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Introduccion

El estudio de la dindmica de operadores lineales definidos en espacios de Banach o de
Fréchet es una rama moderna del andlisis funcional que ha surgido a partir del trabajo
de muchos autores. Probablemente, el inicio de su estudio de manera sistemética es la
tesis doctoral de C. Kitai en 1982 [23]. En particular, gran parte de la difusion de este
tema de estudio debe ser atribuida a los trabajos de G. Godefroy y J. H. Shapiro [17]
v K.-G. Grosse-Erdmann [20].

Para dar una idea sumamente simplificada del tema, podemos decir que el centro
de atencion es el comportamiento de las sucesivas iteraciones de un operador lineal.
En otras palabras, se estudian sistemas dindmicos discretos asociados a operadores
lineales. En el contexto finito dimensional este problema se puede resolver a través
del estudio de la forma de Jordan asociada a una matriz, y los comportamientos son
relativamente simples (de ahi que el caos se asocia naturalmente a sistemas no lineales).
Sin embargo, en espacios de dimension infinita los sistemas lineales pueden ser cadticos,
ya que aparecen fenobmenos nuevos, como por ejemplo la existencia de orbitas densas
en todo el espacio. Este nuevo fendémeno es el centro de estudio de la tesis. Cuando un
operador admite 6rbitas densas se dice hiperciclico. La palabra “hiperciclico” tiene su
origen en la nocion de “operador ciclico”, ligado al problema del subespacio invariante.
En este caso, los operadores hiperciclicos estan ligados al problema de existencia de
subconjuntos invariantes: jdado un operador lineal T : X — X, es posible encontrar
un subconjunto cerrado no trivial F tal que T'(F') C F?

Concretamente, las definiciones sobre las que desarrollaremos el trabajo son la siguien-
tes. Sea X un espacio de Fréchet separable de dimension infinita y T : X — X un
operador lineal y continuo. Dado x € X, la orbita de x por T es el conjunto definido
por

Orb(z,T) = {T"x : n > 0}.
El operador T se dice hiperciclico si existe € X (vector hiperciclico) tal que Orb(x, T')
es denso en X.

Es importante notar que la existencia de operadores con esta propiedad es sb6lo posible
en espacios de dimension infinita ya que por ejemplo, si T': X — X es un operador
lineal en un espacio de Fréchet y 77 : X’ — X’ es su operador adjunto, la existencia
de algun autovalor para 7" garantiza que 1" no es hiperciclico. En los tltimos anos el
estudio de la hiperciclicidad de operadores ha tenido un desarrollo importante, como
referencia puede consultarse la bibliografia [3] y [21]. Se encontraron sorprendentes
resultados, entre ellos, podemos citar que si un operador admite un vector con 6rbita
densa, entonces admite infinitos de estos vectores. Mas ain, el conjunto de los vectores
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con Orbita densa de un operador hiperciclico es denso, conexo y homeomorfo al espacio
ambiente. También se probd que no existen operadores compactos hiperciclicos.

Los primeros ejemplos de operadores hiperciclicos surgieron en el contexto de la teoria
de funciones analiticas. Asi, en 1929, G. D. Birkhoff [8] probé que para todo a € C, el
operador traslacion en el espacio de funciones enteras de variable compleja (H(C), 1)
con la topologia compacto-abierta, T, : H(C) — H(C) definido por T, f(z) = f(z+a) es
hiperciclico, y en 1952, G. R. MacLane [25], mostro que lo mismo ocurre con el operador
de diferenciacién en H(C). Por supuesto, no exitia atn la nocién de hiperciclicidad,
y el interés de estos trabajos no se centraba en la dindAmica de los operadores sino en
propiedades de las funciones analiticas. Estos resultados fueron generalizados por G.
Godefroy y J. H. Shapiro en 1991 [17] quienes probaron que todo operador lineal y
continuo T : H(C) — H(C) que conmute con las traslaciones y no sea un mailtiplo de
la identidad es también hiperciclico.

El primer ejemplo de existencia de esta clase de operadores en espacios de Banach fue
exhibido por S. Rolewicz en 1969 [27]. En el trabajo se prueba que para 1 < p < oo, si
B : (P — (P es el operador shift a izquierda, B(z1,zq,x3,...) = (22, 23,...), entonces
T = AB es hiperciclico para todo A € C, |\| > 1.

Para ciertas clases de operadores, se han estudiado en detalle las condiciones para que
se presente la propiedad de hiperciclicidad. Por ejemplo, supongamos que G C C es
un abierto simplemente conexo del plano complejo y llamemos H (G, 7) al espacio de
funciones holomorfas en G, dotado con la topologia de convergencia uniforme sobre
compactos. Dada una funcién holomorfa ¢ : G — G, se considera el operador de
composicion Cy, : H(G,7) — H(G, 1), definido por Cyf(2) = f o ¢(z). En [12], P.
S. Bourdon y J. H. Shapiro determinan si el operador de composicién es hiperciclico
estudiando la dindmica de la funcion ¢ que lo induce. En [31], se estudian operadores
de composicion definidos en el espacio de Hardy H?(D).

En 1982, C. Kitai [23] introdujo en su tesis doctoral un criterio de sencilla aplicacion que
brinda condiciones suficientes para que un operador sea hiperciclico; este resultado fue
redescubierto por R. M. Gethner y J. H. Shapiro en 1987 [16]. Las hipotesis supuestas
sobre el operador T : X — X permiten no solo probar su hiperciclicidad, sino también
la del operador T&T : X ¢ X — X & X. Cuando el operador THT : XX —- X B X
resulta hiperciclico, se dice que T' es mixing débil. En 1999, J. Bés y A. Peris [6] in-
troducen un criterio similar al anterior, conocido como el “criterio de hiperciclicidad”
y prueban que la hiperciclicidad de T'& T implica que el operador T satisface las hipo-
tesis del criterio. Este resultado puede traducirse en el siguiente modo: la afirmacion
“T es hiperciclico < T & T es hiperciclico” es equivalente a decir que las condiciones
del criterio de hiperciclicidad son necesarias para la hiperciclicidad de un operador T'.
Este problema fue planteado originalmente por D. Herrero [22] y dio lugar a numerosos
trabajos (ver por ejemplo [18], [19] y [29]). Entre los que se encuentran versiones equi-
valentes de que un operador sea mixing débil. El problema planteado por D. Herrero
es reconocido como uno de los problemas mas interesantes de la teoria, y permanecio
sin solucion durante 15 anos. Finalmente, M. De La Rosa y C. Read en 2006 probaron
la existencia de operadores hiperciclicos en espacios de Banach que no satisfacen el cri-
terio de hiperciclicidad [14]. Mas atn, en 2007, F. Bayart y E. Matheron [4| muestran
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diversos ejemplos en espacios de Banach clasicos, como por ejemplo en c¢o(N) o /P(N).

Una vez resuelto este problema, queda abierta la caracterizacion de aquellos espacios
que admiten operadores hiperciclicos, y también de aquellos espacios en los que todo
operador hiperciclico es mixing débil. Por ejemplo, existen espacios de Fréchet que
no admiten operadores hiperciclicos y también existen espacios que no son localmente
convexos, que admiten operadores hiperciclicos. Ademaés, en el espacio w := CY todo
operador hiperciclico es mixing débil.

Estructuramos el trabajo de la siguiente forma.

En el primer capitulo presentamos algunas de las propiedades més importantes de
los operadores hiperciclicos. Analizamos el conjunto de vectores hiperciclicos de un
operador. Damos el Criterio de Hiperciclicidad, y mostramos los primeros dos ejemplos.

Dedicamos el segundo capitulo a los ejemplos mas importantes que se conocen. Estu-
diamos dentro de distintas familias de operadores condiciones para que estos resulten
hiperciclicos. Se analizan operadores de multiplicacion, de composicion, de traslacion,
de derivacion y operadores shift.

En el tercer capitulo estudiaremos operaciones que mantienen la hiperciclicidad de un
operador. Veremos que esta propiedad se mantiene por potencias y rotaciones. Ade-
mas, trabajamos en profundidad el criterio de hiperciclicidad presentado en el primer
capitulo. Veremos que si un operador satisface el criterio de hiperciclicidad, entonces
es mixing débil y hereditariamente hiperciclico.

Construimos en el cuarto capitulo un operador hiperciclico que no satisface el criterio
de hiperciclicidad. Mostrando asi, que la hiperciclicidad es una propiedad que no se
mantiene por sumas directas.

En el altimo capitulo, veremos otros resultados de interés que se relacionan con los
temas desarrollados. Estudiamos condiciones que aseguran que un operador hiperciclico
satisfaga el criterio de hiperciclicidad. También damos los lineamientos generales sobre
los sistemas dindmicos ca6ticos y por tltimo enunciamos una solucion al problema del
“subconjunto” invariante.
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Capitulo 1

Operadores Hiperciclicos

1.1. Sistemas Dinamicos Lineales

En esta tesis desarrollamos el anélisis de sistemas dinamicos lineales. Trabajaremos
sobre espacios vectoriales X junto con una topologia 7. El objeto de estudio seran
operadores lineales y continuos sobre el espacio (X, 7). Notamos

L(X):={T:X — X, T lineal y continuo} .
Definimos entonces, los sistemas dinamicos lineales.
Definicién 1.1.1. Un sistema dindmico lineal es un par (X, T) donde X es un espacio
vectorial topologico real o complejoy T € L(X).
Muchas veces trabajaremos en contextos menos generales, como ser espacios de Banach

o de Fréchel.

Definicién 1.1.2. Decimos que el espacio métrico (X, d) es un F-espacio, si es un
espacio vectorial real o complejo con una métrica d, que lo hace completo. Si ademéas
X es un F-espacio localmente convexo, decimos que X es un espacio de Fréchet.

Para entender la dinamica del sistema, estudiaremos las orbitas que define el operador
T.

Definicién 1.1.3. Sea (X,T') un sistema dinamico lineal. Para x € X, definimos la
orbita del elemento x por T como el conjunto

Orb(z, T) = {T"(x) : n € Ny} .

Puntualmente, nos interesa determinar la existencia de operadores lineales y continuos
sobre el espacio X que admiten 6rbitas densas.

Definicién 1.1.4. Sea (X, T') un sistema dindmico lineal. Decimos que T es hiperciclico
si existe © € X tal que Orb(z,T) es denso en X. En ese caso, decimos que x es un
vector hiperciclico de Ty notamos HC(T') al conjunto de los vectores hiperciclicos de
T.
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Observacion 1.1.5. Es claro que esta condicion nos restringe a trabajar sobre espacios
separables.

Similarmente, definimos operadores ciclicos.

Definicién 1.1.6. Se dice que T es ciclico si existe x € X tal que
(Orb(x,T))gen = KTz ={P(T)z : P € K[t]}

es denso en X.

Trabajando en el contexto de los F-espacios podemos hacer uso del siguiente resultado.

Teorema 1.1.7 (Teorema de la categoria de Baire). Si X es un espacio métrico
completo, entonces toda interseccion numerable de abiertos densos es densa en X.

Este teorema es muy importante para el desarrollo de la teoria, al igual que muchos teo-
remas de Analisis Funcional, como ser el teorema de la aplicacién abierta y el principio
de acotacion uniforme.

1.2. Restricciones que trae la definicién

Asi como la separabilidad de X, otras restricciones sobre el sistema (X,7) deben
considerarse. Empezamos con el primer resultado de S. Rolewicz que afirma que este
es un fendémeno puramente infinito-dimensional [27].

Teorema 1.2.1. No existen operadores hipericiclicos en espacios de dimension finita.

Demostracion. Sea X = KV y supongamos que existe un operador hiperciclico, T' €
L(KN). Sea x € HC(T). Afirmamos que {x,T(z),T*(z),...,TN"Y(z)} es linealmente
independiente. Si no lo es, entonces existen a; € K,0 <7 < N — 1 no todos nulos, tales

que
N—1

Z a;T"(z) = 0.

1=0

Sea iy = maz{i;a; # 0}, tenemos que
io—1
a;, T (2) = =Y aT™(2) € (2, T(x), T*(x), ..., T*(@))gen-
i=0
Luego,

TN (z) =TN 71 (T (2)) e (TN N x),..., TV M 2))gen
C {x,T(x), T*(x), ... ,TN_I(x)>gen.
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Tenemos que

(Orb(2,T)) gen = (2, T(), T*(x), ..., TN (2)) gen,
y por lo tanto
dim({Orb(z,T)) gen) = dim({x, T(z), T*(x), ... ,TN_l(x))gen) =N,

lo que implica que Orb(z, T') no es denso en KV. Luego, los vectores son 1.i. Sea o € R+g;
como 7" es hiperciclico existe (ng)reny € N tal que 77+ (x) — ax. Al ser T' un operador
continuo y {x,T(x),T?*(z),...,T""1(z)} una base de KV, tenemos que

T (T (x)) =T (T™ (x)) — oT"(x) Vi < N;
= T™(z) — azVz € KY;

= T — al;

= det(T™) — o¥.

Si a := |det(T)|, obtenemos que {a™ : n € N} es denso en R, lo que es una contra-
diccion. Por lo que se deduce que no es posible hallar 7' € £(KY) hiperciclico. O

Cuando estudiamos operadores hiperciclicos en espacios de Banach, debemos conside-
rar restricciones sobre la norma del operador. Por ejemplo, si ||T|| < 1, la érbita de
cualquier elemento x, es un conjunto acotado,

Orb(z,, T) C B(0, ||z]))-

Esto dice que un operador hiperciclico no puede ser contractivo. Tampoco puede ser ex-
pansivo, por que todas las 6rbitas se mantendrian alejadas del 0. Resumiendo, tenemos
la siguiente observacion.

Observacion 1.2.2. Sea X un espacio de Banach, y T € L(X),

= Si||T]| €1 = T no es hiperciclico,

» Si||Tz| > ||z||, Vo € X = T no es hiperciclico.

Continuamos analizando mas propiedades que surgen de la definiciéon. En este caso, una
propiedad sobre el espectro de T*. Notamos 0,(R) al espectro puntual del operador R,
i.e., el conjunto de todos los autovalores de R.

Proposicion 1.2.3. Sea T € L(X) hiperciclico. Entonces o,(T*) = 0.
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Demostracion. Supongamos que 0,(7%) no es vacio. Sea o € 0,(T*) y z* € X* un
autovector de T* asociado a «. Sea x € HC(T). Como toda funcional no nula es
sobreyectiva, 2*(Orb(x,T)) es denso en K. Pero,

o (Tx) =T (z")(x) = ax™(z),
y entonces,
*(T"z) = (T)"(z")(z) = a"x"(x).
Asi, obtenemos que {a"z*(z) : n € Ny} es denso en K. Lo que es una contradiccion, y
resulta o,(T*) = 0. O

Observacién 1.2.4. Si X es un espacio de Banach, la propiedad o,(T*) = () implica
que T — « tiene rango denso para todo o € K, pues

R(T — a)* = Ker(T — a)* = Ker(T* —a) = {0}.

Esta propiedad es cierta para operadores hiperciclicos, aunque no estemos en espacios
de Banach. Veremos mas adelante que P(7T') tiene rango denso para cualquier P € K]t]
no nulo.

Siguiendo con las restricciones que impone la definicién, pasamos ahora al dltimo de
los resultados que presentaremos en esta seccién. Veremos que no existen operadores
compactos hiperciclicos. Lo probamos primero para espacios complejos, y luego para
reales. Recordamos la definicion del radio espectral de un operador.

Definiciéon 1.2.5. Sea X un espacio de Banach y T" € L(X). Definimos el radio
espectral de T' como

p(T) = sup{|\| : A € o(T)}.

La formula de Gelfand para el radio espectral es
p(T) = Lim||(T)" /"

Proposicién 1.2.6. Sea X un espacio de Banach complejo y T un operador compacto.
Entonces T no es hiperciclico.

Demostracion. Recordemos que como T' es compacto, T también lo es y al ser un
espacio vectorial sobre C, tenemos que o(7T7*) = {0} U 0,(T™). Si o(T*) # {0}, T no
es hiperciclico por la Proposicion 1.2.3. Si o(T™) = {0}, se tiene también p(7*) = 0.
Luego, existe n, € N tal que ||(T*)"||*/* < 1 para todo n > n,. Esto implica que

[T = T[] = [I(T5)" < 1, ¥n = n,
y asi,

Orb(z,T) = {x, Tz, T?z,..., T s} U{T"x :n > n,}

C{x, Tz, T?z,..., Tz} U B(0,]z]).

Con lo que la orbita de x por T" es un conjunto acotado. Luego 1" no es hiperciclico. O
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Probemos ahora el mismo resultado en el caso real. Para eso, complejificaremos el
espacio y usaremos que ya hemos probado el caso complejo.

Proposicion 1.2.7. Sea X un espacio de Banach real y T un operador compacto.
Entonces T no es hiperciclico.

Demostracion. Supongamos que T es hiperciclico. Hacemos la siguiente construccion
para complejificar el espacio y el operador. Consideramos Y = X @ 1.X con la norma
definida por

lz & ia’[| = [|lz|| + [|2”]].
Es facil ver que Y es un espacio de Banach complejo. Definimos S : Y — Y como

S(x @ix’) = T(x) @ iT(2'). Veamos que S es un operador acotado y ||S] = |7
Notemos que

15z & ix")|| = IT(x) & 7T ()|
= 1T || + | T
< Tl + 11

= Tl & ia"l],

entonces ||S|| < ||T||. Tomando una sucesion z,, € X, ||z,|| = 1 tales que [|[Tz,| —
|||, tenemos que S(z, ®i0) = Tz, &0, y luego ||S] = ||

Veamos ahora que S es compacto. Sea (y,)neny C Y una sucesion acotada. Podemos
escribir v, = x,, @ iz}, con (z,), () C X dos sucesiones acotadas. Por compacidad
de T, existe © € X y (2y,)jen una subsucesion tal que T'x,,; — T'z. Como (z7,) C X
es acotada, existe 2’ € X y (a:;l]k) una subsucesion tal que Tx;”k — T'2’. Por lo tanto

S(yn].k) — Tx ®iT2'. Luego S es compacto.

Veamos que S* : Y* — Y™ no tiene autovalores. Sea y* € Y*, y* # 0y A € C tal que
S*(y*) = A\y*. Sea x, € HC(T'). Entonces

{ly*(T"x, ®10)| : n € N} = {|y*(S"(z, ®i0))| : n € N}
= {[(S")"(y*)(z, ®i0)] : n € N}

= {|\"y*(z, ®i0)| : n € N},

lo que es una contradiccion, pues el primer conjunto es denso en Rs( y el dltimo no.
Tenemos entonces que o(S*) = {0}. Como antes, existe n, € N tal que ||S"|| < 1 para
todo n > n,. Pero ||T"|| = ||S™|| < 1 para todo n > n,, y argumentando como en la
demostracion del caso complejo, podemos ver que 7' no es hiperciclico, en contradiccion
a lo que habiamos supuesto. O
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1.3. Propiedades de los operadores hiperciclicos

Presentamos en esta seccion propiedades de los operadores hiperciclicos. Comenzamos
con los resultados que nos permitirdn demostrar cuando un operador lineal es hiperci-
clico. En general, no es un trabajo sencillo mostrar que una funciéon cualquiera admite
orbitas densas, pero en el contexto lineal existe un criterio de facil aplicacion que da
condiciones suficientes para que un operador sea hiperciclico. El primer resultado se
debe a G. D. Birkhoff [9], es una aplicacion del Teorema de la categoria de Baire y
relaciona sistemas dinamicos lineales con sistemas dinamicos topologicos.

Definicién 1.3.1. Sea X un espacio topologicoy T': X — X continuo. Decimos que
T es topologicamente transitivo, si para todo par de abiertos no vacios U y V, existe
n € N tal que T*(U) NV # 0.

Teorema 1.3.2 (Teorema de Birkhoff). Sean X un F-espacio separable y un opera-
dor T € L(X). Entonces, T es hiperciclico si y solo si T es topoldgicamente transitivo.
En ese caso, HC(T) es un conjunto Gs-denso.

Demostracion. Supongamos que 7' es hiperciclico. Observemos que si x € HC(T),
entonces Orb(x,T) C HC(T), pues

Orb(T*(z),T) = Orb(x,T) — {x, Tx,..., T"(x)},

y como X no tiene puntos aislados, al quitar finitos puntos el conjunto se mantiene
denso. Asi, HC(T') es denso. Si U y V, son abiertos no vacios podemos tomar z’ €
UNHC(T). Luego, existe n € N tal que T"(z’) € V, con lo que T"(U)NV es no vacio.

Reciprocamente, supongamos que 7" es topologicamente transitivo y sea {V;};en es una
base numerable de abiertos de X. Tenemos que,

r € HC(T) < Orb(z, T)NV; #0,Vj € N

= VjeNIn>0:T"(z) e Vj;

es decir,

HOT) =Y UJT™W)

JENR>0

es un Gs. Sea Wy := U, -, T7"(V;). Entonces, W; es abierto y

W; = X <= VU C X abierto no vacio,3In e N: UNT"(V;) # 0

<= VYU C X abierto no vacio,3n € N: T"(U) NV, # 0.

Como T es topolégicamente transitivo, se cumple la tltima condicién y por lo tanto,
W; es denso Vj € N. Luego, HC(T') es intersecciéon numerable de abiertos densos y por
el Teorema 1.1.7, HC(T') # 0 y T resulta hiperciclico. O
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Es inmediato de la definicién de transitividad que si 7T es inversible, entonces es topo-
logicamente transitivo si y solo si lo es T~L. En consecuencia, tenemos:

Corolario 1.3.3. Sea X un F-espacio separable y T € L(X), T inversible. Entonces

T hiperciclico <= T~ hiperciclico.

El primer ejemplo de un operador hiperciclico en un espacio de Banach, fue dado por
S. Rolewicz [27]. Mostré que el shift AB : {, — (,, AB(21,22,...) = (Azx2, Ax3,...)
es hiperciclico para todo |A| > 1. Veremos la demostracion en la Subseccion 1.4.2. El
argumento usado para demostrar este hecho, daba indicios de poder ser generalizado
a un criterio para testear la hiperciclicidad de cualquier operador. Este criterio fue
presentado en primera instancia por C. Kitai [23], en su tesis de doctorado; y luego
redescubierto por R. Gethner y J. H. Shapiro [16]. Enunciamos ahora una version del
criterio de hiperciclicidad, que aparece en la tesis doctoral de J. Bés [5].

Definicion 1.3.4 (Criterio de Hiperciclicidad - Bés). Sea X un espacio vectorial
topologico y T' € L(X). Decimos que T satisface el criterio de hiperciclicidad si existe
una sucesion creciente (ny) C N; subconjuntos densos Dy, Dy C X y aplicaciones
S, Do — X, que cumplen:

1. T"(x) — 0, Vo € Dy
2. Sp,(y) — 0, Vy € Dy

3. TS, (y) — vy, Yy € Dy

Observamos que, en la definicién, no se supone que los conjuntos densos Dy o D, sean
subespacios, ni que las aplicaciones S, sean lineales o continuas.

Podemos entonces, dar un enunciado equivalente del Criterio de Hiperciclicidad.

Definicion 1.3.5 (Criterio de Hiperciclicidad I). Sea X un espacio vectorial to-
pologico y T' € L(X). Decimos que T satisface el criterio de hiperciclicidad I, si existe
una sucesion creciente (ng) C Ny subconjuntos densos Dy, Dy C X, que cumplen:

1. T () — 0, Va € D,

2. Para cada y € Do, existe (vx) C X tal que vy — 0y T™ v —> y

Damos a continuacion la version original del criterio de C. Kitai.

Definicién 1.3.6 (Criterio de Hiperciclicidad II - Kitai). Sea X un espacio
vectorial topologico y T' € L(X). Decimos que T satisface el criterio de hiperciclicidad
I1, si existe una sucesion creciente (ng) C N; subconjuntos densos Dy, Dy C X y una
aplicacion S : Dy — Ds, que cumplen:

1. T™(z) — 0, Vo € Dy
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2. Snk(y> — 0, ‘v’y € D,
3. ToS = ]DQ

Es facil ver que si T satisface el criterio de hiperciclicidad II - Kitai, entonces satis-
face la version del criterio de hiperciclicidad - Bés. Simplemente tomamos la misma
sucesion creciente (ng) C N, los mismos conjuntos densos Dy, Dy C X y tomamos las
aplicaciones S, : Do — X, como las sucesivas composiciones de la aplicacién que da
el criterio de hiperciclicidad II - Kitai, es decir, S, = So---0S5 = S™. A. Peris [26]
mostré que todos los criterios enunciados anteriormente son equivalentes. Decimos que
T satisface el criterio de hiperciclicidad, si T" satisface alguno de los criterios enunciados
anteriormente. Cuando sea necesario, aclararemos qué version estamos considerando o
con respecto a qué sucesion se satisface el criterio.

Teorema 1.3.7. Sea X un F-espacio separable y sea T € L(X). Si T satisface el
criterio de hiperciclicidad 1.3.4, entonces T' es hiperciclico.

Demostracion. Veremos que T es topologicamente transitivo. Sean U, V dos abiertos
no vacios de X. Como Dy y D5 son conjuntos densos de X, podemos tomar x € U N D,
ey € VN Dy Tenemos entonces que

a:+Snk(y)’H—o>om e U,

y por lo tanto,

T™(x + Sy, (y)) =T (x) + TS, (v) T2YE V
Luego, tomando k suficientemente grande, tenemos que T (U) NV # (). O

En realidad, de esta misma prueba se puede deducir un resultado mas fuerte que
observamos a continuacién. Antes, necesitamos la siguiente definicion.

Definiciéon 1.3.8. Sea {T;};c; una familia de funciones continuas 7; : X — Y, entre
dos espacios topologicos X e Y. Decimos que la familia es universal, si existe x € X
tal que {T;(x)}icr es denso en Y. Notemos que un operador 7" es hiperciclico si y s6lo
si la familia {T"},en, es universal.

Observacion 1.3.9. En este contexto, tenemos demostrado lo siguiente: si 7' € L(X)
satisface el criterio de hiperciclicidad con respecto a la sucesion (ny)g>o, entonces para
cualquier subsucesion (ny;);>o de (ng)r>o se tiene que la familia {77} ;>, es universal.
Ademas,

(T™5) es universal <=V U,V abiertos no vacios, 35 € N; T"% (U) NV # ().

y en ese caso, se cumple para infinitos j € N.

El criterio de hiperciclicidad proveera la principal herramienta para demostrar la hi-
perciclicidad de la mayoria de los ejemplos que estudiaremos.

Existe una conexion entre el espectro del operador con su hiperciclicidad, como muestra
el siguiente teorema que se debe a G. Godefroy y J. H. Shapiro que afirma que si un
operador tiene suficiente cantidad de autovectores, entonces este es hiperciclico [17].
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Teorema 1.3.10 (Godefroy-Shapiro). Sea T € L(X) donde X es un F-espacio
separable. Supongamos que tanto o, Ker(T'— A) como ., Ker(T' — A), generan
subespacios densos. Entonces, T es hiperciclico.

Demostracion. Aplicamos el criterio de hiperciclicidad con respecto a la sucesion (ng)g>o,
ni = k para todo k£ > 0, los conjuntos densos

D1:<U Ker(T—/\)> y D2:<U Ker(T—)\)>

A1 [AI>1

gen gen

y los operadores Sy : Dy — X definidos de la siguiente manera: Si(y) := A%y si
T(y) = Ay con |A| > 1,y extendemos a Dy usando que los subespacios Ker(T'—\), |A| >
1 son linealmente independientes. Veamos que se cumplen las condiciones del Criterio
1.3.4:

1. Dado = € Dy, podemos escribir z = 1 + ... + z, con Gnicos z; € Ker(T — );),
|Ai] < 1. Tenemos que,

q q
TH(x) = ZT’“(%) = Z)\fxzk_)—;o
1=1 i=1

2. Similarmente, dado y € D,, podemos escribir y = y; + ... + y, con Gnicos
y; € Ker(T — \;), |\i| > 1. Tenemos que,

p

1

- k—o0
=1

3. Dado dado y € D, nuevamente podemos escribir y = y; + ... + y, con tnicos
y; € Ker(T — )\;), |\i| > 1. Tenemos que,

p p
T*Si(y) = T (Z A;’“yi> =) ATy =y
=1 =1

Asi, mostramos que T satisface el criterio de hiperciclicidad, y por lo tanto, es hiper-
ciclico. O

A continuacion presentamos el criterio de comparacion para operadores hiperciclicos.

Proposicion 1.3.11 (Criterio de Comparacion). Sean X y X espacios vectoriales
topolégicos yT : X — X, R: Xog — Xy funciones continuas. Supongamos que existe
J: X — Xy continua de rango denso tal que el siguiente diagrama

conmuta. Entonces
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(a) Orb(J(zx),R) = J(Orb(x,T)). Luego, si T es hiperciclico entonces también lo es
R.

(b) Si J es lineal y T satisface el criterio de hiperciclicidad, entonces R también lo
satisface.

Demostracion. Observemos primero que J manda conjuntos densos en conjuntos den-
sos, si D C X es denso, entonces J(D) = J(D) D J(D) = J(X) = X,.

(a) Notemos que para todo x € X
Orb(J(z),R) = {R"(J(z)) :n € No} = {J(IT"™(2)) : n € No} = J(Orb(z,T)).

Si T es hiperciclico, existe x € X tal que Orb(z,T) es denso en X. Luego,
J(z) € HC(R), pues J manda conjuntos densos en conjuntos densos. Asi, R es
hiperciclicoy HC(R) D J(HC(T)).

(b) Si T satisface el criterio de hiperciclicidad I de la Definicion 1.3.5 con respecto a
(ng) C N, y a los conjuntos densos Dy, Dy C X densos, veamos que R satisface
el criterio de hiperciclicidad T con respecto a la misma sucesion (ng) C Ny los
conjuntos densos J(Dy), J(D3) C Xp.

1. Dado xy € J(D,), existe x € Dy tal que xy = J(z). Entonces

R (o) = R™(J(x)) = J(T™(x)) — 0

k—o0

2. Dado yy € J(D2), existen y € Dy y (vg) C X tal que yo = J(y), v — 0y
T (vy,) — y. Luego,

Jg) — 0 vy R™(J(vg)) = J(T™(vg)) — J(y) = yo.

k—o0

Del criterio de comparaciéon podemos destacar el siguiente resultado.

Observacion 1.3.12. Sean 7' € £(X) un operador hiperciclico y J : X — X continua
de rango denso tales que T'J = JT. Entonces HC(T') es J-invariante.

En lo que resta de esta seccion estudiaremos el conjunto HC(T). Observemos que
para un operador 7' € £(X) cualquiera, el conjunto HC(T') es denso o vacio. Cuando
el operador es hiperciclico, HC(T') es un Gs-denso. Esto implica que el conjunto de
vectores hiperciclicos es grande en un sentido algebraico.

Proposicion 1.3.13. Sea X un F-espacio y T € L(X) hiperciclico. Entonces, todo
vector x € X es suma de dos vectores hiperciclicos.
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Demostracion. Sea x € X. Consideramos los conjuntos
A:=HC(T) yB:=xz—-HCT).

Vimos en el Teorema 1.3.2, que A = ﬂjeN W;, con W; C X abierto denso para todo
7 € N. Tenemos entonces que B = ﬂjeNx — Wj, con x — W; C X abierto denso
para todo j € N. Por lo tanto, por el Teorema 1.1.7 resulta A N B # (. Luego, existe
y € AN B. Es decir, y € HC(T), y existe z € HC(T) tal que y = = — 2. O

En lo que sigue presentamos una serie de resultados necesarios par demostrar el si-
guiente teorema.

Teorema 1.3.14. Sean X un espacio de Fréchet separable, y T € L(X) un operador
hiperciclico. Entonces HC(T') es homeomorfo a X.

Lema 1.3.15. S5i T € L(X) es un operador hiperciclico y L C X es un subespacio
T-invariante, entonces L = X ¢ L tiene codimension infinita en X.

Demostracion. Supongamos que L # X y dim(X/L) < oco. Sea ¢ : X — X/L la
aplicacion cociente. Tenemos que Ker(q) C Ker(qo T), pues al ser L un subespacio
T-invariante:

re€Ker(q)=vel=TreL=qoTr=0=x¢€ Ker(qgoT).

Luego q o T se factoriza por ¢, es decir, existe A € L(X/L) tal que Aog=¢qoT.

| N

Tenemos entonces que q es continua y sobreyectiva, luego por el Criterio de comparacion
1.3.11, resulta que A € L(X/L) es hiperciclico en un espacio de dimension finita. Lo
que es un absurdo por el Teorema 1.2.1. O

Definiciéon 1.3.16. Sea X un espacio vectorial topologico y T' € L£(X) un operador
hiperciclico. Decimos que el subespacio £ C X es variedad hiperciclica de T, si F —

{0} c HC(T).

Vimos en la Observacion 1.2.4 que si X es un espacio de Banach y L € L(X) es
hiperciclico, entonces T" — « tiene rango denso para todo a € K. El siguiente lema
generaliza este hecho para cualquier polinomio.

Lema 1.3.17. Sean T € L(X) un operador hiperciclico, y P un polinomio no nulo.
Entonces el operador P(T) tiene rango denso.

Demostracion. Si el polinomio P es constante, entonces P(7T') es un mialtiplo no nulo de
la identidad y por lo tanto tiene rango denso. Luego, podemos suponer que gr(P) > 1.
Notemos que Ran(P(T)) es T-invariante, pues ToP(T) = P(T)oT y,siy € Ran(P(T)),
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existe z € X tal que P(T)x = y, entonces Ty = P(T)(Txz) € Ran(P(T)). Luego, como
T es continua, L := Ran(P(T')) es T-invariante.

Queremos ver que P(T') es de rango denso, es decir, L = X. Por el lema previo basta ver
que L tiene codimension finita en X. Sea v € HC(T) y ¢ : X — X/L la aplicacién
cociente. Dado @ € K][t], existen r,s € KJt] con gr(r) < gr(P) 6 » = 0 tal que
() = Ps+r. Por lo tanto,

Q(T) = P(T)s(T) +r(T),
y entonces,

Q(T)x = P(T)(s(T)z) + r(T)x € Ran(P(T)) + (T"(z) : i < gr(P))

gen’

En consecuencia, obtenemos

K[Tz € Ran(P(T)) + (T"(z) : i < gr(P)>gen. (1.1)
Resulta, por (1.1) .
¢(K[T]z) C (q(T"(x)) : i < gr(P))

gen
asi,

dim(<q(Ti(x)) 1< gT(P)>gen) < 0.
Como x € HC(T'), X/L = q(X) es de dimension finita, y por el lema anterior,

=L =2X.
0

Teorema 1.3.18. Sea X wun espacio vectorial topoldgico y T € L(X) un operador
hiperciclico. Si x es vector hiperciclico para T, entonces K[T'|x es variedad hiperciclica
de T'. En particular, T admite una variedad hiperciclica densa.

Demostracion. Como vimos en la Observacion 1.3.12, para cualquier polinomio no nulo
P, se tiene que HC(T) es P(T)-invariante, pues P(T") conmuta con Ty tiene rango
denso. De aqui concluimos que P(T)x € HC(T), para todo P € K]t] no nulo. Resulta
K[T]z denso pues, Orb(x,T) C K[T]x. O

Corolario 1.3.19. T € L(X) hiperciclico. Entonces HC(T) es conexo.

Demostracion. Sea x € HC(T) fijo. Observemos que HC(T) se encuentra entre los
siguientes conjuntos conexos,

K[T|z ¢ HC(T) C X,

donde K[T]z es denso en X. Podemos desde aqui concluir que HC(T) es conexo:
supongamos que HC(T) = AU B, con A, B abiertos disjuntos. Se tiene que K[T|x C
AU B y al ser conexo, sin perdida de generalidad, podemos suponer que K[T|z C A.
Pero, K[T]x es denso, B es abierto y BNK[T]z = 0, de lo que sigue que B = (). Luego,
HC(T) es conexo. O
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Para la demostracion del Teorema 1.3.14, necesitamos la siguiente definicion.

Definicion 1.3.20. Sea X separable de Fréchet, A C X cerrado. Decimos que A es
un Z — set si para todo K métrico compacto C(K, X — A) es denso en C(K, X) (con
respecto a la topologia de convergencia uniforme en C(K, X)).

Notemos que A es un Z — set si es lo suficientemente pequeno como para no influir
en las funciones continuas de C(K, X). Para la demostracion del Teorema 1.3.14 nos
basaremos en el siguiente lema, cuya demostracion puede encontrarse en [7].

Lema 1.3.21. Sea X separable de Fréchet. Si A C X es unidon numerable de 7 — sets,
entonces X — A es homeomorfo a X.

Demostracion del Teorema 1.3.14. Recordemos que si (V}),en es una base numerable
de abiertos de X, podemos escribir HC(T') = ey U,50 7" (V;). Tomando comple-
mentos, obtenemos X —HC(T) = ;x50 X =1 "(V;). De aqui, alcanza con probar
que para todo V' abierto no vacio, el conjunto

x-T7(V)

n>0

es un Z — set. Queremos ver que, dados un espacio métrico compacto K, f € C(K, X),
y un entorno abierto O de 0 en X, existe g € C(K, X) tal que

g(K)c X — (ﬂ X — T‘”(V)) =Jrw), (1.2)

n>0 n>0

y7
(9— f)K)CO.

Al ser X localmente convexo, podemos asumir que O es convexo. Sea x € HC(T'). Para
cada t € K, elegimos m; € N tal que

T (x) = f(t) € O,

y definimos W; := {s € K : T™(z) — f(s) € O} C K. De esta forma, obtenemos
un cubrimiento por abiertos (W;)iex del compacto K. Recordemos que un espacio
métrico compacto, cumple que los abiertos separan cerrados disjuntos, y que en todo
espacio métrico compacto vale el teorema de particiones de la unidad finitas. Es decir,
si tomamos un subcubrimiento finito (W;,)1<;<, existe (¢;)1<i<, particion de la unidad
finita que cumple

¢; continuas,

()S(m S L
£:1¢i::17

sop(¢i) C Wi,
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Notamos m; :=my, y g := » -, ¢;T™(x). Veamos que se cumple lo que necesitamos:

= Tenemos que
g(s) = f(s) = Z Gi(s)T™ (x) — f(s) = Z ¢i(s) [T (x) = f(5)],

con lo cual, g(s) — f(s) es una combinacion convexa de elementos de O. Al ser O
convexo, concluimos que (g — f)(K) C O.

» Para cada a € K, podemos escribir g(a) = P,(T)x con P,(z) = Y 7, ¢;(a).2™
polinomio no nulo. Como vimos en la Observacion 1.3.12, P,(T)z € HC(T).
Luego, existe n, € N tal que 7™ (g(a)) € V. Por lo tanto,

g(K)c | JT™(V).

n>0

por lo tanto g verifica la condicion (1.2).

Concluimos entonces, que X — HC(T) es unién numerable de Z — set y por Lema
1.3.21, HC(T') es homeomorfo a X.

0

1.4. Primeros Ejemplos de Operadores Hiperciclicos

Presentamos en esta seccion dos operadores hiperciclicos. Desarrollaremos mas ade-
lante, en profundidad, los ejemplos que damos aqui. Fueron los primeros operadores
hiperciclicos que se encontraron durante el desarrollo de la teoria. No presentaremos
las demostraciones originales de los autores, sino que lo haremos usando el Criterio de
Hiperciclicidad.

1.4.1. Operador de Derivacion

El siguiente ejemplo se debe a G. R. MacLane [25] y data del ano 1951. Lo presentamos

en el espacio
H(C) ={f:C — C, holomorfa},

con la topologia dada por la convergencia uniforme sobre compactos. El espacio H(C)
es un espacio métrico completo y separable con la métrica

& 1f = glln
d(f.g) = nzl 20 (L+[If = glln)’

donde, ||f — glln := supp.j<n| f(2) — g(2)|. Definimos, D : H(C) — H(C), D(f) = f.
Claramente, D es lineal y continua. Aplicamos el Criterio de Hiperciclicidad II de la
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Definicion 1.3.6 con la sucesion ny, = k; los conjuntos densos D; = Dy = C[z], y
S : Clz] — C|z] definida por

22 n+1

Slap + a1z + -+ ap2") =apz +ar—+---+ap .
(ap + ayz 2") 02 + a1 an+1

1. Dado P € Cl[z], tenemos que D"(P) = 0, para todo n > gr(P). De aqui, es claro
que D*(P) — 0.
n—oo

2. Si K C C compacto, existe R > 0 tal que K C {z: |z| > R}. Entonces,

o o Shtn B k| kAn
(Z)—(k+n)(k+n_1)...(l{;+1)_(k+n)!7

y tenemos que,
k!Rk+n
sup |S" (M) < —— — ,

Por lo tanto, S"(P) — 0 uniformemente sobre compactos, para todo P € Clz].

3. Es claro que para cualquier polinomio P, se tiene que DS(P) = P.

Por Teorema 1.3.7, D es hiperciclico. Es interesante observar que, existe g € H(C) tal
que Orb(g,D) es denso en H(C). Asi, dada cualquier funcion holomorfa y cualquier
R > 0, tenemos que en el compacto {|z| < R} la funciéon f, es muy similar a una
derivada de g¢:

dado € > 0, existe n € N tal que sup |f(z) —D"(g9)(2)] < e.
|z|I<R

1.4.2. Operadores Shift

Otro ejemplo importante para la teorfa es el de los operadores Shift. Esta familia de
ejemplos fue presentada por S. Rolewicz [27], en el afo 1961. Sea B : (?(N) — (?(N),
el shift a izquierda dado por

B(xg,x1,...) = (x1,29,...), con 1 < p < 0.

Veamos que AB es hiperciclico, para todo |[A\| > 1. Aplicamos nuevamente el Cri-
terio de Hiperciclicidad II de la Definicién 1.3.6 con la sucesion ni = k; los con-
juntos densos D; = Dy = co(N) formados por las sucesiones de soporte finito, y
tomamos la aplicacion S/A con S : P(N) — (P(N), el shift a derecha dado por
S(.ﬁlﬁo,l’l,...) = (07330,%1,...),

1. Dado z := xg,x1,...) € coo(N) existe ng € N tal que (AB)"(z) = 0 para todo
n > ng. Luego

= (AB)”(I‘[),ZL'h C ) — 0.

n—oo
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2. Notemos que ||S|| = 1 entonces ||S/A|| = 1/|A|. Luego,

1SN < 1/(JAD™ — 0.

n—oQ

Por lo tanto, dado x := (xq, z1,...) € coo(N)

(S/3)"(x) — 0.

n—oo

3. Es claro que B y S son mutuamente inversas en (?(N), luego AB y S/ son
mutuamente inversas en cgg.

Concluimos, por Teorema 1.3.7, que AB es hiperciclico para todo A con |A| > 1. Luego,
para cada |A| > 1 tenemos asegurada la existencia de una sucesion universal z € ¢?(N)
tal que {(AB)"z : n € Np} es denso en ¢?(N). Podemos concluir que toda sucesion de
(?(N), se comporta de manera similar a un truncado de z.

Observacion 1.4.1. Como ||B|| = 1, por la Observacion 1.2.2, B no es hiperciclico.
Esto dice que el conjunto de operadores hiperciclicos no es cerrado en L£(X), pues
AMB— B,siA— 17, A eR.



Capitulo 2

Ejemplos de operadores hiperciclicos

En este capitulo profundizamos los ejemplos que estudiamos anteriormente. Veremos
distintas familias de operadores, tratando de caracterizar en cada caso, cuando resultan
hiperciclicos. Esos son: operadores de traslacion en el plano complejo, operadores shift,
de composicion, de multiplicacion y de derivacion. Comenzamos con una introducciéon
sobre el espacio H?(D) y mostramos algunas propiedades. Introducimos las siguientes
notaciones, que usaremos en el desarrollo de los ejemplos.

» D= {z € C:|z| <1}, el disco unitario complejo.
» T={ze€C:|z| =1}, el circulo unitario complejo.

» HD) = {f : D — C : f es holomorfa}, con la topologia de la convergencia
uniforme sobre compactos de D.

» H*(D)={f € H(D) : f es acotada}, con la norma ||f||.. = sup|f(z)|.
D

2.1. Operadores de Traslaciéon en H(C)

El primer ejemplo que veremos es el de los operadores de traslacion en el plano complejo.
Se debe a G. D. Birkhoff y data del afno 1929 [8]. Mas adelante fue retomado por G.
Godefroy y J. H. Shapiro que demostraron que un operador en H(C) que conmuta con
todas las traslaciones y no es miultiplo de la identidad es hiperciclico [17].

Para cualquier ntimero complejo a no nulo, sea T, : H(C) — H(C),

Tu(f)(2) = f(z +a)

el operador de traslacion. Para aplicar el Criterio de Hiperciclicidad a T}, necesitamos
el siguiente lema previo. Notamos ey a la funcién z — e*.

Lema 2.1.1. Sea A C C, con un punto de acumulacion en C. Entonces

Hex: A e Ab) e,
es denso en H(C).

25
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Demostracion. Sea ¢ € H(C)* tal que ¢(ey) = 0 para todo A € A. Queremos ver que
¢ = 0. Como ¢ es continua, podemos elegir K = B(0, R) C C compacto y ¢ > 0 tal
que [¢(f)] < esup,ei |f(2)] = c||f |k ||lcx)- Podemos pensar a ¢ como una funcional
continua en el subespacio {f |x: f € H(C)} de C(K). Por el Teorema de Hahn-Banach,
¢ se extiende a ¢ € C(K)*. Luego, por el teorema de representacion de Riesz existe
una medida compleja p con soporte en K tal que

o(f) = /de,u, para toda f € C(K).

En particular, si f € H(C), tenemos

o(f) = /K fd.

Consideramos la aplicacion F'(X) := p(ey) = [, e*du(z), con A € C. Veamos que F es
analitica con F'(\) = [ zeMdpu(z):

FQ) = F)

F/(>\ ) / eAZ - e)\oz /\02d
- = —— —ze
X — o 0 A= o a
e)xz o e}\OZ \
< _ 0z
< sup | = 26 |u(K)| 5 0

Tenemos entonces una funcion F' : C — C analitica tal que F(A\) = p(e)) = 0 para
todo A € A. Como A tiene puntos de acumulacion, F = 0 por principio de identidad
de funciones holomorfas. Derivando, obtenemos

0= F(0) = / = (M), Y € Ny
K

Alser ({1, z,2% ... })gen denso en H(C), concluimos que ¢ = 0, como queriamos ver. []

Proposicion 2.1.2. El operador T, es hiperciclico para todo a € C, no nulo.

Demostracion. Aplicamos el criterio de hiperciclicidad (version Kitai) a 7, con

Dy = ({ex: [e*] < 1})gen,

Dy = (ea: 1] > 1) gen

y S : H(C) — H(C) dado por S = T_,. Es claro que T'o S = Idy ) y, por lo anterior,
D1y Dy son densos. Ademés, tenemos

(Ta)”(e)\) _ Tna(e)\> _ 6>\(Z+na) _ ekzekna _ (eka)ne)\z oo 0, si |€/\a| < 1.

Con lo que se cumple la primera condicién del criterio de hiperciclicidad. Analogamente,
se cumple la condiciéon para S. Luego, por el Teorema 1.3.7, resulta que T}, es hiperciclico
para todo a € C — {0}. O
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Observacion 2.1.3. Lo anterior muestra que la hiperciclicidad no se mantiene por
composiciones. Pues T, o T__, = Id no es hiperciclico.

G. Godefory y J. H. Shapiro mostraron que este resultado se generaliza a otros opera-
dores como por el ejemplo el operador de derivacién. Para mostrar los resultados que
obtuvieron necesitamos la siguiente definicion.

Definicién 2.1.4. Decimos que ¢ € H(C) es de tipo exponencial si existen constantes
positivas A, B tales que |¢(z)| < AePFl para todo z € C.

Observacion 2.1.5. Sea ¢ € H(C) y sea ¢(2) = ), .(cq2" su desarrollo en serie.

Entonces, ¢ es de tipo exponencial si y s6lo si existen constantes C, R tales que |c,| <
CR"
n!

Demostracion. (=) Por las desigualdades de Cauchy, tenemos que |c,|r" < AeB”
para todo r > 0, n € N. Para cada n fijo,

) 637' em
min =
>0 | rn (n/B)"
se alcanza en r = n/B. Luego, |c,| < A(n/B) "e" < A(Byf!)"'
(=) Si |cu] < €5, entonces

LB PR (J(Z <Rli|>n) _ Ol

n>0

0

Observacion 2.1.6. Para ¢ € H(C) de tipo exponencial, ¢(z) = > a,z", notamos
n€Ng

$(D)(f) = > anD"(f).

n€Np

Lema 2.1.7. Sea T : H(C) — H(C) lineal y continua tal que T o T, =T, oT para
todo a € C. Entonces, existe ¢ € H(C) de tipo exponencial tal que T = ¢(D).

Demostracion. Sea L : H(C) — C el funcional definido por L(f) = evy o T(f) =
(T'f)(0). Se tiene que L es continuo y

Tf(z) = (T.(T£))(0) = (T(T.£))(0) = L(T.f)

para todo z € C. Por un argumento similar al del Lema 2.1.1, obtenemos ¢ > 0,

K = B(0,R) C C y una medida compleja p con soporte en K tal que

£(5) = [ gau vf e C(K)
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y, en particular, si f € H(C) tenemos que

v = [ s

Entonces podemos calcular T'f(z) de la siguiente manera

Tf(Z):L(Tzf):/deu /fw+zdu 2/2 o) w"dp(w)

= i (%/Kw"d,u( )D”f chD"f

-~

‘=cCn,

Ademas, tenemos que |¢,| < ( >H,uH para todo n € N. Luego, ¢(2) := > -, c,2" es

R™
TL
). O

de tipo exponencial y T' = ¢(D

Teorema 2.1.8. Sea T': H(C) — H(C) lineal y continuo tal que T oT, = T, 0T
para todo a € C, y no es un miltiplo de la identidad. Entonces, T es hiperciclico.

Demostracion. Como T conmuta con T}, para todo a € C, existe ¢ de tipo exponencial
tal que T'= ¢(D), por Lema 2.1.7. Como T no es un miltiplo de la identidad, ¢ no es
constante. Aplicamos el Teorema 1.3.10. Veamos que las funciones e, son autovectores
de T

T(ey) = ZanD”(eA) = Zan)\"e)\ = ¢(Ney, VA € C.

n>0 n>0

Consideramos entonces los conjuntos
U={ eC:|lo(N)| <1} v V={reC:|p(N)|>1}.

Como ¢ no es constante, U y V son abiertos no vacios. Por el Lema 2.1.1, concluimos
que

{ex: A€ Ulgen v ({ea: A€ V]gen

son densos en H(C). Luego, se verifican las hipotesis del Teorema 1.3.10 y asi T es
hiperciclico. U

Por tltimo observemos que un operador conmuta con todas las traslaciones si y sélo si
conmuta con el operador de derivacion.

Proposicion 2.1.9. Sea T € L(H(C)). Entonces

ToT,=T,0T, paratodoaec C siy solosiToD=DoT.



2.2. EL ESPACIO DE HARDY 29

Demostracion. (=)

D(Tf) = lim I =TF

h—0 h h—0

T(Thf)-Tf
h

— lim T(W) — T(Df)

h—0
(<=)Para ver esta implicacion, veamos que T, = e?P, pues
1) = 1+ a) = T D
’ n>0 Tl' .

Por otro lado,

ePf(z) = ePY(z) = Z M(z) _ Z f(”)(z)an.
De esta forma concluimos

T(T,f) =Toe® =T (Z%’:O‘U

n>0
D (T
=y 2D _ eprn — gy,
n>0 )

O

Nota: los operadores de traslaciéon son casos particulares de operadores de composi-
cion. Consideramos el automorfismo de C, 7,(z) = z + a. El respectivo operador de
composicion es Cy, (f) = f o7, actuando en H(C). Se tiene que T, = C,,.

2.2. El Espacio de Hardy

Recordemos que toda funciéon holomorfa en el disco es desarrollable en serie, y la

convergencia es uniforme sobre compactos de . Si f € H(ID), notamos f(n) = 0

n!
al n-ésimo coeficiente del desarrollo de f y tenemos que

f(z) =) f(n)z", vz € D.

neNg

Definimos el Espacio de Hardy H?*(D) C H(D), como sigue:

HAD) = {f € HD): Y |fm)]? < oo}

n€eNg
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con el producto interno dado por

A

(f.9)mr = f(n)g(n)

n>0

y la norma inducida

171 = (X 1fee) "

neNp

Tenemos un isomorfismo isométrico entre los espacios de Hilbert H?(D) y ¢*(N),

H*(D) — 3(N)

F—{f )}, cn,-

Varias propiedades del espacio de Hardy se deducen de la definicion. El siguiente hecho
muestra que las funciones de H?(ID), no crecen demasiado rapido.

Proposiciéon 2.2.1 (Estimacién de Crecimiento).

fe D) = |f(x) < - v, ep.

NV

Demostracion. Usamos la desigualdad de Cauchy-Schwartz y el hecho de que z € D:

< Sl < (S 1fme) ()

n>0 n>0

) Loye )
=) - A

Esta desigualdad muestra que la topologia de H*(D), es coherente con la de H(D).

Proposicion 2.2.2. Sean f,, f € H*(D) tales que f, — [ en H*(D). Entonces,
fn — [ uniformemente sobre compactos de D. Es decir, H*(D) — H(D) es continua.

Demostracion. Para 0 < r <1 fijo, |z| < r, tenemos

) =11 _ 1S
[ful2) = f(2)] < \/1—‘Z|2 < V1—r2?
Luego,
sup [£(2) — f()] < L IL

|Z|§7’ \/1 _'r'2 n—o0
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Lo que sigue, es una definiciéon alternativa de la norma del espacio de Hardy mediante
promedios en los circulos {|z| = r} con r < 1. Sea f(2) = Y ., f(n)z" € H*(D).
Escribimos z = re? y usamos que las funciones {e™’}, >, son ortogonales en L*[—, 7.

My(f,r)? = rre 2do = 3| n) o

" or
n>0
pues,
D F@Pr =Y (f )l =Y (F )l (e, e™) 2 nm
n=0 n>0 n>0

r rn zn rm zm - 1 " rn zn
B <nz>%f(n ’ T;)f 9>L2[—m] o/, ‘(gof(” "I
= % ’ | f(re™)?df.

Dada f € H?*(D) fija, la formula anterior muestra que M(f,r) es creciente en r y

acotada, 179 1/2
- (Syr)"* < (Syr) =10
n>0

n>0

Reciprocamente, supongamos que

lim Ms(f,r) =M < oo

r, 1
entonces,
N 2
SO < 3 o = (Ma(fr)) < M2
n=0 n>0

de aqui, hacemos r " 1 y obtenemos que todas las sumas parciales Ziv:o |]‘q(n)|2
estan acotadas, y asi f € H?(D), ||f|| < M. De esta forma, tenemos la construccion
alternativa de H?(ID) que buscabamos. Resumimos en la siguiente proposicién lo que

concluimos anteriormente. Si f ¢ H?(D), escribimos || f|| = oo
Proposicion 2.2.3. Sea f € H(D), entonces

1

2 _ ¢ 2 g " 02
I =t (Va(.0))* =i o= [ e Pa,

y vale,
f € H* (D) & My(f,r) es acotado en 0 < r < 1.

Asi caracterizamos

H*(D) = {f € HD) : sup My(f,r) < oo}

r<l



32 CAPITULO 2. EJEMPLOS DE OPERADORES HIPERCICLICOS

Existe una tercera forma de ver el espacio H?(ID): como subespacio de L*(T). Tenemos
que H*(D) es isométrico a H(T) := {p € L*(T) : $(n) = 0 para todo n < 0}, donde
¢(n) denota el n-esimo coeficiente de Fourier de ¢. Dada f € H*(D), el limite radial

1f 6 —. r( . if
lig £(re”) = (e
existe para casi todo 0, y la funcion f : T —» C pertenece a H?(T) con

LA = 111l ze-

Ademas,

@

<f7.g>H2 = <f7§>L2 :/f

T

2.3. Operadores de Multiplicacién

El primer ejemplo que damos en el espacio de Hardy es el de los operadores de multi-
plicacion. Estos son operadores de la forma

M, : H*(D) — H*(D),

My(f) = ¢f, con ¢ € H*(D) fija. (2.1)
Observacion 2.3.1. Si ¢ € H*(D) es analitica y acotada en D, entonces
L[ ioy12 19\
o) = (52 [ Iotre)Pas) " < o]

—T

para todo r € (0,1) y asi, ¢ € H*(D) y [[¢]loc < [|¢]]-

De igual forma, se muestra que

Ma(of.r) = (5= [ lotre®)Pistre”)Pan) " < ol (5= [

—T —T

™

, 1/2
f(re)2a0)

= [10lloc Ma(f,7) < |8l f]
Por lo tanto, el operador de multiplicacion M, : H*(D) — H?*(D), definido en (2.1)

es continuo y verifica

inf{lolHL 1| < M(F)] < sup{[a} ] (2.2)

Recordemos que f, — f en H?*(D), implica que f, — f uniformemente sobre
compactos de D, por Proposicion 2.2.2. En particular para z € D fijo, la aplicaciéon
ev, : H*(D) — C, ev,(f) = f(z) es una funcional lineal y continua. Por el teorema
de representacion de Riesz, existe k, € H*(D) tal que

El elemento k. se llama el nicleo reproductor de z.
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Observacion 2.3.2. Podemos estimar ||ev, ||, mediante la Proposicion 2.2.1:

1
1f(2)] < \/TW”JCHH?-

1
VI=]

En este caso, el niucleo reproductor k, esta dado por la formula explicita

De esta forma, tenemos que
lev.|| <

pues,

(k,,w")y = (w™, k,) = ev,(w") =Z", ¥n € N,

Luego, al ser {w"},cy base ortonormal de H?*(ID), resulta

k,(w) = Z?nw" = L

1—zw’
n>0

La expresion (2.3) es, entonces, una reformulacion de la formula integral de Cauchy:

1) = U = PR = [ 56, (g )

1 2mit 1 2mit
f(e ) dt — (6 ) .627ritdt — L/ f(w) dw
21 Jp z

0 1— 6—27Titz 0 627r7lt — W —

Observacién 2.3.3. La aplicacion ev, : H*(D) — C es sobreyectiva y continua. Si
Orb(f, M) fuera denso en H?(D), entonces ev, (Orb(f, My)) seria denso en C. Pero

ev-(My(f)) = My(f)(2) = f(2)¢(2),

y entonces,
evs (Mg (f)) = My(f)(z) = f(2)(o(2))".
En consecuencia,

ev (Orb(f, My)) = {(6(2))" f(2) : n € No}

nunca es denso en C. Por lo tanto, My nunca es hiperciclico.

Sin embargo, algo méas se puede decir de los operadores de multiplicacion.

Observacion 2.3.4. Sea M : H*(D) — H?*(D) el operador adjunto de M. Entonces
(fs My(k:)) 2 = (Of By = ¢(2) f(2) = ¢(2)([, k) m2

= <f7%kz>H2a Vf € HQ(]D))

Esto dice que Mj(k.) = ¢(2)k., es decir, ¢(2) es autovalor de M para todo z € D.
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Notemos que usando la Proposicién 1.2.3, nuevamente obtenemos que My no es hiper-
ciclico pues o,(My) # 0.

Proposicion 2.3.5. Sea ¢ € H*(D). Entonces,

M} es hiperciclico si y solo si ¢ no es constante y ¢(ID) N (OD) # (.

Demostracion. (<) Sean U = ¢ 1(B(0,1)) = {2 €D : |¢(2)| <1} y V = ¢ ({w :
lw| > 1}) = {z € D : [¢(z)| > 1}, que por el teorema de la aplicacion abierta para
funciones analiticas, son abiertos no vacios. Usamos el Teorema 1.3.10. Para esto, basta
ver que,

< U Ker(M; —M)> = (k2;2 € U)gen

zeU gen

< | Ker (Mg —M)> = (k2 € Vigen

zeV gen

son densos en H?(D). Veamoslo para U. Sea f € H*(D) ortogonal a k., Vz € U. Por
(2.3) tenemos que f(z) =0, Vz € U, lo que implica f = 0 por el principio de identidad
de funciones holomorfas. Del mismo modo se prueba para el abierto V. Luego, M es
hiperciclico.

(=) Supongamos que M; es hiperciclico. Entonces || My|| = [|[M;|| > 1y, asi por (2.2),
1 < [[My|| < ||¢]loo- Es mas, infp [¢(2)| < 1. Si no lo fuera, tenemos que 1/¢ € H*(D).
De aqui podemos concluir que M7, no es hiperciclico, pues [|[M] || = [[My4] =
supp ]ﬁ] < 1. Como M7, = (M;)~", por el Corolario 1.3.3 obtenemos que M} no es
hiperciclico, que contradice la hipotesis. Luego,

inf [6(2)] < 1 < sup|6(2)].
D

De aqui obtenemos que ¢ no es constante y, como {|¢p(D)|} C Rxq es conexo, se tiene
que ¢(D) N (OD) # 0. O

2.4. Operadores de Composiciéon

Dada ¢ : D — D, nos interesa estudiar operadores del tipo Cy : H*(D) — H?*(D)
dados por Cy(f) = f o ¢. La hiperciclicidad del operador C, depende directamente
de las propiedades de la funcion ¢. Particularmente, estudiaremos en profundidad los
operadores de composicion cuando ¢ es una homografia del plano complejo que cumple
»(D) C D. Comenzamos con una introduccion sobre homografias en C. Los resultados
de la subseccion que sigue pueden encontrarse con mayor detalle en los libros [13] o
[31].
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2.4.1. Homografias

Definicién 2.4.1. Una homografia es una funcion ¢ : C - C,

az+b

¢(z) = PRt

con a,b,c,d € Cy ad—bc # 0. Notamos LFT(@) al conjunto de todas las homografias.

Pensamos a las homografias como automorfismos de la esfera de Riemann C. Recor-
demos que LFT(@) es un grupo bajo la composicion. Cada homogratfia manda circun-
ferencias de la esfera de Riemann en circunferencias de la esfera -circunferencias en la
esfera de Riemann son, via la proyeccion estereografica, circunferencias o rectas en el
plano complejo-. Dados dos circulos de la esfera existe una homografia que aplica uno
en la otro. Lo mismo es cierto en ternas de puntos de la esfera, dados dos pares de
ternas de puntos de la esfera existe una tnica homografia que manda una terna en la
otra. Las homografias preservan razén doble y dngulos. Cada matriz compleja de 2x2

inversible da lugar a una homografia,

A:(CCL Z)HgbA(z):az—i_b

cz+d

Esta representacion es conveniente al trabajar con homografias porque mantiene las
operaciones del grupo,

$a0¢p = Pan,

(¢a) ™" = pa.

Debemos tener en cuenta que ¢4 = ¢4, para todo A € C, no nulo. Por esta razon,
trabajaremos con matrices normalizadas, con determinante 1.

Definiciéon 2.4.2. Si ad — bc = 1, decimos que ¢ esta en forma estandar.

Esto trae un pequeno inconveniente ya que para cada homografia hay dos matrices que
dan su forma estandar. Si det(A) = 1 entonces A y —A representan la misma homo-
grafia y estan en forma estdndar. Podriamos agregar méas condiciones a la definicion de
forma estandar, pero para solucionar este problema tendremos en cuenta este potencial
+, cuando sea necesario.

Definicion 2.4.3. Decimos que las homografias ¢, ¢ son conjugadas si existe 7 €
LFC(C) tal que ¢ =T opor L.
Puntos Fijos

Proposicion 2.4.4. Toda homografia distinta a la identidad tiene a lo sumo dos puntos

fijos.
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Este hecho, depende directamente de las soluciones de una ecuaciéon cuadratica en los
coeficientes de la homografia. Una homografia gjig fija oo si y solo si ¢ = 0; y 00 es
el Gnico punto fijo si y s6lo si a = d. En otro caso, podemos calcular directamente los

puntos fijos. Estos son:

(a—d) £ [(a— d)* + 4bc] V2
2¢ '

Definicién 2.4.5. Decimos que « es un punto fijo atractivo de ¢, si para todo punto z
de algtn entorno de « la sucesion de iteraciones {¢"(z)} converge a «. Por el contrario,
decimos que « es repulsivo si la sucesion de iteraciones {¢"(z)} se mantiene alejada del
punto fijo para todo punto de algtin entorno de a.

a, =

Proposicién 2.4.6. Sea ¢ de clase C' en un entorno del punto fijo . Si |¢/(a)| < 1,
entonces « es atractivo. Si |¢' ()| > 1, entonces v es repulsivo.

Traza
Definicién 2.4.7. Para ¢ en forma estandar, definimos la traza de ¢ como
tr(¢) ==+ (a+d),

donde la ambigiiedad del signo viene dado por las dos posibilidades para la forma
estandar.

Observacion 2.4.8. La homografia ¢ tiene a oo como tnico punto fijo si y sblo si
¢(z) = z+ b, en cuyo caso |tr(¢)| = 2. Si no tiene a co como punto fijo, podemos
expresar la formula de los puntos fijos usando la traza,

- r(d)2 — 1/2
PG O S i

Esta ecuacion, junto a lo que observamos recién nos permite concluir lo siguiente.

Proposicion 2.4.9. ¢ € LFT(C) tiene un tinico punto fijo en C si y solo si [tr(¢)| = 2.

Derivadas en los puntos fijos Si ¢ esta en forma estandar, entonces

ad — be 1

(2) = (cz + d)? - (cz+d)?

Usando la expresion anterior para los puntos fijos «, (3, calculamos
/ 1/2
#(0),6/(8) = 4 [tr(9) & [tr(6)* — 4]"*]

De aca, se deduce que

¢'(a)

-2

1
¢'(B)

En caso de que ¢ tenga dos puntos fijos, uno de ellos co, debe ser de la forma ¢(z) = az+

b, en donde definimos ¢/'(c0) = 1/a. Resumimos lo anterior en la siguiente proposicion.

y ¢ (o) +¢'(B) = tr(¢)? — 2.
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Proposiciéon 2.4.10. Sea ¢ € LFT(C). Son equivalentes:

= [tr(¢)| =2
» ¢ =1 en un punto fijo de ¢

= ¢ tiene un unico punto fijo en C

~

Clasificacion de Homografias Decimos que ¢ € LFT(C) es parabolica si tiene

A

un tnico punto fijo en C. Supongamos que a € C es el punto fijo, sea 7 € LFT(C),
7(z) = —=. Entonces ® = Togo7 ! € LFT(C), fija solamente a co. Por lo tanto,
®(z) = z+ 6 para § # 0. Decimos que P es una conjugada normal a ¢. Asi, cualquier
homografia parabodlica es conjugada a una traslacion.

Si ¢ no es parabolica, tiene dos puntos fijos o, 8 € C. Sea 7 € LFT(C) que manda
aalyfaoco. Entonces ® = Tog¢ort e LFT(C), fija a 0 y a co. Por lo tanto,
®(z) = Az, para A # 1, A € C. Decimos que ¢ es una conjugada normal a ¢ y que A es
el multiplicador de ®. De aqui,

é(z) =7 (\(2)), z€eC.

Luego,
1

#a) = Ay d(8) = 1.

Definicién 2.4.11. Sea ¢ € LFT(C), ¢ # Ids no parabolica. Sea A # 1 el multipli-
cador de ¢. Decimos que ¢ es:

- Eliptica si |\ =1,
- Hiperbolica si A € R, A > 0,

- Loxodromica, en otro caso.

~

Clasificamos asi LFT(C) — {Id}:

- Homografias parabolicas (conjugadas a traslaciones),
- Elipticas (conjugadas a rotaciones),
- Hiperbdlicas (conjugadas a dilataciones positivas),

- Loxodromicas (conjugadas a dilataciones complejas).

Al ser, A + % = tr(¢)? — 2, podemos clasificar las homografias por su traza.
Sea ¢ una homografia no loxodrémica, entonces ¢ es:

- parabdlica <= |tr(¢)| = 2,

- eliptica < [tr(¢)| < 2,
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- hiperbélica <= |tr(¢)| > 2.

Nos interesa estudiar homografias que cumplan ¢(D) C D, es decir, el subgrupo de
LFT(C) de homografias que fijan el disco. Notamos LFT(D) al conjunto de todas las
homografias que cumplen ¢(ID) C D. Haremos hincapié en las homografias parabdlicas
e hiperbolicas.

Supongamos que ¢ es parabolica y una conjugada normal es ® = rogor ! € LFT(@),
®(z) = z+ 4. El tinico punto fijo de ® es 0o, y es atractivo pues ®"(z) = z+nd — oo
si n — oo, para todo z € C. Luego, si llamamos « al punto fijo de ¢, tenemos que
¢"(2) = 7 HP"(1(2))) — T Yo0) = a, 0 sea « es atractivo para ¢. Si ademés
suponemos que ¢ € LFT(D), tenemos que |a| < 1. Veamos esto: si z, |z| < 1 tenemos
que |¢"(z)| < 1, para todo n € N y obtenemos que ¢"(z) —a

Similarmente, supongamos que ¢ es hiperbélica con puntos fijos «, 8. Sea ®, una
conjugada normal de ¢. Tenemos que ® = 7o ¢ o7t € LFT(C), ®(z) = Az con
A € Ry, en donde 7(a) = 0 y 7(8) = oo. El punto fijo atractivo de ® es el 0, luego «
es atractivo de ¢. Del mismo modo, a € D. Observemos ademas que |¢'(a)| = 1/|¢'(B)],
entonces 3 es punto fijo repulsivo.

Cuando la homografia cumple ¢(D) = D, decimos que ¢ es un automorfismo de D.
Recordemos que
Aut(D) = {ewg cconf eER, pe D} )
1—Dpz
Mediante un anélisis de la forma conjugada normal de una homografia hiperbdlica, se
prueba que si |a| = |3] = 1, entonces es un automorfismo del disco.

2.4.2. Teorema de Littlewood

Habiendo introducido los requerimientos necesarios sobre homografias para analizar
los operadores de composicion, continuamos con el estudio de la hiperciclicidad de Cy.
Entonces, sea C, : H*(D) — H*(D), C4(f) = f o ¢ con ¢ holomorfa, ¢(D) C D.
Dedicamos esta seccion a la buena definicion y continuidad de este operador. Primero
trabajaremos con ¢ holomorfa, ¢(0) = 0 y ¢(ID) C D. Luego con automorfismos del
disco de la forma % con p € D. Por dltimo probaremos que resulta continua para
cualquier ¢ holomorfa que verifique ¢(D) C D.

Proposiciéon 2.4.12 (Principio de subordinacién de Littlewood). Sea ¢ holo-
morfa, $(0) = 0 y ¢(D) C D. Entonces Cy : H*(D) — H*(D), Cu(f) = fo ¢ estd
bien definido y es contractivo.

Demostracion. Definimos B : H*(D) — H*(D), Bf(z) = 3.+, f(n+1)z". El opera-
dor B actiia como el shift en [?(N), visto en H*(D). Es claro que B es contractivo en
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H?(D) y valen las siguientes identidades para f € H?(D):

f(z)=f(0)+2.Bf(2), zeD

B*f(0) = f(k), k € Np.

Supongamos primero que f(z) = ag+ a1z + - -+ + a,,2™ es un polinomio. Tenemos que
f o ¢ esta acotada por k := |ag| + |ai| + - - - + |am| pues,

[fog(z)] < S%p!f(Z)! <k

y, como vimos, esto implica que My(fo¢,r) < k para todor < 1,y asi, fop € H*(D).
Para ver que C};, es contractivo debemos estimar la norma H?(D) de f o ¢. Para z € D),
usamos que

f(0(2)) = f(0) + &(2) Bf(6(2)),
o equivalentemente,
Cof = f(0) + My (Cy (BY)) -
Como ¢(0) = 0, todos los factores del desarrollo en serie de ¢(2)Bf(¢(z)) tienen un
factor z en comiin, por lo tanto son ortogonales al término f(0). De aqui, tenemos que

ICo 112 = 1£(O)* + [|My (Co (BN II* < [FO)F* + ICo(BS)II*

donde la ultima desigualdad es por que M, es contractivo. Cambiando sucesivamente
f por Bf, B%f, ... en esta tltima expresién obtenemos:

ICoBFII* < [BFO)]* +ICo B £

ICB*f1I* < [B*f(0)]* + IC B2 f*
ICBRf1I* < [BYf(O)]* + |Cs B fII*, ¥k € N.

Poniendo juntas las desigualdades anteriores, llegamos a que

k
ICoFI” <> UB O + [|CoB* f|1?, Vk € N.

n=0
Como gr(f) =m, B"" f =0, y de esta forma,

m m

ICFI? <D B ) =D [£( =;!an|2=|lﬂl2-

n=0 n=0

Por lo tanto, C,, es contractivo en el subespacio C|z].
Para el caso general, sea f € H?(D) cualquiera. Sea f, la n-esima suma parcial del
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desarrollo de Taylor de f. Tenemos que f, — f en H*(D), y como vimos en la Pro-
posicion 2.2.2, f, — f uniformemente sobre compactos de D. Luego, f,o¢ — fo ¢
uniformemente sobre compactos de . Es claro que || f,|| < || f|| ¥ por lo visto recién
para polinomios || f,, 0 ¢|| < ||f.||- Asi, para 0 < r < 1 tenemos:

My(f o ¢,r) = lim My(f,o0op,r) (hay convergencia uniforme)
n—oo

< limsup [| f o ¢

n—0o0

< limsup || f, ||

n—oo
< |1l
Concluimos que f o ¢ € H*(D) y ||f o ¢||* = lim My(f o ¢,7)*> < | f||?, por lo que es
contractivo. 0

El siguiente paso de la prueba es verlo para 1,(z) := = € Aut(DD).

Lema 2.4.13. Sean p € D y ¢, € Aut(D). Entonces Cy, : H*(D) — H*(D) es
continua.

Demostracion. Si f € C[z], f es holomorfa en R.D para un R > 1 fijo. Luego podemos

expresar ||f||* = & [7_|f(e®)]?df. Notemos que v, es su propia inversa. Entonces

mediante un cambio de variables obtenemos la cota que buscamos:

2T

—T —T

1 g ) 1 4 ) )
1f o pl* = g/ [F(p(e)Pd0 = — [ [f(e) Py (e)dt

L™ e 1= Ipl? 1—[p* (1 /” 12
= — i Lt < — Y2t
27 _W|f(e ) [T —pe|2 = (1—|p[)? \ 27 _wme )

1+!p|

||f||2

Sea f € H?(D) cualquiera y sea f,, la n-esima suma parcial del desarrollo de Taylor de f.
[gual que en la demostracion anterior, f,, — f uniforme sobre compactos, || f,|| < || f]|

1+|p|

T | full. Asi, para 0 < r < 1 tenemos:

y recién vimos que || f, o ¢,| <

My(f o, r) = lUm My(f, 0y, 1) (hay convergencia uniforme)
n—oo

< Hmsup || f, o 4|

n—0o0

< lim sup L+ pl

nsoc || 1 —[pl

1/l

3=

LF1-
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Por lo tanto,

L+ |p|
[.f oyl < - ,Hfl\,
y
1+ [p|
Cy |l < .

O

Para concluir el caso general descomponemos una funcion ¢ € H (D), ¢(D) C D, como
composicion de funciones convenientes.

Teorema 2.4.14. Sea ¢ € H(D), ¢(D) C D. Entonces, el operador Cy, : H*(D) —
H?(D) estd bien definido y es acotado.

Demostracion. Sean p = ¢(0) y ¢ = 1,00, entonces ¢(0) = 1,(p) = 0. Como 9,01, =
Idp, tenemos que ¢ = 1,09y asi Cy es composicion de operadores continuos y podemos
estimar su norma:

C¢>(f):fofb:(fo’éﬁp)OSO:qanp(f),

1+ (0
1C < LG | < 4 /23120

1—[o(0)]

2.4.3. Hiperciclicidad

Ahora si, estamos en condiciones de tratar la hiperciclicidad de estos operadores. Traba-
jaremos con homografias parabolicas e hiperboélicas, y caracterizaremos cuando resultan
hiperciclicos los respectivos operadores de composicion.

Proposicion 2.4.15. Sea ¢ € H(D). Si C, es hiperciclico en H*(D), entonces ¢ no
tiene puntos fijos en D.

Demostracion. Vimos que al ser Cy, hiperciclico, 0,(C%) = 0. Supongamos que ¢(a) =
a. Entonces,

(f, Cg(ka)) iz = (f © ¢, ka) > = f(d()) = f(@) = (f, ka)n2.

Esto dice que k, es autovector de Cj de autovalor 1, lo que es absurdo. O

Por lo tanto, nos reducimos a funciones ¢ homograficas sin puntos fijos en D. Por lo
hecho previamente, tenemos las siguientes opciones

Homografias Parabdlicas con un tnico punto fijo atractivo a € T,
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Homografias Hiperbdlicas con un punto fijo atractivo o« € T y otro punto fijo
repulsivo g € C — D.

Probamos ahora un lema de utilidad para los resultados que queremos mostrar.

Lema 2.4.16. Sea a € C —D. Consideramos P, = {P € Clz] : P(a) = 0}. Entonces
P, es denso en H*(D).

Demostracion. Sea f(z) = >, f(n)z" € H2(D) ortogonal a P,. Elegimos zP+! —
azP € P, y tenemos que

0= (f., 2" —az’)pe = flp+1) —af(p), VpeN,.

De ac, flp+1) =af(p), para todo p € Ny, pero como |a| > 1y f € H2(D), se tiene
que f(p) = 0 para todo p € Ny. O

Teorema 2.4.17. Sea ¢ € Aut(D) parabilico o hiperbélico sin puntos fijos en D.
Entonces Cy es hiperciclico en H*(D).

Demostracion. Veamos el caso hiperbolico: sean «, [ los puntos fijos de ¢. Tenemos que
S € T porque es el punto fijo atractivo de ¢~1. Aplicamos el criterio de hiperciclicidad
con los conjuntos densos Dy = P,, Dy = Ps y el operador S = C;l = Cy-1. Debemos
ver entonces que C — 0 en D;. Sea z € T — {3}, entonces ¢"(2) — a y si f € Dy,
f(¢™(2)) — 0. Luego

™

1 .
IC3rI = f o 6nlF = 5= [ 15 ()P

—Tr

que tiende a 0, por el Teorema de Convergencia Mayorada de Lebesgue. Analogamente,
para Cg,l — 0 en Ds.

El caso parabolico es méas sencillo. Tomamos Dy = Dy = P, y S = Cp-1. Como ¢ es
parabolico, ¢! también y el resultado se sigue. O

Teorema 2.4.18. Sea ¢ € LFT(D) hiperbdlico no automorfismo sin puntos fijos en
D. Entonces Cy es hiperciclico en H*(D).

Demostracion. Supongamos que «, 3 son los puntos fijos de ¢. Sabemos que o € T es
atractivoy § € C—D repulsivo. El hecho que ¢ no sea un automorfismo, necesariamente
implica que |5| > 1. Supongamos primero que el punto fijo repulsivo 3 se encuentra en
la linea que une al origen con «, pero del lado antipodal a a. Sea A el disco cuyo borde
es perpendicular a esta linea y contiene a a y a 3, como se ve en el siguiente grafico.
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AL
N

Como ¢ es una homografia, manda el borde de A en una circunferencia o recta del
plano complejo. Esta circunferencia o recta, contiene a a y a 3, y como ¢ preserva
angulos, la tinica posibilidad es que sea JA. Con un argumento de conexiéon tenemos
que ¢(A) = A, porque ¢(D) C D. Entonces, ¢ € Aut(A).

Si 5 no esté en el lugar deseado, podemos construir 7 € Aut(D) que fija a o y manda
a [ al lugar que queremos. Veamos, tomando una rotaciéon adecuada podemos suponer
que a = 1. Consideramos w(z) = 1+Z . Se cumplen las siguientes propiedades w(D) =
{z: Re(z) > 0}, w(1) = o0, Re(w (6)) < 0. Aplicamos después la homografia

2 = Im(w(8))i.

—2Re(w(pB)) ’
)
) =

(6
Y(00) = 00, Y(w(B)) = —1/2y v € Aut({z : Re(z
grafia T =w loyow, 7 € Aut(D), 7(1) =1y 7(
Suponiendo que ¢ tiene sus puntos fijos donde queremos, ¢ € Aut(A). Definimos en
forma analoga H2(A) = {f € H(A) : 3. |f(n)|> < co}. Restringiéndonos a I, vemos
que H?(A) [pC H?*(D) es denso porque contiene a C[z], y este nuevo espacio tiene una
topologia mas fuerte. Si f, — f en H*(A), entonces f,, — f en H?*(D) (los coefi-
cientes del desarrollo de Taylor son los mismos en ambos espacios). Como ¢ € Aut(A),
por el teorema anterior, Cy, es hiperciclico en H?(A). Aplicamos ahora el Criterio de
comparacion 1.3.11:

v(z) =

> O}) Luego, tomamos la homo-

Resulta asi, Cy es hiperciclico en H*(D). O

Nos queda entonces determinar qué sucede cuando tenemos una homografia parabolica
no automorfismo. Antes de dar la respuesta, veamos un poco mas sobre homografias
parabdlicas.

Observacion 2.4.19. Sea ¢ € LFT (D) parabolica sin puntos fijos en D. Por simpli-
cidad supongamos que el punto fijo atractivo es 1. Conjugando ¢ por la homografia
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w(z) = 122, obtenemos otra homograffa ® que fija a co y ®({z : Re(z) > 0}) C {z:
z

Re(z) > 0}. Asi

®(z) = Az +a,

como oo es el inico punto fijo atractivo de ®, en realidad tenemos que A = 1, y que
Re(a) > 0 pues ® manda el semiplano derecho en si mismo. Mediante este anélisis,
obtenemos las formulas:

®(z) = z+a, con Re(a) >0,

2(z—1)

¢(z):1+—2_a(z_1).

Derivando obtenemos ¢'(1) = 1 (que ya sabiamos, porque es parabolica) y ¢”(1) = a.
Si ademés suponemos que ¢ no es un automorfismo del disco, debe ser que ® no es
automorfismo del semiplano derecho, luego Re(a) > 0.

Teorema 2.4.20. Si ¢ € LEFT(D) parabdlico no automorfismo, entonces Cy no es
hiperciclico.

Demostracion. El objetivo de la prueba es ver que el operador Cy no posee orbitas
densas. Veremos algo mucho mas fuerte, solamente las funciones constantes pueden ser
puntos limites de las 6rbitas de Cy. Para esto, dividimos la prueba en pasos.

Paso 1. Por lo observado previamente, tenemos que ®(z) = z + a, con Re(a) > 0 es
conjugada a ¢. Luego, tenemos que las iteraciones de ¢ son conjugadas a las iteraciones
de ®. Como, ®"(z) = z + na, tenemos que ¢" se obtiene reemplazando a por na en la
formula de ¢, entonces

2(z—1)

¢n(z):1+2—na(z—1)'

Para la demostracion debemos estimar cuan rapido se juntan las 6rbitas de ¢ de puntos
de D entre si y al punto fijo atractivo 1. Para esto calculamos

4z
92) =00 = G amra—a
) nr 1 —2(z-1) 2
nh_}n@lon[l —¢"(2)l = nh_{{.lonz —na(z—1) a’
, " " L 4z B 4z
JL%”ZW (2) = ¢"(0)) = nh—{gonQ (2+na)(2+na—naz) a2(l—z)

Paso 2. Lo que sigue es una estimacion similar a la hecha en la Proposiciéon 2.2.1, pero
para las derivadas de una funcion f € H?(D). Sea z € D,
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< (Z If(n)l2> (Z n2|2|2("_1))

< IfI? (Z (n+ 1)nf2*" 1)

2
(1= 2
V2| f]
(= [= )
Para llegar a la estimacion que queremos, acotamos |f(z) — f(w)| integrando f’ sobre
el segmento que une z con w. Suponemos |z| < |w|,

= |IfII”

= |f'(2) <

Iﬂ@—fWNS/WWKMMI
<Vl [ =i

w2
<V T

entonces, para cualquier par de puntos z,w € D,

jw — 2|
(min{1 — fw|, 1 —[2]})?/*

f(2) = flw)] < V2 £

Paso 3. Ahora debemos estudiar la geometria de las 6rbitas de ¢. La representacion
en el semiplano derecho de ¢ es ®(z) = z + a, entonces la de ¢™ es ®"(2) = z + na.
El hecho de que Re(a) > 0 implica que los puntos ®"(w) tienden a oo sobre una recta
en el semiplano derecho que no es paralela al eje imaginario. Al volver al disco, esto
fuerza a las orbitas {¢™(z)} a aproximarse al punto fijo atractivo no tangencialmente
a 1l en D. O sea, existe € > 0 tal que

g+€ <ang(l—9¢"(2)) < - €

Es decir, los puntos de la sucesion {¢™(z)} quedan dentro de una region angular como
vemos en la siguiente figura.
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Sea ahora z € D, la convergencia no tangencial de las 6rbitas nos da una constante
positiva ¢, tal que para todo n € N,

1—¢"(2) Z el =¢"(2)] v 1—1[¢"(0)] = |l = ¢"(0)].

Paso 4. Finalmente, juntando todos los resultados anteriores, llegamos a que

9" (2) — ¢"(0)]

"(2)) — f(¢"(0))| < K
6@ = SO £ K e

= — — 0,

\/ﬁ n—00

en donde la constante K cambia en cada paso, depende de f, z y ¢, pero no de n.
Ahora si, sea g € H*(D) punto limite de Orb(f,Cy). Existe una subsucesion (ny) oo
tal que f o ¢™ — g en H?*(D). Entonces, como tenemos convergencia puntual en z,

9(2) — 9(0) = lim [ (6" (2)) — £ (6"(0))] = 0
por lo tanto, g es constante. O

Por iltimo veamos una aplicacion del Criterio de comparaciéon 1.3.11.

Proposicion 2.4.21. Sea ¢ € Aut(D) holomorfa sin puntos fijos en D. Entonces el
operador de composicion Cy actuando en H(D) es hiperciclico.

Demostracion. Sabemos que Cy € L(H?*(D)) es hiperciclico, H*(D) < H(D) es con-
tinua de rango denso (los polinomios son densos en ambos espacios) y convergencia
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en H*(D) implica convergencia uniforme sobre compactos. Ademas, es claro que el
siguiente diagrama

conmuta. Luego, por el Criterio de comparacién 1.3.11, Cy es hiperciclico en H(D) . O

2.4.4. Un ejemplo en L?[0, 1]

Existen restricciones sobre el espacio X que debemos tener en cuenta para asegurar la
existencia de operadores hiperciclicos. Es evidente que debemos trabajar en espacios
vectoriales separables, y mostramos que deben ser de dimension infinita. En 1969, S.
Rolewicz preguntd si esta es la tnica restriccion que se debe tener en cuenta para
espacios de Banach, es decir, si todo espacio de Banach separable de dimensién infinita
admite un operador hiperciclico. Este problema fue resuelto, en forma independiente, en
el afio 1997 por S. Ansari y L. Bernal. S. Ansari mostr6 que una clase mucho mayor de
espacios siempre admiten operadores hiperciclicos. En particular, espacios de Fréchet
bajo cierta condicion admiten operadores hiperciclicos. Un afio después, J. Bonet y A.
Peris [10] demostraron que en todo espacio de Fréchet hay operadores hiperciclicos.

Teorema 2.4.22. Todo espacio de Fréchet separable de dimension infinita, admite un
operador hiperciclico.

Por otro lado este resultado no se mantiene para espacios completos localmente con-
vexos. Existen ejemplos de espacios separables localmente convexos que no admiten
operadores hiperciclicos. Veremos un ejemplo en espacios no localmente convexos que
si admiten operadores hiperciclicos. Consideramos los espacios L?[0, 1], con 0 < p < 1.

LP0,1] = {f medible, tales que N,(f) := / |f|Pdz < oo} )
[0,1]

Tenemos que Np(f)l/p no cumple la desigualdad triangular, por lo tanto no da una
norma para el espacio; pero si se cumple

Np(f +9) < Np(f) + Ny(9),

definiendo asf una métrica d(f, g) = N,(f —g), que lo hace completo, por lo tanto es un
F-espacio. No son espacios de Fréchet, todo abierto convexo que contiene a la funcién
nula, es no acotado para la quasi-norma N, luego el vector 0 no posee una base de
entornos convexos.
S. Ansari plantea si estos espacios admiten operadores hiperciclicos [1]. En efecto, los
admiten y podemos dar un ejemplo de un operador de composicién hiperciclico en
LP[0,1]. Consideramos la funcion ¢ : [0, 1] — [0, 1] definida por

LSt <1)/2
o(t) =

L sit >1/2
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Sea Uy : LP — LP, Cy = f o ¢ el operador de composicién correspondiente. Es claro
que Cy es continuo e inversible. Veamos que satisface el criterio de hiperciclicidad con
respecto a la sucesion {ny }ren, nr = 2k y a los conjuntos densos

Dy = Dy = {f continua tal que, f(0) = f(1) = 0}.

Debemos ver que C3"(f) — 0 para f € C[0,1], f(0) = f(1) = 0. Para ello, debemos
estudiar el comportamiento de las funciones ¢" = ¢o---o0¢. Mediante un rapido analisis
vemos que cada composicion ¢", es una funcion “lineal” a trozos. Es decir, para cada
n tenemos una particion {0 < a; < as < -+ < a, < 1}, en n + 1 intervalos del [0, 1].
En cada uno de estos intervalos, ¢" es una recta y se cumple lo siguiente:

= En [0,&1], ¢n S (1/2)n+17
= En [al,az]7 ¢n S (1/2)n7

En [az,as], o™ < (1/2)"7,

En [a,_1,a,), ¢" < (1/2)?,
En [a,, 1], ¢" < 1.

Con a, =1-— %(%)”_1 para n > 1. Mostramos en las siguientes figuras, los graficos de

las primeras 3 composiciones de ¢.

D(-2) /

en [0,1], § > 0 tal que |f(t)| < (¢/2)'/P en
)"t < &/MP. Tenemos entonces que

Dado € > 0, sean M > 0 tal que |f(¢)

| <M
0,8] y n € N tal que (1/2)""2 < 4§y (2/3

En [0,a1], ¢*" < (1/2)*"*,

En [a1, as], ¢ < (1/2)*",

En [as, as], ¢** < (1/2)*" 1,

En [an-1, an], ¢** < (1/2)"2,
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= Bn [ag, 2, a2, 1], 9" < (1/2)3,
= En [a2n—17a2n]; ¢2n < (1/2)2;

» En [ay,,1], ¢*" < 1.

y asi,

ACH (1.0 = [ 15 o)

[0,1]

n p 2n P
: /m] [F(o™ (@)l dt+/@1n,1] | f(¢*"(t))|Pat

(1) (2)

(.

En (1): tenemos que t € [0, a,], entonces ¢**(t) < (1/2)"2 < 4. Luego,

A IS Ot < sup £ ) < /2

[0,an]

En (2): tenemos que
[ < 1= ) = M2/ < o2

Analogamente, usando que f(1) = 0 probamos que C3",(f) — 0 para f € C[0,1].

Nota: De aqui, podemos destacar dos problemas que atin se mantienen sin solucién.

1. Caracterizar los espacios vectoriales topologicos que admiten operadores hiperci-
clicos.

2. Determinar si en todo F-espacio separable de dimension infinita hay operadores
hiperciclicos.

2.5. Operadores Shift

En esta seccién continuamos el estudio de los operadores shift. En el capitulo anterior
vimos que si B es el shift unilateral a izquierda AB es hiperciclico para todo A, |A| > 1.
Estudiamos ahora operadores shift bilaterales con pesos en el espacio (?(Z). Vamos
a determinar cuando resultan hiperciclicos en términos de la sucesion de pesos. Los
resultados que veremos se deben a N. Salas [30]. En concreto, definimos By, : (*(Z) —
(*(Z), Bw(e,) = wpen_1, en donde (e,)nez es la base canonica de (2(Z) y W = (W, )nez
es una sucesion acotada de ntimeros reales positivos, que llamaremos sucesion de pesos.
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Es claro que ||Bwl|| < ||W||s- En vez de trabajar con shifts con pesos en espacios sin
pesos, trabajaremos con el shift bilateral a izquierda sin pesos en un nuevo espacio
(*(Z,w). Para cada sucesion de pesos W = (wy,)nez, consideramos una nueva sucesion
w = (wn)nez de niumeros positivos definida por wyp = 1 y w,/wpy1 = wye1 (notar la
diferencia entre w y w). Asi introducimos el espacio

(7, w) = {m € CY, tal que ||z|]* := Zwixi < oo}

neL

y trabajaremos con el shift bilateral sin pesos B : (*(Z,w) — (*(Z,w). Tenemos que
B y By son unitariamente equivalentes mediante el operador U : (?(Z) — (*(Z,w),
U(z,) = (x,/wy,). Es claro que U es unitario y que U o By, = B o U. Luego, por el
Criterio de comparaciéon 1.3.11, la hiperciclicidad de By, es equivalente a la de B.

Teorema 2.5.1. Sea w = (wy,)nez una sucesion de nimeros positivos tales que

wn

sup
n Wntl

< 00,

y sea B el shift bilateral sin pesos actuando en (*(Z,w). Entonces B es hiperciclico si
y solo si

Vge N : liminfwy,y, =0.
n——+oo
Nota: Lo que queremos expresar en la tesis del teorema cuando escribimos

liminfwy,4q =0,
n—-+00

es que para cada ¢ € N existe una sucesion creciente (ng) C N que cumple simultanea-
mente:

Whptqg —> 0y w_py1g — 0

Demostracion. Supongamos primero que B es hiperciclico. Fijemos ¢ € N. Tomamos
d € (0,1) y consideramos la bola B(e,,d). Por la transitividad de B, podemos asegurar
que existe n > 2q y x € (*(Z,w), tal que

[ = eqll <0y [|B"(x) —eql| <.
Mirando la ¢-ésima y la (n + g)-ésima coordenada de ||z — ¢,||, obtenemos que

|wq(2g = 1)] <0y [Wniqniqg| <.

Mirando la ¢-ésima y la (—n + ¢)-ésima coordenada de ||B"(z) — ¢,||, obtenemos que

|wq(Zntq = )| <OV [woniqq| <0
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Con esto tenemos que, para 6 < w,

Wntq < |°Jn+qxn+q| + |Wn+q(1 - xn+q)| <0+ Wn+q'w_

q
(%)
— Wpiq- (1 —— ) <0

Wq

También,

J

Wontq < |Wontq@q| + [Woniq(l — )| <O+ Wentq =

q
)
=—> W_p+q- (1 — —) <0

Wq

= W_piq <

Wy —0

Usando esta cota repetidas veces obtenemos la sucesion que buscamos. Tomamos 6; >

0, tal que jl—‘_”gl < 1/2, encontramos n; € N tal que
q
1
Wtni4q < 5
Para hallar ns, tomamos &, > 0, tal que w52fg2 < 1/4, encontramos ny > ny tal que
q
1
Wtng4q < Z

Repitiendo el procedimiento, obtenemos el resultado.
Reciprocamente, supongamos que

Vge N : liminfwy,y, =0.

n—-+o0o

y veamos que B satisface el criterio de hiperciclicidad. Sea C' una constante positiva
tal que C' > méx{1, sup,,(w,/wn+1)}. Construimos una sucesion creciente (ny) € N, tal
que

-3k —3k
Wny+k S C Y Wonp+k S O .

Para n;, tomamos C'~3 > 0 y podemos encontrar n; tal que

Wnl—l—l S C_3 y w—n1+1 S C_g-
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Para ns, tomamos C~% > 0 y podemos encontrar ny > n; tal que
<(C" <(C"
Wno42 = Y Wong42 = ;

y asi sucesivamente.
Luego, wp,+i — 0y w_p,+; — 0 cuando k — oo para todo ¢ € Z. De hecho, si
fijamos 7 y k > |i| tenemos,

Wnk-l-i S Ck_iwnk-i-k S 0_2k_i S O_k

Wopppi < CF g < CTHFTT<CTR,

Entonces veamos que se satisface el criterio para la sucesion (ny). Tomemos los conjun-
tos densos Dy = Dy = coo(Z) = (€; : i € L)gen y sea S el shift a derecha S(e;) = e;1.
Como BS = Id en D,, debemos probar que B™(e;) y S™ (e;) ambos tienden a 0 para
todo i € Z (y luego concluimos usando linealidad), pero esto es claro pues

[B" (el = wonts ¥ 5™ (€0)]| = wnti-

O

Volviendo a (*(Z) y shifts con pesos, podemos dar la version analoga del teorema
anterior.

Teorema 2.5.2. Sea By, el shift bilateral a izquierda actuando en (*(7Z), con sucesion
de pesos w = (Wy)nez. Entonces By, es hiperciclico si y sdlo si, para todo q € N,

Hm inf max{(w; -+ Wpig) ™, (Wo - - W_pyqi1)} =0
n—+00

Demostracion. Simplemente observar que la sucesion asociada (w,,) cumple

Wn+q == (wl ce wn+q>71 y w7n+q = (wo PN win+q+1).

0

Ahora damos la version del teorema anterior para shifts unilaterales. Consideramos
en (*(N) el operador By, definido por By(ey) = 0y Bw(e,) = wye,_1 para n > 1,
en donde (e,)nen, €s la base canonica de 2(N) y w = (w,), es una sucesién aco-
tada de nimeros positivos. Se pueden dar versiones similares a las que vimos en las
demostraciones pasadas. Pero esta vez daremos una prueba basandonos en que ya te-
nemos el resultado para shifts bilaterales. Procedemos mostrando que al “comprimir”
un operador hiperciclico en un espacio de Hilbert, se mantiene la hiperciclicidad.

Definiciéon 2.5.3. Sean H = (*(Z), T € L(H) y A C H un subespacio, definimos la
compresion de T a A como el operador PT P restringido a A, donde P es la proyecciéon
ortogonal sobre A.

Proposicion 2.5.4. Sea T un operador hiperciclico en (*(Z). Supongamos que A es
un subespacio invariante para T*. Entonces la compresion de T a A es hiperciclico en

A.
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Demostracion. Sea P la proyeccion ortogonal sobre A y PTP la compresion de T a
A. Notamos P+ := I — P la proyecciéon ortogonal sobre At. Como A es subespacio
invariante de T*, A+ es subespacio invariante de 7. En otras palabras, PT P+ = 0. Lo
que es equivalente a decir que PT = PTP. Afirmamos que

T" = (PTP)"+ Y (P T)"(PT)"*P + (P*TP*)", (2.4)
k=1
Sin =1, tenemos

PTP + (P*T)P + P*TP* = PTP + (T — PT)P + (T — PT)(I - P)

=PIP+TP—-PIP+T—-PI'-TP+PTP=T.

Supongamos que es cierto para n y probemos la ecuacion (2.4) para n + 1. Queremos
ver que:

n+1
T = (PTP)" + > (P'T)H(PT)"7*P 4 (Pt TP,
k=1
Veremos que
n+1
(PTP)n-H + Z(PLT)k(PT)n—&—l—kP + (PLTPLyH-I_
k=1

(PTP)" + i(PiT)k(PT)MP + (PHTPH"| T =0

k=1

Hacemos las siguientes asociaciones:

[(PTP)"' — (PTP)"T] +

. /

EFD N

k=1 =1

i(PLT)’f(PT)”“’CP— < s (PLT)’“(PT)"’“P> T

J/

(2)
+ [(PJ_TPJ_)H-FI + (PJ_T)TL—I-IP . (PJ_TPJ_)TLT}

. /

(

.

w
=

en las que cada uno de los tres términos es cero.
Para (1):

(PTP)"T = (PTP)" *(PT)(PT) = (PTP)"!.
Para (2):

Xn:(PLT)’%PT)”“"“P — (i(PiT)k(PT)n—kp> 7| =

k=1 k=1

zn: [(PHT)*(PT)""(PTP — PT)] = 0.

k=1
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Para (3):
(PJ_TPJ_)RT . (PJ_T)nJrlP . (PJ_TPJ_)H+1 — (PJ_TPJ_)n[T . TPJ_] o (PJ_T)n+1P
= (P*TPH"TP — (PTT)""'P = [(P*TPH)" — (P*T)"PH|TP = 0.

De la ecuacion (2.4), se deduce que paraz € Hy z € A

-~

EA N v
TV
eAL

T'r — 2z = (PTP)"x — 2) + (i(PiT)k(PT)”kPx + (PiTPi)”x>

(. /
k=1

Luego,
[(PTP)"x — z|| < [[T"x — z]|.

De esta forma, si elegimos x € HC(T'), tenemos que Pz es vector hiperciclico para
PTP en A. O

Teorema 2.5.5. Sea B, el shift unilateral a izquierda actuando en (*(N). Entonces,
By es hiperciclico si y sdlo si sup,(wq - - wy,) = oo.

Demostracion. Supongamos que sup,,(wy - - - w,) = co. Como vimos en la Subseccion
1.4.2, cuando w, = A con || > 1, podemos aplicar el criterio de hiperciclicidad de
manera similar. Reciprocamente, tomamos By, € L(¢*(N)) como la compresion a ¢*(N)
de un shift bilateral en ¢?(Z) cuyos pesos correspondientes a términos negativos son
1/2. Aplicando el Teorema 2.5.2 y la proposicion anterior tenemos el resultado. O

Observacion 2.5.6. Un shift unilateral a derecha nunca puede ser hiperciclico. De
hecho, sea By, € L((*(N)), Bw(e,) = aneni1. Si x € 2(N), la proyeccion ortogonal de
Orb(z, By) sobre el subespacio generado por {ej : k < n} tiene a lo sumo n vectores.

2.6. La funciéon Zeta de Riemann

Hasta ahora, en todos los ejemplos que estudiamos, obtuvimos que muchos operadores
son hiperciclicos haciendo uso del criterio de hiperciclicidad. Sin embargo, poca in-
formacion tenemos de los respectivos vectores hiperciclicos, mas alla de su existencia.
De hecho, la mayoria de las veces probamos que existen mediante un argumento que
involucra el Teorema de la Categoria de Baire. Sorprende el hecho de que existan tales
vectores, pero nunca hemos exhibido uno concreto. A pesar de todo, si existe un caso
que podemos destacar.

La funcion Zeta de Riemann se define en el semiplano complejo { Re(s) > 1} mediante

la formula 1
C(S) = Z Ev
n>1
y luego se extiende a una funciéon meromorfa en C con un polo simple en s = 1. La
franja critica es

Q={seC:1/2 < Re(s) < 1}.
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Notamos
H*(Q) ={f € H(Q); f no tiene ceros en Q}.

La Hipdtesis de Riemann afirma que ¢ no tiene ceros en la franja critica (). Es decir,
la Hipdtesis de Riemann dice que ¢ € H*(Q2). Es uno de los problemas abiertos méas
importantes y tiene conexion con varias ramas de matematica. Hasta el momento, todos
los ceros no triviales que se conocen de la funcion ¢ tienen parte real 1/2 y los llamados
ceros triviales son los reales pares negativos.

La franja critica es invariante por traslaciones puramente imaginarias, tenemos entonces
bien definido el semigrupo® de traslacion (T});>¢ (bajo la composicion de operadores),
actuando en el espacio H ()

Tif(s) = f(s +ti).

El Teorema de Voronin [32] afirma que cualquier funcion de H*(£2) se puede aproximar
por traslaciones puramente imaginarias de la funcién Zeta de Riemann.

Teorema 2.6.1 (Teorema de Voronin). Dados f € H*(Q2), € > 0 y un compacto
K C Q, podemos encontrar nimeros reales positivos t tales que

IC(s +1it) — f(s)| < e, para todo s € K.

Asi, si la Hipoétesis de Riemann es cierta entonces la funcion Zeta de Riemann es un

vector hiperciclico del semigrupo de traslacion (7;) actuando en el subespacio invariante
H*(Q) C H(Q).

1Un semigrupo es un grupo en el cuél sus elementos no tienen inverso, i.e, un conjunto con una
operacion asociativa con elemento neutro.
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Capitulo 3

Criterio de Hiperciclicidad

En este capitulo estudiamos operaciones que mantienen la hiperciclicidad de un ope-
rador. Ya obtuvimos ejemplos que muestran que esta propiedad no se mantiene bajo
composiciones y que el conjunto de operadores hiperciclicos no es cerrado. Notemos que
tampoco se mantiene por sumas, si tomamos 7'y —T con T un operador hiperciclico,
ambos resultan hiperciclicos mientras que la suma no lo es. Recientemente, S. Grivaux
mostrdé que todo operador en un espacio de Hilbert complejo y separable se escribe
como suma de dos hiperciclicos. Puntualmente trataremos los siguientes problemas: si
T es hiperciclico, es cierto que

- T" lo es?
- uT lo es, con |u| =17

- T T lo es?

El altimo de los tres, tiene grandes conexiones con la teoria desarrollada y volveremos
sobre este problema en el capitulo siguiente.

3.1. Primeros Resultados

Vimos que si T es un operador hiperciclico en un espacio vectorial topolégico X, enton-
ces el conjunto HC(T') de todos los vectores hiperciclicos de T" es conexo. Este hecho
alcanza para probar que si un operador 7' € £(X) es hiperciclico, entonces 7" es hi-
perciclico, con los mismos vectores hiperciclicos. Este resultado se debe a S. I. Ansari

2]-

Teorema 3.1.1 (Ansari). Sea X un espacio vectorial topoldgico sobre K =R o C. Si
x € X es un vector hiperciclico para T € L(X), entonces x es vector hiperciclico para
T™ para todo n € N,

Demostracion. Antes de dar la prueba general veamos el caso n = 2. Sea x € HC(T).

o7
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Dado U abierto no vacio, queremos encontrar ¢ € N tal que T?%(z) € U. Definamos

Fo :=HC(T)N{T?*(z) : n > 0},
Fy:=HC(T)Nn{T?+(x) : n > 0}.

Usando que x € HC(T), es facil ver que FoUF; = HC(T). Estos conjuntos son cerrados
en HC(T) y no vacios pues x € Fy y T(xz) € Fy. Por la conexion de HC(T), existe
z € FyNFy. Como z € HC(T), existe m € N tal que 7™(z) € U. En otras palabras,
T~™(U) es un entorno abierto de z.

- Sim es par, usamos que z € Fy para encontrar el ¢ que buscamos. Tenemos que
z € {T?(z) : n > 0}, entonces existe n € N tal que 7?"(z) € T~"™(U) y tomamos
g=n-+m/2.

- Si en cambio, m es impar, procediendo de forma similar usando que z € F}, existe
n € N tal que T*"*1(z) € T-™(U), y tomamos ¢ =n + (m + 1) /2.

Para el caso general, notamos V := K[T|x = {p(T)z : p € K[t]}, V es variedad hi-
perciclica densa, conexa y T-invariante. Sea A := T |y. Todo vector no nulo de V' es
hiperciclico para T, entonces Orb(y, A) es denso en V para todo y € V, o sea, todo ele-
mento de V es hiperciclico para A. Sean € Ny S = Orb(x, A") = {x, A"z, A*"z, ...},
veremos que 5" = V', en donde GV denota la clausura en V. Una vez visto esto,
podemos deducir que S es denso en X. En efecto, tomamos U C X abierto no vacio,

entonces V NU C V es abierto en V' y no vacio. Luego, si 5" = V', se tiene que existe
se(UNV)NS, yasiUNS # 0.
Definimos los conjuntos

Sy = U AiISVﬂ««~ﬂAikSV, para 1 <k < n.

0<iy < <ip<n—1

Es claro que Sy es cerradoen V' y S, C S,,_1 C --- C S7. Ademas,

L 17 v
Si= | @8 = |J 4as = |J A(Orb(z, Am)
0<i<n—1 0<i<n—1 0<i<n—1
) ) v 1% %
= |J (A, Ara, Y ={AzkeNo} =Orb(z, A) =V
0<i<n—1

Afirmamos que:

1. Sk es A-invariante para todo 1 < k < n,
2. 0€ 5,

3. S, =V.
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De aqui, podremos concluir el resultado, pues

S =8 NA5 ' N...NA15 =V —=VcCS.

Para 1.
Para cualquier 0 <) < -+ < i <n—1,existe 0 < j; < --- < jr <n—1 tal que

A <Ai15V NN AikSV> C A5 M. ARG — AR5 A NARS C S,

- si 4, <n — 1, entonces tomamos j, = i, + 1 para r < k,
- si i, = n — 1, entonces tomamos j, = i, + 1 para r < k, jr = 0, pues

A"S = {A"z, A%z, ...} = S — {x}

Luego, A(Sk) C Sk.

Para 2.

Notemos que S; —5"uAs U uAIS =V y Sy — 5" n4s ' n...nAa15".
Como 0 € 5, existe 7 tal que 0 € ATSV. Aplicando, A repetidas veces y recordando que
A(Aj(S)V) c AiF1g" y AnS" 5" obtenemos que 0 € Aig" paratodo 0 < j <n-—1.

Para 3.

Sabemos que S; =V y 0 € S, C S, para todo k < n. Supongamos que S, = V para
algin k, 1 < k < n. Veremos que S, = V.

Si por el contrario suponemos Sy # V. Si existe x € Sgi1,  # 0, al ser A-invariante,
Ax € Sp,1. Entonces, A’z € Sy, para todo j € N, y asi Orb(z, A) C Spy1. Pero,

V = Orb(z, A) C Spm1’ = S,

lo que contradice Syy1 # V. Por lo tanto, Sgy1 # V implica Sk,.; = {0}.
Notemos que si {i1,...,it} # {j1,---,Jr}, entonces

[Ai—lsvm---mAikSV] N [Ahsvm---mAj—kSV] C Skt

hay al menos (k + 1) términos distintos

Por lo tanto,
[(Ai—lsvm---mAi—kSV) — {0}} N [(AJ‘—lsvm--ﬂAﬂ'—kSV> — {0}] C Spy1 — {0} = 0.
Se tiene entonces que,

ve{op=s—{0}= U [(A78 n-nAE) o}
0<iy < <ipg<n—1 — ’
cerrados en V — {0}, disjuntos
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Como V — {0} = Sx — {0} es conexo, uno de los conjuntos de la unién es V' — {0} y
los demaés son vacio. Sea {l; < --+ < [} esta k-upla. Tenemos que

TP e AN Vv ={0} sidir,..ib =4l L}
(478" - nAns') {O}_{(z) il i £

Tenemos que

A e ® ) o) = VT S

Pero,
A((Al—lsvm--ﬂAl—wV) —{0}) C (Ai—ns*vm---mAi—wV) c {0}.

Por lo tanto,
A(V —A{0}) c {0},

lo que es una contradiccion, pues A(V — {0}) es denso en V. O

En el teorema anterior se puede identificar una conexion con la teoria de grupos. Te-
nemos la familia de operadores generada por T, es decir, G = {T" : n € Ny}. Esta
familia, es un semigrupo abeliano bajo la composicion. Si T" es hiperciclico, ésta es una
familia hiperciclica o universal. En este contexto, el teorema de Ansari afirma que todo
subsemigrupo no trivial de G es hiperciclico. Aqui, se trata de determinar subsemi-
grupos de una familia hiperciclica que mantienen la hiperciclicidad. En algin sentido,
estamos tratando de “achicar” las orbitas manteniéndolas densas. Otra instancia del
mismo fenémeno, es el siguiente resultado que se debe a F. Leon-Saavedra y V. Muller
[24].

Teorema 3.1.2. Sea X un espacio vectorial topoldgico sobre C. Sea Ty un semigrupo
de L(X) y T el semigrupo de L(X) formado por todas las rotaciones complejas de
operadores de To, i.e, T = {A\S : (S,\) € Ty x T}. Supongamos que existe T € L(X)
tal que T'S = ST para todo S € Ty y T — a tiene rango denso para todo o € C.
Entonces, si el semigrupo T es hiperciclico, también lo es Ty, con los mismos vectores
hiperciclicos.

Un caso particular de este resultado, se obtiene tomando Ty = {T™ : n € Ny} para un
operador dado T' € L(X). Si el semigrupo T := {\T" : n € N, A € T} es hiperciclico,
entonces 1" es hiperciclico. Podemos entonces destacar un corolario que se deduce de
aqui.

Corolario 3.1.3. Si T € L(X) es hiperciclico. Entonces para todo pn € T, el operador
wI' es hiperciclico, con los mismos vectores hiperciclicos.

Demostracion. Fijamos p € T y aplicamos el teorema de Leon-Saaverda y Muller con
To = {(uT)" : n € Ny}. El semigrupo asociado T es

T={\N":neN, \eT}.

Es claro que se verifican las hipotesis del Teorema 3.1.2. El semigrupo 7 contiene a
T y por lo tanto es hiperciclico. El operador T' conmuta con 7q y, por el Lema 1.3.17,
T — « tiene rango denso, para todo a € C. Luego, concluimos que 7q es hiperciclico v,
por lo tanto también lo es uT'. O
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3.2. El problema del Criterio de Hiperciclicidad

Siguiendo en una direccion similar, es natural preguntarse si 7' @ 1" mantiene la hiper-
ciclicidad de T'. Esta pregunta, que puede parecer inocente, es mucho méas profunda de
lo que parece. Dio lugar a muchos trabajos, como por ejemplo [4], [6], [14] o [18]. Tiene
grandes conexiones con el Criterio de Hiperciclicidad que, como veremos, dejara de ser
simplemente una herramienta 1til para testear hiperciclicidad.

Consideramos T'x T : X x X — X x X definido por T'x T'(x,y) = (Tx, Ty). Cuando
T es lineal, identificamos T' x T con el operador T ® T € L(X & X).

Definicién 3.2.1. Sea X un espacio vectorial topologico. Una funcién continua 7' :
X — X se dice (topoldgicamente) mizing débil si T x T es topologicamente transitivo
en X X X.

Notemos que si X es un espacio de Baire separable sin puntos aislados, el Teorema de
Birkhoff 1.3.2 nos permite cambiar “topologicamente transitivo” por “hiperciclico” en
la definicién anterior. Asi, un operador 7" en un F-espacio separable es mixing débil si
y s6lo si T'& T es hiperciclico.

Proposicion 3.2.2. Sea T = T) ® Ty un operador hiperciclico en X = X; ® Xo.
Entonces T; es hiperciclico en X;, (i =1, 2).

Demostracion. Consideramos para ¢ = 1, 2, la proyeccion en la i-esima coordenada,
m; » X — X;. Tenemos que 7; es continua, sobreyectiva y el siguiente diagrama

X
XZT-XZ

T x

conmuta. Luego, por Criterio de Comparacion 1.3.11, T; es hiperciclico, y m( HC(T')) C
HCO(T). O

Corolario 3.2.3. 5i: T es mizing débil, entonces es hiperciclico.

Tenemos entonces el siguiente problema,

Problema - Mixing Débil: Es cierto que si IT' es un operador hiperciclico en un
F-espacio separable X, entonces es mixing débil? Antes de dar la solucién al proble-
ma, damos resultados relacionados a este problema, considerando sumas de distintos
operadores.

Proposicién 3.2.4. 5i T =T, ® Ty satisface el Criterio de Hiperciclicidad, entonces
T también.

Demostracion. Notar que ; es lineal y aplicar nuevamente el Criterio de Comparacion
1.3.11. O



62 CAPITULO 3. CRITERIO DE HIPERCICLICIDAD

Proposicion 3.2.5. Sean T) € L(X;) y T € L(X3) dos operadores que satisfacen
el Criterio de Hiperciclicidad para la misma sucesion (ng) € N. Entonces Ty & Ty es
hiperciclico. Mds aun, Ty & Ty satisface el Criterio de Hiperciclicidad.

Demostracion. Notar que en X; @ X5 tenemos la topologia producto. Luego, producto
de conjuntos densos es denso y una sucesion en X; @ Xy converge si y solo si converge
en cada coordenada. O

Corolario 3.2.6. i T satisface el Criterio de Hiperciclicidad, entonces es mizing débil.

Surge aqui, otra pregunta muy importante para la teoria de operadores hiperciclicos.
Fue presentada por primera vez por D. A. Herrero y es considerada uno de los problemas
mas atractivos.

Problema - Criterio de Hiperciclicidad: Es cierto que todo operador hiperciclico
en un F-espacio separable X, satisface el Criterio de Hiperciclicidad?

Todos los ejemplos que estudiamos en el Capitulo 2, cumplen el Criterio de Hiperci-
clicidad, por lo tanto, seria razonable pensar que este problema tiene una respuesta
afirmativa. Esto implicaria que el Problema - Mixing Débil tiene respuesta afirmativa.
Vemos en este esquema, la relacién entre ambos problemas.

Problema - Mixing Débil: Hiperciclico —L Mixing Débil
Problema - Criterio Hiperciclicdad: Hiperciclico —L— Criterio

Antes de dar la respuesta a los problemas, damos otra definicién que se relaciona con
estos conceptos.

Definicién 3.2.7. Sea X un F-espacio separable y T € L(X). Sea (nj) una sucesion
creciente de niimeros naturales. Decimos que T es Hereditariamente Hiperciclico con
respecto a (ny) si, para toda subsucesion (n}) de (ng), la familia {77} es universal.
Es decir, existe z € X tal que {T™z : n € Ny} es denso en X. Decimos que T es
Hereditariamente Hiperciclico, si lo es con respecto a alguna sucesion (nyg).

Es claro, que si un operador es hereditariamente hiperciclico, entonces es hiperciclico.
Ademaés, vimos en la Observacion 1.3.9, que si un operador satisface el Criterio de Hi-
perciclicidad, entonces es hereditariamente hiperciclico. Para terminar de comprender
la conexién entre estos problemas, probamos el teorema de Bés-Peris, que afirma que
los tres conceptos son equivalentes. Por lo tanto, los problemas también lo son.

Teorema 3.2.8 (Bés-Peris). Sea X un F-espacio separable, y T € L(X). Son equi-
valentes:

(i) T satisface el Criterio de Hiperciclicidad,
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(i) T es hereditariamente hiperciclico,
(11i) T es mizing débil.
Demostracion. (i) = (it) Lo vimos en la Observacion 1.3.9.

(1) = (di7) Supongamos que T’ es hereditariamente hiperciclico con respecto la su-
cesion (ng). Sean Uy, Us, Vi, V, abiertos no vacios de X. Como la familia {77} es
universal, existe (my) subsucesion de (ny) tal que 7™+ (U;) NV # () para todo k € N.
Nuevamente, por hipotesis, la familia {77} es universal, entonces existe k € N tal
que T (Up) N Vy # . Luego, (T x T)™(Uy x Uy) N (Vi NVa) # 0. Por lo tanto, T es

mixing débil.

(17i) = (i) Supongamos que T" @ T es hiperciclico con v @y € HC(T & T). Vea-
mos que T verifica el Criterio de Hiperciclicidad con respecto a los conjuntos den-
sos Dy = Dy = Orb(z,T); como z = m(x @ y) es vector hiperciclico de T, te-
nemos que Orb(x,T) es denso. Afirmamos que x & T"(y) € HC(T & T) para todo
n € N. De hecho, s @ T"(y) = I & T")(x @ y); I & T™ conmuta con T & T y tiene
rango denso, pues 17" tiene rango denso por ser hiperciclico. Luego, por la Observa-
cion 1.3.12, HC(T @ T) es I & T™-invariante. Como y € HC(T), para cada abierto
no vacio U C X, existe n € N tal que T"(y) € U; o sea, existe u € U tal que
r@®u € HC(T ®T). En particular, existe ux € B(0,1/k) tal que x®u, € HC(T @ T).
Tomando V;, := B(0,1/k) & B(z,1/k), conseguimos una sucesioén creciente (ny) tal
que (T & T)™(x ® ug) € Vi, ie, uy —> 0, T™(x) —> 0y T (uy,) — x. Definimos
funciones, S, : Dy — X, S, (TV(x)) = T7(uy) para j € Ny, notemos que S, esté
bien definido porque T%(x) # T?(z) si i # j. De esta forma:

T (T9(x)) = T9(T™(2)) — 0, Vj € N

Sy (T7(x)) = T?(uy,) — 0, Vj € N
TS, (T?(x)) = T (T™ (uy,)) — T’(z), Vj € N.

Por lo tanto, T" satisface el Criterio con respecto a la sucesion (ny). O

Observacion 3.2.9. La prueba anterior muestra que si T satisface el Criterio de
Hiperciclicidad, lo hace con el mismo conjunto denso D = Dy = Dy, y como los
vectores T7(x) son linealmente independientes, las funciones S, se pueden extender
por linealidad a (Orb(z,T'))4en; asi en el Criterio de Hiperciclicidad podemos tomar las
aplicaciones S, lineales.

Tenemos entonces, que los problemas Criterio de Hiperciclicidad y Mixing Débil son
equivalentes.

Corolario 3.2.10. Sea X un F-espacio separable. Si T € L(X) satisface el Criterio
de Hiperciclicidad, entonces T" también lo satisface.

Demostracion. Como T satisface el Criterio, T@®T es hiperciclico. Entonces, (T®T)" =
T™ ® T™ es hiperciclico. Luego, T™ es mixing débil, por lo tanto 7" satisface Criterio.
L]
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3.3. Caracterizaciones del Criterio de Hiperciclicidad

En esta seccion damos mas caracterizaciones del Criterio de Hiperciclicidad. Estos
resultados se encuentran en el articulo de S. Grivaux [18].

Definiciéon 3.3.1. Sea X un espacio vectorial topologico. Un operador T' € L(X) se
dice (topologicamente) mixing si para todo par de abiertos no vacios U y V, existe
no € N tal que T7"(U) NV # () para todo n > ny.

Esta definicion es claramente una version mas fuerte de la transitividad (topologica).
Si X es un F-espacio separable, entonces los operadores mixing son hiperciclicos. Pero,
vale un resultado mas fuerte.

Proposicion 3.3.2. Sea X un F-espacio separable y T € L(X). Entonces, T es mizing
sty solo si T es hereditariamente hiperciclico con respecto a N.

Demostracion. El operador T no es mixing si y s6lo si existen abiertos no vacios U, V
y una sucesion infinita (ny) tales que 7"*(U) NV = () para todo k € N. Como vimos
en la Observacion 1.3.9, esto es equivalente a que la sucesion {77} no sea universal. [

Recordemos que un operador es hiperciclico si y solo si es topologicamente transitivo.
Asi, T @ T es hiperciclico si y s6lo si para cualquier par de abiertos no vacios (Uy, V7)
v (U, V3), existe n € N tal que T"(U;) N V; # 0, (1 = 1,2). O sea, mixing débil es
una propiedad que involucra cuatro abiertos. Lo siguiente muestra que esta condicion
puede ser significativamente debilitada a una propiedad que involucra tres abiertos. El
punto (iv) usualmente se llama “Condicion de los Tres Abiertos”.

Teorema 3.3.3. Sean X un espacio de Banach separable y T € L(X). Entonces, las
stguientes condiciones son equivalentes.

(1) T @& T es hiperciclico

(11) Para todo par de abiertos no vacios U y V, existe n € N tal que T*(U) NV # ()
y T"TH(U)YNV #0.

(131) Eriste un numero natural p tal que para todo par de abiertos no vacios U y V,

eriste n € N tal que T"(U)NV £ 0 y T*P(U) NV £ (.

(iv) Para todo par de abiertos no vacios U y V', y para cualquier entorno abierto W

de 0, existe n € N tal que T*(U)NW # 0 y T"(W)NV £ 0.

Demostracion. Dividiremos la prueba en dos partes. Primero veremos que las tres
primeras condiciones son equivalentes y luego que estas equivalen a la cuarta. Es facil
ver que (i) implica (ii). Simplemente tomamos n € N tal que T"(U) NV # 0y
T (U)NT~YV) # 0. Es obvio que (i7) implica (4i7). Luego, debemos probar que (7ii)
implica (7). Para ello, consideramos abiertos no vacios Uy, Uy, Vi v V,. Queremos ver
que T™(U;)NV; # 0, (i = 1,2). Notemos que en (iii), esta implicita la transitividad de
T. Luego, podemos tomar v, € Vi N HC(T). Existe r; € N tal que uy :=T" (v1) € Uj.
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Como T tiene rango denso, por ser hiperciclico, existe algin vector wy € X tal
que up = T (wy) € Us. Sea vy cualquier elemento de V5. Tomemos 6 > 0 tal que
B(ug,d) C Uy y B(vy,d) C Va. Por el Teorema 1.3.18, K[T'v; es variedad hiperciclica
de T,y asi (TP — I)v; € HC(T). Entonces, existe ¢; € N tal que

)
HTQl(TP — [)Ul — <—U2 -+ wg)H < W
Del mismo modo existe p; € N tal que
HTpl’Ul — (UQ — T“vl)H < 0 .
2[|7°]m

Denotemos z = TP uy + T4 Py, se tiene que z € Us. De hecho, z € B(us, ),

||Z _ u2|| :HTPl-‘rTlvl + TQ1+p+T1U1 _ TTIUJQH
TN w1 + T4 oy — wl|
< | T™|- (|77 01 = (v2 = T%0) || + |Jve = TP vy + T4 Poy — wy|]

< 0.
De forma similar, si denotamos y = TP vy + T% vy, se tiene que y € B(vy, ) C Vo, pues
|y — va]| = || TP vy + T vy — o] < 6.

Consideramos los abiertos, Uy = B(uq, 2%) y Vi = B(vy, 2%) Aplicamos entonces la
hipotesis (ii7) para el par de abiertos Uy y Vj. De esta forma, obtenemos una sucesion

(nk)keN tal que
T (U) NVi £ 0 y T2 (Uy) N Vi # 0.

Luego, tenemos dos sucesiones en Uy, (u})ren ¥ (Uf)ren que verifican simultaneamente
T (uy) € Vi y T™P(u}) € V.
En otras palabras, vemos que las sucesiones (u})ren ¥ (U})reny cumplen

uy, —> Uy y up —> uy,

T (uh) — vy y T™P(u) — vy.

Para concluir, usando que u}, — uy y 7™ (u},) — vy, obtenemos que existe ky € N
tal que T (Uy) N Vy # () para todo k > kq. Similarmente, observemos que

TP ), + TP Py) — TPy + TPy = 2 € Uy

T (TP, + TP Pu)) — TPy + T =y € Va.
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Existe entonces, ki > ko tal que T (Uy) N Vo # ), para todo k& > k;. Concluimos
entonces que T'@ T es topologicamente transitivo, y por ende hiperciclico. Hasta aqui
tenemos demostrada la equivalencia de las condiciones (i), (i7) y (ii7). Observemos que
si T @ T es topologicamente transitivo, entonces se verifica (iv). Luego, para finalizar
la demostracion veremos que (iv) implica (7). Consideremos dos abiertos no vacios U
v V cualesquiera, y un entorno W de 0. Aplicando (iv), a los abiertos U, W NT (W)
y T7Y(V) obtenemos que existe n € N tal que

T"(OYNWNTTW) A0 v T°WATW)NnT (V) #0.
Lo que implica que,
TU)YNW #0, T W)NV #D, T NW £0, THHW)NV #0.

Asi, si u y v son vectores de U y V respectivamente, con un argumento similar al
anterior, tomando bolas centradas en u y en 0, obtenemos sucesiones (ux)ren, (U},)ken,

(Wi )ken ¥ (W} )ken tales que

up —> uy T (ug) — 0,
wr — 0y T (wy,) — v,
up — uy T (u)) — 0,

wj, — 0y T (w)) — v.

De aqui, obtenemos que

up+wy —uy T (up +wp) — v

up +w, —>uy T (u), +w)) — v

Concluimos diciendo que si k es suficientemente grande, T™*(U)NV # @ y T™1(U) N
V' # (). Luego, se verifica la condicion (i7). O

Observacion 3.3.4. Hacemos notar que este resultado da una sensacién de cercania
a la teoria de niimeros y la combinatoria. Definimos, para un par de abiertos no vacios
U y V el conjunto

N(U,V) = {n € N tales que T"(U) NV # 0}.

Para cada par de conjuntos A y B de niimeros naturales, definimos el conjunto de las
diferencias como

A—B={n—mconneAmeByn>m}.
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Vemos que un operador es mixing débil si y solo si 1 € N(U,V) — N(U,V) para
todo par de abiertos no vacios U y V, si y s6lo si existe algin natural p tal que
p € N(U,V) — N(U,V) para todo par de abiertos U y V. También es equivalente
a que N(UW)N NW,V) # () para cualquier par de abiertos no vacios U y V' y
cualquier entorno abierto W de 0. De aqui se desprende una nueva definicién respecto
a la frecuencia con que las 6rbitas del operador visitan los abiertos del espacio.

Definiciéon 3.3.5. Sea A C N. Definimos la densidad inferior de A como

. HneA:n <N}
dens(A) := IINHLIOICl)f I :
donde § denota la cantidad de elementos del conjunto.

Definicion 3.3.6. Sea X un espacio vectorial topologico y T' € L£(X). Un vector
x € X se dice frecuentemente hiperciclico para T, si para todo abierto no vacio U C X,
el conjunto

N(z,U)={neN: Tz e U}
tiene densidad inferior positiva. En caso de que exista un vector asi, decimos que 71" es
frecuentemente hiperciclico.

Observacion 3.3.7. Vimos en el segundo capitulo que un operador en H(C) que
conmuta con todas las traslaciones y no es un miltiplo de la identidad, es hiperciclico.
A. Bonilla y K.-G. Grosse-Erdmann muestran que estos operadores son frecuentemente
hiperciclicos [11].

3.4. Indicios de una respuesta negativa

En un trabajo reciente de S. Grivaux, se demuestra que en todo espacio de Banach
separable de dimension infinita hay operadores mixing.

Proposiciéon 3.4.1. Sea X un espacio de Banach separable. Entonces X admite un
operador mixing.

Por definiciéon, mixing débil implica transitividad. En sistemas dinamicos topologicos
se pueden encontrar contraejemplos para el reciproco. Por ejemplo, podemos citar, la
rotacion por « en [0,1), definida por R,(z) = z + o mdéd 1.

Ra
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Cuando a € R es irracional, la funcién es transitiva pero no es mixing débil. Este
ejemplo, da indicios de que el problema Mixing Débil deberia tener respuesta negativa.
Insistimos en que todos los ejemplos estudiados anteriormente satisfacen el Criterio
de Hiperciclicidad. Sin embargo, existen operadores hiperciclicos que no son mixing
débil. Dedicaremos el cuarto capitulo a este tema. Pero antes, veamos que existen
dos operadores hiperciclicos tales que la suma directa no es hiperciclica. Para ello
retomamos la clase de Operadores Shift. Enunciamos la version analoga al Teorema
2.5.5, para sumas de operadores shifts unilaterales a izquierda.

Teorema 3.4.2. Sean B;, 1 < i < m, shifts unilaterales con pesos en (*(N), B;(e,) =

wﬁf)en_l y Bi(eq) = 0. Entonces, @ B; es hiperciclico si y solo si,

sup < min ngi):lgign = 0.
neN =1

Corolario 3.4.3. Emisten operadores hiperciclicos By, Bs, tales que By & By no es
hiperciclico.

Demostracion. Tomamos shifts unilaterales con pesos, B;(e,) = wg)en_l, de forma
tal que satisfacen la condicién del Teorema 3.4.2 cada una por separado, pero no la
satisfacen juntas. Por ejemplo, podemos tomar

(1) w§2) = 1
Waney =1 1 2 1 vy w? =2n, n>1
wéi) =1/n,n>1 %3) o

Tenemos que

ﬁwgl) _ k—;l si k es impar v ﬁw@) _ ) Lsikesimpar
= ! 1si k es par = ! k si k es par

y por lo tanto,

k k
min {H wz(l), sz@)} =1

i=1 i=1
Es claro que cada operador satisface la condicion por separado, pero no lo hacen juntos.
Luego By y Bs son hiperciclicos pero By & By no lo es. O



Capitulo 4

Contraejemplo del problema Mixing
Débil

Dedicamos este capitulo a mostrar que existen operadores hiperciclicos que no son
mixing débil. Trabajaremos el problema en la forma T"® T'. Es un trabajo en conjunto
de F. Bayart y E. Matheron [4], publicado en el afio 2007. La construcciéon que haremos
nos servira para probar la existencia de estos operadores en muchos espacios de Banach
clasicos, como ser ¢y(N) o /P(N), 1 < p < co. Anteriormente el problema fue encarado
por muchos autores. Recién en 2006 M. De La Rosa y C. Read [14] pudieron resolver
la incoégnita construyendo un espacio de Banach y un operador hiperciclico que no es
mixing débil. Aunque no es dificil comprender la definicién del espacio X, no se sabe
si se puede identificar como un espacio de Banach clasico.

4.1. La estrategia

Primero fijamos el contexto en el que trabajaremos y damos los preliminares que nos
permitirdn demostrar el resultado.

Definicién 4.1.1. Si (e;);en es una sucesion linealmente independiente de vectores de
un espacio vectorial. Entonces el shift a derecha asociado a (e;);en se define como el
operador lineal S: E — E, S(e;) = e;41, en donde, E = (e; : i € N) gep.

El resultado principal al que queremos llegar es

Teorema 4.1.2. Sea X un espacio de Banach. Supongamos que X tiene una base
incondicional normalizada (e;)ien, para la cual el shift a derecha asociado es continuo.
Entonces, X admite un operador hiperciclico tal que T & T no es hiperciclico.

Corolario 4.1.3. Ezisten operadores hiperciclicos en co(N) o (P(N), 1 < p < 00 que

no satisfacen el Criterio de Hiperciclicidad. En particular se puede encontrar este tipo
de operadores en todo espacio de Hilbert separable.
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4.1.1. Sobre bases incondicionales en espacios de Banach

Trabajaremos en espacios de sucesiones, es decir, aquellos espacios de Banach que
pueden ser presentados en forma natural como espacios de sucesiones. Introduciremos
una nocion de “sistema de coordenadas”, en algin sentido, andlogo a una base en
espacios de dimension finita.

Definiciéon 4.1.4. Una sucesion {e;};en en un espacio de Banach X, se dice base de
Schauder de X si para todo z € X existe una tnica sucesion de escalares {z; };en tales

[e.e]
que x = Y _ x;e;. Decimos que es normalizada si ||e;|| = 1, para todo ¢ € N.
i=1

Tenemos la siguiente caracterizacion de bases de Schauder.

Proposicion 4.1.5. Sea {¢;}ien una sucesion de vectores de X. Entonces, {e;}icn €S
base de Schauder de X si y solo si las siguientes tres condiciones se cumplen.

1. Todos los vectores e; son no nulos.

2. FEziste una constante K tal que, para toda eleccion de escalares {x;}ien y naturales

n < m, se tiene que
n m
E Ti€; E Ti€;
i=1 =1

3. El subespacio generado por {e;};en es denso en X.

<K

Antes de dar la definicién de base incondicional, vemos en la siguiente proposicion
distintas formas equivalentes de definir convergencia incondicional.

Proposicion 4.1.6. Sea {e;}ien una sucesion de vectores en el espacio de Banach X .
Las siguientes condiciones son equivalentes.

o0
1. La serie > ex(i) converge para toda permutacion w de N.
i=1

o

2. La serie Y e; converge para toda sucesion creciente (iy)nen-
n=1

oo
3. La serie Y 0;e; converge para toda eleccion de signos 0; = +1.
i=1

> €

i€S

4. Para todo € > 0, existe n € N tal que < € para todo subconjunto S de N

que cumple min{i; i € S} > n.

Una serie que cumple cualquiera de las cuatro condiciones anteriores se dice que con-
verge incondicionalmente.
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Definicién 4.1.7. Una base de Schauder {e;};cny en un espacio de Banach X se dice
incondicional si para todo z € X, la expresion de x en la base converge incondicional-
mente.

La convergencia incondicional en una base de Schauder nos permite olvidarnos del
orden en la sucesion {e; }ien, y poder mirarlo como un conjunto.

Teorema 4.1.8. Sea {e;}ien una base incondicional. Existe una constante K > 0 tal
que para toda eleccion de escalares {x;}ien para los cuales ), x;e; converge y para
cualquier sucesion A € (*°(N), X = {\; }ien, se tiene que

o0 o
Z Nizie;|| < 2K sup |\ Z ;i€
i=1 ! i=1
Es decir, para toda sucesion acotada A = {\;};en, tenemos un operador lineal en

E = (e; : i € N),,, definido por M)(e;) = \;e;. Resulta que

[My]] < 2K sup |\

En particular, si consideramos sucesiones de la forma A\; = 1 paraalgin j e Ny \; =0
para todo ¢ # j, llamamos M; = M), y obtenemos que

MJ($> = Mj <Z xiei> = Tj;€y,
=1

v || M;|| < 2K. Pero, si consideramos {e; };cny la sucesion de funcionales de X* asociadas
a {e;}ien, tenemos que

Mj(z) = €j(x)e;.
Asi,
M ()| < lej(@)llesll < llejlllle; |1zl
Luego, [|M;|| = |leflllle;]| y entonces sup; [ef]|[le;]| < oo. En particular, si {e;}ien es

base normalizada, {e}};cn es acotada.

4.1.2. Preliminares Algebraicos

Para demostrar el Teorema 4.1.2, daremos una especie de “criterio de no-hiperciclicidad”
para la suma directa T' & T'. Empezamos con resultados algebraicos que daran lugar a
este “nuevo criterio”.

Lema 4.1.9. Sea A un dlgebra conmutativa junto con una topologia T. Sea n una
seminorma en A tal que la aplicacion (p,q) — pq es continua de (A, 7) X (A, T) en
(A,n). Dados a, o', b, b' en A, supongamos que ezisten tres sucesiones (Pn)nen, (Gn)nen
Y (Tn)nen en A tales que p, — a, ¢, — b, Tppp — @’ y g, — U, Entonces n(ab'—a’b) =
0.
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Demostracion. Usamos que A es un algebra conmutativa y tenemos que

Pn (TnQn) - CLb/

(TnPn)Gqn —a’b
Luego, al ser (p, q) — pq continua de (A,7) X (A,7) en (A, n), tenemos que
0=10(0) = 0(pn(rngn) — (TnPn)@n) — n(ab’ — a'd).
L]

Corolario 4.1.10. Supongamos que el dlgebra A tiene unidad, y que para cualesquiera
a, a’, b, b en A, existen sucesiones (Pp)nen, (Gn)nen Y (Tn)nen en A que cumplen la
hipotesis del Lema 4.1.9. Entonces n = 0.

Demostracion. Tomamos a € A cualquiera, b = 14 y @’ = b = 0. Luego, por 4.1.9,
n(a) =n(aly — 0) = 0 para todo a € A. O

Aplicaremos el Corolario 4.1.10, al algebra K[T]eq, en donde T € L(X), X es un espacio
de Banach y ej es un vector ciclico de T'. Recordemos que un vector ciclico cumple que

K[Teg = {P(T)eo, P polinomio} = (Orb(eq, T)) gen,
es denso en X. El producto en el algebra K[T|eq esta dado por

P(T)ey.Q(T)ey = (P.Q)(T)eo,
y €p es la unidad del adlgebra. Ademas, K[T]ey hereda la topologia de X.

Corolario 4.1.11. Sea X un espacio de Banach de dimension infinita. Sea T € L(X)
un operador ciclico con vector ciclico ey. Supongamos que existe una funcional lineal no
nula ¢ : K[Tleg — K, tal que la aplicacion (x,y) — ¢(x.y) es continua en K[T)ey X
K[T)eg. Entonces T ® T no es hiperciclico en X x X.

Demostracion. Supongamos, por el absurdo, que T & T es hiperciclico. Tenemos en-
tonces, que HC(T) es denso en X & X. Sean, a, d/, b, V' en K[T]eg cualesquiera. Existe
rp®yp € HCO(T & T) tal que 2 ® yr, —> a ® b y una sucesion de nimeros naturales
(ng)ken tales que T xy, & Ty, — o’ G V. Como K[T]ey es denso en X, podemos
encontrar sucesiones de polinomios en K, (Py)ren, (Qk)ren tales que

1

] 11
— P(T n{—, —— — T mq—, ———— /.
|z — Pe(T)eo| <mm{k’k\|T"’vH} Y o llye — Qe(T)eol| <mm{k’k\|T"’vH}

Es claro que Py(T)eg — a y también
1T (Pi(T)eo) — || < 1T (Pr(T)eo) — T™ yl| + | T — o

1 1
< || in< —
< I i { .

} + [|[T™ 2y, — d'|| — 0.
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Analogamente para la sucesion Qx(7T")eg. Consideramos entonces p, = Pi(T)eq, qx =
Qr(T)eg y T, = T™eq. Tenemos que

Pr = Pk(T)eo — a,

qr = Qr(T)eo — b,
Tk.Pr = T”keo.Pk(T)eo =T" o Pk(T)eo — CLI, v
Tk.Qr = Tnk60.Qk(T)€0 =T" o Qk(T)eo — b,.

Aplicamos el Corolario 4.1.10 con la seminorma de K[7']eg, n(z) = |¢(2)|. Por hipdtesis,
K[T]eg es un algebra conmutativa y (z,w) — |¢(z.w)| es continua. Obtenemos de esta
forma una contradiccién pues ¢ es no nula. O

4.1.3. Pasos a seguir

En lo que resta de este capitulo X serd un espacio de Banach con base normalizada
incondicional (e;);en cuyo shift a derecha asociado es continuo. Notamos coy := (e;;1 €
N)gen. El Teorema 4.1.2 quedara probado si somos capaces de construir un operador
lineal T": co9 — coo y una funcional lineal no nula ¢ : ¢oqg —> K tales que se verifican
las propiedades siguientes.

a) (T'ep;i € N)yen = (€i51 € N) gen, 1-€, K[T]eg = coo.

(
(b

)

) El conjunto {T"e : i € N} es denso en cgp.
(¢) T es continuo.

)

(d) La aplicacion (x,y) — ¢(z.y) es continua en ¢y X Coo-

De hecho, (¢) nos permite extender el operador a todo el espacio X. Por (a) y (b), T
tiene a ey como vector hiperciclico. Finalmente resulta, por (a), (d) y el Corolario 4.1.11
que T'®T no es hiperciclico. Lo que resta de la demostracion es construir el operador 7T’
y la funcional ¢. Ambos dependerén de tres sucesiones de niimeros positivos (a,)nen,,
(bn)neny ¥ (w(n))nen. Especificaremos en el camino, las condiciones necesarias sobre
las sucesiones. Por conveniencia pedimos ag =1y by = 0.

Notaciones Si P es un polinomio, notamos gr(P) al grado de Py |P|; a la suma
de los médulos de los coeficientes de P. Fijamos, de ahora en més, un conjunto denso
numerable () C K. Diremos que una sucesion de polinomios P = { P, },cn es admisible
si Py =0y P enumera todos los polinomios con coeficientes en () (no necesariamente
de forma inyectiva). Pedimos desde ahora que b, — 1 > gr(P,) para todo n € N.

4.2. El operador T

Afirmacién 4.2.1. Sea P una sucesion admisible de polinomios. A las sucesiones P,
(@n)nen, (bn)nen ¥ (W(N))nen, le podemos asociar un unico operador lineal T : cog —
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coo que cumple las siguientes dos condiciones.
Te; =w(i+1)ej41 si i € [by_1,b, — 2] para todo n € N, (4.1)

1
T (eo) = P,(T)ey + —ey, para todo n € N. (4.2)
a

n

Demostracion. En efecto, notemos que en realidad estamos definiendo 1" sobre todos
los vectores de (e;);en. Para mostrar como es que queda definido T'(ep, 1), lo vemos
primero con n = 1. Tenemos que

Tei = ’UJ(Z + 1)€i+1 sit € {bo,bl — 2],

1
Tbl (60) = P1 (T)BQ + a—ebl.
1

Aplicamos T reiteradas veces al vector eq para despejar el valor de T'(ep, _1):

Tey = w(1)ey,
T?eq = w(1)w(2)es,

T ey = w(D)w(2). .. w(by — 1)ey, 1 = Wey, 1.
Luego, tenemos las siguientes dos expresiones para T% (eg). Por un lado,
jvb1 (60) = WT(ebl_l),

y por el otro lado,
1
T (eg) = Pi(T)eq + —Cby-
1

Asi,
1

b (g
w(l)...w(bl—l)T (€0)

T(6b1—1> =

~w(1).. .211)(191 ) (Pl(T)eo + allezn) -

Como gr(Py) < by —1, T'(ep,—1) esta bien definido. De igual forma, se despeja T'(ep, 1)
en el caso general:

Tbn 60 — Tbnfbnfl Tbnfl 60

1
= jﬁbnibnf1 (Pnl(T>€0 + ebn1>

ap—1
w(bp—1+1)...w(b, — 1)

(p—1

=T 1P (T)ey + T(ev,-1)-

De aqui, podemos despejar T'(e;,, 1) usando nuevamente que T°" ey = P,(T)eq + iebn.

Tey, 1 :=¢cnep, + fn (4.3)
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con
Ap—1

anw(b,—1+1)...w(b, — 1)

En =

Ap—1

Wl 7 1) ol =1y e T Py a(T)eo). (4.4)

j%::

Como gr(P,) < b, — 1 para todo n € N, tenemos definido 7" en todos los vectores de
la base por (4.1) y (4.3). O

Observacién 4.2.2. Tenemos, por definicion de T', { P(T")eo; gr(P) < N} = (€o, ..., eN)gen
para todo N € N. Luego, K[T]eq = cqo. Se sigue que {P,(T)eg; n € N} es denso en cqy,
puesto que P es admisible. Entonces por (4.2), también lo es el conjunto {T"¢y; 7 € N}.

De esta forma, tenemos aseguradas las primeras dos condiciones (a) y (b).

Notemos que las sucesiones P, (a,)nen, (bn)neny ¥ (w(n))neny son pardmetros en la
definicion de T'. Podemos entonces encontrar distintos operadores hiperciclicos que no
satisfacen el Criterio de Hiperciclicidad. Para simplificar la notaciéon tomamos ahora y
para el resto de la construccion,

w(n) =4 (1 - ﬁ) ,

ap =n—+1,

b, = 3".
Observamos que w(n) es creciente y 2 < w(n) < 4, para todo n > 1.

Definicién 4.2.3. Decimos que una sucesién admisible P estd controlada por una
sucesion de numeros positivos {u, bnen, si gr(BP,) < u, v |Pul1 < u, para todo n € N.
En ese caso, tal sucesion {u, }nen se llama una sucesion de control. Es claro que para
cualquier sucesion no acotada {u, }nen, existe una sucesion admisible de polinomios P,
que esta controlada por {u, },en.

Definicion 4.2.4. Para x € ¢y, z =)

ZieN |3].

El proximo lema nos permitira probar la continuidad de 7. Notamos d,, = gr(F,).

ien Zi€i , definimos la norma £', como ||z, :=

Lema 4.2.5. Con las notaciones de la Afirmacion 4.2.1, se cumple:

1. ¢, <1 para todon > 1.

2. 8in>1ysi|felli <1 para todo k < n entonces

, P,
ol < mmstonieet (Bl exp-ey/5,0)).

en donde ¢ > 0 es una constante universal.
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Demostracion. La primera parte es obvia pues, w(n) > 1, entonces
n

(n+ Dw(bp—1 +1)...w(b, — 1
Para probar la segunda parte, fijemos n € N y supongamos que ||fx|[1 < 1, para todo

k < n. Para cada j € N, notamos E; := (eq, ..., €;)gen- Tenemos que como {w(i)} es
creciente y w(i) > 2, si j < b, — 1 entonces || T(z)||; < w(j+1)||z||; para todo = € E;.

En = < n <1
" ) n+1 '

j
Veamos, si x = > x;e;, se tiene que

=1

J

T(x) = inT(ei) = Z ;T (e;) + Z z;T(e;)
=1 i=by—1 i#by—1

= Z zi(eger, + fr) + Z zaw(i+ 1)e;.
i=bg—1 i#b—1
Asi,

IT@) < Y Jwl Exllendh + 1 fsll)+ D Jwalw(i + 1) e

i=bk—1 <2<w(j+1) i1

<w(j+1) Z 2| = w(j + x|

i=1
De aqui, deducimos que

p
1TPeolly < [ [ w(®),
i=1
para todo p € [1,b,). Mirando en (4.4), obtenemos que

_ (1P TIE w) + 1P T (i)
I fall < w(bp—1 +1)...w(b, — 1) ’
y como, 2 < w(i) < 4 para todo i € N, se sigue que

bu—bn_1-1 ,
[Py duo1+1 w(i)
< Pn— 4fn—1+ ‘
bn—bp_1—1 ,
; Ealy w(i)
< 4max(dn,dn,1)+1 ’ n Pn— )
=" St T Pl Ul w(i + by_1)
Consideramos la funcion h(u) = (1 —wu)e*, con u € [0, 1). Tenemos que h es decreciente
pues, h'(u) = —ue* <0, si u € [0,1). Luego, si consideramos 0 < u < v < 1, tenemos
que
(1 —ue"

(1-v)e"<(1—-u)e"<—=1<
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Asi, obtenemos que

[\
s
|
il s
= ~
L
VR
)
~.
=+ 1|
<>
3
N
|
)
Ql'—‘
~
~__—

Con lo cual,

bpn—bn_1—1 w(z) bn—bp—1—1 1 1
——— < ex — .
g w(i+ bp-1) P [ ; (2 i+ by 2\/E>]

Consideramos la funcion g(u) = ﬁ, con x> 0. Tenemos que ¢'(z) = 7. Usamos el
Teorema del Valor Medio, y obtenemos que existe p entre ¢ y ¢ + b,,_1, tal que

1 1 . . _bn—l
— = g(i+byr) — g(i)) = ¢ (W) (byy) = —2L

Por lo tanto,




78 CAPITULO 4. CONTRAEJEMPLO DEL PROBLEMA MIXING DEBIL

Notemos que b,_; = 3" <3 -3""1 —1=10, —b,_; — 1, tenemos entonces que,

n_bnfl_l 1 1
— 2/i+b,_1 2Vi

bp—bp—1—1

1
<exp(—=—2=Vbn1 ).
8v/2

Tomando ¢ = ﬁi’ obtenemos el resultado. Por lo hecho anteriormente y usando que
bnfl S bn - bnfl - 17

bp—bp_1—1 .

, P,y w(i)
< gméx(dn,dn—1)+1 —| n P,_ Y
Ifulls < St T [ Paeis H 0@+ o)

) Py \/
< n4max(dn,dn—1)+1 (% + |Pn—1|1 exp(—c bn—l))

) P,
< pgax(dn,dn—1)+1 (|2bn_|i + | Po-1)1 eXP<_C\/bn—1>) )
O

Podemos entonces, mostrar que si elegimos adecuadamente la sucesion admisible P, T’
resulta continua.

Proposicion 4.2.6. Existe una sucesion de control {u, }nen tal que si P estd controlada
por {up tnen, entonces T es continuo en coy con respecto a la topologia de X.
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Demostracion. Sea {u, ,eny una sucesion creciente de nimeros positivos tal que

lim u, =00y
n—oo

1
n4untl (2: + Uy, exp(—cy/by,— 1)) < TR

para todo n > 1, podemos encontrar tal sucesion pues b, = 3". Si P esta controlada
por {u,}nen, entonces aplicando el Lema anterior junto con una induccion directa,
tenemos que

1
[ fallr < g Para todo n > 1.

Descomponemos entonces T como T' = R+ K, donde R es un shift a derecha con pesos
asociado a la sucesidon acotada

. _{w(i—l—l) sii#b, —1
" e

n sii=0b,—1

v K esta definido por K(e,, 1) = f, para todon € Ny K(e;) = 0siino es de la forma
b, — 1. Como el shift asociado a {e;};cn es continuo y la base {e; };en es incondicional,
tenemos que R es continuo. También, como {e¢; },en es normalizada

1 (e, )| = 1Full < [ fullr-

Asi, si € cgo, ||z|| < 1, se expresa en la base {e;}ien, como x = >, x;e; con |z;| =
lex(z)| < |lefllllx]l < |lef]| ¥ la sucesion {e};en es acotada tenemos que

o0
K (2 (Z %Q) i = Zibj—lfbj—l
j=1
o0 [e.e] 1
<Dzl foyall <) ez, —all 55
j=1 j=1
estd acotado y luego K es continuo. Por lo tanto, T" es continuo. O

4.3. La funcional lineal ¢

Para concluir con la prueba del Teorema 4.1.2, nos resta construir una funcional lineal
no nula ¢ : cgo — K, tal que la aplicacion (z,y) — ¢(x.y) sea continua en coy X Cop-
El siguiente lema nos brinda una herramienta para asegurarla.

Lema 4.3.1. Sea ¢ una funcional lineal en coo. Supongamos que 3 [¢(ep.eq)] < oo,

Entonces la aplicacion (x,y) — ¢(x.y) es continua en coy X Cop-

Demostracion. Escribimos x =3 x,e, y y = y,eq, tenemos que

oley) <D lapllyallolese) < O Io(epeq)lllllyll,

pq pq

para todo (x,y) € coo X oo, donde C' = sup;||ef||. u
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Debemos entonces, estimar los términos ¢(e,.e, ). En este punto, se presenta el problema
de comprender los productos e,.e,. Recordemos que cop = K[T]eg, por esta razén
trabajamos con la base {T"(eg) }ien que es “natural” para trabajar con el producto que
hemos definido en ¢y = K[T)ey.

Definiciéon 4.3.2. Decimos que x € ¢y esté soportado en I C N si
z € (T"(eo); i € I)gen-

Observacion 4.3.3. Para calcular |¢(e,.€ )|, fijamos p < g, y escribimos p = by + u,
q="0b +v,conuc€[0,b1—bg)yv €0 by —b). Por definicion de T tenemos que

77(e0) =TT (e0) = T (BT o) + e

w(be +1) ... w(b +u)

= Pk(T)Tu<€o) + A €p-

Luego,
k+1

= w(b, +1) ... w(bg + u)

De forma similar,

(T — Py(T)) T"(eo)-

o I+1
T wby + 1) w(b +v)

(T" — B(T)) T*(eo).

Por lo tanto, para cualquier funcional lineal ¢ : coo — K se tiene que

E+1)(l+1
slepen < XD iyl

en donde
Yk ) = (T — Pe(T))(T" — P(T))T*(eo).

Por lo tanto, bastara asegurar la convergencia de

(k+1)({+1)
D 9Wmaman)l
Definimos ¢ como sigue: ¢(eg) = 1y ¢(T%(eo)) = 0 para i € (0,b1). Sii € [by, byy1),con
n > 1, ponemos

| S(Po(T)T" " (e0)) sii € [by,3bn/2) U [2b,,50,/2),
A(T"(e0)) =

0 en otro caso.

Notemos que ¢(T%(eg)) esté bien definido si conocemos todos los valores que toma ¢ en
potencias menores que i, pues d,, +i—b, < iy entonces P,(T)T" () esta soportado
en [0,1).
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Lema 4.3.4. Supongamos que d, := gr(P,) < b,/3 = 3""', para todo n € N. Si
0 <k <, se tienen las siguientes propiedades:

= ’¢(y(k,u)(l,v)>’ =0stutv< %

oY) < Mi(P) := méx(1+ [Pjl1)* ] méx(1,|P;})>.
0<j<! 0<j<I+1

Antes de dar la prueba, necesitamos un lema previo para poder demostrar el segundo
item.

Lema 4.3.5. Para todo n € N, se cumple que

mix [o(T (o)) < [ méx(L, [B]1)>

i€[0,6n) 0<j<n

Demostracion. Observemos primero que si R es un polinomio entonces aplicando la
desigualdad triangular obtenemos,

[G(R(T)eo)| < Rl mie [6(T(eo))],

Notamos

K, = H méX(1,|Pj|1)2 v i = ]o(T"(eo))].

0<j<n

Sin =0o0n =1, asignamos el valor 1 a un producto vacio y el resultado es cierto.
Supongamos que es valido para algin n > 1, vedmoslo para n + 1. Tenemos que
K, = K,.méx(1,|P,|;)* > K,. Queremos ver que

max ¢; < K.
1€[0,bn+1)

Aplicando la hipotesis inductiva tenemos que

max ¢; < K, < Ky1.
1€[0,bn)

Luego, basta ver que

max ¢; < Ky
ie[bn7bn+l)

Lo haremos en dos partes. En [b,,2b,), usamos las desigualdades b,,/2 + d,, < b, y
|P,l1 < max(1,|P,]1) < méx(1,|P,|;)? y tenemos que

ix ¢ = md Po(T)T" "
pax = mix |o(F(T)T (e0))

< |P mMAax ;
| n‘1j<bn/2+dn ?;

<|P 1 Ky < Ky
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En [2b,,b,11), usamos la desigualdad 3/2b,, + d,, < 2b, y tenemos que

max ¢; = max
i€[2bn,bnt1) i€[2bn,5b, /2)

<|P (X b
<| nhjrggbxn%

Asi, probamos el resultado. O
Ahora si, damos la demostracién del Lema 4.3.4.

Demostracion. Veamos la primera parte: observemos primero que si z esta soportado
en A = [0,bx/2) U [bg, 3bx/2), entonces ¢((T° — B,(T))z) = 0. Puesto que si z =

> zaT%(e), tenemos que
a€cA

BT = P(T))2) = 6 (Z zaTbHa(eo)) ¢ (PM) ) zameo))

acA aEA

=Y 2T (e0)) = Y 2a0(Pi(T)T(e0))

a€cA acA

=Y 2ab(P(T) T (e9)) = Y 2a0(Pi(T)T(e0)) = 0.

acA acA

by

&, con [ > 1. Cuando k =1 > 1, escribimos

Supongamos ahora que u + v <

Yty = (T — Pe(T)) (T — Po(T))T"*" (o)

= (" — Pu(T))(21) = (T = Po(T))(22)-

En donde, 21 := TP +4%?(¢y) esta soportado en [by, by +u+v] C [by, b /6) C [by, 3br/2)
y 2z 1= Pp(T)T"""(eq) esta soportado en [0,dy + u + v] C [0,bx/3 + br/6) = [0, b/2).
Luego, ambos términos se anulan y ¢(yg.u@.v)) = 0. Cuando [ > k, escribimos

Yo aw) = (T = P(T))(2),

en donde, z 1= (T% — P(T))T*"(eg) esta soportado en [0,b, + u + v] C [0,;/2).
Para la segunda parte, notar que el vector Y .)v) tiene la forma R(7T)ey, con R un
polinomio en K. Se cumple que gr(R) < by + b +u+v < b1 + b1 < 2b1 < byay
|R|y < (1+]|Pi|1)(1+|P]1) < (14 |P]1)?. De aqui, junto con el Lema 4.3.5 se concluye
el resultado. O
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Ahora si, podemos probar que si elegimos correctamente la sucesion admisible P, la
funcional ¢ satisface lo que necesitamos.

Proposicion 4.3.6. Ezxiste una sucesion de control {v, }nen, tal que si P estd contro-
lada por {v, }nen, entonces la aplicacion (z,y) — ¢(x.y) es continua.

Demostracion. Notamos A := {(m,w) € N x N; w < by, 41 — b, }. Entonces,

+ (1 +1
ZW) epeg) < D %Id)(y(m)(m)\

(k,u)eA
(lv)eA
S 1
S S)SERGIII g
k=0 >k

= u—HJE%I

N i+ 1
<Y D AHM(P) Y
k=0 1>k iU

Tomemos ahora, una sucesion {A, },en de nimeros positivos tendiendo a infinito, con

A, > 2, tal que
szmlzz“

k=0 >k

Podemos entonces fijar una sucesion de control {vn}neN, tal que si P esta controlada por
{vn }nen entonces M, (P) < A,; notar que M, (P) depende solamente de los polinomios

de P. Luego,
Z |¢(ep-€q)] < 00
p,q
y por el Lema 4.3.1, obtenemos el resultado. O

Juntando las Proposiciones 4.2.6 y 4.3.6, tenemos que si la sucesién admisible P es-
ta controlada por min{u,,v,}, se cumplen las condiciones (¢) y (d). De esta forma
concluimos la prueba del Teorema 4.1.2.

4.4. Variaciones del resultado principal

El mismo Teorema 4.1.2 nos permite encontrar operadores hiperciclicos que no son
mixing débil en una clase mas grande de espacios de Banach.

Lema 4.4.1. Sean Xy, Y dos espacios de Banach separables de dimension infinita. Si
Ty es un operador hiperciclico en Xo, entonces eziste un operador R € L(Y) tal que
T :=1Ty® R es hiperciclico en X .= Xo®Y.
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Demostracion. Por el Teorema 3.4.1, tomamos R € L£(Y) un operador mixing. Enton-
ces, Ty @ R es topologicamente transitivo, luego hiperciclico. O

Con este lema y el Teorema 4.1.2, podemos concluir el siguiente teorema.

Teorema 4.4.2. Sea X un espacio de Banach separable. Supongamos que X admite un
subespacio complementado X que tiene base normalizada incondicional cuyo shift aso-
ciado a derecha es continuo y tiene codimension infinita. Entonces existe un operador
hiperciclico en X que no satisface el Criterio de Hiperciclicidad.

Demostracion. Tomamos Ty € L(X,) hiperciclico que no satisface el Criterio de Hiper-
ciclicidad. Luego, aplicamos el Lema 4.4.1 y obtenemos un operador hiperciclico que no
satisface el Criterio de Hiperciclicidad (recordemos que si Ty @ R satisface el Criterio
de Hiperciclicidad entonces T también lo satisface). O

Corolario 4.4.3. St X es un espacio de Banach separable que contiene una copia
complementada de algin (P(N), 1 < p < 00 0 una copia de ¢o(N), entonces existe un
operador hiperciclico en X que no satisface el Criterio de Hiperciclicidad. En particular,
podemos encontrar este tipo de operadores en L']0,1] y C[0, 1].

Demostracion. El resultado es obvio si contiene una copia complementada de algtn
?(N), 1 < p < oo. Para la parte de ¢o(N), un resultado de A. Sobczyk afirma que
si X contiene una copia de ¢y(N), entonces co(N) estd complementado en X. Para
aplicar el resultado a los espacios L[0, 1] y C[0, 1], notar que L'[0, 1] contiene una copia
complementada de ¢*(N) y C[0, 1] contiene una copia de ¢y(N), que necesariamente esta
complementada. O



Capitulo 5

Comentarios Finales

Para finalizar el trabajo, damos algunos resultados de interés. Son problemas que que-
dan abiertos dentro de la teoria. Por ejemplo, se trata de caracterizar los espacios en
los que todo operador hiperciclico es mixing débil o aproximarse a una solucion del
problema del subespacio (o subconjunto) invariante.

5.1. Operadores hiperciclicos que son mixing débil

Sabemos que los conceptos de hiperciclicidad y mixing débil no son equivalentes. Vere-
mos que agregando hipotesis extra de regularidad sobre el operador podemos asegurar
que T & T sea hiperciclico.

Teorema 5.1.1. Sea X un espacio de Banach separable de dimension infinita. Dado
T € L(X) hiperciclico, son equivalentes las siguientes condiciones.

(i) T @ T es hiperciclico.
(ii)) T T es ciclico.

(11i) Para cualesquiera abiertos no vacios Uy, Uy, Vi y Vo de X, existe un polinomio
p con coeficientes en K, tal que los conjuntos p(T)(Uy) N Vi y p(T)(Usz) N V4 son
no vacios.

(iv) Para todo par de abiertos no vacios U y V y para todo entorno abierto W, de 0,
existe un polinomio p con coeficientes en K, tal que los conjuntos p(T)(U) N W
y p(T) (W) NV son no vacios.

Demostracion. Las implicaciones (i) = (i) y (i4i) = (iv) son obvias. Veamos (ii) =
(7i7). Supongamos que T es hiperciclico y T'@® T es ciclico. Afirmamos que el conjunto
de vectores ciclicos de T'& T es denso en X & X. Tomamos x & y vector ciclico para
T @ T y p un polinomio cualquiera no nulo. Se tiene que p(T)x @ p(T)y es ciclico de
T ®T, pues

KT @ T|(p(T)r @ p(T)y) = (p(T) @ p(T))K[T © T](x & y)

85
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es denso por que (p(T) @ p(T')) tiene rango denso y K[T @ T)(x D y) es denso en X & X.
Tenemos entonces los abiertos de X & X, Uy Uy y Vi @ V. Tomamos x by € Uy b U,
vector ciclico de T@®T. Como K[T®T|(z®y) es denso en X & X, existe p polinomio, tal
que p(T)z @ p(T)y € V1 @ Va. Por lo tanto, los conjuntos p(T)(Uy) NVy y p(T)(Us) NVs
son no vacios. Por tltimo veremos (iv) = (i). Mostraremos que se cumple la condicion
de los tres abiertos para T'. Vimos en el Teorema 3.3.3, que esta es equivalente a que el
operador 1" sea mixing débil. Tomemos entonces abiertos U y V no vacios y un entorno
abierto W de 0. Queremos ver que existe n € N tal que 7T"(U)NW y T"(W)NV
son no vacios. Por hipoétesis, elegimos un polinomio p con coeficientes en K, tal que los
conjuntos p(T)({U) N W y p(T)(W) NV son no vacios. Sea x € HC(T') tal que z €
UN(p(T))"H(W), (podemos elegir tal x, pues UN (p(T)) (W) es un abierto no vacio y
HC(T) es denso en X). De aqui, podemos fijar n € N tal que T"(x) € WN(p(T)) (V)
(podemos elegir tal n, pues WN(p(T)) "' (V) es un abierto no vacio y Orb(z,T) es denso
en X). Luego podemos concluir que z € U y T™(z) € W, por lo tanto T"(U) N W es
no vacio. De forma similar, p(T)x € W y T™(p(T)x) = p(T)(T™(x)) € V, asi tenemos
que T"(W) NV es no vacio. O

Observacion 5.1.2. Notar que en la prueba de la implicacion (iv) = (i) solamente
usamos que p(7) y T conmutan. Luego la misma prueba sirve si para cualquier par de
abiertos no vacios U y V, y cualquier entorno no vacio W de 0, existe un operador A
que conmuta con 7" tal que A(U)NW y A(W)NV son no vacios.

El anterior es un resultado de S. Grivaux. Ademas de éste, ella dio otros resultados que
aseguran que un operador hiperciclico es mixing débil. Por ejemplo, podemos citar que
si T' tiene un conjunto denso de vectores con 6rbita acotada entonces es mixing débil.

5.2. Caos y Caos Lineal

Recientemente los sistemas dindmicos ca6ticos han sido un objeto de estudio en cons-
tante progreso al igual que los sistemas dinamicos lineales. Aunque no se reconoce una
definicion formal de caos, podemos decir que una de las mas estudiadas fue la definida
por R. L. Devaney en el ano 1989 [15]. Se intenta definir funciones cuyas orbitas se
comportan de manera complicada e impredecible. Esta definicion involucra tres con-
ceptos que juntos dan la nocién de caos en el sentido de R. L. Devaney. Uno de ellos
es la transitividad topoldgica que definimos en el Capitulo 1. Las otras dos son las
siguientes.

Definicién 5.2.1. Sean (X, d) un espacio métricoy f : X — X una funcion continua.
Decimos que x € X es un punto periddico si existe k € N tal que f*(z) = x. En ese
caso, decimos que k := min{n € N: f"(z) = x} es el periodo de z.

Definicién 5.2.2. Sean (X, d) un espacio métricoy f : X — X una funcion continua.
Decimos que f tiene sensibilidad a las condiciones iniciales si existe 0 > 0 tal que para
todo x € X y para cualquier entorno abierto N de z, existe y € N y n € N tal que
d(f™(x), f*(y)) > 0. En ese caso, decimos que § es una constante de sensibilidad para

fl
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Con las definiciones anteriores podemos dar la definicion de caos en el sentido de R. L.
Devaney.

Definicién 5.2.3. Sean (X, d) un espacio métrico y f : X — X una funcién continua.
Decimos que f es cadtica si

= f es topologicamente transitiva,
= los puntos peridédicos de f forman un conjunto denso en X,

= f tiene sensibilidad a las condiciones iniciales.

Uno de los problemas que trae esta definicion es que la tercera condiciéon no es, en
general, preservada por conjugaciones topologicas. Es decir, si tenemos una funcion
caodtica f y un diagrama conmutativo

X0—9>X0

con Xy otro espacio métrico y h un homeomorfismo. Es cierto que g es cadtica?
Queda claro que las primeras dos condiciones de la Definicién 5.2.3 son puramente topo-
logicas y por lo tanto son preservadas por conjugaciones topolégicas. Pero no podemos
decir lo mismo de la sensibilidad a las condiciones iniciales. Sin embargo, veremos en
el siguiente teorema que la transitividad y la existencia de un conjunto denso formado
por puntos periodicos aseguran que la sensibilidad se preserve por conjugaciones topo-
logicas. Més ain, el siguiente teorema muestra que la tercera condiciéon de la Definicion
5.2.3 es redundante.

Teorema 5.2.4. Sean (X,d) un espacio métrico infinito y f : X — X una funcidn
continua. Si [ es topologicamente transitiva y admite un conjunto denso formado por
puntos periodicos, entonces f tiene sensibilidad a las condiciones iniciales.

Demostracion. Observemos primero que si q; y ¢ son dos puntos periodicos de f
tales que Orb(qy, f) N Orb(qa, f) # 0, entonces Orb(qi, f) = Orb(qe, f). En efecto, si

q € Orb(qi, f[)NOrb(qs, f), se tiene que Orbd(q, f) = Orb(q1, f)y Orb(q, f) = Orbd(qz, f)-
Puesto que, como ¢q € Orb(qy, f) obtenemos que Orb(q, f) C Orb(qy, f). Por otro lado,

si f*(q1) = @ v f/(q1) = q con j <k, entonces
¢ = " (f (@) = 7 (q) € Ordlg, f).

Luego, Orb(qi, f) C Orb(q, f). De igual forma se muestra que Orb(q, f) = Orb(qs, f).
De aqui, asumiendo que X es infinito y el conjunto de puntos periddicos es denso,
podemos asegurar la existencia de dos puntos periddicos q; y ¢o tales que

Orb(qi, f) N Orb(ge, f) = 0.

Sea 0g = d(Orb(q1, f),Orb(gs, f)). De esta forma, usando la desigualdad triangular,
conseguimos que para cualquier x € X la distancia de z a alguna de las oOrbitas
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Orb(qy, f) 6 Orb(qs, f) es por lo menos dy/2. Mostraremos que f tiene sensibilidad
a las condiciones iniciales con constante de sensibilidad § := dy/8.

Sea x € X arbitrario y sea N un entorno abierto de x. Por densidad, existe p € X
punto periodico de f tal que p € U := N N B(x,d). Sea n € N el periodo de p. Por
lo observado previamente, existe un punto periddico ¢ € X tal que la orbita Orb(q, f)
dista de x como minimo en 49. Consideramos

n

V= (B(f(9),9))

1=0

Es claro que V es abierto y no vacio pues ¢ € V. Como f es transitiva, existe k € N
tal que V N f*(U) # (. Es decir, existe y € U tal que f*(y) € V.

Consideramos ahora, j € N la parte entera de k/n+ 1. Se tiene que k/n < j < k/n+1,
y luego, 1 < nj — k < n. Por construcciéon tenemos que

frily) = 78 ) € f7H V) € B M), 9).

Al ser, f™(p) = p aplicando la desigualdad triangular obtenemos

d(f™ (p), [ (y)) = d(p, ™ (y))
> d(z, f7q) — d(fY 7 (q), [P (y)) — d(p, ).

Por lo tanto, usando que p € B(x,8) y f¥(y) € B(f"%(q),d) se tiene

d(f™(p), /™ (y)) > 26.

Para concluir, notemos que aplicando una vez mas la desigualdad triangular tenemos
que

d(f"(x), f(y)) > & o bien d(f™(z), " (p)) >,

y tanto p como y pertenecen a N. Resulta entonces, que f tiene sensibilidad a las
condiciones iniciales. O

Volviendo al contexto lineal, los operadores hiperciclicos verifican una especie de sen-
sibilidad a las condiciones iniciales més fuerte que la definicién 5.2.2.

Proposicion 5.2.5. Sea X un F-espacio separable y sea T € L(X) hiperciclico. En-
tonces, para cualquier x € X existe un conjunto Gs denso G(x) C X tal que el conjunto
{T™(y) —T"(x); n > 0} es denso en X para cualquier y € G(x).

Demostracion. Dado x € X, buscamos un conjunto Gs denso tal que y —z € HC(T)
para cualquier y € G(x). Simplemente tomamos G(z) := x + HC(T), y listo. O

Asi en el contexto lineal, para cualquier elemento x € X y cualquier entorno abierto
no vacio N de z, existe y € G(z)NN. Por lo tanto, y € Ny {T"(y) —T"(x); n > 0} es
denso en X. Mientras que en la definicion 5.2.2 pediamos que para cualquier elemento
xr € X y cualquier entorno abierto no vacio N de z, exista y € N tal que alguna
iteracion de f separe a x de y en mayor distancia que J.
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Desde aqui, asumimos que X es un F-espacio complejo, separable de dimensién infinita.
Luego, un operador T' € L(X) es cadtico si y solo si T' es hiperciclico y

Per(T) := {z € X;z es punto periodico de T" }
es denso en X.

Proposicién 5.2.6. Si admite T puntos periddicos entonces existen autovectores de T’
cuyo autovalor en una raiz enésima de la unidad. Mds aun,

Per(T) = ({x € X tales que eziste n e Ny A€ C con \" =1y Tax = Ax}) gen.

Demostracion. Es claro que Per(T') es un subespacio vectorial, pues 7" es lineal. Si
Tx = Az para algin A € Cy n € N con \" = 1, entonces T"x = x y luego x € Per(T).
Para la otra inclusion, si T"x = x, descomponemos el polinomio 2" — 1 en un producto
de monomios

2M=1=(z—X)...(2— ).

Como todas las raices A\;, con ¢ = 1,...,n son distintas, es facil ver que {p1(z),...,pn(2)}
con p;(z) = [[;.(# — A;), es una base del espacio de los polinomios de grado menor
estricto que n. En particular, existen «;, i = 1,...,n tales que

1= Z a;p;(2).
i=1
Evaluando en T', obtenemos
i=1
Consideramos ahora, y; := p;(T)x. Tenemos que

(T = N)ys = (T =) [[(T = Az = (T" = D =0,

J#i
y entonces Ty; = A\y; con A} = 1. Ademas, = = > a;y;. De esta forma, x es
combinacion lineal de autovectores de T" asociados a autovalores que son raices enésimas
de la unidad. O

Como consecuencia directa tenemos la siguiente generalizacion del Corolario 1.3.10.

Corolario 5.2.7. Sea X un F-espacio complejo, separable de dimension infinita, y
TeL(X). Si

U Ker(T — \), U Ker(T —)\) vy U Ker(T — ),

[A]>1 [Al<1 [A|=1

generan subespacios densos, entonces T es cadtico.
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5.2.1. Operadores Shift

En la Secciéon 1.4.2; vimos que en ¢P(N) con 1 < p < oo, el operador AB : ? — (P con
|A| > 1 es hiperciclico. Veamos que son cadticos. Debemos mostrar que Per(A\B) es
denso en 7. En efecto, observemos que dada una sucesion z = (21, xax3, . .. ) podemos
encontrar ™ puntos periédicos de \B, tales que (™) — z en ¢?. Tomamos

n—00
J}(n) (1 2 " 1 T2 Ty I1 T2 Tn
= 1,2,y "’)\n’An""’>\n’/\2n’)\2n""’>\2n""

Luego, como |A| > 1 se tiene que (™ € P para todo n € N. Es claro que (AB)"z(™ =
(n)
Ty

0o 1/p
_ ) = )
o2 up—<§j\xz 2! rp) 0

i=n+1

Concluimos que los puntos periodicos de A\B son densos, y luego el operador es cabtico.

5.2.2. Operador de Derivacion

Otro ejemplo de operador caotico es el operador de derivacion que definimos en le
Seccion 1.4.1. Veamos ahora que los puntos periodicos de D : H(C) — H(C) son
densos en H(C). Sea A € C una raiz n-ésima de la unidad. Luego e\, € H(C) es un
punto periddico de D,

D”(eA) = )\"e,\ = €).

Ademas,
S = ({ex; A raiz de la unidad}) g,

es un subespacio formado por puntos periodicos. Puesto que si \y = em y Ay = em2

son dos raices de la unidad y a € C, entonces

nin
D™M™(ey, + aey,) = ey, + aey,.

Por Lema 2.1.1, como el conjunto A := {\ € C; A raiz de la unidad } tiene un punto
de acumulacion, tenemos que S es denso. Por lo tanto, D es caodtico.

5.2.3. Criterio de Caoticidad

Veremos a continuacion un criterio que da condiciones suficientes para determinar si
un operador es cadtico. Recordemos que seguimos trabajando en F-espacios complejos,
separables de dimension infinita.

Teorema 5.2.8. Sea T € L(X). Supongamos que existe un conjunto denso D C X y
una aplicacion S : D — D que cumplen

(1) Las series Y -, T™(x) y >, -, 5"(x) convergen incondicionalmente para todo
reD, - -
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(2) TS =1 en D.
Entonces, T es cadtico.

Demostracion. Se sigue de (1), que T"(x) — 0y S™(x) — 0 para cualquier x € D.
Por lo tanto, T satisface el Criterio de Hiperciclicidad. Ahora, dados z € Dy k > 1,

consideramos

n=1

Por la Definicion 4.1.6, las series deﬁnldas anteriormente convergen y entonces xy — .
k—o0

Ademas, se sigue de (2) que

n=1
= Z SR (z) + T () + f: TR (z) = o + f: SV () + i T (x)
n=1

n=1 n=2
= Tf-

Por lo tanto, cualquier punto de D se aproxima por puntos peridédicos de T, concluimos
entonces que Per(T') es denso en X. De esta forma queda demostrado que T es caotico.
|

Queda claro que si T satisface el Criterio de Caoticidad entonces es mixing débil. Pero
vale notar que todos los operadores cadticos son mixing débil. Para mostrarlo, citamos
el siguiente resultado de S. Grivaux [18].

Teorema 5.2.9. Si T € L(X) es hiperciclico y el conjunto de vectores con drbita
acotada es denso, entonces T' es mizing débil.

Corolario 5.2.10. Si T € L(X) es cadtico entonces es mizing débil.

5.3. El Problema del Subespacio Invariante

Para concluir, comentamos un resultado de C. Read [28], que resuelve de forma negativa
el problema del subespacio invariante para espacios de Banach.

Problema del Subespacio Invariante: es cierto que en un espacio de Banach todo
operador acotado admite un subespacio propio cerrado e invariante?

Encontrar un contraejemplo para el Problema del Subespacio Invariante, es equivalente
a encontrar un operador acotado, tal que el subespacio generado por la oérbita de
cualquier elemento no nulo sea densa.

Teorema 5.3.1 (C. Read). Eziste un operador lineal y continuo en ¢*(N) tal que todo
vector no nulo es hiperciclico.

Es maés, este operador no tiene conjuntos propios cerrados e invariantes. Si F' # () es
cerrado, T-invariante y x € F entonces, X = Orb(z,T) C F.
Todavia queda abierto el problema para espacios de Hilbert.
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