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WORD-EMBEDDINGS CONTEXTUALIZADOS PARA DETECCIÓN

DE ENTIDADES NOMBRADAS EN TEXTOS DE RADIOLOGÍA EN

ESPAÑOL

La creciente digitalización de los procesos médicos ha generado una gran cantidad
de datos textuales, como informes de estudios cĺınicos, que permiten mejorar procesos a
través de la automatización de la extracción de información de los mismos. Sin embargo,
esta última presenta desaf́ıos significativos, especialmente en español, debido a la escasez
de recursos en este idioma y al uso de vocabulario especializado. También algunos de estos
textos suelen tener abreviaturas, errores ortográficos y de tipeo, lo que agrega una comple-
jidad adicional. Este trabajo busca contribuir al campo del Procesamiento del Lenguaje
Natural Biomédico (BioNLP, por sus siglas en inglés) mediante el desarrollo de mejores re-
presentaciones de textos que optimicen la extracción de información para informes cĺınicos
escritos en español.

En esta tesis se desarrolla un estudio sobre el uso de word embeddings y modelos de
lenguaje para informes de ecograf́ıa escritos en español. Se proponen y evalúan diferentes
modelos de embeddings, incluyendo técnicas estáticas como FastText y modelos basados en
arquitecturas contextuales como Transformers y BiLSTM. Los embeddings se entrenaron
utilizando un corpus anonimizado de más de 80 mil informes de ecograf́ıas. Se realizaron
dos tipos de evaluaciones sobre los embeddings: una extŕınseca y una intŕınseca. Para la
evaluación extŕınseca se utilizó la tarea de reconocimiento de entidades nombradas con el
conjunto de datos de la competencia SpRadIE. Además, se realiza un estudio de ablación
para intentar establecer un v́ınculo más directo entre el uso de las representaciones y el
rendimiento obtenido por los modelos. Para la evaluación intŕınseca, se presenta un marco
basado en análisis cualitativo, para medir la calidad de los embeddings en dominios donde
no existen benchmarks estandarizados.

Los resultados obtenidos muestran mejoras sobre el estado del arte para la tarea de
reconocimiento de entidades nombradas de SpRadIE, destacando el impacto de usar re-
presentaciones contextuales adaptadas al sub-dominio espećıfico de la tarea. Observamos
que los mejores resultados del reconocimiento de entidades nombradas se obtienen con
modelos basados en Transformers, sin embargo las representaciones generadas a partir de
BiLSTM parecen capturar información semántica más rica, como evidencian los estudios
de ablación y el análisis cualitativo.

Palabras claves: Embeddings, reconocimiento de entidades nombradas, BioNLP en es-
pañol, informes cĺınicos, ecograf́ıas, transformers, BiLSTM, FastText
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CONTEXTUALIZED WORD-EMBEDDINGS FOR NAME ENTITY

RECOGNITION IN SPANISH RADIOLOGICAL TEXTS

The growing digitalization of medical processes has generated a large volume of tex-
tual data, such as clinical study reports, which allow for process improvements through the
automation of information extraction. However, this task presents significant challenges,
especially in Spanish, due to the scarcity of resources in this language and the use of spe-
cialized vocabulary. In addition, some of these texts often contain abbreviations, spelling
errors, and typos, adding an extra layer of complexity. This work aims to contribute to
the field of Biomedical Natural Language Processing (BioNLP) by developing better text
representations to enhance information extraction from clinical reports written in Spanish.

This thesis presents a study on the use of word embeddings and language models for ul-
trasound reports written in Spanish. Different embedding models are proposed and evalua-
ted, including static techniques such as FastText and models based on contextual architec-
tures like Transformers and BiLSTM. The embeddings were trained using an anonymized
corpus of more than 80,000 ultrasound reports. Extrinsic and intric evaluation methods
were carried out. For the extrinsic evaluation, the chosen task was named entity recogni-
tion, using the dataset from the SpRadIE competition. Additionally, an ablation study was
conducted to better understand the relationship between the use of these representations
and the performance of the models. For the intrinsic evaluation, a framework based on
qualitative analysis is presented to assess the quality of the embeddings in domains where
standardized benchmarks are not available.

The results show improvements over the state of the art for the named entity re-
cognition task in SpRadIE, highlighting the impact of using contextual representations
tailored to the specific subdomain. We observe that the best results are obtained with
Transformer-based models; however, the representations generated by BiLSTM appear to
capture richer semantic information, as evidenced by the ablation studies and qualitative
analysis.

Keywords: Embeddings, named entity recognition, Spanish BioNLP, clinical reports,
ultrasound, transformers, BiLSTM, FastText
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1. INTRODUCCIÓN

En este caṕıtulo presentamos las razones que motivan la realización del presente tra-
bajo, introducimos algunas nociones básicas, cuál es el problema que se quiere estudiar y
cuáles son los desaf́ıos que se presentan. Por último se describe la estructura del resto del
informe.

1.1. Motivación

En los últimos años ha tenido lugar un crecimiento significativo en la cantidad de textos
digitalizados y, por lo tanto, en la cantidad de información valiosa que se puede extraer
de ellos. En particular en la medicina hay un impulso importante a la digitalización de
los procesos. En Argentina esto se da de la mano de proyectos gubernamentales como la
Estrategia de Salud Digital1.

Durante el desarrollo de la actividad médica se producen, entre otro tipos de informa-
ción, distintos textos. Podemos mencionar art́ıculos cient́ıficos, notas escritas en la historia
cĺınica -como notas de visita, informes de altas médicas (epicrisis)- e informes de estudios
como radiograf́ıas y ecograf́ıas. Entre otros beneficios que se pueden obtener del procesa-
miento automático de estos textos podemos nombrar:

La contribución a la construcción de estad́ısticas útiles para estudios cĺınicos, que
podŕıa impactar en diagnósticos y tratamientos.

La posibilidad de mejorar la atención a un paciente, por ejemplo, permitiendo que
un profesional reciba inmediatamente una alarma en caso de detectarse un resultado
que requiera atención urgente.

El formato informal y semi-estructurado (en el mejor de los casos) de estos textos hace
que la extracción de información no sea trivial. Los mismos usan un vocabulario espećıfico,
que vaŕıa con el dialecto de cada páıs, hospital, especialidad, e incluso a veces de médico
a médico. Distintos términos pueden referir al mismo concepto y el mismo término puede
tener varios significados. Presentan también abundancia de acrónimos y abreviaturas. En
algunos casos (como por ejemplo, en las notas que se escriben durante las consultas) la
formalidad no es la principal prioridad sino que es más importante que la escritura sea
rápida, lo que conlleva a que ocurran faltas de ortograf́ıa o errores de tipeo.

Este punto se puede ilustrar mejor mostrando una oración tomada de un informe (en
este caso, de una ecograf́ıa):

RD Diam Long: 8.5 cm RI Diam Long: 9cm A nivel de FID se observan estructuras

ganglionares de forma y ecogenicidad conservada de 1 cm de diametro AP.

La mayor parte de la investigación sobre el procesamiento automatizado de textos
biomédicos suele ser en inglés2. Sin embargo, es conveniente analizar los textos en el

1 https://www.argentina.gob.ar/salud/digital, consultado en abril de 2024.
2 Ver Névéol et al.[48] para una comparación detallada de la producción de art́ıculos cient́ıficos sobre el

tema en diferentes idiomas.
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2 1. Introducción

idioma en el que fueron escritos. Dado que el español es uno de los idiomas más hablados
del mundo [21] resulta necesario tener herramientas para trabajar con recursos en ese
idioma.

Si bien muchos métodos desarrollados en inglés pueden ser utilizados en otros idiomas
[56], resulta necesario adaptarlos a las caracteŕısticas de cada uno. Una de las principales
herramientas que ha sido clave en el avance del procesamiento del lenguaje natural son los
word embeddings (ver Sección 2.3) pero para su correcto funcionamiento es necesario que
sean entrenados con el vocabulario del idioma y dominio en que se los quiere aplicar.

Trabajar en español, además, presenta el desaf́ıo adicional de conseguir datos. No
hay una gran disponibilidad de corpora3 públicos para la comunidad de investigación en
procesamiento del lenguaje. Obtener informes médicos para experimentar no es fácil, ya
que no son públicos, porque eso afectaŕıa la privacidad de los pacientes. La disponibilidad
de corpus anotados4 es aún menor, ya que se requiere de una gran cantidad de horas de
trabajo por parte de anotadores expertos. El conjunto de datos utilizado en este trabajo
fue publicado en el año 2017 y se describe en la Sección 3.2.

1.2. Definiciones

Se llama lenguaje natural al lenguaje hablado y escrito por seres humanos. El pro-
cesamiento del lenguaje natural (NLP por sus siglas en inglés) es un área de estudio
multidisciplinaria que se encarga de procesarlo para analizarlo o generarlo [35]. Para este
fin, una de las herramientas que suele emplearse con mayor frecuencia son técnicas de
aprendizaje automático (o Machine Learning).

Dentro del procesamiento del lenguaje natural, se conoce como BioNLP (Biomedical
NLP) al área que se encarga espećıficamente de textos relacionados con la bioloǵıa y la
medicina. Es importante destacar que incluso dentro de este campo hay una gran diversi-
dad en cuanto al tipo de textos que podemos encontrar: art́ıculos cient́ıficos, enciclopedias,
historias cĺınicas informes de diversos estudios médicos, e informes de alta médica, entre
otros. Además existen una amplia diversidad de especialidades médicas y áreas de estu-
dio a las que pueden pertenecer estos textos. Cada una de estas combinaciones definen
diferentes sub-dominios dentro del dominio biomédico.

En el contexto de NLP, el concepto de dominio se refiere al área temática o cam-
po espećıfico al que pertenece un corpus o problema. Cada dominio tiene caracteŕısticas
propias, como vocabulario especializado, patrones lingǘısticos y tipos de información pre-
dominantes, que deben ser consideradas. Por ejemplo, el dominio biomédico incluye termi-
noloǵıa médica y abreviaturas cĺınicas, mientras que el dominio financiero abarca términos
económicos y métricas de mercado. Los dominios además suelen ser jerárquicos, por lo que
se puede decir que un dominio es un sub-dominio de otro cuando el primero engloba un sub-
conjunto de los textos del segundo. Por ejemplo, dentro del dominio biomédico podŕıamos
identificar el sub-dominio cĺınico (referente a la actividad cĺınica-hospitalaria), y a su vez
dentro de este un sub-dominio como el de la radioloǵıa, el cual es aun más acotado y
espećıfico (términos relacionados con imágenes diagnósticas y mediciones anatómicas).

3 Un corpus (pl. corpora) es una colección de textos o discursos utilizados para un propósito espećıfico,
que puede estar anotado o no.

4 Un corpus “anotado” o “etiquetado” es un conjunto estructurado de textos marcados con información
adicional que describe aspectos lingǘısticos como la morfoloǵıa, sintaxis, y semántica. Estos metadatos
facilitan el análisis computacional del texto, permitiendo aplicar diversos métodos.
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La extracción de información es un sub-campo de NLP que consiste en técnicas para ob-
tener información estructurada a partir de fuentes no-estructuradas o semi-estructuradas.
A partir de estos datos estructurados resulta más fácil realizar análisis, búsquedas y vi-
sualizaciones.

El reconocimiento de entidades nombradas (NER, de named entity recognition), en
donde se identifican y clasifican términos en categoŕıas predefinidas, como nombres de
personas, organizaciones, lugares y fechas, es una tarea que ayuda en la extracción de la
información. Algunas otras tareas del procesamiento del lenguaje natural son la detección
de relaciones, en donde se identifican y extraen las relaciones semánticas que existen entre
entidades nombradas presentes en el texto; y la clasificación de textos, en donde se asigna
una categoŕıa o etiqueta a un texto.

En la actualidad todas estas tareas se apoyan en el concepto de word embeddings (WE),
también llamados simplemente embeddings, como forma de pre-procesar las palabras5 de
los textos a analizar. Existen muchas variantes en las técnicas de generación de WE, que
detallamos oportunamente en la sección 2.3, pero a grandes rasgos todas buscan obtener
una representación vectorial densa6 de las palabras que componen un corpus. Collobert
et al. muestran por primera vez en su estudio Natural language processing (almost) from
scratch [14], que estas representaciones logran dos objetivos fundamentales: su uso permite
mejorar el desempeño en numerosas tareas y además proporcionan una alternativa más
sencilla y generalizable (a diferentes tareas) respecto de la ingenieŕıa de caracteŕısticas
manual (del inglés, feature engineering). Este último punto está ı́ntimamente relacionado
con el hecho de que las técnicas para obtener embeddings no requieren texto anotado, lo
cual es significativo ya que, para la mayoŕıa de aplicaciones, la disponibilidad de texto sin
anotar es mayor al anotado.

A lo largo del tiempo, los embeddings han evolucionado desde modelos simples con
representaciones estáticas como word2vec [43], Glove [52] y FastText [7] hasta representa-
ciones más avanzadas y contextualizadas (lo que significa que la representación vectorial de
una palabra concreta va a depender del resto de las palabras que la rodean en la oración).

Por último, los embeddings en muchos casos son entrenados sobre ciertos corpora y
luego son aplicados en tareas que utilizan un corpus con un volumen de texto menor (en
general uno o más órdenes de magnitud) o que incluso pertenecen a un dominio diferente.
Esta idea se basa en el concepto de transfer learning que consiste en la hipótesis de que en
ciertos casos el aprendizaje que realiza un modelo a partir de un problema o conjunto de
datos puede ser de utilidad al aplicarse en otro (problema o conjunto de datos). Esta idea
de ajustar los parámetros de un modelo entrenado previamente (o pre-entrenado) a un
problema o conjunto de datos más espećıfico respecto al original también suele llamarse
fine-tuning. Profundizamos sobre estos conceptos en 2.7.

En este trabajo nos centramos en abordar el concepto de embeddings y probar distin-
tas técnicas para un corpus que consiste en informes de estudios ecográficos en español.
Además, nos apoyaremos en una tarea de NER concreta, sobre un subconjunto anotado
de este corpus, como forma de evaluar la efectividad de las representaciones obtenidas.

5 Aunque es común realizar embeddings al nivel de palabras, no es la única unidad “embebible”: compo-
nentes más pequeños como sub-palabras (partes que componen una palabra), o más grandes como oraciones
o documentos pueden ser embebidos también.

6 Si bien no hay una definición formal, se suele decir que un vector es denso cuando la mayoŕıa de sus
valores son distintos de cero. Esto es en oposición a los llamados vectores dispersos (sparse, en inglés) que
se caracterizan estar compuestos casi totalmente de ceros.
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1.3. Descripción del problema

La Figura 1.1, extráıda y traducida al español del trabajo de Khattak et al. [38],
muestra el flujo de tareas y entrada de datos habituales para el desarrollo de embeddings.
A continuación se explica brevemente en qué consiste cada paso y como se abordan en el
presente trabajo. Siguiendo la terminoloǵıa empleada en el trabajo citado, nos referiremos
como “tarea objetivo” a nuestra tarea de NER sobre el corpus espećıfico de informes
ecográficos.

Fig. 1.1: Proceso de desarrollo de Word embeddings. Imagen tomada y traducida al español de
Khattak et al.[38].

El primer paso es definir cuál es el corpus que se va a utilizar para el entrenamiento (o
fine-tuning de los embeddings a desarrollar). En esta etapa se busca conseguir un corpus
perteneciente al dominio objetivo, o en su defecto un dominio lo más af́ın posible. Cuanto
más grande y variado sea el corpus, más rico resultará el entrenamiento de los embeddings
y mayor será su capacidad de generalización. En este punto no es necesario que el corpus
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esté anotado. En nuestro caso utilizamos un corpus de 85621 informes correspondientes a
ecograf́ıas en español (sin etiquetar) que fueron presentados en la tesis doctoral de Cotik
[18].

El siguiente paso es pre-procesar los datos. En nuestro caso por estar trabajando con
información sensible de pacientes y médicos realizamos una primer etapa de anonimización
donde, de manera automática, se eliminan nombres propios y matŕıculas médicas. Hecho
esto, se realiza una segmentación del texto llamada tokenización (ver sección 2.1) que
resulta en el formato esperado por los modelos que utilizaremos luego. Es interesante
notar que no existe una forma única de realizar esta segmentación y suele variar según el
tipo de modelo, por lo que en nuestro caso, donde entrenamos varios, es necesario realizar
más de una vez la tokenización.

Para el entrenamiento de los WE utilizamos a nivel general dos variantes: embeddings
estáticos basados en FastText (ver sección 2.3.1) y embeddings dinámicos (o contextuales)
basados en Transformers 2.6. Hay una diferencia importante para señalar aqúı en cuanto al
resultado que se obtiene en este paso según el tipo de embedding empleado. Los embeddings
estáticos generan un mappeo fijo entre palabras del vocabulario y representación vectorial.
Sin embargo esto no es posible para los embeddings contextuales, pues no existe una única
representación para cada palabra o token sino que va a depender del resto de palabras
que la acompañan en un contexto espećıfico. El resultado, entonces, para este tipo de
embeddings es un modelo en śı mismo, que debe ser ejecutado sobre la palabra y su
contexto para poder obtener una representación.

Una vez los embeddings han sido entrenados es necesario poder evaluar su efectividad.
Para esto existen dos enfoques posibles: evaluaciones intŕınsecas y extŕınsecas.

Las primeras buscan evaluar la calidad de los embedding en śı mismos, tratando de
evaluar cuán bien logran capturar la semántica de las palabras a través de su representación
vectorial. Como métricas principales suelen usarse la similitud 7 y relatedness8. Para el
cálculo de estas métricas existen algunos benchmarks que suelen usarse en la literatura,
generalmente basados en la capacidad de producir analoǵıas o respetar sinonimia. Sin
embargo, estos benchmarks presentan dificultades relacionadas con los idiomas y dominios
que abarcan, las cuales profundizaremos en el caṕıtulo 3.

La evaluación extŕınseca consiste, en cambio, en analizar la efectividad de los embed-
dings a través del “desempeño” que ayudan a conseguir en la tarea objetivo (también
llamada en la literatura en inglés como downstream task). Este método es mucho más
simple y directo que la evaluación intŕınseca, pero como desventaja no permite analizar
el impacto de los embeddings de una forma aislada (ya que es otro modelo el que termina
entrenándose para tomar las decisiones). También tiene el problema de que no permite
concluir sobre la utilidad de los embeddings para otras tareas distintas a la que se está
evaluando. Por lo tanto, ambos enfoques (intŕınseco y extŕınseco) son complementarios y
necesarios si lo que más nos interesa es evaluar la calidad de los embeddings.

Para la tarea objetivo (NER en este caso), se necesita que los datos estén etiquetados,
a diferencia de lo que suced́ıa con el corpus para los embeddings. Nuestros datos objetivo

7 La “similitud de los embeddings” es una métrica que refleja cuán cerca están en el espacio vectorial
palabras con significados o usos similares. No hay una única forma de calcularla y por lo general se utiliza
la llamada similitud coseno.

8 “Relatedness” es una métrica que refleja cuán cerca están en el espacio vectorial palabras que están
relacionadas en un contexto más amplio (no necesariamente sinónimos o similares en significado). Por
ejemplo, las palabras “doctor” y “hospital” podŕıan considerarse altamente relacionadas, aunque no sean
sinónimas.
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son obtenidos de la competencia SpRadIE [16], que se realizó en el marco de la Conference
and Labs of the Evaluation Forum 2021 (CLEF 2021) y cuya tarea fue la detección de diez
entidades nombradas (entre ellas entidades anatómicas, ubicaciones, hallazgos cĺınicos, me-
didas, etc.) a partir de textos correspondientes a informes de radioloǵıa. Este corpus cuenta
con 473 informes escritos en español, que ya han sido previamente pre-procesados para
remover datos identificatorios. Estas caracteŕısticas lo hacen ideal para nuestro estudio.
Es importante destacar que estos informes son un subconjunto del corpus que se utilizó
para entrenar los embeddings (aunque se incluyen algunos procesamientos adicionales que
el otro no tiene). Estos datos vienen con formato Brat Standoff 9 que no nos sirve para
entrenar directamente al modelo de reconocimiento de entidades nombradas. Por lo tanto
debemos transformarlo al formato BIO10 o similar, ya que éste es el soportado por las he-
rramientas que utilizaremos. Una vez entrenados los modelos, se llevará el resultado de las
predicciones nuevamente al formato Brat Standoff para poder computar las métricas. Esta
transformación no es trivial ya que este formato permite etiquetar entidades que aparecen
discontinuas en el texto, aśı como también identificar casos donde dos o más entidades se
solapan en un mismo fragmento. Estas dos cosas no son posibles con el formato BIO, por
lo que debemos lidiar con esta pérdida de información de la mejor forma posible. Estos
temas los profundizamos en la sub-sección 4.2.2.

Una vez resuelto el formato de los informes de la tarea objetivo, se debe aplicar a
cada uno la transformación aprendida anteriormente para obtener los embeddings corres-
pondientes. Los mismos luego se utilizan para entrenar el modelo de reconocimiento de
entidades nombradas, al cual evaluamos con las métricas de interés para comparar con los
modelos que participaron en la competencia.

1.4. Contribución

En este trabajo nos centramos en el desarrollo de embeddings, tanto contextuales como
no contextuales, para informes de ecograf́ıas en español. Esto en śı mismo resulta algo
novedoso pues a nuestro conocimiento no hay otro trabajo que haya hecho esto para este
sub-dominio espećıfico en español.

Además con nuestros embeddings logramos mejorar el estado del arte actual para la
tarea de NER sobre el corpus de SpRadIE. Y particularmente esto lo logramos con una
solución basada en un único modelo de deep learning, mientras que las mejores soluciones
publicadas hasta ahora depend́ıan de varios sub-modelos similares al nuestro.

Además, como parte del proceso de desarrollo se llevó adelante una meticulosa anoni-
mización del corpus con el cual se entrenaron los embeddings. Esto posibilita que, con las
debidas autorizaciones, pudiera considerarse la publicación para la comunidad de BioNLP
tanto del corpus como de los embeddings aqúı entrenados.

Por último, planteamos las bases de un marco de evaluación intŕınseca que puede ser
utilizada en forma general en escenarios como el nuestro, en donde no se dispone de un
benchmark adecuado.

9 Formato brat standoff: http://brat.nlplab.org/standoff.html
10 El formato BIO es una convención de etiquetado comúnmente utilizada en el reconocimiento de en-

tidades nombradas (NER). Cada etiqueta consiste en una combinación de un prefijo (B-, I- o O-) y una
categoŕıa de entidad. B- indica el comienzo de una entidad, I- su continuación y O- señala que la palabra
no es parte de ninguna entidad.
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1.5. Organización del trabajo

El presente documento está dividido en seis caṕıtulos. En el caṕıtulo 2 (Marco Teórico)
se desarrollan los conceptos necesarios para profundizar en la comprensión del problema
y de los métodos propuestos. En el caṕıtulo 3 (Antecedentes y revisión de la literatura)
se analizan otros trabajos relacionados a los problemas que nos interesa tratar aqúı. En
el caṕıtulo 4 (Metodoloǵıa) se desarrolla una descripción de las técnicas aplicadas para
la preparación de los datos, el entrenamiento de los embeddings y su evaluación. En el
caṕıtulo 5 (Resultados de Evaluación Extŕınseca) se presentan los resultados obtenidos
en la experimentación extŕınseca para cada uno de los métodos utilizados y se realiza
un análisis de los mismos. En el caṕıtulo 6 (Análisis cualitativo de los embeddings) se
describen algunos hallazgos obtenidos durante la exploración cualitativa de los embeddings
generados. Por último, en el Caṕıtulo 7 (Conclusiones y trabajo futuro) se desarrollan las
conclusiones obtenidas en este trabajo y se plantean posibles trabajos futuros.
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2. MARCO TEÓRICO

En este caṕıtulo se introducen algunos conceptos fundamentales para la comprensión
de los temas tratados en este trabajo.

2.1. Tokenización y vocabulario

La tokenización es la tarea de segmentar texto en unidades más pequeñas, a las que
denominamos tokens. Estos tokens pueden ser oraciones, palabras individuales o sub-
unidades más pequeñas, como caracteres o sub-palabras (del inglés sub-word, un fragmento
de la palabra). En algunos casos incluso se segmenta al nivel de los bytes que componen
los caracteres de una palabra [65].

La tokenización es el primer paso para descomponer el texto en elementos discretos y
es necesaria en casi todos los métodos y tareas de NLP, desde los más clásicas hasta el
estado del arte.

Estos tokens se utilizan para conformar el vocabulario, que es simplemente un conjunto
de tokens distintos en un corpus (notar que no necesariamente son todos los posibles
tokens distintos). Los modelos de Machine Learning empleados en NLP solo pueden
procesar tokens que pertenezcan a su vocabulario asociado (que fue definido al momento
del entrenamiento). Cualquier token por fuera del vocabulario (OOV por out of vocabulary)
que se quiera procesar generará un error.

Las principales técnicas que existen para tokenizar un texto son:

Tokenización en palabras: T́ıpicamente los tokens se obtienen a partir de considerar
las palabras separadas por espacio o por signos de puntuación. Pueden haber ligeras
variaciones, por ejemplo si se consideran los signos de puntuación como tokens o si
se descartan.

Tokenización en caracteres: Simplemente cada carácter es un token por lo que el
proceso es simple. Los espacios en blanco se pueden modelar con tokens especiales
y los signos de puntuación en general tienen que ser incluidos como tokens también.

Tokenización en sub-palabras: Este es el caso más complejo de los tres, ya que existen
muchas formas en las que una palabra puede subdividirse. Por ejemplo, una opción
seŕıa dividir la palabra en śılabas. Pero también podŕıa dividirse en prefijo, sufijo
y ráız. O incluso simplemente en sub-strings arbitrarios. Más adelante detallamos
algunos métodos que son utilizados por los algoritmos que se desarrollan aqúı.

Notar que cada uno de estos métodos puede generar vocabularios completamente dife-
rentes para un mismo corpus. Todos tienen sus ventajas y desventajas, y en general giran
en torno a tres aspectos principales: capacidad de capturar información, manejo de los
tokens OOV y uso de la memoria. Es importante destacar que el idioma sobre el cual
se quiera trabajar juega un papel fundamental también. Por ejemplo en chino es mucho
más complejo segmentar a nivel de palabras que en español o inglés por las caracteŕısticas
propias del idioma. Además como muestran Li et al. en [40], en chino los caracteres suelen
ser una mejor unidad semántica que las palabras. Por lo tanto, las caracteŕısticas que
presentamos a continuación son pensando en el idioma español.

9
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En general se considera que la segmentación por palabras tiene mayor información
semántica, aunque resulta poco eficiente en el uso de la memoria (el tamaño del vocabulario
puede estar fácilmente en las decenas o cientos de miles) y por su naturaleza es más sensible
a fallar por tokens fuera del vocabulario.

Por su parte la tokenización por caracteres viene a resolver los problemas de la toke-
nización por palabras. El tamaño del vocabulario es mucho más acotado (con 256 tokens
basta para escribir cualquier oración en español si pensamos en el código ASCII) y por
diseño resulta casi imposible encontrarse un token fuera del vocabulario. Como contrapar-
tida, generalmente el carácter como token no transporta ninguna semántica en śı mismo.

Lo tokenización por sub-palabra busca ser un punto intermedio entre los casos ante-
riores. En general los distintos métodos buscan optimizar la relación entre cantidad de
tokens que componen el vocabulario y su granularidad. De esta forma se consiguen tokens
con mayor carga semántica que los caracteres, aun manteniendo acotado el tamaño del
vocabulario.

A continuación, explicamos resumidamente el funcionamiento de dos métodos de to-
kenización por sub-palabra que son utilizados por los modelos de lenguaje (ver definición
en la sección 2.4) que utilizamos en este trabajo.

2.1.1. Byte-Pair Encoding y Word Piece

Los métodos conocidos como Byte-Pair Encoding (BPE) y Word Piece (WP) son
dos de los más conocidos y utilizados en la actualidad. Ambos tienen un funcionamiento
muy similar, razón por la cual los explicamos en conjunto aclarando en los lugares donde
difieren.

BPE es originalmente un algoritmo de compresión que fue adaptado para tokenización
por Sennrich, Haddow y Birch [58]. Su objetivo es reducir la cantidad de tokens necesarios
para representar un corpus grande de texto. BPE comienza con un vocabulario inicial que
incluye todos los caracteres individuales presentes en el corpus. Luego, en cada iteración, se
encuentran y fusionan los pares de caracteres adyacentes más frecuentes en el texto. Este
proceso se repite hasta alcanzar un número predefinido de tokens en el vocabulario o hasta
que no queden pares frecuentes para fusionar. De esta manera, BPE crea tokens de longitud
variable que pueden ser tan cortos como un carácter individual o tan largos como una
palabra, permitiendo una representación compacta del texto que reduce la probabilidad
de que se encuentren tokens por fuera del vocabulario.

WP surge originalmente del campo del reconocimiento de voz y es usado en NLP por
primera vez por Wu et al. en [67]. El funcionamiento es esencialmente el mismo que el de
BPE, siendo la principal diferencia el criterio escogido para unificar dos tokens: en lugar
de utilizar el criterio de “par más frecuente” se utiliza el par que maximiza la siguiente
ecuación:

frec ponderada =
frec(token1, token2)

frec(token1)× frec(token2)

en donde frec es la frecuencia (cantidad de ocurrencias) de un token o de un par
de tokens. Una interpretación probabiĺıstica de esta ecuación puede encontrarse en [67].
Intuitivamente, podemos pensarlo como que estamos evitando favorecer combinaciones
solo porque dos tokens son muy frecuentes por separado.
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2.2. Reconocimiento de Entidades Nombradas

El reconocimiento de entidades nombradas (NER, por sus siglas en inglés) es una ta-
rea de extracción de información1, cuyo objetivo es reconocer y clasificar porciones del
texto que corresponden a categoŕıas predefinidas (entidades nombradas). Estas categoŕıas
dependerán del dominio del problema que se busca resolver. En el contexto médico, al-
gunas categoŕıas comunes incluyen nombres de estructuras anatómicas, hallazgos cĺınicos,
procedimientos médicos y valores de medición.

Por ejemplo, dada la siguiente oración extráıda de un informe de ecograf́ıa:

Ejemplo 2.2.1. “Ambos riñones de estructura conservada.”

Un sistema de NER podŕıa identificar y clasificar las entidades de la siguiente manera:

Ejemplo 2.2.2. Ambos riñones [ANATOMICAL ENTITY] de estructura conservada
[FINDING].

En este ejemplo, el modelo de NER ha identificado correctamente:

Ambos riñones como una [ANATOMICAL ENTITY] (estructura anatómica).

estructura conservada como un [FINDING] (hallazgo cĺınico).

Este proceso de identificación y clasificación permite a los sistemas de procesamiento
del lenguaje extraer información estructurada a partir de datos textuales no estructurados,
lo que podŕıa facilitar tareas como la búsqueda de información relevante para los médicos,
la generación de resúmenes cĺınicos y la asistencia en toma de decisiones.

La tarea de NER es de tipo supervisado, lo que significa que requerimos un conjunto
de ejemplos etiquetado con los que esperamos que el modelo de aprendizaje automático
aprenda. En el contexto de extracción de la información suele usarse el término anotación
para referirse a tales etiquetas. Pustejovsky y Stubbs definen las anotaciones como “cual-
quier etiqueta de metadatos utilizada para marcar elementos del conjunto de datos” [54].
Como bien señalan en su trabajo, es fundamental que tales anotaciones sean precisas y
relevantes para la tarea que se espera resolver con Aprendizaje Automático.

2.3. Embeddings

En esta sección profundizamos en el concepto central de esta tesis: los embeddings,
que no son otra cosa más que una representación vectorial de las palabras. Es decir que a
cada palabra de un corpus se le asigna un respectivo vector dentro de un espacio vectorial
(generalmente euclidiano). En realidad en un sentido estricto los embeddings no se generan
necesariamente sobre palabras sino sobre un vocabulario de tokens, que como hemos visto
pueden ser palabras pero también caracteres o sub-palabras. Por simplicidad en lo que
sigue de esta sección asumiremos que siempre hablamos de embeddings de palabras (word
embeddings) salvo que se aclare lo contrario.

1 Las tareas de extracción de información son aquellas que se refieren al proceso de identificar y extraer
automáticamente información estructurada y significativa a partir de texto no estructurado. El objetivo
principal de la extracción de información es convertir el texto en una forma que sea más fácil de procesar
e interpretar por las computadoras.
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Existen diversas técnicas para realizar esta asignación de vectores (de las cuales comen-
taremos algunas más adelante) pero todas se basan en intentar capturar la distribución
de las palabras en los textos analizados, de tal forma que palabras que tienden a aparecer
en contextos similares (es decir, que co-ocurren frecuentemente con las mismas palabras)
estén más cerca entre si en el espacio, respecto de otras palabras con las que la probabilidad
de aparecer en el mismo contexto sea menor.

Como menciona Jurafsky en su libro [35], la utilidad de tales representaciones surge
de la llamada distributional hypothesis formulada por distintos lingüistas en los años ’50.
Dicha hipótesis postula que palabras con significados parecidos tienden a aparecer en
contextos similares, es decir tienden a co-ocurrir con las mismas palabras. Como una
consecuencia de esto, si los embeddings logran capturar adecuadamente la distribución de
las palabras en el corpus, entonces se espera también que logre capturar la similitud entre
las mismas. Palabras con representaciones más cercanas entre śı debeŕıan tener semánticas
más similares.

¿Pero qué significa en este contexto que dos palabras tengan semánticas “similares”?
A continuación resumimos la explicación dada por Jurafsky en su libro [35]. Palabras que
son sinónimos (es decir, que son substituibles una por otra en una oración sin alterar
las condiciones bajo las cuales la oración es verdadera) pueden considerarse naturalmente
similares, sin embargo la similitud es una relación más débil que la relación de sinonimia.
“Perro” y “gato” obviamente no son sinónimos pero se pueden considerar similares pues
ambos son animales que además comparten ciertas caracteŕısticas como ser mamı́feros
o domesticables. Además de la similaridad, existe otro tipo de relación entre palabras
que suele ser interesante desde la perspectiva de la semántica vectorial: la relatedness (o
asociación). “Taza” y “café” no son cosas similares pero śı están asociados pues suelen
participar conjuntamente en los mismos eventos. Muchas veces esta asociación se da por
pertenencia a un mismo campo semántico: palabras como “médico”, “riñon”, “ecograf́ıa”
y “hospital” pertenecen al campo cĺınico.

Lograr representaciones del texto que puedan capturar este tipo de relaciones es va-
lioso en śı mismo. Sin embargo, hay una motivación adicional que es fundamental para
el avance del área de NLP: los embeddings permiten aprender de forma automática una
representación conveniente para alimentar modelos para diversidad de tareas supervisadas
y no-supervisadas, en lugar de tener que realizar una ingenieŕıa de caracteŕısticas (fea-
ture engineering) compleja. Previamente los mejores resultados en las tareas de NLP se
obteńıan a través de codificar manualmente caracteŕısticas que capturaban propiedades
espećıficas del texto, usualmente superficiales o que integraban cierto conocimiento propio
del dominio, lo que (además de requerir tiempo y esfuerzo) las volv́ıa dif́ıcilmente reuti-
lizables entre tareas, dominios e idiomas. A partir del uso de embeddings esta tarea se
simplifica y se vuelve más común la reutilización, como señalan Habibi et al. en [30] para
la tarea de reconocimiento de entidades nombradas en texto biomédico. El motivo de esta
simplificación es que los métodos para generar embeddings caen en la categoŕıa de métodos
auto-supervisados (o self-supervised en inglés): se obtienen a partir de resolver problemas
esencialmente supervisados (como clasificación o predicción de palabra siguiente en una
oración) pero sin la necesidad de recibir un etiquetado previo, pues las “etiquetas” se
obtienen del texto mismo en forma automática.

Pueden establecerse dos divisiones principales para los métodos de generación de em-
beddings. Según la forma en la que se hace la asignación de los vectores pueden dividirse
en estáticos o contextualizados. En el primer caso, la representación solo depende de la
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palabra que se quiere representar (por ejemplo “banco”); en el segundo, depende no solo
de la palabra sino también del contexto en el que se encuentra (por ejemplo “banco” en
la oración “Me senté en el banco de la plaza” no va a tener la misma representación que
en la oración “Fui a hacer un depósito al banco”).

Otra división importante es la de embeddings ralos y densos. El primer caso usa vectores
con longitudes en el orden de los miles o decenas de miles (por lo general, cada dimensión
corresponde a un token del vocabulario) y donde la gran mayoŕıa de los valores de cada
vector suele ser cero. Por su parte las representaciones densas tienen un largo acotado,
que suele oscilar entre 50 y 1000 dimensiones (según menciona Jurafsky [35]) y se espera
que tenga pocos valores nulos.

Evolutivamente, podemos decir que el progreso de los embeddings ha seguido este
recorrido:

Esparsos y estáticos: matrices de co-ocurrencias, PPMI, TF-IDF

Densos y estáticos: Word2Vec, GloVe, FastText

Densos y contextuales: ElMo, BERT, GPT

La primer categoŕıa si bien tiene gran importancia histórica y teórica no es el foco de
esta tesis debido a que las representaciones ralas en la práctica se han visto superadas por
las densas.

Más adelante en esta sección profundizaremos sobre las representaciones densas, tanto
estáticas como contextualizadas. Notar que nos enfocaremos particularmente en los mo-
delos que son usados en este trabajo, dejando de lado muchos modelos que son de gran
importancia histórica como Word2Vec [43].

Hay también otra categorización muy importante cuando hablamos de embeddings y
que resulta ortogonal a las anteriores: la granularidad del token que se embebe. En general
los casos t́ıpicos son los mismos que mencionamos cuando hablamos de tokenización en la
Sección 2.1: por palabra, por carácter y por sub-palabra. La elección de la granularidad del
token trae consigo las ventajas y desventajas comentadas en dicha sección. Por ejemplo,
los embeddings por palabra sufren del problema de no poder vectorizar tokens OOV (del
inglés out-of-vocabulary) y de problemas de escalamiento cuando el vocabulario resulta
muy grande. Por su parte aquellos que se basan en caracteres solucionan ambos problemas,
pero introducen la cuestión de que los caracteres por śı solos carecen de significado. Por
ese motivo solo son utilizados con embeddings contextuales. Por último, los embeddings de
sub-palabras buscan ser un punto medio.

Vale notar que la granularidad del token usado limita la unidad más pequeña de texto
que puede embeberse pero no aśı la más grande. Dicho de otra forma: a partir de, por
ejemplo, embeddings de caracteres pueden formarse embeddings de palabras, de oraciones
o incluso de documentos completos. Esto se logra a partir de la combinación de embeddings
que puede realizarse de diferentes formas, como por ejemplo calculando el promedio entre
vectores. De esta forma es posible hablar de Word Embeddings aún si el modelo usado fue
entrenado con un vocabulario de caracteres o sub-palabras.

Hemos hablado entonces de qué son los embeddings y los distintos tipos que existen. En
lo que resta de esta sub-sección veremos el caso concreto de FastText (un tipo de embedding
denso y estático) y luego nos adentraremos a responder una pregunta fundamental ¿Cómo
se puede evaluar la calidad o utilidad de estas representaciones? No cubriremos en esta
sección el caso de los embeddings contextuales ya que para esto resulta necesario primero
introducir el concepto de modelos de lenguaje, que serán presentados en la sección 2.4.
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2.3.1. FastText

FastText es un método para generar word embeddings estáticos introducido por Bo-
janowski et al. en [7]. Su funcionamiento es similar al algoritmo de Word2Vec [43] ya
que utiliza los mismos algoritmos para su implementación. La principal diferencia que
introduce FastText es que antes de generar los embeddings realiza un pre-procesamiento
del vocabulario para generar un vocabulario interno que incluye información de las sub-
palabras. Más espećıficamente genera n-gramas2 a partir de las palabras del vocabulario
inicial. El largo de los n-gramas a utilizar es configurable al momento de entrenar, siendo
la configuración t́ıpica un mı́nimo de 3-gramas y un máximo de 6-gramas.

Por ejemplo, si tuviéramos la palabra “riñones” y configuráramos el mı́nimo y máximo
de los n-gramas en 5, entonces tendŕıamos los siguientes 5-gramas en nuestro vocabu-
lario: <ri~no, ri~non, i~none, ~nones, ones>. Adicionalmente también se agrega el token
<ri~nones>. Los śımbolos < y > son caracteres especiales que delimitan en principio y fin
de una palabra y se agregan como forma de desambiguar. Por ejemplo, si en el vocabulario
también tuviéramos la palabra “riñon” entonces vamos a tener un nuevo token <ri~non>.
Este token es considerado distinto al 5-grama ri~non que resulta de la palabra “riñones”.

La importancia de esta decisión es que permite que FastText pueda generar embeddings
para palabras que no estaban en su vocabulario de entrenamiento, siempre y cuando dicha
palabra pueda descomponerse en n-gramas que śı fueron vistos durante el entrenamiento.
Esto le da una mayor versatilidad respecto a Word2Vec y es especialmente útil en situa-
ciones donde es común que haya typos o la forma de escritura resulta irregular (como es
el caso de nuestros informes cĺınicos).

2.3.2. Evaluación de embeddings

Existen a grandes rasgos dos tipos de evaluaciones posibles para los embeddings:
extŕınseca e intŕınseca.

La evaluación extŕınseca es la que se obtiene al aplicar los embeddings a una tarea
espećıfica de NLP. Por ejemplo: en una tarea concreta de NER o de análisis de sentimientos.
En general se considera la forma de evaluación más importante (ver sección 6.12 de [35])
ya que usualmente el fin último de los embeddings es mejorar el desempeño de otras tareas.
Sin embargo es importante notar que un embedding puede ser mejor para una tarea o un
modelo puntual pero no para otras, por lo que no es tan simple generalizar los resultados
relativos al desempeño de un embedding en śı mismo.

Por su parte, la evaluación intŕınseca también es de utilidad. Su objetivo es tratar de
cuantificar cuán bien los embeddings propuestos capturan relaciones semánticas dentro del
texto, siendo la más común la similitud. La manera clásica de medir esto entre vectores
es usando la llama similitud coseno que se define como el coseno del ángulo formado
entre los vectores. Si bien el ángulo no es conocido, existe una forma de calcular esto
mismo en función del producto escalar de los vectores y sus respectivas magnitudes. Más
formalmente, si v y u son vectores de dimensión n y θ es el ángulo entre ellos, entonces
sabemos por propiedad del producto escalar que

cos(θ) =
v.u

||v||.||u||
(2.1)

2 Un n-grama es una secuencia contigua de n caracteres (o palabras) extráıdos de un texto. Por ejemplo,
en la palabra “gato”, los bigramas (n = 2) seŕıan “ga”, “at”, “to”.
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Notemos que por definición del coseno el valor está siempre en el rango [-1, 1]. El
resultado es 1 si los vectores tienen misma dirección y sentido, 0 si son ortogonales, y
-1 si tienen igual dirección pero sentido opuesto. Por lo que tokens con significados muy
similares se espera que tengan valores cercanos a 1.

Otras relaciones que a veces se tratan capturar con la semántica vectorial son la related-
ness (como se definió al principio de la sección) o las analoǵıas. Un ejemplo paradigmático
de estas últimas es el que se da en la publicación original de Word2Vec [43], donde se
muestra cómo los vectores cumplen que

V ector(Rey)− V ector(Hombre) + V ector(Mujer) ∼ V ector(Reina)

mostrando que pueden capturar la analoǵıa “Rey es a hombre, reina es a mujer”.
Tales relaciones si bien resultan de gran interés presentan dificultades no menores

para su cómputo. La principal radica en que para computar tanto similitud, relatedness
o analoǵıas se requiere tener conjuntos de datos cuidadosamente armados que incluyan
ejemplos con tales relaciones, t́ıpicamente conocidos como gold standards. En el caso de
embeddings de dominio de uso general y especialmente en el idioma inglés donde el mayor
esfuerzo ha sido puesto en los últimos años, esto puede no ser tan desafiante. Por ejemplo,
WordSim [24] y SimLex [32] son dos recursos ampliamente usados que contienen relaciones
de similitud y relatedness. Sin embargo tales gold standards raramente están disponibles
para dominios mucho más espećıficos (donde incluso puede ser dif́ıcil determinar relacio-
nes semánticas sin un especialista del dominio) o en diversidad de idiomas distintos del
inglés. Esto dificulta realizar este tipo de análisis a nivel cuantitativo, quedando en prin-
cipio la alternativa de hacer un análisis a nivel cualitativo, que igualmente requiere cierto
conocimiento del dominio.

2.4. Modelos de Lenguaje

Un Modelo de Lenguaje o Language Model (LM) es un modelo probabiĺıstico que
aprende la distribución de probabilidad de secuencias de palabras en un lenguaje. Su
objetivo principal es predecir la siguiente palabra en una oración dada una secuencia
previa, asignando probabilidades a diferentes posibles continuaciones. Formalmente, dado
un conjunto de palabras w1, w2, . . . , wn, el LM estima P (wn|w1, w2, . . . , wn−1). Esta misma
definición se puede generalizar para tokens en lugar de palabras.

Los primeros modelos de lenguaje datan de la década de 1980 como señala Rosenfeld
en [57]. La evolución de tales modelos ha sido notable, siendo parte esencial en el desa-
rrollo de tareas como resumen de texto, traducción automática, generación automática de
contenido, agentes conversacionales, entre otras.

Más adelante en este caṕıtulo se introducen las dos técnicas que más impacto han
tenido en los últimos años: arquitecturas de redes neuronales basadas en Long Short-Term
Memory (LSTM) y arquitecturas basadas en Transformers.

2.4.1. Masked Language Model

Los Masked Language Model (MLM) son una variante de los modelos de lenguaje
diseñada para el aprendizaje auto-supervisado, introducida por Devlin et al. en el modelo
BERT [19]. A diferencia de los LM tradicionales que predicen la siguiente palabra en una
secuencia, los MLM ocultan (mask) aleatoriamente algunas palabras dentro del texto de
entrada y entrenan al modelo para predecirlas a partir del contexto.
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Por ejemplo, dada la oración:

Ejemplo 2.4.1. “El paciente presenta un [MASK] en el h́ıgado.”

El modelo debe inferir que la palabra faltante podŕıa ser “tumor”, “quiste” u otra
entidad médica plausible según el contexto. Este enfoque permite a los modelos capturar
representaciones más ricas del lenguaje, ya que consideran información tanto del contexto
anterior como posterior a la palabra enmascarada.

Los MLM han demostrado ser altamente efectivos para el entrenamiento de modelos
de lenguaje en tareas de comprensión, ya que generan representaciones profundas del
significado de las palabras en diferentes contextos. Modelos como BERT, RoBERTa y sus
variantes utilizan esta estrategia para aprender representaciones generalizables a múltiples
tareas de NLP. Más adelante en este caṕıtulo, ahondamos en el funcionamiento de estos
modelos.

2.4.2. Obtención de embeddings a partir de un LM

A diferencia de los métodos de generación de embeddings estáticos, que se enfocan en
extraer estas representaciones para poder ser usadas luego por otras tareas, en el caso de
los métodos de embeddings contextuales el objetivo es t́ıpicamente entrenar un modelo de
lenguaje (LM), utilizando alguna arquitectura de redes neuronales artificales. Este modelo
es el que se ejecutará sobre el texto que se quiera embeber, sin embargo cómo hemos visto
más arriba el output de un LM no es un embedding en śı mismo, sino una distribución de
probabilidades sobre el vocabulario.

En estos casos, la forma clásica de obtener embeddings para un token, palabra, oración,
o informe, es quedarnos con el estado oculto (hidden state) de la capa anterior a la capa de
salida (head). Dicho de otra forma, nos quedamos con el output de la última capa oculta
del modelo. Por ejemplo, en el caso de la arquitectura BERT (que se explica más adelante
en este caṕıtulo) esta capa posee 768 unidades, por lo que el resultado termina siendo un
vector con esa cantidad de dimensiones. Una aclaración importante es que si bien quedarse
con el último estado oculto es una decisión frecuente en la literatura, no es la única posible.
Otra estrategia común es la de tomar las últimas N capas ocultas y combinar cada estado
a través de concatenación o promedio. De hecho en el paper fundacional de BERT [19] los
autores hacen un experimento en el que extraen embeddings para entrenar un modelo de
NER, y hallan que la mejor combinación la obtienen concatenando los resultados de las
últimas cuatro capas ocultas. Este resultado, sin embargo, no significa que necesariamente
sea siempre la mejor configuración posible.

2.5. Arquitecturas LSTM

La arquitectura Long Short-Term Memory (LSTM) [33] es un tipo de Red Neuronal
Recurrente (RNN) que introduce el concepto de memoria de corto plazo para intentar
superar las principales dificultades de las arquitecturas recurrentes. Para entender un poco
mejor esto, primero es necesario introducir el concepto de dependencias de largo plazo en
una secuencia.

Tomemos como ejemplo el siguiente fragmento de texto: “Juana sintió hambre y decidió
ir a su restaurante favorito. Una vez alĺı, ella pidió el plato del d́ıa”. Notar que en la segunda
oración estamos usando las palabras “ella” y “alĺı” para aludir indirectamente a Juana y
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al restaurante (o incluso más, al “restaurante favorito de Juana”). Este tipo de relación
indirecta donde la carga semántica de una palabra (o incluso una oración entera) depende
de información previa es lo que se conoce como dependencias de largo plazo (long-term
dependencies en inglés). Los humanos podemos realizar la asociación anterior dado que
tenemos una memoria de corto plazo que nos permite recordar información clave de la
primera oración al momento de leer la segunda.

Las RNN básicas luchan con este tipo de dependencias ya que la única forma que
tienen de poder aprenderlas es con estados internos lo suficientemente largos como para
mantener al mismo tiempo información de los términos involucrados. Por lo tanto, cuanto
más distanciadas se encuentran en el texto las palabras relacionadas, más largo debe ser
el estado que se mantiene. El problema que esto presenta es que este tipo de arquitectura
no escala bien al momento de entrenar por dos fenómenos ampliamente estudiados en el
área de Deep Learning: vanishing gradient y exploding gradient [6]. No profundizamos
aqúı en los detalles, pero básicamente consisten en limitaciones propias del algoritmo de
optimización utilizado.

Las LSTM presentaron una respuesta a este problema introduciendo el concepto de
unidades de memoria (referidas usualmente como unidades (o celdas) LSTM). Estas com-
ponentes tienen la capacidad de “aprender selectivamente” información del texto procesado
hasta el momento, por lo que no es necesario mantener estados internos tan grandes para
preservar dependencias de largo plazo. Básicamente la memoria actúa como un resumen
de lo visto hasta el momento, y este resumen se traduce en un estado interno de la celda
que no es otra cosa que un vector. El motivo por el que puede aprender selectivamente
que cosas mantener de los estados pasados y los nuevos es que tiene un mecanismo de tres
“compuertas” (gates): una que indica cuánto aprender del elemento actual de la secuencia
(input gate), otra que indica cuánto olvidar del estado anterior de la propia unidad de me-
moria (forget gate), y una tercera que a partir del nuevo estado interno genera el output
de la unidad (output gate). Este diseño de compuertas y estado interno puede verse en la
Figura 2.1.

Los parámetros de estas tres compuertas son optimizados durante el proceso de entre-
namiento junto con el resto de los pesos del modelo, con garant́ıas de convergencia mucho
mejores que las de las RNN clásicas. Sin embargo, cabe mencionar que a pesar de esta
mejora las LSTM igualmente lidian con el problema del vanishing gradient, solo que con
una tolerancia mucho mayor sobre el largo de las secuencias.

Una red neuronal con arquitectura LSTM es simplemente una red neuronal recurrente
en la cuál las unidades clásicas utilizadas son reemplazadas por celdas LSTM. Sigue siendo
recurrente en el sentido que se utiliza tanto el input del paso actual como el output del
paso anterior, pero se agrega una recurrencia interna a nivel de las celdas LSTM. Más
detalles de esto pueden encontrarse en el libro Deep Learning [27].

Una evolución de las redes LSTM son las llamadas BiLSTM. Este tipo de arquitectura
surge de notar el hecho que muchas veces la semántica de una palabra depende fuertemente
de otras que aparecen después en la oración. En estos casos una LSTM que recorre la
secuencia en sentido inverso puede ser más adecuada. Las redes BiLSTM son simplemente
el resultado de combinar dos LSTMs: una que recorre la secuencia de inicio a fin (forward)
y otra que va del final hacia el principio (backward). El output se genera a partir de realizar
una ponderación entre ambos resultados.
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Fig. 2.1: Arquitectura interna de una celda (unidad) de memoria de la arquitectura LSTM. Puede
observarse de que manera están conectados el input actual de la secuencia, el estado
interno de la unidad de memoria, y las tres compuertas: input gate, forget gate y output
gate. Notar el self-loop que es la conexión que permite reutilizar el estado interno del paso
anterior como parte del cálculo del estado interno actual (ponderado por la forget gate).
Esta imagen fue tomada del libreo Deep Learning [27]
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Fig. 2.2: Imagen tomada del paper original de Flair [2]. Se ilustra en este caso el proceso para
obtener el embedding de la palabra “Washington” en el contexto de esta oración. Por
un lado se ejecuta el modelo forward desde el comienzo de la oración hasta el último
carácter de la palabra deseada (en este caso “n”) y nos quedamos con el último estado
interno correspondiente a procesar este carácter (es decir, un vector de 2048 dimensiones).
Análogamente, se ejecuta el modelo backward desde el final hasta el primer carácter de
la palabra (en este caso “W”) y nuevamente nos quedamos con el último estado interno
generado. Debido a la capacidad de la LSTM de conservar información de los estados vistos
anteriormente, basta con quedarse con estos dos estados internos para tener información
de la palabra y todo su contexto.

2.5.1. Flair

Flair es una arquitectura puntual de BiLSTM para modelos de lenguaje que fue intro-
ducida por Akbik, Blythe y Vollgraf [2]. Entre sus principales caracteŕısticas se encuentran
que utiliza tokenización por caracteres (lo que le da mayor robustez frente a palabras por
fuera del vocabulario de entrenamiento) y que se entrenan dos modelos de lenguaje inde-
pendientes con 2048 unidades de LSTM cada uno: uno forward y otro backward.

Esta arquitectura fue pensada desde el principio como una forma de extraer word
embeddings contextuales para tareas de anotación de secuencias (como por ejemplo, NER).
Notar que si bien los modelos procesan la secuencia a nivel de sus caracteres, el objetivo
es generar embeddings por palabra. La forma en la que se realiza esto es la que se describe
en la figura 2.2. El resultado consiste en un vector de 4096 dimensiones que contiene
información del contexto anterior y posterior de la palabra en la oración.

2.6. Arquitecturas de Transformers

Los Transformers representan una clase de arquitecturas de modelos de aprendizaje
profundo que han emergido como un componente esencial en numerosas aplicaciones de
NLP. Fueron introducidos por Vaswani et al. [64], donde se introduce el componente clave
de esta arquitectura: el mecanismo de auto-atención (self-attention en el original) como
forma de reemplazar el uso de redes neuronales recurrentes. Las RNN si bien son arqui-
tecturas muy poderosas para trabajar con datos secuenciales, presentan grandes desaf́ıos
para la convergencia de su entrenamiento, como muestran Bengio, Simard y Frasconi [6].
Además, las arquitecturas basadas en RNN son intŕınsecamente más dif́ıciles de paralelizar
(por su naturaleza secuencial) y de escalar para mayores volúmenes de datos. Gracias al
uso de las capas de auto-atención, los Transformers logran modelar dependencias a largo
plazo en datos secuenciales (y además lo hacen de manera bidireccional) pero manteniendo
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un nivel de paralelismo similar al de las redes neuronales no-secuenciales.

Fig. 2.3: Imagen tomada y adaptada de [64], ilustra la arquitectura básica de un Transformer. Lo
recuadrado en rojo (a la izquierda) es el encoder, mientras que lo recuadrado en azul
(derecha) es el decoder.

La arquitectura de los Transformers consta principalmente de dos partes fundamenta-
les: el codificador y el decodificador. En el contexto de tareas del tipo secuencia-a-secuencia
(por ejemplo, la traducción automática) el codificador toma una secuencia de entrada (co-
mo una oración en inglés) y la convierte en una representación numérica (vectorial). Por
su parte, el decodificador utiliza esta representación para generar una secuencia de salida
(por ejemplo, la oración traducida al español).

Este enfoque innovador (fuertemente inspirado por técnicas del campo de Computer
Vision) ha demostrado ser altamente efectivo en una variedad de tareas de NLP, superando
en muchos casos a las arquitecturas basadas en LSTMs. Para comprender mejor a los
Transformers a continuación profundizaremos en algunos detalles técnicos.

2.6.1. Auto-atención

La auto-atención es un componente esencial de los Transformers que permite evaluar la
importancia de cada palabra en una secuencia en función de su contexto. Este mecanismo
opera calculando tres tipos de vectores: Query, Key y Value.

Query (Consulta): Es un vector que representa la palabra de interés, cuya relación
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con otras palabras en la secuencia queremos analizar.

Key (Clave): Es un conjunto de vectores que representan todas las palabras de la
secuencia. Se utilizan en combinación con la Query para determinar la ponderación
de cada palabra de la secuencia respecto a la palabra de interés.

Value (Valor): Es un conjunto de vectores con los que se genera una proyección
lineal a partir de los vectores de entrada (correspondientes a cada palabra de la
secuencia).

Para calcular la atención de una palabra de consulta en relación con las demás palabras,
se realizan productos escalares entre el vector Query y los vectores Key, seguido de la
aplicación de una función de activación3 para obtener los puntajes de atención y luego se
utilizan estos puntajes para ponderar los vectores Value. Finalmente, se suman los valores
ponderados para obtener una representación contextualizada de la palabra de consulta,
que tiene en cuenta su relación con las demás palabras en la secuencia. Esto es lo que
permite a los Transformers capturar las dependencias de largo plazo, sin necesidad de
recurrir a mecanismos de memoria como las LSTM.

Sin embargo el tener un único conjunto de pesos de atención limita la cantidad de
dependencias que el modelo puede mantener. Por eso lo que se termina utilizando real-
mente en las arquitecturas de Transformers es la técnica de Multi-Head Attention que
permite al modelo atender a diferentes partes de la secuencia simultáneamente, utilizando
múltiples cabezas de auto-atención. Estos conjuntos de pesos son independientes entre śı
por lo que su cálculo y optimización puede hacerse en forma paralela, lo que resulta muy
eficiente. Una vez computados los vectores de cada cabeza se realiza un paso de agregación
y normalización para consolidar la información contextual.

2.6.2. Encoder y decoder

El codificador es responsable de procesar la secuencia de entrada y generar una repre-
sentación vectorial de la misma. Para ello, utiliza las capas de atención y transformación
(una capa de tipo fully-connected) para capturar la información contextual y las relaciones
entre las palabras de la secuencia. El codificador evalúa la importancia de cada palabra en
función de su contexto y produce una representación contextualizada de las mismas, que
luego utiliza como entrada para el decodificador.

Por otro lado, el decodificador toma la representación numérica generada por el codifi-
cador y la utiliza para generar la secuencia de salida deseada, como la traducción en otro
idioma. Para lograr esto, el decodificador también utiliza capas de atención y transforma-
ción, pero de manera ligeramente diferente. Además de procesar la información contextual,
el decodificador debe generar una secuencia de salida que sea coherente y tenga sentido
en el contexto del idioma de destino. Por lo tanto, el decodificador realiza un proceso de
generación autoregresiva, donde cada palabra en la secuencia de salida se genera una a la
vez, teniendo en cuenta las palabras generadas anteriormente.

Un punto interesante es que no siempre se utilizan el encoder y el decoder juntos.
Según el tipo de modelo y problema puede usarse solo un encoder, solo el decoder o ambos
(arquitectura encoder-decoder).

3 La función de activación, t́ıpicamente una función softmax, transforma los puntajes de atención en
una distribución de probabilidad, asegurando que la suma de los pesos sea igual a uno. Esto permite una
asignación adecuada de atención a diferentes partes de la secuencia.



22 2. Marco teórico

Los encoders son usados principalmente en tareas de natural language understanding
o information extraction donde el generar una representación interna del lenguaje resulta
fundamental para un buen desempeño de la tarea.

Los decoders (también conocidos como modelos auto-regresivos) son utilizados en pro-
blemas de generación automática de texto. Por ejemplo, sistemas conversacionales (chat-
bots) suelen basarse en este tipo de modelo.

Por último, los encoder-decoder son usados para tareas del tipo sequence-to-sequence,
donde a partir de una secuencia se desea generar otra nueva, no necesariamente de la misma
longitud que la original. El caso paradigmático de esto son los modelos de traducción
automática (machine translation).

En esta tesis nuestro foco está puesto únicamente en los modelos del tipo encoder, ya
que son los que permiten generar embeddings y resolver el tipo de tareas de interés.

2.6.3. Diferencias de los Transformers con las RNNs y LSTMs

La principal diferencia entre los métodos basados en Transformers y aquellos basados
en LSTMs (u otras redes recurrentes) es que los primeros no utilizan recurrencia en ningún
momento. El Transformer procesa todo el input en simultáneo, lo cual mejora significa-
tivamente las propiedades de paralelización de esta arquitectura con respecto a las RNN,
permitiendo entrenar modelos más grandes y de forma más rápida. Otra ventaja de no
hacer uso de recurrencia, es que el algoritmo de optimización tiene mejores propiedades
de convergencia, haciendo que sea más fácil aprender dependencias de largo plazo, aun
cuando se encuentran muy distantes en la secuencia de entrada.

Posiblemente la mayor contra de perder la recurrencia es que se pierde la capacidad
de procesar secuencias de longitud arbitraria. Los encoders están limitados a un tamaño
máximo de la secuencia de entrada. En casos donde se quiere procesar secuencias de
mayor tamaño se debe recurrir a distintas estrategias de particionamiento, lo cual agrega
un punto de complejidad. Sin embargo, en la práctica esta limitación no impide que los
Transformers sean la mejor arquitectura para resolver una larga lista de tareas de NLP.

2.6.4. BERT

BERT (Bidirectional Encoder Representations from Transformers) es un modelo de
lenguaje basado en la arquitectura de Transformers que fue introducido por Devlin et al.
[19]. Su principal contribución es el entrenamiento basado en el enfoque deMasked Langua-
ge Model (MLM) y la predicción de la siguiente oración (Next Sentence Prediction, NSP),
lo que le permite aprender representaciones profundas del lenguaje con una comprensión
más rica del contexto.

A diferencia de los modelos autoregresivos como GPT [8], que procesan texto en una
única dirección (izquierda a derecha), BERT aprovecha un codificador bidireccional. Esto
significa que puede considerar el contexto tanto anterior como posterior a una palabra en
una oración, lo que mejora la captura de dependencias a largo plazo.

El entrenamiento de BERT consiste en dos tareas principales:

Masked Language Model (MLM): Durante el pre-entrenamiento, se ocultan
(mask) aleatoriamente algunas palabras de la entrada y el modelo debe predecirlas
basándose en el contexto circundante. Esto permite que BERT aprenda representa-
ciones más generales y transferibles a diversas tareas de NLP.
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Next Sentence Prediction (NSP): Se entrena al modelo para predecir si, dadas
dos oraciones, la segunda es continuación de la primera o no. Esta tarea ayuda a
mejorar el rendimiento en aplicaciones como la respuesta a preguntas y la inferencia
de texto.

BERT se ha convertido en la base de muchas variantes optimizadas para distintos
dominios y tareas, como ClinicalBERT [4] para textos cĺınicos y BioBERT [39] para datos
biomédicos.

2.6.5. RoBERTa

RoBERTa (Robustly Optimized BERT Pretraining Approach) es una optimización del
modelo BERT presentada por Liu et al. [41]. Su desarrollo se basa en la hipótesis de que
BERT no estaba explotando completamente la capacidad de la arquitectura Transformer
debido a ciertas decisiones en su pre-entrenamiento.

Las principales mejoras introducidas por RoBERTa incluyen:

Más datos y mayor tiempo de entrenamiento: Se entrena con más datos y
durante más tiempo, lo que permite obtener representaciones más robustas.

Eliminación de la tarea de NSP: Se encontró que la predicción de la siguiente
oración no contribúıa significativamente al rendimiento del modelo, por lo que fue
eliminada.

Aumento en el tamaño del batch: Se usan lotes de datos más grandes, lo que
mejora la estabilidad del entrenamiento.

Uso de dinámicas de masking : A diferencia de BERT, donde las palabras en-
mascaradas son fijas para cada ejemplo de entrenamiento, en RoBERTa se utilizan
diferentes máscaras en cada iteración, mejorando la capacidad de generalización del
modelo.

RoBERTa ha demostrado superar a BERT en varias tareas de NLP sin modificar
su arquitectura subyacente, únicamente optimizando su pre-entrenamiento. Al igual que
BERT, ha dado lugar a múltiples versiones especializadas, como BioMed-RoBERTa [28]
para textos biomédicos.

2.7. Transfer Learning

Goodfellow, Bengio y Courville definen, en su libro “Deep Learning”[27], el transfer
learning como “usar lo que fue aprendido en una configuración para mejorar la genera-
lización de otra”. Aqúı configuración es un concepto que incluye no solo el modelo sino
también los datos con los que se cuenta y la tarea espećıfica que se quiere resolver. Por
simplicidad, nos referimos a la primer configuración como fuente o base, y a la segunda
como objetivo.

En general el concepto de transfer learning es muy amplio y las definiciones no son
tan formales. Sin embargo, a grandes rasgos podemos dividir las técnicas en dos grandes
categoŕıas4:

4 Inspirado en el art́ıculo de Medium https://medium.com/@davidfagb/guide-to-transfer-learning-in-
deep-learning-1f685db1fc94
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Extracción de features

Fine-tuning

El caso de extracción de features consiste en usar un modelo pre-entrenado (base) para
extraer features de los datos y pasárselas luego al modelo objetivo. El punto clave aqúı
es que el modelo base y el objetivo suelen ser completamente distintos, solo las features
extráıdas los relacionan. Un ejemplo de esto son justamente los embeddings extráıdos
usando FastText. Para poder generar tales embeddings primero se entrena un modelo de
clasificación de forma auto-supervisada. Sin embargo, luego el modelo se descarta y solo
se utiliza el mapeo entre tokens del vocabulario y vectores (embeddings) dados por la
capa oculta del modelo. En este caso, los embeddings son las features. Lo mismo aplica al
procedimiento para obtener embeddings a partir de modelos de lenguaje, explicado en la
sección 2.4.2.

Fine-tuning es un término ampliamente utilizado en el contexto de Deep Learning
que se puede pensar como cualquier actualización de los pesos de un modelo previamente
entrenado para que el mismo sea útil en una nueva tarea o dominio objetivo. Notar que
en este caso la tarea fuente y objetivo no necesariamente tienen que ser la misma. Un
ejemplo de esto son los transformers como BERT que son entrenados originalmente como
Masked Language Models pero luego pueden ser utilizados para otras tareas como Named
Entity Recognition simplemente cambiando la capa de salida y actualizando los pesos
(entrenando) sobre el conjunto de datos espećıfico. A esta forma más espećıfica de fine-
tuning, en la que tomamos un modelo entrenado para una cierta tarea y lo ajustamos para
que sirva en otra, la llamamos task adaptation.

Otro caso particular de fine-tuning es el de domain adaptation (del inglés, adaptación
al dominio). Es un tipo de transfer learning que se realiza en un escenario donde las tareas
fuente y objetivo son las mismas (transductive transfer learning) pero la distribución de
los datos difiere. Básicamente consiste en tomar el modelo entrenado para la tarea fuente
y continuar entrenándolo sobre los datos de la tarea objetivo. La utilidad está en que los
pesos ya están inicializados de una forma que puede acortar el entrenamiento necesario
sobre la tarea objetivo, siempre y cuando los dominios fuente y objetivo estén relacionados
de alguna forma. Por ejemplo, la tarea fuente puede ser predecir palabras en español de
dominio general y el dominio objetivo trata de predecir palabras en español pero en un
dominio más acotado (como por ejemplo el biomédico).

2.8. Bootstrapping

El Muestreo Bootstrap (o simplemente Bootstraping) es una técnica estad́ıstica que
nos permite estimar la variabilidad de nuestros resultados y la incertidumbre asociada
a nuestras métricas de evaluación. Consiste en generar múltiples muestras de datos a
partir de una sola muestra existente, mediante muestreo con reemplazo. Al promediar
los resultados obtenidos en todas las muestras generadas, obtenemos una estimación más
precisa de las métricas de evaluación y una mejor comprensión de la variabilidad del
rendimiento del modelo. Nos permite calcular los intervalos de confianza5 para tener una
mayor comprensión de la incertidumbre asociada a nuestros resultados. Esto nos ayuda a

5 Un intervalo de confianza es un rango de valores que se utiliza para estimar el parámetro de una
población. Indica la certeza o nivel de confianza con el que se espera que el verdadero valor del parámetro
esté contenido dentro de ese rango.
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poder realizar una evaluación más robusta del modelo y a tomar decisiones más informadas
sobre su capacidad de generalización.

2.9. Reducción de dimensionalidad

La reducción de dimensionalidad en el aprendizaje automático es una técnica utilizada
para reducir el número de variables (features) en un conjunto de datos, manteniendo la
mayor cantidad de información posible. Esto resulta de suma utilidad para simplificar el
entrenamiento de modelos, reduciendo el tiempo de cómputo y evitando la llamada curse
of dimensionality (“maldición de la dimensionalidad”)6, donde demasiadas caracteŕısticas
pueden llevar al overfitting si no se tienen suficientes ejemplos. Otro uso t́ıpico es poder
generar visualizaciones de datos que viven en espacios multi-dimensionales que son impo-
sibles de visualizar a priori pero que gracias a la reducción de dimensionalidad se pueden
proyectar en dos o tres dimensiones.

Dos métodos comunes para la reducción de dimensionalidad son Análisis de Compo-
nentes Principales (PCA, por sus siglas en inglés) [1] y t-Distributed Stochastic Neighbor
Embedding (t-SNE) [63]. A continuación describimos brevemente ambos métodos.

PCA es una técnica lineal que transforma las features originales en un nuevo conjunto
de variables no correlacionadas llamadas componentes principales. Estos componentes se
ordenan según la cantidad de varianza que capturan del conjunto de datos original. Los
primeros componentes principales suelen capturar la mayor parte de la varianza, lo que
permite reducir las dimensiones manteniendo solo estos componentes. PCA se utiliza am-
pliamente para la compresión de datos y la visualización de datos de alta dimensionalidad,
donde la relación de las variables se asemeja a una función lineal.

t-SNE es una técnica no-lineal utilizada principalmente para visualizar datos de al-
ta dimensionalidad. Funciona convirtiendo las similitudes entre puntos en probabilidades
y luego minimizando la divergencia entre estas probabilidades en el espacio de alta di-
mensionalidad y un espacio de menor dimensionalidad. t-SNE es particularmente eficaz
en preservar las estructuras locales, lo que lo convierte en una herramienta efectiva para
visualizar clusters (explicados en la sección siguiente) en conjuntos de datos complejos.

Es importante destacar que tanto PCA como t-SNE son métodos no-supervisados
que solo requieren un conjunto de puntos en el espacio para funcionar, no necesitando
etiquetas. PCA t́ıpicamente tiene mayor variedad de usos, mientras que t-SNE es una
técnica prácticamente diseñada solo para visualización de datos de alta dimensionalidad
con relaciones complejas.

Si bien podŕıa considerarse que t-SNE es una herramienta más poderosa que PCA en
términos de visualización (dado que puede capturar relaciones más complejas, al menos
para datos no lineales) resulta común emplearlas en conjunto cuando la cantidad de datos
y sus dimensiones son muy elevados: primero aplicar PCA sobre los datos para llevarlos a
una dimensionalidad menor (por ejemplo, bajar de 1000 dimensiones a 100) y luego aplicar

6 El término “curse of dimensionality” fue acuñado por Richard Bellman (1961) para referirse a un
fenómeno que ocurre en espacios de alta dimensionalidad, donde a medida que aumenta el número de
features o dimensiones en un conjunto de datos, los datos se vuelven escasos y dispersos en el espacio de
representación. Esto provoca comportamientos que son contraintuitivos respecto del análogo en dos o tres
dimensiones. Las distancias entre puntos de datos se vuelven menos significativas, dificultando tareas como
la clasificación y el clustering. Una explicación mucho más detallada puede encontrarse en el caṕıtulo 2 del
libro “The Elements of Statistical Learning”[31] de Hastie, Tibshirani y Friedman.
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t-SNE sobre el conjunto reducido. El motivo de esto es que ejecutar el algoritmo de t-SNE
es mucho más costoso que PCA, especialmente cuando hay un alto número de ejemplos.

2.10. Clustering

El clustering (del inglés, agrupación) en Machine Learning es una técnica de aprendi-
zaje no-supervisado utilizada para agrupar puntos de datos similares en clusters (cúmulos)
donde los puntos dentro del mismo cluster son más parecidos entre śı que a los de otros
clusters. Esto es útil para descubrir patrones, segmentar datos y reducir la complejidad de
los conjuntos de datos.

Existen diversas estrategias para realizar clustering. En este trabajo consideramos tan-
to métodos basados en partición, como K-Means, aśı como enfoques basados en densidad,
como DBSCAN y HDBSCAN. A continuación, describimos los métodos más relevantes
utilizados.

K-Means es un algoritmo popular de agrupación basado en centroides. Funciona inicia-
lizando un número predefinido de clusters (K) y asignando puntos al centro de cluster más
cercano. El algoritmo actualiza iterativamente los centros de los clusters (centroides) mi-
nimizando la varianza dentro de cada clúster. K-Means es eficiente y funciona bien cuando
se conoce de antemano el número de clusters deseados y los mismos son aproximadamente
esféricos y de tamaño similar.

DBSCAN (Density-Based Spatial Clustering of Applications with Noise) es un algorit-
mo de clustering basado en densidad, diseñado para identificar grupos de datos en espacios
de alta dimensionalidad sin necesidad de especificar el número de clusters de antemano. A
diferencia de K-Means, DBSCAN detecta regiones de alta densidad separadas por regiones
de baja densidad, lo que le permite identificar clusters de forma arbitraria y manejar datos
con ruido de manera más robusta. El algoritmo se basa en dos parámetros principales: ϵ,
que define la distancia máxima entre puntos considerados vecinos, y minPts, que establece
el número mı́nimo de puntos requeridos para que una región sea considerada densa. Un
punto se clasifica como core si tiene al menos minPts vecinos dentro de un radio ϵ; si está
dentro de la vecindad de un core, pero no alcanza el umbral, se considera un punto de
borde; y si no cumple ninguna de estas condiciones, se clasifica como ruido. La principal
ventaja de DBSCAN es su capacidad de encontrar clusters con formas irregulares y su
robustez frente a la presencia de valores at́ıpicos.

HDBSCAN (Hierarchical Density-Based Spatial Clustering of Applications with Noise)
es una extensión jerárquica de DBSCAN que optimiza la selección de parámetros y permite
la detección de clusters con diferentes densidades. A diferencia de DBSCAN, que requiere
un valor fijo de ϵ, HDBSCAN elimina esta dependencia construyendo un árbol de jerarqúıa
de densidades y extrayendo los clusters en función de su estabilidad. Esto hace que el
algoritmo sea más flexible y adecuado para datos con variaciones en la densidad de los
grupos.



3. ANTECEDENTES Y REVISIÓN DE LA LITERATURA

En este caṕıtulo introducimos los trabajos previos que dan origen a los datos utilizados
y parte de los problemas que queremos atacar. También presentamos una revisión más
general de la literatura mostrando diversos trabajos que en algunos aspectos pueden estar
relacionados a lo realizado en esta tesis.

3.1. Antecedentes en idioma inglés

Dentro del contexto de Biomedical NLP (BioNLP), la mayor parte del esfuerzo volca-
do en desarrollar embeddings o language models espećıficos ha sido con corpora en idioma
inglés. Es importante destacar que no existe un único tipo de texto cuando hablamos de
BioNLP. Por ejemplo, pueden encontrarse art́ıculos cient́ıficos, informes de alta médica
(epicrisis), notas tomadas durante la visita del paciente al consultorio, e informes de es-
tudios de imágenes. También libros e incluso noticias period́ısticas. Particularmente, lo
que nos interesa en este trabajo es lo que englobaremos bajo el término “texto cĺınico”:
todo texto que se genera por los profesionales de la salud durante la operatoria cotidiana
de las instituciones cĺınicas y hospitalarias. Esto incluye distintos tipos de textos como
por ejemplo: notas de consultas, historiales cĺınicos, historiales familiares, informes corres-
pondientes a diversos tipos de estudios, epicrisis, entre otros. Uno de los factores que ha
dado un gran impulso al área de BioNLP ha sido la digitalización de todos o varios de
estos textos, facilitando su consumo para distintos tipos de aplicaciones informáticas. Sin
embargo, la mayoŕıa de los embeddings y modelos de lenguaje que son entrenados, como
puede apreciarse en los relevamientos realizados por Kalyan y Sangeetha [36] y Khattak
et al. [38], siguen siendo basados en otros tipos de textos porque la publicación de los infor-
mes cĺınicos digitales no es algo que pueda tomarse a la ligera por cuestiones relacionadas
con la privacidad y confidencialidad de la información que alĺı se muestra.

A pesar de esto, se cuenta con algunos recursos públicos en idioma inglés, siendo
una de las más relevantes, por su tamaño y difusión, la base de datos MIMIC-III [34],
que fue publicada en el año 2016 y contiene información asociada a alrededor de 40 mil
pacientes de unidades de terapia intensiva. Los informes han sido anonimizados y también
cuenta con diversos tipos de anotaciones. Es a partir de esta base que se entrenaron,
por ejemplo, las variantes más conocidas del modelo llamado ClinicalBERT [4], el cual se
observó que captura mejor la terminoloǵıa médica y la gramática espećıfica de los registros
cĺınicos, comparado con modelos generales (como BERT [19]) o modelos entrenados sobre
texto médico no-cĺınico (como BioBERT [39]). Esto lo mostraron también Wang et al.
en su trabajo del 2018 [66]: cuando el objetivo final es analizar texto cĺınico, entrenar
embeddings sobre este mismo tipo de texto conduce a mejores propiedades semánticas
respecto de cuando se entrena usando otras fuentes posibles como art́ıculos cient́ıficos,
noticias o art́ıculos de Wikipedia.

Otro punto importante que señalan Khattak et al. en [38] es la relevancia de tener
conjuntos de datos espećıficamente orientados a hacer evaluaciones intŕınsecas. Este tipo
de evaluación, que se introdujo en la sección 1.3, se realiza con tareas que únicamente están
relacionadas a los embeddings mismos, como por ejemplo calcular similitud y relatedness.
Para esto resulta útil tener conjuntos de datos con pares de palabras que sean similares
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o estén relacionadas, como forma de realizar una evaluación cuantitativa. Se señalan la
existencia de los conjuntos de datos UMNSRS-sim, UMNSRS-rel [50] y MayoSRS [51], que
han sido creados espećıficamente para el dominio médico. Los tres consisten en pares de
conceptos extráıdos del metatesauro UMLS1 (Unified Medical Language System). UMLS
es internacionalmente reconocido y da un marco unificado que integra múltiples termi-
noloǵıas médicas, lo que la hace muy útil en el área de BioNLP. Los pares de conceptos
relacionados fueron anotados manualmente por expertos del dominio cĺınico. Estos con-
juntos de evaluación tienen un enfoque generalista en cuanto a los términos que incluyen,
por lo que pueden no ser lo más adecuado a utilizar cuando se trabaja con un sub-dominio
en particular, como por ejemplo informes de imágenes radiológicas. Adicionalmente estos
benchmarks son previos incluso al desarrollo de Word2Vec, lo cual significa que no fueron
pensados espećıficamente para el trabajo con este tipo de embeddings. Mucho menos se
consideró el caso de los embeddings contextuales, para los cuales una comparación de a
pares puede no ser el mejor enfoque. Más recientemente se publicó un trabajo [37] escrito
por Khan et al. que afrontó el desaf́ıo de construir un conjunto espećıficamente desarro-
llado para el dominio de reportes radiológicos y que considera tanto embeddings estáticos
como contextuales. Tal trabajo sin embargo, es pensando nuevamente en el idioma inglés y
además no hemos encontrado ningún código publicado abiertamente que pueda utilizarse
como punto de partida para hacer algo similar en español.

3.2. Corpus y SpRadIE

En la tesis doctoral de Cotik [18], se presenta un corpus proveniente de un importante
hospital de Argentina. Este corpus consta de aproximadamente 80 mil informes de eco-
graf́ıas escritos en español. Se le realizaron una serie de pre-procesamientos, tanto a nivel
de formato como de anonimización. Dichos informes no poseen anotaciones adicionales.
Este corpus es importante para nuestro trabajo ya que es el que utilizamos para desarrollar
nuestros embeddings. Profundizamos sobre el mismo en la sección 4.1.

En el mismo trabajo y en [15] se trabaja en la anotación de un subconjunto de esos
informes, cuidadosamente seleccionados bajo ciertos criterios para asegurar la representati-
vidad deseada. En total hay 10 tipos de entidades diferentes que fueron anotadas entre ellas
entidades anatómicas, hallazgos cĺınicos, ubicaciones, medidas, y otras que serán detalla-
das en la sección 4.1. Este subconjunto es el que se utiliza como corpus de la competencia
SpRadIE, detallada a continuación.

SpRadIE fue un challenge2 de reconocimiento de entidades nombradas aplicada a in-
formes de ecograf́ıas en español. Se presentó en el contexto del eHealth Evaluation Lab de
la Conference and Labs of the Evaluation Forum 2021 (CLEF 2021), en la categoŕıa de
Multilingual Information Extraction.

En este marco, participaron un total de siete equipos, que trataron de resolver el
problema propuesto con distintos enfoques: EdIE [61], SINAI [42], SWAP [53], CTB [60],
LSI [22], HULAT [25] e IMS [20]. Debido a que SpRadIE y el corpus utilizado para su
desarrollo son centrales en el presente trabajo, resumimos algunos aspectos interesantes
de los esfuerzos realizados por los dos equipos que alcanzaron los mejores resultados del

1 https://www.nlm.nih.gov/research/umls/index.html
2 La palabra “challenge” (del inglés, desaf́ıo) es un término que suele usarse en Machine Learning para

referirse a tareas que son presentadas en formato de competencia, con reglas definidas y un mecanismo
particular de evaluación.
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challenge. La métrica que se utilizó para determinar al ganador fue micro-averaged F1-
Score con match parcial (una explicación de esta métrica puede encontrarse en la sección
4.5).

El equipo EdIE-KnowLab [62] fue el que mejores resultados obtuvo, aunque también
puede considerarse la solución más compleja en términos de la cantidad de modelos usados
internamente. La propuesta se compone de 2 subsistemas (en la versión que resultó gana-
dora): uno es un ensemble de BETOs [11] finetuneados (uno para cada tipo de entidad), y
el otro es un diccionario que mappea tokens a entidades basado en un análisis estad́ıstico
sobre el corpus de entrenamiento (aprovecha repetición de patrones simples). Para el pre-
procesamiento hacen correcciones de ortograf́ıa y gramática. También expanden el span
de algunas etiquetas mal anotadas (por ejemplo, a veces la última letra de una palabra
queda por fuera de la anotación por error). Como puntos de interés, destacamos el enfoque
de tener un BETO por cada tipo de entidad como forma de manejar el problema de so-
lapamiento entre entidades (una misma palabra puede pertenecer a más de una entidad),
aśı como también disminuye los efectos negativos del desbalanceo entre entidades (ciertas
entidades son mucho más comunes que otras como puede verse en la figura 4.1 y esto puede
sesgar al modelo en su aprendizaje). También remarcamos que el mejor resultado de la
competencia haya sido logrado a través del uso de Transformers, que son el estado del
arte actual en un gran número de tareas de NER. Algunas oportunidades de mejora que
identificamos a partir de lo expuesto en esta solución son: mejorar la performance sobre
las categoŕıas Degree y Conditional Temporal (ver sección 4.1.2 para mayor detalle sobre
todas las categoŕıas), aśı como también mantener la buena performance pero bajando la
complejidad del proceso y la solución.

En segundo lugar quedó el equipo LSI UNED [23]. Su arquitectura consiste en dos
BiLSTMs + CRF: una espećıficamente para detectar negaciones, y otra para el resto de
las entidades. Argumentan el uso de BiLSTM en lugar de Transformers, por el tamaño
reducido del corpus de la competencia. A su vez, separan a las anotaciones que no son
negaciones en dos conjuntos: aquellas en las que los solapamientos de entidades son más
comunes (Location, Findings y Abbreviations) y el resto. De esta forma, las anotaciones
distintas de Negations se intentan predecir con una arquitectura basada en 4 BiLSTM
+ CRFs: 3 están dedicados a cada una de las entidades que suelen solaparse, y la ultima
para el resto. Para la capa de entrada usan embeddings pre-entrenados de FastText (uno
generalista y uno de dominio médico pero sin casos de texto cĺınico). Estos embeddings se
combinan con otras caracteŕısticas generadas en forma manual y que codifican condiciones
booleanas como por ejemplo: “empieza en mayúscula”, “termina en punto”, “término
numérico”, “término mayoritariamente numérico”, entre otros. De este aporte destacamos
que a diferencia del equipo anterior aqúı se usa una arquitectura basada en BiLSTM y uso
de embeddings estáticos y aún aśı se obtienen resultados muy cercanos al mejor. También
que nuevamente surge la idea de hacer una segmentación como forma de disminuir el
impacto de las entidades solapadas. Como oportunidades, nuevamente reconocemos la
posibilidad de intentar disminuir la cantidad de componentes (en este caso, además de
varios modelos hay un trabajo manual de definir features para el modelo). Además algo
interesante que mencionan es que no ven una diferencia sensible entre el desempeño de
los embeddings de dominio general y los de dominio médico. Es un interesante punto de
partida para nosotros que queremos abordar esto en mayor profundidad y entender si se
repite con embeddings más espećıficos o de distintas caracteŕısticas.
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3.3. Otros corpora en español

Citando a Neves y Leser [49]: “la falta de gold standards es uno de los principales
cuellos de botella para desarrollar nuevos métodos de text mining”. Gold standard es un
nombre que se suele dar a aquellos corpus que han sido anotados generalmente por un
humano (o al menos corregido por un humano). Estos son recursos fundamentales ya que
no solo sirven para entrenar modelos, sino también para poder tener un benchmark contra
el cual evaluar y realizar comparaciones objetivas entre diversos métodos .

En los últimos años han surgido varios esfuerzos para tratar de ampliar la disponibili-
dad de recursos en idioma español, particularmente en el área de BioNLP (de los cuáles,
SpRadIE es uno más). Realizamos una revisión de varios de estos trabajos con la expec-
tativa de poder encontrar corpora afines a nuestro problema de modo de poder usarlos
para enriquecer (aumentar) nuestros datos de entrenamiento o en segunda instancia para
poder tener un benchmark adicional al momento de evaluar la utilidad de nuestros embed-
dings. No encontramos ningún conjunto que nos convenciera para tales usos. No obstante,
consideramos que es relevante mencionarlos y lo hacemos a continuación.

En la competencia CodiEsp [46], se disponibilizó un corpus con 1000 informes cĺınicos
escritos en español, cubriendo una diversidad de especialidades médicas. Todos estos in-
formes fueron cuidadosamente anotados por especialistas utilizando códigos CIE-103. Si
bien es un recurso muy interesante, en nuestro caso la diferencia de dominios y estilos de
escritura nos hicieron descartarlo para su utilización: estos informes suelen ser más largos
y estar mejor redactados que los de las ecograf́ıas.

Algo similar nos sucede con el corpus utilizado en el challenge de CANTEMIST [45]:
una colección de 1301 historias cĺınicas de pacientes oncológicos. En este caso las ano-
taciones corresponden a morfoloǵıa de neoplasia (tumores), siguiendo la Clasificación In-
ternacional de Enfermedades para Oncoloǵıa en formato electrónico4 (eCIE-O). Aqúı si
bien aparecen algunos estudios de imágenes que podŕıan ser afines a nuestro caso, dado
que cada informe es un historial cĺınico completo, habŕıa que extraer los fragmentos de
interés (únicamente lo referido a las imágenes). Algo interesante para remarcar es que
tanto este corpus como el anterior tienen un origen en común: el Spanish Clinical Case
Corpus (SPACCC)5 que a su vez es un subconjunto de informes tomados de SciELO6 una
biblioteca de uso público con reportes de casos de diversos páıses. Otra competencia que
se basó en los mismos datos fue PharmaCoNER [26], que se enfoca en reconocer entidades
asociadas a distintos fármacos y sustancias. En nuestro caso optamos por no hacer uso de
la herramienta SciELO porque el esfuerzo de revisar y filtrar los informes afines es grande
y aún aśı puede haber diferencias de formato significativas.

A pesar de que no utilizamos directamente ninguno de estos corpora, todos estos tra-
bajos muestran la aplicabilidad de modelos de lenguaje como BERT y Flair entrenados
espećıficamente en el dominio médico en español.

Un corpus en español que śı tiene afinidad con nuestros informes ecográficos es Pad-
Chest [9], que se conforma con informes radiográficos de la zona pectoral y cubre patoloǵıas
asociadas a pulmones y corazón (al igual que parte de nuestros informes). Lamentable-
mente en este caso surge otro problema: los informes publicados se encuentran con varios

3 CIE-10 es una clasificación y codificación internacionalmente reconocida para identificar enfermedades,
trastornos, signos y śıntomas, entre otros hallazgos y circunstancias.

4 https://iris.who.int/bitstream/handle/10665/96612/9789241548496-spa.pdf
5 https://github.com/PlanTL-SANIDAD/SPACCC
6 https://scielo.org/es/
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preprocesamientos que generan una pérdida de información. Entre estos preprocesamien-
tos se encuentra la remoción de stopwords7 y la aplicación de stemming8. Un ejemplo de
informe tomado del corpus es: “nodul proyect lsd 1 4 cm contorn parcial bien defin cit tac
torac . patron intersticial con probabl are panalizacion bibasal probabl fibrosis pulmon .”.
Debido a que nuestra intención es entrenar justamente embeddings que puedan aplicarse
sin necesidad de hacer este tipo de preprocesamientos previos, no nos sirve.

Otro trabajo destacado fue realizado en Chile por Báez et al. [5]. En él introducen el
corpus The Chilean Waiting List Corpus (o ChileanWL), que es una nueva fuente de datos
para el reconocimiento de entidades nombradas cĺınicas en lenguaje español. Este corpus
está compuesto por historias cĺınicas electrónicas anonimizadas de hospitales públicos
chilenos. Son de tipo triage ya que corresponden a una primera evaluación médica antes de
derivar al paciente con un especialista. Este corpus si bien no lo usamos directamente para
entrenar o evaluar, śı lo utilizamos indirectamente: algunos de los modelos de lenguaje a los
que les aplicamos fine-tuning fueron a su vez previamente fine-tuneados con este corpus.

3.4. Otros trabajos relacionados en español

Hasta donde tenemos registro, Soares et al. en su trabajo Medical Word Embeddings
for Spanish: Development and Evaluation [59] desarrollan uno de los primeros embeddings
espećıficamente para el dominio médico en lenguaje español y lo comparan contra em-
beddings de dominio general, en forma tanto extŕınseca como intŕınseca. Para desarrollar
dichos embeddings usan dos fuentes de datos: la base de datos SciELO y un subconjunto
de categoŕıas de Wikipedia (Farmacoloǵıa, Farmacia, Medicina y Bioloǵıa). Por lo tanto,
no se trata de un corpus orientado espećıficamente a texto cĺınico. También cabe destacar
que el trabajo se enfoca en embeddings estáticos (FastText) y no se incluyen pruebas con
embeddings contextuales. Una de las contribuciones más remarcables de este trabajo es
que, para poder realizar la evaluación intŕınseca, realizan la adaptación al español de los
conjuntos de datos UMNSRS-sim, UMNSRS-rel y MayoSRS (todos mencionados en la
sub-sección 3.1). Lamentablemente son recursos que decidimos no utilizar debido a que
se enfocan en terminoloǵıas poco relacionadas con nuestros informes de ecograf́ıas, por lo
que a priori no consideramos que nos permita realizar evaluaciones útiles.

Tal vez el trabajo más similar a lo que tratamos de hacer aqúı es el realizado por
Akhtyamova et al. en [3]. En dicho trabajo los autores exploran también la utilización de
embeddings contextuales para mejorar la performance en un problema de NER en español
del dominio biomédico. En su caso trabajan sobre el corpus de la task de Pharmaco-
NER [26]. Aqúı se hace una comparativa también entre BiLSTM (espećıficamente Flair)
y Transformers, e incluso se evalúa también FastText. Sin embargo, hay algunas diferen-
cias: primero el dominio que utilizan para entrenar es mucho más amplio que el nuestro
(que nos limitamos apenas a informes de ecograf́ıas). Segundo, el enfoque principal del
citado art́ıculo termina estando más puesto en mejorar la tarea de NER en śı que en hacer
una evaluación detallada del aporte de los embeddings. Por último, nosotros realizamos

7 En NLP, se llama stopwords a palabras que se caracterizan por aportar información relevante, gene-
ralmente por tener una frecuencia de ocurrencia muy alta. Un caso t́ıpico son preposiciones.

8 En NLP, se conoce como stemming a una técnica que consiste en eliminar prefijos y sufijos de las
palabras, quedándose únicamente con su ráız. Esto generalmente se realiza como una forma de agrupar
palabras con un significado similar. Por ejemplo, “programación”, “programador” y “programas” pueden
reducirse a la ráız “programa”.
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más pruebas con modelos basados en Transformers, mientras que en el otro trabajo se
descartan relativamente rápido y los resultados expuestos se centran en Flair.



4. METODOLOGÍA

Este caṕıtulo describe los conjuntos de datos utilizados para realizar el trabajo, su
preprocesamiento, los modelos implementados y la metodoloǵıa de evaluación. La organi-
zación que seguimos para esta sección se basa en la que proponen Khattak et al. en su
trabajo “A survey of word embeddings for clinical text” [38] y que ilustramos en la Figura
1.1 del caṕıtulo 1. La misma distingue tres grandes etapas: la preparación de los datos
(tanto para entrenar los embeddings como la tarea objetivo), el entrenamiento de modelos
de embedding y la evaluación de los mismos (tanto extŕınseca como intŕınsecamente).

4.1. Corpora utilizados

A continuación, se describen los dos corpora, principales que tomamos como punto de
partida para desarrollar los modelos y experimentos de este trabajo.

4.1.1. Datos de entrenamiento para los embeddings

Este conjunto de datos consta de 82246 informes de ecograf́ıas de distintas partes del
cuerpo humano, provenientes de uno de los hospitales más importantes de Argentina.
Estos informes hacen referencia a, entre otros, diversos órganos y hallazgos cĺınicos. Por
ejemplo, algunos órganos mencionados son: h́ıgado, riñones, útero, pulmones, aorta, arti-
culaciones, etc. Mientras que cuando mencionamos hallazgos cĺınicos hacemos referencia
a expresiones del tipo: “tamaño aumentado”, “diferenciación corticomedular”, “dilatada”,
“heterogéneo”, entre otras. Los informes en general son relativamente cortos, con un pro-
medio de 8 oraciones por informe y 9 palabras por oración. Un mayor detalle sobre la
composición de este corpus puede encontrarse en la sección 3.2 de [18]. Además en los
ejemplos 1, 2, 3 y 4, presentados a continuación, se muestran algunos informes reales que
pueden hallarse en el corpus.

Ejemplo 1 Informe correspondiente a una ecograf́ıa de glándula tiroidea.

Ambos lobulos tiroideos e itsmo con ecoestructura homogenea. DINESIONES: Lobulo
derecho: longitudinal: 3.8 cm., transverso: 1 cm., anteroposterior: 1 cm.; volumen: 2.3 cc.
Lobulo izquierdo: longitudinal: 3 cm., transverso: 1.2 cm., anteroposterior: 1 cm.; volumen:
1.9 cc. Istmo: 0.2 cm.

Ejemplo 2 Informe correspondiente a una ecograf́ıa abdominal completa con caracteŕısti-
cas normales.

HIGADO: tamano y ecoestructura normal. Arteria hepatica, venas porta y suprahepati-
cas sin alteraciones. VIA BILIAR intra y extrahepatica: no dilatada. VESICULA BILIAR:
alitiasica. Paredes y contenido normal. PANCREAS: tamano y ecoestructura normal. BA-
ZO: tamano y ecoestructura normal. Diametro longitudinal:8 (cm) RETROPERITONEO
VASCULAR: sin alteraciones. No se detectaron adenomegalias. No se observo liquido libre
en cavidad. Ambos rinones de caracteristicas normales.
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Ejemplo 3 Informe correspondiente a una ecograf́ıa de cadera, en la que se evalúa tanto
de forma estática como dinámica la morfoloǵıa y estabilidad de las caderas.

ESTUDIO ESTATICO: Ambas caderas centradas. Cobertura osteocartilaginosa adecuada.
Leve displasia acetabular derecha. Nucleo de osificacion presente en la cadera izquierda. No
se observo osificacion del nucleo femoral derecho. ESTUDIO DINAMICO: Ambas caderas
estables. El examen solicitado no es un metodo de Screening . Esta indicado para estudiar
POBLACIONES DE RIESGO o para corroborar hallazgos clinicos. EL RESULTADO
NORMAL DEL EXAMEN, NO EXIME DEL SEGUIMIENTO CLINICO.

Ejemplo 4 Informe correspondiente a una ecograf́ıa renal.

Ecografia renal pre y postmiccional; RD de menor tamaño que el izquierdo sin dilataciones
y con buena diferenciación. Disminucion de corteza en polos:pieonefritis secuelar?? No se
visualizan ureteres vejiga sin alteraciones RI 11 cm, RD 8.2 cm

Analicemos brevemente algunas caracteŕısticas que pueden apreciarse en estos estos
ejemplos. Una primera observación es que los cuatro informes tratan sobre diferentes partes
del cuerpo y el formato de escritura es diferente entre cada uno. Algo que śı comparten
en general, es la presentación de medidas de longitud y volumen para describir diferentes
partes anatómicas. También comparten el uso de oraciones cortas y sintéticas. En general
no se observa el uso de tildes salvo excepciones (como “diferenciación” en el ejemplo 4).
En el ejemplo 4 se aprecia el uso de abreviaturas como “RD” y “RI” para referirse a
los riñones izquierdo y derecho respectivamente. También en este informe es interesante
la utilización de signos de interrogación (“??”) como forma de expresar incertidumbre
sobre un hallazgo. En el ejemplo 3 se incluye una aclaración genérica sobre cómo deben
interpretarse los resultados y un descargo de responsabilidad.

Este corpus no posee anotaciones de entidades por lo que se utiliza únicamente para
entrenar los embeddings y realizar el fine-tunning de los modelos de lenguaje.

Para facilitar la referencia a estos datos, en lo que resta del informe llamamos a este
corpus ultrasounds-raw-80k.

4.1.2. Datos para la tarea objetivo

Este corpus proviene de la competencia (o challenge) SpRadIE [16] descripta en la sec-
ción 3.2. Consiste en un subconjunto de 474 informes tomados de ultrasounds-raw-80k
que fueron etiquetados manualmente por expertos. Además, para su uso en la competen-
cia, se realizó anonimizado, eliminado de signos diacŕıticos, separación de oraciones con
saltos de ĺınea y remoción de informes con menos de tres palabras. Más detalles sobre los
procesamientos realizados pueden encontrarse en la sección 3 de “Extracción de informa-
ción en informes radiológicos escritos en español” [18]. En dicho trabajo también se explica
cuál fue el criterio de selección del subconjunto de informes a anotar. En Annotation of
Entities and Relations in Spanish Radiology Reports [15] se explica el criterio de anotación
(aunque en la competencia [16] se aclara que hubo una segunda fase para mejorar dichas
anotaciones). El proceso de anotación fue cuidadoso, siguiendo un procedimiento iterativo
de anotación y revisión. Las anotaciones fueron realizadas por dos anotadores (entre ellos,
un estudiante avanzado de medicina) durante tres iteraciones, hasta que se logró una con-
vergencia en el esquema y en el criterio usado por ambos. Para cuantificar la consistencia
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entre las anotaciones en cada ronda, se calculó el inter-annotator agreement1, utilizando
el coeficiente Kappa de Cohen [13].

Los informes se encuentran separados en cuatro particiones como se detalla en la tabla
4.1. Este corpus lo usamos para la evaluación extŕınseca de los embeddings y modelos de
lenguaje. Para facilitar su referencia posterior, lo llamamos spradie-corpus para el resto
del informe.

Conjunto Descripción Cantidad
de informes

train Primer conjunto liberado durante la competen-
cia, que incluye tanto informes como anotacio-
nes, para los análisis y entrenamientos prelimi-
nares

175

devSameSample Conjunto de desarrollo que fue liberado con sus
anotaciones a mitad de la competencia para po-
der validar los modelos entrenados y usarse co-
mo data adicional. Este conjunto intenta man-
tener una distribución similar a la de entrena-
miento y no incluye palabras por fuera de las de
ese conjunto.

47

devHeldOut Liberado al mismo tiempo que devSameSample,
este conjunto se caracteriza por incluir palabras
que no se encuentran en el conjunto de entrena-
miento y permite analizar la capacidad de ge-
neralización de los modelos. Palabras que solo
ocurren en este conjunto: hipertensión, epiplón,
portal, card́ıaco, aorta, corona.

45

test Conjunto sobre el cual se deben generar las ano-
taciones que serán evaluadas para decidir el re-
sultado de la competencia. Las anotaciones no
fueron liberadas ya que son de uso interno para
medir resultados. Incluye palabras de la distri-
bución de entrenamiento pero también palabras
nuevas como: ovario, útero, endometrio, uretra,
suprahepático, ganglio, tiroides, entre otras de-
talladas en [17].

207

Tab. 4.1: Forma en la que se encuentran distribuidos los 474 informes que componen el corpus de
SpRadIE.

Las diez entidades que fueron anotadas en los informes y cuya identificación es el
objetivo de la tarea de SpRadIE, son las siguientes:

1 El inter-annotator agreement (IAA) es una métrica que evalúa el grado de concordancia entre múltiples
anotadores al etiquetar un conjunto de datos. Se utiliza comúnmente en tareas de procesamiento de lenguaje
natural y anotación manual de datos para medir la consistencia y fiabilidad de las etiquetas asignadas.
Existen diferentes coeficientes para calcularlo, como el coeficiente de Kappa de Cohen, el coeficiente de
Kappa de Fleiss o el Alpha de Krippendorff, dependiendo del número de anotadores y del tipo de datos.
Un alto valor de IAA indica que la tarea de anotación tiene una alta reproducibilidad.
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Anatomical Entity (AE): partes del cuerpo. Por ejemplo: “pecho”, “h́ıgado”, “lóbulo
tiroideo derecho”.

Finding (FI): hallazgos cĺınicos. Por ejemplo: “quistes”, “adenomaglias”.

Location (LO): ubicación en el cuerpo, indicando una región del mismo o bien una
posición relativa a una AE. Por ejemplo: “región biliar”, “paredes”, “cavidad”.

Measure (ME): expresión de medida. Por ejemplo: “0.3 mm”, “0.5 cc”, “2 cm.”, “0.8
(cm.)”.

Type of Measure (TM): palabras que indican el tipo de medida a la que una enti-
dad de tipo ME hace referencia. Por ejemplo: en “diámetro longitudinal 3 (cm)”,
“diámetro longitudinal” fue anotada como TM, mientras que “3 (cm)” como ME.

Degree: palabras que indican el grado de un hallazgo (FI). Por ejemplo: “leve”,
“ligera” (“ligera esplenomaglia”).

Abbreviations (AB): abreviaturas y acrónimos. Por ejemplo: “RI” (por “riñón iz-
quierdo”), “cm” (por “cent́ımetros”).

Negation (NT): negación. Por ejemplo: en “no se detectaron adenomaglias”, “no” se
anotó como NT.

Uncertainty (UT): indicador de que existe una probabilidad (no certeza) de que
cierto hallazgo pueda estar presente en un paciente. Por ejemplo: en “compatible
con hipertrofia pilórica”, “compatible con” fue anotada como UT.

Conditional Temporal (CT): indicador de que algo sucedió en el pasado o podŕıa
suceder en el futuro. Por ejemplo: en “antecedentes de atresia”, “antecedentes” se
etiquetó como CT.

Estás últimas tres entidades (NT, UT y TC) son también llamadas hedge cues (lo que
podŕıa traducirse como “señales de incertidumbre”).

En la figura 4.1 se presenta un gráfico que muestra el porcentaje que representa cada
tipo de entidad sobre el total de anotaciones del corpus. Como puede observarse, tal
distribución está lejos de ser balanceada, siendo que solo la combinación de Anatomical
Entity, Abbreviation y Finding representa el 60% de las anotaciones.
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Fig. 4.1: Distribución de las entidades en el corpus spradie-corpus según el tipo de entidad
anotada. Gráfico tomado del overview realizado de la competencia [17].

4.2. Pre-procesamiento de los datos

Cuando hablamos del pre-procesamiento (o simplemente procesamiento) de los datos,
es importante hacer una distinción de dos etapas. Hay un primer procesamiento, que es
común para todos los modelos que se entrenarán. En esta etapa se incluyen, por ejemplo,
la anonimización y la eliminación de informes demasiado cortos. Luego, hay un segundo
momento, que es espećıfico de cada método. Por ejemplo, la tokenización. En esta sección
hablaremos únicamente del primer tipo que es común a todos los métodos. El segundo
tipo se explica en la sección 4.3 donde desarrollamos las distintas técnicas de embeddings
y modelos de reconocimiento de entidades nombradas.

Como resultado del pre-procesamiento obtenemos nuevos corpora, a los cuales nueva-
mente asignaremos nombres para su posterior referencia:

anonymized-ultrasounds-80k: Obtenido a partir de ultrasounds-raw-80k des-
pués de pasar por un proceso de anonimización. Mantenemos mayúsculas/minúsculas
y también signos de puntuación y acentos.

spradie-corpus-bio-format: Obtenido a partir de spradie-corpus pero conver-
tido a un formato que resulta más conveniente para trabajar con modelos (formato
BIO).

Las particularidades de cada uno y el proceso por el cual se obtienen se explica en las
siguientes subsecciones.

4.2.1. Obtención de anonymized-ultrasounds-80k

A continuación se detallan los pasos para el procesamiento del corpus ultrasounds-
raw-80k y que conducen a la obtención de los corpora anonymized-ultrasounds-80k-with-
diacritics y anonymized-ultrasounds-80k-without-diacritics.

1. Los informes vienen en un archivo con formato PSV (del inglés Pipe Separated Va-
lues) donde, además del texto principal escrito por los médicos, hay otros metadatos
como: un identificador, la edad del paciente y la fecha en la que se realizó el estudio.



38 4. Metodoloǵıa

Estos datos los removemos, quedándonos únicamente con los informes, ya que no
consideramos que aporten información relevante para los embeddings por ser datos
poco o nada generalizables. Además evitamos el riesgo que los embeddings codifiquen
información que podŕıa permitir la identificación del paciente (por ejemplo, a partir
de la fecha, la edad y el diagnóstico).

2. El texto de cada informe comienza, a su vez, con un identificador alfanumérico
generado previamente en el trabajo realizado por Cotik [18], que permite tener una
forma de identificarlos. Este identificador no es de interés para los embeddings, por
lo que decidimos eliminarlo.

3. Es común ver en los informes que se utilizan varios espacios o tabulaciones como
forma de separación. En el caso de la generación de embeddings, no lo consideramos
algo que pueda afectar al desempeño de los modelos ya que los métodos que utili-
zaremos eliminan los espacios excedentes durante la etapa de tokenización. Por este
motivo, optamos por simplificarlo y reemplazar todos estos espacios y tabulaciones
por un único espacio simple de separación.

4. División en conjuntos (también llamadas particiones) de entrenamiento (o training)
y evaluación (o test). Es una práctica común en Machine Learning el realizar una
separación como esta, donde el conjunto de entrenamiento se utiliza durante el pro-
ceso de desarrollo y selección del modelo, y el conjunto de test se utiliza solamente al
final del proceso como una forma de medir el desempeño del modelo y evaluar cuán
bien generaliza por fuera de los datos de entrenamiento (bajo la hipótesis de que el
modelo no vio los datos de test durante su entrenamiento). Particularmente, la dis-
tribución que hacemos de los informes es: 80% para la partición de training y 20%
para la de test. Antes de realizar esta separación, decidimos hacer un reordenamiento
aleatorio de los informes.

5. Anonimización: este punto es el más complejo del pre-procesamiento, por lo que lo
explicamos más en profundidad en la siguiente sub-sección.

6. Remoción de los distintos tipos de signos diacŕıticos2: a modo experimental, una de
las cosas que intentamos validar es si la performance de los embeddings es mejor o no
cuando quitamos todos los diacŕıticos (´,‘, ˜, ¨) de los informes. Por dicha razón, en
este punto creamos dos conjuntos de datos distintos: anonymized-ultrasounds-80k-
with-diacritics (que no realiza este último paso y por lo tanto mantiene todos los
diacŕıticos) y anonymized-ultrasounds-80k-without-diacritics (que los remueve).

Anonimización

El objetivo de este paso es el de eliminar lo que se conoce como datos con Información
Personal e Identificatoria (PII por sus siglas del inglés, Personally Identifiable Informa-
tion). Si bien no es nuestro principal objetivo, en un primer momento, compartir pública-
mentye los informes que componen este corpus, es de particular importancia destacar que
no encontramos resultados que permitan descartar la posibilidad de que el entrenamiento

2 Un signo diacŕıtico (o simplemente diacŕıtico) es un śımbolo gráfico que se añade a una letra o a un
carácter para modificar su pronunciación, su valor fonético, su acentuación o su significado dentro de un
sistema de escritura. Su función principal es diferenciar palabras o sonidos que, de otro modo, podŕıan ser
confundidos en la escritura o en la lectura.
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de embeddings usando datos que contengan PII pueda filtrar esta información y luego ser
recuperada a partir de los embeddings o language models. Esto podŕıa representar un riesgo
para la privacidad de los involucrados.

Como se explica en la sección 3.2.3 del trabajo [18], el hospital del cual fueron tomados
los informes atiende alrededor de 1500 pacientes por d́ıa en una ciudad con casi 3 millones
de habitantes. Debido a estas dimensiones es muy poco probable que algún paciente sea
identificado a partir de un cuadro cĺınico poco frecuente.

Por otra parte, algunos de los informes de ultrasounds-raw-80k incluyen nombres de
médicos o pacientes, aśı como también números de matŕıculas nacionales y provinciales.
En general, se siguen algunos patrones que simplifican un poco la búsqueda de estos datos:
generalmente los datos del médico se encuentran al final de todo, el nombre del médico
suele estar precedido por t́ıtulos como “Dr” y “Dra”, las matŕıculas son precedidas por
“MN” (nacionales) o “MP” (provinciales). También a veces una ecograf́ıa es vista con
más de un especialista, lo cual suele marcarse en el informe con una fórmula “Visto con”
seguido del nombre del médico de la interconsulta. Sin embargo, al tratarse de texto libre
aparecen irregularidades que complejizan la tarea: se hace un uso irregular de los puntos
en las abreviaturas (por ejemplo, a veces se escribe “Dr” y otras “Dr.”) aśı también como
de las mayúsculas (“Dra”, “DRA”, “DRa”), y en ocasiones hay errores de tipeo (como
“Drs” en lugar de “Dra”). Además a veces el nombre del médico no aparece precedido de
ningun patrón o no se situa al final del informe. Del mismo modo los nombres de pacientes
(si bien son mucho menos frecuentes) suelen aparecer en el medio del reporte. Por otro
lado, existen órganos o enfermedades que tienen nombres propios (por ejemplo, Śındrome
de Turner o de Williams) y es importante que no los eliminemos por error debido a que son
entidades importantes del dominio al cual queremos ajustar nuestros embeddings. Todos
estos son solo algunos ejemplos para ilustrar las irregularidades que se dan y que dificultan
la tarea de poder identificar todos los datos PII y eliminarlos adecuadamente.

El objetivo de la anonimización fue asegurar la identificación, y posterior eliminación,
de todos los datos PII de nuestro corpus, minimizando la pérdida de información valiosa
por errores en la identificación (falsos positivos). Se evaluaron distintos métodos, que
se comentan a continuación, detallando cuales fueron los problemas y ventajas que se
encontraron en cada uno.

Primero se intentó utilizar dos herramientas que son populares para anonimizar
textos escritos en inglés: Presidio3 y Spacy4. En ambos casos, el problema que se
encontró fue que no estaban lo suficientemente maduras para el lenguaje español.
En el caso de Presidio, es una herramienta open-source desarrollada por Microsoft
espećıficamente para el problema de anonimización, pero la misma documentación
aclara que solo da soporte oficial al idioma inglés por ahora, aunque se dan algunas
herramientas para poder adaptar a otros idiomas. Por su parte, Spacy es una biblio-
teca de uso frecuente en múltiples tareas de NLP y en su caso śı tiene soporte para
el idioma español. Sin embargo, al momento de realizar este trabajo, el repertorio
con el que cuenta de modelos para NER entrenados con datos en español es muy
acotado (solo tres modelos que únicamente vaŕıan en tamaño pero no en datos) y de
dominio general (usa un corpus de noticias). Se hicieron pruebas con este modelo,
pero los resultados fueron malos, tanto en términos de falsos positivos como de falsos
negativos.

3 https://github.com/microsoft/presidio
4 https://spacy.io/
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Modelo de NER basado en RoBERTa obtenido de HuggingFace: PlanTL-GOB-ES/
roberta-base-bne-capitel-ner5. Este modelo utiliza una arquitectura de Trans-
formers, espećıficamente la de RoBERTa [41], para resolver la tarea de reconocimien-
to de entidades nombradas. Particularmente, una de las entidades que está entrenado
para reconocer son nombres propios, lo cual es útil para nuestro caso de uso. Además,
está fine-tuneado sobre un conjunto de textos en idioma español, extráıdos de la Bi-
blioteca Nacional de España [29]. En este caso el desempeño es superior a lo visto
con los métodos previos cuando hablamos de identificación de nombres de personas,
tanto en falsos positivos como falsos negativos . El principal problema que tiene este
método, es que en general ignora completamente los números de matŕıcula. Además,
en algunos casos no reconoce el nombre completo y solo hace un match parcial (por
ejemplo, en “Dr LUdman” solo reconoce “Dr LU” como persona).

Expresiones regulares6 (en adelante RegEx): probablemente el método más simple
de los mencionados hasta ahora. Permite explotar rápidamente el conocimiento que
tenemos sobre la estructura general de los informes. El problema justamente lo tiene
cuando tenemos que considerar también casos que se salen un poco de la estructura
“común”, como los mencionados anteriormente. El caso más complejo de todos es
cuando no hay ningún t́ıtulo que preceda al nombre en cuestión, y en tal caso la
única posibilidad es escribir un patrón que coincida directamente con el nombre.
Otra dificultad que tiene, es que si bien es fácil escribir patrones que haganmatch con
términos como “dr”, “visto con”, “MN”, etc., resulta much́ısimo menos obvio como
escribir patrones que coincidan con el texto completo que se quiere eliminar. Esto
nuevamente se debe a las irregularidades en cuanto a la escritura. No hay garant́ıa
de que vaya a haber un punto después del nombre, o que no haya uno antes, ni
tampoco hay una cantidad de palabras definida que puede tener un nombre.

Corrección manual: por último, siempre es una posibilidad repasar manualmente los
reportes, identificar los datos PII y borrarlos a mano. Sin embargo, hay un inconve-
niente en la escala de esto para la cantidad de informes que tenemos. Además para
grandes volúmenes de texto, el criterio humano puede ser más proclive a cometer
omisiones comparado con un método automático.

El resultado de estas pruebas fue que ninguno de estos métodos era suficiente por śı
mismo y se terminó optando por un método h́ıbrido que combina RegEx, el modelo de
NER PlanTL-GOB-ES/roberta- base-bne-capitel-ne, y la revisión manual. Todo esto,
combinado con el hallazgo de que estad́ısticamente la mayoŕıa de los datos personales se
encuentran al final de los reportes, nos permite llegar al siguiente proceso iterativo:

1. Usar un conjunto de RegEx que busquen los patrones mencionados más arriba,
teniendo en cuenta el uso irregular de mayúsculas y signos de puntuación.

2. Para cada informe, a partir del primer patrón identificado eliminar todo lo que venga
después hasta el final. Esta decisión se basa en la observación de que la mayoŕıa

5 https://huggingface.co/PlanTL-GOB-ES/roberta-base-bne-capitel-ner
6 Una expresión regular (también llamada RegEx ) es una secuencia de caracteres que define un patrón

de búsqueda, utilizada principalmente para la coincidencia y manipulación de cadenas de texto. Las expre-
siones regulares se emplean ampliamente en el procesamiento de texto para localizar patrones espećıficos
dentro de cadenas, extraer datos relevantes o realizar reemplazos y transformaciones complejas.
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de los nombres y matŕıculas se encuentran al final de los informes, por lo que el
riesgo de perder información útil es bajo. Dado que queremos minimizar la cantidad
de información valiosa que se pudiera llegar a perder, ponemos un ĺımite de 90
caracteres a eliminar como mucho. En caso de que fuera a eliminarse más de esa
cantidad, entonces simplemente se genera un mensaje y no se modifica el texto en
forma automática, para su posterior revisión manual.

3. Sobre el corpus resultante, usar el modelo de reconocimiento de entidades nombradas
para identificar nombres que no fueron removidos usando las RegEx. Es importante
destacar que muchas veces el modelo de NER identifica cosas con el tag PER que no
son realmente nombres de médicos o pacientes (falsos positivos). Para simplificar el
análisis, se agregó una lista de falsos positivos conocidos, para que en caso de que el
NER los detecte no sean tenidos en cuenta. Notar que en este punto no se elimina
nada.

4. A partir del punto anterior, actualizar los patrones de las RegEx para capturar los
nombres que no fueron removidos en el punto 2. También actualizar la lista de falsos
positivos del NER. Repetir desde el paso 1, para poder borrar los nuevos patrones
identificados.

5. Una vez que no resulta posible seguir eliminando automáticamente los nombres que
detectan el NER y las RegEx (porque implicaŕıan superar el ĺımite de 90 caracteres
o porque son patrones únicos) se pasa a una etapa de corrección manual en la cual
se eliminan los datos restantes. En nuestro caso, implicó revisar manualmente solo
90 informes, de los más de 80 mil que teńıamos originalmente.

Como resultado de esto obtuvimos un corpus, para el que tenemos alto grado de certeza
que no contiene datos identificatorios.

4.2.2. Pre-procesamiento de spradie-corpus-brat-format

En el caso de este corpus, como se trata de un conjunto ya preparado para una com-
petencia pública, requiere un esfuerzo mucho menor en la parte de preprocesamiento. En
realidad, la principal tarea a realizar es un cambio de formato de las anotaciones. Esto se
debe a que los datos son provistos con un formato llamado Brat Standoff, que es genera-
do por la herramienta de anotación utilizada. Sin embargo, la mayoŕıa de los modelos de
NER están pensados para esperar otro tipo de formato. El formato que es más comunmen-
te aceptado para este tipo de tareas es el BIO (o algunas de sus variantes). A continuación
explicamos brevemente cada uno de estos formatos, sus caracteŕısticas principales y que
implicancias trae aparejadas el paso de un formato al otro.

Formato Brat Standoff

Brat es una herramienta web7 para anotación de textos. Esta herramienta permite
generar distintos tipos de anotaciones pero en el contexto de nuestro corpus solo se utilizó
una: las “anotaciones vinculadas al texto” (o text-bound annotations). Una anotación de
este tipo consiste en asociar uno o más fragmentos de texto a algún tipo de entidad. Por
simplicidad, todas las explicaciones que vienen a continuación se enfocan únicamente en

7 https://brat.nlplab.org/introduction.html
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este tipo de anotación. En caso de querer saber más sobre los otros tipos de anotaciones
soportados por Brat (relaciones, eventos, modificaciones, etc.) o del formato en general,
recomendamos la lectura de la documentación oficial8.

El formato con el que trabaja la herramienta, llamado Brat Standoff format, especifica
que por cada “documento” que se desea anotar (en nuestro caso, por cada informe de
ecograf́ıa) se generan dos archivos con el mismo nombre pero diferente extensión: uno con
extensión .txt (que contiene básicamente el documento sin ninguna modificación) y otro
con extensión .ann (que contiene las anotaciones). Un ejemplo de ambos archivos, tomado
de nuestro corpus, puede verse en la figura 4.2.

A continuación, explicamos el formato del archivo de anotaciones. Cada ĺınea del ar-
chivo corresponde a una anotación. Para ilustrar, tomemos como ejemplo la primer ĺınea
que aparece en el cuadro inferior de la figura 4.2: T1 Finding 15 35 disminuido

de tamano. Todas las ĺıneas inician con un identificador de la forma Tn (en este caso,
T1), siguiendo una convención propia de Brat. Luego, viene una tabulación seguida por
el tipo de la entidad anotada (Finding). A continuación, separados por espacios simples
vienen dos números (15 y 35 en nuestro ejemplo): estas son las posiciones de inicio y fin
del fragmento de texto anotado. Dichas posiciones corresponden al texto guardado en el
archivo .txt. Por último, viene una nueva tabulación seguida de una copia textual del frag-
mento correspondiente a la anotación (“disminuido de tamano”). Notar que esto último
es principalmente una facilidad que brinda el formato, ya que teniendo los ı́ndices y el .txt
no resulta estrictamente necesario contar con esto. Esta explicación resume la mayoŕıa
de las anotaciones, aunque existe una variación: Brat permite también hacer anotaciones
de entidades discontinuas, es decir que varios fragmentos de texto no-contiguos son parte
de una misma anotación. Un ejemplo de esto es la última ĺınea (T24) que aparece en el
ejemplo de la figura 4.2. Notar que en este caso, la parte de la anotación que indica las
posiciones tiene la forma 341 355;381 405. El “;” separa las posiciones de principio y
cierre de cada uno de los fragmentos involucrados en la anotación, que en este caso son
solo dos, pero podŕıan ser más.

Este formato permite realizar anotaciones complejas, como entidades discontinuas (re-
cién vistas) y entidades solapadas (también conocidas como anidadas). Estas últimas son
aquellas donde existe un solapamiento (total o parcial) entre dos o más anotaciones: es de-
cir que un mismo fragmento de texto está incluido en más de una anotación. Volviendo al
ejemplo de la figura 4.2, podemos observar las anotaciones T1 y T3 y notar que en ambos
casos el fragmento anotado es el mismo (“disminuido de tamano”) pero las entidades son
diferentes (Finding y Measure respectivamente). En ese caso el solapamiento es total, pero
también podŕıa ser parcial, como ocurre con las anotaciones T13 y T17: la primera anota
“cm” como Abbreviation, mientras que la segunda anota “20 cm aprox” como Measure.
Notar que el fragmento anotado por T13 está incluido en el anotado por T17.

Este tipo de entidades complejas son muy comunes en el texto médico, haciendo de
Brat Standoff un formato muy útil para este dominio. Sin embargo, el problema viene
justamente porque la mayoŕıa de los modelos de NER que se utilizan actualmente trabajan
bajo la asunción de que no existen ni solapamientos ni discontinuidades [47]. Aunque hay
diversas ĺıneas de investigación en este sentido, no nos enfocamos en este problema aqúı y
optamos por llevar las anotaciones a un formato compatible con la mayoŕıa de los modelos:
el formato BIO.

8 https://brat.nlplab.org/standoff.html
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Texto del informe (84966 brat.txt)

18a 2m.
Higado disminuido de tamano, heterogeno.
presenta areas nodulares ecogenicas irregulares en segmento VII y VIII, con
area central con contenido liquido y ecos en su interior.
No se logra visualizar vena porta.
Arteria hepatica y VSH vesibles.
No se visualizan vasos mesentericos y vena esplenica por importante inter-
posicion de aire esplenomegalia homogenea de 20 cm aprox con colaterales
en hilio.
Liquido tabicado en pelvis.
Ambos rinones de estructura conservada.
Se sugiere correlacionar con TC realizada para mejor visualizacion de las
estructuras vasculares .

Anotaciones (84966 brat.ann)

T1 Finding 15 35 disminuido de tamano
T2 Anatomical Entity 8 14 Higado
T3 Measure 15 35 disminuido de tamano
T4 Anatomical Entity 237 240 VSH
T5 Anatomical Entity 268 286 vasos mesentericos
T6 Finding 162 166 ecos
T7 Finding 407 423 Liquido tabicado
T8 Location 427 433 pelvis
T9 Anatomical Entity 206 216 vena porta
T10 Negation 183 205 No se logra visualizar
T11 Negation 251 267 No se visualizan
T12 Abbreviation 237 240 VSH
T13 Abbreviation 372 374 cm
T14 Anatomical Entity 218 234 Arteria hepatica
T15 Abbreviation 375 380 aprox
T16 Finding 385 396 colaterales
T17 Measure 369 380 20 cm aprox
T18 Anatomical Entity 400 405 hilio
T19 Anatomical Entity 549 571 estructuras vasculares
T21 Anatomical Entity 289 303 vena esplenica
T24 Finding 341 355;381 405 esplenomegalia con colaterales en hilio

Fig. 4.2: Ejemplo de anotaciones en formato Brat Standoff para el informe con código identificador
84966 del corpus de SpRadIE. Siguiendo la especificación del formato, hay dos archivos
por cada informe: un archivo con extensión .txt, que contiene el texto original del informe
(y se muestra en el cuadro superior) y un archivo con extensión .ann, que contiene las
anotaciones para dicho informe (y se muestra en el cuadro inferior). Por claridad, se
removieron algunas anotaciones del ejemplo.
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Formato BIO

El formato BIO recibe su nombre de las siglas de las palabras en inglés Beginning-
Inside-Outside, que hacen referencia a la modalidad con la que se realizan las anotaciones
de los tokens: cada token se etiqueta con una B-nombre-de-la-entidad si es el comienzo
de una entidad, con una I-nombre-de-la-entidad si está dentro de una entidad pero
no es el comienzo, y O si no pertenece a ninguna entidad. Por ejemplo, para la entidad
Location ahora pasamos a tener dos etiquetas posibles: B-Location y I-Location. Y lo
mismo con el resto de las entidades.

De esta forma, cada token que compone el texto es anotado con exactamente una
etiqueta (incluyendo O). Las únicas reglas son que el primer token de una entidad se
etiquete con una B-etiqueta, siendo “etiqueta” el tipo de la entidad nombrada (por ej.
Location), mientras que todos los tokens consecutivos, que también sean parte de la misma
entidad, deben llevar una I-etiqueta. En cuanto se marca un token con una O u otra
B-etiqueta, se considera que la anotación de la entidad anterior está terminada. Este
mecanismo implica que no sean posibles los solapamientos ni las discontinuidades. En la
figura 4.3 se presenta un ejemplo de anotación para dos oraciones de un informe.

HIGADO 4 10 B-Anatomical_Entity

: 10 11 O

tamano 12 18 O

y 19 20 O

ecoestructura 21 34 O

normal 35 41 O

. 41 42 O

VIA 43 46 B-Anatomical_Entity

BILIAR 47 53 I-Anatomical_Entity

intra 54 59 I-Anatomical_Entity

y 60 61 I-Anatomical_Entity

extrahepatica 62 75 I-Anatomical_Entity

: 75 76 O

no 77 79 B-Negation

dilatada 80 88 B-Finding

. 88 89 O

Fig. 4.3: Fragmento de un archivo en formato BIO. La primer columna incluye el token (en este caso
se tokenizó por palabras), la segunda columna tiene la posición de inicio en el documento,
la tercera la posición de fin, y la cuarta la etiqueta en formato BIO.

Conversión del formato y sus implicancias

Por lo visto anteriormente, se deduce que al realizar la conversión de Brat a BIO se va
a perder información siempre y cuando existan solapamientos o discontinuidades. Como
el corpus de SpRadIE las contiene, esto va a pasar.

A la hora de escoger con qué entidades quedarnos frente a una discontinuidad o sola-
pamiento existen distintas estrategias posibles. Nosotros escogemos las siguientes:
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Para las entidades discontinuas, nos quedamos con el segmento completo que va
desde la posición inicial más pequeña hasta la posición final más grande, de entre los
fragmentos anotados. Esto provoca que se incluyan fragmentos que originalmente no
están anotados como parte de la entidad. Por ejemplo, en el texto “via biliar intra
y extrahepatica” se suelen anotar dos entidades anatómicas distintas: “via biliar
intrahepatica” y “via biliar extrahepatica”. Siguiendo el criterio planteado aqúı, en
ambos casos la nueva anotación va a ser: ‘via biliar intra y extrahepatica” como una
sola Anatomical Entity. Este método asegura que los modelos entrenados aprendan a
etiquetar todos los tokens de la entidad anotada originalmente, pero también implica
que pueden ser más propensos a los falsos positivos ya que les estamos enseñando a
etiquetar cosas de más.

Para las entidades solapadas nos quedamos con la que sea más larga. Esto favorece
a que el modelo etiquete correctamente mayor cantidad de caracteres, pero también
significa que hay entidades que puede no aprender a identificar bien debido a que las
ve mucho menos en su entrenamiento. Un ejemplo de esto, sobre el que volveremos
más adelante, son las entidades de tipo Abbreviation, que suelen estar anidadas
dentro de entidades más grandes como Measure (por ej. “30 cm.”), Anatomical
Entity (por ej. “riñón izq”), etc.

4.3. Embeddings y Language Models

En esta sección detallamos los modelos utilizados, cómo se realizó su entrenamiento y
también documentamos las decisiones importantes que tomamos.

Dada la naturaleza de los informes, que están en español e incluyen un frecuente uso
de abreviaturas, errores ortográficos y términos de nicho que no son frecuentes en el uso
general del idioma, tomamos algunos cuidados al momento de escoger los modelos a utili-
zar. Nos enfocamos en modelos pre-entrenados espećıficamente para el idioma español y en
general ajustados al dominio bio-médico. También priorizamos que utilicen tokens a nivel
de caracteres o sub-palabras (lo que permite mayor robustez frente a palabras por fuera
del vocabulario de entrenamiento). Teniendo en cuenta este último criterio se descarta a
los métodos más clásicos como Word2Vec y GloVec que solo aprenden a embeber pala-
bras completas. Los modelos escogidos pueden clasificarse en tres arquitecturas distintas:
Transformers, BiLSTM y FastText.

Con lo que respecta a los Transformers (ver sección 2.6), escogimos el siguiente lista-
do de modelos pre-entrenados para usar como base para los experimentos y fine-tuning.
Todos los modelos son de acceso público y pueden encontrarse en el hub de modelos de
HuggingFace9.

BETO CASED10: Modelo pre-entrenado [11] basado en la arquitectura de BERT
pero entrenado con un corpus de dominio general en español [10]. Este es un trans-
former entrenado de cero, razón por la cual el tokenizer asociado también fue entre-
nado espećıficamente para el corpus usado. En este caso el tokenizer preserva el uso
de mayúsculas y minúsculas.

9 HuggingFace es una plataforma open source que permite publicar y descargar modelos de Machine
Learning, siendo particularmente popular en la comunidad de NLP. Para más información puede visitarse
su página web: https://huggingface.co/

10 https://huggingface.co/dccuchile/bert-base-spanish-wwm-cased
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BETO UNCASED11: Igual que BETO CASED pero el tokenizer se encarga de llevar
todas las palabras a minúsculas antes de enviarlas al modelo.

BETO CLINICAL WL12: Modelo previamente adaptado con fine-tuning a partir de
BETO UNCASED para el corpus de ChileanWL [5]. Notar que al ser un caso de
fine-tuning el tokenizer es el mismo usado por BETO UNCASED.

ROBERTA BNE13: Modelo pre-entrenado [29] utilizando el corpus en español más
grande conocido hasta la fecha, con un total de 570 GB de texto procesado para este
trabajo, compilado a partir de las rastreos web realizados por la Biblioteca Nacional
de España desde 2009 hasta 2019.

ROBERTA BIO CLINICAL14: Modelo pre-entrenado [12] con un corpus compuesto
por varios corpora, biomédicos en español, recopilados de corpus disponibles pública-
mente y rastreadores, aśı como un corpus cĺınico del mundo real, recopilado a partir
de más de 278,000 documentos y notas cĺınicas.

ROBERTA CLINICALWL15: Modelo de RoBERTa basado en el anterior pero adap-
tado sobre el corpus de ChileanWL [55].

También, siguiendo la ĺınea de modelos contextuales y en este caso apuntando a tokeni-
zación por caracteres y uso de Bidirectional Long Short-Term Memory (BiLSTM), en lugar
de Transformers, probamos la arquitectura Flair [2] (ver 2.5.1) y la biblioteca homónima16.
Particularmente, dado que en este caso también resulta muy intensivo computacionalmen-
te el proceso de entrenamiento, partimos de un modelo público17 entrenado sobre el corpus
Chilean Waiting List (ChileanWL) [55]. Para ser más espećıficos, en realidad se trata de
dos modelos distintos, debido a la naturaleza de los embeddings generados por BiLSTMs:
un modelo genera representaciones a partir de tratar de predecir la siguiente palabra en la
oración (es-clinical-forward), mientras que el otro modelo intenta predecir la palabra
que lo precede (es-clinical-backward) en una oración. T́ıpicamente se combinan ambas
representaciones (usando concatenación de vectores) para tener información bidireccional
del texto. Para referenciarlo más fácilmente, llamamos a esta combinación de modelos
CLINICAL FLAIR. Vale aclarar que en este punto solo estamos combinando dos modelos
pre-entrenados, pero aún no aplicamos fine-tuning sobre nuestro corpus.

Adicionalmente para contrastar con métodos no-contextuales pero que tienen la ca-
pacidad de embeber palabras fuera del vocabulario creamos dos embeddings de FastText
(ver sección 2.3.1) sin partir de modelos pre-entrenados.

FASTTEXT100: Modelo completamente entrenado por nosotros usando el algoritmo
de FastText sobre el corpus anonymized-ultrasounds-80k-with-diacritics. En
este caso se generan vectores de 100 dimensiones.

11 https://huggingface.co/dccuchile/bert-base-spanish-wwm-uncased
12 https://huggingface.co/plncmm/beto-clinical-wl-es
13 https://huggingface.co/PlanTL-GOB-ES/roberta-base-bne
14 https://huggingface.co/PlanTL-GOB-ES/roberta-base-biomedical-clinical-es
15 https://huggingface.co/plncmm/roberta-clinical-wl-es
16 Es importante mencionar que la palabra Flair es ambigua: por un lado es el nombre de una arquitectura

basada en BiLSTMs descripta en [2] y por el otro lado es una popular biblioteca para desarrollo de modelos
de NLP (https://flairnlp.github.io/) desarrollada por el mismo equipo que creo dicha arquitectura. Durante
este trabajo haremos uso de ambas herramientas y tratamos de ser expĺıcitos cuando nos referimos a una
u otra.

17 https://flairnlp.github.io/docs/tutorial-embeddings/flair-embeddings
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FASTTEXT200: Idéntico al anterior pero generando embeddings de 200 dimensiones.

4.3.1. Proceso de entrenamiento

Para lo que sigue se hizo una división de los informes de anonymized-ultrasounds-80k:
4440 se separaron para hacer después análisis de clusters sobre eso. Por lo tanto quedaron
un poco menos de 70 mil informes (69556 exactamente) para utilizar durante el fine-tuning
o entrenamiento.

Modelos basados en Transformers

Para el entrenamiento de los modelos basados en Transformers no realizamos en ningún
caso entrenamientos desde cero sino que aplicamos la técnica de domain adaptation (ver
sección 2.7) a partir de modelos pre-entrenados. La forma de hacer esto para modelos
basados en BERT (lo que incluye también a modelos basados en RoBERTa) es rea-
lizando un entrenamiento del modelo base para la tarea de Masked Language Model
(ver sección 2.4.1) sobre el corpus espećıfico al que se desea adaptar (en nuestro caso
anonymized-ultrasounds-80k).

Para realizar el fine-tuning se utilizaron los hiperparámetros estándar definidos para
BERT y RoBERTa en sus respectivos papers [19] [41]. La razón de no hacer una selección
de hiperparámetros más sofisticada es que resulta poco costo-efectivo por lo demandante
que son los entrenamientos de estos modelos (incluso los fine-tunings) en términos de
recursos computacionales y tiempo. Además en nuestro caso particular donde lo que más
nos importa es la utilidad de las representaciones internas de los modelos, no resulta
tan simple tener una evaluación efectiva que permita guiar la búsqueda en el espacio de
hiperparámetros con seguridad. No necesariamente siempre la métrica usada para evaluar
el modelo durante su entrenamiento (por ejemplo, la perplexity en el caso de los Masked
Language Models como BERT) se condice con el embedding más útil luego. Sin embargo
hay algunas decisiones relacionadas al proceso de tokenización y a la forma de pasarle los
datos al modelo que puede ser bueno detallar.

Primero se deben tokenizar todos los informes. Esto se hace siempre con el tokenizador
asociado al modelo pre-entrenado. La razón de esto es que el tokenizador determina el
vocabulario sobre el que el modelo fue entrenado y por lo tanto también el vocabulario
sobre el que puede ser aplicado. Sin embargo en este punto hay que tomar una decisión
que puede tener consecuencias luego: tanto BERT como RoBERTa tienen una ventana
de contexto de exactamente 512 tokens, lo que significa que aquellos informes que tengan
menos tokens deben agregar tokens de padding18 y los que tengan más deben truncarse19.
Esto según el caso concreto puede traer problemas. En nuestro caso particular, los informes
que tienen más de 512 tokens y perdeŕıan información al truncarse están en el orden del
1%, por lo que no es un gran inconveniente por ese lado. En la gran mayoŕıa de los casos se
está muy por debajo de este número (el 95% de los informes tiene 181 tokens o menos) sin
embargo existe otro problema: la gran diversidad de largos de los documentos. Esto resulta
problemático ya que termina generando una ineficiencia computacional considerable al
momento de realizar el entrenamiento con batches que tienen longitud variable y requieren

18 Los tokens de padding son un valor especial que representa un token de relleno que solo sirve para
asegurar que el tamaño de entrada sea el correcto, sin aportar información adicional.

19 El proceso de truncado consiste en descartar todos aquellos tokens que vengan después del máximo
soportado.
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un ajuste de padding dinámico. La solución que adoptamos es una de uso habitual cuando
se cuenta con tanta diversidad de largos entre los textos: unificamos todos los tokens en un
solo gran texto, adicionando tokens especiales que representan separadores de documentos,
y luego lo dividimos en chunks de un tamaño fijo. De esta manera no se pierde texto y
se mantienen batches de tamaño fijo. Este procedimiento se conoce como chunking. En
nuestro caso escogimos hacer chunks de 128 tokens. El principal factor de esta decisión es
la restricción que nos impone la memoria RAM de la GPU que fue utilizada para entrenar:
con más tokens por chunk suceden errores por falta de memoria.

Otra decisión importante a tomar respecto de la entrada del entrenamiento es cómo
generar las máscaras que el modelo tratará de completar. Una primera decisión es si
las máscaras debeŕıan aplicarse a nivel de los tokens o de las palabras (que en gene-
ral se componen de varios tokens). Si optamos por la primera opción puede suceder
que una palabra se enmascare parcialmente (por ejemplo, “Higado” podŕıa quedar co-
mo “<MASK>ado”). En el segundo caso, nos aseguraŕıamos que se ponga un token de
máscara por cada token que componga la palabra (en el ejemplo previo, “Higado” quedaŕıa
como “<MASK><MASK>”). Una duda que podŕıa surgir en este segundo caso es por
qué no reemplazar completamente la palabra “Higado” por un solo token “<MASK>”,
en lugar de dos. La explicación es que si hiciéramos eso, dado que el modelo de lenguaje
solo puede predecir un token por cada máscara, jamás seŕıa capaz de predecir la palabra
“Higado” completa. Nosotros optamos por esta opción de enmascarar palabras completas.

La otra decisión importante, referente al enmascaramiento, es si las máscaras debeŕıan
definirse una única vez antes de entrenar o si por el contrario debeŕıan definirse dinámica-
mente (y bajo una distribución de probabilidad sobre los tokens/palabras) cada vez que se
genera un mini-batch durante el entrenamiento. Dado que las herramientas lo permiten,
optamos por la segunda opción que ofrece una mayor diversidad de escenarios para el
modelo lo cual puede ser bueno para evitar overfitting. La distribución escogida fue una
Bernoulli(0.15), lo que significa que al armar un nuevo mini-batch cada palabra tiene
un 15% de probabilidad de enmascararse, independientemente del resto de las palabras.
Es bueno notar que como la probabilidad es por palabra y cada palabra puede estar com-
puesta por múltiples tokens, entonces la probabilidad de enmascarar un token puede ser
de hecho superior al 15% y depende de cuántos tokens más conformen la misma palabra.

En cuanto a la duración del entrenamiento, emṕıricamente determinamos que a partir
de los 15 epochs los modelos empezaban a converger en su función de pérdida y, además,
se obteńıan resultados similares o mejores que con 30 epochs al observar los resultados
de la tarea de NER con SpRadIE. Por lo tanto optamos por entrenar todos los modelos
durante 20 epochs, utilizando una funcionalidad de la biblioteca de HuggingFace que per-
mite quedarse siempre con la epoch que minimiza la función de pérdida a optimizar. De
esta forma el resultado es más robusto frente a la volatilidad que puede aparecer en el
entrenamiento.

Modelos basados en FastText

En el caso de los modelos de FastText śı realizamos entrenamientos completamente de
cero, utilizando únicamente los datos de anonymized-ultrasounds-80k. La decisión de ir
por este camino y no intentar basarnos en otros embeddings de FastText pre-entrenados
se sustenta en gran medida sobre los resultados presentados en la tesis de licenciatura de
Minces Müller [44]. En dicho trabajo, el autor se basa en el mismo conjunto de datos que
nosotros y evalúa el uso de distintas variantes de FastText, concluyendo que los mejores
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resultados los obtiene con el modelo entrenado de cero. Aunque vale aclarar que el proble-
ma que se trata es distinto (detección de relaciones), no deja de ser un resultado relevante
y preferimos no profundizar mucho más ah́ı para enfocarnos en otros métodos.

A diferencia de los modelos basados en Transformers, aqúı śı tenemos libertad para
escoger el tokenizer deseado. Probamos varios enfoques distintos para esto, utilizando des-
de técnicas simples como separación por espacio o expresiones regulares ligeramente más
complejas, hasta herramientas populares en el ámbito de NLP como NLTK20 y spaCy21.
Las consideraciones más importantes que tuvimos fueron: que la tokenización no fuera
destructiva (esto significa que no se pierden caracteres al tokenizar, por ejemplo los signos
de puntuación) y que el resultado de fuera lo más similar posible a la tokenización realiza-
da por el script que convierte los informes de SpRadIE de formato Brat a BIO (ver 4.1).
En general las diferencias fueron pocas, siendo una de la más notorias como se separaban
las mediciones: spaCy separa “7cm” en “7” y “cm”, mientras que el método basado en
RegEx conserva “7cm” como un solo token. Si bien el comportamiento de spaCy puede
parecer el más deseable, el script de conversión de formatos hace lo segundo. Por lo tanto,
terminamos optando por el método basado en RegEx (el código Python puede verse en el
Apéndice 7.3).

Para entrenar el modelo, utilizamos la implementación de FastText que provee la bi-
blioteca gensim22. Los hiperparámetros se mantuvieron mayoritariamente en sus valores
por defecto:

Tamaño de la ventana de contexto: 5

Cantidad mı́nima de apariciones de una palabra en el corpus para no ser ignorada:
5

Largo mı́nimo de n-grams de caracteres: 3

Largo máximo de n-grams de caracteres: 6

Los únicos hiperparámetros que tocamos fueron la cantidad de epochs que configuramos
en 3023 (aproximadamente media hora de entrenamiento) y el tamaño de los vectores:
generamos vectores de 100 y 200 dimensiones respectivamente.

Modelos basados en Flair

Como mencionamos anteriormente, para los modelos de lenguaje basados en Flair
recurrimos a la técnica del fine-tuning (domain adaptation) del mismo modo que lo hicimos
con los Transformers. En este caso solo tenemos un modelo a tunear que es CLINICAL
FLAIR.

En este caso la tokenización se resuelve de forma más sencilla: trabajamos con tokens
a nivel de caracteres, aunque vale aclarar que internamente la implementación de Flair

20 https://www.nltk.org/
21 https://spacy.io/
22 https://radimrehurek.com/gensim/models/fasttext.html
23 La cantidad de epochs fue determinada emṕıricamente y basandonos en las mejores prácticas que

encontramos en la comunidad. Lo idea seŕıa realizar un monitor de la loss funcion para analizar los quiebres
de comportamiento y evitar caer en un sobreajuste. Lamentablemente, a d́ıa de hoy la implementación de
Gensim no soporta hacer un monitoreo de dicha métrica. Ver https://github.com/piskvorky/gensim/

issues/2617.
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segmenta estos tokens por oraciones. Sobre los hiperparámetros utilizados, mayoritaria-
mente nos basamos en los valores por defecto nuevamente. En términos de estructura de
modelo, lo único que especificamos fue la dimensión del vector al cual se mappean los
inputs y que luego es consumido por la LSTM que termina generando el embedding: le
pusimos un valor de 100. Esta decisión nuevamente se basa es pruebas emṕıricas, teniendo
en cuenta que es un hiperparámetro que tiene un alto impacto en el tiempo y recursos de
entrenamiento.

A diferencia de los modelos mencionados anteriormente, aqúı la elección de la cantidad
de epochs puede hacerse con un criterio un poco más metódico. Debido a que la biblioteca
de Flair cuenta con la posibilidad de usar early stopping24, pudimos poner una tolerancia
de 5 epochs sin mejora. Además, Flair lleva trazabilidad de cual fue la mejor epoch en
términos de perplexity, por lo que siempre nos podemos quedar con la iteración que mejor
dió al finalizar el entrenamiento.

Como se menciona al principio de la sección, en realidad no se trata de un modelo sino
de dos (uno forward y otro backward) cuyos resultados se concatenan en un único vector.
Los hiperparámetros descriptos aplican al entrenamiento de ambos modelos. Cada modelo
produce vectores de 2048 dimensiones, por lo que el resultado del modelo concatenado
es de 4096 dimensiones, siendo por bastante diferencia la representación más grande que
probamos aqúı (los vectores basados en BERT-base tiene 768 dimensiones).

4.4. Modelos de NER

En la sección anterior se explica cómo fue el proceso de selección de modelos de embed-
dings y lenguaje, aśı como también el proceso de entrenamiento o fine-tuning de cada uno
según correspondiera. Dichos modelos únicamente tienen la capacidad de generar repre-
sentaciones vectoriales a partir de un texto dado. En esta sección, cubrimos la siguiente
etapa que es la entrenar los modelos finales que serán capaces de convertir estas repre-
sentaciones vectoriales en predicciones sobre cuál debeŕıa ser la etiqueta de cada palabra,
basándonos en las entidades de SpRadIE. Para esto se realizarán entrenamientos sobre
el corpus spradie-corpus-bio-format (ver 4.2.2). Para diferenciarlos de los modelos de
embeddings y lenguaje, nos referiremos a estos modelos como modelos de NER o sequence
taggers (del inglés, “etiquetador de secuencias”).

Tanto para Flair como FastTex usaremos el mismo sequence tagger, que es uno de los
que disponibiliza la biblioteca de Flair. En el caso de los BERT y RoBERTa, el procedi-
miento es un poco diferente y lo realizamos con la misma biblioteca de HugginFace que
usamos para su fine-tuning previo.

Una aclaración importante que aplica a todos los entrenamientos que se hicieron de
modelos para reconocimiento de entidades nombradas: durante el desarrollo de los métodos
y las pruebas preliminares se trabaja siempre con las particiones de train, devSameSample
y devHeldOut de SpRadIE. La primera se usa para los entrenamientos y las otras dos
para la validación de los resultados durante el desarrollo de los modelos. Por simplicidad
a veces hablamos de partición de Validation para hacer referencia a la combinación de
devSameSample y devHeldOut. Sin embargo en la última ejecución, se entrena utilizando

24 Early stopping es una técnica de entrenamiento que consiste en monitorear una métrica espećıfica
durante el entrenamiento (por ejemplo, perplexity) y cortar automáticamente el entrenamiento cuando
pasan una cierta cantidad de epochs sin mejoras. A esta cantidad de iteraciones sin mejoras se la llama
“tolerancia”.
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todos los datos combinados de train, devSameSample y devHeldOut, y se evalúa usando
la partición de test. Los resultados de esta última evaluación son los que se reportan en el
caṕıtulo 5.

4.4.1. Entrenamiento para NER basado en Transformers

En este caso tomamos los modelos de BERT y RoBERTa presentados en la sección 4.3,
tanto en sus versiones base como en sus versiones con domain adaptation, pero esta vez les
aplicamos task adaptation (ver sección 2.7). Esto básicamente consiste en que tomamos
los modelos que fueron entrenados para predecir la palabra más probable dentro de un
contexto (Masked Language Model) y lo adaptamos para que ahora sea capaz de predecir
las entidades de SpRadIE (NER o sequence tagging).

La forma de hacer esto consiste en reemplazar la capa de salida (header) de los modelos
entrenados para la tarea de Masked Language Model por una capa especial de clasificación,
con una neurona por cada clase posible a predecir. La etiqueta a predecir será la corres-
pondiente a la unidad que retorne el valor más grande. Esta última capa tiene también
pesos entrenables, sin embargo inicialmente se agrega con valores random.

Nuevamente se usan valores de referencia para los hiperparámetros. En cuanto a la
forma de pasarle los datos de entrenamiento al modelo, se pasa oración por oración y no
informes completos. Esto es una decisión que tomamos por simplicidad, sin embargo es
algo que podŕıa profundizarse para ver si realmente es lo mejor. Una de las ventajas de
esto es que ninguna oración supera el ĺımite de 512 tokens lo que simplifica la ingesta. La
generación del padding necesario se realiza de forma automática y dinámica durante el
entrenamiento.

Posiblemente el aspecto más complejo de todos, antes de poder empezar a entrenar, es
el de alinear correctamente las etiquetas que aparecen en spradie-corpus-bio-format

con los tokens generados por los tokenizadores propios de cada modelo. Recordemos que
las etiquetas en el corpus en formato BIO están asignadas a nivel palabra, sin embargo
los tokenizadores usados por los modelos basados en BERT descomponen las palabras en
varios tokens de sub-palabras. Esto conlleva a que sea necesario mantener trazabilidad
de a que palabra original corresponde cada token para luego poder asignarle la etiqueta
correspondiente. Fuera de esto, no es necesario realizar mayores acciones al momento de
pre-procesar los datos. Dado que los informes son mayoritariamente cortos El padding se
resuelve dinámicamente, agregando lo que haga falta para cada informe.

4.4.2. Entrenamiento para NER basado en Flair o FastText

En este caso, utilizaremos nuevamente un modelo de BiLSTM, pero en lugar de que
sea para generar embeddings será para la tarea de reconocer las entidades, tomando como
input los embeddings generados (por FastText o por Flair). Los resultados de salida de
esta BiLSTM son procesados por una capa de Conditional Random Fields (CRF) 25 que
es lo que termina determinando la probabilidad de cada una de las etiquetas posibles.

25 Los Conditional Random Fields son modelos probabiĺısticos discriminativos utilizados para etiqueta-
do secuencial, donde se consideran dependencias entre etiquetas adyacentes para optimizar asignaciones
globales en lugar de decisiones independientes. Cuando se combinan con BiLSTMs, las representaciones
contextuales generadas por las redes neuronales bidireccionales se utilizan como entradas al CRF, mejo-
rando la precisión del etiquetado al capturar tanto el contexto de las palabras como las relaciones entre
etiquetas consecutivas.
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En este caso no es necesario realizar un alineamiento adicional, ya que la biblioteca se
encarga automáticamente de gestionar esto. Aqúı también el entrenamiento y predicción
se realizan oración por oración.

4.5. Evaluación extŕınseca

En esta sección se presenta una descripción detallada de cómo se evalúan los modelos,
incluyendo las métricas utilizadas y el proceso que se sigue. La figura 4.4 muestra, en
forma simplificada, cuáles son los principales grupos de tareas que se tienen que realizar
para poder llegar al punto de analizar los resultados. Mientras que la figura 4.5 expande
cada uno de estos grupos y muestra las tareas con mayor detalle, incluyendo su orden y
dependencias. En total hay cuatro ĺıneas de evaluación, tres extŕınsecas y una intŕınseca.
En esta sección nos enfocaremos en las extŕınsecas mientras que la intŕınseca se detalla en
la sección 4.6.

Las tres principales ĺıneas que seguimos para la evaluación extŕınseca son:

Comparación entre los modelos entrenados usando intervalos de confianza: buscamos
comparar de manera lo más estad́ısticamente robusta posible los resultados de los
distintos modelos aqúı entrenados.

Estudio de ablación: a través de reemplazar componentes de la arquitectura de los
modelos, intentamos aislar el efecto que tienen los embeddings entrenados sobre el
resultado final de la tarea de NER.

Comparación contra los resultados publicados de la competencia de SpRadIE: bus-
camos analizar si logramos mejorar el estado del arte en una tarea concreta. Aqúı
consideramos no solo los modelos de Machine Learning sino también la heuŕıstica
para identificar abreviaturas que se describe más adelante en esta sección. Como
parte de esta sección, realizamos también un análisis manual de los errores para
determinar oportunidades de mejora en el entrenamiento de nuestros modelos.

Fig. 4.4: Diagrama simplificado que muestra los principales cuatro conjuntos de tareas a realizar
en el trabajo, para poder llegar a los análisis de resultados.

Las métricas utilizadas para evaluar la tarea de NER son exactamente las mismas que
se usaron en la competencia de SpRadIE [17]. El contenido presentado en esta subsección
está mayormente tomado de esa publicación. En total se computan seis métricas Precision,
Recall y F1-Score (o simplemente F1 ) paramatch parcial, y las mismas tres pero evaluadas
con match exacto. Match parcial significa que se da una ponderación relativa a predecir
una anotación en forma parcialmente correcta (es decir que se reconocen cosas de menos o
de más) mientras que el match exacto solo considera predicciones exactas. Para SpRadIE,
la métrica que se tomó como referencia para escoger a un ganador fue el F1-Score para
match parcial, considerando que una anotación aunque no sea perfecta puede ser útil en
muchas tareas.
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Fig. 4.5: Diagrama muestra el proceso de evaluación de los modelos, desde los entrenamientos
realizados hasta llegar a los diferentes análisis realizados. Los pasos se ordenan cronológi-
camente de arriba hacia abajo, manteniendo en el mismo nivel aquellas tareas que pueden
ejecutarse en paralelo. Se incluyen tanto las evaluaciones extŕınsecas como las cualitativas.
Para representar a los modelos pre-entrenados de los que partimos, utilizamos rombos.
Los rectángulos son usados para representar las distintas acciones que a su vez generan
resultados para ser consumidos en la siguiente acción. El color de cada rectángulo re-
presenta a cuál de los cuatro grupos de tareas, diagramados en la figura 4.4, pertenece.
Algunas siglas son utilizadas por una cuestión de espacio: HF (HugginFace), FT (Fine
Tuning) y WE (Word Embeddings).
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Una aclaración importante es que todas las métricas reportadas en este trabajo se
computan utilizando micro-average. Esto implica que todas las instancias de predicciones
y referencias tienen el mismo peso al calcular Precision, Recall y F1-score, independiente-
mente de a qué entidad correspondan. Este enfoque se diferencia del macro-average, donde
las métricas se computan por cada clase de entidad primero y luego se promedian dichos
resultados para obtener la métrica general (por ejemplo, primero se computaŕıa Precision
para cada una de nuestras 10 entidades por separado, y luego se haŕıa el promedio de
esas 10 métricas para obtener el macro-average Precision). La principal diferencia entre
ambos métodos radica en como se comportan frente a problemas con clases desbalancea-
das (es decir, que hay clases que concentran más ejemplos que otras). El micro-average,
al considerar todos los ejemplos con la misma importancia, resulta más afectado por los
resultados obtenidos para las clases mayoritarias. Mientras que el macro-average le asigna
la misma importancia a todas las clases, independientemente de si una representa el 99%
de los casos y otra solo el 1%. Ambas son útiles y la elección de una u otra depende del
caso concreto y lo que se quiera priorizar.

Para el cálculo de todas estas métricas, lo primero que hay que hacer es computar
el ı́ndice de Jaccard, que consiste en una medida de similitud entre la referencia y la
predicción. En término de conjuntos, la forma de calcularlo consiste en hacer un ratio de
la intersección entre la referencia y la predicción sobre la unión de las mismas. La función
J expresa el cálculo del ı́ndice Jaccard en el contexto de similitud entre fragmentos de
texto:

J(ref, pred) =
long(solapamiento(ref, pred))

long(ref) + long(pred)− long(solapamiento(ref, pred))
(4.1)

donde ref es el texto de referencia anotado en nuestro ground truth, pred es el texto
reconocido por nuestro modelo, long es la función que devuelve el largo de una cadena de
caracteres y solapamiento es una función que devuelve la sub-cadena de caracteres más
larga que es compartida por dos cadenas, teniendo en cuenta el orden de los caracteres.
Notar que si ref y pred son iguales, entonces la función vale 1. Mientras que si ref y pred
no comparten nada en común, entonces el ı́ndice da 0.

A partir de este ı́ndice definimos las métricas a evaluar de la siguiente forma:

PRECparcial =

∑
(ref,pred)∈M J(ref, pred)

P
(4.2)

RECparcial =

∑
(ref,pred)∈M J(ref, pred)

R
(4.3)

PRECexacta =
|{(ref, pred) ∈ M : J(ref, pred) = 1}|

P
(4.4)

RECexacta =
|{(ref, pred) ∈ M : J(ref, pred) = 1}|

R
(4.5)

donde P es el número total de anotaciones predichas, R es el total de anotaciones de
referencia y M es un conjunto de pares de referencias y anotaciones dado. El cómo definir
M no es trivial y en SpRadIE se escoge resolver esto con una heruŕıstica de tipo greedy
que itera sobre las anotaciones predichas y las empareja con la mejor anotación del ground
truth.



4.5. Evaluación extŕınseca 55

Por último, a partir de los valores calculados para Precision y Recall podemos computar
el F1 siguiendo la siguiente fórmula:

F1-score = 2×
Precision× Recall

Precision + Recall
(4.6)

Notar que la misma fórmula sirve tanto para match parcial como exacto, y el tipo del
F1 estará dado por el tipo de Precision y Recall utilizados.

Para asegurar que nuestros resultados sean comparables con los de la competencia,
calculamos todas estas métricas utilizando el script provisto en la página de SpRadIE26.

4.5.1. Intervalos de confianza con bootstrapping

Como forma de poder tener una comparación más robusta entre los distintos modelos
de NER entrenados, aplicamos la técnica de bootstrapping, introducida en la sección 2.8,
para estimar intervalos de confianza del 95%.

El algoritmo seguido para aplicar el bootstrapping y estimar los intervalos para cada
uno de los modelos fue el siguiente:

1. Tomamos los 207 infomes de la partición de test de SpRadIE27 y generamos los
archivos en formato .ann (ver Brat Format en 4.2.2) a partir de las predicciones del
modelo.

2. A partir de esta muestra base de 207 predicciones del modelo, generamos 1000 nuevas
muestras (con 207 informes cada una) a través del muestreo con reposición (boots-
trapping).

3. Para cada una de las mil muestras, ejecutamos el script de evaluación de SpRadIE,
mencionado en la sección anterior. Esto nos da distintos resultados de f1-score (tanto
exacto como parcial) para cada una de las muestras.

4. Sobre estas métricas calculadas, tomamos la mediana como estimador del valor es-
perado del f1-score para el modelo. Por otro lado, nos quedamos con el 2.5-percentil
como estimador del ĺımite inferior del intervalo, y el 97.5-percentil como estimador
del ĺımite superior.

Una ventaja de construir los intervalos de esta manera, a partir de los percentiles, es
que no dependemos de asumir hipótesis de normalidad sobre los datos muestreados.

4.5.2. Estudio de ablación

Un estudio de ablación es un enfoque sistemático para evaluar el impacto de los com-
ponentes individuales dentro de un modelo de Machine Learning. Al eliminar o reemplazar
selectivamente ciertas partes de la arquitectura, es posible cuantificar sus contribuciones
al rendimiento general. Esta técnica es particularmente útil para comprender el papel de
submódulos o arquitecturas complejas en la obtención de los resultados reportados.

26 https://github.com/francolq/spradie
27 Es importante aclarar que la partición de test fue usada únicamente en la ejecución final como forma

de generar los datos a reportar. En lo restante del desarrollo, se trabajó siempre usando los conjuntos de
devSameSample y devHeldOut.
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En nuestro caso, todos los modelos de NER entrenados pueden separarse en dos seccio-
nes principales: una “sección de embedding”, que se encarga de generar una representación
interna a partir del texto analizado; y una “sección de etiquetado” (o sequence tagger),
que es la encargada de interpretar estas representaciones y generar las etiquetas corres-
pondientes. En el caso de los modelos basados en FastText o Flair esta diferencia es más
notoria: ambos métodos se enfocan en generar embeddings directamente reutilizables por
otras arquitecturas, como por ejemplo las BiLSTM+CRF (sequence tagger) que escogimos
aqúı. Y en general cuando se entrena la sección de etiquetado no se modifican los pesos de
la sección de embedding. Por su parte, en los Transformers esta distinción puede ser menos
evidente: la capa de salida del Transformer (head) podŕıa considerarse el sequence tagger,
mientras que el resto de capas ocultas seŕıan las encargadas de armar el embedding. Sin
embargo, cuando se entrena para la tarea de NER generalmente también se actualizan los
pesos de varias o todas las capas internas.

Estas diferencias que se dan en la sección de etiquetado entre los distintos modelos
entrenados en este trabajo, hace que una comparación directa del aporte de los embeddings
en cada caso sea complicada. Aún más, a veces estos sequence tagger son tan poderosos en śı
mismos que logran aprender nuevas relaciones complejas entre los inputs aun cuando estas
no hayan sido capturadas en los embeddings. Por ejemplo, los BiLSTM son una arquitectura
que se caracteriza justamente por su capacidad de retener dependencias de largo plazo en
si misma, lo que puede suplir carencias que tienen los embeddings estáticos, por ejemplo
FastText. En el caso de los Transformers, si bien la capa de salida no es particularmente
compleja, el hecho de que se estén reentrenando todas las capas del modelo de lenguaje al
momento de aprender a etiquetar, genera un efecto similar.

Debido a que el propósito de esta tesis es evaluar a los embeddings y modelos de len-
guaje no solo desde el punto de vista de la utilidad para una tarea puntual, sino también
desde sus propiedades inherentes, optamos por realizar un estudio de ablación en el que
reemplazamos los complejos sequence taggers de todos los modelos por una capa de eti-
quetado lineal más un CRF. Dicha capa puede proyectar los embeddings al espacio de
salida deseado, pero no tiene posibilidad de capturar propiedades semánticas o retener de-
pendencias de largo plazo adicionales. Para este experiemento nos basamos en un análisis
planteado en el art́ıculo fundacional de Flair [2].

4.5.3. Algoritmo para abreviaturas

Un hallazgo que fue importante tras las pruebas iniciales con la partición de Validation,
es el bajo desempeño que lograban todos los modelos sobre la categoŕıa Abbreviations,
especialmente en términos de recall. En todos los casos se obtuvieron valores por debajo
de 0.25 para recall al evaluar sobre la partición de validación. Al analizarlo, encontramos
que es un fenómeno consistente con la metodoloǵıa de resolución de anotaciones solapadas
que describimos en la sección 4.2.2: las abreviaturas son la entidad más penalizada por
este criterio debido a que la mayoŕıa de las veces son partes de entidades más grandes,
como Measure o Anatomical Entity, y terminan quedando muy subrepresentadas en el
conjunto de entrenamiento en formato BIO. Por ejemplo, algunas de las Abbreviations
más comúnes son “cm”, “mm”, “RD” y “RI”. Las dos primeras suelen aparecer dentro
de mediciones, mientras que las últimas dos son entidades anatómicas (riñón derecho y
riñón izquierdo, respectivamente). Adicionalmente, como puede observarse en la figura
4.1, la entidad Abbreviation es la segunda en frecuencia después de Anatomical Entity,
representando el 19.4% del total de las etiquetas. Esto provoca que sus resultados tengan
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un alto impacto en el micro-average de las métricas, como se explica en la sección 4.5.

Debido a estos motivos y al hecho de que los mejores resultados de la competencia
original fueron obtenidos por aquellos que decid́ıan usar una estrategia de segmentar enti-
dades para entrenar modelos especialistas, optamos por excluir la etiqueta de Abbreviation
del entrenamiento de los modelos. En su lugar, para este tipo de entidad utilizamos un
algoritmo simple basado en expresiones regulares (RegEx ) que se explica a continuación.

Primero analizamos la frecuencia de ocurrencia de las distintas palabras marcadas co-
mo Abbreviation en la partición de Train de spradie-corpus. La figura 4.6 muestra la
distribución tipo long-tail que presenta esta entidad: es decir que pocas palabras repre-
sentan la gran mayoŕıa de las ocurrencias, mientras que hay muchas palabras con muy
pocas ocurrencias. Esto significa que simplemente quedándonos con un pequeño grupo de
las palabras más frecuentes podemos cubrir la mayoŕıa de anotaciones. A partir de esta
observación armamos una lista de las 24 palabras más frecuentes para Abbreviation, que
puede encontrar en el Apéndice (7.2).

Fig. 4.6: Gráfico de barras mostrando la frecuencia de las veinte palabras más frecuentes etiqueta-
das como Abbreviation en el conjunto de entrenamiento de spradie-corpus

Con dicha lista se aplica un algoritmo simple para anotar las palabras: buscamos en
cada informe ocurrencias de palabras en la lista, siempre y cuando no estén precedidas o
seguidas directamente por otras letras. Con este último criterio lo que hacemos es prevenir
Falsos Positivos por anotar sub-palabras erroneamente. Por ejemplo, la Abbreviation “izq”
puede ser encontrada dentro de la palabra “izquierda” que no es una Abbreviation.

Vale la pena destacar que como el principal objetivo de la tesis es identificar la utilidad
y aporte de las representaciones vectoriales, al momento de realizar las evaluaciones nos
enfocamos en los modelos de Machine Learning, dejando de lado la categoŕıa de Abbre-
viation para estos análisis. En el único caso donde realmente nos importan y las usamos
en combinación con los resultados de los modelos, es en la sección 5.3.2 cuando hacemos
el benchmark contra el estado del arte.

4.6. Evaluación intŕınseca

Como se comenta en el capitulo 3 la escasez de gold standards para el dominio de análi-
sis de ecograf́ıas o afines en idioma español dificulta la evaluación intŕınseca, al menos de
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una forma fácil de cuantificar y comparar. Por este motivo decidimos implementar esta
evaluación intŕınseca a través de un análisis cualitativo que nos permita comprender un
poco mejor cuán bien nuestros embeddings capturan la semántica del dominio, indepen-
dientemente de una tarea objetivo espećıfica. Debido a que este sistema requiere un gran
esfuerzo de análisis manual, optamos por no hacerlo para todos los modelos sino solo para
los que nos dieron los mejores resultados en las pruebas extŕınsecas.

El marco general consiste en realizar tres pasos: generar los embeddings para cada
uno de los informes, aplicar una reducción de dimensionalidad y por último un análisis de
los clusters formados en este espacio reducido. A continuación presentamos los métodos
aplicados para dicho análisis.

Como mencionamos arriba, los modelos usados para este análisis son solo algunos
basados en Transformers, y más espećıficamente basados en la arquitectura de BERT.
Para obtener los embeddings seguimos el procedimiento explicado en la sección 2.4.2. En
nuestro caso, por simplicidad y dado que hasta donde conocemos no hay ningún estudio
que generalice la mejor forma de usar los estados internos para embeddings, decidimos
proceder únicamente con la última capa oculta.

Esta metodoloǵıa la aplicamos sobre una partición de Test con 8222 informes sepa-
rados de anonymized-ultrasounds-80k-with-diacritics antes de entrenar. Escogemos
realizar los embeddings sobre los informes completos, promediando los embeddings obte-
nidos para cada token que compone un informe. Otro tipo de análisis que podŕıa resultar
interesante es el de hacer los embeddings a nivel de oraciones.

Debido a que los embeddings tienen 768 dimensiones resulta complejo analizarlos. Por
tal motivo aplicamos técnicas de reducción de dimensionalidad para llevarlos a un es-
pacio más manejable. Espećıficamente usamos Principal Component Analysis (PCA) y
t-Distributed Stochastic Neighbor Embedding (t-SNE), que fueron introducidas en 2.9. El
foco lo ponemos sobre t-SNE ya que nuestro principal interés está en poder hacer un análi-
sis gráfico en 2-dimensiones. Sin embargo también realizamos algunas pruebas con PCA y
PCA + t-SNE (reduciendo las dimensiones de los embeddings de 768 a 50 mediante PCA
y luego aplicando t-SNE sobre esto).

Una vez reducida la dimensionalidad de los embeddings pasamos a aplicar algunas
técnicas de clustering para tratar de simplificar el análisis de los clusters que se forman.
Los métodos usados son K-Means, DBSCAN y HDBSCAN, todos introducidos en 2.10.
Vale aclarar que acá no estamos tratando de optimizar nada, solo ayudarnos de estos
métodos para poder segmentar de forma semi-automática algunas áreas interesantes para
analizar en el espacio reducido.

El objetivo es ver si se forman clusters y si los mismos son consistentes con la semántica
de los informes representados por los puntos de dichos clusters.



5. RESULTADOS DE EVALUACIÓN EXTRÍNSECA

En este caṕıtulo analizamos los resultados obtenidos para la tarea objetivo (SpRadIE)
utilizando los distintos modelos de lenguaje y embeddings mencionados en el caṕıtulo an-
terior. Todos los resultados que se presentan a continuación fueron calculados sobre la
partición de Test de la tarea de SpRadIE. Para el cómputo de las métricas se ejecuto
exactamente el mismo script utilizado en dicha competencia. En todos los caso, las métri-
cas de Precision, Recall y F1-Score fueron calculadas con micro-average sobre todas las
entidades analizadas.

Este caṕıtulo se divide en cuatro secciones principales: primero analizamos los resul-
tados generales de los modelos entrenados apoyándonos en la técnica de bootstrapping ;
luego hacemos lo propio con el estudio de ablación propuesto; continuamos con una com-
paración de nuestros resultados contra el estado del arte; y por último, cerramos haciendo
un análisis manual de los errores que nos permite ganar un mayor entendimiento sobre el
comportamiento del modelo.

5.1. Análisis usando Bootstrapping

En esta sección presentamos los resultados obtenidos para todos los modelos entrena-
dos al evaluarlos sobre la partición de Test. Para poder sacar conclusiones estad́ısticamente
significativas, presentamos las medianas del F1-Score tanto exacto (Exact F1-Score) como
parcial (Lenient F1-Score) en conjunto con sus intervalos de al menos 95% de confian-
za1. Dichos resultados se muestran en la tabla 5.1, agrupados según el tipo de modelo de
lenguaje pre-entrenado que se usó. También diferenciamos los resultados obtenidos por
aquellos clasificadores que se construyeron directamente a partir de estos modelos (“Ba-
se”) de aquellos que lo hicieron sobre los modelos con fine-tuning sobre nuestros datos
(“Finetuned”). En el caso particular de los clasificadores basados en FastText, dado que
no son modelos de lenguaje ni tampoco se usaron pesos pre-entrenados, nos referimos a
estos como “Trained”, como forma de destacar que fueron completamente entrenados por
nosotros y sobre nuestros datos.

1 Si bien fueron estimados intervalos de confianza del 95% usando bootstrapping, los mismos no tienen
porque ser simétricos respecto de la mediana ya que no asumimos una distribución particular sobre las
muestras. Sin embargo en la práctica vemos que en la mayoŕıa de los casos resultan simétricos o casi
simétricos, por lo que decidimos escoger siempre tomar un intervalo simétrico respecto de la media, para
poder simplificar la notación y usar el śımbolo ±. Por ejemplo, si la mediana fuera 80, el ĺımite inferior
del intervalo 79,5 (−0,5) y el superior 81 (+1), entonces registramos 80± 1. Esta metodoloǵıa asegura que
el intervalo de confianza del 95% estimado con el método de bootstrapping siempre esté incluido en el
intervalo presentado. Y por este motivo hablamos de que los intervalos son de “al menos 95%”.
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Modelo Lenient F1-Score Exact F1-Score

BETO CLINICAL WL
Base 83.8 ± 1.2 78.5 ± 1.6
Finetuned 85.3 ± 1.2 80.1 ± 1.5

ROBERTA BIO CLINICAL
Base 83.8 ± 1.3 78.9 ± 1.6
Finetuned 84.9 ± 1.1 79.5 ± 1.5

BETO CASED
Base 84.2 ± 1.2 79.0 ± 1.6
Finetuned 84.9 ± 1.2 79.9 ± 1.5

BETO UNCASED
Base 83.8 ± 1.2 78.6 ± 1.4
Finetuned 84.6 ± 1.2 79.7 ± 1.4

ROBERTA CLINICAL WL
Base 84.4 ± 1.2 78.8 ± 1.6
Finetuned 84.5 ± 1.3 79.1 ± 1.5

ROBERTA BNE
Base 82.5 ± 1.3 77.0 ± 1.6
Finetuned 84.1 ± 1.3 79.0 ± 1.5

CLINICAL FLAIR
Base 82.4 ± 1.4 76.6 ± 1.6
Finetuned 83.7 ± 1.2 77.9 ± 1.5

FASTTEXT200
Trained 81.5 ± 1.4 74.8 ± 1.7

FASTTEXT100
Trained 80.5 ± 1.4 74.6 ± 1.5

Tab. 5.1: Mediana de los F1-Scores (micro-averaged) estimando intervalos de al menos 95% de
confianza mediante bootstrapping, tanto para match exacto como parcial. Los modelos
están ordenados de mayor a menor Lenient F1-score del modelo finetuneado.

Como primer observación viendo los resultados en la tabla 5.1 podemos notar que
los modelos que mejor se desempeñaron fueron todos aquellos basados en Transformers,
seguidos de los modelos basados en Flair (BiLSTM) y por último aquellos basados en
FASTTEXT. Entre el mejor y el peor modelo hay una diferencia de 5 puntos porcentuales
(pp) para match parcial y de 5.5 pp para match exacto.

Todos los modelos presentan mejores resultados para el match parcial que para el
exacto. Si bien esto no sorprende, es destacable que en todos los casos (independientemente
del tipo de modelo y del tratamiento que recibió respecto al fine-tuning) la diferencia entre
el resultado exacto y parcial está entre 5 y 6 pp. Una hipótesis del porqué esta diferencia
se mantiene casi constante entre todos los modelos podŕıa ser que exista un sub-conjunto
de informes para el cuál resulta particularmente desafiante lograr un match exacto. Esta
es una hipótesis que no profundizamos en este trabajo.

Un punto a destacar es que, para los casos de los modelos de lenguaje donde se realizó
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fine-tuning sobre el corpus anonymized-ultrasounds-80k, los resultados son sostenida-
mente mejores en comparación a los casos donde se utilizó directamente el modelo base,
aunque no por demasiado. En algunos casos la diferencia es incluso casi nula (por ejem-
plo, en ROBERTA CLINICAL WL y en BETO CASED) sobretodo si se consideran los
intervalos de confianza.

Dentro de lo que son los modelos basados en Transformers, no vemos diferencias de-
masiado grandes entre los modelos finetuneados. No hay en principio una dominancia
clara entre los modelos basados en arquitecturas del tipo BERT, de aquellos basados en
arquitecturas del tipo RoBERTa.

Si bien en algún punto es alentador ver que por lo menos el proceso de domain adapta-
tion sobre el modelo de lenguaje mantiene o mejora los resultados, a priori esperábamos
ver diferencias más significativas. Recordemos que aqúı técnicamente se están haciendo
dos fine-tunings por cada modelo: el primero es un domain adaptation no-supervisado a
nivel del modelo de lenguaje (o embedding) y el segundo es una task adaptation para la
tarea de NER espećıfica. Nuestro objetivo principal es medir la ganancia generada por el
primer proceso y en ese sentido el segundo proceso puede generar cierta distorsión. Por
eso realizar un estudio de ablación resulta de gran ayuda para entender mejor esto.

5.2. Estudio de ablación

En esta sección se presentan los resultados del estudio de ablación, que como se ex-
plicó previamente en 4.5.2 consiste en utilizar una capa lineal combinada con Conditional
Random Fields como forma de clasificar las entidades del NER. Al hacer esta simplifica-
ción en la capa de clasificación podemos apreciar mejor la contribución de los embeddings
entrenados al resultado final.

En la tabla 5.2 podemos ver el resultado de dicho estudio. El formato de esta tabla
es similar al de la tabla 5.1 con un agregado: para cada métrica se pone entre paréntesis
de cuántos puntos porcentuales fue la cáıda en el desempeño respecto de los resultados
mostrados en la sección anterior. Para simplificar un poco la cantidad de información a
mostrar en la tabla se omitieron los resultados basados en los modelos BETO CASED,
BETO UNCASED y FASTTEXT100 por no presentar caracteŕısticas adicionales a las que
mencionamos a continuación.

El primer punto que se observa es que los modelos basados en FASTTEXT (no con-
textuales) son los que sufren la mayor cáıda de performance al aplicar la ablación: la cáıda
está en torno a los 24 puntos porcentuales (pp) para el F1-Score con match parcial y 27 pp
para el match exacto. Mientras que para las representaciones contextualizadas, la cáıda
máxima está en alrededor de los 10 pp, con la única excepción de ROBERTA BNE, donde
la cáıda es mayor (entre 11 y 14 pp) pero sigue lejos de la de FASTTEXT. Es destacable
que estos resultados son muy similares a los que se presentan en el paper fundacional de
Flair [2] de donde tomamos inspiración para realizar este análisis. Este caso también pone
en evidencia el peso que tiene el uso de un algoritmo de NER que se apalanque en la
información contextual por śı mismo, mostrando que al menos para el caso de SpRadIE
puede compensar el uso de representaciones no tan potentes.

Yendo al caso de los modelos contextualizados hay varios aspectos interesantes para
notar. La primera de todas es que al realizar la ablación de los modelos el orden del
ranking que se ve en la tabla 5.1 cambia. BETO CLINICAL WL con finetuning, que
hab́ıa presentado los mejores resultados, pasa a quedar en un tercer lugar al cambiar su
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Modelo F1-Score Parcial F1-Score Exacta

BETO CLINICAL WL
Base + Ablation 77.8 ± 1.5 (↓ 6 pp) 71.2 ± 1.9 (↓ 7.3 pp)
Finetuned + Ablation 78.6 ± 1.5 (↓ 6.7 pp) 71.7 ± 2.0 (↓ 8.4 pp)

ROBERTA BIO CLINICAL
Base + Ablation 78.2 ± 1.5 (↓ 5.6 pp) 71.3 ± 1.7 (↓ 7.6 pp)
Finetuned + Ablation 76.1 ± 1.7 (↓ 8.8 pp) 69.1 ± 2.0 (↓ 10.4 pp)

ROBERTA BNE
Base + Ablation 69.1 ± 1.8 (↓ 13.4 pp) 63.2 ± 2.0 (↓ 13.8 pp)
Finetuned + Ablation 73.2 ± 1.6 (↓ 10.9 pp) 65.8 ± 1.8 (↓ 13.2 pp)

ROBERTA CLINICAL WL
Base + Ablation 77.8 ± 1.6 (↓ 6.6 pp) 69.7 ± 1.8 (↓ 9.1 pp)
Finetuned + Ablation 79.6 ± 1.4 (↓ 4.9 pp) 73.0 ± 1.7 (↓ 6.1 pp)

CLINICAL FLAIR
Base + Ablation 73.6 ± 2.1 (↓ 8.8 pp) 68.4 ± 2.1 (↓ 8.2 pp)
Finetuned + Ablation 82.0 ± 1.3 (↓ 1.7 pp) 76.1± 1.5 (↓ 1.8 pp)

FASTTEXT200
Trained + Ablation 57.2 ± 2.6 (↓ 24.3 pp) 47.6 ± 2.8 (↓ 27.2 pp)

Tab. 5.2: Mediana de los micro-averaged F1-Scores (tanto para match parcial como para match
exacto) estimando intervalos de al menos 95% de confianza mediante bootstrapping.
Además, entre paréntesis se presenta la cáıda de performance medida en puntos por-
centuales (pp) con respecto a los resultados presentados en la tabla 5.1 para mismo
modelo pero sin aplicar la ablación. Dichas cáıdas deben considerarse en forma aproxi-
mada debido a que los márgenes de error de las mediana no se están teniendo en cuenta
para este cálculo. Por simplicidad y claridad los resultados para BETO CASED, BETO
UNCASED y FASTTEXT100 fueron omitidos aqúı.
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última capa, quedando por detrás de CLINICAL FLAIR y ROBERTA CLINICAL WL
respectivamente (ambos con finetuning). Es de destacar el caso de CLINICAL FLAIR
que previamente hab́ıa mostrado el peor resultado para los modelos contextualizados (si
bien fue por una diferencia ajustada) y tras la ablación queda en primer lugar con cierta
diferencia (alrededor de 2 pp respecto del segundo mejor y 3 pp respecto del tercero).

Otro punto que resulta relevante analizar es el impacto de la presencia de fine-tuning
o no en los modelos. El caso de CLINICAL FLAIR es de los más llamativos ya que si
comparamos las pérdidas de desempeño entre el modelo base y el finetuneado, vemos que
el primero tiene una cáıda significativa (cercana a 9 pp) mientras que el segundo recibe
un impacto mucho más acotado (por debajo de 2 pp). Esto parece evidenciar que en este
caso el proceso de domain adaptation es exitoso en capturar información interna de la
estructura de los informes y generar representaciones que simplifican la tarea de reconocer
las entidades aún con un algoritmo lineal. También suma un punto más al argumento de
que el uso de modelos complejos (como Redes Neuronales Recurrentes en este caso) para
la capa de reconocimiento de entidades nombradas opaca en buena medida la diferencia
de calidad de los embeddings que se usen como entrada. Al respecto de esto basta notar en
la tabla 5.1, de la sección anterior, que la diferencia entre el modelo base y el finetuneado
era menor a 2 pp sin aplicar la ablación.

Volviendo al análisis de la relevancia del fine-tuning de los modelos de lenguaje, si ahora
nos enfocamos en los modelos basados en Transformers observamos un comportamiento
mixto. BETO CLINICAL WL, ROBERTA CLINICAL WL y ROBERTA BNE performan
un poco mejor o igual en sus versiones finetuneadas respecto de las base. Sin embargo,
ROBERTA BIO CLINICAL por algún motivo performa mejor en su versión base (a pesar
de que en el modelo sin ablación se desempeñaba mejor la versión finetuneada) por una
diferencia aproximada de 2 pp.

A modo de comentario de cierre de esta sección, es importante señalar que este estudio
no es suficiente por si solo para determinar que un embedding es mejor que otro. Al estar
poniendo un clasificador lineal en la capa de salida, básicamente estamos condicionando
que las representaciones usadas pertenezcan a un espacio donde las anotaciones de las
entidades sean linealmente separables. Si bien la separabilidad lineal es una propiedad
generalmente deseable, no necesariamente eso quita que embeddings que no la cumplan
puedan resultar más propicios para otro tipo de capas de salida. También hay que tener en
cuenta que un mismo embedding puede ser reaprovechado para distintos problemas donde
no necesariamente la representación cumpla separabilidad lineal. Para profundizar en esto
se aconseja la lectura de la sección 15.1.1 del libro “Deep Learning” [27].

5.3. Comparación de resultados respecto de trabajos previos

En lo que sigue se realiza un análisis de los resultados obtenidos comparándolos di-
rectamente contra los mejores resultados publicados en la competencia de SpRadIE. Un
resumen de los resultados alcanzados por cada equipo participante puede encontrarse en
“Overview of CLEF eHealth Task 1-SpRadIE: A challenge on information extraction from
Spanish Radiology Reports.” [17]. Las métricas son calculadas siguiendo exactamente el
mismo procedimiento que se uso en la competencia (ver sección 4.5) de forma tal que
pueda realizarse efectivamente la comparación. Este es el motivo por el que los resultados
presentados en esta sub-sección no incluyen un intervalo de confianza estimado, ya que
aqúı se considera únicamente la métrica computada sobre la totalidad de la partición de
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Test.

Para esto, además es necesario incluir predicciones para las entidades de tipo Abbre-
viation que hasta ahora excluimos de los resultados presentados pero que son parte de
los resultados obtenidos por los participantes de la competencia. En la primera parte de
esta sección explicamos cómo se realizan las predicciones para esta entidad espećıfica.
Luego, presentamos los resultados finales combinando los resultados obtenidos para las 10
entidades etiquetadas en el corpus.

5.3.1. Etiqueta Abbreviation

En la tabla 5.3 presentamos los resultados obtenidos a través del algoritmo desarro-
llado para detectar abreviaturas. Este algoritmo fue introducido en la sección 4.5.3. Una
observación interesante es que por el funcionamiento del mismo, que identifica patrones
exactos en el texto, las métricas dan prácticamente el mismo resultado para match parcial
y para match exacto . Por ese motivo, informamos únicamente el valor obtenido aplicando
match exacto.

Métrica Valor

Precision 97.6

Recall 88.1

F1 92.6

Tab. 5.3: Métricas de Precision, Recall y F1-Score (todas micro-averaged) con match exacto obte-
nidas para la identificación de entidades de tipo Abbreviation, usando el algoritmo basado
en Regex.

Estos resultados son mejores que el promedio obtenido para el resto de las entidades,
sacando una diferencia favorable en el orden de 10 puntos porcentuales (si comparamos
métrica a métrica con los resultados vistos en la tabla 5.1, para cualquiera de los mo-
delos que se tome como referencia). A continuación, en la sección 5.3.2, se reportan los
resultados sobre el conjunto de Test combinando tanto este método (aplicado únicamente
para detectar Abbreviation) como los basados en modelos de lenguaje (que se aplican para
detectar el resto de las entidades descriptas en 4.1.2). De este modo, se logra un resultado
comparable con los reportados en la competencia de SpRadIE [17].

5.3.2. Comparación con la competencia

Ahora presentamos los resultados obtenidos al realizar la evaluación de los modelos de
reconocimiento de entidades nombradas, sobre el conjunto de Test entero y combinándolos
con los resultados presentados en la sección 5.3.1 para las abreviaciones. En las tablas 5.4
y 5.5 se vuelcan los resultados obtenidos para match parcial y exacto respectivamente.
Además se incluyen los resultados de los modelos que, hasta el momento de la publicación
de este trabajo, eran los mejores publicados para la tarea de SpRadIE. Recordemos que el
criterio que se escogió para seleccionar al mejor modelo en la competencia fue aquel que
alcanzara mayor F1-Score (micro-averaged) con match parcial sobre todas las entidades
descriptas en la sección 4.1.2.
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Model Precision Recall F1 Score

FT BETO CLINICAL WL+Regex 91.2 83.1 86.9

FT BETO CASED+Regex 91.2 82.5 86.6

FT ROBERTA BIO CLINICAL+Regex 91.1 82.6 86.6

FT BETO UNCASED+Regex 90.5 82.5 86.3

FT ROBERTA CLINICAL WL+Regex 90.6 82.4 86.3

ROBERTA CLINICAL WL+Regex 90.6 82.2 86.2

BETO CASED+Regex 90.1 82.3 86.0

FT ROBERTA BNE+Regex 90.7 81.7 86.0

ROBERTA BIO CLINICAL+Regex 89.9 82.0 85.8

BETO UNCASED+Regex 89.7 82.1 85.8

BETO CLINICAL WL+Regex 89.2 82.5 85.7

EdIE (UK) – run2 87.2 83.9 85.5

ROBERTA BNE+Regex 89.0 81.0 84.8

LSI (Spain) – run1 90.3 78.3 83.9

FT FASTTEXT200+Regex 89.1 79.3 83.9

FT CLINICAL FLAIR+Regex 88.9 79.1 83.7

FT FASTTEXT100+Regex 89.0 78.2 83.2

BASE CLINICAL FLAIR+Regex 87.2 78.1 82.4

Tab. 5.4: Métricas de Precision, Recall y F1-Score (todas micro-averaged) con match parcial, cal-
culadas bajo el mismo procedimiento que se utilizó en la competencia de SpRadIE. En
esta tabla se combinan los resultados obtenidos para Abbreviations (usando Regex) con
los resultados para las restantes 9 entidades (usando Deep Learning). A fines de com-
paración se incluyen también los dos mejores resultados de la competencia (resaltados
en negrita). Los modelos están ordenados por micro-averaged F1-Score de forma des-
cendente y en negrita se resaltan los mejores resultados para cada métrica. La sigla FT
(por fine-tuned) al comienzo del nombre indica que dicho modelo de NER se basa en un
modelo de lenguaje o embedding fine-tuneado por nosotros. Caso contrario, parte de uno
de los modelos base señalados en la sección 4.3.
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Model Precision Recall F1 Score

FT BETO CLINICAL WL+Regex 86.9 79.2 82.9

FT BETO CASED+Regex 87.1 78.8 82.7

FT BETO UNCASED+Regex 86.5 78.9 82.5

FT ROBERTA BIO CLINICAL+Regex 86.6 78.5 82.3

FT ROBERTA CLINICAL WL+Regex 86.2 78.4 82.1

BETO CASED+Regex 85.8 78.4 82.0

FT ROBERTA BNE+Regex 86.5 77.9 82.0

ROBERTA BIO CLINICAL+Regex 85.8 78.3 81.9

ROBERTA CLINICAL WL+Regex 86.0 78.0 81.8

BETO UNCASED+Regex 85.4 78.2 81.6

BETO CLINICAL WL+Regex 84.9 78.5 81.6

ROBERTA BNE+Regex 84.4 76.8 80.4

EdIE (UK) – run2 81.9 78.7 80.3

LSI (Spain) – run1 86.2 74.8 80.1

FT FASTTEXT200+Regex 83.5 74.3 78.7

FT CLINICAL FLAIR+Regex 82.8 73.7 78.0

FT FASTTEXT100+Regex 84.0 73.8 78.6

BASE CLINICAL FLAIR+Regex 81.1 72.6 76.6

Tab. 5.5: Métricas de Precision, Recall y F1-Score (todas micro-averaged) con match exacto, cal-
culadas bajo el mismo procedimiento que se utilizó en la competencia de SpRadIE. En
esta tabla se combinan los resultados obtenidos para Abbreviations (usando Regex) con
los resultados para las restantes 9 entidades (usando Deep Learning). A fines de com-
paración se incluyen también los dos mejores resultados de la competencia (resaltados
en negrita). Los modelos están ordenados por micro-averaged F1-Score de forma des-
cendente y en negrita se resaltan los mejores resultados para cada métrica. La sigla FT
(por fine-tuned) al comienzo del nombre indica que dicho modelo de NER se basa en un
modelo de lenguaje o embedding fine-tuneado por nosotros. Caso contrario, parte de uno
de los modelos base señalados en la sección 4.3.

Observamos que no solo obtuvimos uno sino varios modelos que performaron mejor
que los mejores resultados publicados hasta ahora, tanto para match parcial como exacto.
Es justo mencionar que aún aśı los resultados son muy ajustados para match parcial: 1.4
pp separan a nuestro mejor modelo del de EdIE, lo que representa una mejora de un 1.6%.
La diferencia es un poco más significativa en el caso de match exacto: el nuevo modelo
saca 2.6 pp de ventaja, representando una mejora del 3.2%.

Quizás lo más destacable es que se logró obtener resultados comparables e incluso
mejores con una solución significativamente menos compleja que la implementada por
EdIE (una descripción de la misma se encuentra en la sección 3.2). Ellos realizan algunos
pre-procesamientos al dataset y algunas correcciones de etiquetas, además de usar algunos
métodos más sofisticados para tratar de representar mejor las entidades anidadas. También
hacen uso de un BETO separado por cada tipo de entidad para resolver palabras con
anotaciones de distintos tipos y lidiar mejor con el desbalanceo, además de un método
adicional basado en análisis de frecuencia de patrones. Probablemente fue gracias a estos
últimos esfuerzos que consiguieron obtener el mejor Recall para match parcial. Por nuestro
lado ningún preprocesamiento de los datos fue realizado más allá de la conversión de
formato, y la resolución de solapamientos y discontinuidades se hizo en forma näıve. Se
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entrenó un único modelo para todas las entidades con excepción de Abbreviation, y para
esta última se realizó un método simple, basado en RegEx para encontrar los patrones
más frecuentes.

En la tabla 5.6 presentamos con mayor detalle las métricas obtenidas por nuestro mejor
modelo, FT BETO CLINICAL WL, para cada tipo de entidad nombrada por separado.
Además mostramos el soporte de cada entidad, que es la cantidad total de etiquetas que
existen en el corpus para dicha entidad. Esto nos permite dimensionar mejor el impacto
que tiene el desempeño del modelo por entidad en el resultado conjunto de cada métrica
(que al ser micro-averaged le da más peso a las entidades con mayor soporte, como se
explica en la sección 4.5). Una apreciación que podemos hacer es que la diferencia favorable
conseguida en los resultados globales, respecto de los mejores de la competencia, no se
explica por la forma particular en la que tratamos a las Abbreviations. El equipo ganador
de SpRadIE tuvo incluso mejores resultados en esta categoŕıa: nuestro F1-Score fue de 92.8
para Abbreviations mientras que el del equipo EdIE fue de 95.4. Esto es destacable ya que
muestra que el diferencial positivo que conseguimos se genera en el resto de las categoŕıas,
que fue donde centramos nuestros esfuerzos con los modelos de Deep Learning . Además
es la segunda categoŕıa con más peso (observando el soporte) y en la que menos esfuerzo
invertimos, por lo que es razonable pensar que podemos mejorarla (quizás simplemente
agregando más patrones a nuestro sistema de expresiones regulares) e incrementar aún
más nuestro F1-Score.

Tipo de entidad Parcial Exacto Soporte
Precision Recall F1 Precision Recall F1

Anatomical Entity 92.9 83.4 87.9 86.9 78.0 82.2 1772
Abbreviation 97.8 88.3 92.8 97.6 88.1 92.6 1652
Measure 93.5 82.2 87.5 90.1 79.3 84.3 1258
Finding 80.4 79.5 80.0 70.7 69.9 70.3 1000
Location 77.4 65.2 70.8 72.2 60.8 66.1 646
Type of measure 96.0 89.1 92.4 91.6 85.0 88.2 558
Negation 94.7 95.9 95.3 93.5 94.7 94.1 453
Degree 85.2 67.5 75.4 83.1 65.9 73.5 82
Uncertainty 86.4 67.5 75.8 84.2 65.8 73.8 73
Conditional Temporal 45.5 62.5 52.6 45.5 62.5 52.6 8

Tab. 5.6: Métricas de Precision, Recall y F1-Score (todas micro-averaged y computadas tanto con
match exacto como parcial) para el modelo FT BETO CLINICAL WL, desagregadas por
tipo de entidad nombrada. Para cada entidad, además, se muestra el soporte.

Otra nota interesante, al compararnos con el equipo de EdIE, es que en su trabajo
([61]) ellos mencionan que no lograron predecir ninguno de las ocho fragmentos anotados
como Conditional Temporal, obteniendo un F1-Score de 0 para esta categoŕıa. Mientras
que nosotros logramos reconocer el 62.5% con una precisión del 45.5% (promediando un
F1 de 52.6%). Si bien este resultado es anecdótico en el contexto de la competencia (ya que
al ser solo 8 casos no representan ni siquiera el 0.1% de la métrica) se puede considerar
como un resultado alentador en cuanto a la capacidad de nuestro modelo y un indicio
de que el proceso de transfer learning favorece el aprendizaje de categorias altamente
sub-representadas.



68 5. Resultados de Evaluación Extŕınseca

5.3.3. Análisis manual de los errores

Para entender un poco mejor los resultados de FT BETO CLINICAL WL (nuestro
mejor modelo) y analizar sus oportunidades de mejora, procedimos con un análisis manual
de algunos de los errores que cometió el modelo al realizar predicciones sobre el conjunto
de Test. Escogemos dicho modelo dado que fue el que mejores resultados presentó para la
métrica de F1-Score (tanto en esta sección como en el análisis usando bootstrapping de la
sección 5.1). Para este análisis excluimos la entidad Abbreviation, ya que únicamente nos
interesa buscar oportunidades para mejorar el modelo de lenguaje o el modelo de NER.

Primero repasamos algunos detalles de notación. Usamos el término “predicción” para
referirnos a las etiquetas sugeridas por el modelo y “anotación” para referirnos a las
etiquetas provistas en SpRadIE. Recordemos que cuando hablamos de error aqúı nos
referimos a los casos donde el ı́ndice de Jaccard (explicado en 4.5) entre la predicción y
la anotación es estrictamente menor a 1 (es decir que no son exactamente iguales). En
particular, hablaremos de “error parcial” si el ı́ndice es distinto de 0 y de “error completo”
si el ı́ndice es exactamente 0. Ahora śı, pasamos a repasar los principales hallazgos.

En la tabla 5.7 se muestran la cantidad y tipo de errores cometidos por el modelo
FT BETO CLINICAL WL para cada uno de los tipos de entidad nombrada. Podemos
observar que las dos entidades con mayor cantidad de errores son Location (30) y Degree
(23). En cambio Anatomical Entity es la entidad que menos errores tiene (solo un error
parcial). Analizamos un poco más a fondo los casos de Location y Degree para entender
a que se deben estos errores.

Entidad Error Parcial Error Completo Total

Location 8 22 30

Degree 2 21 23

Uncertainty 3 10 13

Type of Measure 3 10 13

Measure 7 5 12

Finding 6 5 11

Negation 1 5 6

Conditional Temporal 0 5 5

Anatomical Entity 1 0 1

Total 31 83 114

Tab. 5.7: Cantidad y tipo de errores por entidad para el modelo FT BETO CLINICAL WL eva-
luado sobre la partición de Test de SpRadIE. Llamamos “error parcial” a aquellos errores
donde el ı́ndice de Jaccard entre la predicción y la anotación es estrictamente mayor a
0 y estrictamente menor a 1. Los “errores completos” son aquellos donde el ı́ndice de
Jaccard es exactamente 0. La columna “Total” refleja la suma de los errores parciales y
completos para cada tipo de entidad. Las entidades están ordenadas por esta columna,
de mayor a menor. Por último, la fila “Total” resume la cantidad de errores según su tipo
(parciales y completos) y en total (para todos los tipos y entidades).

En el caso de Location (LOC) analizamos 18 de los 30 errores totales. En la muestra,
observamos que el tipo de error predominante son los Falsos Negativos (16 de los 18),
es decir ya sea total o parcialmente hay cosas que el modelo no está prediciendo como
Location cuando debeŕıa. Vemos en varios casos (al menos 5) que el problema se debe a
una limitación intŕınseca de nuestro modelado: el modelo solo permite asignar una etiqueta
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a cada palabra por lo que en los casos donde dos entidades distintas se solapan sobre una
palabra, solo una de las dos puede ser asignada. Veamos los siguiente ejemplos:

Ejemplo 5.3.1. Nodulo isoecoco conocido en lobulo izquierdo hepatico de 41x338x30
mm

Ejemplo 5.3.2. Pequenas adenopatias cervicolaterales dispuestas en cadena de ecoes-

tructura conservada.

En el caso del ejemplo 5.3.1 “hepatico” (resaltado en amarillo) fue anotado manual-
mente como Location aunque también forma parte de una Anatomical Entity (resaltada
en rojo). Por otro lado en 5.3.2 “cervicolaterales” (en amarillo) fue marcado también como
Location en la anotación, pero a su vez pertenece a un Finding (en rojo). En ambos casos
el modelo falla en reconocer las Location pero identifica con éxito la Anatomical Entity
y el Finding respectivamente. En este sentido podemos decir que el modelo está haciendo
“lo mejor que puede”, dado que si identificara adecuadamente la LOC entonces reduciŕıa
su desempeño en las otras entidades. Notar que el motivo por el que en estos casos se
priorizan otras entidades por sobre las Location viene de la forma en que se resolvieron
las entidades solapadas durante el preprocesamiento de la partición de Train: recordemos
que si una entidad está anidada dentro de otra más grande entonces solo conservamos la
entidad más grande al convertir de Brat a BIO (ver sección 4.2.2), perdiendo la más corta.
Por lo tanto es consistente que en estos casos Location, al ser la la entidad más corta, sea
la que se falle en reconocer.

Para los casos de arriba es fácil identificar el impacto de la estrategia näıve que segui-
mos para resolver los anidamientos. Sin embargo tenemos la hipótesis de que esto también
afecta de una forma indirecta a otros Falsos Negativos de Location. Veamos nuevamente
un ejemplo para ilustrar esto:

Ejemplo 5.3.3. Quiste ovarico derecho

En el ejemplo 5.3.3 la anotación indica que “Quiste ovarico derecho” es un Finding
(FI) y que “ovarico derecho” es una LOC. Sin embargo el modelo falla en predecir ambas
cosas: predice en forma parcialmente correcta “quiste ovarico” como FI, pero “derecho” se
anota como Anatomical Entity (AE). Claramente esta última anotación no tiene sentido
y sin embargo vemos que este comportamiento se repite en otros casos también: “dere-
cho”, “izq”, “ambas”, “inferiores” son palabras que vemos que el modelo anota en forma
individual como AE o FI según el caso. Aqúı la hipótesis: si bien estas palabras anotadas
como AE o FI por śı solas no tienen sentido, ciertamente son palabras que suelen ser parte
de AE o FI, y por cómo funciona el mecanismo que se explicó anteriormente para resolver
anidamientos, resulta entendible que el modelo asocie estas palabras con AE o FI antes que
con LOC. El modelo nunca pudo aprender a reconocer estos tokens como LOC durante su
entrenamiento ya que, en casos similares, se descartaron las anotaciones de LOC en favor
de entidades generalmente más grandes como AE o FI.

Para estos casos donde el problema nace de la existencia de entidades solapadas posi-
blemente la mejor estrategia sea hacer una segmentación de modelos por tipo de entidad
similar a la que hizo el equipo de EdIE. De esta forma se pueden identificar independien-
temente los distintos tipos de entidades y evitamos estos efectos cruzados que se generan.

El caso de Degree (DE) es prácticamente igual al de LOC en cuanto a los anidamientos
se refiere, y posiblemente se ve agravado porque esta entidad representa solo el 1% de todas
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las anotaciones del corpus (ver figura 4.1) por lo que es aún más complejo para el modelo
poder aprender sobre esta categoŕıa. Sorprendentemente, a pesar de estos factores el F1-
Score es mejor para Degree (75.4) que para LOC (70.8) si vemos la tabla 5.6. A priori una
teoŕıa de por qué puede pasar esto viene dada por la composición de la categoŕıa: dentro
de DE pueden distinguirse principalmente adjetivos (por ejemplo, “mı́nimo”) y adverbios
(por ejemplo, “mı́nimamente”). Al analizar los errores vemos que en casi todos los casos
se trata de adjetivos, lo cual tiene sentido ya que es extraño que un adverbio sea parte de
una Anatomical Entity o de un Finding, a diferencia de los adjetivos. De hecho, los dos
casos de errores que involucran adverbios se tratan de Falsos Positivos, como consecuencia
de anotaciones manuales incompletas. Veamos un ejemplo de solapamiento y otro de falso
positivo:

Ejemplo 5.3.4. Ambos rinones hidronefroticos, con espesor parenquimatoso minimo .

Ejemplo 5.3.5. BAZO: minimamente aumentado de tamano.

En el ejemplo 5.3.4 la palabra “minimo” (resaltada en amarillo) es anotada como DE,
mientras que lo resaltado en rojo es un FI. De esta forma, el solapamiento dificulta la
potencial predicción de la entidad Degree. En cambio, en el caso de 5.3.5 lo que sucede es
distinto: la predicción indica que “minimamente” es un DE (lo cual tiene sentido) pero no
fue incluida en las anotaciones manuales. En este caso se trata de un error de anotación,
hablaremos un poco de los mismos a continuación.

Algo que vimos en varias oportunidades tanto en este análisis sobre el conjunto de
Test de SpRadIE como en algunos anteriores sobre las otras particiones, es que hay varios
errores en la anotación. En algunos casos los errores son evidentes y en otros hay cierta
ambigüedad que puede requerir una revisión adicional de los criterios de anotación. Los
errores más frecuentes que hemos visto son por omisión: en algunos casos se omite una
palabra o entidad completa; en otros la anotación está bien pero falta o sobra algún
caracter. Para la muestra de errores analizados del conjunto de Test, se hallaron al menos
8 errores de anotación y 7 más en las particiones de validación. En ambos casos no se
consideraron las anotaciones de tipo Abbreviation.

Algunos otros tipos de errores fueron vistos con menor frecuencia. Uno de los más
destacables es el caso de las entidades discontinuas.

Ejemplo 5.3.6. Vasos iliacos, femorales,popliteos y tibiales permeables en ambos miem-
bros inferiores.

El caso de 5.3.6 es un buen ejemplo de lo que sucede frente a una discontinuidad en
las anotaciones. Recordemos que, cuando se hace la conversión a BIO format, este caso
es resuelto con una estrategia que implica hacer una sola gran anotación que incluya los
fragmentos intermedios, que originalmente no fueron anotados. En este caso, se anotaron
manualmente 4 entidades de tipo Anatomical Entity: “Vasos iliacos”, “Vasos femorales”,
“Vasos popliteos” y “Vasos tibiales”. Sin embargo, el modelo predice una sola anotación:
“Vasos iliacos, femorales, popliteos y tibiales”. Es un caso imposible de resolver con nuestra
forma de modelado actual y, a diferencia del anidamiento o el desbalanceo, no se resuelve
haciendo una segmentación de modelos.

En general los errores vistos parecen provenir de decisiones de modelado o de errores
en el criterio de anotación, y no de una falta de entrenamiento del modelo, sobreajuste,
inconvenientes en la convergencia u otros problemas que pueden surgir al entrenar modelos
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de Machine Learning. El principal aspecto que identificamos para mejorar el desempeño
en la tarea es la segmentación de modelos por tipo de entidad: en lugar de tener un solo
modelo para todas las entidades, tener algunos modelos dedicados a entidades espećıficas
podŕıa aliviar el problema de los solapamientos. Sigue quedando el caso de las anotaciones
discontinuas como un problema más dif́ıcil de resolver y para el que aún no tenemos una
propuesta clara.

5.4. Conclusiones del caṕıtulo

En este caṕıtulo hemos analizado los resultados obtenidos en la tarea de reconocimiento
de entidades nombradas en informes de ecograf́ıas en español (SpRadIE), evaluando dis-
tintos modelos de lenguaje y representaciones de texto. A través del análisis de métricas
obtenidas mediante bootstrapping, observamos que los modelos basados en Transformers
superaron a los enfoques más tradicionales, con un margen de mejora de hasta 5.5 puntos
porcentuales en F1-Score. También evidenciamos que el fine-tuning sobre nuestro cor-
pus espećıfico aporta mejoras, aunque en general la ganancia fue menor a la esperada.
Mediante un estudio de ablación, confirmamos la relevancia del uso de representaciones
contextuales, destacando que el modelo basado en Clinical Flair mostró una cáıda mı́nima
en desempeño al ser evaluado con una arquitectura simplificada. En la comparación con
el estado del arte, nuestros modelos superaron los mejores resultados publicados hasta la
fecha para la tarea de SpRadIE, alcanzando un F1-Score superior en 1.4 puntos porcen-
tuales para match parcial y 2.6 puntos porcentuales para match exacto. Finalmente, el
análisis manual de errores permitió identificar limitaciones en la anotación del corpus y en
el modelado del problema, señalando que una posible v́ıa de mejora radica en segmentar
modelos según el tipo de entidad y en revisar la estrategia de resolución de anotaciones
solapadas y discontinuas.
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6. RESULTADOS DE EVALUACIÓN INTRÍNSECA

En este caṕıtulo presentamos algunos de los resultados obtenidos para el análisis cua-
litativo planteado en 4.6. Debido al alto esfuerzo manual que requiere este tipo de análisis,
solo profundizamos en detalle para dos de los modelos de lenguaje entrenados: FT BETO
CLINICAL WL (por considerarlo el mejor modelo en términos generales) y FT CLINICAL
FLAIR (por ser el modelo que dio los mejores resultados en el test de ablación).

En la sección 4.6 mencionamos varias combinaciones posibles de técnicas de reducción
de dimensionalidad y clustering. Sin embargo, al probarlas notamos que PCA (para re-
ducción) y K-Means (para clustering) no aportaban significativamente al análisis. En el
caso de PCA se probaron dos cosas:

Reducir las dimensiones de las 768 originales a las 50 que mayor varianza describen
(un 94% aproximadamente) y luego aplicar técnicas de clustering sobre este espacio.
Sin embargo, los resultados son más dif́ıciles de interpretar que al utilizar solamente
t-SNE, y al no ser factible hacer una visualización gráfica de las 50 dimensiones,
también es dif́ıcil evaluar la calidad de los clusters hallados1 y la búsqueda de los
mejores hiperparámetros excede el objetivo de esta tesis.

Aplicar PCA antes de aplicar t-SNE (una de las estrategias mencionadas en la sección
2.9). Con este procedimiento terminamos obteniendo un gráfico prácticamente igual
al obtenido usando solo t-SNE. Además por la cantidad de datos usados, aplicar
directamente t-SNE resulta factible en tiempos de cómputo por lo que no hay una
ganancia aqúı por usar PCA antes.

Descartada entonces la utilización de PCA y K-Means, en lo que sigue se trabaja sobre
los embeddings con dimensionalidad reducida mediante la técnica de t-SNE y el clustering
se hace utilizando DBSCAN. Recordar que cada uno de los embeddings originales, so-
bre los que se aplica t-SNE, representan un informe completo de la partición de test de
anonymized-ultrasounds-80k.

En las figuras 6.1 y 6.2 pueden observarse los clusters correspondientes a los modelos
FT BETO CLINICAL WL y FT CLINICAL FLAIR respectivamente. Ambos muestran la
representación de los puntos en un espacio reducido de 2-dimensiones generado mediante
la técnica de t-SNE. Es importante tener en cuenta que estos puntos fueron obtenidos con
la siguiente configuración2: perplexity=30 e iteraciones del algoritmo=1000. Esto
es importante ya que estudios emṕıricos han mostrado que la representación generada por
t-SNE puede ser muy sensible a estos hiperparámetros3, por lo que cambios en sus valores
pueden conducir a representaciones diferentes. Adicionalmente, el coloreo de los puntos

1 Si bien no lo hemos mencionado hasta ahora dado que no es el foco que queremos darle a este análisis,
existen una serie de métricas que intentan evaluar la calidad con la que se segmentan los clusters: el
Coeficiente de Silhouette, el ı́ndice Rand, el ı́ndice Davies-Bouldin, entre otros. El siguiente art́ıculo hace
una breve descripción de los métodos más usados https://medium.com/@surajsutar37/evaluation-metrics-
for-clustering-algorithms-c9baee50e328.

2 Según la documentación de sklearn, cuya implementación de t-SNE utilizamos aqúı, se sugiere uti-
lizar un valor de perplexity entre 5 y 50. Además, a mayor cantidad de datos se recomiendan valores
más grandes y que el valor escogido siempre sea menor al número de muestras. Fuente: https://scikit-
learn.org/stable/modules/generated/sklearn.manifold.TSNE.html

3 Ver https://distill.pub/2016/misread-tsne/
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está basado en la técnica de clustering de DBSCAN. Aqúı nuevamente la elección de los
hiperparámetros juega un rol clave sobre la forma y tamaño que tendrán los clusters.
Es conveniente notar que, sin embargo, nuestro objetivo no es obtener una clusterización
que sea útil en śı misma para alguna tarea, sino que simplemente queremos tener una
orientación sobre como analizar la similitud de informes cercanos en el espacio, de acuerdo a
la representación bidimensional arrojada por t-SNE. Esto implica que podemos ser flexibles
en cuanto a la forma de clusterizar siempre y cuando sea útil para nuestro análisis.

Fig. 6.1: Visualización en 2-dimensiones de los embeddings generados por el modelo FT BETO CLI-
NICAL WL para los informes de la partición de Test de anonymized-ultrasounds-80k,
usando el método de t-SNE. Los parámetros utilizados de t-SNE para generar esta re-
presentación fueron: perplexity=30 e iteraciones=1000. El coloreo fue obtenido tras
aplicar el algoritmo de DBSCAN con los hiperparámetros eps=3.3, min samples=10,
leaf size=30. A la derecha de la figura se asignan números a cada cluster.
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Fig. 6.2: Visualización en 2-dimensiones de los embeddings generados por el modelo FT CLINI-
CAL FLAIR para los informes de la partición de Test de anonymized-ultrasounds-80k,
usando el método de t-SNE. Los parámetros utilizados de t-SNE para generar esta re-
presentación fueron: perplexity=30 e iteraciones=1000. El coloreo fue obtenido tras
aplicar el algoritmo de DBSCAN con los hiperparámetros eps=3.3, min samples=10,
leaf size=30. A la derecha de la figura se asignan números a cada cluster.

A continuación comentamos algunos fenómenos interesantes que hallamos al profundi-
zar en el análisis de cada uno de los clusters generados. Antes de eso es importante tener
en cuenta algunas consideraciones: por la naturaleza semi-estructurada de los informes,
muchos tienen sintaxis y vocabularios altamente similares entre śı. Esto naturalmente hace
que estén muy cercanos en el espacio vectorial de forma más o menos independiente del
algoritmo usado. Dicho de otra forma: incluso un muy mal algoritmo de embeddings va a
proyectar dos textos idénticos al mismo vector siempre. Por lo tanto, podemos considerar
como un caso trivial aquellos clusters donde los informes tienen variación casi nula, y enfo-
carnos más en aquellos ejemplos que se salen de esta norma. También es bueno notar que,
aunque puede resultar tentador hacer una comparación directa entre las representaciones
correspondientes a los modelos FT BETO CLINICAL WL y FT CLINICAL FLAIR, no
es lo más recomendable debido a que t-SNE es un algoritmo estocástico y la visualización
generada puede variar arbitrariamente según el conjunto de vectores que se le pasen como
entrada. Igualmente, como observamos luego, puede destacarse que aunque la represen-
tación espacial vaŕıe un poco, el tipo de clusters que se forman en cada caso no es tan
diferente entre śı (es decir, las agrupaciones suelen darse alrededor de los mismos tópicos,
o al menos muy similares).

Empecemos analizando particularidades que hallamos en algunos clusters del modelo
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FT BETO CLINICAL WL. Por ejemplo, haciendo una rápida inspección manual de los
informes pertenecientes al cluster número 5 (según la numeración presentada a la derecha
en la figura 6.1) nos encontramos con que los mismos parecen pertenecer a dos subtipos
de ecograf́ıas: ecograf́ıas de partes blandas4 y Doppler venoso. En la figura 6.3 se resalta
dicho cluster en el espacio vectorial reducido de tSNE y puede notarse que en la practica
en realidad se aprecian dos sub-clusters: uno más grande en la parte superior y otro más
pequeño en la parte inferior, aunque ambos se encuentran muy próximos entre śı. En la
tabla 6.1 listamos apenas algunos ejemplos de informes pertenecientes a dicho cluster. El
cluster tiene casi 1000 informes.

Fig. 6.3: Visualización en 2-dimensiones de los embeddings generados por el modelo FT BETO CLI-
NICAL WL para los informes de la partición de Test de anonymized-ultrasounds-80k,
usando el método de t-SNE. En rojo se señalan únicamente aquellos puntos que pertene-
cen al cluster 5, según la clusterización presentada en la Figura 6.1.

Adicionalmente a esta muestra aleatoria, también analizamos algunos casos en forma
dirigida a analizar la diferencia entre los dos sub-clusters mencionados anteriormente y ver
si hab́ıa una relación posible con los dos tipos de ecograf́ıas identificadas. De esta forma
hallamos que efectivamente el cluster inferior y más pequeño está orientado a estudios
del tipo Doppler, mientras que el superior se enfoca más en los estudios articulares y
subcutáneos (es decir, partes blandas). Sin embargo, ninguno de los dos es completamente
“puro” y esta mezcla particular parece tener sentido al analizar que hay algunos informes
donde se involucran tanto estudios Doppler como de partes blandas, sugiriendo que son
cosas que en muchas ocasiones se realizan juntas. Por ejemplo, pueden verse los siguientes
casos:

Informe 58313: Paciente con IRC, realizacion de fistula 24 hs previas. Se
observa flujo arterial (braquial) y venoso (antecubital) conservado , union de
anastomosis sin imagenes sugerentes de estenosis. Anastomosis con flujo con-
servado, trazado Doppler normal. Alteracion del TCS (aumento de espesor y
ecogenicidad), sin imagenes sugerentes de coleccion.

Informe 93099: Se exploro pantorrilla izquierda. No se observan alteraciones

4 Citado de https://www.dra-martinezmiravete.com/ecografia-partes-blandas/ : “El objetivo de
las ecograf́ıas de partes blandas es evaluar tanto la anatomı́a como la funcionalidad de los diferentes com-
ponente osteoarticulares que nos permite valorar estructuras musculares, tendinosas y tejido subcutáneo.
Esta ecograf́ıa nos permite realizar el diagnóstico, tratamiento y seguimiento de las lesiones.”
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En realcion a lo palapable en region subamaxilar derecha se observa imagen heterogenea,
hipecoica, de bordes irregulares, que mide aproximadamente 2 x 1 x 2 cm. La misma
impresiona interrumpir la cortical del hueso maxilar en su rama horizontal. Aumento de
la ecogenicidad del tejido celular subcutaneo. Presencia de adenopatias laterocervicales el
mayor de los cuales mide 2 cm. Glandulas Tlroides, parotidas y submaxilares sin particu-
laridades.

ECOGRAFIA DE PARTES BLANDAS En rodilla izquierda se observa minimo aumento
de espesor de partes blandas ,no se observan colecciones intrarticulares ni extrarticulares,
ni modificaciones en la ecogenicidad de partes blandas, ni alteraciones en el periostio al
mamento del examen.

Parotida derecha aumentada de tamaño, de ecoestructura heterogenea con multiples ima-
genes hipoecoicas redondeadas en su interior y ganglios intraparotideos. Mide: 47 x 30 x
23 mm. Parotida derecha de ecoestructura conservada. Mide. 44 x 26 x 19 mm. Tiroides
de ecoestructura conservada. Dg presuntivo: parotiditis recidivante.

Se realiza ecografia a nivel de linea media sobre lesion palpable y visible. Se observa
imagen hipoecoica , ovalada, circunscripta a nivel de TCS de 1.6 x 0.46 x 1.5 cm, sin
vascularizacion. Se encuentra a 5.8 mm de la piel al centro de la lesion. No se observa
compromiso de estructuras profundas. Dicha formacion podria corrsponder a lipoma en
primer termino.

En mama derecha por debajo de areola a nivel del TCS se visualiza imagen heterogenea
a predominio hipoecoico de 1,5 x 1 x 1,8 cm, que podria corresponder a coleccion.

Se observa por debajo de herida quirurgica en fosa iliaca izquierda, en Douglas y fosa
iliaca derecha imagen heterogenea de predominio hipoecoica no vascularizada compatible
con coleccion. Dimensiones aproximadas: 7,6 x 11,2 x 3,9 cm

Se evaluó flujo de vasos penianos observandose sefial Doppler color arterial conservada
bilateral y simétrica, sin evidancia de imagenes que sugieran fistula o malformación vas-
cular. Se identificó trayecto lineal ecogénico en cuerpo cavernoso derecho de aprox. 1.3 x
0.3 x 0.2cm

Leve engrosamiento difuso de partes blandas en el musio izquierdo sin evidencia de colec-
ciones. Se observo permeabilidad con sefial doppler color conservada para arteria y vena
en trayecto femoral comun y superficial izquierdo. Psoas y cadera izquierda libres.

ECOGRAFIA DE PARTES BLANDAS En dorso de pie derecho, entre el plano muscular
y los huesos del tetarso se observa pequefia coleccion de 1.1 cm x 1.4 cm x 0.3 cm. Se
observa liquido en la vaina del extensor comun de los dedos y aumento de espesor y de
ecogenicidad de partes blandas de dorso de pie.

Ambas mamas presentan ecoestructura heterogenea difusa, sin evidencia de imagenes no-
dulares solidas ni quisticas. Areas axilares libres.

En cavidad abdominal se observa importante ascitis no tabicada. Se realiza marcacion en
piel a nivel de Fosa iliaca derecha con distancia de 6.5 cm desde piel hasata punto medio
de mayor volumen de liquido.

Se exploraron arteria carotida, vena yugular y art y vena subclavia bilateral. Se observa
disminucion de flujo en vena yugular derecha con onda demenor amplitud. Adecuada sefial
Doppler color y espectral en el resto sde los vasos.

Tab. 6.1: Muestra aleatoria de 12 informes pertenecientes al cluster número 5 (según la clusteriza-
ción presentada en la Figura 6.1).
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en el TCS ni plano muscular. Señal Doppler color y espectral conservada para
arteria y vena poplitea y tibial posterior izquierda.

Si bien en ambos casos los informes están más centrados en el estudio de los
vasos sangúıneos (“Doppler”, “flujo arterial y venoso”, “anastomosis”) tam-
bién hacen alusiones al tejido subcutáneo (“TCS”). Es interesante ver como
los embeddings logran capturar la relación entre estos dos tipos de estudios,
especialmente en un subconjunto de los informes donde el estilo de escritura
es particularmente heterogéneo.

Vemos ahora un caso del modelo FT CLINICAL FLAIR pero en lugar de
analizar un único cluster tomamos un conjunto de 6 clusters que se encuen-
tran cercanos en el espacio. Para simplificar la visualización, en la imagen 6.4
dejamos coloreados únicamente los puntos correspondientes a los clusters que
vamos a analizar en detalle y el resto quedan en gris. Además en este caso agre-
gamos, junto al número del cluster, una breve referencia al tipo de contenido
principal de cada uno (ginecológicos, lóbulos tiroideos y test́ıculos). Simplifi-
cando un poco, lo que queda en gris puede dividirse en tres grandes segmentos:
sistema urinario (vejiga, riñones, uréteres), sistema digestivo (páncreas, h́ıga-
do, veśıcula, etc) y partes blandas (como ya se menciono anteriormente). Estos
segmentos también pueden asociarse a distintos clusters aunque la división es
un poco más dif́ıcil de visualizar debido a la cantidad de puntos y su cercańıa
en el espacio (probablemente, porque son comunes los informes que integran
dos o más segmentos). Más adelante hablamos un poco de los clusters de siste-
ma urinario, pero no profundizamos en el análisis del resto. Es algo que podŕıa
analizarse para futuros trabajos.
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Fig. 6.4: Visualización en 2-dimensiones de los embeddings generados por el modelo FT CLINI-
CAL FLAIR para los informes de la partición de Test de anonymized-ultrasounds-80k,
usando el método de t-SNE. Se colorean, con diferentes colores, los clusters 2, 5, 6, 7,
20 y 21 (siguiendo la numeración presentada en la Figura 6.2). El resto de los puntos
aparecen pintados de gris. Adicionalmente, el cuadro de referencias (en la parte superior
izquierda) complementa cada número de cluster con un rótulo que resume el contenido
de los informes de dicho cluster.

La elección de estos cúmulos se debe a que se encuentran en una misma región
del espacio pero a su vez están marcadamente separados entre śı, lo que nos
lleva a hipotetizar que debeŕıa haber factores similares entre ellos pero a su
vez claras diferencias. En efecto, si por ejemplo empezamos observando los
clusters 2, 5 y 20 hallamos que los tres se centran en el estudio de entidades
ginecológicas: principalmente útero y ovarios. Sin embargo, la forma en que los
informes están escritos es notoriamente diferente entre ellos. En la tabla 6.2
se muestran algunos ejemplos, a modo ilustrativo, de cada uno de estos tres
clusters.
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Cluster Informe de ejemplo

2 Ambos ovarios y utero de caracteristicas ecograficas normales. Dimensiones:
Ovario derecho: 3.4(cm) x 3.8(cm) x 1.8(cm) Volumen: 12(cc) Ovario izquier-
do: 5,4(cm) x 3.4(cm) x 2(cm) Volumen: 17(cc) Utero: diametro longitudinal
8.3(cm), anteroposterior 2.2(cm), transversal 2.7(cm) Endometrio 0.5 cm.

2 Quiste ovarico derecho de 2.8(cm) de diametro. Resto del parenquima sin alte-
raciones. Ovario izquierdo de caracteristicas normales. Utero en RVF, homo-
geneo. Endometrio homogeneo, mide 0.7 cm. Ovario derecho: 5(cm) x 2.7(cm)
x 3.5(cm) Volumen: 24(cc) Ovario izquierdo: 3.5(cm) x 2.3(cm) x 1.5(cm) Vo-
lumen: 6.3(cc) Utero: diametro longitudinal 7.4(cm), anteroposterior 3.6(cm),
transversal 4.5(cm) Douglas libre.

5 UTERO: En AVF, de forma,tamaño y estructura conservada. Endometrio des-
doblado con pequeña coleccion liquida laminar. (espesor endometrial 6.3 mm)
diametro longitudinal 10(cm), transversal 5.5(cm), anteroposterior 3(cm),
OVARIO DERECHO: de forma,tamaño y estructura conservada 3(cm) x
2.6(cm) x 2.2(cm) Volumen: 9.4(cc) OVARIO IZQUIERDO: de forma,tamaño
y estructura conservada 3.7(cm) x 2.6(cm) x 2.3(cm) Volumen: 12(cc)

5 Paciente con antecedentes de ooforectomia izquierda. UTERO: En AVF, de
forma, tamaño y estructura conservada. Endometrio: 4 mm. diametro longitu-
dinal 7(cm), transversal 3(cm) anteroposterior 1.8(cm) OVARIO DERECHO:
de forma, tamaño y estructura conservada 4.6(cm) x 2.3(cm) x 2.3(cm) Volu-
men: 13.3(cc)

20 Paciente con antecedente de reseccion de ovario derecho. Presenta utero tu-
bular de caracteristicas infantiles. Ovario unico izquierdo de tamaño, forma
y ecoestructura conservada, con multiples imagenes foliculares . La mayor de
0.60 cm. Tamaño: 2.4 cm x 0.88 cm x 1.1 cm. Vol.: 1.2 cc. No se observa liquido
libre.

20 Se visualiza utero de 1.5cm x 1 cm de caracteristicas infantiles. No puedo
visualizar ovarios. Rinon derecho muy pequeño de 2.8cm Rinon izquierdo de
caracteristicas normales sin dilataciones.Longitudinal 8.8cm.

Tab. 6.2: Ejemplos de informes tomados de los clusters 2, 5 y 20 (basándonos en la numeración
que aparece en la figura 6.2). La primer columna muestra el número del cluster, mientras
que la segunda incluye un ejemplo tomado de dicho cluster.

Algo llamativo del cluster 20 es que, a diferencia de los otros dos, pueden
encontrarse referencias a otras entidades anatómicas no relacionadas a la gi-
necoloǵıa (por ejemplo vejiga, riñones o h́ıgado) aunque siempre hay al menos
una mención al útero. Esto es coherente con la posición espacial que tiene el
cluster: es el más “central” de todos, estando cerca de clusters enfocados en
entidades anatómicas de los sistemas urinario y digestivo.

Por otra parte, los clusters 7 y 21 se caracterizan por ser informes sobre eco-
graf́ıas de los lóbulos tiroideos. Si bien ambos clusters suelen mantener es-
tructuras muy similares, hay una caracteŕıstica bastante interesante que los
diferencia: los informes del cluster 7 tratan de “lóbulos tiroideos (e istmo) con
estructura homogénea (o finamente heterogénea)”, mientras que los del cluster
21 presentan “lóbulos tiroideos con eco-estructura heterogénea difusa, no no-
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dular”. Es interesante como esta diferencia (generalmente presente al comienzo
de los informes) logra diferenciar marcadamente a los informes, aun cuando el
resto de su estructura puede ser muy similar. Esto probablemente se deba a
la capacidad de los modelos de lenguaje de dar mayor peso a ciertas partes
del texto, de acuerdo al contexto espećıfico. Por último, el cluster 6 está en-
focado en ecograf́ıas testiculares de pacientes varones. Es destacable como en
este cluster el estilo de escritura es bastante heterogéneo aśı como el uso de
abreviaciones, por ejemplo: “testiculo izquierdo” puede encontrarse también
como “testiculo izq.”, “TI”, “TIz”, entre otras. Esto resalta la capacidad del
modelo de lenguaje de poder capturar similaridad semántica más allá de la
similaridad sintáctica.

Volviendo al motivo original por el que escogimos estos seis clusters, nos pre-
guntamos entonces si hay un motivo particular para su cercańıa relativa. Cree-
mos que hay dos motivos principales. Uno es la estructura de los informes
que comparte ciertos razgos en común, al menos en los casos más estructu-
rados: “Ambos ... presentan ... Dimensiones: Entidad izquierda: ... Entidad
derecha: ... Otras entidades: ...”. Este ejemplo de estructura muestra el otro
motivo que, consideramos, es compartido y puede influenciar la distribución:
en todas estas entidades prevalece el uso de la palabra “ambos” debido a la
naturaleza simétrica de los órganos involucrados: ovarios, test́ıculos y lóbulos
(tiroideos en este caso). De hecho esta prevalencia de la palabra “ambos” po-
demos verla en todo el semieje positivo del Componente 1 de la figura 6.2.
Los clusters 1, 22, 24 y 29 (que se encuentran ah́ı y pueden visualizarse con
mayor claridad en la figura 6.5) se centran en sistema urinario, con una fuerte
presencia de menciones a los riñones y (en mucho menor medida) los uréteres,
que suelen presentarse también con la palabra “ambos” (“ambos riñones” o
“ambos uréteres”). En oposición, en el semieje negativo del Componente 1 se
encuentran clusters centrados en entidades anatómicas como h́ıgado, páncreas,
v́ıa biliar, bazo, arterias, venas y otras que no comparten esta propiedad de
duplicidad/simetŕıa. Aún si aparecen algunas menciones a “ambos riñones”,
distan de ser el tópico central de los informes, a diferencia de los casos antes
mencionados.
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Fig. 6.5: Visualización en 2-dimensiones de los embeddings generados por el modelo FT CLINI-
CAL FLAIR para los informes de la partición de Test de anonymized-ultrasounds-80k,
usando el método de t-SNE. Se colorean, con diferentes colores, los clusters 1, 22, 24 y 29
(siguiendo la numeración presentada en la Figura 6.2). Estos clusters se centran princi-
palmente en el sistema urinario. El resto de los puntos aparecen pintados de gris.

6.1. Conclusiones del caṕıtulo

En este caṕıtulo realizamos un análisis cualitativo de los embeddings genera-
dos por los modelos FT BETO CLINICAL WL y FT CLINICAL FLAIR para
evaluar su capacidad de estructuración semántica sobre informes ecográficos.
Tras probar diversas combinaciones de técnicas de reducción de dimensiona-
lidad, optamos por la combinación de t-SNE para reducción y DBSCAN pa-
ra clustering. A partir de la representación en dos dimensiones, identificamos
patrones de agrupación que reflejan la similitud semántica de los informes,
destacando la formación de clusters coherentes en torno a tipos de estudios
espećıficos, como ecograf́ıas ginecológicas, de partes blandas, testiculares y del
sistema urinario. El análisis manual reveló que la segmentación se ve influen-
ciada tanto por el contenido anatómico de los estudios como por caracteŕısticas
estiĺısticas y de redacción, evidenciando la capacidad de los modelos de lengua-
je para capturar estas relaciones. Además, observamos que la proximidad entre
ciertos clusters sugiere que los modelos reconocen relaciones semánticas entre
estudios complementarios, como la coexistencia de evaluaciones Doppler con
estudios musculoesqueléticos. Finalmente, la estabilidad de las agrupaciones
entre ambos modelos indica que, si bien las visualizaciones pueden variar por
la naturaleza estocástica de t-SNE, las estructuras semánticas subyacentes se
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preservan, lo que refuerza la validez de los embeddings como representaciones
útiles para la organización de información en informes médicos.
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7. CONCLUSIONES Y TRABAJO FUTURO

En este trabajo nos propusimos estudiar el impacto de contar con embeddings
espećıficamente entrenados para análisis de texto médico, particularmente en
un sub-dominio poco explorado hasta ahora: informes de ecograf́ıas escritos
en español. Se analizaron distintos tipos de embeddings, tanto estáticos (Fast-
Text) como contextuales (BiLSTM y Transformers). Para su entrenamiento fue
necesario realizar algunos procesamientos sobre nuestro corpus, siendo el más
complejo de todos la anonimización. Para la evaluación extŕınseca, usamos la
tarea de reconocimiento de entidades nombradas de la competencia SpRadIE.
Mientras que para la evaluación intŕınseca, planteamos un análisis cualitativo
usando reducción de dimensionalidad y clustering.

Los resultados expuestos en el caṕıtulo 5 muestran que, al menos para la tarea
de reconocimiento de entidades nombradas sobre el corpus de SpRadIE, efec-
tivamente se logró tener un impacto positivo en los resultados, superando a los
mejores resultados publicados hasta ahora. Además se observó que la utiliza-
ción de domain adaptation permitió alcanzar mejores resultados, comparando
con las variantes que no lo usaban. Esto último resulta un incentivo importante
para seguir buscando generar representaciones más espećıficas de los distintos
dominios cĺınicos.

Se vio que los embeddings contextuales (basados en modelos de lenguaje) supe-
raron en todos los casos a nuestros embeddings estáticos, que implementamos
usando FastText.

Observamos que los métodos basados en Transformers superaron con un mar-
gen pequeño pero significativo a aquellos basados en BiLSTMs (Flair) en la
tarea de NER. Sin embargo, como se vio en el estudio de ablación, si simplifica-
mos la capa de clasificación y partimos de los embeddings generados por cada
método, esta relación se revierte. Esto sugiere que en términos de capacidad
para capturar relaciones semánticas, el embedding generado por Flair puede
resultar más eficiente. Al hacer el análisis cualitativo de las representaciones
notamos que ambas comparten caracteŕısticas similares, no pudiendo sacar con-
clusiones significativas sobre las diferencias. Śı pudimos observar propiedades
deseables en cuanto a la proximidad de las representaciones y su relatedness.

Como un resultado de este trabajo, se obtuvieron varios modelos de lenguaje
basados en BERT y Flair finetuneados para informes de ecograf́ıas escritos en
español. Se podrá evaluar a futuro su publicación, con la debida aprobación de
los dueños de los datos utilizados, para que la comunidad pueda probarlos en
otras tareas. Además, como se comentó, fue ejecutado un proceso exhaustivo de
anonimización sobre los informes involucrados. Nuevamente, con aprobación de
las instituciones correspondientes, dicho corpus anonimizado también podŕıa
ser publicado, siendo un recurso de gran valor dada la escasez de corpora de
dominio cĺınico que se ha mencionado al comienzo de este trabajo.
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7.1. Trabajo futuro

En ĺınea con tratar de mejorar aún más los resultados obtenidos para la tarea
de SpRadIE, se señala en el caṕıtulo 5 que seŕıa provechoso aplicar un marco de
trabajo más adecuado para tratar las entidades disjuntas y anidadas. Para estas
últimas, un enfoque basado en segmentar modelos para reconocer entidades
espećıficas (por ejemplo, un modelo que solo identifique Location, otro que
solo identifique Degree, etc) debeŕıa conducir a una mejora de desempeño. Una
prueba que quedó por fuera de esta tesis es la de probar los más recientes Large
Language Models, que tienen la particularidad de destacarse en escenario de
zero-shot y few-shot learning, por lo que podŕıan aportar un valor interesante
en este escenario en el que contamos con un número relativamente pequeño
de datos. También, al tratarse de modelos generativos, podŕıan ser una forma
interesante de lidiar con los casos de entidades disjuntas, dado que no están
limitados en el formato de su respuesta, a diferencia de los modelos de lenguaje
expuestos en esta tesis.

Un aspecto completamente diferente que apareció al hacer los análisis, es que se
identificaron oportunidades (algunas concretas y otras que requieren revisarse
junto con un médico) para hacer mejoras en el corpususado en la tarea de
SpRadIE.

En este trabajo se probó con un challenge espećıfico de BioNLP (SpRadIE)
pero seŕıa interesante a futuro poder evaluar la utilidad de los embeddings y
modelos de lenguaje aqúı presentados en otros conjuntos de datos, incluso sa-
liendo de la tarea de NER (por ejemplo, para detección de relaciones entre
entidades nombradas). Por otro lado, para el entrenamiento de los modelos de
embeddings nos limitamos a utilizar informes de ecograf́ıas ya que eran afines
al conjunto de informes de SpRadIE e inclúıan algunos preprocesamientos ya
realizados en trabajos pasados. Sin embargo, contamos con otros tipos de infor-
mes provistos por la misma institución que incluyen resonancias magnéticas y
tomograf́ıas computarizadas. Sin dudas es de interés incluirlos como parte del
corpusde entrenamiento de los modelos (posterior a realizar un proceso de re-
visión y anonimización) con la hipótesis de obtener embeddings útiles para más
sub-dominios relacionados. También nos permitiŕıa validar si “diversificar” los
sub-dominios sobre los que se entrenan los embeddings tiene un impacto (po-
sitivo o negativo) sobre las tareas espećıficas.

Por último, si bien en este trabajo propusimos un análisis cualitativo como for-
ma de intentar tener una noción de la calidad de los embeddings sin necesidad
de depender de una tarea externa, este análisis no es fácil de escalar (debido
a que es un proceso mayoritariamente manual y subjetivo) ni permite reali-
zar comparaciones concluyentes entre modelos. Por lo tanto, vemos un área
de oportunidad en construir un conjunto de benchmark que incluya casos de
palabras similares o relacionadas (del mismo modo que lo hacen UMNSRS-sim
y UMNSRS-rel) para el sub-dominio de informes de ecograf́ıas en español.
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2014, págs. 1532-1543.

[53] Marco Polignano, Marco de Gemmis, Giovanni Semeraro et al. “Compa-
ring Transformer-based NER approaches for analysing textual medical
diagnoses.” En: CLEF (Working Notes). 2021, págs. 818-833.
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7. APÉNDICE

7.2. Lista de palabras usadas para el reconocimiento de abre-

viaturas con RegEx

cm

Diam

RD

RI

mm

long

Long

cc

FID

EP

VN

RX

AP

OV

ECO

VSH

izq

Izq

der

Der

vol

aprox

riz

rder

7.3. Tokenización para FastText basada en regex

import re

DELIMITERS = "([,.:;\s\(\)])"

def regex_tokenize_report(report):
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tokenized_report = re.split(DELIMITERS, report)

tokenized_report = [token for token in tokenized_report

if token and not token.isspace()]

return tokenized_report
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