que no muera ningin
individuo en (0,%), que muera solo uno, y que mueran mas de 2. Este dltimo como dijimos an-
tes es o(h). La probabilidad de que ningin individuo muera es e %" = 1 — iah + o(h). Cuando
consideramos que muera un individuo, para seguir teniendo i individuos este debe tener un solo
hijo. Por lo tanto,

Pii(h) = 1 —iah+iahpy +o(h).

Teorema 3.6 (Ecuaciones de Kolmogorov). Las probabilidades de transicion P;j(t), cont >0
son solucion de las siguientes ecuaciones:

d . j+1
(forward) EPU(I) = —jaP;j(t)+a Z kP (t)pj—ik+1, (3.3)

k=1

d . e
(backward) EPij(t) = —iaP;j(t) +ia Z Pri(t) Pk—it15 (3.4)

k=i—1
con condiciones de contorno,

P;i(07) =§;;. (3.5)

Demostracion. Para demostrar ambas ecuaciones usaremos las probabilidades de transicion in-
finitesimales ya calculadas.

s

Pijt+h) = P(Z(t+h) = j) = ) P(Z(t+h) = j|Z(t) = k)P(Z(t) = k)

1

T

= i Pyj(h)Py(t) = j [kahp j—y+1Pu(t)] + (1 — jah)P;j(t) +o(h).
k=1 k

I
—_

De donde,

Pi(t+h) —P;(t) I ,

1) 10 =a ) kpj_j1Pi(t) — jaP;(1).
=1

Iim
h—0 h

Por otra parte
Pij(t+h) = Fi(Z(t+h) = j) = i P(Z(t+h) = j|Z(h) = k)P(Z(h) = k)
= ipkj(t)Pik<h) = i liahpy—i+1Pij(1)] — iahP;j(t) + o(h).

Por lo tanto,
Pyj(t+h) — Py(t)

=ai Y pr—it1Pij(t) —iaP;(z).
ki1
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Desafortunadamente, las ecuaciones de Kolmogorov siempre tienen solucién si Y- ; P;;(¢) < 1,
pero esta solucién puede que no sea tnica. Este problema surge cuando es posible que el proceso
tenga infinitos individuos en un tiempo finito, es decir, que explote. Esta situacion existe cuando
las ecuaciones (3.3), (3.4) tienen soluciones tal que }';P; j(t) < 1. Puede verse en Harris [7,
cap. V, sec. 3], que si el proceso no explota, las ecuaciones de Kolmogorov tienen como tnica
solucién P;j(t) que satisfacen Y ; P;;(¢) = 1.

Para ver que el proceso no explota calculemos E(Z(t)), para t € (0,0). Para ello consid-
eremos la variable aleatoria Y con distribucién exponencial de pardmetro a. Supongamos que
comenzamos el proceso con un solo individuo. La cantidad de individuos a tiempo ¢ podemos
considerarla de la siguiente forma; que el individuo inicial muri6 antes de tiempo ¢, es decir, que
Y <t,yeste dejo N hijos, o que el individuo permanece con vida a tiempo ¢, es decir, ¥ > ¢

Z( ) - 1{Y<t} ZZ t - +1{Y>z}7
donde Z(t —Y) denota un proceso de ramificacién a tiempo continuo con 1 individuo inicial,
observado a tiempo ¢ — Y, la potencia i nota que es el proceso de ramificacion del i-ésimo hijo.

Como cada individuo tiene hijos de forma independiente, los procesos Z' son independientes.
Luego la esperanza,

N
E(Z(t)) =E <1{Y<t} ;)Zi(t - Y)) +E(1{Y>t}>

de donde, condicionando a Y en el primer término, obtenemos;

t N
E(Z(1)) = /0 E(ae_”sZZ’(t—s)> ds+E(1y-p)

_/ ae” “E (ZZL t—s)) ds+P(Y >1)

_ / ae"SE(N)E(Z(t —s))ds+P(Y > 1)

—E(N)a /0 “SE(Z(t —s))ds+ e,

la tercera igualdad es cierta pues la variable N es independiente de las variables (Z¥);—; ; y las
Z* tienen todas igual distribucién. Es decir que E(Z(t)) es solucién de la ecuacién diferencial
g(t)=E(N)a [5e *g(t—s)ds+e . Puede verse en Perko[11] que ésta ecuacién tiene solucién
Unica. Veamos que la solucién es M con A alguna constante adecuada.

t

M= E(N)a/ e WM ds 4 e
0
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t
M= E(N)ae’“t/ e (@HMsgg 4 o—at

0
_ ,—(a+M)r
eM—E(N)aeM1 :+7\. +e
1:E(N)a(1 PR 4 o (athr
a+A

E(Z(t)) = tEWN=Dr 1 e (0,00). (3.6)

Por lo tanto Z(z) es finito con probabilidad 1 para todo > 0.
De (3.6), podemos ver que:

1. SiE(N) < 1, E(Z(t)) decae exponencialmente (caso sub-critico).
2. SiE(N)=1,E(Z(t)) = 1 (caso critico).

3. SiE(N) > 1, E(Z(t)) crece exponencialmente (caso super-critico).

3.2.2. Funciones generadoras

Definimos la funcién generadora de Z(t),

o) o)

F(s,t)= Y. P(Z(t) = KZ(0) = 1)s* = Y Py(t)sh = Ey (s“1))
k=0 k=0

y las funciones f(s) = Y7 pisty Is| <1y u(s) =a(f(s)—s), donde a es la media del tiempo
de vida de un individuo y py la probabilidad de que un individuo tenga & hijos.

Teorema 3.7 (Ecuaciones de Kolmogorov). La funcion F(s,t) definida anteriormente, cumple
las siguientes ecuaciones:

0 0
(backward) gF(s,t) = u(s)gF(s,t), (3.7)
(forward) %F(s,t) =u(F(s,t)), (3.8)
con condicion de contorno:
F(s,0) =s. (3.9

Demostracion. Primero demostremos (3.7), para ello usaremos (3.3). Parai =1

p) k+1

&P”‘(t) = —kaP(t) +a Z iPyi(t) pr—it1-
i=1
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Por lo tanto,

0 > 9 d ktl
a—F(S,t) = Z a—Plk(l‘)Sk = Z —kaPy(t)+a Z iPyi(t) pr—it1 s
t j—0 9! =0 =1
=—a Z kP (t)s" +a Z Z iP1i(t) pk—i+18
k=0 k=0 i=1

= —a Z kPlk(Z‘)Sk +a (Z pisi> (Z P]k(l)ksk_l>
k=0 i=0 k=0
=a Z Prye(t)ks*! <Z pis' — s)
k=0 i=0

0
= u(s)gF(s,t).
Para probar (3.8), usaremos (3.4) parai = 1, y la condicion (3) de la Definicion 3.3.

d oo
d—Plk(l) = —aPlk(t) +a ZPlk(t)pl
! =0

Por lo tanto,

= _aZPIk s +02P1 ZPZk
N . . !
= —a Z Plk(t)sk +a Zpl (Z Plk(t)sk>
=0 \k=0

k=0
= a(f(F(s,2)) = F(s,1))
= u(F(s,1)).
[]

Observemos que la funcién F(s,z) cumple una férmula de iteracién similar a f,(s) en el
proceso de Galton-Watson.

F(s,t+u) =Y Pyt+ u)s*
k=0
condicionando a las posibles cantidades de individuos a tiempo u, y usando la homogeneidad de
la cadena obtenemos,

oo oo

F(s,t+u) ZZPIJ

k=0 j=0
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intercambiando el orden de las sumas y usando la definicién de proceso de ramificacién a tiempo
continuo,

F(s,t+u) ZPU FJst

Por lo tanto,

F(s,t+u)=F(F(s,t),u) Is| <1, u>0,r>0. (3.10)

3.2.3. El proceso discreto inmerso

El proceso de ramificacion a tiempo discreto nos va a ayudar a analizar el comportamiento
del proceso de ramificacion a tiempo continuo. Para ello veremos en el siguiente Teorema el
proceso discreto inmerso en un proceso continuo.

Teorema 3.8. Sea {Z(t,w),t > 0} un proceso de ramificacion markoviano unidimensional a
tiempo continuo. Para todo 8 > 0 la sucesion Z,,(®) = Z(nd,®) es un proceso de Galton-Watson
con funcion generadora de momentos ¢(s) = F(s,9).

Demostracion. Dado & > 0, el proceso {Z, },cn es una cadena de Markov con probabilidad de
transicién P(Z,+1 = i|Z, = j) = P(Z(nd) = i|Z(n) = j) = P;;(3). Para ver que es un proceso de
Galton-Watson nos basta ver que la funcién generadora de Z, es componer n veces la funcién
generadora de Z;. La funcién generadora de momentos de Z, es P, (s) = E(s*|Zy = 1). Por
(3.10)

(I)(n) (S) = CI)(CI)(n_ 1) (S)),

por lo tanto @, (s) = P, (s) que es la n-ésima composicién de la funcion P(s). O

Para decir cuando se extingue el proceso a tiempo continuo usaremos el proceso discreto
inmerso con & = 1, ya que si existe #y tal que Z(fy) = 0, para todo ¢ >ty Z(t) = 0. Y vimos
en la seccion anterior que el proceso de Galton-Watson se extingue en un tiempo finito con
probabilidad 1 en el caso sub-critico (m < 1) y en el caso critico (m = 1). Como E(Z(t)) =
eEN)=1) " obtenemos que el proceso se extingue en un tiempo finito si E(N) < 1. En el caso
super-critico, cuando E(N) > 1, la expresion de la esperanza nos sugiere que la poblacién crece
exponencialmente, para demostrarlo necesitamos usar convergencia de martingalas. Para ello,
debemos ver la version a tiempo continuo de las definiciones de filtracion y martingala.

Definicion 3.4. 1. Sea (Q,F) un espacio medible. Decimos que una familia (F;);>0 de G-
dlgebras contenidas en F es una filtracion si Fy C F; para todo 0 < s < t.

2. Sea (Q, F) un espacio medible, equipado con una filtracion (F;);>o0. Un proceso estocdsti-
co X definido en (Q, F) se dice adaptado a la filtracion (F;)i>o si para cada t > 0, X; es
F:-medible.

3. SeaX ={X; :t >0} un proceso estocdstico definido en un espacio de probabilidad (Q, F , P)
y sea (F:)i>0 una filtracion en dicho espacio. Decimos que X es una martingala a tiempo
continuo con respecto a la filtracion (F;)i>o si satisface las siguientes condiciones:
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» X es adaptado a la filtracion (F)r>0;
» E(|X;|) < +oo para todot > 0;
» Para todo 0 < s <t, se tiene E(X;|Fs) = X;.

Aligual que en el caso discreto, para analizar el limite de la poblacién necesitamos resultados
de convergencia de martingalas.

Teorema 3.9 (Teorema de Convergencia de Martingalas). Sea {X () };>0 una F;-martingala con-
tinua a derecha. Si sup;>o{E(X(t))} < o, entonces existe X = lim;_.. X (t) c.s.

Demostracion. Puede verse en Kallenberg, [8, pag. 107]. ]
Teorema 3.10. La familia {Z(t)e ™™, F = 6(Z(s),0 < s <t),t > 0} es una martingala.

Demostracién. Claramente Z(t)e ™™ € #. Para calcular la esperanza de Z(r), nos va a ser muy
util expresar la cantidad de individuos a tiempo 7 como la suma de Z(s) procesos de ramificacién
independientes mirados a tiempo ¢ — s. Es decir, dados s y 7 tales que 0 < s < ¢,

Z(s)
20)=Y 2~
J=1

si Z(s) >0,y Z(t) =0siZ(s) = 0. Por lo tanto,
2s)
E(Z(t)|Fs) =E(Z(t)|Z;) = E (Z,lzj(f —5)‘Z(S)> = Z()E(Z(t — 5)) = Z(s)e =™,
j:

Luego, E(Z(t)e M| F) =Z(s)e ™. Como E(Z(0)) = 1, E(Z(t)e ™) =1, y por lo tanto Z(t)e ™
es una “;-martingala. O

Corolario 3.2. Sea X (1) = Z(t)e ™, existe X una variable aleatoria, tal que

lh’mX(t) =X c.s.

Otra vez la cuestion es ver si X = 0, para ello usaremos el caso discreto, ya que por el
Corolario 3.1 para todo & > 0 tenemos,

W5 = lim Z(n8)e ™,

n—oo

yparads >0y V(Z(1)) < oo vimos que para casi todo ® en el evento {Z(nd, ) > 0, Vn € N}
se tiene que {W5(®) > 0}. Como P(Wg = W) = 1, para casi todo ® en {Z(¢,®) > 0} se tiene que
{W(w) > 0}. Concluimos que Z(t) ~ ¢"* con probabilidad 1.
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3.3. Tiempo continuo, multi-tipo

Consideremos el proceso de ramificacion a tiempo continuo, con distintos tipos de individuos
(por ejemplo como muestra la figura, verde, rojo y azul). Al igual que en el caso anterior con-
sideramos que el tiempo de vida de cada individuo tiene distribucion exponencial, pero en este
caso los distintos tipos de individuos podrian tener distintas medias. También vamos a consid-
erar Z(t) como la cantidad de individuos a tiempo ¢, pero en este caso si consideramos que hay
k individuos distintos, Z(¢t) = (Z;(¢),..,Z(t)) donde Z;(r) es la cantidad de individuos de tipo i
a tiempo 7. Notamos Pi(j,t) con i = (iy,..,1;),j = (j1,.., jx) € NE, a la probabilidad de tener j;
individuos de tipo 1, .., ji individuos de tipo k, a tiempo ¢, dado que a tiempo O el proceso tenia
i1 individuos de tipo 1,.., iy individuos de tipo k. Comencemos dando la definicion de proceso de
ramificacién multitipo.

Definicion 3.5. Un proceso estocdstico {Z(t,®),t > 0} en el espacio de probabilidad (Q, F ,P)
se llama proceso de ramificacion markoviano k-dimensional a tiempo continuo, si:

1. El espacio de estados es Ng.
2. Esuna cadena de Markov homogénea con respecto a la 6-dlgebra, F, = 6{Z(s,®);s <t}.

3. La probabilidad de transicion P'(j,t) satisface,

i

k
Y PGos=T]| Y PGo)s

JeNE I=1 | jeNk
para todo i € N’éy s;| <1, j€{1,..,k}, donde s = (s1,..,s;) € RE.

Esta tltima condicién nos dice que considerar un proceso de ramificacion con i = (iy, .., i)
individuos iniciales, es exactamente lo mismo que considerar la suma de i; procesos de ramifi-
cacion independientes con un individuo inicial de tipo j, y la suma sobre los distintos tipos de
individuos.

3.3.1. Construccion

Sea S = {1,..,k} el espacio de los distintos tipos de individuos. Cada individuo i € § vive un
tiempo exponencial de pardmetro a; > 0. Sea N la matriz con entradas aleatorias N;; con i, j €
{1,..,k} donde N;; es el nimero de hijos de tipo j que tiene el individuo de tipo i. N; = (N;) jes
tiene distribucién p; = (pi1, .., pix), y media finita m;; = E(N;;), Vi, j € S.

Asumimos que la matriz M = (m;;); jes es irreducible. Construimos el drbol genealdgico.
Para empezar consideramos el espacio de estados

X — UHGNXW'
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N=[1,2,1]
0

(<]

(<]

X(x,t)

Figura 3.2: Una realizacion del proceso de ramificacion. Donde S = {r,v,a}. El conjunto X (s)
son las intersecciones de la linea vertical a tiempo s. El tipo de individuos vivos a ese tiempo es
Z(t). El conjunto X (x,) consiste en los descendientes de x que estan vivos a tiempo ¢ (indicados
cono). X(x,t) ={(v,r;1,1),(v,v;1,1),(v,v;1,2),(a;1)}

Donde X, es el espacio donde vive la generacion n-ésima. Esto es Xo = Sy ip € X es la raiz del
arbol. El siguiente es X| = § x Ny el elemento x = (i1,/1) € X; es el /;-ésimo hijo de tipo i; en la
raiz. Finalmente, paran > 1, X,, = §" xN"y x = (i, .., ip, l1, .., 1) € X, es [,-ésimo hijo de tipo
in del padre £ = (iy,..,in—1,11,..,1,—1). Escribimos 6(x) = i, para el tipo de x € X,. Observemos
que 6(x) € 5.

A cada x € X le asociamos

= un tiempo de vida aleatorio Ty, con distribucion exponencial de parametro dg,),

» descendencia aleatoria, N, = (Ny;)jes € Ng con distribucion pg,) tal que las variables
{Ts, Ny : x € X} son independientes.

Las variables aleatorias N, indican como son actualizados los individuos x € X. Por lo tanto el
conjunto X = J,cn X, esta definido recursivamente por

Xo = {i()} Xn = {x = (xAvinvln) €X,:2eX, 1, < Ni,i,,}-

La variable aleatoria T, es el tiempo de vida de x € X. Sea T el instante en muere y se
reproduce x. Lo definimos recursivamente por T, = T¢ + T,, con Tl?) =T si iy € X, es decir el
tiempo en el que esta vivo x € X es: [T}, Ty). Por lo tanto, X(f) = {x € X/T; <t < Ty} es la
poblacién a tiempo ¢.
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El arbol completo esta determinado por el proceso X (0,e0) = (X (¢));>0 definido en un espacio
al que llamamos Q. Cuando comenzamos con una distribucion inicial v, la distribucién de X (¢)
en Qes PV y la esperanza es E¥, cuando iy = i notamos, P’ y E'.

Para cada x € X(s) consideramos, X (x,7) = {y € X : xy € X(¢)}, en palabras el conjunto
X (x,1) son los descendientes de x que estan vivos a tiempo ?.

Por la propiedad de falta de memoria de la distribucion exponencial, los descendientes de
X (x,[s,00)) = (X (x,1))r>s con x € X(s), son independientes de X|0, s].

Consideremos las siguientes medidas,

Zt)= Y, 8oy Zxit)= Y, Sy
xeX(r) yEX (x,1)
Es decir, Z(t) = (Z(t),..,Zx(t)) donde Z;(t) es la cantidad de individuos de tipo i que viven a
tiempo 7. En particular, Z;(¢) es el cardinal de X;(r) = {x € X(¢) : 6(x) = i}. Y la subpoblacién
descendiente de x ; Z(x,t) = (Z;(x,t),..,Z(x,t)) con Z;(x,t) la cantidad de individuos de tipo i
descendientes de x que estan vivos a tiempo 7. El total de la poblacion a tiempo ¢ lo denotamos,
12| = Ejes Zi(1) = X (1)].

3.3.2. Funciones generadoras

Consideremos las siguientes funciones,

()= (£1(s),-,.1*(s))
donde f'(s) = ¥; Nk p'(j)s' y p'(j) la probabilidad de que un individuo de tipo i tenga j individ-
uos, es decir, j; individuos de tipo 1, .., ji individuos de tipo k.

u'(s) = ai[f'(s) = si]
donde a; es el tiempo medio de vida del individuo de tipo i. Por ultimo, definimos la funcion
generadora de Z () cuando comenzamos con i individuos, como

F(i,s,t)= Y P'(j.1)s'.
JENE
Denotamos
F(s,t) = (F(ey,8,t),..,F(ex,s,t))
u(s) = (u'(s),..,u"(s))
Teorema 3.11. Las funciones F(s,t), y u(s) definidas anteriormente cumplen las Ecuaciones de
Kolmogorov:

k
(forward) %F(ei,s,t) :j;luj(s)%F(ei,s,t), (3.11)
(backward) iF(ei,s,t) = u'(F(s,1)), (3.12)

ot
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coni=1,..,k. Con condiciones de contorno,

P'(j,07) =8 (3.13)
Demostracion. Puede verse usando el Teorema 3.7 [

Al igual que en los otros procesos de ramificacion queremos calcular E(Z(t)). Para ello con-
sideramos las variables aleatorias ¥; con i € {1, ..,k} independientes con distribucién exponencial
y media q;. Cada ¥; es el tiempo de vida de un individuo de tipo i. Notamos Zj- (t) ala cantidad
de individuos de tipo j que hay a tiempo ¢ considerando que el proceso comenzd con un solo
individuo de tipo i.

Si comenzamos con un individuo de tipo i, la cantidad de individuos de tipo j a tiempo ¢
podemos expresarla de la siguiente manera,

. k N ;
ZH0) = Ly Y X 27" (0= Y) + 1y i)
[=1n=1

ya que podemos separar en 2 casos; que el individuo inicial sigue vivo a tiempo ¢, o que el
individuo inicial muere antes de tiempo 7, y este tiene N; hijos, donde N; = (Nj1,..,Ni), por lo
tanto en este caso la cantidad de hijos de tipo j a tiempo ¢ lo podemos contar como la cantidad de
hijos de tipo j a tiempo r — Y de los procesos de ramificacion Zj-’", donde [ es el tipo de individuo
con el que comienza el proceso y n indica que es el n-ésimo hijo de tipo / del individuo inicial i.
Tomando esperanza y condicionando a lo ocurrido con ¥; obtenemos,

=1 n=1

_ P k Ni
E@0) = [ ae Y E (Z Z" —s>> ds-+ P(Y; > 1),

Como la cantidad de hijos del individuo inicial es independiente del comportamiento en el futuro
de estos individuos,

. k !
E(Zit)=a;y. / e “SE(Nq)E(Zi(t —s))ds+ e "5,
=170

Si llamamos C;j(r) = E(Z}(t)), la matriz C(r) en lugar i, j cumple,
k t k t
Cl'j(l‘) =aq; Z E(Nil) / e_“iSC,-j(t —s)ds—i—e_“i’S,-j =aq; Z E(]Vl'l)e_ait / eai“Cij(u)du—i—e_“itS,-j.
=1 0 =1 0

Puede verse en Perko [11] que existe una tnica solucién de esta ecuacion diferencial y es deriv-
able. Por lo tanto,
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Si denotamos A = a(E(N) —Id), la matriz C;;(t) cumple la siguiente ecuacién diferencial;

k
£) = ) AuCij(t)
=1

Por lo tanto, para cadat > 0

C(0) = 1Id.

De la teorfa de ecuaciones diferenciales se desprende que C(t) = ¢/4. Para mds detalle puede
verse Norris [10, pag. 61,62]. De donde,

E(Z(t)) = ™.

La matriz E(Z(t)) tiene entradas positivas para todo ¢ > 0, por la teoria de Perron-Frobenius,
para cada ¢ existe un autovalor p(¢) de C(¢) estrictamente positivo tal que cualquier otro autovalor
p(t) de C(t) satisface |p(¢)| < p(¢) y ademds p(¢) tiene multiplicidad 1. Como C(t) = e*’ los
autovalores de C(r) estan dados por e, i = 1,..,k donde A1, Ay, .., Ak son los autovalores de A.
Los autovectores asociados de C(¢) coinciden con los de A. Podemos ordenar los autovalores de
A de la siguiente manera

A=n > Re(|ha]) > .. > Re(|Me)).

Ademds A tiene autovectores asociados a izquierda y derecha, T y & positivos, normalizados,
tal que |n| = 1 y A’ = 1. Por lo tanto C(¢) tiene a ¢¥ como autovalor de médulo méaximo, de
multiplicidad 1, con autovectores asociados T y h. Usando el autovector a izquierda podemos
construirnos una martingala, y ésta al igual que en los casos anteriores nos ayudara a analizar el
comportamiento de Z(t).

Teorema 3.12. La familia {nZ(t)e ™, F = 6(Z(s),0 < s <t),t > 0} es una martingala.
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Demostracién. Claramente nZ(r)e ™ € ;. Veamos que para todo i € {1,..,k}, TZ(t) es martin-
gala. Para calcular la esperanza de TZ(¢), nos va a ser muy ttil expresar la cantidad de individuos
a tiempo ¢ como la suma de Z* (s) procesos de ramificacién independientes que comienzan con
un individuo de tipo / mirados a tiempo ¢ — s, y la suma sobre todos los tipos de individuos. Es
decir, dados s y ¢ tales que 0 < s < ¢,

S

k
Z It —s)

1j
si existe n tal que Z.,(s) >0,y Z(t) = 0si Zi(s ) = 0 para todo n € {1,..,k}. Por lo tanto,

NN

Zi(s)

k
E(nZ'(1)|F;) = E(rZ'(1)|Z(s) Z t—5)|Z(s)

||M

k k
Z Zj()E(Z!(t —s)) :Z Zi(s)mel' ™ = nZ!(s)e I,

Luego, E(nZ(t)e ™| F) = nZ!(s)e ™. Como nE(Z'(0)) = m;, E(nZ!(t)e ™) = m;, y por lo
tanto ©Z'(r)e ™ es una #-martingala para todo i € {1,..,k}. O
Usando que la matriz A puede descomponerse como S+ N donde S es una matriz diagonaliz-

able y N una matriz nilpotente puede verse que C(t) = eMhn’ + O(t"el*2l") para algiin r positivo
que no depende de ¢. Por lo tanto,

1. Caso sub-critico.

Si A <0, E(Z(t)) decae exponencialmente, ( cada coordenada de la matriz tiende a O
exponencialmente). Por lo tanto, para € > 0,

P(|Z(1)| >e)gE(’Ze(t)D N

De donde |Z(t)| converge en probabilidad a 0. Por lo tanto, existe una sub-sucesién de
|Z(t)| que converge a 0 casi seguramente. Como |Z(z)| € Ny y si existe 7 tal que |Z(zp)| =0
entonces |Z(t)| = 0 para todo ¢ > fy, tenemos que 1im;_... |Z(#)| = 0 casi seguramente.

Observemos que, A < 0 si y solo si el autovalor de médulo méaximo de la matriz E(N) es
menor que 1.

2. Caso critico.

SiA=0, E(Z(t)) = hn' para todo 7 > 0. No nos da informacién suficiente para analizar el
comportamiento de la poblacion para tiempos suficientemente grandes. Sin embargo, por
el Teorema 3.12 y usando el Teorema 3.9 aplicado a cada coordenada, tenemos que existe
una variable aleatoria Z., tal que lim,_,. TZ(t) = Z c.s. Este limite no podria ser distinto
de 0, pues la probabilidad de que todos los individuos tengan un tnico descendiente de
su tipo es distinta de 1 y por lo tanto el proceso cambiaria de estado rdpidamente. Para
analizar este caso con mds detalle puede verse Athreya [2, cap.V].
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3. Caso super-critico.

SiA >0, E(Z(t)) crece exponencialmente. Veamos que la cantidad de individuos de cada
tipo crece exponencialmente. Si el proceso comienza con un individuo de tipo i, el proceso
Zi(t) domina el proceso de ramificacién discreto de un solo tipo de individuo con media
mayor a 1, pues Zf (t) considera los individuos de tipo i, hijos de cualquier individuo j €
S y cuando decimos el proceso de ramificacion de un solo individuo consideramos los
individuos de tipo i descendientes de individuos de tipo i. Como la cantidad de individuos
en este Ultimo proceso crece exponencialmente, también lo hace Zl’f(t) paratodoi € S.

En este ultimo caso el tamafio de la poblacion tiende a infinito, pero queremos analizar como

es la distribucién de la poblacion, si dividimos por la cantidad de individuos a tiempo ¢, es decir,

estudiar el comportamiento de % para t grande. En este caso,

E(Z(t)e ™) == n'. (3.14)

Es un hecho notable que el comportamiento del arbol este determinado por 7, 4, A. Denota-
mos:

Q={X(t)#9 vt > 0},

al evento en que la poblacién sobrevive a todo tiempo. Para ver el comportamiento de la poblacién,
lo primero que queremos estudiar es una especie de ley de los grandes nimeros para la distribu-

cion de la poblacién, considerando el tiempo discreto, pero donde las unidades de tiempo son:

nd, para 6 > 0. Para ello necesitamos el siguiente lema.

Lema 3.3. Sean {@l(n) :n,i € N} variables aleatorias i.i.d. con valores en N, con media m > 1
y segundo momento finito. Si (V,)),en son variables aleatorias con valores en N tal que Vy 11 >

Z,‘Z/": | ?;l(n) para todo n € N. Entonces

1%
liminf —=!

n—oo

>m C.S.

n

en el evento E = {lim,_..,V,, # 0}.

Demostracion. El proceso de ramificacion simple definido por Z, 1 = Z,Zil ﬁg"), cumple que Z,
crece exponencialmente si lim,_,.. Z, 7 0. Por lo tanto por comparacién, V,, crece exponencial-
mente en E.

Seam’ < m. Queremos acotar P(V, 11 < m'V,|V,), para ello observemos que {V,,.; <m'V,} =

Wit —mVy < (m' —m)Vo} © {50, 8" —mVy < (' —m)V} € {| L & — mVa| > (m —
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m')V,,}. Por lo tanto,

P(Vay1 <m'V|Vy) < <| Z ' mV,| > (m—m' )V, \Vn>

_E( ZV P \V
— (m )
% Var(F, ) C
(m m')2V2 — V
Como suponemos que ocurre E, V, crece exponencialmente, por lo tanto P(Y,_; VL,, <oo|E) =1
y Yo P(Vay1 <m'V,|V,) < oo tiene probabilidad total en E.
Por el Lema de Borel Cantelli condicionado (ver Apéndice 5.1),

{ZP Vit <mV,lVy) _oo} mu{Vk+1 }

ki ng k>ng

<ﬂ U {Vk+1 m/} ‘E) —0.

no k>n0
U ﬂ { krl m’} ‘E :P(hmlankJrl Zm"E).
no k>no koo Vk

Ahora si veamos como se comporta la distribucion de la poblacion, para ello vamos a seguir
el procedimiento de Georgii-Baake[5]. El caso discreto fue hecho por Kurtz, Lyons, Pemantle y
Peres ([9])

Proposicién 3.2. Sea 8,u >0, i,j € Sy sea f una funcion medible tal que c; = E’(f 0 X[0,u]).
Entonces,

Por lo tanto,

De donde,

[]

lim Z foX(x,[nd,nd+ul)=c; cs.en Qg
n—oo Zj (l’lS) XGX]'(HS)
Demostracion. Asumimos que 8 es mayor que u'y sea p = E/(Z;(8)) > 1. Tal § existe porque A >
0y A es irreducible. Sea 7,5 la 6-dlgebra generada por X[0,n8]. Para cada n € N consideremos
las variables aleatorias

Onx = foX(x,[nd,nd+ul)

con x € X;(nd). @ x es F(,41)5-medibles, y condicional a #,5 soni.i.d. con media c;. Esto implica
que si construimos la sucesion (@;);>1 en Q, enumerando primero {@, : x € X;(8)} en algiin
orden, luego {@  : x € X;(23)}, y asi sucesivamente. Por la Ley de los Grandes Nimeros,

kh_)nolokZ(pl—c, c.s. en Q.
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En particular, tomamos la subsucesion,

Z (Pl,x-

1=1 VI I=1xeX; (15)

Donde y; = Z;((9)

La sucesién (y;);>; domina el proceso de ramificacién discreto de un solo tipo de individuo
con media p > 1, pues y; considera los individuos de tipo j, hijos de cualquier individuo i € §
y cuando decimos el proceso de ramificacién de un solo individuo consideramos los individuos
de tipo j descendientes de individuos de tipo j. Como este ultimo proceso sobrevive, también lo
hace la sucesién (y;);>1.

Las variables y; verifican las hipétesis del Lema 3.3 de donde,

liminf P!
|—o0 \lfl

>p c.s.en Q.

Esto implica,
h’msupﬂ<oo c.s. en Qg le{l,..,n—1}.

n— oo \Pn
Por lo tanto,
n—1
lim sup L1 Vi < oo c.8.en Q).
n—oo ~l'III’l
Luego,
\pn C.S. en Q,
Veamos que esta es la convergencia que necesitamos.
Zl l\w 1 n=l Z[ 1"!1
(An _Anfl) Z Z Prx— G Z Prx
Yn =1V = 1xeX;(15) Yo veisi x€X;(18) Vo
o 1:_1 v Zn: Z
= Orx—— Z Z @1 s
Y Z?:l Vi I=1xeX;(13) Yn I=1 xeX; (1)

de donde

LW WL v

Ap+ (A —Ap_1) == = — Z Z <sz——Z Z Prx
WVn W X Vi 1=1x€X;(13) WVn = 1 xeX; (1)
:—Z Z <sz——2 Z Prx
‘an 1 x€X;(19) Wi 121 xex;(16)

Y, Qux

llj” x€X;(nd)
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Concluimos que,

Pnx -
Wn XGXZ’nS) ¢.s.en Q K

Por lo tanto la proposicion es cierta para d suficientemente grande.

Si 3 es arbitrario, podemos elegir k € N tal que & = kd sea tan grande como necesitemos.
Sea 0 <[ < k, aplicando el resultado al subarbol X (x,[ld,e]) con x € X(I8) y promediando,

obtenemos: :

Iim

oo Quk+1x=cCj cs.en L.
Wkt yex; (nk+1)8)

Luego, queda demostrada la proposicion. U
Una aplicacion de este resultado que usaremos mas adelante , es el siguiente corolario.

Corolario 3.3. Para cualquier d,u >0y parai,j€ S

Cju(nd) = Z(x,nd+u) ——=— EV(Z(u)).
/ ZJ (HS) xe);rﬁ) c.s. en Qg
Demostracion. Basta con tomar f(x) = |x| y aplicar el Lema 3.2. O

Este resultado nos dice como se comporta la cantidad de individuos cuando el tiempo tiende
a infinito, pero estamos considerando el tiempo discreto, lo que veremos a continuacién son
algunas acotaciones para poder pasar a tiempo continuo. La idea de las acotaciones es ver que en
un tiempo muy pequeiio (8) el proceso no puede variar mucho.

Lema 3.4. Dado € > 0 existe 8 > 0 tal que para todo i, j € Sy k € N, Pi-casi seguramente en Q

A0l

limsup sup <1+e¢g, (3.15)
n—oo  pd<s<(n+1)3 HZ(VZS)H
Z.
liminf inf ﬂ > 1—¢, (3.16)

n—e  p§<s<(n+1)5 Z;(nd)

. ) ) Yyex;(s) [1Z(v,u+s)]]
liminf inf in
n—o pd<s<(n+1)8  k8<u<(k+1)3 Lyex;(nd) ||Z(y,n8—|—k8)||

>1-—¢. (3.17)

Demostracion. Seand < s < (n+ 1)d. Podemos escribir,

1Zs)Il= ), X(rs)[< ), M(x[n8,(n+1)3])

xeX (nd) x€X (nd)

donde M(x, [nd, (n+1)8]) = max,5<s<(n+1)5|X (x,5)|. Claramente, ||Z(nd)|| > mdxcsZ;(nd).
Por lo tanto,

1zl 1
s < mix M(x, [n8, (n+1)3]).
w<s<(nin)s |1Z(nB)]] S Zj(nd) xeg('ns) o0, (n1)0)
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Por la Proposicién 3.2, la dltima expresion converge a m(8) = max e E/(M(0,[0,8])) c.s.
en Qi(f =M).

El proceso M(0, [0, 8]) estd dominado por el tamafio total a tiempo & del siguiente proceso de
ramificacion modificado: las variables aleatorias N, () las reemplazamos por ml’n{pr(x), 1},
para que cada individuo tenga al menos un hijo de su propio tipo. Este tltimo proceso tiene una
matriz generadora finita, que llamamos A™. Por lo tanto, m(8) < méx ¢ () 820, Luego,
(3.15) queda demostrada.

Para demostrar 3.16, basta con tomar u = k = 0 en (3.17). Por lo tanto veamos que es cierta
(3.17).

Seand <s<(n+1)dy kd < u < (k+1)3. Consideremos sélo los individuos y € X(s)
que estan vivos a tiempo nd y siguen vivos a tiempo (n+ 1)d y sélo sus descendientes que viven
durante el periodo [(n+k)d, (n+k+2)d|, es decir, z € X (y,s+u) . Podemos acotar de la siguiente

forma;
L IZOos+ullZ ) Tg,es X Lo
yEX;(s) x€X;(nd) z€X (x,(n+k)d)
donde T, , = inf{u > 0/x ¢ X (¢t + u)}. Notamos T, a Ty 0.
Luego,

Yyex;(s) 1Z0nu+s)|| N Loxex;(n8) Lz, 58} LeeX (x,(1+6)8) 1z, (100520}
Zyer(nS) | |Z(y7 nd + k8) | | B Zyer(nB) ‘ |Z(y7 nd + kS) | |
Por la Proposicion 3.2)
e (1) e, 505} LeeX (v(n008) Lt oisonst  nvee B! (L8} Eaex(0k8) He.y50051)
ZyEXj(nfS) ||Z(y7n8+k8)|| c.s. en Qs Zyer(O) ||Z(y7k8)||

Donde 7, es el tiempo de vida del individuo inicial, que es de tipo j. El dltimo denominador es
exactamente E/(|X (kd)|), y el numerador, es igual a

E/ (1{1:x>6} Y eXP[—ZS%(z)]>-

2€X (x,kd)

Sea a = méx;c s a;, luego esta expresion es mayor o igual que:
exp[—28a)E/ (15X (kB)|) = exp[~28a] (E7 (X (k8)[) — E’ (L7, <5y | X (k9)|))-

Por lo tanto,

(3.18)

EJ(1,55) Lex () Lz, 15528)) o[ EJ (17 <5 X (k3)])
Yyex;(0) [1Z(y,k8)]| B EJ(IX(k)|)

Analicemos por separado el dltimo cociente. En el numerador condicionamos a lo ocurrido
con la variable T,

E/ (s e X)) = | BV (15 ol X (kD) [ = hase™ds

5
_ / ET (X (k8)| |2, = s)axe™“*ds.
0
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La variable T, es el instante en el que el individuo inicial se reproduce, éste tiene Ny = (N1, .., Nyk)
descendientes. Notamos X" (¢) al proceso que comienza con n = (ny,..,n;) individuos iniciales,

. )
EI (1, 5 X (k9)]) = /O ae™ Y E(|XP(kS—5)[)P(N; = n)ds

neNk

_ / 4™ Y Y mE(|X (k8 —5)|)P(N, = n)ds

i= ln,eN()

) .
- [ e S E(Y NG (X (K5 —)]))ds

i=1

5 k .
= [aee Y. ENE' (X (k5—9)))ds

Ademads como (E(N;;)) es finita para todo i, j € {1,..,k}

. ko 18 .
B (<) W R9)) < mis B (N ) | e B X (k=)

Usando que /4 es autovector a derecha de la matriz E(Z(t)) obtenemos

k ENZ;(kd—s))h;

k
EN(X (k8 —5)| ) = E'(||[Z(kd—5)|[) = ¥ E'(Z;(k8 )
]:

1 j=1 hj
_L B8 s)hy _ ElZ(US—s)h) _ et
a minjes{hj} mfnjES{hj} mfnjeg{hj} ’

Por lo tanto,

MKkS=5) .

EV (15 <5 X (k3)]) < méx{E (N }axz / *aﬂmd

maxieS{E( Xi)}axzizl i/ e—axseh(kﬁ—s)ds
minjcs{h;} 0

_ méxieS {E( xl)}ax Zz 1 hi 7»k5 ( 1 e(x+aX)8>

minjcs{h;} Aa,  Atac

Por otro lado el denominador
EV(Z,(k3))
X (k iz - =P
B (x(5)) = T B ((k3) = T A0
€S €S
E/(Z(k8)h) MO,
T mixjes{hi} maxies{h}
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Luego para d suficientemente pequeifio, siguiendo con la desigualdad (3.18),

; méxieS{E(in)}afo‘{:lhi AkS 1 e~ (M+ax)d
E Lz 5y Leex(xhd) Lz, 15>25)) _ | minesthg) ¢ \Mba . Aras

‘ Z ,ks e ekkﬁh.
Zyer(O) H (y )|| méx,-ey[]hi}

. . ~(Mrax)d
. méx;es{h; } méx;es{E (Nxi) }ax 2521 hi (ﬁax - e;ﬁ—a)c)

_ e—25a
hjml’nje5{hj}

>1-—¢.

pues E(Ny) < oo,y hj € (0,1).
L

Ahora si, estamos en condiciones de analizar el comportamiento del proceso, cuando este no
se extingue.

Teorema 3.13 (Kesten-Stigum). Consideramos el caso super-critico A > 0. Para el proceso de
ramificacion ya definido Z(t), con Z(0) = ej para j € S,

Demostracion. Sea € > 0, por (3.14) existe 6 > 0 tal que para u € dN suficientemente grande,
|E/(Z(u)e ™) = hjm| < e
para todo j € S. Por el Corolario 3.3, podemos elegir s € N grande, tal que

||Cj7u<s)e_7m —hjm|| <e c.s. en Qg.

Donde C;,(s) = %erxj(s)Z(x,s—i—u). Si denotamos I1(7) = Z0T

Ja(e)TI(r) ]| = (Ze(;f—zu%_n‘
= iy €720~ 2~
-7 _lu’h» e—mxe x%m Z0x) = L2t~
=LA —lu o) - Zéfé(’_ Z?)ZOC? D
= X 20 —1) e Calt —w) = <

€S
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Concluimos que, ||a(f)I1(t) — x|| < €. Como ® y I1(z), son vectores de norma 1 obtenemos,
|ITI(r) —mf| <&

para todo ¢ € dn suficientemente grande, casi seguramente en Qg. Falta ver que la convergencia

es parat >0, para ello usemos las desigualdades Vistas en el Lema 3.4.

(nd)
Por (3.16) & Z > 1 —¢, por (3.15) HHZZn HH > 1+s’ luego

Zi(t) _ Zj(nd) ||Z(nd)]| Z;(r) _ 1-¢
1ZOI - [Z@3)[| [|Z(0)]] Zj(nd) ~ 1+

para t suficientemente grande. Es decir,

(m—eg).

Z:(t
liminf i) =
= ||Z(2)]|

Tanto I1(z), como T son probabilidades en un espacio de estados finito, por lo tanto el limite
superior y el limite inferior deben coincidir, pues si alguna coordenada del limite superior es
mayor que la del limite inferior, para que la suma siga siendo 1 tendria que haber alguna coorde-
nada que sea menor, y esto no puede ocurrir.

Con lo cual probamos que,
IimII(r) =

{—o0
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Capitulo 4

Aplicaciones

4.1. Proceso de urna

Consideremos el siguiente experimento, de una urna que contiene bolitas de colores, se ex-
trae una bolita y se sustituye por un nimero aleatorio de bolitas de diferentes colores, la distribu-
cién de cantidad de bolitas que agrego s6lo depende del color de la bolita extraida. Bajo ciertas
condiciones, las proporciones de colores diferentes tendran un limite. Este limite lo calcularemos
viendo que este experimento podemos pensarlo como un proceso de ramificacion. Describamos
en detalle el experimento.

En una urna hay bolitas de k colores distintos. El vector aleatorio X (n) es la composicion de
la urna después de n extracciones

X(I’l) = (Xl (n)7 "7Xk(n))7

donde X; es el nimero de bolitas del color i. La distribucion inicial X (0) es arbitraria. En la
(n+ 1)-ésima extraccion, la probabilidad de sacar una bolita de color i, es:
X,-(n)
T Xi(n)

Una vez que saco la bolita i repongo con N;; bolitas de color j, con 1 < j < k. Las variables
aleatorias (Nl-lj,l € N) son independientes e idénticamente distribuidas, / indica que es la /-ésima
bolita que extraje de la urna. Ademds cumplen las siguientes hipdtesis:

1. = NjjeNgparatodoi,je {l,.. k}.

= N;>1 Veie{l,., k}, (siempre se repone una bolita del color que se extrajo).

] P(Z’j‘-:1 Njj > 1) > 0 para algtn i (excluimos el caso degenerado que es reponer siem-
pre una bolita, ya que en ese caso se estaria manteniendo la cantidad de bolitas ini-
ciales).

2. E(lej) < oo, paratodo i, j € {1,..,k}.

65
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3. Sea M la matriz con entradas M;; = E(N;;). Suponemos que M es irreducible.

Teorema 4.1. Sea N = (N;}); jes una matriz aleatoria que satisface:
1. Nijj e Ngparatodoi,je{l,..,k}, Ny>1 Vie{l,. k}.
2. P(ZI;:1Nij > 1) > 0 para algiin i.
3. E(N) es irreducible.

La ecuacion
H(E(N)—1d) = o

tiene una inica solucion con o. > 0y u una medida.
Demostracion. Puede verse en Seneta [12]. ]
Por como definimos el proceso el generador es:

Xi(l’l) ‘
Y5 Xi(n)

Esto describe el proceso de una urna parametrizada con k vectores aleatorios N; = (N;;) 1< <k
1 <i<k.SeaX(n) el vector de proporciones después de n extracciones, es decir parai={1,..,k}

P(X(n+1)=z+y—ei|X(n)=2) =P(N;=Yy)

_ X))
Z_l,c'zlxj(”)

A

X,(I’l)

Para analizar la convergencia de X;(n), veamos que se comporta igual que un proceso discreto
inmerso en un proceso de ramificacién continuo multitipo. Sea Z(¢) un proceso de ramificacién
multitipo a tiempo continuo, tal que cada individuo tiene siempre un descendiente de su tipo y
ademas el tiempo de vida de cada individuo tiene distribucién exponencial de pardmetro 1 para
todo tipo de individuo. Este proceso esta dominado por debajo por un proceso de ramificacién
continuo de un solo tipo de individuo con media mayor a 1, pues si el proceso comienza con un
individuo de tipo i, Z;(¢) considera los individuos de tipo i descendientes de cualquier individuo
y cuando decimos el proceso de ramificacion de un solo tipo consideramos los individuos de tipo
i descendientes de individuos de tipo i. Como supusimos que cada individuo siempre deja un
descendiente de su tipo, tenemos que la media de la cantidad de individuos en el proceso simple
es mayor a 1, por lo tanto este proceso no se extingue y tampoco lo hace Z(t). Consideremos
las variables (§,),cn donde &; es el tiempo de la i-ésima ramificacién. Como el proceso no se
extingue, &, "= oo . Observemos que {£,} ey son las discontinuidades de Z(r) y ademds que
limy, e ZEn) lim; e 2l pues este ultimo limite existe c.s..
1Z(En)] 1Z(1)]

Teorema 4.2. Sean {Y,,n € N} el proceso de urna y {Z(t),t > 0} el proceso de ramificacion,
definidos anteriormente. Entonces los procesos {Y,,n € N} y {Z(§,),n € N} son equivalentes.
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Demostracion. Lo primero que notamos es que {Y;, },cn es un proceso a tiempo discreto y es una
cadena de Markov con probabilidades de transicién homogéneas. Por lo tanto, si ambos procesos
tienen el mismo estado inicial, nos basta con mostrar que ambos tienen igual probabilidades de
transicién. Supongamos que ambos comienzan iguales: Z(0) = Y (0) y miremos el primer paso.
El proceso de ramificacion comienza con Z;(0) individuos de tipo i, con i € {1,..,k}. El tiempo
de vida de cada individuo tiene distribucion exponencial de media 1. Asi que el proceso espera un
tiempo exponencial de media ):i;l Zi(0) y luego se ramifica, la probabilidad de que se ramifique

un individuo de tipo i es YL?(@ . En el proceso de urna la probabilidad de elegir una bolita de
j=1%j
color i es kY,»(O) . Como ambos procesos se inicializaron iguales,
r j=1 Y;(0)

Z(0)  Yi(0)

):I;':1 Zj(0) ):];':1 Y;(0) '

Después de esa ramificacion se incrementa un nimero aleatorio de individuos o bolitas, ;; y €l
proceso se inicializa de vuelta, por la falta de memoria del tiempo de vida de los individuos. Esto
muestra que si Y (0) = Z(0) entonces Y] tiene la misma distribucion que Z;. Este mecanismo de
transicion es idéntico para todo el proceso. [

Como vimos que ambos procesos son iguales, por el Teorema 3.13

PR () B
om 7 X = T7C. C.S.
Zj:l j(n)

4.2. Convergencia empirica a la distribucion
cuasiestacionaria

Dado (X),),cn un proceso de Markov en un espacio de estados finito nos interesa estudiar co-
mo evoluciona el proceso. Es decir queremos saber si las variables X, tienen algin limite. Vimos

que si el espacio de estados S es finito, y la matriz de transicion P es irreducible y aperiddica,
existe una unica distribucion estacionaria T que cumple:

L] Ziejnipij =T; VjesSs, T > Oy Zjejnj =1.
De donde, si comenzamos con la medida invariante y dejamos evolucionar el proceso, la
distribucion de X,, no cambia, es decir,

Pn(Xn :Sj) =T; Vn € N.

Luego, T es una medida invariante si y solo si TP = T, es decir, T es autovector a izquierda
asociado al autovalor 1.

= Dada y una distribucién inicial,

lim P,u(Xn = Sj) =T;.

n—oo



68 CAPITULO 4. APLICACIONES

Es decir, que no importa con qué distribuciéon comencemos, si dejamos evolucionar el
proceso, este tendrda aproximadamente la distribucién de la medida estacionaria.

= Convergencia de la distribucion empirica

Esta convergencia se deduce del Teorema Ergddico 1.6 tomando f(X,) =1 (Xo=Jj}-
Si queremos calcular la distribucién estacionaria, tenemos varias opciones
» buscar el autovector asociado al autovalor 1 de la matriz P,

= simular la cadena en N pasos, y usar la convergencia de la distribucion empirica para
estimar la distribucion estacionaria,

= usar simulacién perfecta, no vamos a entrar en detalle sobre este método pero puede verse
en: http://dimacs.rutgers.edu/ dbwilson/exact.html/

En la primera opcién calculamos exacta cual es la distribucion, el problema es que si el espacio
de estados es muy grande, calcular los autovectores es muy engorroso. La segunda opcion es una
buena forma de aproximar la distribucion estacionaria.

Por otro lado, consideremos el proceso de Markov (X, ),cn definido en el espacio de estados
SU{0} donde 0 es un estado absorbente, y P es la matriz de transicién con Ps es irreducible y
aperiddica. Llamamos 7" al primer momento en que la cadena es absorbida. Por el Teorema 2.2,
existe una unica distribucion cuasiestacionaria v que satisface:

n V>0 Vic{l,.,k}, Y& vi=1,
" Pv(Xn:Sj‘T>n):Vj Vn € Ny Vj:{l,..,k}.
Ademads vimos que cumple:

= VPs =Av, donde A es el autovalor de médulo maximo de P, Aesreal y 0 < A < 1. (Puede
verse en Seneta [12])

n 1im, .o Py(X, = sj|T > n) =v;, donde u es la distribucion inicial.

Nos gustaria calcular v, para eso podemos hallar los autovalores y autovectores de P, pero
si el espacio de estados es muy grande, no es practico. En este caso, usar el método de rechazo
no es bueno, es decir, simular para estimar v corriendo la cadena y descontando las veces que
toca al estado absorbente, es malo, pues P(T > n) tiende a cero exponencialmente. Por lo tanto,
queremos un método para simular v. Vamos a dar el método propuesto por Aldous, Flannery y
Palacios [1]. La idea es definir un proceso donde la distribucién empirica converja a v.

Primero suponemos que conocemos a v y consideramos el proceso V = (V,),en definido en
S de la siguiente manera, V,, es X,, mientras que 7" > n, cuando 7 = N no contamos la transicién
y la cadena X vuelve a § en el paso N + 1 con la distribucion de v.
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Teorema 4.3. Consideremos los procesos (Xp)nen ¥ (Va)nen construidos anteriormente. Si v
es la distribucion cuasiestacionaria de (X,)ncN entonces Vv es la distribucion estacionaria de

(Vn)nEN .

Demostracion. Para comenzar verifiquemos que (V,),en es una cadena de Markov:
Claramente,

P(Vis1 = 5|V = si,.,Vo = 50) = P(Vog1 = 5j|Va = 51).
Sea Q la matriz de transiciéon de V, donde las entradas de Q son:
QzJ:sz‘f’PzOV] ‘v’z,]E{l,,k}

pues la forma de que la cadena V salte de s; a s; es que X pase de s; a s, 0 que pase de s; al 0, y
luego al ser redistribuida con v, esta vaya a s.
Luego,
P(Viy1 =5V =5i) = Qjj

Como V es la distribucion cuasiestacionaria de X, cumple lo siguiente:
Lv,i>0Vvie{l, .k}yYs vi=1,
2. VPg = 7»1V.

Luego, para ver que V es la distribucion estacionaria, solo falta ver que vQ = v. Sea j € {1,..,k},

lj +P10Vj

k
ZViQij =
i=1
k

vP,,+Zv PV
i=1

—MVJ+VJZV
i=1

=MV, +V, (Zv,

i=1

||Ma~ HM»

i

||M»
v

=Mv;+v;(1- Z?lez)

z=1
:7»1\/]'—1—\’]'(1 —Kl)
ZV]'.

Con lo cual probamos que V es la distribucion estacionaria de V. [
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Sabemos que la distribucién empirica Oy converge a la distribucién estacionaria v, donde

1 N
0:(N) = N Y L=
n=1

Por supuesto que como no conocemos V no podemos simular este proceso. Sin embargo podemos
adaptarlo; si X va al estado absorbente en el paso N, la cadena X en el paso N+ 1 vuelve a § usan-
do la distribucién empirica 6. Demos la definicién formal del proceso de Markov (V;,,&(n))en,
si §(n) es la distribucién empirica de V a tiempo n.

Definicion 4.1. Sea M un conjunto de medidas en Sy (V,,E(n)) en S x M una cadena de
Markov, con Vi =iy & = ej, con transiciones:

P(Voy1 =5,,E(n+1) =E+ej|V, = 51,E(n) = &) :Bj+P,-o|%.

donde & =Y jc&;.

El siguiente teorema muestra que para el proceso adaptado, la distribucién empirica converge
av.

Teorema 4.4. Para el proceso definido anteriormente,

limn '€, =v

n—oo
donde v es la distribucion cuasiestacionaria de X,,.

Demostracion. A la definicién anterior le agregamos un contador. Sea C(m), el nimero de veces
que la cadena X fue absorbida por el O hasta el paso m,

C(m) = Z Lix.=o}-
i=1

Lo inicializamos con C(1) = 0. Veamos como afecta este contador en el generador. Suponiendo
que V, = s;, y que X fue C veces absorbida, hay dos formas distintas de que V11 = s,

= la primera es que en ese paso X no fue absorbida, y pasé de s; a s;;

PV = $j,E(n+1) =& +¢,C(n+1) = CIVy = 5:,&(n) = £,C(n) =€) = B,

= yla segunda que X fue absorbida, y al volver a § con & fue a s;;

&

PV = 55,50+ 1) = & e, Clnt 1) = C 11V, = 5. 8(n) = £, Clm) =€) = P
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Sea S, = min{m/C(m) = n} es decir, S, es el tiempo en que la cadena X fue absorbida por
n-ésima vez. Sea (n) = &(S,) la medida de conteo empirica a ese tiempo. Vimos que el proceso
de urna es equivalente a el proceso discreto inmerso en un proceso de ramificaciéon multitipo a
tiempo continuo. Veamos ahora que B(n) es un proceso de urna y por lo tanto podremos usar
los resultados de procesos de ramificacion. La cadena comienza en el estado i, esto es en el
proceso de urna, que la urna se inicializa con una bolita de color i. La cadena pasea por los
estados segtn la matriz de transiciéon P hasta que llega al estado absorbente. Esto es equivalente a
reponer bolitas en la urna, se reponen N;; bolitas, donde N;; tiene la distribucion de Z]T.;ll l{vj(n)}.
Notemos que la distribucion de reponer bolitas en la urna solo depende de la bolita extraida. La
cadena vuelve a un estado s; € S, usando (1), en la urna esto es elegir una bolita entre las bolitas
que estan en la urna que son 3(1). Ambos procesos contindan con este mecanismo.

Queremos ver que las variables N;; cumplen las hip6tesis del Teorema 4.1 para que el autoval-
or de médulo méaximo de E(N) sea mayor a 1, y asi estar en las condiciones del caso super-critico
del proceso de ramificacion.

Lo =X Ly,=;3 €No  Vje{l,...k},
- ):];:1 Z"Z:_Ol Lv=s;) = Zqf:_ol ):];':1 Ly, =51 = Z,{:_Ol 1=T>1puesVy=s;

= P(XA Y00 Ly,—jy > 1) = P(T > 1) > 0 pues Py # 1.

2. El(X) 20 1y,—s})?] S E(T?) <ec.

3.
T-1 o0 o0
Mij=ENij) =E(Y. ly,=s;3Vo=51) = E(Y L=, 75m Vo = 5:) = Y ()i
n=0 n=0 n=0
es decir,
M=) P
n=0

La hipdtesis de irreducibilidad de Ps implica irreducibilidad de M.

Por lo tanto (B(n)),en esta bajo las hipdtesis del Teorema 3.13, s6lo nos falta verificar que v es la
solucion del Teorema 4.1, es decir la tinica solucién de uR = o, con o positivo y u una medida.
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Y virij= Y VilMi;— 1)

€S €S

= ZWMU— ) Vil
€S €S

= Zv, Z (P")ij—V,
ics n=0

=Y Y viP")ij—v;
n=0icS

=) N'v—v;
n=0

- Jl—?\, J

1=

Como o = ﬁ > 0, v es la tnica solucién de VR = av. Luego por el teorema (3.13),

LjesBj(n) es
Como B;(n) = &;(Sx), Bj(n) es cuantas veces la cadena X pasé por el estado s; antes de la

n-ésima absorcion. Si sumamos sobre todos los estados de S, es la cantidad de estados por los
que paso la cadena, es decir, Sj,.

V.

Zjes E.»j(Sn) = Sn

Luego,
AN AN
Su c.s.
Tenemos la convergencia que buscamos pero en lugar de para todo n s6lo en los momentos en los
que la cadena fue absorbida. Para ver que la convergencia es cierta para n € N primero veamos

que Sg—j‘ — 1,
g
Ademas, E [(Sm—l —Sn)z} =E(E [(Sn—i-l —Sn)z] |Sy) = E(E(T§)) = E(T}) que es finito. Sea
¢ > 0 tal que E(Tg) < c. Luego,
d

' g2 - n2e?

EKS”*&—_S”Y} E[(Su1 5,0
Sn n n+1 —on i|
+_ 1‘ > e) < <

Snt1 c
1 <
Sy ‘ ) n2e?’
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(=) I .
Como } " | -7 es finito

Sn+1 n—00
— 1.

n C.S.

Sea m tal que, S, <m < §,,41. Con lo cual,

E(Sn) < &(m) <E(Snt1)-
Por un lado
g(m) < &(Sn-i-l) _ E.»(Sn—i-l) Snt1 Y
Sn - Sn Sn+l Sn ’
por otro lado
§m) _ &(S:) _&(S) S,

Sn+1 o Sn+l Sn Sn-H

Finalmente vimos que,
lim n'(n) =v.

n—oo

Por lo tanto demostramos que la distribucién empirica de la cadena V converge a la distribucién
cuasiestacionaria de X. L
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Capitulo 5
Apéndice

Teorema 5.1. Sean X,X>, .. martingalas con |X,+1 — X,| < M. Sean,
C = {lim,_ X, existe y es finito},
D = {limsup,,_,.,X;, = +oo, liminf, X, = —co},
Entonces, P(CUD) = 1.

Demostracion. Puede verse en Durret [4](pag. 239). O

Lema 5.1 (Borel Cantelli condicionado). Sea (F,,n € N) una filtracion con Fy = {0,Q} y
(Ay)neN una sucesion de eventos, tal que A, € F,. Entonces,

N U= { Y P(An] Fact) = oo}.

keNn>k neN

Demostracion. Consideremos las siguientes variables aleatorias, Xo =0y
n
X, = ZI{A‘/‘}_P(AJW?-J'*I) Vn € N.
j=1

La variable X,, asi definida es una martingala:

s F, C Fur1,luegoA; € F,, Vj<nyporlotanto X, € F,.

n+1
( n+1’,{]:n - (ZI{A}_ (A |—[]:J )|—¢n>
n+1 n+1
=E<ZI{A,}|%> L P
=1 =

=E<Z {A,}lfn> +EL,, 3 Fn) — Z (Aj|Fj-1) = P(Ans1| Fn)

j=1 J=1
—X,.

75



76 CAPITULO 5. APENDICE

= E(Xp11) = E(Xa), y E(Xor1) = E(X,) = E(Xo) = 0.

Por otro lado, [X,1 —Xu| = [144,,,3 — P(An+1|F —n)| < 1. Por lo tanto estamos en las condi-
ciones del teorema 5.1, lo que implica que P(CUD) = 1. Si ocurre D = {limsup,_, X, =
+oo,  liminf, e X, = —oo}, como X, = ):;le Liay —P(Aj|Fi-1),

n n
Y 1y — 4 P(Aj|Fj1) == Foe.
=1 =1

J

Si ocurre C = {lim,,_... X, existe y es finito}

n n
le{Aj} T oo = ZIP(Aj!T_H) 22 oo,
Jj= Jj=

Luego, {A, ocurre infinitas veces } = {}7_| P(A;|F;—1) = +oo}. ]
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