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congresos, mis exámenes, y mis dı́as de ¨tengo mucho que estudiar¨, en especial a Matı́as y a

Lisi.

Y a muchos otros que no menciono pero forman parte de mi vida diaria.

3



4
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Introducción

Uno de los temas centrales en el estudio de cadenas de Markov es el comportamiento de la

cadena para tiempos largos. Bajo condiciones de irreducibilidad y aperiodicidad de estas cade-

nas se tiene existencia y unicidad del comportamiento asintótico, lo cual está dado por la medida

invariante. Esta medida es la única con la siguiente propiedad: si el proceso comienza distribuido

según ella, para todo los tiempos siguientes la medida del proceso es igual a la inicial. En térmi-

nos de la matriz de transición, la medida invariante es caracterizada por el autovector a izquierda

asociado al autovalor 1. Un ejemplo es el paseo al azar en los vértices de un cuadrado. Consid-

eremos entonces los siguientes cuatro puntos de R
2 : (0,0),(1,0),(1,1),(0,1). Los enumeramos

de 1 a 4 para simplificar la notación y construiremos un proceso de Markov en el espacio de

estados S = {1,2,3,4}. Nos moveremos por estos cuatro puntos pasando de un vecino al otro.

Una vez que estamos parados en un punto elegimos a uno de los dos vecinos con probabilidad

1/2 para cada uno. Para cada n, Xn denota la esquina en la que estamos parados a tiempo n. O

sea, {Xn}n∈N es una cadena de Markov con probabilidad de transición

P =









0 1
2

0 1
2

1
2

0 1
2

0

0 1
2

0 1
2

1
2

0 0 1
2









.

Por la simetrı́a del modelo, la única medida invariante es la uniforme, que asigna 1/4 de prob-

abilidad a cada esquina. Es fácil ver que este es el autovector a izquierda asociado al autovalor

1.

No obstante, muchos procesos tienen un estado absorbente. Esto significa que tienen un es-

tado del cual el proceso no sale, con lo cual si estudiamos el comportamiento de la cadena para

tiempos grandes, la cadena estará en el estado absorbente. Por ejemplo, podemos considerar un

proceso de nacimiento y muerte cuyo espacio de estados son los naturales. Con probabilidad de

transición

p(n,n+1) = p, p(n,n−1) = 1− p, n ∈ N

y p(0,n) = 0,∀n ∈ N y p(0,0) = 1. Si p ≥ 1
2

puede verse que, con probabilidad 1, la cadena

será absorbida en el estado n = 0, y a partir de entonces se quedará constante igual a cero. Este

estado corresponde a la situación donde murieron todos los individuos de la población.

Otro ejemplo es considerar la siguiente matriz de transición

P =

(

1
2

1
2

1 0

)

.
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Hay solamente dos estados S = {1,2}, del primero se salta con probabilidad 1/2 para si mismo,

y con probabilidad 1/2 se salta para el segundo. En el segundo se mantiene con probabilidad 1

en si mismo. Por lo tanto la única medida invariante es la que pone probabilidad total para el

segundo estado.

Considerando un espacio de estados finito, bajo la hipótesis de irreducibilidad de la matriz sin

el estado absorbente, este será alcanzado con probabilidad 1 y entonces la versión estacionaria

del proceso carece de todo interés ya que se trata de un proceso constantemente igual al estado

absorbente con probabilidad 1. Podemos entonces preguntarnos por la distribución del proce-

so a tiempos grandes condicionada a que no ha sido absorbido y analizar su comportamiento

asintótico. A este lı́mite lo llamamos lı́mite de Yaglom. Definimos una distribución cuasiesta-

cionaria como una medida de probabilidad que es invariante para la evolución condicionada a no

ser absorbida. Esta distribución está dada por el autovector a izquierda asociado al autovalor de

módulo máximo de la matriz de transición sin la fila y columna del estado absorbente. Además,

probaremos que el lı́mite de Yaglom es la medida cuasiestacionaria.

Tratamos este problema para procesos de Markov a tiempo discreto. En espacio de estados

finito, la distribución cuasiestacionaria puede ser calculada usando herramientas del álgebra lin-

eal, pero en el caso en que el espacio de estados sea muy grande, esto se torna impracticable.

Aldous, Flannery y Palacios propusieron un método para obtener una muestra (aproximada) de

la distribución cuasiestacionaria.

La idea central es, dada una cadena de Markov con un estado absorbente, construir otra

cadena de Markov sin estados absorbentes, que nos ayude a aproximar la distribución cuasi-

estacionaria que buscamos. En palabras, esto se hace de la siguiente manera: dada la cadena de

Markov con un estado absorbente, el nuevo proceso que creamos pasea por los estados hasta que

llega al estado absorbente. En el siguiente paso se vuelve aleatoriamente a uno de los estados no

absorbentes proporcionalmente a la cantidad de veces que ha pasado por cada estado. La canti-

dad normalizada de veces que ha pasado por cada estado se dice medida empı́rica. Considerando

el vector aleatorio cuya primera entrada corresponde al estado que visita a tiempo n y la segunda,

la medida empı́rica en ese tiempo, tendremos una cadena de Markov. Hecho esto, encontraremos

una identificación entre la medida empı́rica en los tiempos de absorción y el proceso discreto in-

merso en un proceso de ramificación multitipo a tiempo continuo en caso super crı́tico, del cual

estudiamos la distribución asintótica de la población. Y con esto obtendremos la convergencia

buscada.

La tesis está estructurada de la siguiente manera:

En el Capı́tulo 1, tratamos nociones básicas de cadenas de Markov a tiempo discreto en

espacios de estados finito, hacemos una de las construcciones posibles, y vemos que bajo ciertas

condiciones hay existencia y unicidad de la distribución estacionaria. Por último estudiamos la

convergencia de los promedios empı́ricos.

En el Capı́tulo 2, damos una introducción al estudio de distribuciones cuasiestacionaria, ana-

lizamos existencia y unicidad.

En el Capı́tulo 3, tratamos procesos de ramificación. Damos la construcción del proceso, ana-

lizamos la extinción de la cadena y en el caso de que esto no ocurra obtenemos el comportamiento

asintótico del proceso. Esto lo hacemos para distintos casos; comenzamos con tiempo discreto,

luego tiempo continuo y al final analizamos el caso multidimensional a tiempo continuo.
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En el Capı́tulo 4, estudiamos los procesos de urna y su equivalencia con los procesos de

ramificación, ya que esto nos ayudará a estudiar la simulación propuesta por para la distribución

cuasiestacionaria de cadenas de Markov con estados absorbentes.
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Capı́tulo 1

Procesos de Markov

Vamos a comenzar introduciendo algunas nociones sobre procesos estocásticos. Un proceso

estocástico es una familia de variables aleatorias (Xt)t∈T definidas en un mismo espacio muestral

(Ω,F ,P) donde

Xt : Ω −→ S .

Usualmente S se dice espacio de estados mientras que el ı́ndice t suele representar al tiempo. En

algunos casos pensaremos en T = N o T = N0, dando lugar a un proceso estocástico a tiempo dis-

creto, mientras que hablaremos de procesos a tiempo continuo cuando T = [0,∞). Por ejemplo,

una sucesión (Xi)i∈N de variables aleatorias independientes idénticamente distribuidas (en ade-

lante i.i.d.) es un proceso estocástico. En este capı́tulo, nos dedicaremos al estudio de procesos a

tiempo discreto tomando valores en espacios de estados finitos, consideraremos S = {s1, ..,sk}.

Está basado en las notas de Haggstrom [6] y en el libro de Brémaud [3].

1.1. Cadenas de Markov a tiempo discreto

Definición 1.1. Se dice que el proceso estocástico (Xn)n∈N es una cadena de Markov si:

P(Xn+1 = sn+1|X0 = s0, ...,Xn = sn) = P(Xn+1 = sn+1|Xn = sn) ∀n ∈ N

si P(X0 = s0, ...,Xn = sn) 6= 0.

Es decir que si conocemos el proceso hasta tiempo n, la posición del proceso a tiempo n+1

solo depende de la posición a tiempo n y no de todo el pasado.

Definición 1.2. El proceso (Xn)n∈N se dice Markov homogéneo si además la probabilidad condi-

cional no depende del tiempo, es decir, para todo n ∈ N

P(Xn+1 = s j|X0 = s0, ...,Xn = si) = P(Xn+1 = s j|Xn = si) = p(si,s j) = Pi j.

En lo que sigue, nos restringiremos a considerar procesos homogéneos.

Definición 1.3. Sea P una matriz con entradas Pi j con i, j ∈ {1, ..,k}. P se dice matriz de tran-

cisión si verifica:

11
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Pi j ≥ 0 para todo i, j ∈ {1, ..,k}.

∑k
j=1 Pi j = 1 para todo i ∈ {1, ..,k} .

Observemos que,

P(X0 = s0, ....,Xn = sn) = P(X0 = s0)P01P12...Pn−1n.

Definición 1.4. Llamamos µ o µ(0) a la distribución inicial del proceso,

µ(0) = (µ
(0)
1 ,µ

(0)
2 , ...,µ

(0)
k ) = (P(X0 = s1),P(X0 = s2), ...,P(X0 = sk)).

Conociendo la distribución inicial µ y la matriz de transición P queda caracterizado el proce-

so.

P(X0 = i) = µi,

P(Xn+1 = s j|Xn = si) = Pi j.

Los vectores, µ(1),µ(2), ... describen la distribución de la cadena de Markov a tiempo 1,2.. ,

donde

µ(n) = (µ
(n)
1 ,µ

(n)
2 , ...,µ

(n)
k ) = (P(Xn = s1),P(Xn = s2), ...,P(Xn = sk))

para todo n ∈ N.

Teorema 1.1. Sea (Xn)n ∈ N una cadena de Markov definida en S con distribución inicial µ(0) y

matriz de transición P. Para cada n, la distribución µ(n) satisface:

µ(n) = µ(0)Pn.

Demostración. Veamos que la igualdad es cierta usando inducción.

Para n = 1, sea s j ∈ S , se tiene

µ
(1)
j = P(X1 = s j)

= ∑
i∈S

P(X1 = s j|X0 = si)P(X0 = si)

= ∑
i∈S

µ
(0)
i Pi j

= (µ(0)P) j

De donde,

µ(1) = µ(0)P

Supongamos que vale para n = m, veamos que es cierto para n = m+1
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µ
(m+1)
j = P(Xm+1 = s j)

= ∑
i∈S

P(Xm+1 = s j|Xm = si)P(Xm = si)

= ∑
i∈S

µ
(m)
i Pi j

= (µ(m)P) j

de donde, µ(m+1) = µ(m)P. Pero por la hipótesis inductiva, µ(m) = µ(0)Pm, entonces

µ(m+1) = µ(0)Pm+1.

1.2. Propiedad de Markov Fuerte

En la sección anterior vimos la propiedad de Markov, que nos dice que para predecir el futuro

del proceso, conocer sólo el presente nos brinda tanta información como conocer toda la historia

del proceso hasta el presente. Una formulación más general es la Propiedad de Markov Fuerte,

aquı́ sólo la enunciaremos, pero para ello son necesarias unas definiciones previas.

Definición 1.5. Sea (Ω,F ,P ) un espacio de probabilidad. Sean (Fn)n∈N, σ-álgebras. Se dice

que (Fn)n∈N es un filtración, si

Fn ⊆ Fn+1 ⊆ F ∀n ∈ N.

La introducción de filtraciones es importante para el estudio de procesos estocásticos. Pode-

mos pensar que Fn representa toda la información disponible hasta tiempo n. Un proceso es-

tocástico X = (Xn)n∈N se dice que es adaptado a la filtración F = (Fn)n∈N si para cada n ∈ N,

Xn es Fn-medible. (Notamos, Xn ∈ Fn).

Definición 1.6. Sea (Ω,F ) un espacio medible con una filtración (Fn)n∈N.

Un tiempo aleatorio T es una variable aleatoria F -medible, con valores en N∪{+∞}.

Un tiempo aleatorio τ se dice tiempo de parada con respecto a la filtración si {τ≤ n} ∈Fn,

para todo n ∈ N.

Teorema 1.2 (Propiedad de Markov Fuerte). Sea (Xn)n∈N una cadena de Markov homogénea

definida en un espacio de estados S y con matriz de transición P. Sea τ un tiempo de parada

respecto a la filtración Fn = σ(X1, ..,Xn) para n ∈ N. Dado cualquier estado si ∈ S , si Xτ = si,

entonces:

El proceso después de τ y el proceso antes de τ son independientes.
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El proceso después de τ es una cadena de Markov homogénea con matriz de transición P.

Demostración. Puede verse en Brémaud [3, Sección 7.1] .

La propiedad fuerte de Markov es, una extensión de la propiedad de Markov a tiempos de

parada. Cabe aclarar que, en general, no vale el resultado para tiempos aleatorios cualesquiera.

La estructura particular del tiempo de parada es la que permite al proceso que conocer la posición

a tiempo τ, sea lo mismo que conocer toda la historia del proceso hasta τ.

1.3. Construcción de una Cadena de Markov

Vimos que la distribución inicial y la matriz de transición caracterizan una cadena de Markov.

Surge entonces la siguiente pregunta; ¿Cómo simulamos una cadena de Markov (Xn)n∈N en el

espacio de estados S , con distribución inicial µ y con matriz de transición P?

Vamos a necesitar U0,U1, ... variables aleatorias independientes con distribución uniforme

en el intervalo [0,1] y dos funciones, la primera la llamamos función inicial; Ψ : [0,1] → S ,

asumimos que cumple lo siguiente:

particionamos el intervalo [0,1] en varios subintervalos, y Ψ es constante en cada uno.

para cada s∈ S , el largo total de los intervalos con Ψ = s es µ(s), es decir,
∫ 1

0 1{Ψ(x)=s}dx =
µ(s).

Con la función Ψ, podemos generar X0 usando la primera de las variables uniformes. Sea X0 =
Ψ(U0), esto da una correcta distribución de X0 pues, para cada s ∈ S ;

P(X0 = s) = P(Ψ(U0) = s) =
∫ 1

0
1{Ψ(x)=s}dx = µ(s).

Definamos la función inicial:

Ψ(x) =











































s1 si x ∈ [0,µ(0)(s1))

s2 si x ∈ [µ(0)(s1),µ
(0)(s1)+µ(0)(s2))

...

si si x ∈ [∑i−1
j=1 µ(0)(s j),∑

i
j=1 µ(0)(s j))

...

sk si x ∈ [∑k−1
j=1 µ(0)(s j),1].

Claramente ası́ definida verifica ambas condiciones, pues es constante en cada intervalo y

además,
∫ 1

0 1{Ψ(x)=si}dx = ∑i
j=1 µ(s j)−∑i−1

j=1 µ(s j) = µ(si).
Ya sabemos como generar X0, nos falta generar Xn+1 a partir de Xn para cualquier n. Para ello

vamos a usar la v.a. Un+1 y una función Φ : S × [0,1]→ S , es decir, la entrada de la función es un

elemento de S y un número entre 0 y 1 y la salida un elemento de S . Necesitamos que Φ cumpla

ciertas propiedades:
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para si ∈ S , la función Φ(si,x) es constante a trozos (mirándola solo como función de x).

para si,s j ∈ S el largo total de los intervalos con Φ(si,x) = s j es p(si,s j).

Al igual que la primer función que definimos, podemos reescribir la segunda condición:

∫ 1

0
1{Φ(si,x)=s j}dx = Pi j.

Si Φ satisface esta condición, entonces P(Xn+1 = s j|Xn = si) = P(Φ(si,Un+1) = s j|Xn = si) =
P(Φ(si,Un+1) = s j) = Pi j. Observemos que Un+1 es independiente de U1, ...,Un y por lo tanto es

independiente de Xn. Luego definimos la función actualizadora, para si ∈ S ;

Φ(si,x) =











































s1 si x ∈ [0,Pi1)

s2 si x ∈ [Pi1,Pi1 +Pi2)
...

si si x ∈ [∑i−1
j=1 Pi j,∑

i
j=1 Pi j)

...

sk si x ∈ [∑k−1
j=1 Pi j,1].

Por como definimos Φ claramente cumple ambas condiciones, pues es constante a trozos

y además,
∫ 1

0 1{Φ(si,x)=s j}dx = ∑
j
l=1 Pil −∑

j−1
l=1 Pil = Pi j. De esta forma simulamos la cadena de

Markov,

X0 = Ψ(U0)

X1 = Φ(X0,U1)

X2 = Φ(X1,U2)

...

y ası́ sucesivamente.

Esto prueba la existencia de la cadena de Markov a partir de las variables aleatorias inde-

pendientes con distribución uniforme definidas en un mismo espacio y de dos funciones, a las

que llamamos función inicial (Ψ) y función actualizadora (Φ). Existen otras elecciones posibles

para las funciones Φ, y Ψ que pueden tener distintas ventajas. Esta elección será muy útil en las

siguientes secciones.

1.4. Cadenas de Markov irreducibles y aperiódicas

En la sección siguiente vamos a estudiar el comportamiento de las cadenas a largo plazo,

para ello necesitamos hacer ciertas suposiciones sobre las cadenas de Markov. Vamos a consid-

erar cadenas irreducibles y aperiódicas, y analizar sus propiedades. Comencemos con algunas

definiciones.
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Definición 1.7. Una cadena de Markov (Xn)n∈N en S con matriz de transición P, se dice irre-

ducible si ∀si,s j ∈ S existe n ∈ N tal que (Pn)i j > 0.

El perı́odo de un estado, si ∈ S es d(i) = mcd{n ≥ 1/(Pn)ii > 0}.

Un estado si ∈ S se dice aperiódico si d(i)=1.

Una cadena de Markov se dice aperiódica, si todos sus estados son aperiódicos.

Lema 1.1. Sea (Xn)n∈N una cadena de Markov aperiódica en S = {s1, ..,sk} con matriz de

transición P. Existe N ∈ N tal que (Pn)ii > 0 para i ∈ {1, ..k},∀n ≥ N.

Para demostrar este lema vamos a utilizar el siguiente resultado de teorı́a de números.

Lema 1.2. Sea A = {a1,a2, ...} un conjunto de números naturales, tal que

1. mcd = {a1,a2, ..} = 1,

2. si a ∈ A y ã ∈ A entonces a+ ã ∈ A (cerrado bajo suma).

Entonces existe N ∈ N tal que n ∈ A para todo n ≥ N.

Demostración. Puede verse en el apéndice de Brémaud [3].

Demostración del Lema 1.1. Para cada si ∈ S , sea Ai = {n ≥ 1/(Pn)ii > 0}, es decir, Ai son los

tiempos posibles de retorno del estado si. Como la cadena de Markov es aperiódica, el estado si

es aperiódico: mcd{n ≥ 1/(Pn)ii > 0}=1. Veamos que es cerrado bajo suma, sean a, ã ∈ A, por

lo que P(Xa = si|X0 = si) > 0 y P(Xã+a = si|Xa = si) > 0 luego,

P(Xa+ã = si|X0 = si) ≥ P(Xa+ã = si,Xa = si|X0 = si)

= P(Xa+ã = si|Xa = si,X0 = si)P(Xa = si|X0 = si)

= P(Xa+ã = si|Xa = si)P(Xa = si|X0 = si) > 0

de donde, a+ ã ∈ A. Luego A satisface las hipótesis del lema previo, por lo tanto existe Ni tal que

(Pn)ii > 0 ∀n ≥ Ni, tomando N = máx{N1,N2, ..,Nk} queda demostrado el teorema.

Corolario 1.1. Sea (Xn)n∈N una cadena de Markov irreducible y aperiódica, en un espacio

de estados S = {s1, ..,sk} y P matriz de transición, entonces existe M < ∞ tal que (Pn)i j > 0

∀i, j ∈ {1,2, ..,k} y ∀n ≥ M.

Demostración. Por el teorema anterior, existe N ∈ N tal que (Pn)ii > 0 ∀n ≥ N, ∀i ∈ {1,2, ..,k}.

Sean si,s j ∈ S . Como (Xn)n∈N es irreducible, existe ni j tal que (Pni j)i j > 0. Sea Mi j = N + ni j,

para m tal que m−ni j > N

P(Xm = s j|X0 = si) ≥ P(Xm−ni j
= si,Xm = s j|X0 = si)

≥ P(Xm−ni j
= si|X0 = si)P(Xm = s j|Xm−ni j

= si)

> 0.

Luego (Pm)i j > 0 ∀m ≥ Mi j, el corolario queda demostrado, tomando M = máx{Mi j : i, j ∈
{1,2, ..,k}}.
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1.5. Distribuciones estacionarias

Vamos a considerar una de las cuestiones principales en la teorı́a de Markov, la distribución

de la cadena a largo plazo. ¿Qué podemos decir sobre la cadena de Markov, si la dejamos correr

un largo tiempo? Para empezar veamos la definición de distribución estacionaria.

Definición 1.8. Sea (Xn)n∈N una cadena de Markov en S = {s1, ..sk} con matriz de transición

P. El vector π = (π1, ...,πk) se dice que es una distribución estacionaria de la cadena si:

1. πi ≥ 0 ∀i = {1, ..,k} y ∑k
i=1 πi = 1.

2. πP = π, es decir, ∑k
i=1 πiPi j = πi ∀ j = {1, ..,k}.

La primera condición muestra que π es una probabilidad en S y la segunda implica que si la

distribución inicial µ(0) es igual a π entonces la distribución de la cadena a tiempo 1 satisface:

µ(1) = µ(0)P = πP = π, de donde µ(n) = π, para todo n.

Vamos a probar que si la cadena es irreducible y aperiódica existe una única distribución

estacionaria, para ello debemos analizar ciertas propiedades de estas cadenas.

Definición 1.9. Sea Ti j la primera vez que la cadena visita el estado s j, siendo que a tiempo 0

comenzó en si. Si X0 = si, definimos:

Ti j = mı́n{n ≥ 1/Xn = s j}

y Ti j = ∞ cuando la cadena nunca visita al estado s j. También definimos el tiempo esperado

hasta visitar el estado s j, como τi j = E(Ti j).

Lema 1.3. Sea (Xn)n∈N una cadena de Markov irreducible y aperiódica, definida en un espacio

de estados S = {s1, ...,sk}, con matriz de transición P. Para cualquier estado si,s j ∈ S , si X0 = si,

entonces P(Ti j < ∞) = 1 y además, τi j es finito.

Demostración. Por el corolario anterior, existe M < ∞ tal que (PM)i j > 0 para todo i, j ∈
{1, ...,k}. Sea α = mı́n{(PM)i j/i, j ∈ {1, ...,k}}. Notemos que α es positivo. Sean si,s j dos esta-

dos de S y supongamos que la cadena empieza en si. Entonces,

P(Ti j > M) ≤ P(X0 = si,X1 6= s j, ...,XM 6= s j)

≤ P(XM 6= s j)

≤ 1−α.

También, podemos acotar la probabilidad de no haber llegado a s j a tiempo 2M, condicio-

nando sobre lo sucedido a tiempo M;

P(Ti j > 2M) ≤ P(Ti j > 2M|Ti j > M)P(Ti j > M)

≤ P(X2M 6= s j|Ti j > M)P(Ti j > M)

= P(X2M 6= s j|X1 6= s j, ...,XM 6= s j)P(Ti j > M)

≤ P(X2M 6= s j|XM 6= s j)(1−α)

≤ (1−α)2.
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Iterando este argumento, para cualquier l tenemos,

P(Ti j > lM) ≤ P(Ti j > M)P(Ti j > 2M|Ti j > M) · · ·P(Ti j > lM|Ti j > (l −1)M)

≤ (1−α)l.

Tomando lı́mite cuando l → ∞, obtenemos que P(Ti j = ∞) = 0. Veamos que τi j es finito,

E(Ti j) =
∞

∑
n=1

P(Ti j ≥ n)

=
∞

∑
l=0

(l+1)M−1

∑
n=lM

P(Ti j > n)

≤
∞

∑
l=0

(l+1)M−1

∑
n=lM

P(Ti j > lM)

= M
∞

∑
l=0

P(Ti j > lM)

≤ M
∞

∑
l=0

(1−α)l

= M
1

1− (1−α)
=

M

α
< ∞,

con lo cual queda demostrado el lema.

Definición 1.10. Si X0 = s1, definimos ρi, el número esperado de visitas al estado i antes de

regresar al estado inicial, es decir, para i = 1, ..,k,

ρi = E(
T11

∑
n=1

1{Xn=si}).

Observemos que ρi = E(∑
T11

n=1 1{Xn=si}) = E(∑∞
n=1 1{Xn=si}1{T11>n}) que podemos reescribirlo

como ∑∞
n=1 P(Xn = si,T11 > n) = ∑∞

n=0 P(Xn = si,T11 > n).

Definición 1.11. Un estado i ∈ S se dice recurrente si

P(Tii < ∞) = 1.

En otro caso se dice transitorio. Un estado recurrente i∈ S se dice recurrente positivo si E(Tii) <
∞. Una cadena de Markov se dice recurrente (positiva) si todos sus estados son recurrentes

(positivos).

Observación 1.1. Sea (Xn)n∈N una cadena de Markov irreducible y aperiódica, definida en un

espacio de estados finito. Entonces, (Xn)n∈N es recurrente positiva.
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Ahora sı́ estamos en condiciones de demostrar la existencia de una distribución estacionaria.

Teorema 1.3. Para cualquier cadena de Markov irreducible y aperiódica, existe por lo menos

una distribución estacionaria.

Demostración. Sea (Xn)n∈N una cadena de Markov irreducible y aperiódica, en un espacio de

estados S = {s1, ...,sk} y matriz de transición P. Supongamos que la cadena empieza en el estado

s1. El tiempo esperado de retorno τ11 es finito, y claramente ρi < τ11, por lo tanto ρi también es

finito para todo i ∈ {1, ..,k}. Proponemos,

π = (π1, ...,πk) =

(

ρ1

τ11
,

ρ2

τ11
, ...,

ρk

τ11

)

.

Veamos que ası́ definido, cumple las dos condiciones de la definición de distribución estacionaria.

por como lo definimos, πi ≥ 0 para i = 1, ...,k. Veamos que ∑k
n=1 πi = 1;

τ11 = E(T11) =
∞

∑
n=0

P(T11 > n)

=
∞

∑
n=0

k

∑
i=1

P(Xn = si,T11 > n)

=
k

∑
i=1

∞

∑
n=0

P(Xn = si,T11 > n)

=
k

∑
i=1

ρi

de modo que,

k

∑
i=1

πi =
1

τ11

k

∑
i=1

ρi = 1.

queremos ver que ∑k
i=1 πiPi j = π j para todo j = 1, ...,k. Veamos primero para j 6= 1
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π j =
ρ j

τ11
=

1

τ11

∞

∑
n=0

P(Xn = s j,T11 > n)

=
1

τ11

∞

∑
n=1

P(Xn = s j,T11 > n)

=
1

τ11

∞

∑
n=1

P(Xn = s j,T11 > n−1)

=
1

τ11

∞

∑
n=1

k

∑
i=1

P(Xn−1 = si,Xn = s j,T11 > n−1)

=
1

τ11

∞

∑
n=1

k

∑
i=1

P(Xn−1 = si,T11 > n−1)P(Xn = s j|Xn−1 = si,T11 > n−1)

=
1

τ11

∞

∑
n=1

k

∑
i=1

P(Xn−1 = si,T11 > n−1)P(Xn = s j|Xn−1 = si)
1

=
1

τ11

∞

∑
n=1

k

∑
i=1

Pi jP(Xn−1 = si,T11 > n−1)

=
1

τ11

k

∑
i=1

Pi j

∞

∑
n=1

P(Xn−1 = si,T11 > n−1)

=
1

τ11

k

∑
i=1

Pi j

∞

∑
n=0

P(Xn = si,T11 > n)

=
1

τ11

k

∑
i=1

Pi jρi

=
k

∑
i=1

πiPi j.

Falta verificar esta condición para j = 1,

ρ1 =
∞

∑
n=0

P(Xn = s1,T11 > n) = P(T11 > 0) = 1.

1{T11 > n−1} = {X1 6= s1, ...,Xn−1 6= s1}
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Vimos que P(T11 < ∞) = 1, luego

ρ1 = P(T11 < ∞) =
∞

∑
n=1

P(T11 = n)

=
∞

∑
n=1

k

∑
i=1

P(Xn−1 = si,T11 = n)

=
∞

∑
n=1

k

∑
i=1

P(Xn−1 = si,Xn = s1,T11 > n−1)

=
∞

∑
n=1

k

∑
i=1

P(Xn = s1|Xn−1 = si)P(Xn−1 = si,T11 > n−1)

=
∞

∑
n=1

k

∑
i=1

Pi1P(Xn−1 = si,T11 > n−1)

=
k

∑
i=1

Pi1

∞

∑
n=1

P(Xn−1 = si,T11 > n−1)

=
k

∑
i=1

Pi1

∞

∑
n=0

P(Xn = si,T11 > n)

=
k

∑
i=1

Pi1ρi

por lo tanto,

π1 =
ρ1

τ11
=

k

∑
i=1

ρiPi1

τ11
=

k

∑
i=1

πiPi1.

Con lo cual, probamos que π es una distribución estacionaria.

Nos preguntamos si esta distribución estacionaria es única. Pero antes de analizar la unicidad

de la distribución estacionaria, podemos responder a la pregunta inicial: ¿Qué le pasa a la cade-

na de Markov cuando la dejamos correr un tiempo suficientemente largo? Bajo ciertas hipótesis

podemos ver que sin tener en cuenta cual sea la distribución inicial, la distribución a tiempos

grandes, se parecerá a la distribución estacionaria. Para ver esto, debemos usar alguna métri-

ca para calcular la distancia entre las distribuciones de probabilidad. Existen varias métricas,

aquı́ usaremos una llamada distancia de variación total.

Definición 1.12. Sean los vectores µ(1) = (µ
(1)
1 , ...,µ

(1)
k ) y µ(2) = (µ

(2)
1 , ...,µ

(2)
k ) distribuciones de

probabilidad en S = {s1, ...,sk}. Definimos la distancia de variación total entre µ(1) y µ(2) como:

dV T (µ(1),µ(2)) =
1

2

k

∑
i=1

|µ
(1)
i −µ

(2)
i |.
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Si µ(1),µ(2), ... y µ son distribuciones en S , decimos que µ(n)converge a µ en variación total

cuando,

lı́m
n→∞

dV T (µ(n),µ) = 0.

Notación: µ(n) V T
−−−→
n→∞

µ.

Observemos que si dV T (µ(1),µ(2)) = 0 =⇒ µ(1) = µ(2). Además, puede verse que

dV T (µ(1),µ(2)) = sup
A∈S

|µ(1)(A)−µ(2)(A)|.

Teorema 1.4. Sea (Xn)n∈N una cadena de Markov irreducible y aperiódica en S = {s1, ..sk},

con matriz de transición P y una distribución inicial µ0. Entonces para cualquier distribución

estacionaria π para la matriz P,

µ(n) V T
−−−→
n→∞

π.

Demostración. Vimos que la cadena de Markov (Xn), podemos obtenerla a partir de variables

aleatorias uniformes en [0,1] y dos funciones a las que llamamos, función de inicialización(Ψµ)
y función de actualización (Φ). Vamos a usar el método de acoplamiento, es decir, construir

varios procesos en el mismo espacio de probabilidad.

Sea (X ′
n)n∈N otra cadena de Markov, con ψπ la función iniciadora para la distribución inicial

π, sean (U ′
1,U

′
2, ...) otra sucesión de variables aleatorias uniformes en [0,1] (independientes de

las Ui). Simulamos X ′
n:

X ′
0 = Ψ(U ′

0)

X ′
1 = Φ(X ′

0,U
′
1)

X ′
2 = Φ(X ′

1,U
′
2)

...

Como π es la distribución estacionaria, X ′
n tiene distribución π para todo n. Además, las

cadenas (X1,X2, ...),(X
′
1,X

′
2, ...) son independientes. Queremos ver que con probabilidad 1 las

cadenas se encuentran, es decir, que existe un n tal que Xn = X ′
n. Para ello definamos el primer

tiempo de encuentro:

T = mı́n{n/Xn = X ′
n}

y notamos T = ∞ si las cadenas nunca se encuentran. Sabemos que existe M finito, tal que

(PM)i j > 0 para todo i, j = {1, ...,k}. Sea α = mı́n{(PM)i j : j, i = {1, ...,k}}, claramente α > 0.
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Acotemos la probabilidad de que las cadenas se encuentren antes del tiempo M,

P(T ≤ M) ≥ P(XM = X ′
M) ≥ P(XM = s1,X

′
M = s1)

= P(XM = s1)P(X ′
M = s1)

=
k

∑
i=1

P(X0 = si,XM = s1)
k

∑
i=1

P(X ′
0 = si,X

′
M = s1)

=
k

∑
i=1

P(XM = s1|X0 = si)P(X0 = si)
k

∑
i=1

P(X ′
M = s1|X

′
0 = si)P(X ′

0 = si)

≥ α
k

∑
i=1

P(X0 = si)α
k

∑
i=1

P(X ′
0 = si) = α2.

Luego, P(T > M) ≤ 1−α2. De la misma forma, condicionando a lo que pasó a tiempo M,

podemos acotar P(X2M = X ′
2M), luego

P(X2M 6= X ′
2M|T > M) ≤ 1−α2.

Por lo tanto,

P(T > 2M) = P(T > M)P(T > 2M|T > M)

≤ (1−α2)P(X2M 6= X ′
2M|T > M)

≤ (1−α2)2.

Iterando este argumento, para cualquier l,

P(T > lM) ≤ (1−α2)l.

Luego,

lı́m
n→∞

P(T > n) = 0.

Es decir, que las dos cadenas se encuentran con probabilidad 1. Vamos a construir una tercer

cadena de Markov (X ′′
0 ,X ′′

1 , ...) Sea X ′′
0 = X0 y para cada n:

X ′′
n+1 =











Φ(X ′′
n ,Un+1) si X ′′

n 6= X ′
n

Φ(X ′′
n ,U ′

n+1) si X ′′
n = X ′

n.

En otras palabras, esta nueva cadena es exactamente (X0,X1, ...) hasta T , y luego (X ′
0,X

′
1, ...).

Observemos que (X ′′
0 ,X ′′

1 , ...) es una cadena de Markov con matriz de transición P, pues las (Un)
son independientes de las (U ′

n)n∈N.

La variable X ′′
0 tiene distribución inicial µ(0). Luego, para todo n, X ′′

n tiene distribución µ(n).

Para cualquier i ∈ {1, ..,k}

µ(n)−πi = P(X ′′
n = si)−P(X ′

n = si) ≤ P(X ′′
n = si,X

′
n 6= si)

≤ P(X ′′
n 6= X ′

n) = P(T > n).
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Cambiando los roles de X ′′
n y X ′

n, obtenemos

πi −µ
(n)
i ≤ P(T > n).

Luego,

|πi −µ
(n)
i | ≤ P(T > n)

n→∞
−−−→ 0.

Lo que implica,

lı́m
n→∞

dV T (µ(n),π) = lı́m
n→∞

1

2

k

∑
i=1

|πi −µ
(n)
i | = 0.

Teorema 1.5 (Teorema de Unicidad). Para cualquier cadena de Markov irreducible y aperiódica

definida en un espacio de estados finito existe una única distribución estacionaria.

Demostración. Sea (Xn)n∈N una cadena de Markov irreducible y aperiódica, con matriz de tran-

sición P. Sabemos que existe al menos una distribución estacionaria. Sean π y π̃ dos distribu-

ciones estacionarias de P, veamos que π = π̃. Si la cadena empieza con distribución inicial

µ(0) = π̃ entonces µ(n) = π̃,∀n ∈N. Por otro lado, vimos que lı́m dV T (µ(n),π) = 0. Como µ(0) = π̃
es lo mismo que lı́mdV T (π̃,π) = 0, como dV T (π̃,π) no depende de n,

dV T (π̃,π) = 0,

y por lo tanto,

π = π̃.

1.6. Promedios empı́ricos: el Teorema Ergódico

En esta sección trataremos el Teorema Ergódico para cadenas de Markov. Vamos a ver condi-

ciones para garantizar la convergencia en probabilidad del promedio empı́rico.

Definición 1.13. Si X0 = s1, definimos el tiempo de parada T k
11, como la k-ésima vez que la

cadena vuelve al estado s1, es decir,

T k+1
11 = mı́n{n > T k

11/Xn = s1}.

Definición 1.14. Sea C(n) la cantidad de veces que la cadena pasa por el estado s1 antes del

tiempo n.

C(n) =
n

∑
i=1

1{Xi=s1}.
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Lema 1.4. Sea (Xn)n∈N una cadena de Markov irreducible y recurrente en S = {s1, ..,sk} y sea

f : S → R. Para cualquier distribución inicial µ;

lı́m
n→∞

1

C(n)

n

∑
i=1

f (Xi) =
k

∑
j=1

f (s j)ρ j c.s.

Demostración. Sea i ∈ {1, ..,k}, y supongamos X0 = s1. Consideremos las siguientes variables

aleatorias,

UP =
T P+1

11

∑
n=T P

11+1

f (Xn),

UP depende de XT P
11+1, ...,XT P+1

11
, por lo tanto las variables aleatorias (UP)P≥1 son i.i.d. para

cualquier distribución inicial. Asumimos f ≥ 0 y usando la Propiedad de Markov Fuerte 1.2,

Eµ(UP) = E(U1) = E

(

T11

∑
n=1

f (Xn)

)

= E

(

T11

∑
n=1

k

∑
j=1

f (s j)1{Xn= j}

)

=
k

∑
j=1

f (s j)E

(

T11

∑
n=1

1{Xn= j}

)

.

Luego,

Eµ(UP) =
k

∑
j=1

f (s j)ρ j.

Como el espacio de estados es finito, y el tiempo esperado de retorno a cualquier estado también

es finito, la esperanza de las UP es finita. Entonces, estamos en condiciones de aplicar la Ley de

los Grandes Números a las variables aleatorias (UP)P∈N y obtenemos

1

n

n

∑
P=1

UP
c.s.

−−−→
n→∞

k

∑
j=1

f (s j)ρ j.

Además como,

1

n

n

∑
P=1

UP =
1

n

n

∑
P=1

T P+1
11

∑
n=T P

11+1

f (Xn) =
1

n

T n+1
11

∑
n=T

f (Xn)

y como

T
C(n)
11 ≤ n ≤ T

C(n)+1
11 ,
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resulta

∑
T

C(n)
11

j=1 f (X j)

C(n)
≤

∑n
j=1 f (X j)

C(n)
≤

∑
T

C(n)+1
11

j=1 f (X j)

C(n)
.

Por otro lado, (Xn)n∈N es recurrente por lo tanto C(n)
n→∞
−−−→ ∞. Luego,

∑n
j=1 f (X j)

C(n)

n→∞
−−−→

k

∑
j=1

f (s j)ρ j.

En el caso de una función arbitraria f , se puede considerar f + = máx{0, f} y f− = máx{0,− f},

tanto f + como − f− cumplen el lema, y de la diferencia obtenemos el resultado requerido.

Teorema 1.6 (Teorema Ergódico). Sea (Xn)n∈N una cadena de Markov irreducible y aperiódica,

definida en un espacio de estados S = {s1, ..,sk} y con distribución estacionaria π y sea f : S →
R. Luego, para cualquier distribución inicial µ;

lı́m
n→∞

1

n

n

∑
j=1

f (X j) =
k

∑
i=1

f (si)πi = Eπ( f (X1)).

Demostración. Por el lema anterior,

lı́m
n→∞

1

C(n)

n

∑
i=1

f (Xi) =
k

∑
j=1

f (s j)ρ j.

Si f ≡ 1,

n

C(n)

n→∞
−−−→

k

∑
j=1

ρ j = τ11.

Luego,

lı́m
n→∞

1

n

n

∑
i=1

f (Xi) = lı́m
n→∞

C(n)

n

1

C(n)

n

∑
i=1

f (Xi) =
∑k

j=1 f (s j)ρ j

τ11
=

k

∑
j=1

f (s j)π j.



Capı́tulo 2

Distribuciones Cuasiestacionarias

Muchos procesos estocásticos tienen un estado absorbente, lo que significa que si el proceso

llega al estado absorbente, se queda ahı́ para siempre. En un proceso de Markov con un estado

absorbente, buscar la distribución estacionaria no tiene sentido, ya que si dejamos evolucionar

el proceso un buen rato, el proceso estará en el estado absorbente. Veremos que bajo ciertas

condiciones, si el proceso tiene un estado absorbente, con probabilidad 1 será absorbido. Por lo

tanto, en estos casos nos interesa estudiar qué ocurre antes de ser absorbido. Si la cadena esta

definida en un espacio de estados S , cualquier elemento o cualquier subconjunto de S podrı́an

ser estados absorbentes. En este trabajo el estado absorbente será el 0, sólo para simplificar la

notación.

Definición 2.1. Dada una cadena de Markov definida en un espacio de estados S ∪ {0} con

S = {s1, ..,sk} y matriz de transición P, con entradas Pi j, i, j ∈ {0,1, ..,k}. Si existe j ∈ {1, ..,k}
tal que Pj0 > 0, decimos que 0 es un estado absorbente si P0 j = 0 para todo j ∈ {1, ..,k}.

Para analizar cuándo el proceso es absorbido, debemos definir el tiempo de absorción. Luego

veremos que las hipótesis necesarias para asegurarnos que la cadena es absorbida con probabili-

dad 1, son irreducibilidad y aperiodicidad sobre S .

Definición 2.2. Definimos el tiempo de parada T0 como el tiempo de absorción, es decir:

T0 = mı́n{n ∈ N/Xn = 0}.

y notamos T0 = ∞ si Xn 6= 0 para todo n ∈ N0.

Sea PS la matriz P restringida a S , es decir, la matriz P sin la fila y la columna correspondi-

entes al 0.

Lema 2.1. Sea una cadena de Markov, con un estado absorbente definida en el espacio de

estados finito S ∪ {0} con matriz de transición P y PS irreducible y aperiódica. Dada µ una

distribución inicial,

Pµ(T0 = ∞) = 0.

27
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Demostración. La matriz PS es una matriz sub-estocástica, es decir, la suma de las coordenadas

de cada fila es menor a 1, sin embargo como es irreducible y aperiódica podemos usar el Coro-

lario 1.1 pues puede verse en su demostración que no es necesario que sea una matriz estocástica.

Por lo tanto existe N ∈ N tal que Pn
i j > 0,∀n ≥ N,∀si,s j ∈ S . Por otro lado, la probabilidad de ir

de algún estado de S al 0 es positiva, es decir, Pj0 > 0 para algún s j ∈ S . Luego, existe M ∈N tal

que PM
i0 > 0,∀si ∈ S . Sean α = mı́n{PM

i0 > 0/ j = {1, ..,k}} y µ la distribución inicial. Entonces

para n ∈ N, Pµ(T0 > n) = ∑k
i=1 Pi(T0 > n)µi. Acotemos Pi(T0 > M) para cada i ∈ {1, ..,k}

Pi(T0 > M) ≤ Pi(X1 6= 0, ..,XM 6= 0)

≤ Pi(XM 6= 0) ≤ 1−α.

Condicionando a lo sucedido a tiempo M obtenemos:

Pi(T0 > 2M) = Pi(T0 > 2M|T0 > M)Pi(T0 > M)

≤ Pi(X2M 6= 0|T0 > M)Pi(T0 > M)

= Pi(X2M 6= 0|XM 6= 0)Pi(T0 > M)

≤ (1−α)2.

Iterando,

Pi(T0 > lM) ≤ (1−α)l ∀i ∈ {1, ..,k}.

Luego, Pµ(T0 > lM) = ∑k
i=1 Pi(T0 > n)µi ≤ (1−α)l y por lo tanto,

Pµ(T0 = ∞) = 0.

Del lema se ve que la cadena es absorbida en un tiempo finito con probabilidad 1 y además

que Pµ(T0 > n) tiende a cero exponencialmente.

Corolario 2.1. Todos los momentos de T0 son finitos.

Demostración. Sea µ la distribución inicial,

Eµ(T
l

0) =
∞

∑
m=1

mlPµ(T0 = m) ≤
∞

∑
m=1

mlPµ(T0 > m−1)

=
∞

∑
n=0

(n+1)lPµ(T0 > n) ≤
∞

∑
n=0

(n+1)l(1−α)[n/M+1].

De donde, para todo l ∈ N, Eµ(T
l

0) es finito.



29

Para un proceso que empieza con distribución inicial µ, definimos la evolución del proceso

condicionada a no ser absorbido como:

ϕ
µ
j(n) = Pµ(Xn = s j|T0 > n)

equivalentemente,

ϕ
µ
j(n) =

Pµ(Xn = s j)

Pµ(T0 > n)
=

Pµ(Xn = s j)

Pµ(Xn 6= 0)
=

Pµ(Xn = s j)

∑k
i=1 Pµ(Xn = si)

=
∑k

z=1 Pµ(Xn = si|X0 = sz)Pµ(X0 = sz)

∑k
i=1 ∑k

z=1 Pµ(Xn = si|X0 = sz)Pµ(X0 = sz)

=
∑k

z=1 µz(P
n)z j

∑k
i=1 ∑k

z=1 µz(Pn)zi

=
(µPn) j

∑k
i=1(µPn)i

.

De aquı́ se ve que ∑k
j=1 ϕ

µ
j(n) = 1. Queremos analizar el comportamiento asintótico de ϕ

µ
n, es

decir, lı́mn→∞ ϕ
µ
n.

Definición 2.3. Cuando existe lı́mn→∞ ϕ
µ
n y es una medida de probabilidad se lo denomina Lı́mite

de Yaglom para µ. Denotamos

ν j = lı́m
n→∞

ϕ
µ
j(n).

Al igual que con las medidas invariantes, cuando este lı́mite existe, es invariante para la

evolución de la probabilidad condicionada. A estas medidas se las llama distribuciones cuasi-

estacionarias.

Definición 2.4. El vector ν = (ν1, ..,νk) se dice que es una distribución cuasiestacionaria si

1. νi ≥ 0 ∀i ∈ {1, ..,k} y ∑k
i=1 νi = 1 ,

2. ϕν
j(n) = ν j ∀n ∈ N0 ∀ j = {1, ..,k}.

La primer condición nos dice que es una medida y la segunda que es invariante para el proceso
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condicionado. Dada µ una distribución inicial;

ϕ
µ
j(n+1) = Pµ(Xn+1 = s j|Xn+1 6= 0) =

Pµ(Xn+1 = s j)

Pµ(Xn+1 6= 0)

=
∑k

i=1 P(Xn+1 = s j|Xn = si)Pµ(Xn = si)

∑k
z=1 Pµ(Xn+1 = sz)

=
∑k

i=1 P(Xn+1 = s j|Xn = si)Pµ(Xn = si)

∑k
z=1 ∑k

i=1 P(Xn+1 = sz|Xn = si)Pµ(Xn = si)

=
∑k

i=1 Pi jϕ
µ
i (n)

∑k
z=1 ∑k

i=1 Pizϕ
µ
i (n)

=
∑k

i=1 Pi jϕ
µ
i (n)

∑k
i=1

(

ϕ
µ
i (n)∑k

z=1 Piz

)

=
∑k

i=1 Pi jϕ
µ
i (n)

∑k
i=1

(

ϕ
µ
i (n)(1−Pi0)

) =
∑k

i=1 Pi jϕ
µ
i (n)

1−∑k
i=1 ϕ

µ
i (n)Pi0

.

Luego se tiene

ϕ
µ
j(n+1) =

k

∑
i=1

Pi jϕ
µ
i (n)+

k

∑
i=1

ϕ
µ
i (n)Pi0ϕ

µ
j(n+1).

Por lo tanto ν es una distribución cuasiestacionaria sı́ y solo sı́

ν j =
k

∑
i=1

Pi jνi +
k

∑
i=1

Pi0νiν j.

Por otra parte si ν es el lı́mite de Yaglom, verifica:

ν j =
k

∑
i=1

Pi jνi +
k

∑
i=1

Pi0νiν j.

y por lo tanto es una distribución cuasiestacionaria.

Queremos analizar existencia y unicidad de la distribución cuasiestacionaria, para ello vamos

a utilizar herramientas de álgebra lineal, ya que el comportamiento de la cadena depende de la

matriz de transición.

Teorema 2.1 (Perron-Frobenius). Sea A una matriz no negativa e irreducible, de r×r. Entonces,

existe un autovalor λ1 real, positivo, con multiplicidad 1 y tal que λ1 > |λ j| para todo λ j au-

tovalor de A. Además sean u,v autovectores a izquierda y derecha respectivamente asociados a

λ1, podemos elegirlos positivos y tal que |v| = 1 y utv = 1. Sean λ2, ..,λr los demás autovalores

de A, tales que λ1 > |λ2| ≥ ... ≥ |λr|. Sea m j la multiplicidad de λ j. Luego,

An = λn
1vut +O(nm2−1|λ2|

n), ∀n ∈ N.

Demostración. Para la demostración ver Seneta [12].
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Ahora sı́ estamos en condiciones de mostrar existencia de una distribución cuasiestacionaria.

Teorema 2.2. Para una cadena de Markov, con un estado absorbente definida en un espacio de

estados S∪{0}, con S = {s1, ..,sk} y matriz de transición P, con PS irreducible y aperiódica,

existe una única distribución cuasiestacionaria, que es el lı́mite de Yaglom.

Demostración. Por el Teorema de Perron-Frobenius (2.1) aplicado a la matriz PS , existe un au-

tovalor λ1 real, positivo, con multiplicidad 1 y tal que λ1 > |λ j| para todo λ j autovalor de PS , y

existen u y v autovectores a izquierda y derecha asociados a λ1 tales que,

(Pn
S )i j = λn

1viu j +O(nm2−1|λ2|
n) ∀n ∈ N. (2.1)

Queremos ver que existe el lı́mite de Yaglom, para ello busquemos una expresión para la proba-

bilidad condicionada usando la igualdad de (2.1). Sea µ la distribución inicial,

Pµ(Xn = s j|T0 > n) =
Pµ(Xn = s j)

Pµ(T0 > n)
=

∑k
i=1 Pi(Xn = s j)P(X0 = si)

∑k
i=1 Pi(T0 > n)P(X0 = si)

=
∑k

i=1(P
n
S )i jµi

∑k
i=1 ∑k

z=1(P
n
S )izµi

=
∑k

i=1

(

λn
1viu j +O(nm2−1|λ2|

n)
)

µi

∑k
i=1 ∑k

z=1

(

λn
1viuz +O(nm2−1|λ2|n)

)

µi

=
∑k

i=1 λn
1viu jµi +O(nm2−1|λ2|

n)∑k
i=1 µi

∑k
i=1 ∑k

z=1 λn
1viuzµi +O(nm2−1|λ2|n)∑k

i=1 ∑k
z=1 µi

=
∑k

i=1 λn
1viu jµi +O(nm2−1|λ2|

n)

∑k
i=1 ∑k

z=1 λn
1viuzµi +O(nm2−1|λ2|n)k

=
λn

1u j ∑k
i=1 viµi

λn
1(∑

k
z=1 uz)(∑

k
i=1 viµi)+O(nm2−1|λ2|n)k

+
O(nm2−1|λ2|

n)

∑k
i=1 ∑k

z=1 λn
1viuzµi +O(nm2−1|λ2|n)k

=

[

(∑k
z=1 uz)(∑

k
i=1 viµi)

u j ∑k
i=1 viµi

+
O(nm2−1|λ2|

n)k

λn
1u j ∑k

i=1 viµi

]−1

+O(nm2−1

∣

∣

∣

∣

λ2

λ1

∣

∣

∣

∣

n

)

=

[

∑k
z=1 uz

u j
+

O(nm2−1|λ2|
n)k

λn
1u j ∑k

i=1 viµi

]−1

+O(nm2−1

∣

∣

∣

∣

λ2

λ1

∣

∣

∣

∣

n

).

Expresemos de otra forma el primer término,

[

∑k
z=1 uz

u j
+

O(nm2−1|λ2|
n)k

λn
1u j ∑k

i=1 viµi

]−1

=
u j

∑k
z=1 uz

−
1

ξ2

λn
1u j ∑k

i=1 viµi

O(nm2−1|λ2|n)k
,
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con ξ ∈

(

u j

∑k
z=1 uz

,
u j

∑k
z=1 uz

+
λn

1u j ∑k
i=1 viµi

O(nm2−1|λ2|n)k

)

. Entonces se tiene

Pµ(Xn = s j|T0 > n) =
u j

∑k
z=1 uz

−
1

ξ2

λn
1u j ∑k

i=1 viµi

O(nm2−1|λ2|n)k
+O(nm2−1

∣

∣

∣

∣

λ2

λ1

∣

∣

∣

∣

n

).

Luego,

lı́m
n→∞

Pµ(Xn = s j|T0 > n) =
u j

∑k
i=1 ui

= ν j.

Por lo tanto, para cualquier distribución inicial, el Lı́mite de Yaglom es el autovector a

izquierda asociado a λ1 de PS:

νPS = λ1ν.

Veamos que ν es una distribución cuasiestacionaria. Es una probabilidad ya que, ν j > 0, ∀ j =

{1, ..,k} y ∑k
j=1 ν j =

∑k
j=1 u j

∑k
i=1 ui=1

= 1, y es invariante para la distribución inicial,

ϕν
j(n) =

Pν(Xn = s j)

∑k
z=1 Pν(Xn = sz)

=
∑k

i=1 Pi(Xn = s j)νi

∑k
z=1 ∑k

i=1 Pi(Xn = sz)νi

=
∑k

i=1(P
n
S )i j

ui

∑k
z=1 uz

∑k
z=1 ∑k

i=1
ui

∑k
z=1 uz

(Pn
S )iz

=
∑k

i=1 ui(P
n
S )i j

∑k
z=1 ∑k

i=1 ui(P
n
S )iz

=
λ1u j

∑k
z=1 λ1uz

=
u j

∑k
z=1 uz

= ν j.

Con lo cual, probamos que existe una distribución cuasiestacionaria. Veamos que es única.

Sean ν y ν̃ dos distribuciones cuasiestacionarias. Si la cadena empieza con distribución inicial

µ = ν̃ entonces ϕµ(n) = ν̃, ∀n ∈ N.

Por otro lado vimos que para cualquier distribución inicial µ, como lı́mn→∞ ϕµ(n) = ν resulta

que lı́mn→∞ dV T (ϕµ(n),ν) = 0. Tomando µ = ν̃ obtenemos lı́mdTV (ν̃,ν) = 0, como dTV (ν̃,ν) no

depende de n,

dTV (ν̃,ν) = 0

y por lo tanto,

ν = ν̃.



Capı́tulo 3

Procesos de Ramificación

Este capı́tulo se basa en el estudio de procesos de ramificación, que nos serán de mucha

utilidad para analizar el comportamiento de un método para simular las distribuciones cuasiesta-

cionarias. Esta basado principalmente en los libros de Harris [7] y en Athreya-Ney [2].

El primer estudio de procesos de ramificación se dio porque existı́a la preocupación de que

los apellidos aristocráticos se estaban extinguiendo. El origen de las investigaciones se atribuye

a los estudios realizados, independientemente, por Bienaymé en Francia y por Galton y Watson

en Inglaterra (1873).

Los procesos de ramificación han sido utilizados como modelos matemáticos para describir

procesos empı́ricos, relacionados con la Biologı́a, la Fı́sica nuclear, la Medicina, las ciencias de

la Computación, la Demografı́a, etc.

La estructura de este capı́tulo es la siguiente, comenzamos con el proceso de ramificación

llamado Galton-Watson, es un proceso a tiempo discreto que representa la cantidad de individuos

de las generaciones sucesivas. Estudiamos varias propiedades, calculamos la probabilidad de

extinción, y analizamos el comportamiento del proceso cuando no se extingue. Seguimos con

una generalización, que es considerar el tiempo de vida continuo, analizamos propiedades y

vemos la similitud con el caso discreto. Por último, consideramos distintos tipos de individuos,

tratamos el tiempo continuo, y principalmente analizamos el comportamiento del proceso cuando

no se extingue. Varios de los resultados de este último caso pueden encontrarse en Georgii-Baake

[5].

3.1. Proceso de Galton-Watson

Suponemos que el proceso se inicia con un individuo, el cual constituye la generación cero,

sus hijos forman parte de la primera generación, sus nietos la segunda, y ası́ sucesivamente. De

esta manera denotamos la variable aleatoria Zn como el número de individuos de la n-ésima

generación.

Sea pi la probabilidad de que un individuo deje i descendientes, con i ∈ N0. Para cada j ∈
N, k ∈ N0, ξk

j representa el número de hijos del j-ésimo miembro de la k-ésima generación.

33
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Podemos expresar a Zn+1 a partir de {ξk
j, 0 ≤ k ≤ n, j ≥ 1},

Zn+1 = ξn
1 + ..+ξn

Zn
.

Asumimos que {ξk
j, k ≥ 0, j ≥ 1} son variables aleatorias i.i.d., donde P(ξ1

1 = i) = pi ∀i ∈

N0. Si comenzamos con i individuos, notamos Z
(i)
n , n ∈ N. Este proceso es la suma de i procesos

de ramificación independientes que se inician con un solo individuo. Para evitar situaciones triv-

iales, vamos a suponer que p0 + p1 < 1. Es decir, la probabilidad de tener a lo sumo un individuo

es menor que 1.

Estamos interesados en estudiar si la familia perdura en el tiempo, en este caso nos pregunta-

mos si al pasar las generaciones el apellido seguirá existiendo. Para esto tendrı́amos que conocer

la distribución de Zn, para ası́ poder calcular P(Zn = 0) para n suficientemente grande. Pero es-

to es complicado ya que la distribución de la cantidad de individuos en la generación n-ésima

depende de las generaciones anteriores.

Una función que será muy útil en el estudio de procesos de ramificación es la función gener-

adora de momentos de la variable Z1.

Sea Φ : [0,1] → R+ definida por Φ(s) = E(sZ1) = E(sξ1
1). Consideramos también sus com-

posiciones,

Φ0(s) = s Φ1(s) = Φ(s), (3.1)

Φn+1(s) = Φ(Φn(s)) n ∈ N. (3.2)

Proposición 3.1. La función generadora de Zn es Φn(s), es decir, componer n veces la función

generadora de Z1.

Demostración. Sea Φ(n) la función generadora asociada a Zn:

Φ(n)(s) = ∑
k∈N0

P(Zn = k)sk.

Como Φ(s) = Φ(1)(s), basta probar que la sucesión de funciones Φ(n) cumple una relación de

recurrencia como (3.2). Por como la definimos,

Φ(n+1)(s) = E(sZn+1) = E(sξn
1+..+ξn

Zn ) = ∑
k∈N0

E(1{Zn=k}sξn
1+..+ξn

k).

La variable Zn es independiente de las variables ξn
j , j ≥ 1, por lo tanto,

E(1{Zn=k}sξn
1+..+ξn

k) = E(1{Zn=k})E(sξn
1+..+ξn

k) = P(Zn = k)E(sξn
1+..+ξn

k).

Como las variables, ξn
1, ..,ξ

n
k son independientes e idénticamente distribuidas

E(sξn
1+..+ξn

k) =
k

∏
j=1

E(sξn
j ) = (E(sξ1

1))k = (Φ(s))k.
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Luego,

Φ(n+1)(s) = ∑
k∈N0

P(Zn = k)(Φ(s))k = Φ(n)(Φ(s)).

Estas funciones nos van a ayudar para calcular los momentos del proceso. Cuando estos

existan, los podemos expresar en términos de las derivadas de Φn(s) para s = 1.

Teorema 3.1. Para el proceso de ramificación ya definido, si E(Z1) = m, y V (Z1) = σ2 entonces

E(Zn) = mn,

V (Zn) =

{

σ2mn(mn−1)
m2−m

si m 6= 1

nσ2 si m = 1.

Demostración. Para la media de la primera generación tenemos,

E(Z1) = ∑
j∈N0

p j j = Φ′(1) = m.

Para la generación n-ésima,

E(Zn) = ∑
j∈N0

P(Zn = j) j = Φ′
n(1) = (Φn−1(Φ(1)))′ = Φ′

n−1(Φ(1))Φ′(1)

= Φ′
n−1(1)Φ′(1) = ... = (Φ′(1))n = mn.

Para calcular la varianza,

Φ′′(1) = ∑
k∈N0

k(k−1)P(Z1 = k) = E(Z2
1)−E(Z1) = V (Z1)+m(m−1).

Si σ2 = V (Z1). Luego, Φ′′(1) = σ2 +m(m−1)



36 CAPÍTULO 3. PROCESOS DE RAMIFICACIÓN

Φ′′
n+1(1) = Φ′′(1)(Φ′

n(1))2 +Φ′(1)Φ′′
n(1)

= Φ′′(1)m2n +mΦ′′
n(1)

= Φ′′(1)m2n +m[Φ′′(1)m2n−2 +mΦ′′
n−1(1)]

= Φ′′(1)m2n +Φ′′(1)m2n−1 +m2Φ′′
n−1(1)]

= ...

= Φ′′(1)[m2n +m2n−1 + ..+mn+1]

= [σ2 +m(m−1)]mn+1
n

∑
j=0

mk

= σ2mn+1
n

∑
j=0

mk +m(m−1)mn
n

∑
j=0

mk

= σ2mn+1
n

∑
j=0

mk +mn(mn+2 −m).

Si m = 1,

Φ′′
n+1(1) = σ2n.

Si m 6= 1,

Φ′′
n+1(1) = σ2mn+1 mn+1 −1

m−1
+mn(mn+2 −m).

Como

Φ′′
n+1(1) = V (Zn+1)−E(Zn+1)+E(Zn+1)

2.

Obtenemos que si m = 1, V (Zn+1) = σ2n. Si m 6= 1,

V (Zn+1) = σ2mn+1 mn+1 −1

m−1
+mn(mn+2 −m)+mn+1 − [mn+1]2 = σ2mn+1 mn+1 −1

m−1
.

Queremos analizar el comportamiento del proceso, para ello necesitamos algunas propieda-

des de la funciones generadoras. Luego, veremos que de lo único que depende que el proceso se

extinga es de la media. Además cuando no se extingue, queremos analizar el comportamiento de

la población.

Lema 3.1. La función Φ cumple las siguientes propiedades:

1. Φ es estrictamente creciente y convexa.

2. Φ(0) = p0, Φ(1) = 1.

3. Si m ≤ 1 entonces Φ(s) > s, para todo s ∈ [0,1).
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m>1
1

1q1

1
m<1 m=1

4. Si m > 1 entonces Φ(s) = s tiene una única solución en [0,1).

Demostración. 1. Veamos las derivadas de Φ, como todas las sumas son absolutamente con-

vergentes para |s| < 1 podemos intercambiar los lı́mites.

Φ(s) = ∑∞
k=0 pksk,

Φ′(s) = ∑∞
k=1 pkksk−1 > 0 ∀s ∈ (0,1),

Φ′′(s) = ∑∞
k=2 pkk(k−1)sk−2 > 0 ∀s ∈ (0,1) (pues supusimos p0 + p1 < 1).

Por lo tanto Φ es estrictamente creciente y convexa

2. Es inmediato

3. Consideremos la función

g : [0,1] → R g(s) = Φ(s)− s.

Sus derivadas, g′(s) = Φ′(s)−1, g′′(s) = Φ′′(s). Como Φ es estrictamente convexa en [0,1]
y Φ(1) = 1, la función g(s) también es estrictamente convexa y g(1) = 0. Luego la derivada

g′(s) es una función estrictamente creciente, y si suponemos m ≤ 1, g′(1) = Φ′(1)− 1 =
m−1≤ 0, por lo tanto g′ es estrictamente decreciente en [0,1]. Como g(1) = Φ(1)−1 = 0,

g(s) > 0 para s ∈ [0,1) y Φ(s) > s en [0,1).

4. Sea m > 1, y g la función definida anteriormente. Como g′′(s) > 0 ∀s ∈ (0,1), g es convexa

en (0,1) y g′ es estrictamente creciente, por lo tanto g tiene a lo sumo un punto crı́tico en

(0,1). Como g′(1) = m− 1 > 0 y g(1) = Φ(1)− 1 = 0, existe s0 < 1 con g(s0) < 0. Por

otro lado, g(0) = p0 > 0. Luego existe q ∈ (0,1) tal que g(q) = 0, es decir, Φ(q) = q.
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Teorema 3.2. Sea (Zn)n≥0 un proceso de ramificación. La probabilidad de que la familia se

extinga es q, donde q representa la solución más chica de Φ(s) = s.

P

(

⋃

n∈N

{Zn = 0}

)

= q.

Demostración. Primero veamos que, Φn(0) ր q, cuando n → ∞. Observemos que Φ(0) > 0,

y Φ es creciente, por lo tanto, 0 < Φ(0) < Φ(q) = q. Aplicando nuevamente Φ, 0 < Φ(0) <
Φ2(0) < q. Repitiendo este procedimiento, obtenemos que Φn(0) es creciente y acotada. Sea

L = lı́mn→∞ Φn(0), L ≤ q. Como Φ es continua,

Φn+1(L) = Φ
(

lı́m
n→∞

Φn(0)
)

= lı́m
n→∞

Φn+1(0) = L.

Luego, L = q. Ahora sı́ calculemos la probabilidad de extinción,

P(∃ n/Zn = 0) = P

(

⋃

n∈N

{Zn = 0}

)

Como {Zn = 0} ⊆ {Zn+1 = 0} y Φn(0) = P(Zn = 0) tenemos

P

(

⋃

n∈N

{Zn = 0}

)

= lı́m
n→∞

P(Zn = 0) = lı́m
n→∞

Φn(0) = q.

Este teorema nos dice que si m≤ 1 el apellido de la familia se extingue en un tiempo finito con

probabilidad 1. Cuando m < 1 se lo llama caso sub-crı́tico, y cuando m = 1 caso crı́tico. Por otro

lado, si m > 1 (caso super-crı́tico) hay una probabilidad positiva de que los descendientes per-

manezcan en todas las generaciones futuras. Veremos que en este caso, no solo hay probabilidad

positiva de no extinguirse, sino que además el tamaño de la población crece exponencialmente.

Para ello debemos introducir el concepto de martingala.

Definición 3.1. Sea (Xn)n∈N un proceso estocástico. Se dice que Xn es una Martingala, respecto

de la filtración (Fn)n∈N si, para todo n ≥ 0

1. E(|Xn|) < ∞

2. Xn ∈ Fn

3. E(Xn+1|Fn) = Xn.

Para abreviar, decimos que Xn es Fn-martingala.

Observación 3.1. Si Xn es una martingala, E(Xn) = E(X0) para todo n ∈ N.
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Teorema 3.3. Sea (Xn)n∈N una martingala no negativa, respecto a la filtración Fn. Entonces,

casi seguramente, lı́mn→∞ Xn existe y es finito.

Demostración. La demostración la vamos a omitir. Puede verse en Durret [4, pág. 234-235].

Lema 3.2. Sea Fn = σ(ξk
i , i ≥ 1, 1 ≤ k ≤ n), y m = E(ξk

i ), entonces Wn = Zn

mn es una Fn−
martingala.

Demostración. Claramente, Wn ∈ Fn. Como mn es una constante, E(Wn+1|Fn) = 1
mn E(Zn+1|Fn),

y

E(Zn+1|Fn) = E

(

Zn

∑
i=1

ξn
1

∣

∣Fn

)

= E

(

∑
i∈N

1{i≤Zn}ξn
1

∣

∣Fn

)

= E

(

lı́m
N→∞

N

∑
i=1

1{i≤Zn}ξn
1

∣

∣Fn

)

.

La suma es de variables positivas, por lo tanto

E(Zn+1|Fn) = ∑
i∈N

E
(

1{i≤Zn}ξn
1|Fn

)

.

Como 1{i≤Zn} ∈ Fn y ξn
1 es independiente de Fn,

E(Zn+1|Fn) = ∑
i∈N

1{i≤Zn}E(ξn
1) = mZn.

Luego,

E(Wn+1|Fn) =
1

mn+1
E(Zn+1|Fn) =

1

mn+1
mZn = Wn.

Como E(W0) = 1, E(Wn) = 1 para todo n.

Corolario 3.1. Sea Wn = Zn

mn , existe W una variable aleatoria, tal que

lı́m
n→∞

Wn = W c.s.

De esta convergencia se ve que Zn crece como mnW , si W 6= 0. Si P(W = 0) = 1 nos dice

simplemente que mn crece mas rápido que Zn. Pero en el caso en el cual estamos interesados,

podemos ver que P(W = 0) < 1.

Teorema 3.4 (Convergencia en Lp). Sea Xn una martingala con supn∈N E(|Xn|
p) < ∞ donde

p > 1, entonces existe X tal que Xn
n→∞
−−−→

Lp
X.

Demostración. La demostración puede verse en Durret [4, pág. 252-253].

Teorema 3.5. Si m > 1, V (Z1) = σ2 < ∞ y Z0 = 1. Entonces,

1. lı́mn→∞ E(Wn −W )2 = 0.

2. E(W ) = 1.
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3. P(W = 0) = P(Zn = 0 para algún n) = q.

Demostración. Por el Teorema 3.1,

E(W 2
n ) =

E(Z2
n)

m2n
=

V (Zn)+E(Zn)
2

m2n
=

σ2mn−1(mn −1)

(m−1)m2n
+1 =

σ2(1−m−n)

(m−1)m
+1.

Como E(W 2
n ) es una función creciente en n,

sup
n∈N

E(W 2
n ) = lı́m

n→∞
E(W 2

n ) =
σ2

m2 −m
+1 < ∞.

Luego, por el Teorema 3.4 existe W ′ ∈ L2 tal que Wn converge a W ′ en L2. Por lo tanto Wn

converge casi seguramente a W ′. Vimos que Wn
n→∞
−−−→

c.s.
W , por unicidad del lı́mite, P(W =W ′) = 1.

Como Wn converge a W en L2, E(Wn) → E(W ) y E(Wn) = 1 para todo n ası́ que E(W ) = 1 y

W no puede ser constantemente 0, es decir, P(W = 0) < 1. Sea r = P(W = 0), tenemos

P(W = 0) = P

(

lı́m
n→∞

Zn

mn
= 0

)

=
∞

∑
k=0

P

(

lı́m
n→∞

Zn

mn
= 0|Z1 = k

)

P(Z1 = k).

La distribución de la cantidad de hijos en la n ésima generación sabiendo que en la primer gen-

eración hubo k individuos, es igual a la distribución de la cantidad de hijos en la n− 1 ésima

generación de k familias independientes, luego

P

(

lı́m
n→∞

Z
(k)
n

mn
= 0

)

= P

(

lı́m
n→∞

1

m

[

Z1
n−1

mn−1
+ ..+

Zk
n−1

mn−1

]

= 0

)

= P( lı́m
n→∞

W 1
n−1 + ..+W k

n−1 = 0)

= P

(

k
⋂

i=1

{ lı́m
n→∞

W i
n−1 = 0}

)

=
k

∏
i=1

P
(

lı́m
n→∞

Wn−1 = 0
)

= P(W = 0)k = rk.

Por lo tanto,

r = P(W = 0) =
∞

∑
k=0

rkP(Z1 = k) = Φ(r).

De donde, P(W = 0) = q, por el Teorema 3.2 P(Zn > 0 ∀n ∈ N) = 1− q. Por otro lado,

{W > 0} ⊆ {Zn > 0 ∀n}. Por lo que,

P

(

⋂

n∈N

{Zn > 0}\{W > 0}

)

= P

(

⋂

n∈N

{Zn > 0}

)

−P(W > 0) = 0.

Es decir, que para casi todo ω en el conjunto {Zn > 0 ∀n} se tiene W (ω) > 0 y por lo tanto

Zn ∼ mn.
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3.2. Procesos de ramificación a tiempo continuo

Una generalización al proceso de Galton-Watson, es considerar el tiempo de vida de cada

individuo como una variable aleatoria continua, al término de la cual se muere y se produce

un número aleatorio de individuos descendientes. En lugar de considerar la cadena de Markov

discreta, {Zn, n ∈N}, tenemos que considerar el proceso, {Z(t), t ≥ 0}, donde Z(t) es el número

de individuos a tiempo t. Además, suponemos que la distribución del tiempo de vida de cada

individuo es la misma, exponencial de parámetro a y todos los individuos se reproducen según la

distribución de la variable aleatoria N. Cada individuo es independiente de los otros individuos

y de la historia del proceso.

Para empezar daremos la definición de proceso de Markov a tiempo continuo, y luego defi-

niremos proceso de ramificación unidimensional a tiempo continuo.

Definición 3.2. Diremos que el proceso estocástico X = (Xt , t ≥ 0) a valores en el espacio (finito

o numerable) S es Markov si para todo 0 ≤ s ≤ t se tiene

P(Xt = x|Xu,u ≤ s) = P(Xt = x|Xs), para todo x ∈ S .

Sea Pi j(t) la probabilidad de tener j individuos a tiempo t, siendo que a tiempo 0 habı́a i

individuos.

Definición 3.3. Un proceso estocástico {Z(t,ω), t ≥ 0} en el espacio de probabilidad (Ω,F ,P)
se llama proceso de ramificación markoviano unidimensional a tiempo continuo, si:

1. El espacio de estados es N0.

2. Es una cadena de Markov homogénea con respecto a la σ-álgebra, Ft = σ{Z(s,ω);s ≤ t}.

3. La probabilidad de transición Pi j(t) satisface,

∞

∑
j=0

Pi j(t)s
j =

[

∞

∑
j=0

P1 j(t)s
j

]i

para todo i ≥ 0 y |s| ≤ 1.

Esta última condición nos dice que considerar un proceso de ramificación con i individuos

iniciales, es exactamente lo mismo que considerar la suma de i procesos de ramificación inde-

pendientes con un individuo inicial.

3.2.1. Construcción

Vamos a construir el proceso de ramificación con un individuo inicial, por como definimos

procesos de ramificación, si comenzamos con varios individuos, simplemente es agarrar varias

copias de comenzar con uno solo. Cada individuo vive un tiempo exponencial de parámetro a >
0. Sea la variable aleatoria N con distribución p, notamos pi = P(N = i) con i ∈ N0. La cantidad
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Z(s)=9

0 s t

X(x,t)

Figura 3.1: Una realización del proceso de ramificación. El conjunto X(s) son las intersecciones

de la linea vertical con las ramas a tiempo s. La cantidad de individuos vivos a ese tiempo es

Z(s). El conjunto X(x, t) consiste en los descendientes de x que estan vivos a tiempo t (indicados

con ◦ ). X(x, t) = {(3,1),(3,2),(3,3),(3,4),(4)}
.

de hijos que tiene cada individuo es una variable aleatoria con distribución p. Construimos el

árbol genealógico de la misma forma que lo construye Georgii-Baake [5] para el caso multi-tipo,

la construcción original puede verse en Harris ([7]). Para empezar consideramos el espacio de

estados,

X =
⋃

n∈N0

Xn.

Donde Xn describe la generación n-ésima. Esto es, X0 = 1, X1 = N0 un elemento x ∈ X1 tiene

la forma x = l1, donde l1 indica que es el l1-ésimo descendiente de la raı́z. Luego para n ∈ N,

definimos Xn = N
n y x = (l1, ..., ln) ∈ Xn es el ln-ésimo hijo de x̂ = (l1, ..., ln−1) ∈ Xn−1. A cada

x ∈ X le asociamos,

un tiempo de vida aleatorio τx, con distribución exponencial de parámetro a > 0, y

una variable aleatoria Nx ∈ N0 con distribución p, tal que la familia {τx,Nx,x ∈ X} es

independiente.

La variable Nx indican cuantos descendientes tiene x∈X. Por lo tanto una realización del proceso

es el conjunto X =
⋃

n∈N0
Xn, que queda definido recursivamente por,

X0 = 1 Xn = {x = (x̂, ln) ∈ Xn/x̂ ∈ Xn−1, ln ≤ Nx̂}.

Para cada x ∈ X sea Tx el momento en el que x muere y se reproduce, definido recursivamente

por Tx = Tx̂ + τx, con Tx0
= τ1 si x0 = 1 ∈ X0. Luego, el intervalo de vida del individuo x es
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[Tx̂,Tx). Por lo tanto, X(t) = {x ∈ X/Tx̂ ≤ t < Tx} es la población a tiempo t. La familia completa

queda determinada por el proceso (X(t))t≥0. Cuando 0 < s < t y x ∈ X(s), definimos X(x, t)
a los descendientes de x que estan vivos a tiempo t. Consideramos Z(t) = |X(t)|, en palabras

Z(t) es la cantidad de individuos a tiempo t. Si no indicamos la cantidad de individuos iniciales,

consideramos que se inicia con un individuo.

Al igual que en el caso discreto estamos interesados en averiguar si la familia se extingue

cuando pasa el tiempo, es decir, analizar el comportamiento de Z(t) para t suficientemente

grande. Para ello debemos estudiar las probabilidades de transición; Pi j(t) para t > 0. Pero tener

varios individuos y que cada uno pueda tener hijos en cualquier momento, y estos volver a tener

hijos, hace que calcular las probabilidades de transición a todo tiempo sea muy complicado. Es

por ello que vamos a estudiar las probabilidades de transición en tiempos infinitesimales, estas

son más sencillas de calcular ya que en un tiempo suficientemente pequeño solo un individuo

podrá reproducirse. Luego, podremos ver que las probabilidades de transición para cualquier

tiempo son solución de las ecuaciones de Kolmogorov.

Sea Pi j(h, t + h) la probabilidad de transición P(Z(t + h) = j|Z(h) = i). Asumimos que el

proceso es homogéneo en el tiempo, es decir,

Pi j(h, t +h) = Pi j(t) ∀t ≥ 0.

Calculemos las probabilidades infinitesimales, Pi j(h) para h suficientemente pequeño, i, j ∈ N.

Si el proceso comienza con i individuos, el primer salto de la población ocurre cuando el

primero de estos i individuos muere y se reproduce. Si llamamos Yk a la duración aleatoria

del tiempo de vida del k-ésimo individuo, sabemos que Yk tiene distribución exponencial de

parámetro a para todo k y son independientes, por lo tanto el primer salto de la población ocurre

con la distribución de la variable aleatoria mı́n{Y1, ...,Yi}, es decir con distribución exponencial

de parámetro ia.

La probabilidad de que no muera ningún individuo en en el intervalo de tiempo (0,h), es

e−aih. Y de que muera uno sólo es i(1−e−ah)(eah)i−1, ya que el tiempo de vida de cada individ-

uo es independiente y por lo tanto consideramos que un individuo (entre los i posibles) muera

en el intervalo (0,h) y que los demás no mueran en ese intervalo. Esta probabilidad podemos

expresarla como iah+o(h).

Para h pequeño la probabilidad mueran 2 o más individuos en el intervalo (0,h) es 1 −
(e−aih)− (i(1− e−ah)(eah)i−1) que es del orden de o(h).

Por lo tanto,

Pi j(h) = o(h)

para j < i−1.

La probabilidad de que exactamente uno muera antes de tiempo h es iah + o(h) y luego el

proceso salta al estado j ≥ i−1 con probabilidad p j−i+1, luego

Pi j(h) = iahp j−i+1 +o(h)

si j ≥ i−1, j 6= i y h pequeño.
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Para calcular Pii(h) debemos considerar los siguientes eventos disjuntos, que no muera ningún

individuo en (0,h), que muera solo uno, y que mueran más de 2. Este último como dijimos an-

tes es o(h). La probabilidad de que ningún individuo muera es e−aih = 1− iah + o(h). Cuando

consideramos que muera un individuo, para seguir teniendo i individuos este debe tener un solo

hijo. Por lo tanto,

Pii(h) = 1− iah+ iahp1 +o(h).

Teorema 3.6 (Ecuaciones de Kolmogorov). Las probabilidades de transición Pi j(t), con t > 0

son solución de las siguientes ecuaciones:

( f orward)
d

dt
Pi j(t) = − jaPi j(t)+a

j+1

∑
k=1

kPik(t)p j−k+1, (3.3)

(backward)
d

dt
Pi j(t) = −iaPi j(t)+ ia

∞

∑
k=i−1

Pk j(t)pk−i+1, (3.4)

con condiciones de contorno,

Pi j(0
+) = δi j. (3.5)

Demostración. Para demostrar ambas ecuaciones usaremos las probabilidades de transición in-

finitesimales ya calculadas.

Pi j(t +h) = Pi(Z(t +h) = j) =
∞

∑
k=1

P(Z(t +h) = j|Z(t) = k)Pi(Z(t) = k)

=
∞

∑
k=1

Pk j(h)Pik(t) =
j+1

∑
k=1

[kahp j−k+1Pik(t)]+(1− jah)Pi j(t)+o(h).

De donde,

lı́m
h→0

Pi j(t +h)−Pi j(t)

h
= a

j+1

∑
k=1

kp j−k+1Pik(t)− jaPi j(t).

Por otra parte

Pi j(t +h) = Pi(Z(t +h) = j) =
∞

∑
k=1

P(Z(t +h) = j|Z(h) = k)Pi(Z(h) = k)

=
∞

∑
k=1

Pk j(t)Pik(h) =
∞

∑
k=i−1

[iahpk−i+1Pk j(t)]− iahPi j(t)+o(h).

Por lo tanto,

lı́m
h→0

Pi j(t +h)−Pi j(t)

h
= ai

∞

∑
k=i−1

pk−i+1Pk j(t)− iaPi j(t).
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Desafortunadamente, las ecuaciones de Kolmogorov siempre tienen solución si ∑ j Pi j(t)≤ 1,
pero esta solución puede que no sea única. Este problema surge cuando es posible que el proceso

tenga infinitos individuos en un tiempo finito, es decir, que explote. Esta situación existe cuando

las ecuaciones (3.3), (3.4) tienen soluciones tal que ∑ j Pi j(t) < 1. Puede verse en Harris [7,

cap. V, sec. 3] , que si el proceso no explota, las ecuaciones de Kolmogorov tienen como única

solución Pi j(t) que satisfacen ∑ j Pi j(t) = 1.

Para ver que el proceso no explota calculemos E(Z(t)), para t ∈ (0,∞). Para ello consid-

eremos la variable aleatoria Y con distribución exponencial de parámetro a. Supongamos que

comenzamos el proceso con un solo individuo. La cantidad de individuos a tiempo t podemos

considerarla de la siguiente forma; que el individuo inicial murió antes de tiempo t, es decir, que

Y < t, y este dejó N hijos, o que el individuo permanece con vida a tiempo t, es decir, Y > t

Z(t) = 1{Y<t}

N

∑
i=0

Zi(t −Y )+1{Y>t},

donde Zi(t −Y ) denota un proceso de ramificación a tiempo continuo con 1 individuo inicial,

observado a tiempo t −Y , la potencia i nota que es el proceso de ramificación del i-ésimo hijo.

Como cada individuo tiene hijos de forma independiente, los procesos Zi son independientes.

Luego la esperanza,

E(Z(t)) = E

(

1{Y<t}

N

∑
i=0

Zi(t −Y )

)

+E(1{Y>t})

de donde, condicionando a Y en el primer término, obtenemos;

E(Z(t)) =
∫ t

0
E

(

ae−as
N

∑
i=0

Zi(t − s)

)

ds+E(1{Y>t})

=
∫ t

0
ae−asE

(

N

∑
i=0

Zi(t − s)

)

ds+P(Y > t)

=
∫ t

0
ae−asE(N)E(Z(t − s))ds+P(Y > t)

= E(N)a
∫ t

0
e−asE(Z(t − s))ds+ e−at ,

la tercera igualdad es cierta pues la variable N es independiente de las variables (Zk)k=1..i y las

Zk tienen todas igual distribución. Es decir que E(Z(t)) es solución de la ecuación diferencial

g(t) = E(N)a
∫ t

0 e−asg(t−s)ds+e−at . Puede verse en Perko[11] que ésta ecuación tiene solución

única. Veamos que la solución es eλh, con λ alguna constante adecuada.

eλt = E(N)a
∫ t

0
e−aseλ(t−s)ds+ e−at
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eλt = E(N)aeλt

∫ t

0
e−(a+λ)sds+ e−at

eλt = E(N)aeλt 1− e−(a+λ)t

a+λ
+ e−at

1 =
E(N)a

a+λ
(1− e(a+λ)t)+ e−(a+λ)t .

Por lo tanto, eλt es solución de la ecuación sı́ y solo sı́, λ = a(E(N)−1). Luego,

E(Z(t)) = ea(E(N)−1)t t ∈ (0,∞). (3.6)

Por lo tanto Z(t) es finito con probabilidad 1 para todo t ≥ 0.

De (3.6), podemos ver que:

1. Si E(N) < 1, E(Z(t)) decae exponencialmente (caso sub-crı́tico).

2. Si E(N) = 1, E(Z(t)) = 1 (caso crı́tico).

3. Si E(N) > 1, E(Z(t)) crece exponencialmente (caso super-crı́tico).

3.2.2. Funciones generadoras

Definimos la función generadora de Z(t),

F(s, t) =
∞

∑
k=0

P(Z(t) = k|Z(0) = 1)sk =
∞

∑
k=0

P1k(t)s
k = E1(s

Z(t))

y las funciones f (s) = ∑∞
j=0 p js

j, |s| ≤ 1 y u(s) = a( f (s)− s), donde a es la media del tiempo

de vida de un individuo y pk la probabilidad de que un individuo tenga k hijos.

Teorema 3.7 (Ecuaciones de Kolmogorov). La función F(s, t) definida anteriormente, cumple

las siguientes ecuaciones:

(backward)
∂

∂t
F(s, t) = u(s)

∂

∂s
F(s, t), (3.7)

( f orward)
∂

∂t
F(s, t) = u(F(s, t)), (3.8)

con condición de contorno:

F(s,0) = s. (3.9)

Demostración. Primero demostremos (3.7), para ello usaremos (3.3). Para i = 1

∂

∂t
P1k(t) = −kaP1k(t)+a

k+1

∑
i=1

iP1i(t)pk−i+1.



3.2. PROCESOS DE RAMIFICACIÓN A TIEMPO CONTINUO 47

Por lo tanto,

∂

∂t
F(s, t) =

∞

∑
k=0

∂

∂t
P1k(t)s

k =
∞

∑
k=0

[

−kaP1k(t)+a
k+1

∑
i=1

iP1i(t)pk−i+1

]

sk

= −a
∞

∑
k=0

kP1k(t)s
k +a

∞

∑
k=0

k+1

∑
i=1

iP1i(t)pk−i+1sk

= −a
∞

∑
k=0

kP1k(t)s
k +a

(

∞

∑
i=0

pis
i

)(

∞

∑
k=0

P1k(t)ksk−1

)

= a
∞

∑
k=0

P1k(t)ksk−1

(

∞

∑
i=0

pis
i − s

)

= u(s)
∂

∂s
F(s, t).

Para probar (3.8), usaremos (3.4) para i = 1, y la condición (3) de la Definición 3.3.

d

dt
P1k(t) = −aP1k(t)+a

∞

∑
l=0

Plk(t)pl.

Por lo tanto,

∂

∂t
F(s, t) =

∞

∑
k=0

(

−aP1k(t)+a
∞

∑
l=0

Plk(t)pl

)

sk

= −a
∞

∑
k=0

P1k(t)s
k +a

∞

∑
k=0

∞

∑
l=0

Plk(t)pls
k

= −a
∞

∑
k=0

P1k(t)s
k +a

∞

∑
l=0

pl

∞

∑
k=0

Plk(t)s
k

= −a
∞

∑
k=0

P1k(t)s
k +a

∞

∑
l=0

pl

(

∞

∑
k=0

P1k(t)s
k

)l

= a( f (F(s, t))−F(s, t))

= u(F(s, t)).

Observemos que la función F(s, t) cumple una fórmula de iteración similar a fn(s) en el

proceso de Galton-Watson.

F(s, t +u) =
∞

∑
k=0

P1k(t +u)sk,

condicionando a las posibles cantidades de individuos a tiempo u, y usando la homogeneidad de

la cadena obtenemos,

F(s, t +u) =
∞

∑
k=0

∞

∑
j=0

P1 j(u)Pjk(t)s
k,
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intercambiando el orden de las sumas y usando la definición de proceso de ramificación a tiempo

continuo,

F(s, t +u) =
∞

∑
j=0

P1 j(u)F j(s, t).

Por lo tanto,

F(s, t +u) = F(F(s, t),u) |s| ≤ 1, u ≥ 0, t ≥ 0. (3.10)

3.2.3. El proceso discreto inmerso

El proceso de ramificación a tiempo discreto nos va a ayudar a analizar el comportamiento

del proceso de ramificación a tiempo continuo. Para ello veremos en el siguiente Teorema el

proceso discreto inmerso en un proceso continuo.

Teorema 3.8. Sea {Z(t,ω), t ≥ 0} un proceso de ramificación markoviano unidimensional a

tiempo continuo. Para todo δ > 0 la sucesión Zn(ω) = Z(nδ,ω) es un proceso de Galton-Watson

con función generadora de momentos ϕ(s) = F(s,δ).

Demostración. Dado δ > 0, el proceso {Zn}n∈N es una cadena de Markov con probabilidad de

transición P(Zn+1 = i|Zn = j) = P(Z(nδ) = i|Z(n) = j) = Pji(δ). Para ver que es un proceso de

Galton-Watson nos basta ver que la función generadora de Zn es componer n veces la función

generadora de Z1. La función generadora de momentos de Zn es Φ(n)(s) = E(sZn|Z0 = 1). Por

(3.10)

Φ(n)(s) = Φ(Φ(n−1)(s)),

por lo tanto Φ(n)(s) = Φn(s) que es la n-ésima composición de la función Φ(s).

Para decir cuando se extingue el proceso a tiempo continuo usaremos el proceso discreto

inmerso con δ = 1, ya que si existe t0 tal que Z(t0) = 0, para todo t ≥ t0 Z(t) = 0. Y vimos

en la sección anterior que el proceso de Galton-Watson se extingue en un tiempo finito con

probabilidad 1 en el caso sub-crı́tico (m < 1) y en el caso crı́tico (m = 1). Como E(Z(t)) =
ea(E(N)−1), obtenemos que el proceso se extingue en un tiempo finito si E(N) ≤ 1. En el caso

super-crı́tico, cuando E(N) > 1, la expresión de la esperanza nos sugiere que la población crece

exponencialmente, para demostrarlo necesitamos usar convergencia de martingalas. Para ello,

debemos ver la versión a tiempo continuo de las definiciones de filtración y martingala.

Definición 3.4. 1. Sea (Ω,F ) un espacio medible. Decimos que una familia (Ft)t≥0 de σ-

álgebras contenidas en F es una filtración si Fs ⊆ Ft para todo 0 ≤ s ≤ t.

2. Sea (Ω,F ) un espacio medible, equipado con una filtración (Ft)t≥0. Un proceso estocásti-

co X definido en (Ω,F ) se dice adaptado a la filtración (Ft)t≥0 si para cada t ≥ 0, Xt es

Ft-medible.

3. Sea X = {Xt : t ≥ 0} un proceso estocástico definido en un espacio de probabilidad (Ω,F ,P)
y sea (Ft)t≥0 una filtración en dicho espacio. Decimos que X es una martingala a tiempo

continuo con respecto a la filtración (Ft)t≥0 si satisface las siguientes condiciones:
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X es adaptado a la filtración (Ft)t≥0;

E(|Xt |) < +∞ para todo t ≥ 0;

Para todo 0 ≤ s ≤ t, se tiene E(Xt |Fs) = Xs.

Al igual que en el caso discreto, para analizar el lı́mite de la población necesitamos resultados

de convergencia de martingalas.

Teorema 3.9 (Teorema de Convergencia de Martingalas). Sea {X(t)}t≥0 una Ft-martingala con-

tinua a derecha. Si supt≥0{E(X(t))} < ∞, entonces existe X = lı́mt→∞ X(t) c.s.

Demostración. Puede verse en Kallenberg, [8, pag. 107].

Teorema 3.10. La familia {Z(t)e−λt ,Ft = σ(Z(s),0 ≤ s ≤ t), t ≥ 0} es una martingala.

Demostración. Claramente Z(t)e−λt ∈ Ft . Para calcular la esperanza de Z(t), nos va a ser muy

útil expresar la cantidad de individuos a tiempo t como la suma de Z(s) procesos de ramificación

independientes mirados a tiempo t − s. Es decir, dados s y t tales que 0 < s < t,

Z(t) =
Z(s)

∑
j=1

Z j(t − s)

si Z(s) > 0, y Z(t) = 0 si Z(s) = 0. Por lo tanto,

E(Z(t)|Fs) = E(Z(t)|Zs) = E

(

Z(s)

∑
j=1

Z j(t − s)
∣

∣Z(s)

)

= Z(s)E(Z(t − s)) = Z(s)e(t−s)λ.

Luego, E(Z(t)e−λt |Ft) = Z(s)e−λs. Como E(Z(0)) = 1, E(Z(t)e−λt) = 1, y por lo tanto Z(t)e−λt

es una Ft-martingala.

Corolario 3.2. Sea X(t) = Z(t)e−λt , existe X una variable aleatoria, tal que

lı́m
t→∞

X(t) = X c.s.

Otra vez la cuestión es ver si X = 0, para ello usaremos el caso discreto, ya que por el

Corolario 3.1 para todo δ > 0 tenemos,

Wδ = lı́m
n→∞

Z(nδ)e−nλδ,

y para λδ > 0 y V (Z(1)) < ∞ vimos que para casi todo ω en el evento {Z(nδ,ω) > 0, ∀n∈N}
se tiene que {Wδ(ω) > 0}. Como P(Wδ = W ) = 1, para casi todo ω en {Z(t,ω) > 0} se tiene que

{W (ω) > 0}. Concluimos que Z(t) ∼ etλ con probabilidad 1.
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3.3. Tiempo continuo, multi-tipo

Consideremos el proceso de ramificación a tiempo continuo, con distintos tipos de individuos

(por ejemplo como muestra la figura, verde, rojo y azul). Al igual que en el caso anterior con-

sideramos que el tiempo de vida de cada individuo tiene distribución exponencial, pero en este

caso los distintos tipos de individuos podrı́an tener distintas medias. También vamos a consid-

erar Z(t) como la cantidad de individuos a tiempo t, pero en este caso si consideramos que hay

k individuos distintos, Z(t) = (Z1(t), ..,Zk(t)) donde Zi(t) es la cantidad de individuos de tipo i

a tiempo t. Notamos Pi(j, t) con i = (i1, ..,1k), j = ( j1, .., jk) ∈ N
k
0, a la probabilidad de tener j1

individuos de tipo 1, .., jk individuos de tipo k, a tiempo t, dado que a tiempo 0 el proceso tenı́a

i1 individuos de tipo 1,.., ik individuos de tipo k. Comencemos dando la definición de proceso de

ramificación multitipo.

Definición 3.5. Un proceso estocástico {Z(t,ω), t ≥ 0} en el espacio de probabilidad (Ω,F ,P)
se llama proceso de ramificación markoviano k-dimensional a tiempo continuo, si:

1. El espacio de estados es N
k
0.

2. Es una cadena de Markov homogénea con respecto a la σ-álgebra, Ft = σ{Z(s,ω);s ≤ t}.

3. La probabilidad de transición Pi(j, t) satisface,

∑
j∈N

k
0

Pi(j, t)sj =
k

∏
l=1



 ∑
j∈N

k
0

Pel(j, t)sj





il

para todo i ∈ N
k
0 y |s j| ≤ 1, j ∈ {1, ..,k}, donde s = (s1, ..,sk) ∈ R

k.

Esta última condición nos dice que considerar un proceso de ramificación con i = (i1, .., ik)
individuos iniciales, es exactamente lo mismo que considerar la suma de i j procesos de ramifi-

cación independientes con un individuo inicial de tipo j, y la suma sobre los distintos tipos de

individuos.

3.3.1. Construcción

Sea S = {1, ..,k} el espacio de los distintos tipos de individuos. Cada individuo i ∈ S vive un

tiempo exponencial de parámetro ai > 0. Sea N la matriz con entradas aleatorias Ni j con i, j ∈
{1, ..,k} donde Ni j es el número de hijos de tipo j que tiene el individuo de tipo i. Ni = (Ni j) j∈S

tiene distribución pi = (pi1, .., pik), y media finita mi j = E(Ni j), ∀i, j ∈ S .

Asumimos que la matriz M = (mi j)i, j∈S es irreducible. Construimos el árbol genealógico.

Para empezar consideramos el espacio de estados

X =
⋃

n∈N Xn.
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Z(s)=[3,1,1]
X(s)

x=(v,r
;2,1)

N=[1,2,1]i0

i0 r=

0 s t

X(x,t)

Figura 3.2: Una realización del proceso de ramificación. Donde S = {r,v,a}. El conjunto X(s)
son las intersecciones de la linea vertical a tiempo s. El tipo de individuos vivos a ese tiempo es

Z(t). El conjunto X(x, t) consiste en los descendientes de x que estan vivos a tiempo t (indicados

con ◦ ). X(x, t) = {(v,r;1,1),(v,v;1,1),(v,v;1,2),(a;1)}
.

Donde Xn es el espacio donde vive la generación n-ésima. Esto es X0 = S y i0 ∈ X es la raı́z del

árbol. El siguiente es X1 = S ×N y el elemento x = (i1, l1)∈X1 es el l1-ésimo hijo de tipo i1 en la

raı́z. Finalmente, para n > 1, Xn = S n ×N
n y x = (i1, .., in, l1, .., ln) ∈ Xn es ln-ésimo hijo de tipo

in del padre x̂ = (i1, .., in−1, l1, .., ln−1). Escribimos σ(x) = in para el tipo de x ∈ Xn. Observemos

que σ(x) ∈ S .

A cada x ∈ X le asociamos

un tiempo de vida aleatorio τx, con distribución exponencial de parámetro aσ(x),

descendencia aleatoria, Nx = (Nx j) j∈S ∈ N
S
0 con distribución pσ(x) tal que las variables

{τx,Nx : x ∈ X} son independientes.

Las variables aleatorias Nx indican como son actualizados los individuos x ∈ X. Por lo tanto el

conjunto X =
⋃

n∈N Xn esta definido recursivamente por

X0 = {i0} Xn = {x = (x̂, in, ln) ∈ Xn : x̂ ∈ Xn−1, ln ≤ Nx̂,in}.

La variable aleatoria τx es el tiempo de vida de x ∈ X . Sea Tx el instante en muere y se

reproduce x. Lo definimos recursivamente por Tx = Tx̂ + τx, con Tî0
= τî0

si î0 ∈ X0, es decir el

tiempo en el que esta vivo x ∈ X es: [Tx̂,Tx). Por lo tanto, X(t) = {x ∈ X/Tx̂ ≤ t < Tx} es la

población a tiempo t.
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El árbol completo esta determinado por el proceso X(0,∞) = (X(t))t≥0 definido en un espacio

al que llamamos Ω. Cuando comenzamos con una distribución inicial ν, la distribución de X(t)
en Ω es Pν y la esperanza es Eν, cuando i0 = i notamos, Pi y E i.

Para cada x ∈ X(s) consideramos, X(x, t) = {y ∈ X : xy ∈ X(t)}, en palabras el conjunto

X(x, t) son los descendientes de x que estan vivos a tiempo t.

Por la propiedad de falta de memoria de la distribución exponencial, los descendientes de

X(x, [s,∞)) = (X(x, t))t≥s con x ∈ X(s), son independientes de X [0,s].
Consideremos las siguientes medidas,

Z(t) = ∑
x∈X(t)

δσ(x) Z(x, t) = ∑
y∈X(x,t)

δσ(y)

Es decir, Z(t) = (Z1(t), ..,Zk(t)) donde Zi(t) es la cantidad de individuos de tipo i que viven a

tiempo t. En particular, Zi(t) es el cardinal de Xi(t) = {x ∈ X(t) : σ(x) = i}. Y la subpoblación

descendiente de x ; Z(x, t) = (Z1(x, t), ..,Zk(x, t)) con Zi(x, t) la cantidad de individuos de tipo i

descendientes de x que estan vivos a tiempo t. El total de la población a tiempo t lo denotamos,

||Z(t)|| = ∑ j∈S Z j(t) = |X(t)|.

3.3.2. Funciones generadoras

Consideremos las siguientes funciones,

f (s) = ( f 1(s), .., f k(s))

donde f i(s) = ∑j∈N
k
0

pi(j)sj y pi(j) la probabilidad de que un individuo de tipo i tenga j individ-

uos, es decir, j1 individuos de tipo 1, .., jk individuos de tipo k.

ui(s) = ai[ f i(s)− si]

donde ai es el tiempo medio de vida del individuo de tipo i. Por último, definimos la función

generadora de Z(t) cuando comenzamos con i individuos, como

F(i,s, t) = ∑
j∈N

k
0

Pi(j, t)sj.

Denotamos

F(s, t) = (F(e1,s, t), ..,F(ek,s, t))

u(s) = (u1(s), ..,uk(s))

Teorema 3.11. Las funciones F(s, t), y u(s) definidas anteriormente cumplen las Ecuaciones de

Kolmogorov:

( f orward)
∂

∂t
F(ei,s, t) =

k

∑
j=1

u j(s)
∂

∂s j
F(ei,s, t), (3.11)

(backward)
∂

∂t
F(ei,s, t) = ui(F(s, t)), (3.12)
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con i = 1, ..,k. Con condiciones de contorno,

Pi( j,0+) = δi, j (3.13)

Demostración. Puede verse usando el Teorema 3.7

Al igual que en los otros procesos de ramificación queremos calcular E(Z(t)). Para ello con-

sideramos las variables aleatorias Yi con i∈ {1, ..,k} independientes con distribución exponencial

y media ai. Cada Yi es el tiempo de vida de un individuo de tipo i. Notamos Zi
j(t) a la cantidad

de individuos de tipo j que hay a tiempo t considerando que el proceso comenzó con un solo

individuo de tipo i.

Si comenzamos con un individuo de tipo i, la cantidad de individuos de tipo j a tiempo t

podemos expresarla de la siguiente manera,

Zi
j(t) = 1{Yi<t}

k

∑
l=1

Nil

∑
n=1

Z
l,n
j (t −Y )+1{Yi>t}δi j

ya que podemos separar en 2 casos; que el individuo inicial sigue vivo a tiempo t, o que el

individuo inicial muere antes de tiempo t, y este tiene Ni hijos, donde Ni = (Ni1, ..,Nik), por lo

tanto en este caso la cantidad de hijos de tipo j a tiempo t lo podemos contar como la cantidad de

hijos de tipo j a tiempo t −Y de los procesos de ramificación Z
l,n
j , donde l es el tipo de individuo

con el que comienza el proceso y n indica que es el n-ésimo hijo de tipo l del individuo inicial i.

Tomando esperanza y condicionando a lo ocurrido con Yi obtenemos,

E(Zi
j(t)) =

∫ t

0
aie

−ais
k

∑
l=1

E

(

Nil

∑
n=1

Z
l,n
j (t − s)

)

ds+P(Yi > t)δi j.

Como la cantidad de hijos del individuo inicial es independiente del comportamiento en el futuro

de estos individuos,

E(Zi
j(t)) = ai

k

∑
l=1

∫ t

0
e−aisE(Nil)E(Zl

j(t − s))ds+ e−aitδi j.

Si llamamos Ci j(t) = E(Zi
j(t)), la matriz C(t) en lugar i, j cumple,

Ci j(t) = ai

k

∑
l=1

E(Nil)
∫ t

0
e−aisCi j(t−s)ds+e−aitδi j = ai

k

∑
l=1

E(Nil)e
−ait

∫ t

0
eaiuCi j(u)du+e−aitδi j.

Puede verse en Perko [11] que existe una única solución de esta ecuación diferencial y es deriv-

able. Por lo tanto,
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d

dt
(Ci j(t)) = ai

k

∑
l=1

E(Nil)e
−ait

[

eaitCl j(t)−ai

∫ t

0
eaiuCi j(u)du

]

−aie
−aitδi j

= ai

k

∑
l=1

E(Nil)Cl j(t)−aiai

k

∑
l=1

E(Nil)
∫ t

0
eaiuCi j(u)du−aie

−aitδi j

= ai

k

∑
l=1

E(Nil)Cl j(t)−aiCl j(t) = ai

k

∑
l=1

E(Nil)Cl j(t)−aiCl j(t)
k

∑
l=1

δil

= ai

k

∑
l=1

(E(Nil)−δil)Cl j(t).

Si denotamos A = a(E(N)− Id), la matriz Ci j(t) cumple la siguiente ecuación diferencial;

d

dt
Ci j(t) =

k

∑
l=1

AilCl j(t).

Por lo tanto, para cada t > 0

d
dt

C(t) = AC(t),
C(0) = Id.

De la teorı́a de ecuaciones diferenciales se desprende que C(t) = etA. Para más detalle puede

verse Norris [10, pág. 61,62]. De donde,

E(Z(t)) = etA.

La matriz E(Z(t)) tiene entradas positivas para todo t > 0, por la teorı́a de Perron-Frobenius,

para cada t existe un autovalor ρ(t) de C(t) estrictamente positivo tal que cualquier otro autovalor

ρ̂(t) de C(t) satisface |ρ̂(t)| < ρ(t) y además ρ(t) tiene multiplicidad 1. Como C(t) = eAt los

autovalores de C(t) estan dados por eλit , i = 1, ..,k donde λ1,λ2, ..,λk son los autovalores de A.

Los autovectores asociados de C(t) coinciden con los de A. Podemos ordenar los autovalores de

A de la siguiente manera

λ = λ1 > Re(|λ2|) ≥ .. ≥ Re(|λk|).

Además λ tiene autovectores asociados a izquierda y derecha, π y h positivos, normalizados,

tal que |π| = 1 y πht = 1. Por lo tanto C(t) tiene a eλt como autovalor de módulo máximo, de

multiplicidad 1, con autovectores asociados π y h. Usando el autovector a izquierda podemos

construirnos una martingala, y ésta al igual que en los casos anteriores nos ayudará a analizar el

comportamiento de Z(t).

Teorema 3.12. La familia {πZ(t)e−λt ,Ft = σ(Z(s),0 ≤ s ≤ t), t ≥ 0} es una martingala.
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Demostración. Claramente πZ(t)e−λt ∈ Ft . Veamos que para todo i ∈ {1, ..,k}, πZi(t) es martin-

gala. Para calcular la esperanza de πZi(t), nos va a ser muy útil expresar la cantidad de individuos

a tiempo t como la suma de Zl(s) procesos de ramificación independientes que comienzan con

un individuo de tipo l mirados a tiempo t − s, y la suma sobre todos los tipos de individuos. Es

decir, dados s y t tales que 0 < s < t,

Zi(t) =
k

∑
l=1

Zi
l(s)

∑
j=1

Zl, j(t − s)

si existe n tal que Zi
n(s) > 0, y Z(t) = 0 si Zi

n(s) = 0 para todo n ∈ {1, ..,k}. Por lo tanto,

E(πZi(t)|Fs) = E(πZi(t)|Z(s)) = πE





k

∑
l=1

Zi
l(s)

∑
j=1

Zl, j(t − s)
∣

∣Z(s)





= π
k

∑
l=1

Zi
l(s)E(Zl(t − s)) =

k

∑
l=1

Zi
l(s)πle

(t−s)λ = πZi(s)e(t−s)λ.

Luego, E(πZi(t)e−λt |Ft) = πZi(s)e−λs. Como πE(Zi(0)) = πi, E(πZi(t)e−λt) = πi, y por lo

tanto πZi(t)e−λt es una Ft-martingala para todo i ∈ {1, ..,k}.

Usando que la matriz A puede descomponerse como S+N donde S es una matriz diagonaliz-

able y N una matriz nilpotente puede verse que C(t) = eλthπt +O(tre|λ2|t) para algún r positivo

que no depende de t. Por lo tanto,

1. Caso sub-crı́tico.

Si λ < 0, E(Z(t)) decae exponencialmente, ( cada coordenada de la matriz tiende a 0

exponencialmente). Por lo tanto, para ε > 0,

P(|Z(t)| > ε) ≤
E(|Z(t)|)

ε

t→∞
−−−→ 0.

De donde |Z(t)| converge en probabilidad a 0. Por lo tanto, existe una sub-sucesión de

|Z(t)| que converge a 0 casi seguramente. Como |Z(t)| ∈N0 y si existe t0 tal que |Z(t0)|= 0

entonces |Z(t)| = 0 para todo t ≥ t0, tenemos que lı́mt→∞ |Z(t)| = 0 casi seguramente.

Observemos que, λ < 0 sı́ y solo sı́ el autovalor de módulo máximo de la matriz E(N) es

menor que 1.

2. Caso crı́tico.

Si λ = 0, E(Z(t)) = hπt para todo t ≥ 0. No nos da información suficiente para analizar el

comportamiento de la población para tiempos suficientemente grandes. Sin embargo, por

el Teorema 3.12 y usando el Teorema 3.9 aplicado a cada coordenada, tenemos que existe

una variable aleatoria Z∞ tal que lı́mt→∞ πZ(t) = Z∞ c.s. Este lı́mite no podrı́a ser distinto

de 0, pues la probabilidad de que todos los individuos tengan un único descendiente de

su tipo es distinta de 1 y por lo tanto el proceso cambiarı́a de estado rápidamente. Para

analizar este caso con más detalle puede verse Athreya [2, cap.V].
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3. Caso super-crı́tico.

Si λ > 0, E(Z(t)) crece exponencialmente. Veamos que la cantidad de individuos de cada

tipo crece exponencialmente. Si el proceso comienza con un individuo de tipo i, el proceso

Zi
i(t) domina el proceso de ramificación discreto de un solo tipo de individuo con media

mayor a 1, pues Zi
i(t) considera los individuos de tipo i, hijos de cualquier individuo j ∈

S y cuando decimos el proceso de ramificación de un solo individuo consideramos los

individuos de tipo i descendientes de individuos de tipo i. Como la cantidad de individuos

en este último proceso crece exponencialmente, también lo hace Zi
i(t) para todo i ∈ S .

En este último caso el tamaño de la población tiende a infinito, pero queremos analizar cómo

es la distribución de la población, si dividimos por la cantidad de individuos a tiempo t, es decir,

estudiar el comportamiento de
Z(t)
|Z(t)| para t grande. En este caso,

E(Z(t)e−λt)
t→∞
−−−→ hπt . (3.14)

Es un hecho notable que el comportamiento del árbol este determinado por π,h,λ. Denota-

mos:

Ωs = {X(t) 6= ∅ ∀t > 0},

al evento en que la población sobrevive a todo tiempo. Para ver el comportamiento de la población,

lo primero que queremos estudiar es una especie de ley de los grandes números para la distribu-

ción de la población, considerando el tiempo discreto, pero donde las unidades de tiempo son:

nδ, para δ > 0. Para ello necesitamos el siguiente lema.

Lema 3.3. Sean {ξ
(n)
i : n, i ∈ N} variables aleatorias i.i.d. con valores en N, con media m > 1

y segundo momento finito. Si (Vn)n∈N son variables aleatorias con valores en N tal que Vn+1 ≥

∑
Vn

n=1 ξ
(n)
i para todo n ∈ N. Entonces

lı́minf
n→∞

Vn+1

Vn
≥ m c.s.

en el evento E = {lı́mn→∞Vn 6= 0}.

Demostración. El proceso de ramificación simple definido por Zn+1 = ∑
Zn

i=1 ξ
(n)
i , cumple que Zn

crece exponencialmente si lı́mn→∞ Zn 6= 0. Por lo tanto por comparación, Vn crece exponencial-

mente en E.

Sea m′ < m. Queremos acotar P(Vn+1 < m′Vn|Vn), para ello observemos que {Vn+1 < m′Vn}=

{Vn+1 −mVn < (m′−m)Vn} ⊆ {∑
Vn

n=1 ξ
(n)
i −mVn < (m′−m)Vn} ⊆ {|∑

Vn

n=1 ξ
(n)
i −mVn| > (m−
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m′)Vn}. Por lo tanto,

P(Vn+1 < m′Vn|Vn) ≤ P

(

∣

∣

Vn

∑
n=1

ξ
(n)
i −mVn

∣

∣> (m−m′)Vn

∣

∣Vn

)

≤
E(|∑

Vn

n=1 ξ
(n)
i |2

∣

∣Vn)

(m−m′)2V 2
n

=
VnVar(ξ

(n)
i )

(m−m′)2V 2
n

≤
C

Vn
.

Como suponemos que ocurre E, Vn crece exponencialmente, por lo tanto P(∑∞
n=1

c
Vn

< ∞|E) = 1

y ∑∞
n=1 P(Vn+1 < m′Vn|Vn) < ∞ tiene probabilidad total en E.

Por el Lema de Borel Cantelli condicionado (ver Apéndice 5.1),
{

∞

∑
k1

P(Vn+1 < m′Vn|Vn) = ∞

}

=
⋂

n0

⋃

k>n0

{

Vk+1

Vk

< m′

}

.

Por lo tanto,

P

(

⋂

n0

⋃

k>n0

{

Vk+1

Vk

< m′

}

∣

∣E

)

= 0.

De donde,

1 = P

(

⋃

n0

⋂

k>n0

{

Vk+1

Vk

≥ m′

}

∣

∣E

)

= P

(

lı́minf
k→∞

Vk+1

Vk

≥ m′
∣

∣E

)

.

Ahora sı́ veamos como se comporta la distribución de la población, para ello vamos a seguir

el procedimiento de Georgii-Baake[5]. El caso discreto fue hecho por Kurtz, Lyons, Pemantle y

Peres ([9])

Proposición 3.2. Sea δ,u > 0, i, j ∈ S y sea f una función medible tal que c j = E j( f ◦X [0,u]).
Entonces,

lı́m
n→∞

1

Z j(nδ) ∑
x∈X j(nδ)

f ◦X(x, [nδ,nδ+u]) = c j c.s. en Ωs

Demostración. Asumimos que δ es mayor que u y sea ρ = E j(Z j(δ)) > 1. Tal δ existe porque λ >
0 y A es irreducible. Sea Fnδ la σ-álgebra generada por X [0,nδ]. Para cada n ∈ N consideremos

las variables aleatorias

ϕn,x = f ◦X(x, [nδ,nδ+u])

con x∈X j(nδ). ϕn,x es F(n+1)δ-medibles, y condicional a Fnδ son i.i.d. con media c j. Esto implica

que si construimos la sucesión (ϕl)l≥1 en Ωs enumerando primero {ϕ1,x : x ∈ X j(δ)} en algún

orden, luego {ϕ2,x : x ∈ X j(2δ)}, y ası́ sucesivamente. Por la Ley de los Grandes Números,

lı́m
k→∞

1

k

k

∑
l=1

ϕl = c j c.s. en Ωs.
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En particular, tomamos la subsucesión,

An =
1

∑n
l=1 ψl

n

∑
l=1

∑
x∈X j(lδ)

ϕl,x.

Donde ψl = Z j(lδ)
La sucesión (ψl)l≥1 domina el proceso de ramificación discreto de un solo tipo de individuo

con media ρ > 1, pues ψl considera los individuos de tipo j, hijos de cualquier individuo i ∈ S

y cuando decimos el proceso de ramificación de un solo individuo consideramos los individuos

de tipo j descendientes de individuos de tipo j. Como este último proceso sobrevive, también lo

hace la sucesión (ψl)l≥1.

Las variables ψl verifican las hipótesis del Lema 3.3 de donde,

lı́minf
l→∞

ψl+1

ψl

≥ ρ c.s. en Ωs.

Esto implica,

lı́msup
n→∞

ψl

ψn
< ∞ c.s. en Ωs l ∈ {1, ..,n−1}.

Por lo tanto,

lı́msup
n→∞

∑n−1
l=1 ψl

ψn
< ∞ c.s. en Ωs.

Luego,

An +(An −An−1)
∑n−1

l=1 ψl

ψn

n→∞
−−−−−−→
c.s. en Ωs

c j.

Veamos que esta es la convergencia que necesitamos.

(An −An−1)
∑n−1

l=1 ψl

ψn
=





1

∑n
l=1 ψl

n

∑
l=1

∑
x∈X j(lδ)

ϕl,x −
1

∑n−1
l=1 ψl

n−1

∑
l=1

∑
x∈X j(lδ)

ϕl,x





∑n−1
l=1 ψl

ψn

=
∑n−1

l=1 ψl

ψn ∑n
l=1 ψl

n

∑
l=1

∑
x∈X j(lδ)

ϕl,x −
1

ψn

n−1

∑
l=1

∑
x∈X j(lδ)

ϕl,x ,

de donde

An +(An −An−1)
∑n−1

l=1 ψl

ψn
=

ψn +∑n−1
l=1 ψl

ψn ∑n
l=1 ψl

n

∑
l=1

∑
x∈X j(lδ)

ϕl,x −
1

ψn

n−1

∑
l=1

∑
x∈X j(lδ)

ϕl,x

=
1

ψn

n

∑
l=1

∑
x∈X j(lδ)

ϕl,x −
1

ψn

n−1

∑
l=1

∑
x∈X j(lδ)

ϕl,x

=
1

ψn
∑

x∈X j(nδ)

ϕn,x
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Concluimos que,
1

ψn
∑

x∈X j(nδ)

ϕn,x
n→∞

−−−−−−→
c.s. en Ωs

c j.

Por lo tanto la proposición es cierta para δ suficientemente grande.

Si δ es arbitrario, podemos elegir k ∈ N tal que δ′ = kδ sea tan grande como necesitemos.

Sea 0 ≤ l < k, aplicando el resultado al subárbol X(x, [lδ,∞]) con x ∈ X(lδ) y promediando,

obtenemos:

lı́m
n→∞

1

ψnk+l
∑

x∈X j((nk+l)δ)

ϕnk+l,x = c j c.s. en Ωs.

Luego, queda demostrada la proposición.

Una aplicación de este resultado que usaremos más adelante , es el siguiente corolario.

Corolario 3.3. Para cualquier δ,u > 0 y para i, j ∈ S

C j,u(nδ) =
1

Z j(nδ) ∑
x∈X j(nδ)

Z(x,nδ+u)
n→∞

−−−−−→
c.s. en Ωs

E j(Z(u)).

Demostración. Basta con tomar f (x) = |x| y aplicar el Lema 3.2.

Este resultado nos dice como se comporta la cantidad de individuos cuando el tiempo tiende

a infinito, pero estamos considerando el tiempo discreto, lo que veremos a continuación son

algunas acotaciones para poder pasar a tiempo continuo. La idea de las acotaciones es ver que en

un tiempo muy pequeño (δ) el proceso no puede variar mucho.

Lema 3.4. Dado ε > 0 existe δ > 0 tal que para todo i, j ∈ S y k ∈ N, Pi-casi seguramente en Ωs

lı́msup
n→∞

sup
nδ≤s≤(n+1)δ

||Z(s)||

||Z(nδ)||
< 1+ ε, (3.15)

lı́minf
n→∞

ı́nf
nδ≤s≤(n+1)δ

Z j(s)

Z j(nδ)
> 1− ε, (3.16)

lı́minf
n→∞

ı́nf
nδ≤s≤(n+1)δ

ı́nf
kδ≤u≤(k+1)δ

∑y∈X j(s) ||Z(y,u+ s)||

∑y∈X j(nδ) ||Z(y,nδ+ kδ)||
> 1− ε. (3.17)

Demostración. Sea nδ ≤ s ≤ (n+1)δ. Podemos escribir,

||Z(s)|| = ∑
x∈X(nδ)

|X(x,s)| ≤ ∑
x∈X(nδ)

M(x, [nδ,(n+1)δ])

donde M(x, [nδ,(n + 1)δ]) = máxnδ≤s≤(n+1)δ |X(x,s)|. Claramente, ||Z(nδ)|| ≥ máx j∈S Z j(nδ).
Por lo tanto,

sup
nδ≤s≤(n+1)δ

||Z(s)||

||Z(nδ)||
≤ máx

j∈S

1

Z j(nδ) ∑
x∈X j(nδ)

M(x, [nδ,(n+1)δ]).
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Por la Proposición 3.2, la última expresión converge a m(δ) = máx j∈S E j(M(0, [0,δ])) c.s.

en Ωs( f = M).
El proceso M(0, [0,δ]) está dominado por el tamaño total a tiempo δ del siguiente proceso de

ramificación modificado: las variables aleatorias Nx,σ(x) las reemplazamos por mı́n{Nx,σ(x),1},

para que cada individuo tenga al menos un hijo de su propio tipo. Este último proceso tiene una

matriz generadora finita, que llamamos A+. Por lo tanto, m(δ) ≤ máx j∈S(e
δA+

)
δ→0
−−→ 1. Luego,

(3.15) queda demostrada.

Para demostrar 3.16, basta con tomar u = k = 0 en (3.17). Por lo tanto veamos que es cierta

(3.17).

Sea nδ ≤ s ≤ (n + 1)δ y kδ ≤ u ≤ (k + 1)δ. Consideremos sólo los individuos y ∈ X(s)
que están vivos a tiempo nδ y siguen vivos a tiempo (n+1)δ y sólo sus descendientes que viven

durante el perı́odo [(n+k)δ,(n+k+2)δ], es decir, z∈X(y,s+u) . Podemos acotar de la siguiente

forma;

∑
y∈X j(s)

||Z(y,s+u)|| ≥ ∑
x∈X j(nδ)

1{τx,nδ>δ} ∑
z∈X(x,(n+k)δ)

1{τz,(n+k)δ>2δ}

donde τx, t = ı́nf{u > 0/x /∈ X(t +u)}. Notamos τx a τx,0.

Luego,

∑y∈X j(s) ||Z(y,u+ s)||

∑y∈X j(nδ) ||Z(y,nδ+ kδ)||
≥

∑x∈X j(nδ) 1{τx,nδ>δ}∑z∈X(x,(n+k)δ) 1{τz,(n+k)δ>2δ}

∑y∈X j(nδ) ||Z(y,nδ+ kδ)||

Por la Proposición 3.2)

∑x∈X j(nδ) 1{τx,nδ>δ}∑z∈X(x,(n+k)δ) 1{τz,(n+k)δ>2δ}

∑y∈X j(nδ) ||Z(y,nδ+ kδ)||

n→∞
−−−−−→
c.s. en Ωs

E j(1{τx>δ}∑z∈X(x,kδ) 1{τz,kδ>2δ}
)

∑y∈X j(0) ||Z(y,kδ)||
.

Donde τx es el tiempo de vida del individuo inicial, que es de tipo j. El último denominador es

exactamente E j(|X(kδ)|), y el numerador, es igual a

E j

(

1{τx>δ} ∑
z∈X(x,kδ)

exp[−2δaσ(z)]

)

.

Sea a = máxi∈S ai, luego esta expresión es mayor o igual que:

exp[−2δa]E j(1{τx>δ}|X(kδ)|) = exp[−2δa](E j(|X(kδ)|)−E j(1{τx≤δ}|X(kδ)|)).

Por lo tanto,

E j(1{τx>δ}∑z∈X(x,kδ) 1{τz,kδ>2δ})

∑y∈X j(0) ||Z(y,kδ)||
≥ e−2δa

(

1−
E j(1{τx≤δ}|X(kδ)|)

E j(|X(kδ)|)

)

. (3.18)

Analicemos por separado el último cociente. En el numerador condicionamos a lo ocurrido

con la variable τx

E j(1{τx≤δ}|X(kδ)|) =
∫ ∞

0
E j(1{τx≤δ}|X(kδ)|

∣

∣τx = s)axe−axsds

=
∫ δ

0
E j(|X(kδ)|

∣

∣τx = s)axe−axsds.
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La variable τx es el instante en el que el individuo inicial se reproduce, éste tiene Nx =(Nx1, ..,Nxk)
descendientes. Notamos Xn(t) al proceso que comienza con n = (n1, ..,nk) individuos iniciales,

E j(1{τx≤δ}|X(kδ)|) =
∫ δ

0
axe−axs ∑

n∈N
k
0

E(|Xn(kδ− s)|)P(Nx = n)ds

=
∫ δ

0
axe−axs

k

∑
i=1

∑
ni∈N0

niE
i(|X(kδ− s)|)P(Nx = n)ds

=
∫ δ

0
axe−axsE(

k

∑
i=1

NxiE
i(|X(kδ− s)|))ds

=
∫ δ

0
axe−axs

k

∑
i=1

E(Nxi)E
i(|X(kδ− s)|)ds.

Además como (E(Ni j)) es finita para todo i, j ∈ {1, ..,k}

E j(1{τx≤δ}|X(kδ)|) ≤ máx
i∈S

{E((Nxi)}ax

k

∑
i=1

∫ δ

0
e−axsE i(|X(kδ− s)|)ds.

Usando que h es autovector a derecha de la matriz E(Z(t)) obtenemos

E i(|X(kδ− s)| ) = E i(||Z(kδ− s)||) =
k

∑
j=1

E i(Z j(kδ− s)) =
k

∑
j=1

E i(Z j(kδ− s))h j

h j

≤
∑k

j=1 E i(Z j(kδ− s))h j

mı́n j∈S{h j}
=

E i(Z(kδ− s)h)

mı́n j∈S{h j}
=

hie
λ(kδ−s)

mı́n j∈S{h j}
.

Por lo tanto,

E j(1{τx≤δ}|X(kδ)|) ≤ máx
i∈S

{E(Nxi)}ax

k

∑
i=1

∫ δ

0
e−axs eλ(kδ−s)hi

mı́n j∈S{h j}
ds

≤
máxi∈S{E(Nxi)}ax ∑k

i=1 hi

mı́n j∈S{h j}

∫ δ

0
e−axseλ(kδ−s)ds

=
máxi∈S{E(Nxi)}ax ∑k

i=1 hi

mı́n j∈S{h j}
eλkδ

(

1

λ+ax
−

e−(λ+ax)δ

λ+ax

)

.

Por otro lado el denominador

E j(|X(kδ)|) = ∑
i∈S

E j(Zi(kδ)) = ∑
i∈S

E j(Zi(kδ))hi

hi

≥
E j(Z(kδ)h)

máxi∈S{hi}
=

eλkδh j

máxi∈S{hi}
.



62 CAPÍTULO 3. PROCESOS DE RAMIFICACIÓN

Luego para δ suficientemente pequeño, siguiendo con la desigualdad (3.18),

E j(1{τx>δ}∑z∈X(x,kδ) 1{τz,kδ>2δ})

∑y∈X j(0) ||Z(y,kδ)||
≥ e−2δa






1−

máxi∈S{E(Nxi)}ax ∑k
i=1 hi

mı́n j∈S{h j}
eλkδ

(

1
λ+ax

− e−(λ+ax)δ

λ+ax

)

eλkδh j

máxi∈S{hi}







= e−2δa



1−
máxi∈S{hi}máxi∈S{E(Nxi)}ax ∑k

i=1 hi

(

1
λ+ax

− e−(λ+ax)δ

λ+ax

)

h j mı́n j∈S{h j}



> 1− ε.

pues E(Nx) < ∞, y hi ∈ (0,1).

Ahora sı́, estamos en condiciones de analizar el comportamiento del proceso, cuando este no

se extingue.

Teorema 3.13 (Kesten-Stigum). Consideramos el caso super-crı́tico λ > 0. Para el proceso de

ramificación ya definido Z(t), con Z(0) = e j para j ∈ S ,

1

|X(t)| ∑
x∈X(t)

δσ(x) =
Z(t)

||Z(t)||

t→∞
−−−→ π c.s. en Ωs.

Demostración. Sea ε > 0, por (3.14) existe δ > 0 tal que para u ∈ δN suficientemente grande,

||E j(Z(u)e−λu)−h jπ|| < ε

para todo j ∈ S. Por el Corolario 3.3, podemos elegir s ∈ δN grande, tal que

||C j,u(s)e
−λu −h jπ|| < ε c.s. en ΩS.

Donde C j,u(s) = 1
Z j(s)

∑x∈X j(s) Z(x,s+u). Si denotamos Π(t) = Z(t)
||Z(t)|| y a(t) = ||Z(t)||e−λu

〈Z(t−u),h〉 ,

||a(t)Π(t)−π|| =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

e−λuZ(t)

〈Z(t −u,h)〉
−π

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=
1

〈Z(t −u,h)〉

∣

∣

∣

∣

∣

∣e
−λuZ(t)−〈Z(t −u,h)〉π

∣

∣

∣

∣

∣

∣

=
1

〈Z(t −u,h)〉

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

e−λu ∑
x∈X(t−u)

Z(x, t)−π ∑
i∈S

Zi(t −u)hi

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

≤ ∑
i∈S

Zi(t −u)
1

〈Z(t −u,h)〉

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

e−λu ∑x∈X(t−u) Z(x, t)

Zi(t −u)
−πhi

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= ∑
i∈S

Zi(t −u)
1

〈Z(t −u,h)〉
||e−λuC j,u(t −u)−πhi|| < ε.
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Concluimos que, ||a(t)Π(t)−π|| < ε. Como π y Π(t), son vectores de norma 1 obtenemos,

||Π(t)−π|| < ε

para todo t ∈ δn suficientemente grande, casi seguramente en ΩS. Falta ver que la convergencia

es para t > 0, para ello usemos las desigualdades vistas en el Lema 3.4.

Por (3.16)
Z j(t)

Z j(nδ) ≥ 1− ε, por (3.15)
||Z(nδ)||
||Z(t)|| > 1

1+ε , luego

Z j(t)

||Z(t)||
=

Z j(nδ)

||Z(nδ)||

||Z(nδ)||

||Z(t)||

Z j(t)

Z j(nδ)
>

1− ε

1+ ε
(π− ε).

para t suficientemente grande. Es decir,

lı́minf
t→∞

Z j(t)

||Z(t)||
= π.

Tanto Π(t), como π son probabilidades en un espacio de estados finito, por lo tanto el lı́mite

superior y el lı́mite inferior deben coincidir, pues si alguna coordenada del lı́mite superior es

mayor que la del lı́mite inferior, para que la suma siga siendo 1 tendrı́a que haber alguna coorde-

nada que sea menor, y esto no puede ocurrir.

Con lo cual probamos que,

lı́m
t→∞

Π(t) = π.
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Capı́tulo 4

Aplicaciones

4.1. Proceso de urna

Consideremos el siguiente experimento, de una urna que contiene bolitas de colores, se ex-

trae una bolita y se sustituye por un número aleatorio de bolitas de diferentes colores, la distribu-

ción de cantidad de bolitas que agrego sólo depende del color de la bolita extraı́da. Bajo ciertas

condiciones, las proporciones de colores diferentes tendrán un lı́mite. Este lı́mite lo calcularemos

viendo que este experimento podemos pensarlo como un proceso de ramificación. Describamos

en detalle el experimento.

En una urna hay bolitas de k colores distintos. El vector aleatorio X(n) es la composición de

la urna después de n extracciones

X(n) = (X1(n), ..,Xk(n)),

donde Xi es el número de bolitas del color i. La distribución inicial X(0) es arbitraria. En la

(n+1)-ésima extracción, la probabilidad de sacar una bolita de color i, es:

Xi(n)

∑k
i=1 Xi(n)

.

Una vez que saco la bolita i repongo con Ni j bolitas de color j, con 1 ≤ j ≤ k. Las variables

aleatorias (Nl
i j, l ∈ N) son independientes e idénticamente distribuidas, l indica que es la l-ésima

bolita que extraje de la urna. Además cumplen las siguientes hipótesis:

1. Ni j ∈ N0 para todo i, j ∈ {1, ..,k}.

Nii ≥ 1 ∀ ∈ i ∈ {1, ..,k}, (siempre se repone una bolita del color que se extrajo).

P(∑k
j=1 Ni j > 1) > 0 para algún i (excluimos el caso degenerado que es reponer siem-

pre una bolita, ya que en ese caso se estarı́a manteniendo la cantidad de bolitas ini-

ciales).

2. E(N2
i j) < ∞, para todo i, j ∈ {1, ..,k}.

65
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3. Sea M la matriz con entradas Mi j = E(Ni j). Suponemos que M es irreducible.

Teorema 4.1. Sea N = (Ni j)i, j∈S una matriz aleatoria que satisface:

1. Ni j ∈ N0 para todo i, j ∈ {1, ..,k}, Nii ≥ 1 ∀i ∈ {1, ..,k}.

2. P(∑k
j=1 Ni j > 1) > 0 para algún i.

3. E(N) es irreducible.

La ecuación

µ(E(N)− Id) = αµ

tiene una única solución con α > 0 y µ una medida.

Demostración. Puede verse en Seneta [12].

Por como definimos el proceso el generador es:

P(X(n+1) = z+y− ei|X(n) = z) = P(Ni = y)
Xi(n)

∑k
i=1 Xi(n)

.

Esto describe el proceso de una urna parametrizada con k vectores aleatorios Ni = (Ni j)1≤ j≤k,

1≤ i≤ k. Sea X̂(n) el vector de proporciones después de n extracciones, es decir para i = {1, ..,k}

X̂i(n) =
Xi(n)

∑k
j=1 X j(n)

.

Para analizar la convergencia de X̂i(n), veamos que se comporta igual que un proceso discreto

inmerso en un proceso de ramificación continuo multitipo. Sea Z(t) un proceso de ramificación

multitipo a tiempo continuo, tal que cada individuo tiene siempre un descendiente de su tipo y

además el tiempo de vida de cada individuo tiene distribución exponencial de parámetro 1 para

todo tipo de individuo. Este proceso esta dominado por debajo por un proceso de ramificación

continuo de un solo tipo de individuo con media mayor a 1, pues si el proceso comienza con un

individuo de tipo i, Zi(t) considera los individuos de tipo i descendientes de cualquier individuo

y cuando decimos el proceso de ramificación de un solo tipo consideramos los individuos de tipo

i descendientes de individuos de tipo i. Como supusimos que cada individuo siempre deja un

descendiente de su tipo, tenemos que la media de la cantidad de individuos en el proceso simple

es mayor a 1, por lo tanto este proceso no se extingue y tampoco lo hace Z(t). Consideremos

las variables (ξn)n∈N donde ξi es el tiempo de la i-ésima ramificación. Como el proceso no se

extingue, ξn
n→∞
→ ∞ . Observemos que {ξn}n∈N son las discontinuidades de Z(t) y además que

lı́mn→∞
Z(ξn)
|Z(ξn)|

= lı́mt→∞
Z(t)
|Z(t)| pues este último lı́mite existe c.s..

Teorema 4.2. Sean {Yn,n ∈ N} el proceso de urna y {Z(t), t ≥ 0} el proceso de ramificación,

definidos anteriormente. Entonces los procesos {Yn,n ∈ N} y {Z(ξn),n ∈ N} son equivalentes.
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Demostración. Lo primero que notamos es que {Yn}n∈N es un proceso a tiempo discreto y es una

cadena de Markov con probabilidades de transición homogéneas. Por lo tanto, si ambos procesos

tienen el mismo estado inicial, nos basta con mostrar que ambos tienen igual probabilidades de

transición. Supongamos que ambos comienzan iguales: Z(0) = Y (0) y miremos el primer paso.

El proceso de ramificación comienza con Zi(0) individuos de tipo i, con i ∈ {1, ..,k}. El tiempo

de vida de cada individuo tiene distribución exponencial de media 1. Ası́ que el proceso espera un

tiempo exponencial de media ∑k
i=1 Zi(0) y luego se ramifica, la probabilidad de que se ramifique

un individuo de tipo i es
Zi(0)

∑k
j=1 Z j(0)

. En el proceso de urna la probabilidad de elegir una bolita de

color i es
Yi(0)

∑k
j=1 Y j(0)

. Como ambos procesos se inicializaron iguales,

Zi(0)

∑k
j=1 Z j(0)

=
Yi(0)

∑k
j=1Yj(0)

.

Después de esa ramificación se incrementa un número aleatorio de individuos o bolitas, Ni j y el

proceso se inicializa de vuelta, por la falta de memoria del tiempo de vida de los individuos. Esto

muestra que si Y (0) = Z(0) entonces Y1 tiene la misma distribución que Z1. Este mecanismo de

transición es idéntico para todo el proceso.

Como vimos que ambos procesos son iguales, por el Teorema 3.13

lı́m
n→∞

Xi(n)

∑k
j=1 X j(n)

= π. c.s.

4.2. Convergencia empı́rica a la distribución

cuasiestacionaria

Dado (Xn)n∈N un proceso de Markov en un espacio de estados finito nos interesa estudiar co-

mo evoluciona el proceso. Es decir queremos saber si las variables Xn tienen algún lı́mite. Vimos

que si el espacio de estados S es finito, y la matriz de transición P es irreducible y aperiódica,

existe una única distribución estacionaria π que cumple:

∑i∈S πi pi j = π j ∀ j ∈ S , π j > 0 y ∑ j∈S π j = 1.

De donde, si comenzamos con la medida invariante y dejamos evolucionar el proceso, la

distribución de Xn no cambia, es decir,

Pπ(Xn = s j) = π j ∀n ∈ N.

Luego, π es una medida invariante sı́ y solo sı́ πP = π, es decir, π es autovector a izquierda

asociado al autovalor 1.

Dada µ una distribución inicial,

lı́m
n→∞

Pµ(Xn = s j) = π j.
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Es decir, que no importa con qué distribución comencemos, si dejamos evolucionar el

proceso, este tendrá aproximadamente la distribución de la medida estacionaria.

Convergencia de la distribución empı́rica

N−1
N

∑
n=1

1{Xn=s j}
n→∞
−−−→

c.s.
π j.

Esta convergencia se deduce del Teorema Ergódico 1.6 tomando f (Xn) = 1{Xn= j}.

Si queremos calcular la distribución estacionaria, tenemos varias opciones

buscar el autovector asociado al autovalor 1 de la matriz P,

simular la cadena en N pasos, y usar la convergencia de la distribución empı́rica para

estimar la distribución estacionaria,

usar simulación perfecta, no vamos a entrar en detalle sobre este método pero puede verse

en: http://dimacs.rutgers.edu/ dbwilson/exact.html/

En la primera opción calculamos exacta cual es la distribución, el problema es que si el espacio

de estados es muy grande, calcular los autovectores es muy engorroso. La segunda opción es una

buena forma de aproximar la distribución estacionaria.

Por otro lado, consideremos el proceso de Markov (Xn)n∈N definido en el espacio de estados

S ∪{0} donde 0 es un estado absorbente, y P es la matriz de transición con PS es irreducible y

aperiódica. Llamamos T al primer momento en que la cadena es absorbida. Por el Teorema 2.2,

existe una única distribución cuasiestacionaria ν que satisface:

νi ≥ 0 ∀i ∈ {1, ..,k}, ∑k
i=1 νi = 1,

Pν(Xn = s j|T > n) = ν j ∀n ∈ N0 ∀ j = {1, ..,k}.

Además vimos que cumple:

νPS = λν, donde λ es el autovalor de módulo máximo de PS , λ es real y 0 < λ < 1. (Puede

verse en Seneta [12])

lı́mn→∞ Pµ(Xn = s j|T > n) = ν j, donde µ es la distribución inicial.

Nos gustarı́a calcular ν, para eso podemos hallar los autovalores y autovectores de PS , pero

si el espacio de estados es muy grande, no es práctico. En este caso, usar el método de rechazo

no es bueno, es decir, simular para estimar ν corriendo la cadena y descontando las veces que

toca al estado absorbente, es malo, pues P(T > n) tiende a cero exponencialmente. Por lo tanto,

queremos un método para simular ν. Vamos a dar el método propuesto por Aldous, Flannery y

Palacios [1]. La idea es definir un proceso donde la distribución empı́rica converja a ν.

Primero suponemos que conocemos a ν y consideramos el proceso V = (Vn)n∈N definido en

S de la siguiente manera, Vn es Xn mientras que T > n, cuando T = N no contamos la transición

y la cadena X vuelve a S en el paso N +1 con la distribución de ν.
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Teorema 4.3. Consideremos los procesos (Xn)n∈N y (Vn)n∈N construidos anteriormente. Si ν
es la distribución cuasiestacionaria de (Xn)n∈N entonces ν es la distribución estacionaria de

(Vn)n∈N .

Demostración. Para comenzar verifiquemos que (Vn)n∈N es una cadena de Markov:

Claramente,

P(Vn+1 = s j|Vn = si, ..,V0 = s0) = P(Vn+1 = s j|Vn = si).

Sea Q la matriz de transición de V , donde las entradas de Q son:

Qi j = Pi j +Pi0ν j ∀i, j ∈ {1, ..,k}

pues la forma de que la cadena V salte de si a s j es que X pase de si a s j, o que pase de si al 0, y

luego al ser redistribuida con ν, esta vaya a s j.

Luego,

P(Vn+1 = s j|Vn = si) = Qi j

Como ν es la distribución cuasiestacionaria de Xn cumple lo siguiente:

1. νi ≥ 0 ∀i ∈ {1, ..,k} y ∑k
i=1 νi = 1,

2. νPS = λ1ν.

Luego, para ver que ν es la distribución estacionaria, solo falta ver que νQ = ν. Sea j ∈ {1, ..,k},

k

∑
i=1

νiQi j =
k

∑
i=1

νi(Pi j +Pi0ν j)

=
k

∑
i=1

νiPi j +
k

∑
i=1

νiPi0ν j

= λ1ν j +ν j

k

∑
i=1

νi(1−
k

∑
z=1

Piz)

= λ1ν j +ν j

(

k

∑
i=1

νi −
k

∑
z=1

k

∑
i=1

νiPiz

)

= λ1ν j +ν j(1−
k

∑
z=1

λ1νz)

= λ1ν j +ν j(1−λ1)

= ν j.

Con lo cual probamos que ν es la distribución estacionaria de Vn.
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Sabemos que la distribución empı́rica θN converge a la distribución estacionaria ν, donde

θi(N) =
1

N

N

∑
n=1

1{Vn=si}.

Por supuesto que como no conocemos ν no podemos simular este proceso. Sin embargo podemos

adaptarlo; si X va al estado absorbente en el paso N, la cadena X en el paso N +1 vuelve a S usan-

do la distribución empı́rica θN . Demos la definición formal del proceso de Markov (Vn,ξ(n))n∈N,

si ξ(n) es la distribución empı́rica de V a tiempo n.

Definición 4.1. Sea M un conjunto de medidas en S y (Vn,ξ(n)) en S ×M una cadena de

Markov, con V1 = i1 y ξ1 = ei1 con transiciones:

P(Vn+1 = s j,ξ(n+1) = ξ+ e j|Vn = si,ξ(n) = ξ) = Pi j +Pi0
ξ j

|ξ|
.

donde ξ = ∑ j∈S ξ j.

El siguiente teorema muestra que para el proceso adaptado, la distribución empı́rica converge

a ν.

Teorema 4.4. Para el proceso definido anteriormente,

lı́m
n→∞

n−1ξn = ν

donde ν es la distribución cuasiestacionaria de Xn.

Demostración. A la definición anterior le agregamos un contador. Sea C(m), el número de veces

que la cadena X fue absorbida por el 0 hasta el paso m,

C(m) =
m

∑
i=1

1{Xi=0}.

Lo inicializamos con C(1) = 0. Veamos como afecta este contador en el generador. Suponiendo

que Vn = si, y que X fue C veces absorbida, hay dos formas distintas de que Vn+1 = s j,

la primera es que en ese paso X no fue absorbida, y pasó de si a s j;

P(Vn+1 = s j,ξ(n+1) = ξ+ e j,C(n+1) = C|Vn = si,ξ(n) = ξ,C(n) = C) = Pi j,

y la segunda que X fue absorbida, y al volver a S con ξ fue a s j;

P(Vn+1 = s j,ξ(n+1) = ξ+ e j,C(n+1) = C +1|Vn = si,ξ(n) = ξ,C(n) = C) = Pi0
ξ j

|ξ|
.
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Sea Sn = mı́n{m/C(m) = n} es decir, Sn es el tiempo en que la cadena X fue absorbida por

n-ésima vez. Sea β(n) = ξ(Sn) la medida de conteo empı́rica a ese tiempo. Vimos que el proceso

de urna es equivalente a el proceso discreto inmerso en un proceso de ramificación multitipo a

tiempo continuo. Veamos ahora que β(n) es un proceso de urna y por lo tanto podremos usar

los resultados de procesos de ramificación. La cadena comienza en el estado i, esto es en el

proceso de urna, que la urna se inicializa con una bolita de color i. La cadena pasea por los

estados según la matriz de transición P hasta que llega al estado absorbente. Esto es equivalente a

reponer bolitas en la urna, se reponen Ni j bolitas, donde Ni j tiene la distribución de ∑T−1
j=1 1{V j(n)}.

Notemos que la distribución de reponer bolitas en la urna solo depende de la bolita extraı́da. La

cadena vuelve a un estado s j ∈ S , usando β(1), en la urna esto es elegir una bolita entre las bolitas

que estan en la urna que son β(1). Ambos procesos continúan con este mecanismo.

Queremos ver que las variables Ni j cumplen las hipótesis del Teorema 4.1 para que el autoval-

or de módulo máximo de E(N) sea mayor a 1, y ası́ estar en las condiciones del caso super-crı́tico

del proceso de ramificación.

1. ∑T−1
n=0 1{Vn=s j} ∈ N0 ∀ j ∈ {1, ...,k},

∑k
j=1 ∑T−1

n=0 1{Vn=s j} = ∑T−1
n=0 ∑k

j=1 1{Vn=s j} = ∑T−1
n=0 1 = T ≥ 1 pues V0 = si,

Pi(∑
k
j=1 ∑T−1

n=0 1{Vn= j} > 1) = Pi(T > 1) > 0 pues Pi0 6= 1.

2. Ei[(∑
T−1
n=0 1{Vn=s j})

2] ≤ Ei(T
2) < c.

3.

Mi j = E(Ni j) = E(
T−1

∑
n=0

1{Vn=s j}|V0 = si) = E(
∞

∑
n=0

1{Vn=s j,T>n}|V0 = si) =
∞

∑
n=0

(Pn
S )i j

es decir,

M =
∞

∑
n=0

Pn
S .

La hipótesis de irreducibilidad de PS implica irreducibilidad de M.

Por lo tanto (β(n))n∈N esta bajo las hipótesis del Teorema 3.13, sólo nos falta verificar que ν es la

solución del Teorema 4.1, es decir la única solución de µR = αµ, con α positivo y µ una medida.



72 CAPÍTULO 4. APLICACIONES

∑
i∈S

νiri j = ∑
i∈S

νi(Mi j −1{i j})

= ∑
i∈S

νiMi j −∑
i∈S

νi1{i j}

= ∑
i∈S

νi

∞

∑
n=0

(Pn)i j −ν j

=
∞

∑
n=0

∑
i∈S

νi(P
n)i j −ν j

=
∞

∑
n=0

λnν j −ν j

= ν j
1

1−λ
−ν j

= ν j
λ

1−λ

Como α = λ
1−λ > 0, ν es la única solución de νR = αν. Luego por el teorema (3.13),

β(n)

∑ j∈S β j(n)

n→∞
−−−→

c.s.
ν.

Como β j(n) = ξ j(Sn), β j(n) es cuantas veces la cadena X pasó por el estado s j antes de la

n-ésima absorción. Si sumamos sobre todos los estados de S , es la cantidad de estados por los

que pasó la cadena, es decir, Sn.

∑ j∈S ξ j(Sn) = Sn

Luego,
ξ(Sn)

Sn

n→∞
−−−→

c.s.
ν

Tenemos la convergencia que buscamos pero en lugar de para todo n sólo en los momentos en los

que la cadena fue absorbida. Para ver que la convergencia es cierta para n ∈ N primero veamos

que
Sn+1

Sn
→ 1,

P

(∣

∣

∣

∣

Sn+1

Sn
−1

∣

∣

∣

∣

> ε

)

≤

E

[

(

Sn+1−Sn

Sn

)2
]

ε2
≤

E
[

(Sn+1 −Sn)
2
]

n2ε2
.

Además, E
[

(Sn+1 −Sn)
2
]

= E(E
[

(Sn+1 −Sn)
2
]

|Sn) = E(E(T 2
0 )) = E(T 2

0 ) que es finito. Sea

c > 0 tal que E(T 2
0 ) < c. Luego,

P

(∣

∣

∣

∣

Sn+1

Sn
−1

∣

∣

∣

∣

> ε

)

≤
c

n2ε2
.
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Como ∑∞
n=1

c
n2ε2 es finito

Sn+1

Sn

n→∞
−−−→

c.s.
1.

Sea m tal que, Sn ≤ m ≤ Sn+1. Con lo cual,

ξ(Sn) ≤ ξ(m) ≤ ξ(Sn+1).

Por un lado
ξ(m)

Sn
≤

ξ(Sn+1)

Sn
=

ξ(Sn+1)

Sn+1

Sn+1

Sn
→ ν,

por otro lado
ξ(m)

Sn+1
≥

ξ(Sn)

Sn+1
=

ξ(Sn)

Sn

Sn

Sn+1
→ ν.

Finalmente vimos que,

lı́m
n→∞

n−1ξ(n) = ν.

Por lo tanto demostramos que la distribución empı́rica de la cadena V converge a la distribución

cuasiestacionaria de X .
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Capı́tulo 5

Apéndice

Teorema 5.1. Sean X1,X2, .. martingalas con |Xn+1 −Xn| < M. Sean,

C = {lı́mn→∞ Xn existe y es finito},
D = {lı́msupn→∞ Xn = +∞, lı́minfn→∞ Xn = −∞},
Entonces, P(C∪D) = 1.

Demostración. Puede verse en Durret [4](pág. 239).

Lema 5.1 (Borel Cantelli condicionado). Sea (Fn,n ∈ N) una filtración con F0 = { /0,Ω} y

(An)n∈N una sucesión de eventos, tal que An ∈ Fn. Entonces,

⋂

k∈N

⋃

n≥k

{An} =

{

∑
n∈N

P(An|Fn−1) = ∞

}

.

Demostración. Consideremos las siguientes variables aleatorias, X0 = 0 y

Xn =
n

∑
j=1

1{A j}−P(A j|F j−1) ∀n ∈ N.

La variable Xn ası́ definida es una martingala:

Fn ⊆ Fn+1, luego A j ∈ Fn, ∀ j ≤ n y por lo tanto Xn ∈ Fn.

E(Xn+1|Fn) = E

(

n+1

∑
j=1

1{A j}−P(A j|F j−1)|Fn

)

= E

(

n+1

∑
j=1

1{A j}|Fn

)

−
n+1

∑
j=1

P(A j|F j−1)

= E

(

n

∑
j=1

1{A j}|Fn

)

+E(1{An+1}|Fn)−
n

∑
j=1

P(A j|F j−1)−P(An+1|Fn)

= Xn.
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E(Xn+1) = E(Xn), y E(Xn+1) = E(Xn) = E(X0) = 0.

Por otro lado, |Xn+1 −Xn| = |1{An+1}−P(An+1|F − n)| ≤ 1. Por lo tanto estamos en las condi-

ciones del teorema 5.1, lo que implica que P(C ∪ D) = 1. Si ocurre D = {lı́msupn→∞ Xn =
+∞, lı́minfn→∞ Xn = −∞}, como Xn = ∑n

j=1 1{A j}−P(A j|F j−1),

n

∑
j=1

1{A j}
n→∞
−−−→ +∞

n

∑
j=1

P(A j|F j−1)
n→∞
−−−→ +∞.

Si ocurre C = {lı́mn→∞ Xn existe y es finito}

n

∑
j=1

1{A j}
n→∞
−−−→ +∞ ⇐⇒

n

∑
j=1

P(A j|F j−1)
n→∞
−−−→ +∞.

Luego, {An ocurre infinitas veces } = {∑∞
j=1 P(A j|F j−1) = +∞}.
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