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WORD-EMBEDDINGS CONTEXTUALIZADOS PARA DETEQCION
DE ENTIDADES NOMBRADAS EN TEXTOS DE RADIOLOGIA EN
ESPANOL

La creciente digitalizacion de los procesos médicos ha generado una gran cantidad
de datos textuales, como informes de estudios clinicos, que permiten mejorar procesos a
través de la automatizacién de la extraccion de informacién de los mismos. Sin embargo,
esta ultima presenta desafios significativos, especialmente en espanol, debido a la escasez
de recursos en este idioma y al uso de vocabulario especializado. También algunos de estos
textos suelen tener abreviaturas, errores ortograficos y de tipeo, lo que agrega una comple-
jidad adicional. Este trabajo busca contribuir al campo del Procesamiento del Lenguaje
Natural Biomédico (BioNLP, por sus siglas en inglés) mediante el desarrollo de mejores re-
presentaciones de textos que optimicen la extraccion de informacién para informes clinicos
escritos en esparnol.

En esta tesis se desarrolla un estudio sobre el uso de word embeddings y modelos de
lenguaje para informes de ecografia escritos en espanol. Se proponen y evaltian diferentes
modelos de embeddings, incluyendo técnicas estaticas como FastText y modelos basados en
arquitecturas contextuales como Transformers y BILSTM. Los embeddings se entrenaron
utilizando un corpus anonimizado de mas de 80 mil informes de ecografias. Se realizaron
dos tipos de evaluaciones sobre los embeddings: una extrinseca y una intrinseca. Para la
evaluacion extrinseca se utilizo la tarea de reconocimiento de entidades nombradas con el
conjunto de datos de la competencia SpRadIE. Ademads, se realiza un estudio de ablacién
para intentar establecer un vinculo més directo entre el uso de las representaciones y el
rendimiento obtenido por los modelos. Para la evaluacién intrinseca, se presenta un marco
basado en andlisis cualitativo, para medir la calidad de los embeddings en dominios donde
no existen benchmarks estandarizados.

Los resultados obtenidos muestran mejoras sobre el estado del arte para la tarea de
reconocimiento de entidades nombradas de SpRadlE, destacando el impacto de usar re-
presentaciones contextuales adaptadas al sub-dominio especifico de la tarea. Observamos
que los mejores resultados del reconocimiento de entidades nombradas se obtienen con
modelos basados en Transformers, sin embargo las representaciones generadas a partir de
BiLSTM parecen capturar informacién seméantica mas rica, como evidencian los estudios
de ablacion y el andlisis cualitativo.

Palabras claves: Embeddings, reconocimiento de entidades nombradas, BioNLP en es-
pafiol, informes clinicos, ecografias, transformers, BILSTM, FastText






CONTEXTUALIZED WORD-EMBEDDINGS FOR NAME ENTITY
RECOGNITION IN SPANISH RADIOLOGICAL TEXTS

The growing digitalization of medical processes has generated a large volume of tex-
tual data, such as clinical study reports, which allow for process improvements through the
automation of information extraction. However, this task presents significant challenges,
especially in Spanish, due to the scarcity of resources in this language and the use of spe-
cialized vocabulary. In addition, some of these texts often contain abbreviations, spelling
errors, and typos, adding an extra layer of complexity. This work aims to contribute to
the field of Biomedical Natural Language Processing (BioNLP) by developing better text
representations to enhance information extraction from clinical reports written in Spanish.

This thesis presents a study on the use of word embeddings and language models for ul-
trasound reports written in Spanish. Different embedding models are proposed and evalua-
ted, including static techniques such as FastText and models based on contextual architec-
tures like Transformers and BiLSTM. The embeddings were trained using an anonymized
corpus of more than 80,000 ultrasound reports. Extrinsic and intric evaluation methods
were carried out. For the extrinsic evaluation, the chosen task was named entity recogni-
tion, using the dataset from the SpRadlE competition. Additionally, an ablation study was
conducted to better understand the relationship between the use of these representations
and the performance of the models. For the intrinsic evaluation, a framework based on
qualitative analysis is presented to assess the quality of the embeddings in domains where
standardized benchmarks are not available.

The results show improvements over the state of the art for the named entity re-
cognition task in SpRadlE, highlighting the impact of using contextual representations
tailored to the specific subdomain. We observe that the best results are obtained with
Transformer-based models; however, the representations generated by BiLSTM appear to
capture richer semantic information, as evidenced by the ablation studies and qualitative
analysis.

Keywords: Embeddings, named entity recognition, Spanish BioNLP, clinical reports,
ultrasound, transformers, BILSTM, FastText
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1. INTRODUCCION

En este capitulo presentamos las razones que motivan la realizacién del presente tra-
bajo, introducimos algunas nociones basicas, cudl es el problema que se quiere estudiar y
cudles son los desafios que se presentan. Por dltimo se describe la estructura del resto del
informe.

1.1. Motivacion

En los ultimos anos ha tenido lugar un crecimiento significativo en la cantidad de textos
digitalizados y, por lo tanto, en la cantidad de informacién valiosa que se puede extraer
de ellos. En particular en la medicina hay un impulso importante a la digitalizacién de
los procesos. En Argentina esto se da de la mano de proyectos gubernamentales como la
Estrategia de Salud Digital®.

Durante el desarrollo de la actividad médica se producen, entre otro tipos de informa-
cién, distintos textos. Podemos mencionar articulos cientificos, notas escritas en la historia
clinica -como notas de visita, informes de altas médicas (epicrisis)- e informes de estudios
como radiografias y ecografias. Entre otros beneficios que se pueden obtener del procesa-
miento automatico de estos textos podemos nombrar:

= La contribucién a la construccion de estadisticas ttiles para estudios clinicos, que
podria impactar en diagnosticos y tratamientos.

= La posibilidad de mejorar la atencién a un paciente, por ejemplo, permitiendo que
un profesional reciba inmediatamente una alarma en caso de detectarse un resultado
que requiera atencién urgente.

El formato informal y semi-estructurado (en el mejor de los casos) de estos textos hace
que la extraccién de informacioén no sea trivial. Los mismos usan un vocabulario especifico,
que varia con el dialecto de cada pais, hospital, especialidad, e incluso a veces de médico
a médico. Distintos términos pueden referir al mismo concepto y el mismo término puede
tener varios significados. Presentan también abundancia de acrénimos y abreviaturas. En
algunos casos (como por ejemplo, en las notas que se escriben durante las consultas) la
formalidad no es la principal prioridad sino que es mas importante que la escritura sea
rapida, lo que conlleva a que ocurran faltas de ortografia o errores de tipeo.

Este punto se puede ilustrar mejor mostrando una oracién tomada de un informe (en
este caso, de una ecografia):

RD Diam Long: 8.5 cm RI Diam Long: 9cm A nivel de FID se observan estructuras
ganglionares de forma y ecogenicidad conservada de 1 cm de diametro AP.

La mayor parte de la investigacion sobre el procesamiento automatizado de textos
biomédicos suele ser en inglés®. Sin embargo, es conveniente analizar los textos en el

! https://www.argentina.gob.ar /salud /digital, consultado en abril de 2024.
2 Ver Névéol et al.[48] para una comparacién detallada de la produccién de articulos cientificos sobre el
tema en diferentes idiomas.
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idioma en el que fueron escritos. Dado que el espanol es uno de los idiomas méas hablados
del mundo [21] resulta necesario tener herramientas para trabajar con recursos en ese
idioma.

Si bien muchos métodos desarrollados en inglés pueden ser utilizados en otros idiomas
[56], resulta necesario adaptarlos a las caracteristicas de cada uno. Una de las principales
herramientas que ha sido clave en el avance del procesamiento del lenguaje natural son los
word embeddings (ver Seccién 2.3) pero para su correcto funcionamiento es necesario que
sean entrenados con el vocabulario del idioma y dominio en que se los quiere aplicar.

Trabajar en espanol, ademds, presenta el desafio adicional de conseguir datos. No
hay una gran disponibilidad de corpora® piblicos para la comunidad de investigacién en
procesamiento del lenguaje. Obtener informes médicos para experimentar no es facil, ya
que no son publicos, porque eso afectaria la privacidad de los pacientes. La disponibilidad
de corpus anotados* es ain menor, ya que se requiere de una gran cantidad de horas de
trabajo por parte de anotadores expertos. El conjunto de datos utilizado en este trabajo
fue publicado en el ano 2017 y se describe en la Seccién 3.2.

1.2. Definiciones

Se llama lenguaje natural al lenguaje hablado y escrito por seres humanos. El pro-
cesamiento del lenguaje natural (NLP por sus siglas en inglés) es un drea de estudio
multidisciplinaria que se encarga de procesarlo para analizarlo o generarlo [35]. Para este
fin, una de las herramientas que suele emplearse con mayor frecuencia son técnicas de
aprendizaje automdtico (o Machine Learning).

Dentro del procesamiento del lenguaje natural, se conoce como BioNLP (Biomedical
NLP) al drea que se encarga especificamente de textos relacionados con la biologia y la
medicina. Es importante destacar que incluso dentro de este campo hay una gran diversi-
dad en cuanto al tipo de textos que podemos encontrar: articulos cientificos, enciclopedias,
historias clinicas informes de diversos estudios médicos, e informes de alta médica, entre
otros. Ademds existen una amplia diversidad de especialidades médicas y dreas de estu-
dio a las que pueden pertenecer estos textos. Cada una de estas combinaciones definen
diferentes sub-dominios dentro del dominio biomédico.

En el contexto de NLP, el concepto de dominio se refiere al drea tematica o cam-
po especifico al que pertenece un corpus o problema. Cada dominio tiene caracteristicas
propias, como vocabulario especializado, patrones lingliisticos y tipos de informacién pre-
dominantes, que deben ser consideradas. Por ejemplo, el dominio biomédico incluye termi-
nologia médica y abreviaturas clinicas, mientras que el dominio financiero abarca términos
econémicos y métricas de mercado. Los dominios ademas suelen ser jerarquicos, por lo que
se puede decir que un dominio es un sub-dominio de otro cuando el primero engloba un sub-
conjunto de los textos del segundo. Por ejemplo, dentro del dominio biomédico podriamos
identificar el sub-dominio clinico (referente a la actividad clinica-hospitalaria), y a su vez
dentro de este un sub-dominio como el de la radiologia, el cual es aun mas acotado y
especifico (términos relacionados con imagenes diagndsticas y mediciones anatémicas).

3 Un corpus (pl. corpora) es una coleccién de textos o discursos utilizados para un propésito especifico,
que puede estar anotado o no.

4 Un corpus “anotado” o “etiquetado” es un conjunto estructurado de textos marcados con informacién
adicional que describe aspectos lingiiisticos como la morfologia, sintaxis, y seméntica. Estos metadatos
facilitan el andlisis computacional del texto, permitiendo aplicar diversos métodos.
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La extraccién de informacién es un sub-campo de NLP que consiste en técnicas para ob-
tener informacion estructurada a partir de fuentes no-estructuradas o semi-estructuradas.
A partir de estos datos estructurados resulta més facil realizar analisis, buiisquedas y vi-
sualizaciones.

El reconocimiento de entidades nombradas (NER, de named entity recognition), en
donde se identifican y clasifican términos en categorias predefinidas, como nombres de
personas, organizaciones, lugares y fechas, es una tarea que ayuda en la extraccién de la
informacién. Algunas otras tareas del procesamiento del lenguaje natural son la deteccién
de relaciones, en donde se identifican y extraen las relaciones seménticas que existen entre
entidades nombradas presentes en el texto; y la clasificacién de textos, en donde se asigna
una categoria o etiqueta a un texto.

En la actualidad todas estas tareas se apoyan en el concepto de word embeddings (WE),
también llamados simplemente embeddings, como forma de pre-procesar las palabras® de
los textos a analizar. Existen muchas variantes en las técnicas de generacion de WE, que
detallamos oportunamente en la seccién 2.3, pero a grandes rasgos todas buscan obtener
una representacion vectorial densa® de las palabras que componen un corpus. Collobert
et al. muestran por primera vez en su estudio Natural language processing (almost) from
scratch [14], que estas representaciones logran dos objetivos fundamentales: su uso permite
mejorar el desempeno en numerosas tareas y ademads proporcionan una alternativa més
sencilla y generalizable (a diferentes tareas) respecto de la ingenieria de caracteristicas
manual (del inglés, feature engineering). Este tltimo punto estd intimamente relacionado
con el hecho de que las técnicas para obtener embeddings no requieren texto anotado, lo
cual es significativo ya que, para la mayoria de aplicaciones, la disponibilidad de texto sin
anotar es mayor al anotado.

A lo largo del tiempo, los embeddings han evolucionado desde modelos simples con
representaciones estéticas como word2vec [43|, Glove [52] y FastText [7] hasta representa-
ciones més avanzadas y contextualizadas (lo que significa que la representacién vectorial de
una palabra concreta va a depender del resto de las palabras que la rodean en la oracion).

Por dltimo, los embeddings en muchos casos son entrenados sobre ciertos corpora y
luego son aplicados en tareas que utilizan un corpus con un volumen de texto menor (en
general uno o mas 6rdenes de magnitud) o que incluso pertenecen a un dominio diferente.
Esta idea se basa en el concepto de transfer learning que consiste en la hipdtesis de que en
ciertos casos el aprendizaje que realiza un modelo a partir de un problema o conjunto de
datos puede ser de utilidad al aplicarse en otro (problema o conjunto de datos). Esta idea
de ajustar los pardmetros de un modelo entrenado previamente (o pre-entrenado) a un
problema o conjunto de datos més especifico respecto al original también suele llamarse
fine-tuning. Profundizamos sobre estos conceptos en 2.7.

En este trabajo nos centramos en abordar el concepto de embeddings y probar distin-
tas técnicas para un corpus que consiste en informes de estudios ecograficos en espanol.
Ademas, nos apoyaremos en una tarea de NER concreta, sobre un subconjunto anotado
de este corpus, como forma de evaluar la efectividad de las representaciones obtenidas.

5 Aunque es comin realizar embeddings al nivel de palabras, no es la tinica unidad “embebible”: compo-
nentes més pequenos como sub-palabras (partes que componen una palabra), o més grandes como oraciones
o documentos pueden ser embebidos también.

5 Si bien no hay una definicién formal, se suele decir que un vector es denso cuando la mayorfa de sus
valores son distintos de cero. Esto es en oposicién a los llamados vectores dispersos (sparse, en inglés) que
se caracterizan estar compuestos casi totalmente de ceros.
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1.3. Descripcién del problema

La Figura 1.1, extraida y traducida al espanol del trabajo de Khattak et al. [38],
muestra el flujo de tareas y entrada de datos habituales para el desarrollo de embeddings.
A continuacién se explica brevemente en qué consiste cada paso y como se abordan en el
presente trabajo. Siguiendo la terminologia empleada en el trabajo citado, nos referiremos
como “tarea objetivo” a nuestra tarea de NER sobre el corpus especifico de informes
ecograficos.

Datos de

1

entrenamiento para
los embeddings

Entrenamiento de los Datos objetivo
embeddings

N

Transformar datos objetivo en
embeddings

Evaluacién Intrinseca J

Evaluacion Extrinseca
\ (Tarea objetivo)

Aplicacion

Fig. 1.1: Proceso de desarrollo de Word embeddings. Imagen tomada y traducida al espanol de
Khattak et al.[38].

El primer paso es definir cudl es el corpus que se va a utilizar para el entrenamiento (o
fine-tuning de los embeddings a desarrollar). En esta etapa se busca conseguir un corpus
perteneciente al dominio objetivo, o en su defecto un dominio lo més afin posible. Cuanto
mas grande y variado sea el corpus, mas rico resultara el entrenamiento de los embeddings
y mayor serd su capacidad de generalizaciéon. En este punto no es necesario que el corpus
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esté anotado. En nuestro caso utilizamos un corpus de 85621 informes correspondientes a
ecografias en espanol (sin etiquetar) que fueron presentados en la tesis doctoral de Cotik
[18].

El siguiente paso es pre-procesar los datos. En nuestro caso por estar trabajando con
informacién sensible de pacientes y médicos realizamos una primer etapa de anonimizacién
donde, de manera automatica, se eliminan nombres propios y matriculas médicas. Hecho
esto, se realiza una segmentacién del texto llamada tokenizacion (ver seccién 2.1) que
resulta en el formato esperado por los modelos que utilizaremos luego. Es interesante
notar que no existe una forma tnica de realizar esta segmentacién y suele variar segin el
tipo de modelo, por lo que en nuestro caso, donde entrenamos varios, es necesario realizar
mas de una vez la tokenizacion.

Para el entrenamiento de los WE utilizamos a nivel general dos variantes: embeddings
estaticos basados en FastText (ver seccién 2.3.1) y embeddings dindmicos (o contextuales)
basados en Transformers 2.6. Hay una diferencia importante para senialar aqui en cuanto al
resultado que se obtiene en este paso segun el tipo de embedding empleado. Los embeddings
estaticos generan un mappeo fijo entre palabras del vocabulario y representacién vectorial.
Sin embargo esto no es posible para los embeddings contextuales, pues no existe una tnica
representacion para cada palabra o token sino que va a depender del resto de palabras
que la acompanan en un contexto especifico. El resultado, entonces, para este tipo de
embeddings es un modelo en si mismo, que debe ser ejecutado sobre la palabra y su
contexto para poder obtener una representacién.

Una vez los embeddings han sido entrenados es necesario poder evaluar su efectividad.
Para esto existen dos enfoques posibles: evaluaciones intrinsecas y extrinsecas.

Las primeras buscan evaluar la calidad de los embedding en si mismos, tratando de
evaluar cudn bien logran capturar la seméantica de las palabras a través de su representacion
vectorial. Como métricas principales suelen usarse la similitud 7 y relatedness®. Para el
calculo de estas métricas existen algunos benchmarks que suelen usarse en la literatura,
generalmente basados en la capacidad de producir analogias o respetar sinonimia. Sin
embargo, estos benchmarks presentan dificultades relacionadas con los idiomas y dominios
que abarcan, las cuales profundizaremos en el capitulo 3.

La evaluacién extrinseca consiste, en cambio, en analizar la efectividad de los embed-
dings a través del “desempeno” que ayudan a conseguir en la tarea objetivo (también
llamada en la literatura en inglés como downstream task). Este método es mucho maés
simple y directo que la evaluacién intrinseca, pero como desventaja no permite analizar
el impacto de los embeddings de una forma aislada (ya que es otro modelo el que termina
entrendandose para tomar las decisiones). También tiene el problema de que no permite
concluir sobre la utilidad de los embeddings para otras tareas distintas a la que se esta
evaluando. Por lo tanto, ambos enfoques (intrinseco y extrinseco) son complementarios y
necesarios si lo que mas nos interesa es evaluar la calidad de los embeddings.

Para la tarea objetivo (NER en este caso), se necesita que los datos estén etiquetados,
a diferencia de lo que sucedia con el corpus para los embeddings. Nuestros datos objetivo

" La “similitud de los embeddings” es una métrica que refleja cudn cerca estdn en el espacio vectorial
palabras con significados o usos similares. No hay una tunica forma de calcularla y por lo general se utiliza
la llamada similitud coseno.

8 “Relatedness” es una métrica que refleja cudn cerca estdn en el espacio vectorial palabras que estén
relacionadas en un contexto mds amplio (no necesariamente sinénimos o similares en significado). Por
ejemplo, las palabras “doctor” y “hospital” podrian considerarse altamente relacionadas, aunque no sean
sinénimas.
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son obtenidos de la competencia SpRadIFE [16], que se realizé en el marco de la Conference
and Labs of the Evaluation Forum 2021 (CLEF 2021) y cuya tarea fue la deteccién de diez
entidades nombradas (entre ellas entidades anatémicas, ubicaciones, hallazgos clinicos, me-
didas, etc.) a partir de textos correspondientes a informes de radiologia. Este corpus cuenta
con 473 informes escritos en espaifiol, que ya han sido previamente pre-procesados para
remover datos identificatorios. Estas caracteristicas lo hacen ideal para nuestro estudio.
Es importante destacar que estos informes son un subconjunto del corpus que se utilizé
para entrenar los embeddings (aunque se incluyen algunos procesamientos adicionales que
el otro no tiene). Estos datos vienen con formato Brat Standoff® que no nos sirve para
entrenar directamente al modelo de reconocimiento de entidades nombradas. Por lo tanto
debemos transformarlo al formato BIO o similar, ya que éste es el soportado por las he-
rramientas que utilizaremos. Una vez entrenados los modelos, se llevara el resultado de las
predicciones nuevamente al formato Brat Standoff para poder computar las métricas. Esta
transformacion no es trivial ya que este formato permite etiquetar entidades que aparecen
discontinuas en el texto, asi como también identificar casos donde dos o mas entidades se
solapan en un mismo fragmento. Estas dos cosas no son posibles con el formato BIO, por
lo que debemos lidiar con esta pérdida de informacién de la mejor forma posible. Estos
temas los profundizamos en la sub-seccion 4.2.2.

Una vez resuelto el formato de los informes de la tarea objetivo, se debe aplicar a
cada uno la transformacién aprendida anteriormente para obtener los embeddings corres-
pondientes. Los mismos luego se utilizan para entrenar el modelo de reconocimiento de
entidades nombradas, al cual evaluamos con las métricas de interés para comparar con los
modelos que participaron en la competencia.

1.4. Contribucién

En este trabajo nos centramos en el desarrollo de embeddings, tanto contextuales como
no contextuales, para informes de ecografias en espanol. Esto en si mismo resulta algo
novedoso pues a nuestro conocimiento no hay otro trabajo que haya hecho esto para este
sub-dominio especifico en espafiol.

Ademads con nuestros embeddings logramos mejorar el estado del arte actual para la
tarea de NER sobre el corpus de SpRadlIE. Y particularmente esto lo logramos con una
solucién basada en un tnico modelo de deep learning, mientras que las mejores soluciones
publicadas hasta ahora dependian de varios sub-modelos similares al nuestro.

Ademsds, como parte del proceso de desarrollo se llevé adelante una meticulosa anoni-
mizacion del corpus con el cual se entrenaron los embeddings. Esto posibilita que, con las
debidas autorizaciones, pudiera considerarse la publicacién para la comunidad de BioNLP
tanto del corpus como de los embeddings aqui entrenados.

Por ultimo, planteamos las bases de un marco de evaluacién intrinseca que puede ser
utilizada en forma general en escenarios como el nuestro, en donde no se dispone de un
benchmark adecuado.

9 Formato brat standoff: http://brat.nlplab.org/standoff .html

10 E] formato BIO es una convencién de etiquetado cominmente utilizada en el reconocimiento de en-
tidades nombradas (NER). Cada etiqueta consiste en una combinacién de un prefijo (B-, I- o0 O-) y una
categoria de entidad. B- indica el comienzo de una entidad, I- su continuacién y O- sefiala que la palabra
no es parte de ninguna entidad.
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1.5. Organizaciéon del trabajo

El presente documento estd dividido en seis capitulos. En el capitulo 2 (Marco Tedrico)
se desarrollan los conceptos necesarios para profundizar en la comprension del problema
y de los métodos propuestos. En el capitulo 3 (Antecedentes y revisién de la literatura)
se analizan otros trabajos relacionados a los problemas que nos interesa tratar aqui. En
el capitulo 4 (Metodologia) se desarrolla una descripcién de las técnicas aplicadas para
la preparacién de los datos, el entrenamiento de los embeddings y su evaluacién. En el
capitulo 5 (Resultados de Evaluacién Extrinseca) se presentan los resultados obtenidos
en la experimentacién extrinseca para cada uno de los métodos utilizados y se realiza
un andlisis de los mismos. En el capitulo 6 (Andlisis cualitativo de los embeddings) se
describen algunos hallazgos obtenidos durante la exploracién cualitativa de los embeddings
generados. Por 1ltimo, en el Capitulo 7 (Conclusiones y trabajo futuro) se desarrollan las
conclusiones obtenidas en este trabajo y se plantean posibles trabajos futuros.
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2. MARCO TEORICO

En este capitulo se introducen algunos conceptos fundamentales para la comprensién
de los temas tratados en este trabajo.

2.1. Tokenizacion y vocabulario

La tokenizacion es la tarea de segmentar texto en unidades mas pequenas, a las que
denominamos tokens. Estos tokens pueden ser oraciones, palabras individuales o sub-
unidades mas pequenas, como caracteres o sub-palabras (del inglés sub-word, un fragmento
de la palabra). En algunos casos incluso se segmenta al nivel de los bytes que componen
los caracteres de una palabra [65].

La tokenizacién es el primer paso para descomponer el texto en elementos discretos y
es necesaria en casi todos los métodos y tareas de NLP, desde los mas cldsicas hasta el
estado del arte.

Estos tokens se utilizan para conformar el vocabulario, que es simplemente un conjunto
de tokens distintos en un corpus (notar que no necesariamente son todos los posibles
tokens distintos). Los modelos de Machine Learning empleados en NLP solo pueden
procesar tokens que pertenezcan a su vocabulario asociado (que fue definido al momento
del entrenamiento). Cualquier token por fuera del vocabulario (OOV por out of vocabulary)
que se quiera procesar generari un error.

Las principales técnicas que existen para tokenizar un texto son:

= Tokenizacion en palabras: Tipicamente los tokens se obtienen a partir de considerar
las palabras separadas por espacio o por signos de puntuacién. Pueden haber ligeras
variaciones, por ejemplo si se consideran los signos de puntuacion como tokens o si
se descartan.

= Tokenizacién en caracteres: Simplemente cada caracter es un token por lo que el
proceso es simple. Los espacios en blanco se pueden modelar con tokens especiales
v los signos de puntuacién en general tienen que ser incluidos como tokens también.

= Tokenizacién en sub-palabras: Este es el caso més complejo de los tres, ya que existen
muchas formas en las que una palabra puede subdividirse. Por ejemplo, una opcién
seria dividir la palabra en silabas. Pero también podria dividirse en prefijo, sufijo
y raiz. O incluso simplemente en sub-strings arbitrarios. Mas adelante detallamos
algunos métodos que son utilizados por los algoritmos que se desarrollan aqui.

Notar que cada uno de estos métodos puede generar vocabularios completamente dife-
rentes para un mismo corpus. Todos tienen sus ventajas y desventajas, y en general giran
en torno a tres aspectos principales: capacidad de capturar informacién, manejo de los
tokens OOV y uso de la memoria. Es importante destacar que el idioma sobre el cual
se quiera trabajar juega un papel fundamental también. Por ejemplo en chino es mucho
mds complejo segmentar a nivel de palabras que en espanol o inglés por las caracteristicas
propias del idioma. Adem&s como muestran Li et al. en [40], en chino los caracteres suelen
ser una mejor unidad semaéantica que las palabras. Por lo tanto, las caracteristicas que
presentamos a continuacién son pensando en el idioma espanol.

9
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En general se considera que la segmentacién por palabras tiene mayor informacion
semdantica, aunque resulta poco eficiente en el uso de la memoria (el tamafio del vocabulario
puede estar facilmente en las decenas o cientos de miles) y por su naturaleza es més sensible
a fallar por tokens fuera del vocabulario.

Por su parte la tokenizacion por caracteres viene a resolver los problemas de la toke-
nizacién por palabras. El tamano del vocabulario es mucho més acotado (con 256 tokens
basta para escribir cualquier oracién en espanol si pensamos en el cédigo ASCII) y por
disenio resulta casi imposible encontrarse un token fuera del vocabulario. Como contrapar-
tida, generalmente el caracter como token no transporta ninguna seméantica en si mismo.

Lo tokenizacién por sub-palabra busca ser un punto intermedio entre los casos ante-
riores. En general los distintos métodos buscan optimizar la relacién entre cantidad de
tokens que componen el vocabulario y su granularidad. De esta forma se consiguen tokens
con mayor carga semantica que los caracteres, aun manteniendo acotado el tamaino del
vocabulario.

A continuacion, explicamos resumidamente el funcionamiento de dos métodos de to-
kenizacién por sub-palabra que son utilizados por los modelos de lenguaje (ver definicién
en la seccién 2.4) que utilizamos en este trabajo.

2.1.1. Byte-Pair Encoding y Word Piece

Los métodos conocidos como Byte-Pair Encoding (BPE) y Word Piece (WP) son
dos de los més conocidos y utilizados en la actualidad. Ambos tienen un funcionamiento
muy similar, razén por la cual los explicamos en conjunto aclarando en los lugares donde
difieren.

BPE es originalmente un algoritmo de compresién que fue adaptado para tokenizacion
por Sennrich, Haddow y Birch [58]. Su objetivo es reducir la cantidad de tokens necesarios
para representar un corpus grande de texto. BPE comienza con un vocabulario inicial que
incluye todos los caracteres individuales presentes en el corpus. Luego, en cada iteracion, se
encuentran y fusionan los pares de caracteres adyacentes mas frecuentes en el texto. Este
proceso se repite hasta alcanzar un nimero predefinido de tokens en el vocabulario o hasta
que no queden pares frecuentes para fusionar. De esta manera, BPE crea tokens de longitud
variable que pueden ser tan cortos como un cardcter individual o tan largos como una
palabra, permitiendo una representacion compacta del texto que reduce la probabilidad
de que se encuentren tokens por fuera del vocabulario.

WP surge originalmente del campo del reconocimiento de voz y es usado en NLP por
primera vez por Wu et al. en [67]. El funcionamiento es esencialmente el mismo que el de
BPE, siendo la principal diferencia el criterio escogido para unificar dos tokens: en lugar
de utilizar el criterio de “par mas frecuente” se utiliza el par que maximiza la siguiente
ecuacién:

frec(tokeny, tokens)
frec(tokeny) x frec(tokens)

frec_ponderada =

en donde frec es la frecuencia (cantidad de ocurrencias) de un token o de un par
de tokens. Una interpretacién probabilistica de esta ecuacién puede encontrarse en [67].
Intuitivamente, podemos pensarlo como que estamos evitando favorecer combinaciones
solo porque dos tokens son muy frecuentes por separado.
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2.2. Reconocimiento de Entidades Nombradas

El reconocimiento de entidades nombradas (NER, por sus siglas en inglés) es una ta-
rea de extraccién de informacién!, cuyo objetivo es reconocer y clasificar porciones del
texto que corresponden a categorias predefinidas (entidades nombradas). Estas categorias
dependeran del dominio del problema que se busca resolver. En el contexto médico, al-
gunas categorias comunes incluyen nombres de estructuras anatémicas, hallazgos clinicos,
procedimientos médicos y valores de medicién.

Por ejemplo, dada la siguiente oracion extraida de un informe de ecografia:

Ejemplo 2.2.1. “Ambos rinones de estructura conservada.”
Un sistema de NER podria identificar y clasificar las entidades de la siguiente manera:

Ejemplo 2.2.2. Ambos rinones [ANATOMICAL ENTITY] de estructura conservada
[FINDING].

En este ejemplo, el modelo de NER ha identificado correctamente:

» Ambos rifiones como una [ANATOMICAL ENTITY] (estructura anatémica).

» estructura conservada como un [FINDING] (hallazgo clinico).

Este proceso de identificacién y clasificacion permite a los sistemas de procesamiento
del lenguaje extraer informacion estructurada a partir de datos textuales no estructurados,
lo que podria facilitar tareas como la bisqueda de informacién relevante para los médicos,
la generacion de resimenes clinicos y la asistencia en toma de decisiones.

La tarea de NER es de tipo supervisado, lo que significa que requerimos un conjunto
de ejemplos etiquetado con los que esperamos que el modelo de aprendizaje automéatico
aprenda. En el contexto de extraccion de la informacién suele usarse el término anotacion
para referirse a tales etiquetas. Pustejovsky y Stubbs definen las anotaciones como “cual-
quier etiqueta de metadatos utilizada para marcar elementos del conjunto de datos” [54].
Como bien senalan en su trabajo, es fundamental que tales anotaciones sean precisas y
relevantes para la tarea que se espera resolver con Aprendizaje Automatico.

2.3. Embeddings

En esta seccion profundizamos en el concepto central de esta tesis: los embeddings,
que no son otra cosa mas que una representacién vectorial de las palabras. Es decir que a
cada palabra de un corpus se le asigna un respectivo vector dentro de un espacio vectorial
(generalmente euclidiano). En realidad en un sentido estricto los embeddings no se generan
necesariamente sobre palabras sino sobre un vocabulario de tokens, que como hemos visto
pueden ser palabras pero también caracteres o sub-palabras. Por simplicidad en lo que
sigue de esta seccién asumiremos que siempre hablamos de embeddings de palabras (word
embeddings) salvo que se aclare lo contrario.

! Las tareas de extraccidn de informacién son aquellas que se refieren al proceso de identificar y extraer
automaticamente informacién estructurada y significativa a partir de texto no estructurado. El objetivo
principal de la extraccién de informacién es convertir el texto en una forma que sea més facil de procesar
e interpretar por las computadoras.
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Existen diversas técnicas para realizar esta asignacién de vectores (de las cuales comen-
taremos algunas més adelante) pero todas se basan en intentar capturar la distribucién
de las palabras en los textos analizados, de tal forma que palabras que tienden a aparecer
en conteztos similares (es decir, que co-ocurren frecuentemente con las mismas palabras)
estén mas cerca entre si en el espacio, respecto de otras palabras con las que la probabilidad
de aparecer en el mismo contexto sea menor.

Como menciona Jurafsky en su libro [35], la utilidad de tales representaciones surge
de la llamada distributional hypothesis formulada por distintos lingiiistas en los anos ’50.
Dicha hipétesis postula que palabras con significados parecidos tienden a aparecer en
contextos similares, es decir tienden a co-ocurrir con las mismas palabras. Como una
consecuencia de esto, si los embeddings logran capturar adecuadamente la distribucién de
las palabras en el corpus, entonces se espera también que logre capturar la similitud entre
las mismas. Palabras con representaciones mas cercanas entre si deberian tener semanticas
més similares.

;Pero qué significa en este contexto que dos palabras tengan seménticas “similares”?
A continuacién resumimos la explicacién dada por Jurafsky en su libro [35]. Palabras que
son sinénimos (es decir, que son substituibles una por otra en una oracién sin alterar
las condiciones bajo las cuales la oracién es verdadera) pueden considerarse naturalmente
similares, sin embargo la similitud es una relaciéon mas débil que la relaciéon de sinonimia.
“Perro” y “gato” obviamente no son sinénimos pero se pueden considerar similares pues
ambos son animales que ademds comparten ciertas caracteristicas como ser mamiferos
o domesticables. Ademds de la similaridad, existe otro tipo de relacién entre palabras
que suele ser interesante desde la perspectiva de la seméntica vectorial: la relatedness (o
asociacién). “Taza” y “café” no son cosas similares pero si estdn asociados pues suelen
participar conjuntamente en los mismos eventos. Muchas veces esta asociacién se da por
pertenencia a un mismo campo semdntico: palabras como “médico”, “rinon”, “ecografia”
y “hospital” pertenecen al campo clinico.

Lograr representaciones del texto que puedan capturar este tipo de relaciones es va-
lioso en si mismo. Sin embargo, hay una motivacién adicional que es fundamental para
el avance del area de NLP: los embeddings permiten aprender de forma automédtica una
representacion conveniente para alimentar modelos para diversidad de tareas supervisadas
y no-supervisadas, en lugar de tener que realizar una ingenieria de caracteristicas (fea-
ture engineering) compleja. Previamente los mejores resultados en las tareas de NLP se
obtenian a través de codificar manualmente caracteristicas que capturaban propiedades
especificas del texto, usualmente superficiales o que integraban cierto conocimiento propio
del dominio, lo que (ademds de requerir tiempo y esfuerzo) las volvia dificilmente reuti-
lizables entre tareas, dominios e idiomas. A partir del uso de embeddings esta tarea se
simplifica y se vuelve mds comun la reutilizacién, como sefialan Habibi et al. en [30] para
la tarea de reconocimiento de entidades nombradas en texto biomédico. El motivo de esta
simplificacién es que los métodos para generar embeddings caen en la categoria de métodos
auto-supervisados (o self-supervised en inglés): se obtienen a partir de resolver problemas
esencialmente supervisados (como clasificaciéon o predicciéon de palabra siguiente en una
oracién) pero sin la necesidad de recibir un etiquetado previo, pues las “etiquetas” se
obtienen del texto mismo en forma automatica.

Pueden establecerse dos divisiones principales para los métodos de generacién de em-

beddings. Segun la forma en la que se hace la asignacién de los vectores pueden dividirse
en estaticos o contextualizados. En el primer caso, la representacion solo depende de la
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palabra que se quiere representar (por ejemplo “banco”); en el segundo, depende no solo
de la palabra sino también del contexto en el que se encuentra (por ejemplo “banco” en
la oracion “Me senté en el banco de la plaza” no va a tener la misma representacion que
en la oracién “Fui a hacer un depdsito al banco”).

Otra division importante es la de embeddings ralos y densos. El primer caso usa vectores
con longitudes en el orden de los miles o decenas de miles (por lo general, cada dimensién
corresponde a un token del vocabulario) y donde la gran mayoria de los valores de cada
vector suele ser cero. Por su parte las representaciones densas tienen un largo acotado,
que suele oscilar entre 50 y 1000 dimensiones (segin menciona Jurafsky [35]) y se espera
que tenga pocos valores nulos.

Evolutivamente, podemos decir que el progreso de los embeddings ha seguido este
recorrido:

= Esparsos y estdticos: matrices de co-ocurrencias, PPMI, TF-IDF
= Densos y estaticos: Word2Vec, GloVe, FastText
= Densos y contextuales: EIMo, BERT, GPT

La primer categoria si bien tiene gran importancia historica y tedrica no es el foco de
esta tesis debido a que las representaciones ralas en la practica se han visto superadas por
las densas.

Miés adelante en esta seccién profundizaremos sobre las representaciones densas, tanto
estaticas como contextualizadas. Notar que nos enfocaremos particularmente en los mo-
delos que son usados en este trabajo, dejando de lado muchos modelos que son de gran
importancia histérica como Word2Vec [43].

Hay también otra categorizacion muy importante cuando hablamos de embeddings y
que resulta ortogonal a las anteriores: la granularidad del token que se embebe. En general
los casos tipicos son los mismos que mencionamos cuando hablamos de tokenizacion en la
Seccidén 2.1: por palabra, por caracter y por sub-palabra. La eleccién de la granularidad del
token trae consigo las ventajas y desventajas comentadas en dicha seccién. Por ejemplo,
los embeddings por palabra sufren del problema de no poder vectorizar tokens OOV (del
inglés out-of-vocabulary) y de problemas de escalamiento cuando el vocabulario resulta
muy grande. Por su parte aquellos que se basan en caracteres solucionan ambos problemas,
pero introducen la cuestién de que los caracteres por si solos carecen de significado. Por
ese motivo solo son utilizados con embeddings contextuales. Por ultimo, los embeddings de
sub-palabras buscan ser un punto medio.

Vale notar que la granularidad del token usado limita la unidad méas pequena de texto
que puede embeberse pero no asi la méas grande. Dicho de otra forma: a partir de, por
ejemplo, embeddings de caracteres pueden formarse embeddings de palabras, de oraciones
o incluso de documentos completos. Esto se logra a partir de la combinaciéon de embeddings
que puede realizarse de diferentes formas, como por ejemplo calculando el promedio entre
vectores. De esta forma es posible hablar de Word Embeddings aun si el modelo usado fue
entrenado con un vocabulario de caracteres o sub-palabras.

Hemos hablado entonces de qué son los embeddings y los distintos tipos que existen. En
lo que resta de esta sub-seccién veremos el caso concreto de FastText (un tipo de embedding
denso y estético) y luego nos adentraremos a responder una pregunta fundamental ;Cémo
se puede evaluar la calidad o utilidad de estas representaciones? No cubriremos en esta
seccion el caso de los embeddings contextuales ya que para esto resulta necesario primero
introducir el concepto de modelos de lenguaje, que seran presentados en la seccién 2.4.
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2.3.1. FastText

FastText es un método para generar word embeddings estaticos introducido por Bo-
janowski et al. en [7]. Su funcionamiento es similar al algoritmo de Word2Vec [43] ya
que utiliza los mismos algoritmos para su implementacién. La principal diferencia que
introduce FastText es que antes de generar los embeddings realiza un pre-procesamiento
del vocabulario para generar un vocabulario interno que incluye informacién de las sub-
palabras. M4s especificamente genera n-gramas® a partir de las palabras del vocabulario
inicial. El largo de los n-gramas a utilizar es configurable al momento de entrenar, siendo
la configuracién tipica un minimo de 3-gramas y un maximo de 6-gramas.

Por ejemplo, si tuviéramos la palabra “rifiones” y configurdramos el minimo y méximo
de los n-gramas en 5, entonces tendriamos los siguientes 5-gramas en nuestro vocabu-
lario: <rifio, rifion, ifione, fiones, ones>. Adicionalmente también se agrega el token
<rifiones>. Los simbolos < y > son caracteres especiales que delimitan en principio y fin
de una palabra y se agregan como forma de desambiguar. Por ejemplo, si en el vocabulario
también tuviéramos la palabra “rifion” entonces vamos a tener un nuevo token <rifion>.
Este token es considerado distinto al 5-grama rifion que resulta de la palabra “rinones”.

La importancia de esta decisién es que permite que FastText pueda generar embeddings
para palabras que no estaban en su vocabulario de entrenamiento, siempre y cuando dicha
palabra pueda descomponerse en n-gramas que si fueron vistos durante el entrenamiento.
Esto le da una mayor versatilidad respecto a Word2Vec y es especialmente 1til en situa-
ciones donde es comiun que haya typos o la forma de escritura resulta irregular (como es
el caso de nuestros informes clinicos).

2.3.2. Evaluacién de embeddings

Existen a grandes rasgos dos tipos de evaluaciones posibles para los embeddings:
extrinseca e intrinseca.

La evaluacion extrinseca es la que se obtiene al aplicar los embeddings a una tarea
especifica de NLP. Por ejemplo: en una tarea concreta de NER o de anélisis de sentimientos.
En general se considera la forma de evaluacién mas importante (ver seccién 6.12 de [35])
ya que usualmente el fin iltimo de los embeddings es mejorar el desempeno de otras tareas.
Sin embargo es importante notar que un embedding puede ser mejor para una tarea o un
modelo puntual pero no para otras, por lo que no es tan simple generalizar los resultados
relativos al desempeno de un embedding en si mismo.

Por su parte, la evaluacién intrinseca también es de utilidad. Su objetivo es tratar de
cuantificar cuan bien los embeddings propuestos capturan relaciones semanticas dentro del
texto, siendo la mas comun la similitud. La manera clasica de medir esto entre vectores
es usando la llama similitud coseno que se define como el coseno del angulo formado
entre los vectores. Si bien el dngulo no es conocido, existe una forma de calcular esto
mismo en funcién del producto escalar de los vectores y sus respectivas magnitudes. Méas
formalmente, si v y u son vectores de dimension n y 6 es el dngulo entre ellos, entonces
sabemos por propiedad del producto escalar que

cos(0) v (2.1)

ol full

2 Un n-grama es una secuencia contigua de n caracteres (o palabras) extraidos de un texto. Por ejemplo,
en la palabra “gato”, los bigramas (n = 2) serfan “ga”, “at”, “to”.
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Notemos que por definicién del coseno el valor estd siempre en el rango [-1, 1]. El
resultado es 1 si los vectores tienen misma direccién y sentido, 0 si son ortogonales, y
-1 si tienen igual direccién pero sentido opuesto. Por lo que tokens con significados muy
similares se espera que tengan valores cercanos a 1.

Otras relaciones que a veces se tratan capturar con la semantica vectorial son la related-
ness (como se definié al principio de la seccién) o las analogias. Un ejemplo paradigmatico
de estas ultimas es el que se da en la publicacién original de Word2Vec [43], donde se
muestra cémo los vectores cumplen que

Vector(Rey) — Vector(Hombre) + Vector(Mujer) ~ Vector(Reina)

mostrando que pueden capturar la analogia “Rey es a hombre, reina es a mujer”.

Tales relaciones si bien resultan de gran interés presentan dificultades no menores
para su céomputo. La principal radica en que para computar tanto similitud, relatedness
o analogias se requiere tener conjuntos de datos cuidadosamente armados que incluyan
ejemplos con tales relaciones, tipicamente conocidos como gold standards. En el caso de
embeddings de dominio de uso general y especialmente en el idioma inglés donde el mayor
esfuerzo ha sido puesto en los tltimos anos, esto puede no ser tan desafiante. Por ejemplo,
WordSim [24] y SimLex [32] son dos recursos ampliamente usados que contienen relaciones
de similitud y relatedness. Sin embargo tales gold standards raramente estdn disponibles
para dominios mucho maés especificos (donde incluso puede ser dificil determinar relacio-
nes semanticas sin un especialista del dominio) o en diversidad de idiomas distintos del
inglés. Esto dificulta realizar este tipo de andlisis a nivel cuantitativo, quedando en prin-
cipio la alternativa de hacer un anélisis a nivel cualitativo, que igualmente requiere cierto
conocimiento del dominio.

2.4. Modelos de Lenguaje

Un Modelo de Lenguaje o Language Model (LM) es un modelo probabilistico que
aprende la distribucién de probabilidad de secuencias de palabras en un lenguaje. Su
objetivo principal es predecir la siguiente palabra en una oracion dada una secuencia
previa, asignando probabilidades a diferentes posibles continuaciones. Formalmente, dado
un conjunto de palabras wy, wa, . . ., wy, el LM estima P(wy|wy, we, ..., w,—1). Esta misma
definicién se puede generalizar para tokens en lugar de palabras.

Los primeros modelos de lenguaje datan de la década de 1980 como senala Rosenfeld
en [57]. La evolucién de tales modelos ha sido notable, siendo parte esencial en el desa-
rrollo de tareas como resumen de texto, traduccién automatica, generacion automaética de
contenido, agentes conversacionales, entre otras.

Miés adelante en este capitulo se introducen las dos técnicas que mas impacto han
tenido en los iltimos anos: arquitecturas de redes neuronales basadas en Long Short-Term
Memory (LSTM) y arquitecturas basadas en Transformers.

2.4.1. Masked Language Model

Los Masked Language Model (MLM) son una variante de los modelos de lenguaje
disenada para el aprendizaje auto-supervisado, introducida por Devlin et al. en el modelo
BERT [19]. A diferencia de los LM tradicionales que predicen la siguiente palabra en una
secuencia, los MLM ocultan (mask) aleatoriamente algunas palabras dentro del texto de
entrada y entrenan al modelo para predecirlas a partir del contexto.
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Por ejemplo, dada la oracion:
Ejemplo 2.4.1. “El paciente presenta un [MASK] en el higado.”

El modelo debe inferir que la palabra faltante podria ser “tumor”, “quiste” u otra
entidad médica plausible segtn el contexto. Este enfoque permite a los modelos capturar
representaciones mas ricas del lenguaje, ya que consideran informacién tanto del contexto
anterior como posterior a la palabra enmascarada.

Los MLM han demostrado ser altamente efectivos para el entrenamiento de modelos
de lenguaje en tareas de comprensién, ya que generan representaciones profundas del
significado de las palabras en diferentes contextos. Modelos como BERT, RoBERTa y sus
variantes utilizan esta estrategia para aprender representaciones generalizables a miltiples
tareas de NLP. Mas adelante en este capitulo, ahondamos en el funcionamiento de estos
modelos.

2.4.2. Obtenciéon de embeddings a partir de un LM

A diferencia de los métodos de generacién de embeddings estéaticos, que se enfocan en
extraer estas representaciones para poder ser usadas luego por otras tareas, en el caso de
los métodos de embeddings contextuales el objetivo es tipicamente entrenar un modelo de
lenguaje (LM), utilizando alguna arquitectura de redes neuronales artificales. Este modelo
es el que se ejecutara sobre el texto que se quiera embeber, sin embargo cémo hemos visto
mas arriba el output de un LM no es un embedding en si mismo, sino una distribucién de
probabilidades sobre el vocabulario.

En estos casos, la forma clasica de obtener embeddings para un token, palabra, oracion,
o informe, es quedarnos con el estado oculto (hidden state) de la capa anterior a la capa de
salida (head). Dicho de otra forma, nos quedamos con el output de la tltima capa oculta
del modelo. Por ejemplo, en el caso de la arquitectura BERT (que se explica més adelante
en este capitulo) esta capa posee 768 unidades, por lo que el resultado termina siendo un
vector con esa cantidad de dimensiones. Una aclaracién importante es que si bien quedarse
con el ultimo estado oculto es una decision frecuente en la literatura, no es la tinica posible.
Otra estrategia comtn es la de tomar las ultimas N capas ocultas y combinar cada estado
a través de concatenacién o promedio. De hecho en el paper fundacional de BERT [19] los
autores hacen un experimento en el que extraen embeddings para entrenar un modelo de
NER, y hallan que la mejor combinacién la obtienen concatenando los resultados de las
ultimas cuatro capas ocultas. Este resultado, sin embargo, no significa que necesariamente
sea siempre la mejor configuracién posible.

2.5. Arquitecturas LSTM

La arquitectura Long Short-Term Memory (LSTM) [33] es un tipo de Red Neuronal
Recurrente (RNN) que introduce el concepto de memoria de corto plazo para intentar
superar las principales dificultades de las arquitecturas recurrentes. Para entender un poco
mejor esto, primero es necesario introducir el concepto de dependencias de largo plazo en
una secuencia.

Tomemos como ejemplo el siguiente fragmento de texto: “Juana sintié hambre y decidié
ir a su restaurante favorito. Una vez alli, ella pidié el plato del dia”. Notar que en la segunda
oracion estamos usando las palabras “ella” y “alli” para aludir indirectamente a Juana y
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al restaurante (o incluso mads, al “restaurante favorito de Juana”). Este tipo de relacién
indirecta donde la carga semantica de una palabra (o incluso una oracién entera) depende
de informacién previa es lo que se conoce como dependencias de largo plazo (long-term
dependencies en inglés). Los humanos podemos realizar la asociacién anterior dado que
tenemos una memoria de corto plazo que nos permite recordar informacién clave de la
primera oracién al momento de leer la segunda.

Las RNN basicas luchan con este tipo de dependencias ya que la tnica forma que
tienen de poder aprenderlas es con estados internos lo suficientemente largos como para
mantener al mismo tiempo informacién de los términos involucrados. Por lo tanto, cuanto
més distanciadas se encuentran en el texto las palabras relacionadas, mas largo debe ser
el estado que se mantiene. El problema que esto presenta es que este tipo de arquitectura
no escala bien al momento de entrenar por dos fenémenos ampliamente estudiados en el
area de Deep Learning: vanishing gradient y exploding gradient [6]. No profundizamos
aqui en los detalles, pero basicamente consisten en limitaciones propias del algoritmo de
optimizacion utilizado.

Las LSTM presentaron una respuesta a este problema introduciendo el concepto de
unidades de memoria (referidas usualmente como unidades (o celdas) LSTM). Estas com-
ponentes tienen la capacidad de “aprender selectivamente” informacién del texto procesado
hasta el momento, por lo que no es necesario mantener estados internos tan grandes para
preservar dependencias de largo plazo. Basicamente la memoria actiia como un resumen
de lo visto hasta el momento, y este resumen se traduce en un estado interno de la celda
que no es otra cosa que un vector. El motivo por el que puede aprender selectivamente
que cosas mantener de los estados pasados y los nuevos es que tiene un mecanismo de tres
“compuertas” (gates): una que indica cuénto aprender del elemento actual de la secuencia
(input gate), otra que indica cudnto olvidar del estado anterior de la propia unidad de me-
moria (forget gate), y una tercera que a partir del nuevo estado interno genera el output
de la unidad (output gate). Este disefio de compuertas y estado interno puede verse en la
Figura 2.1.

Los parametros de estas tres compuertas son optimizados durante el proceso de entre-
namiento junto con el resto de los pesos del modelo, con garantias de convergencia mucho
mejores que las de las RNN cldsicas. Sin embargo, cabe mencionar que a pesar de esta
mejora las LSTM igualmente lidian con el problema del vanishing gradient, solo que con
una tolerancia mucho mayor sobre el largo de las secuencias.

Una red neuronal con arquitectura LSTM es simplemente una red neuronal recurrente
en la cudl las unidades clésicas utilizadas son reemplazadas por celdas LSTM. Sigue siendo
recurrente en el sentido que se utiliza tanto el input del paso actual como el output del
paso anterior, pero se agrega una recurrencia interna a nivel de las celdas LSTM. Mas
detalles de esto pueden encontrarse en el libro Deep Learning [27].

Una evolucién de las redes LSTM son las llamadas BiLSTM. Este tipo de arquitectura
surge de notar el hecho que muchas veces la seméntica de una palabra depende fuertemente
de otras que aparecen después en la oracion. En estos casos una LSTM que recorre la
secuencia en sentido inverso puede ser mas adecuada. Las redes BiLSTM son simplemente
el resultado de combinar dos LSTMs: una que recorre la secuencia de inicio a fin (forward)
y otra que va del final hacia el principio (backward). El output se genera a partir de realizar
una ponderacién entre ambos resultados.
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Fig. 2.1: Arquitectura interna de una celda (unidad) de memoria de la arquitectura LSTM. Puede
observarse de que manera estan conectados el input actual de la secuencia, el estado
interno de la unidad de memoria, y las tres compuertas: input gate, forget gate y output
gate. Notar el self-loop que es la conexién que permite reutilizar el estado interno del paso
anterior como parte del cdlculo del estado interno actual (ponderado por la forget gate).
Esta imagen fue tomada del libreo Deep Learning [27]
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Fig. 2.2: Imagen tomada del paper original de Flair [2]. Se ilustra en este caso el proceso para
obtener el embedding de la palabra “Washington” en el contexto de esta oracién. Por
un lado se ejecuta el modelo forward desde el comienzo de la oracién hasta el ultimo
caricter de la palabra deseada (en este caso “n”) y nos quedamos con el ultimo estado
interno correspondiente a procesar este cardcter (es decir, un vector de 2048 dimensiones).
Anélogamente, se ejecuta el modelo backward desde el final hasta el primer cardcter de
la palabra (en este caso “W”) y nuevamente nos quedamos con el dltimo estado interno
generado. Debido a la capacidad de la LSTM de conservar informacién de los estados vistos
anteriormente, basta con quedarse con estos dos estados internos para tener informacion
de la palabra y todo su contexto.

2.5.1. Flair

Flair es una arquitectura puntual de BILSTM para modelos de lenguaje que fue intro-
ducida por Akbik, Blythe y Vollgraf [2]. Entre sus principales caracteristicas se encuentran
que utiliza tokenizacién por caracteres (lo que le da mayor robustez frente a palabras por
fuera del vocabulario de entrenamiento) y que se entrenan dos modelos de lenguaje inde-
pendientes con 2048 unidades de LSTM cada uno: uno forward y otro backward.

Esta arquitectura fue pensada desde el principio como una forma de extraer word
embeddings contextuales para tareas de anotacion de secuencias (como por ejemplo, NER).
Notar que si bien los modelos procesan la secuencia a nivel de sus caracteres, el objetivo
es generar embeddings por palabra. La forma en la que se realiza esto es la que se describe
en la figura 2.2. El resultado consiste en un vector de 4096 dimensiones que contiene
informacién del contexto anterior y posterior de la palabra en la oracién.

2.6. Arquitecturas de Transformers

Los Transformers representan una clase de arquitecturas de modelos de aprendizaje
profundo que han emergido como un componente esencial en numerosas aplicaciones de
NLP. Fueron introducidos por Vaswani et al. [64], donde se introduce el componente clave
de esta arquitectura: el mecanismo de auto-atencion (self-attention en el original) como
forma de reemplazar el uso de redes neuronales recurrentes. Las RNN si bien son arqui-
tecturas muy poderosas para trabajar con datos secuenciales, presentan grandes desafios
para la convergencia de su entrenamiento, como muestran Bengio, Simard y Frasconi [6].
Ademas, las arquitecturas basadas en RNN son intrinsecamente mas dificiles de paralelizar
(por su naturaleza secuencial) y de escalar para mayores voliumenes de datos. Gracias al
uso de las capas de auto-atencion, los Transformers logran modelar dependencias a largo
plazo en datos secuenciales (y ademds lo hacen de manera bidireccional) pero manteniendo
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un nivel de paralelismo similar al de las redes neuronales no-secuenciales.
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Fig. 2.3: Imagen tomada y adaptada de [64], ilustra la arquitectura bésica de un Transformer. Lo
recuadrado en rojo (a la izquierda) es el encoder, mientras que lo recuadrado en azul
(derecha) es el decoder.

La arquitectura de los Transformers consta principalmente de dos partes fundamenta-
les: el codificador y el decodificador. En el contexto de tareas del tipo secuencia-a-secuencia
(por ejemplo, la traduccién automadtica) el codificador toma una secuencia de entrada (co-
mo una oracién en inglés) y la convierte en una representacién numérica (vectorial). Por
su parte, el decodificador utiliza esta representacién para generar una secuencia de salida
(por ejemplo, la oracién traducida al espanol).

Este enfoque innovador (fuertemente inspirado por técnicas del campo de Computer
Vision) ha demostrado ser altamente efectivo en una variedad de tareas de NLP, superando
en muchos casos a las arquitecturas basadas en LSTMs. Para comprender mejor a los
Transformers a continuacion profundizaremos en algunos detalles técnicos.

2.6.1. Auto-atencién

La auto-atencién es un componente esencial de los Transformers que permite evaluar la
importancia de cada palabra en una secuencia en funcién de su contexto. Este mecanismo
opera calculando tres tipos de vectores: Query, Key y Value.

» Query (Consulta): Es un vector que representa la palabra de interés, cuya relacién
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con otras palabras en la secuencia queremos analizar.

» Key (Clave): Es un conjunto de vectores que representan todas las palabras de la
secuencia. Se utilizan en combinacién con la Query para determinar la ponderacién
de cada palabra de la secuencia respecto a la palabra de interés.

» Value (Valor): Es un conjunto de vectores con los que se genera una proyeccién
lineal a partir de los vectores de entrada (correspondientes a cada palabra de la
secuencia).

Para calcular la atencion de una palabra de consulta en relacién con las demas palabras,
se realizan productos escalares entre el vector Query y los vectores Key, seguido de la
aplicacién de una funcién de activaciéon® para obtener los puntajes de atencién y luego se
utilizan estos puntajes para ponderar los vectores Value. Finalmente, se suman los valores
ponderados para obtener una representacion contextualizada de la palabra de consulta,
que tiene en cuenta su relacién con las demds palabras en la secuencia. Esto es lo que
permite a los Transformers capturar las dependencias de largo plazo, sin necesidad de
recurrir a mecanismos de memoria como las LSTM.

Sin embargo el tener un tnico conjunto de pesos de atencién limita la cantidad de
dependencias que el modelo puede mantener. Por eso lo que se termina utilizando real-
mente en las arquitecturas de Transformers es la técnica de Multi-Head Attention que
permite al modelo atender a diferentes partes de la secuencia simultaneamente, utilizando
multiples cabezas de auto-atencion. Estos conjuntos de pesos son independientes entre si
por lo que su calculo y optimizacién puede hacerse en forma paralela, lo que resulta muy
eficiente. Una vez computados los vectores de cada cabeza se realiza un paso de agregacién
y normalizacién para consolidar la informacién contextual.

2.6.2. Encoder y decoder

El codificador es responsable de procesar la secuencia de entrada y generar una repre-
sentacién vectorial de la misma. Para ello, utiliza las capas de atencién y transformacion
(una capa de tipo fully-connected) para capturar la informacién contextual y las relaciones
entre las palabras de la secuencia. El codificador evalia la importancia de cada palabra en
funcién de su contexto y produce una representacién contextualizada de las mismas, que
luego utiliza como entrada para el decodificador.

Por otro lado, el decodificador toma la representaciéon numérica generada por el codifi-
cador y la utiliza para generar la secuencia de salida deseada, como la traduccién en otro
idioma. Para lograr esto, el decodificador también utiliza capas de atencién y transforma-
cién, pero de manera ligeramente diferente. Ademads de procesar la informacién contextual,
el decodificador debe generar una secuencia de salida que sea coherente y tenga sentido
en el contexto del idioma de destino. Por lo tanto, el decodificador realiza un proceso de
generacién autoregresiva, donde cada palabra en la secuencia de salida se genera una a la
vez, teniendo en cuenta las palabras generadas anteriormente.

Un punto interesante es que no siempre se utilizan el encoder y el decoder juntos.
Segun el tipo de modelo y problema puede usarse solo un encoder, solo el decoder o ambos
(arquitectura encoder-decoder).

3 La funcién de activacién, tipicamente una funcién softmax, transforma los puntajes de atencién en
una distribucién de probabilidad, asegurando que la suma de los pesos sea igual a uno. Esto permite una
asignacion adecuada de atencién a diferentes partes de la secuencia.
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Los encoders son usados principalmente en tareas de natural language understanding
o information extraction donde el generar una representacion interna del lenguaje resulta
fundamental para un buen desempeno de la tarea.

Los decoders (también conocidos como modelos auto-regresivos) son utilizados en pro-
blemas de generacién automética de texto. Por ejemplo, sistemas conversacionales (chat-
bots) suelen basarse en este tipo de modelo.

Por 1ltimo, los encoder-decoder son usados para tareas del tipo sequence-to-sequence,
donde a partir de una secuencia se desea generar otra nueva, no necesariamente de la misma
longitud que la original. El caso paradigmatico de esto son los modelos de traduccion
automatica (machine translation).

En esta tesis nuestro foco estd puesto inicamente en los modelos del tipo encoder, ya
que son los que permiten generar embeddings y resolver el tipo de tareas de interés.

2.6.3. Diferencias de los Transformers con las RNNs y LSTMs

La principal diferencia entre los métodos basados en Transformers y aquellos basados
en LSTMs (u otras redes recurrentes) es que los primeros no utilizan recurrencia en ningin
momento. El Transformer procesa todo el input en simultdneo, lo cual mejora significa-
tivamente las propiedades de paralelizacion de esta arquitectura con respecto a las RNN,
permitiendo entrenar modelos mas grandes y de forma maés rdpida. Otra ventaja de no
hacer uso de recurrencia, es que el algoritmo de optimizacion tiene mejores propiedades
de convergencia, haciendo que sea més facil aprender dependencias de largo plazo, aun
cuando se encuentran muy distantes en la secuencia de entrada.

Posiblemente la mayor contra de perder la recurrencia es que se pierde la capacidad
de procesar secuencias de longitud arbitraria. Los encoders estan limitados a un tamano
maximo de la secuencia de entrada. En casos donde se quiere procesar secuencias de
mayor tamano se debe recurrir a distintas estrategias de particionamiento, lo cual agrega
un punto de complejidad. Sin embargo, en la practica esta limitacién no impide que los
Transformers sean la mejor arquitectura para resolver una larga lista de tareas de NLP.

2.6.4. BERT

BERT (Bidirectional Encoder Representations from Transformers) es un modelo de
lenguaje basado en la arquitectura de Transformers que fue introducido por Devlin et al.
[19]. Su principal contribucién es el entrenamiento basado en el enfoque de Masked Langua-
ge Model (MLM) y la prediccién de la siguiente oracién (Next Sentence Prediction, NSP),
lo que le permite aprender representaciones profundas del lenguaje con una comprension
més rica del contexto.

A diferencia de los modelos autoregresivos como GPT [8], que procesan texto en una
unica direccién (izquierda a derecha), BERT aprovecha un codificador bidireccional. Esto
significa que puede considerar el contexto tanto anterior como posterior a una palabra en
una oracion, lo que mejora la captura de dependencias a largo plazo.

El entrenamiento de BERT consiste en dos tareas principales:

» Masked Language Model (MLM): Durante el pre-entrenamiento, se ocultan
(mask) aleatoriamente algunas palabras de la entrada y el modelo debe predecirlas
basandose en el contexto circundante. Esto permite que BERT aprenda representa-
ciones mas generales y transferibles a diversas tareas de NLP.
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» Next Sentence Prediction (NSP): Se entrena al modelo para predecir si, dadas
dos oraciones, la segunda es continuacién de la primera o no. Esta tarea ayuda a
mejorar el rendimiento en aplicaciones como la respuesta a preguntas y la inferencia
de texto.

BERT se ha convertido en la base de muchas variantes optimizadas para distintos
dominios y tareas, como ClinicalBERT [4] para textos clinicos y BioBERT [39] para datos
biomédicos.

2.6.5. RoBERTa

RoBERTa (Robustly Optimized BERT Pretraining Approach) es una optimizacién del
modelo BERT presentada por Liu et al. [41]. Su desarrollo se basa en la hipétesis de que
BERT no estaba explotando completamente la capacidad de la arquitectura Transformer
debido a ciertas decisiones en su pre-entrenamiento.

Las principales mejoras introducidas por RoBERTa incluyen:

= Mas datos y mayor tiempo de entrenamiento: Se entrena con més datos y
durante mas tiempo, lo que permite obtener representaciones mas robustas.

= Eliminaciéon de la tarea de NSP: Se encontré que la prediccién de la siguiente
oracién no contribuia significativamente al rendimiento del modelo, por lo que fue
eliminada.

= Aumento en el tamano del batch: Se usan lotes de datos mas grandes, lo que
mejora la estabilidad del entrenamiento.

» Uso de dinamicas de masking: A diferencia de BERT, donde las palabras en-
mascaradas son fijas para cada ejemplo de entrenamiento, en RoBERTa se utilizan
diferentes mascaras en cada iteracién, mejorando la capacidad de generalizacién del
modelo.

RoBERTa ha demostrado superar a BERT en varias tareas de NLP sin modificar
su arquitectura subyacente, inicamente optimizando su pre-entrenamiento. Al igual que
BERT, ha dado lugar a multiples versiones especializadas, como BioMed-RoBERTa [28]
para textos biomédicos.

2.7. Transfer Learning

Goodfellow, Bengio y Courville definen, en su libro “Deep Learning”[27], el transfer
learning como “usar lo que fue aprendido en una configuracién para mejorar la genera-
lizacién de otra”. Aqui configuracién es un concepto que incluye no solo el modelo sino
también los datos con los que se cuenta y la tarea especifica que se quiere resolver. Por
simplicidad, nos referimos a la primer configuracién como fuente o base, y a la segunda
como objetivo.

En general el concepto de transfer learning es muy amplio y las definiciones no son
tan formales. Sin embargo, a grandes rasgos podemos dividir las técnicas en dos grandes

categorfas?:

* Inspirado en el articulo de Medium https://medium.com/@davidfagb/guide-to-transfer-learning-in-
deep-learning-1{685db1fc94
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s Extraccién de features
= Fine-tuning

El caso de extraccién de features consiste en usar un modelo pre-entrenado (base) para
extraer features de los datos y pasarselas luego al modelo objetivo. El punto clave aqui
es que el modelo base y el objetivo suelen ser completamente distintos, solo las features
extraidas los relacionan. Un ejemplo de esto son justamente los embeddings extraidos
usando FastText. Para poder generar tales embeddings primero se entrena un modelo de
clasificacién de forma auto-supervisada. Sin embargo, luego el modelo se descarta y solo
se utiliza el mapeo entre tokens del vocabulario y vectores (embeddings) dados por la
capa oculta del modelo. En este caso, los embeddings son las features. Lo mismo aplica al
procedimiento para obtener embeddings a partir de modelos de lenguaje, explicado en la
seccion 2.4.2.

Fine-tuning es un término ampliamente utilizado en el contexto de Deep Learning
que se puede pensar como cualquier actualizacion de los pesos de un modelo previamente
entrenado para que el mismo sea t1til en una nueva tarea o dominio objetivo. Notar que
en este caso la tarea fuente y objetivo no necesariamente tienen que ser la misma. Un
ejemplo de esto son los transformers como BERT que son entrenados originalmente como
Masked Language Models pero luego pueden ser utilizados para otras tareas como Named
Entity Recognition simplemente cambiando la capa de salida y actualizando los pesos
(entrenando) sobre el conjunto de datos especifico. A esta forma mads especifica de fine-
tuning, en la que tomamos un modelo entrenado para una cierta tarea y lo ajustamos para
que sirva en otra, la llamamos task adaptation.

Otro caso particular de fine-tuning es el de domain adaptation (del inglés, adaptacién
al dominio). Es un tipo de transfer learning que se realiza en un escenario donde las tareas
fuente y objetivo son las mismas (transductive transfer learning) pero la distribucién de
los datos difiere. Basicamente consiste en tomar el modelo entrenado para la tarea fuente
y continuar entrenandolo sobre los datos de la tarea objetivo. La utilidad estd en que los
pesos ya estan inicializados de una forma que puede acortar el entrenamiento necesario
sobre la tarea objetivo, siempre y cuando los dominios fuente y objetivo estén relacionados
de alguna forma. Por ejemplo, la tarea fuente puede ser predecir palabras en espanol de
dominio general y el dominio objetivo trata de predecir palabras en espanol pero en un
dominio més acotado (como por ejemplo el biomédico).

2.8. Bootstrapping

El Muestreo Bootstrap (o simplemente Bootstraping) es una técnica estadistica que
nos permite estimar la variabilidad de nuestros resultados y la incertidumbre asociada
a nuestras métricas de evaluacién. Consiste en generar multiples muestras de datos a
partir de una sola muestra existente, mediante muestreo con reemplazo. Al promediar
los resultados obtenidos en todas las muestras generadas, obtenemos una estimacion mas
precisa de las métricas de evaluacién y una mejor comprension de la variabilidad del
rendimiento del modelo. Nos permite calcular los intervalos de confianza® para tener una
mayor comprensién de la incertidumbre asociada a nuestros resultados. Esto nos ayuda a

5 Un intervalo de confianza es un rango de valores que se utiliza para estimar el pardmetro de una
poblacién. Indica la certeza o nivel de confianza con el que se espera que el verdadero valor del pardmetro
esté contenido dentro de ese rango.
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poder realizar una evaluacién mas robusta del modelo y a tomar decisiones mas informadas
sobre su capacidad de generalizacién.

2.9. Reducciéon de dimensionalidad

La reduccién de dimensionalidad en el aprendizaje automatico es una técnica utilizada
para reducir el nimero de variables (features) en un conjunto de datos, manteniendo la
mayor cantidad de informacién posible. Esto resulta de suma utilidad para simplificar el
entrenamiento de modelos, reduciendo el tiempo de cémputo y evitando la llamada curse
of dimensionality (“maldicién de la dimensionalidad”)%, donde demasiadas caracteristicas
pueden llevar al overfitting si no se tienen suficientes ejemplos. Otro uso tipico es poder
generar visualizaciones de datos que viven en espacios multi-dimensionales que son impo-
sibles de visualizar a priori pero que gracias a la reduccién de dimensionalidad se pueden
proyectar en dos o tres dimensiones.

Dos métodos comunes para la reduccién de dimensionalidad son Anélisis de Compo-
nentes Principales (PCA, por sus siglas en inglés) [1] y t-Distributed Stochastic Neighbor
Empbedding (t-SNE) [63]. A continuacién describimos brevemente ambos métodos.

PCA es una técnica lineal que transforma las features originales en un nuevo conjunto
de variables no correlacionadas llamadas componentes principales. Estos componentes se
ordenan segun la cantidad de wvarianza que capturan del conjunto de datos original. Los
primeros componentes principales suelen capturar la mayor parte de la varianza, lo que
permite reducir las dimensiones manteniendo solo estos componentes. PCA se utiliza am-
pliamente para la compresién de datos y la visualizacion de datos de alta dimensionalidad,
donde la relacion de las variables se asemeja a una funcién lineal.

t-SNE es una técnica no-lineal utilizada principalmente para visualizar datos de al-
ta dimensionalidad. Funciona convirtiendo las similitudes entre puntos en probabilidades
y luego minimizando la divergencia entre estas probabilidades en el espacio de alta di-
mensionalidad y un espacio de menor dimensionalidad. t-SNE es particularmente eficaz
en preservar las estructuras locales, lo que lo convierte en una herramienta efectiva para
visualizar clusters (explicados en la seccién siguiente) en conjuntos de datos complejos.

Es importante destacar que tanto PCA como t-SNE son métodos no-supervisados
que solo requieren un conjunto de puntos en el espacio para funcionar, no necesitando
etiquetas. PCA tipicamente tiene mayor variedad de usos, mientras que t-SNE es una
técnica practicamente disenada solo para visualizacién de datos de alta dimensionalidad
con relaciones complejas.

Si bien podria considerarse que t-SNE es una herramienta més poderosa que PCA en
términos de visualizacién (dado que puede capturar relaciones més complejas, al menos
para datos no lineales) resulta comun emplearlas en conjunto cuando la cantidad de datos
y sus dimensiones son muy elevados: primero aplicar PCA sobre los datos para llevarlos a
una dimensionalidad menor (por ejemplo, bajar de 1000 dimensiones a 100) y luego aplicar

5 El término “curse of dimensionality” fue acufiado por Richard Bellman (1961) para referirse a un
fenémeno que ocurre en espacios de alta dimensionalidad, donde a medida que aumenta el nimero de
features o dimensiones en un conjunto de datos, los datos se vuelven escasos y dispersos en el espacio de
representacion. Esto provoca comportamientos que son contraintuitivos respecto del andlogo en dos o tres
dimensiones. Las distancias entre puntos de datos se vuelven menos significativas, dificultando tareas como
la clasificacién y el clustering. Una explicacién mucho més detallada puede encontrarse en el capitulo 2 del
libro “The Elements of Statistical Learning”[31] de Hastie, Tibshirani y Friedman.
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t-SNE sobre el conjunto reducido. EI motivo de esto es que ejecutar el algoritmo de t-SNE
es mucho maés costoso que PCA, especialmente cuando hay un alto nimero de ejemplos.

2.10. Clustering

El clustering (del inglés, agrupacién) en Machine Learning es una técnica de aprendi-
zaje no-supervisado utilizada para agrupar puntos de datos similares en clusters (ciimulos)
donde los puntos dentro del mismo cluster son mas parecidos entre si que a los de otros
clusters. Esto es util para descubrir patrones, segmentar datos y reducir la complejidad de
los conjuntos de datos.

Existen diversas estrategias para realizar clustering. En este trabajo consideramos tan-
to métodos basados en particién, como K-Means, asi como enfoques basados en densidad,
como DBSCAN y HDBSCAN. A continuacién, describimos los métodos mas relevantes
utilizados.

K-Means es un algoritmo popular de agrupaciéon basado en centroides. Funciona inicia-
lizando un nimero predefinido de clusters (K) y asignando puntos al centro de cluster mas
cercano. El algoritmo actualiza iterativamente los centros de los clusters (centroides) mi-
nimizando la varianza dentro de cada cluster. K-Means es eficiente y funciona bien cuando
se conoce de antemano el nimero de clusters deseados y los mismos son aproximadamente
esféricos y de tamano similar.

DBSCAN (Density-Based Spatial Clustering of Applications with Noise) es un algorit-
mo de clustering basado en densidad, disenado para identificar grupos de datos en espacios
de alta dimensionalidad sin necesidad de especificar el niimero de clusters de antemano. A
diferencia de K-Means, DBSCAN detecta regiones de alta densidad separadas por regiones
de baja densidad, lo que le permite identificar clusters de forma arbitraria y manejar datos
con ruido de manera mas robusta. El algoritmo se basa en dos pardmetros principales: ¢,
que define la distancia maxima entre puntos considerados vecinos, y minPts, que establece
el nimero minimo de puntos requeridos para que una region sea considerada densa. Un
punto se clasifica como core si tiene al menos minPts vecinos dentro de un radio €; si esta
dentro de la vecindad de un core, pero no alcanza el umbral, se considera un punto de
borde; y si no cumple ninguna de estas condiciones, se clasifica como ruido. La principal
ventaja de DBSCAN es su capacidad de encontrar clusters con formas irregulares y su
robustez frente a la presencia de valores atipicos.

HDBSCAN (Hierarchical Density-Based Spatial Clustering of Applications with Noise)
es una extensién jerarquica de DBSCAN que optimiza la seleccién de parametros y permite
la deteccién de clusters con diferentes densidades. A diferencia de DBSCAN, que requiere
un valor fijo de e, HDBSCAN elimina esta dependencia construyendo un arbol de jerarquia
de densidades y extrayendo los clusters en funcién de su estabilidad. Esto hace que el
algoritmo sea mas flexible y adecuado para datos con variaciones en la densidad de los
grupos.



3. ANTECEDENTES Y REVISION DE LA LITERATURA

En este capitulo introducimos los trabajos previos que dan origen a los datos utilizados
y parte de los problemas que queremos atacar. También presentamos una revisién mas
general de la literatura mostrando diversos trabajos que en algunos aspectos pueden estar
relacionados a lo realizado en esta tesis.

3.1. Antecedentes en idioma inglés

Dentro del contexto de Biomedical NLP (BioNLP), la mayor parte del esfuerzo volca-
do en desarrollar embeddings o language models especificos ha sido con corpora en idioma
inglés. Es importante destacar que no existe un dnico tipo de texto cuando hablamos de
BioNLP. Por ejemplo, pueden encontrarse articulos cientificos, informes de alta médica
(epicrisis), notas tomadas durante la visita del paciente al consultorio, e informes de es-
tudios de imédgenes. También libros e incluso noticias periodisticas. Particularmente, lo
que nos interesa en este trabajo es lo que englobaremos bajo el término “texto clinico”:
todo texto que se genera por los profesionales de la salud durante la operatoria cotidiana
de las instituciones clinicas y hospitalarias. Esto incluye distintos tipos de textos como
por ejemplo: notas de consultas, historiales clinicos, historiales familiares, informes corres-
pondientes a diversos tipos de estudios, epicrisis, entre otros. Uno de los factores que ha
dado un gran impulso al drea de BioNLP ha sido la digitalizacion de todos o varios de
estos textos, facilitando su consumo para distintos tipos de aplicaciones informaticas. Sin
embargo, la mayoria de los embeddings y modelos de lenguaje que son entrenados, como
puede apreciarse en los relevamientos realizados por Kalyan y Sangeetha [36] y Khattak
et al. [38], siguen siendo basados en otros tipos de textos porque la publicacién de los infor-
mes clinicos digitales no es algo que pueda tomarse a la ligera por cuestiones relacionadas
con la privacidad y confidencialidad de la informacién que alli se muestra.

A pesar de esto, se cuenta con algunos recursos publicos en idioma inglés, siendo
una de las més relevantes, por su tamano y difusién, la base de datos MIMIC-III [34],
que fue publicada en el ano 2016 y contiene informacién asociada a alrededor de 40 mil
pacientes de unidades de terapia intensiva. Los informes han sido anonimizados y también
cuenta con diversos tipos de anotaciones. Es a partir de esta base que se entrenaron,
por ejemplo, las variantes méas conocidas del modelo llamado Clinical BERT [4], el cual se
observé que captura mejor la terminologia médica y la gramética especifica de los registros
clinicos, comparado con modelos generales (como BERT [19]) o modelos entrenados sobre
texto médico no-clinico (como BioBERT [39]). Esto lo mostraron también Wang et al.
en su trabajo del 2018 [66]: cuando el objetivo final es analizar texto clinico, entrenar
embeddings sobre este mismo tipo de texto conduce a mejores propiedades semanticas
respecto de cuando se entrena usando otras fuentes posibles como articulos cientificos,
noticias o articulos de Wikipedia.

Otro punto importante que senalan Khattak et al. en [38] es la relevancia de tener
conjuntos de datos especificamente orientados a hacer evaluaciones intrinsecas. Este tipo
de evaluacién, que se introdujo en la seccién 1.3, se realiza con tareas que Unicamente estan
relacionadas a los embeddings mismos, como por ejemplo calcular similitud y relatedness.
Para esto resulta 1util tener conjuntos de datos con pares de palabras que sean similares
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o estén relacionadas, como forma de realizar una evaluacién cuantitativa. Se senalan la
existencia de los conjuntos de datos UMNSRS-sim, UMNSRS-rel [50] y MayoSRS [51], que
han sido creados especificamente para el dominio médico. Los tres consisten en pares de
conceptos extraidos del metatesauro UMLS! (Unified Medical Language System). UMLS
es internacionalmente reconocido y da un marco unificado que integra multiples termi-
nologias médicas, lo que la hace muy 1til en el drea de BioNLP. Los pares de conceptos
relacionados fueron anotados manualmente por expertos del dominio clinico. Estos con-
juntos de evaluacién tienen un enfoque generalista en cuanto a los términos que incluyen,
por lo que pueden no ser lo més adecuado a utilizar cuando se trabaja con un sub-dominio
en particular, como por ejemplo informes de imagenes radioldgicas. Adicionalmente estos
benchmarks son previos incluso al desarrollo de Word2Vec, lo cual significa que no fueron
pensados especificamente para el trabajo con este tipo de embeddings. Mucho menos se
considerd el caso de los embeddings contextuales, para los cuales una comparacién de a
pares puede no ser el mejor enfoque. Més recientemente se publicé un trabajo [37] escrito
por Khan et al. que afronté el desafio de construir un conjunto especificamente desarro-
llado para el dominio de reportes radiolégicos y que considera tanto embeddings estaticos
como contextuales. Tal trabajo sin embargo, es pensando nuevamente en el idioma inglés y
ademads no hemos encontrado ningun cédigo publicado abiertamente que pueda utilizarse
como punto de partida para hacer algo similar en espanol.

3.2. Corpus y SpRadIE

En la tesis doctoral de Cotik [18], se presenta un corpus proveniente de un importante
hospital de Argentina. Este corpus consta de aproximadamente 80 mil informes de eco-
grafias escritos en espanol. Se le realizaron una serie de pre-procesamientos, tanto a nivel
de formato como de anonimizacion. Dichos informes no poseen anotaciones adicionales.
Este corpus es importante para nuestro trabajo ya que es el que utilizamos para desarrollar
nuestros embeddings. Profundizamos sobre el mismo en la seccién 4.1.

En el mismo trabajo y en [15] se trabaja en la anotacién de un subconjunto de esos
informes, cuidadosamente seleccionados bajo ciertos criterios para asegurar la representati-
vidad deseada. En total hay 10 tipos de entidades diferentes que fueron anotadas entre ellas
entidades anatomicas, hallazgos clinicos, ubicaciones, medidas, y otras que seran detalla-
das en la seccién 4.1. Este subconjunto es el que se utiliza como corpus de la competencia
SpRadlIE, detallada a continuacion.

SpRadIE fue un challenge? de reconocimiento de entidades nombradas aplicada a in-
formes de ecografias en espanol. Se presenté en el contexto del eHealth Evaluation Lab de
la Conference and Labs of the Evaluation Forum 2021 (CLEF 2021), en la categoria de
Multilingual Information Extraction.

En este marco, participaron un total de siete equipos, que trataron de resolver el
problema propuesto con distintos enfoques: EAIE [61], SINAT [42], SWAP [53], CTB [60],
LST [22], HULAT [25] e IMS [20]. Debido a que SpRadIE y el corpus utilizado para su
desarrollo son centrales en el presente trabajo, resumimos algunos aspectos interesantes
de los esfuerzos realizados por los dos equipos que alcanzaron los mejores resultados del

! https://www.nlm.nih.gov/research/umls/index.html

2 La palabra “challenge” (del inglés, desafio) es un término que suele usarse en Machine Learning para
referirse a tareas que son presentadas en formato de competencia, con reglas definidas y un mecanismo
particular de evaluacién.
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challenge. La métrica que se utilizé6 para determinar al ganador fue micro-averaged F1-
Score con match parcial (una explicacién de esta métrica puede encontrarse en la seccién
4.5).

El equipo EdIE-KnowLab [62] fue el que mejores resultados obtuvo, aunque también
puede considerarse la solucién méas compleja en términos de la cantidad de modelos usados
internamente. La propuesta se compone de 2 subsistemas (en la versién que resulté gana-
dora): uno es un ensemble de BETOs [11] finetuneados (uno para cada tipo de entidad), y
el otro es un diccionario que mappea tokens a entidades basado en un analisis estadistico
sobre el corpus de entrenamiento (aprovecha repeticién de patrones simples). Para el pre-
procesamiento hacen correcciones de ortografia y gramatica. También expanden el span
de algunas etiquetas mal anotadas (por ejemplo, a veces la tltima letra de una palabra
queda por fuera de la anotacién por error). Como puntos de interés, destacamos el enfoque
de tener un BETO por cada tipo de entidad como forma de manejar el problema de so-
lapamiento entre entidades (una misma palabra puede pertenecer a mas de una entidad),
asi como también disminuye los efectos negativos del desbalanceo entre entidades (ciertas
entidades son mucho mas comunes que otras como puede verse en la figura 4.1 y esto puede
sesgar al modelo en su aprendizaje). También remarcamos que el mejor resultado de la
competencia haya sido logrado a través del uso de Transformers, que son el estado del
arte actual en un gran nimero de tareas de NER. Algunas oportunidades de mejora que
identificamos a partir de lo expuesto en esta soluciéon son: mejorar la performance sobre
las categorias Degree y Conditional Temporal (ver seccién 4.1.2 para mayor detalle sobre
todas las categorfas), asi como también mantener la buena performance pero bajando la
complejidad del proceso y la solucién.

En segundo lugar quedé el equipo LSI_.UNED [23]. Su arquitectura consiste en dos
BiLSTMs + CRF: una especificamente para detectar negaciones, y otra para el resto de
las entidades. Argumentan el uso de BiLSTM en lugar de Transformers, por el tamafo
reducido del corpus de la competencia. A su vez, separan a las anotaciones que no son
negaciones en dos conjuntos: aquellas en las que los solapamientos de entidades son més
comunes (Location, Findings y Abbreviations) y el resto. De esta forma, las anotaciones
distintas de Negations se intentan predecir con una arquitectura basada en 4 BiLSTM
+ CRFs: 3 estan dedicados a cada una de las entidades que suelen solaparse, y la ultima
para el resto. Para la capa de entrada usan embeddings pre-entrenados de FastText (uno
generalista y uno de dominio médico pero sin casos de texto clinico). Estos embeddings se
combinan con otras caracteristicas generadas en forma manual y que codifican condiciones
booleanas como por ejemplo: “empieza en mayuscula”’, “termina en punto”, “término
numérico”, “término mayoritariamente numérico”, entre otros. De este aporte destacamos
que a diferencia del equipo anterior aqui se usa una arquitectura basada en BiLSTM y uso
de embeddings estaticos y alun asi se obtienen resultados muy cercanos al mejor. También
que nuevamente surge la idea de hacer una segmentacion como forma de disminuir el
impacto de las entidades solapadas. Como oportunidades, nuevamente reconocemos la
posibilidad de intentar disminuir la cantidad de componentes (en este caso, ademés de
varios modelos hay un trabajo manual de definir features para el modelo). Ademds algo
interesante que mencionan es que no ven una diferencia sensible entre el desempeno de
los embeddings de dominio general y los de dominio médico. Es un interesante punto de
partida para nosotros que queremos abordar esto en mayor profundidad y entender si se
repite con embeddings mas especificos o de distintas caracteristicas.
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3.3. Otros corpora en espanol

Citando a Neves y Leser [49]: “la falta de gold standards es uno de los principales
cuellos de botella para desarrollar nuevos métodos de text mining”. Gold standard es un
nombre que se suele dar a aquellos corpus que han sido anotados generalmente por un
humano (o al menos corregido por un humano). Estos son recursos fundamentales ya que
no solo sirven para entrenar modelos, sino también para poder tener un benchmark contra
el cual evaluar y realizar comparaciones objetivas entre diversos métodos .

En los tltimos afios han surgido varios esfuerzos para tratar de ampliar la disponibili-
dad de recursos en idioma espanol, particularmente en el drea de BioNLP (de los cudles,
SpRadIE es uno més). Realizamos una revisién de varios de estos trabajos con la expec-
tativa de poder encontrar corpora afines a nuestro problema de modo de poder usarlos
para enriquecer (aumentar) nuestros datos de entrenamiento o en segunda instancia para
poder tener un benchmark adicional al momento de evaluar la utilidad de nuestros embed-
dings. No encontramos ningun conjunto que nos convenciera para tales usos. No obstante,
consideramos que es relevante mencionarlos y lo hacemos a continuacion.

En la competencia CodiEsp [46], se disponibilizé un corpus con 1000 informes clinicos
escritos en espanol, cubriendo una diversidad de especialidades médicas. Todos estos in-
formes fueron cuidadosamente anotados por especialistas utilizando cédigos CIE-103. Si
bien es un recurso muy interesante, en nuestro caso la diferencia de dominios y estilos de
escritura nos hicieron descartarlo para su utilizacién: estos informes suelen ser mas largos
y estar mejor redactados que los de las ecografias.

Algo similar nos sucede con el corpus utilizado en el challenge de CANTEMIST [45]:
una coleccion de 1301 historias clinicas de pacientes oncolégicos. En este caso las ano-
taciones corresponden a morfologia de neoplasia (tumores), siguiendo la Clasificacién In-
ternacional de Enfermedades para Oncologia en formato electrénico* (eCIE-O). Aqui si
bien aparecen algunos estudios de imagenes que podrian ser afines a nuestro caso, dado
que cada informe es un historial clinico completo, habria que extraer los fragmentos de
interés (unicamente lo referido a las imégenes). Algo interesante para remarcar es que
tanto este corpus como el anterior tienen un origen en comun: el Spanish Clinical Case
Corpus (SPACCC)® que a su vez es un subconjunto de informes tomados de SciELO® una
biblioteca de uso publico con reportes de casos de diversos paises. Otra competencia que
se basé en los mismos datos fue PharmaCoNER, [26], que se enfoca en reconocer entidades
asociadas a distintos farmacos y sustancias. En nuestro caso optamos por no hacer uso de
la herramienta SciELO porque el esfuerzo de revisar y filtrar los informes afines es grande
y aun asi puede haber diferencias de formato significativas.

A pesar de que no utilizamos directamente ninguno de estos corpora, todos estos tra-
bajos muestran la aplicabilidad de modelos de lenguaje como BERT y Flair entrenados
especificamente en el dominio médico en espanol.

Un corpus en espanol que si tiene afinidad con nuestros informes ecograficos es Pad-
Chest [9], que se conforma con informes radiogréficos de la zona pectoral y cubre patologias
asociadas a pulmones y corazén (al igual que parte de nuestros informes). Lamentable-
mente en este caso surge otro problema: los informes publicados se encuentran con varios

3 CIE-10 es una clasificacién y codificacién internacionalmente reconocida para identificar enfermedades,
trastornos, signos y sintomas, entre otros hallazgos y circunstancias.

Y https://iris.who.int/bitstream/handle/10665/96612/9789241548496-spa.pdf

® https://github.com/PlanTL-SANIDAD/SPACCC

S https://scielo.org/es/
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preprocesamientos que generan una pérdida de informacién. Entre estos preprocesamien-
tos se encuentra la remocién de stopwords” y la aplicacién de stemming®. Un ejemplo de
informe tomado del corpus es: “nodul proyect Isd 1 4 cm contorn parcial bien defin cit tac
torac . patron intersticial con probabl are panalizacion bibasal probabl fibrosis pulmon .”.
Debido a que nuestra intencién es entrenar justamente embeddings que puedan aplicarse
sin necesidad de hacer este tipo de preprocesamientos previos, no nos sirve.

Otro trabajo destacado fue realizado en Chile por Béez et al. [5]. En él introducen el
corpus The Chilean Waiting List Corpus (o ChileanWL), que es una nueva fuente de datos
para el reconocimiento de entidades nombradas clinicas en lenguaje espanol. Este corpus
estd compuesto por historias clinicas electrénicas anonimizadas de hospitales publicos
chilenos. Son de tipo triage ya que corresponden a una primera evaluaciéon médica antes de
derivar al paciente con un especialista. Este corpus si bien no lo usamos directamente para
entrenar o evaluar, si lo utilizamos indirectamente: algunos de los modelos de lenguaje a los
que les aplicamos fine-tuning fueron a su vez previamente fine-tuneados con este corpus.

3.4. Otros trabajos relacionados en espanol

Hasta donde tenemos registro, Soares et al. en su trabajo Medical Word Embeddings
for Spanish: Development and Evaluation [59] desarrollan uno de los primeros embeddings
especificamente para el dominio médico en lenguaje espanol y lo comparan contra em-
beddings de dominio general, en forma tanto extrinseca como intrinseca. Para desarrollar
dichos embeddings usan dos fuentes de datos: la base de datos SciELO y un subconjunto
de categorias de Wikipedia (Farmacologia, Farmacia, Medicina y Biologia). Por lo tanto,
no se trata de un corpus orientado especificamente a texto clinico. También cabe destacar
que el trabajo se enfoca en embeddings estaticos (FastText) y no se incluyen pruebas con
embeddings contextuales. Una de las contribuciones méas remarcables de este trabajo es
que, para poder realizar la evaluacién intrinseca, realizan la adaptacién al espaniol de los
conjuntos de datos UMNSRS-sim, UMNSRS-rel y MayoSRS (todos mencionados en la
sub-seccién 3.1). Lamentablemente son recursos que decidimos no utilizar debido a que
se enfocan en terminologias poco relacionadas con nuestros informes de ecografias, por lo
que a priori no consideramos que nos permita realizar evaluaciones ttiles.

Tal vez el trabajo mds similar a lo que tratamos de hacer aqui es el realizado por
Akhtyamova et al. en [3]. En dicho trabajo los autores exploran también la utilizacién de
embeddings contextuales para mejorar la performance en un problema de NER en espanol
del dominio biomédico. En su caso trabajan sobre el corpus de la task de Pharmaco-
NER [26]. Aqui se hace una comparativa también entre BILSTM (especificamente Flair)
y Transformers, e incluso se evalia también FastText. Sin embargo, hay algunas diferen-
cias: primero el dominio que utilizan para entrenar es mucho mas amplio que el nuestro
(que nos limitamos apenas a informes de ecografias). Segundo, el enfoque principal del
citado articulo termina estando méas puesto en mejorar la tarea de NER en si que en hacer
una evaluacion detallada del aporte de los embeddings. Por ltimo, nosotros realizamos

" En NLP, se llama stopwords a palabras que se caracterizan por aportar informacién relevante, gene-
ralmente por tener una frecuencia de ocurrencia muy alta. Un caso tipico son preposiciones.

8 En NLP, se conoce como stemming a una técnica que consiste en eliminar prefijos y sufijos de las
palabras, queddndose unicamente con su raiz. Esto generalmente se realiza como una forma de agrupar
palabras con un significado similar. Por ejemplo, “programacién”, “programador” y “programas” pueden
reducirse a la raiz “programa”.
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mas pruebas con modelos basados en Transformers, mientras que en el otro trabajo se
descartan relativamente rapido y los resultados expuestos se centran en Flair.
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Este capitulo describe los conjuntos de datos utilizados para realizar el trabajo, su
preprocesamiento, los modelos implementados y la metodologia de evaluacion. La organi-
zacién que seguimos para esta seccién se basa en la que proponen Khattak et al. en su
trabajo “A survey of word embeddings for clinical text” [38] y que ilustramos en la Figura
1.1 del capitulo 1. La misma distingue tres grandes etapas: la preparacién de los datos
(tanto para entrenar los embeddings como la tarea objetivo), el entrenamiento de modelos
de embedding y la evaluacién de los mismos (tanto extrinseca como intrinsecamente).

4.1. Corpora utilizados

A continuacién, se describen los dos corpora, principales que tomamos como punto de
partida para desarrollar los modelos y experimentos de este trabajo.

4.1.1. Datos de entrenamiento para los embeddings

Este conjunto de datos consta de 82246 informes de ecografias de distintas partes del
cuerpo humano, provenientes de uno de los hospitales mas importantes de Argentina.
Estos informes hacen referencia a, entre otros, diversos érganos y hallazgos clinicos. Por
ejemplo, algunos érganos mencionados son: higado, rinones, tutero, pulmones, aorta, arti-
culaciones, etc. Mientras que cuando mencionamos hallazgos clinicos hacemos referencia
a expresiones del tipo: “tamafo aumentado”, “diferenciacién corticomedular”, “dilatada”,
“heterogéneo”, entre otras. Los informes en general son relativamente cortos, con un pro-
medio de 8 oraciones por informe y 9 palabras por oracién. Un mayor detalle sobre la
composicién de este corpus puede encontrarse en la seccion 3.2 de [18]. Ademas en los
ejemplos 1, 2, 3 y 4, presentados a continuacion, se muestran algunos informes reales que
pueden hallarse en el corpus.

Ejemplo 1 Informe correspondiente a una ecografia de glandula tiroidea.

Ambos lobulos tiroideos e itsmo con ecoestructura homogenea. DINESIONES: Lobulo
derecho: longitudinal: 3.8 cm., transverso: 1 cm., anteroposterior: 1 cm.; volumen: 2.3 cc.
Lobulo izquierdo: longitudinal: 3 cm., transverso: 1.2 cm., anteroposterior: 1 cm.; volumen:
1.9 cc. Istmo: 0.2 cm.

Ejemplo 2 Informe correspondiente a una ecografia abdominal completa con caracteristi-
cas normales.

HIGADO: tamano y ecoestructura normal. Arteria hepatica, venas porta y suprahepati-
cas sin alteraciones. VIA BILIAR intra y extrahepatica: no dilatada. VESICULA BILIAR:
alitiasica. Paredes y contenido normal. PANCREAS: tamano y ecoestructura normal. BA-
ZO: tamano y ecoestructura normal. Diametro longitudinal:8 (cm) RETROPERITONEO
VASCULAR: sin alteraciones. No se detectaron adenomegalias. No se observo liquido libre
en cavidad. Ambos rinones de caracteristicas normales.
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Ejemplo 3 Informe correspondiente a una ecografia de cadera, en la que se evalia tanto
de forma estatica como dinamica la morfologia y estabilidad de las caderas.

ESTUDIO ESTATICO: Ambas caderas centradas. Cobertura osteocartilaginosa adecuada.
Leve displasia acetabular derecha. Nucleo de osificacion presente en la cadera izquierda. No
se observo osificacion del nucleo femoral derecho. ESTUDIO DINAMICO: Ambas caderas
estables. El examen solicitado no es un metodo de Screening . Esta indicado para estudiar
POBLACIONES DE RIESGO o para corroborar hallazgos clinicos. EL. RESULTADO
NORMAL DEL EXAMEN, NO EXIME DEL SEGUIMIENTO CLINICO.

Ejemplo 4 Informe correspondiente a una ecografia renal.

Ecografia renal pre y postmiccional; RD de menor tamano que el izquierdo sin dilataciones
y con buena diferenciacién. Disminucion de corteza en polos:pieonefritis secuelar?? No se
visualizan ureteres vejiga sin alteraciones RI 11 cm, RD 8.2 cm

Analicemos brevemente algunas caracteristicas que pueden apreciarse en estos estos
ejemplos. Una primera observacion es que los cuatro informes tratan sobre diferentes partes
del cuerpo y el formato de escritura es diferente entre cada uno. Algo que si comparten
en general, es la presentacién de medidas de longitud y volumen para describir diferentes
partes anatémicas. También comparten el uso de oraciones cortas y sintéticas. En general
no se observa el uso de tildes salvo excepciones (como “diferenciaciéon” en el ejemplo 4).
En el ejemplo 4 se aprecia el uso de abreviaturas como “RD” y “RI” para referirse a
los rinones izquierdo y derecho respectivamente. También en este informe es interesante
la utilizacién de signos de interrogacién (“??”) como forma de expresar incertidumbre
sobre un hallazgo. En el ejemplo 3 se incluye una aclaracion genérica sobre cémo deben
interpretarse los resultados y un descargo de responsabilidad.

Este corpus no posee anotaciones de entidades por lo que se utiliza tinicamente para
entrenar los embeddings y realizar el fine-tunning de los modelos de lenguaje.

Para facilitar la referencia a estos datos, en lo que resta del informe llamamos a este
corpus ultrasounds-raw-80k.

4.1.2. Datos para la tarea objetivo

Este corpus proviene de la competencia (o challenge) SpRadlE [16] descripta en la sec-
cion 3.2. Consiste en un subconjunto de 474 informes tomados de ultrasounds-raw-80k
que fueron etiquetados manualmente por expertos. Ademads, para su uso en la competen-
cia, se realiz6 anonimizado, eliminado de signos diacriticos, separacién de oraciones con
saltos de linea y remocién de informes con menos de tres palabras. Mas detalles sobre los
procesamientos realizados pueden encontrarse en la seccién 3 de “Extracciéon de informa-
ci6n en informes radiolégicos escritos en espanol” [18]. En dicho trabajo también se explica
cudl fue el criterio de seleccién del subconjunto de informes a anotar. En Annotation of
Entities and Relations in Spanish Radiology Reports [15] se explica el criterio de anotacién
(aunque en la competencia [16] se aclara que hubo una segunda fase para mejorar dichas
anotaciones). El proceso de anotacién fue cuidadoso, siguiendo un procedimiento iterativo
de anotacién y revisién. Las anotaciones fueron realizadas por dos anotadores (entre ellos,
un estudiante avanzado de medicina) durante tres iteraciones, hasta que se logré una con-
vergencia en el esquema y en el criterio usado por ambos. Para cuantificar la consistencia



4.1. Corpora utilizados 35

entre las anotaciones en cada ronda, se calculé el inter-annotator agreement', utilizando
el coeficiente Kappa de Cohen [13].

Los informes se encuentran separados en cuatro particiones como se detalla en la tabla
4.1. Este corpus lo usamos para la evaluacién extrinseca de los embeddings y modelos de
lenguaje. Para facilitar su referencia posterior, lo llamamos spradie-corpus para el resto
del informe.

Conjunto Descripcion Cantidad
de informes

train Primer conjunto liberado durante la competen- | 175
cia, que incluye tanto informes como anotacio-
nes, para los analisis y entrenamientos prelimi-
nares

devSameSample | Conjunto de desarrollo que fue liberado con sus | 47
anotaciones a mitad de la competencia para po-
der validar los modelos entrenados y usarse co-
mo data adicional. Este conjunto intenta man-
tener una distribucion similar a la de entrena-
miento y no incluye palabras por fuera de las de
ese conjunto.

devHeldOut Liberado al mismo tiempo que devSameSample, | 45
este conjunto se caracteriza por incluir palabras
que no se encuentran en el conjunto de entrena-
miento y permite analizar la capacidad de ge-
neralizacién de los modelos. Palabras que solo
ocurren en este conjunto: hipertensién, epiplén,
portal, cardiaco, aorta, corona.

test Conjunto sobre el cual se deben generar las ano- | 207
taciones que seran evaluadas para decidir el re-
sultado de la competencia. Las anotaciones no
fueron liberadas ya que son de uso interno para
medir resultados. Incluye palabras de la distri-
bucién de entrenamiento pero también palabras
nuevas como: ovario, utero, endometrio, uretra,
suprahepdtico, ganglio, tiroides, entre otras de-
talladas en [17].

Tab. 4.1: Forma en la que se encuentran distribuidos los 474 informes que componen el corpus de
SpRadIE.

Las diez entidades que fueron anotadas en los informes y cuya identificacion es el
objetivo de la tarea de SpRadlE, son las siguientes:

! El inter-annotator agreement (IAA) es una métrica que evalia el grado de concordancia entre multiples
anotadores al etiquetar un conjunto de datos. Se utiliza cominmente en tareas de procesamiento de lenguaje
natural y anotacién manual de datos para medir la consistencia y fiabilidad de las etiquetas asignadas.
Existen diferentes coeficientes para calcularlo, como el coeficiente de Kappa de Cohen, el coeficiente de
Kappa de Fleiss o el Alpha de Krippendorff, dependiendo del nimero de anotadores y del tipo de datos.
Un alto valor de IAA indica que la tarea de anotacién tiene una alta reproducibilidad.
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Anatomical Entity (AE): partes del cuerpo. Por ejemplo: “pecho”, “higado”, “lébulo
tiroideo derecho”.

Finding (FI): hallazgos clinicos. Por ejemplo: “quistes”, “adenomaglias”.

Location (LO): ubicacién en el cuerpo, indicando una regién del mismo o bien una
posicion relativa a una AE. Por ejemplo: “regiéon biliar”, “paredes”, “cavidad”.

Measure (ME): expresién de medida. Por ejemplo: “0.3 mm”, “0.5 c¢”, “2 cm.”, “0.8
(cm.)”.

Type_of_Measure (TM): palabras que indican el tipo de medida a la que una enti-
dad de tipo ME hace referencia. Por ejemplo: en “didmetro longitudinal 3 (cm)”,
“didmetro longitudinal” fue anotada como TM, mientras que “3 (cm)” como ME.

Degree: palabras que indican el grado de un hallazgo (FI). Por ejemplo: “leve”,
“ligera” (“ligera esplenomaglia”).

Abbreviations (AB): abreviaturas y acrénimos. Por ejemplo: “RI” (por “rinén iz-
quierdo”), “cm” (por “centimetros”).

Negation (NT): negacién. Por ejemplo: en “no se detectaron adenomaglias”, “no” se
anoté como NT.

Uncertainty (UT): indicador de que existe una probabilidad (no certeza) de que
cierto hallazgo pueda estar presente en un paciente. Por ejemplo: en “compatible
con hipertrofia pilérica”, “compatible con” fue anotada como UT.

Conditional _Temporal (CT): indicador de que algo sucedié en el pasado o podria
suceder en el futuro. Por ejemplo: en “antecedentes de atresia”, “antecedentes” se
etiqueté como CT.

Estds ultimas tres entidades (NT, UT y TC) son también llamadas hedge cues (lo que

podria traducirse como “senales de incertidumbre”).

En la figura 4.1 se presenta un grafico que muestra el porcentaje que representa cada
tipo de entidad sobre el total de anotaciones del corpus. Como puede observarse, tal

distribucién esté lejos de ser balanceada, siendo que solo la combinacién de Anatomical
Entity, Abbreviation y Finding representa el 60 % de las anotaciones.
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Fig. 4.1: Distribucién de las entidades en el corpus spradie-corpus segin el tipo de entidad
anotada. Gréfico tomado del overview realizado de la competencia [17].

4.2. Pre-procesamiento de los datos

Cuando hablamos del pre-procesamiento (o simplemente procesamiento) de los datos,
es importante hacer una distincién de dos etapas. Hay un primer procesamiento, que es
comun para todos los modelos que se entrenaran. En esta etapa se incluyen, por ejemplo,
la anonimizacién y la eliminacién de informes demasiado cortos. Luego, hay un segundo
momento, que es especifico de cada método. Por ejemplo, la tokenizacion. En esta seccién
hablaremos tnicamente del primer tipo que es comtun a todos los métodos. El segundo
tipo se explica en la seccién 4.3 donde desarrollamos las distintas técnicas de embeddings
y modelos de reconocimiento de entidades nombradas.

Como resultado del pre-procesamiento obtenemos nuevos corpora, a los cuales nueva-
mente asignaremos nombres para su posterior referencia:

= anonymized-ultrasounds-80k: Obtenido a partir de ultrasounds-raw-80k des-
pués de pasar por un proceso de anonimizacién. Mantenemos maytsculas/mintsculas
y también signos de puntuacién y acentos.

» spradie-corpus-bio-format: Obtenido a partir de spradie-corpus pero conver-
tido a un formato que resulta més conveniente para trabajar con modelos (formato
BIO).

Las particularidades de cada uno y el proceso por el cual se obtienen se explica en las
siguientes subsecciones.

4.2.1. Obtencién de anonymized-ultrasounds-80k

A continuacién se detallan los pasos para el procesamiento del corpus ultrasounds-
raw-80k y que conducen a la obtencién de los corpora anonymized-ultrasounds-80k-with-
diacritics y anonymized-ultrasounds-80k-without-diacritics.

1. Los informes vienen en un archivo con formato PSV (del inglés Pipe Separated Va-
lues) donde, ademads del texto principal escrito por los médicos, hay otros metadatos
como: un identificador, la edad del paciente y la fecha en la que se realizo el estudio.
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Estos datos los removemos, quedandonos tnicamente con los informes, ya que no
consideramos que aporten informacion relevante para los embeddings por ser datos
poco o nada generalizables. Ademés evitamos el riesgo que los embeddings codifiquen
informacién que podria permitir la identificacién del paciente (por ejemplo, a partir
de la fecha, la edad y el diagndstico).

. El texto de cada informe comienza, a su vez, con un identificador alfanumérico

generado previamente en el trabajo realizado por Cotik [18], que permite tener una
forma de identificarlos. Este identificador no es de interés para los embeddings, por
lo que decidimos eliminarlo.

. Es comun ver en los informes que se utilizan varios espacios o tabulaciones como

forma de separacién. En el caso de la generacién de embeddings, no lo consideramos
algo que pueda afectar al desempeno de los modelos ya que los métodos que utili-
zaremos eliminan los espacios excedentes durante la etapa de tokenizacion. Por este
motivo, optamos por simplificarlo y reemplazar todos estos espacios y tabulaciones
por un dnico espacio simple de separacion.

. Divisién en conjuntos (también llamadas particiones) de entrenamiento (o training)

y evaluacion (o test). Es una préctica comun en Machine Learning el realizar una
separacion como esta, donde el conjunto de entrenamiento se utiliza durante el pro-
ceso de desarrollo y seleccion del modelo, y el conjunto de test se utiliza solamente al
final del proceso como una forma de medir el desempeno del modelo y evaluar cuan
bien generaliza por fuera de los datos de entrenamiento (bajo la hipdtesis de que el
modelo no vio los datos de test durante su entrenamiento). Particularmente, la dis-
tribucién que hacemos de los informes es: 80 % para la particidn de training y 20 %
para la de test. Antes de realizar esta separacién, decidimos hacer un reordenamiento
aleatorio de los informes.

. Anonimizacién: este punto es el mas complejo del pre-procesamiento, por lo que lo

explicamos més en profundidad en la siguiente sub-seccién.

. Remocién de los distintos tipos de signos diacriticos?: a modo experimental, una de

las cosas que intentamos validar es si la performance de los embeddings es mejor o no
cuando quitamos todos los diacriticos (¢, 7, ) de los informes. Por dicha razén, en
este punto creamos dos conjuntos de datos distintos: anonymized-ultrasounds-80k-
with-diacritics (que no realiza este dltimo paso y por lo tanto mantiene todos los

diacriticos) y anonymized-ultrasounds-80k-without-diacritics (que los remueve).

Anonimizacién

El objetivo de este paso es el de eliminar lo que se conoce como datos con Informacién

Personal e Identificatoria (PII por sus siglas del inglés, Personally Identifiable Informa-
tion). Si bien no es nuestro principal objetivo, en un primer momento, compartir piblica-
mentye los informes que componen este corpus, es de particular importancia destacar que
no encontramos resultados que permitan descartar la posibilidad de que el entrenamiento

2 Un signo diacritico (o simplemente diacritico) es un simbolo grafico que se anade a una letra o a un

caracter para modificar su pronunciacién, su valor fonético, su acentuacién o su significado dentro de un
sistema de escritura. Su funcién principal es diferenciar palabras o sonidos que, de otro modo, podrian ser
confundidos en la escritura o en la lectura.
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de embeddings usando datos que contengan PII pueda filtrar esta informacién y luego ser
recuperada a partir de los embeddings o language models. Esto podria representar un riesgo
para la privacidad de los involucrados.

Como se explica en la seccién 3.2.3 del trabajo [18], el hospital del cual fueron tomados
los informes atiende alrededor de 1500 pacientes por dia en una ciudad con casi 3 millones
de habitantes. Debido a estas dimensiones es muy poco probable que algtin paciente sea
identificado a partir de un cuadro clinico poco frecuente.

Por otra parte, algunos de los informes de ultrasounds-raw-80k incluyen nombres de
médicos o pacientes, asi como también ntimeros de matriculas nacionales y provinciales.
En general, se siguen algunos patrones que simplifican un poco la bisqueda de estos datos:
generalmente los datos del médico se encuentran al final de todo, el nombre del médico
suele estar precedido por titulos como “Dr” y “Dra’”, las matriculas son precedidas por
“MN” (nacionales) o “MP” (provinciales). También a veces una ecografia es vista con
més de un especialista, lo cual suele marcarse en el informe con una féormula “Visto con”
seguido del nombre del médico de la interconsulta. Sin embargo, al tratarse de texto libre
aparecen irregularidades que complejizan la tarea: se hace un uso irregular de los puntos
en las abreviaturas (por ejemplo, a veces se escribe “Dr” y otras “Dr.”) asi también como
de las maytusculas (“Dra”, “DRA”, “DRa”), y en ocasiones hay errores de tipeo (como
“Drs” en lugar de “Dra”). Ademads a veces el nombre del médico no aparece precedido de
ningun patrén o no se situa al final del informe. Del mismo modo los nombres de pacientes
(si bien son mucho menos frecuentes) suelen aparecer en el medio del reporte. Por otro
lado, existen 6rganos o enfermedades que tienen nombres propios (por ejemplo, Sindrome
de Turner o de Williams) y es importante que no los eliminemos por error debido a que son
entidades importantes del dominio al cual queremos ajustar nuestros embeddings. Todos
estos son solo algunos ejemplos para ilustrar las irregularidades que se dan y que dificultan
la tarea de poder identificar todos los datos PII y eliminarlos adecuadamente.

El objetivo de la anonimizacién fue asegurar la identificacion, y posterior eliminacion,
de todos los datos PII de nuestro corpus, minimizando la pérdida de informacién valiosa
por errores en la identificacién (falsos positivos). Se evaluaron distintos métodos, que
se comentan a continuacion, detallando cuales fueron los problemas y ventajas que se
encontraron en cada uno.

= Primero se intenté utilizar dos herramientas que son populares para anonimizar
textos escritos en inglés: Presidio® y Spacy?. En ambos casos, el problema que se
encontré fue que no estaban lo suficientemente maduras para el lenguaje espaifiol.
En el caso de Presidio, es una herramienta open-source desarrollada por Microsoft
especificamente para el problema de anonimizacién, pero la misma documentacién
aclara que solo da soporte oficial al idioma inglés por ahora, aunque se dan algunas
herramientas para poder adaptar a otros idiomas. Por su parte, Spacy es una biblio-
teca de uso frecuente en multiples tareas de NLP y en su caso si tiene soporte para
el idioma espafiol. Sin embargo, al momento de realizar este trabajo, el repertorio
con el que cuenta de modelos para NER entrenados con datos en espanol es muy
acotado (solo tres modelos que unicamente varfan en tamano pero no en datos) y de
dominio general (usa un corpus de noticias). Se hicieron pruebas con este modelo,
pero los resultados fueron malos, tanto en términos de falsos positivos como de falsos
negativos.

3 https://github.com/microsoft /presidio
* https://spacy.io/
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= Modelo de NER basado en RoBERTa obtenido de HuggingFace: PlanTL-GOB-ES/
roberta-base-bne-capitel-ner’. Este modelo utiliza una arquitectura de Trans-
formers, especificamente la de RoOBERTa [41], para resolver la tarea de reconocimien-
to de entidades nombradas. Particularmente, una de las entidades que estd entrenado
para reconocer son nombres propios, lo cual es util para nuestro caso de uso. Ademads,
estd fine-tuneado sobre un conjunto de textos en idioma espanol, extraidos de la Bi-
blioteca Nacional de Espana [29]. En este caso el desempenio es superior a lo visto
con los métodos previos cuando hablamos de identificacién de nombres de personas,
tanto en falsos positivos como falsos negativos . El principal problema que tiene este
método, es que en general ignora completamente los niimeros de matricula. Ademas,
en algunos casos no reconoce el nombre completo y solo hace un match parcial (por
ejemplo, en “Dr LUdman” solo reconoce “Dr LU” como persona).

» Expresiones regulares® (en adelante RegEx): probablemente el método més simple
de los mencionados hasta ahora. Permite explotar rapidamente el conocimiento que
tenemos sobre la estructura general de los informes. El problema justamente lo tiene
cuando tenemos que considerar también casos que se salen un poco de la estructura
“comun”, como los mencionados anteriormente. El caso méas complejo de todos es
cuando no hay ningun titulo que preceda al nombre en cuestién, y en tal caso la
Unica posibilidad es escribir un patréon que coincida directamente con el nombre.
Otra dificultad que tiene, es que si bien es facil escribir patrones que hagan match con
términos como “dr”, “visto con”, “MN”, etc., resulta muchisimo menos obvio como
escribir patrones que coincidan con el texto completo que se quiere eliminar. Esto
nuevamente se debe a las irregularidades en cuanto a la escritura. No hay garantia
de que vaya a haber un punto después del nombre, o que no haya uno antes, ni
tampoco hay una cantidad de palabras definida que puede tener un nombre.

= Correcciéon manual: por ultimo, siempre es una posibilidad repasar manualmente los
reportes, identificar los datos PII y borrarlos a mano. Sin embargo, hay un inconve-
niente en la escala de esto para la cantidad de informes que tenemos. Ademaés para
grandes volimenes de texto, el criterio humano puede ser mas proclive a cometer
omisiones comparado con un método automatico.

El resultado de estas pruebas fue que ninguno de estos métodos era suficiente por si
mismo y se terminé optando por un método hibrido que combina RegEx, el modelo de
NER PlanTL-GOB-ES/roberta- base-bne-capitel-ne, y la revisién manual. Todo esto,
combinado con el hallazgo de que estadisticamente la mayoria de los datos personales se
encuentran al final de los reportes, nos permite llegar al siguiente proceso iterativo:

1. Usar un conjunto de RegEx que busquen los patrones mencionados més arriba,
teniendo en cuenta el uso irregular de mayusculas y signos de puntuacion.

2. Para cada informe, a partir del primer patrén identificado eliminar todo lo que venga
después hasta el final. Esta decisién se basa en la observacién de que la mayoria

® https://huggingface.co/PlanTL-GOB-ES /roberta-base-bne-capitel-ner

5 Una expresién regular (también llamada RegEx) es una secuencia de caracteres que define un patrén
de busqueda, utilizada principalmente para la coincidencia y manipulacién de cadenas de texto. Las expre-
siones regulares se emplean ampliamente en el procesamiento de texto para localizar patrones especificos
dentro de cadenas, extraer datos relevantes o realizar reemplazos y transformaciones complejas.
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de los nombres y matriculas se encuentran al final de los informes, por lo que el
riesgo de perder informacién 1til es bajo. Dado que queremos minimizar la cantidad
de informacién valiosa que se pudiera llegar a perder, ponemos un limite de 90
caracteres a eliminar como mucho. En caso de que fuera a eliminarse méas de esa
cantidad, entonces simplemente se genera un mensaje y no se modifica el texto en
forma automadtica, para su posterior revisién manual.

3. Sobre el corpus resultante, usar el modelo de reconocimiento de entidades nombradas
para identificar nombres que no fueron removidos usando las RegEx. Es importante
destacar que muchas veces el modelo de NER identifica cosas con el tag PER que no
son realmente nombres de médicos o pacientes (falsos positivos). Para simplificar el
andlisis, se agreg6 una lista de falsos positivos conocidos, para que en caso de que el
NER los detecte no sean tenidos en cuenta. Notar que en este punto no se elimina
nada.

4. A partir del punto anterior, actualizar los patrones de las RegEx para capturar los
nombres que no fueron removidos en el punto 2. También actualizar la lista de falsos
positivos del NER. Repetir desde el paso 1, para poder borrar los nuevos patrones
identificados.

5. Una vez que no resulta posible seguir eliminando automéaticamente los nombres que
detectan el NER y las RegEx (porque implicarian superar el limite de 90 caracteres
o porque son patrones Unicos) se pasa a una etapa de correccién manual en la cual
se eliminan los datos restantes. En nuestro caso, implicé revisar manualmente solo
90 informes, de los mas de 80 mil que tenfamos originalmente.

Como resultado de esto obtuvimos un corpus, para el que tenemos alto grado de certeza
que no contiene datos identificatorios.

4.2.2. Pre-procesamiento de spradie-corpus-brat-format

En el caso de este corpus, como se trata de un conjunto ya preparado para una com-
petencia publica, requiere un esfuerzo mucho menor en la parte de preprocesamiento. En
realidad, la principal tarea a realizar es un cambio de formato de las anotaciones. Esto se
debe a que los datos son provistos con un formato llamado Brat Standoff, que es genera-
do por la herramienta de anotacién utilizada. Sin embargo, la mayoria de los modelos de
NER estan pensados para esperar otro tipo de formato. El formato que es mas comunmen-
te aceptado para este tipo de tareas es el BIO (o algunas de sus variantes). A continuacién
explicamos brevemente cada uno de estos formatos, sus caracteristicas principales y que
implicancias trae aparejadas el paso de un formato al otro.

Formato Brat Standoff

Brat es una herramienta web’ para anotacién de textos. Esta herramienta permite
generar distintos tipos de anotaciones pero en el contexto de nuestro corpus solo se utilizé
una: las “anotaciones vinculadas al texto” (o text-bound annotations). Una anotacién de
este tipo consiste en asociar uno o mas fragmentos de texto a algun tipo de entidad. Por
simplicidad, todas las explicaciones que vienen a continuacién se enfocan tinicamente en

" https://brat.nlplab.org/introduction.html
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este tipo de anotacién. En caso de querer saber més sobre los otros tipos de anotaciones
soportados por Brat (relaciones, eventos, modificaciones, etc.) o del formato en general,
recomendamos la lectura de la documentacién oficial®.

El formato con el que trabaja la herramienta, llamado Brat Standoff format, especifica
que por cada “documento” que se desea anotar (en nuestro caso, por cada informe de
ecografia) se generan dos archivos con el mismo nombre pero diferente extensién: uno con
extension .txt (que contiene bésicamente el documento sin ninguna modificacién) y otro
con extensién .ann (que contiene las anotaciones). Un ejemplo de ambos archivos, tomado
de nuestro corpus, puede verse en la figura 4.2.

A continuacién, explicamos el formato del archivo de anotaciones. Cada linea del ar-
chivo corresponde a una anotacién. Para ilustrar, tomemos como ejemplo la primer linea
que aparece en el cuadro inferior de la figura 4.2: T1 Finding 15 35 disminuido
de tamano. Todas las lineas inician con un identificador de la forma Tn (en este caso,
T1), siguiendo una convencién propia de Brat. Luego, viene una tabulacién seguida por
el tipo de la entidad anotada (Finding). A continuacién, separados por espacios simples
vienen dos numeros (15 y 35 en nuestro ejemplo): estas son las posiciones de inicio y fin
del fragmento de texto anotado. Dichas posiciones corresponden al texto guardado en el
archivo .txt. Por ultimo, viene una nueva tabulacion seguida de una copia textual del frag-
mento correspondiente a la anotacién (“disminuido de tamano”). Notar que esto ultimo
es principalmente una facilidad que brinda el formato, ya que teniendo los indices y el .txt
no resulta estrictamente necesario contar con esto. Esta explicaciéon resume la mayoria
de las anotaciones, aunque existe una variacién: Brat permite también hacer anotaciones
de entidades discontinuas, es decir que varios fragmentos de texto no-contiguos son parte
de una misma anotacién. Un ejemplo de esto es la ultima linea (T24) que aparece en el
ejemplo de la figura 4.2. Notar que en este caso, la parte de la anotacion que indica las
posiciones tiene la forma 341 355;381 405. El “;” separa las posiciones de principio y
cierre de cada uno de los fragmentos involucrados en la anotacién, que en este caso son
solo dos, pero podrian ser mas.

Este formato permite realizar anotaciones complejas, como entidades discontinuas (re-
cién vistas) y entidades solapadas (también conocidas como anidadas). Estas tltimas son
aquellas donde existe un solapamiento (total o parcial) entre dos o mas anotaciones: es de-
cir que un mismo fragmento de texto esta incluido en més de una anotacién. Volviendo al
ejemplo de la figura 4.2, podemos observar las anotaciones T1 y T3 y notar que en ambos
casos el fragmento anotado es el mismo (“disminuido de tamano”) pero las entidades son
diferentes (Finding y Measure respectivamente). En ese caso el solapamiento es total, pero
también podria ser parcial, como ocurre con las anotaciones T13 y T17: la primera anota
“cm” como Abbreviation, mientras que la segunda anota “20 cm aprox” como Measure.
Notar que el fragmento anotado por T13 esta incluido en el anotado por T17.

Este tipo de entidades complejas son muy comunes en el texto médico, haciendo de
Brat Standoff un formato muy 1til para este dominio. Sin embargo, el problema viene
justamente porque la mayoria de los modelos de NER que se utilizan actualmente trabajan
bajo la asuncién de que no existen ni solapamientos ni discontinuidades [47]. Aunque hay
diversas lineas de investigacién en este sentido, no nos enfocamos en este problema aqui y
optamos por llevar las anotaciones a un formato compatible con la mayoria de los modelos:
el formato BIO.

8 https://brat.nlplab.org/standoff.html
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Texto del informe (84966_brat.txt)

18a 2m.
Higado disminuido de tamano, heterogeno.

presenta areas nodulares ecogenicas irregulares en segmento VII y VIII, con
area central con contenido liquido y ecos en su interior.

No se logra visualizar vena porta.
Arteria hepatica y VSH vesibles.
No se visualizan vasos mesentericos y vena esplenica por importante inter-
posicion de aire esplenomegalia homogenea de 20 cm aprox con colaterales
en hilio.

Liquido tabicado en pelvis.
Ambos rinones de estructura conservada.

Se sugiere correlacionar con TC realizada para mejor visualizacion de las
estructuras vasculares .

Anotaciones (84966_brat.ann)

T1
T2
T3
T4
TS
T6
T7
T8
T9
T10
T11
T12
T13
T14
T15
T16
T17
T18
T19
T21
T24

Finding 15 35
Anatomical_Entity 8 14
Measure 15 35
Anatomical_Entity 237 240
Anatomical_Entity 268 286
Finding 162 166

Finding 407 423

Location 427 433
Anatomical_Entity 206 216
Negation 183 205
Negation 251 267
Abbreviation 237 240
Abbreviation 372 374
Anatomical Entity 218 234
Abbreviation 375 380
Finding 385 396

Measure 369 380
Anatomical _Entity 400 405
Anatomical_Entity 549 571
Anatomical_Entity 289 303
Finding 341 355;381 405

disminuido de tamano
Higado

disminuido de tamano
VSH

vasos mesentericos
ecos

Liquido tabicado
pelvis

vena porta

No se logra visualizar
No se visualizan

VSH

cm

Arteria hepatica
aprox

colaterales

20 cm aprox

hilio

estructuras vasculares
vena esplenica
esplenomegalia con colaterales en hilio

Fig. 4.2: Ejemplo de anotaciones en formato Brat Standoff para el informe con cédigo identificador
84966 del corpus de SpRadIE. Siguiendo la especificacion del formato, hay dos archivos
por cada informe: un archivo con extension .txt, que contiene el texto original del informe
(y se muestra en el cuadro superior) y un archivo con extensién .ann, que contiene las
anotaciones para dicho informe (y se muestra en el cuadro inferior). Por claridad, se
removieron algunas anotaciones del ejemplo.
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Formato BIO

El formato BIO recibe su nombre de las siglas de las palabras en inglés Beginning-
Inside-Outside, que hacen referencia a la modalidad con la que se realizan las anotaciones
de los tokens: cada token se etiqueta con una B-NOMBRE-DE-LA-ENTIDAD si es el comienzo
de una entidad, con una I-NOMBRE-DE-LA-ENTIDAD si estd dentro de una entidad pero
no es el comienzo, y O si no pertenece a ninguna entidad. Por ejemplo, para la entidad
Location ahora pasamos a tener dos etiquetas posibles: B-LOCATION y I-LOCATION. Y lo
mismo con el resto de las entidades.

De esta forma, cada token que compone el texto es anotado con exactamente una
etiqueta (incluyendo O). Las tnicas reglas son que el primer token de una entidad se
etiquete con una B-etiqueta, siendo “etiqueta” el tipo de la entidad nombrada (por ej.
Location), mientras que todos los tokens consecutivos, que también sean parte de la misma
entidad, deben llevar una I-etiqueta. En cuanto se marca un token con una O u otra
B-etiqueta, se considera que la anotacién de la entidad anterior estd terminada. Este
mecanismo implica que no sean posibles los solapamientos ni las discontinuidades. En la
figura 4.3 se presenta un ejemplo de anotacion para dos oraciones de un informe.

HIGADO 4 10 B-Anatomical_Entity

10 11 O
tamano 12 18 O
v 19 20 O
ecoestructura 21 34 O
normal 35 41 O
41 42 0O
VIA 43 46 B-Anatomical_Entity

BILTAR 47 53 I-Anatomical_Entity
intra 54 59 I-Anatomical_Entity

y 60 61 I-Anatomical_Entity
extrahepatica 62 75 I-Anatomical_Entity
75 76 O
no 77 79 B-Negation
dilatada 80 88 B-Finding
88 89 O

Fig. 4.3: Fragmento de un archivo en formato BIO. La primer columna incluye el token (en este caso
se tokenizo por palabras), la segunda columna tiene la posicién de inicio en el documento,
la tercera la posicién de fin, y la cuarta la etiqueta en formato BIO.

Conversién del formato y sus implicancias

Por lo visto anteriormente, se deduce que al realizar la conversion de Brat a BIO se va
a perder informacién siempre y cuando existan solapamientos o discontinuidades. Como
el corpus de SpRadlE las contiene, esto va a pasar.

A la hora de escoger con qué entidades quedarnos frente a una discontinuidad o sola-
pamiento existen distintas estrategias posibles. Nosotros escogemos las siguientes:
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» Para las entidades discontinuas, nos quedamos con el segmento completo que va
desde la posicién inicial méds pequena hasta la posicién final més grande, de entre los
fragmentos anotados. Esto provoca que se incluyan fragmentos que originalmente no
estan anotados como parte de la entidad. Por ejemplo, en el texto “via biliar intra
y extrahepatica” se suelen anotar dos entidades anatomicas distintas: “via biliar
intrahepatica” y “via biliar extrahepatica”. Siguiendo el criterio planteado aqui, en
ambos casos la nueva anotacién va a ser: ‘via biliar intra y extrahepatica” como una
sola Anatomical Entity. Este método asegura que los modelos entrenados aprendan a
etiquetar todos los tokens de la entidad anotada originalmente, pero también implica
que pueden ser mas propensos a los falsos positivos ya que les estamos ensenando a
etiquetar cosas de mas.

= Para las entidades solapadas nos quedamos con la que sea més larga. Esto favorece
a que el modelo etiquete correctamente mayor cantidad de caracteres, pero también
significa que hay entidades que puede no aprender a identificar bien debido a que las
ve mucho menos en su entrenamiento. Un ejemplo de esto, sobre el que volveremos
mas adelante, son las entidades de tipo Abbreviation, que suelen estar anidadas
dentro de entidades més grandes como Measure (por ej. “30 cm.”), Anatomical
Entity (por ej. “rinén izq”), etc.

4.3. Embeddings y Language Models

En esta seccién detallamos los modelos utilizados, cémo se realizé su entrenamiento y
también documentamos las decisiones importantes que tomamos.

Dada la naturaleza de los informes, que estan en espanol e incluyen un frecuente uso
de abreviaturas, errores ortograficos y términos de nicho que no son frecuentes en el uso
general del idioma, tomamos algunos cuidados al momento de escoger los modelos a utili-
zar. Nos enfocamos en modelos pre-entrenados especificamente para el idioma espafiol y en
general ajustados al dominio bio-médico. También priorizamos que utilicen tokens a nivel
de caracteres o sub-palabras (lo que permite mayor robustez frente a palabras por fuera
del vocabulario de entrenamiento). Teniendo en cuenta este ultimo criterio se descarta a
los métodos mas clasicos como Word2Vec y GloVec que solo aprenden a embeber pala-
bras completas. Los modelos escogidos pueden clasificarse en tres arquitecturas distintas:
Transformers, BILSTM y FastText.

Con lo que respecta a los Transformers (ver seccién 2.6), escogimos el siguiente lista-
do de modelos pre-entrenados para usar como base para los experimentos y fine-tuning.
Todos los modelos son de acceso publico y pueden encontrarse en el hub de modelos de
HuggingFace®.

» BETO CASED!: Modelo pre-entrenado [11] basado en la arquitectura de BERT
pero entrenado con un corpus de dominio general en espanol [10]. Este es un trans-
former entrenado de cero, razén por la cual el tokenizer asociado también fue entre-
nado especificamente para el corpus usado. En este caso el tokenizer preserva el uso
de maytsculas y mintsculas.

9 HuggingFace es una plataforma open source que permite publicar y descargar modelos de Machine
Learning, siendo particularmente popular en la comunidad de NLP. Para més informacién puede visitarse
su pagina web: https://huggingface.co/

19 https://huggingface.co/dccuchile/bert-base-spanish-wwm-cased
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» BETO UNCASED!"!: Igual que BETO CASED pero el tokenizer se encarga de llevar
todas las palabras a mintsculas antes de enviarlas al modelo.

= BETO CLINICAL WL'2: Modelo previamente adaptado con fine-tuning a partir de
BETO UNCASED para el corpus de ChileanWL [5]. Notar que al ser un caso de
fine-tuning el tokenizer es el mismo usado por BETO UNCASED.

» ROBERTA BNE!3: Modelo pre-entrenado [29] utilizando el corpus en espafiol més
grande conocido hasta la fecha, con un total de 570 GB de texto procesado para este
trabajo, compilado a partir de las rastreos web realizados por la Biblioteca Nacional
de Espana desde 2009 hasta 2019.

= ROBERTA BIO CLINICAL': Modelo pre-entrenado [12] con un corpus compuesto
por varios corpora, biomédicos en espanol, recopilados de corpus disponibles ptblica-
mente y rastreadores, asi como un corpus clinico del mundo real, recopilado a partir
de més de 278,000 documentos y notas clinicas.

= ROBERTA CLINICAL WL': Modelo de RoBERTa basado en el anterior pero adap-
tado sobre el corpus de ChileanWL [55].

También, siguiendo la linea de modelos contextuales y en este caso apuntando a tokeni-
zacion por caracteres y uso de Bidirectional Long Short-Term Memory (BiLSTM), en lugar
de Transformers, probamos la arquitectura Flair [2] (ver 2.5.1) y la biblioteca homénima'®.
Particularmente, dado que en este caso también resulta muy intensivo computacionalmen-
te el proceso de entrenamiento, partimos de un modelo ptblico!” entrenado sobre el corpus
Chilean Waiting List (ChileanWL) [55]. Para ser més especificos, en realidad se trata de
dos modelos distintos, debido a la naturaleza de los embeddings generados por BiLSTMs:
un modelo genera representaciones a partir de tratar de predecir la siguiente palabra en la
oracién (es-clinical-forward), mientras que el otro modelo intenta predecir la palabra
que lo precede (es-clinical-backward) en una oracién. Tipicamente se combinan ambas
representaciones (usando concatenacién de vectores) para tener informacién bidireccional
del texto. Para referenciarlo mas facilmente, llamamos a esta combinacién de modelos
CLINICAL FLAIR. Vale aclarar que en este punto solo estamos combinando dos modelos
pre-entrenados, pero aun no aplicamos fine-tuning sobre nuestro corpus.

Adicionalmente para contrastar con métodos no-contextuales pero que tienen la ca-
pacidad de embeber palabras fuera del vocabulario creamos dos embeddings de FastText
(ver seccién 2.3.1) sin partir de modelos pre-entrenados.

= FASTTEXT100: Modelo completamente entrenado por nosotros usando el algoritmo
de FastText sobre el corpus anonymized-ultrasounds-80k-with-diacritics. En
este caso se generan vectores de 100 dimensiones.

' https://huggingface.co/dccuchile/bert-base-spanish-wwm-uncased

12 https://huggingface.co/plnecmm /beto-clinical-wl-es

13 https://huggingface.co/PlanTL-GOB-ES /roberta-base-bne

' https:/ /huggingface.co/PlanTL-GOB-ES /roberta-base-biomedical-clinical-es

15 https://huggingface.co/plncmm /roberta-clinical-wl-es

16 Es importante mencionar que la palabra Flair es ambigua: por un lado es el nombre de una arquitectura,
basada en BiLSTMs descripta en [2] y por el otro lado es una popular biblioteca para desarrollo de modelos
de NLP (https://flairnlp.github.io/) desarrollada por el mismo equipo que creo dicha arquitectura. Durante
este trabajo haremos uso de ambas herramientas y tratamos de ser explicitos cuando nos referimos a una
u otra.

7 https://fairnlp.github.io/docs/tutorial-embeddings/flair-embeddings
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s FASTTEXT200: Idéntico al anterior pero generando embeddings de 200 dimensiones.

4.3.1. Proceso de entrenamiento

Para lo que sigue se hizo una divisién de los informes de anonymized-ultrasounds-80k:
4440 se separaron para hacer después andlisis de clusters sobre eso. Por lo tanto quedaron
un poco menos de 70 mil informes (69556 exactamente) para utilizar durante el fine-tuning
o entrenamiento.

Modelos basados en Transformers

Para el entrenamiento de los modelos basados en Transformers no realizamos en ningtn
caso entrenamientos desde cero sino que aplicamos la técnica de domain adaptation (ver
seccién 2.7) a partir de modelos pre-entrenados. La forma de hacer esto para modelos
basados en BERT (lo que incluye también a modelos basados en RoBERTa) es rea-
lizando un entrenamiento del modelo base para la tarea de Masked Language Model
(ver seccién 2.4.1) sobre el corpus especifico al que se desea adaptar (en nuestro caso
anonymized-ultrasounds-80Kk).

Para realizar el fine-tuning se utilizaron los hiperpardmetros estandar definidos para
BERT y RoBERTa en sus respectivos papers [19] [41]. La razén de no hacer una seleccién
de hiperpardametros mas sofisticada es que resulta poco costo-efectivo por lo demandante
que son los entrenamientos de estos modelos (incluso los fine-tunings) en términos de
recursos computacionales y tiempo. Ademds en nuestro caso particular donde lo que mas
nos importa es la utilidad de las representaciones internas de los modelos, no resulta
tan simple tener una evaluacion efectiva que permita guiar la busqueda en el espacio de
hiperparametros con seguridad. No necesariamente siempre la métrica usada para evaluar
el modelo durante su entrenamiento (por ejemplo, la perplezity en el caso de los Masked
Language Models como BERT) se condice con el embedding mas 1til luego. Sin embargo
hay algunas decisiones relacionadas al proceso de tokenizacién y a la forma de pasarle los
datos al modelo que puede ser bueno detallar.

Primero se deben tokenizar todos los informes. Esto se hace siempre con el tokenizador
asociado al modelo pre-entrenado. La razoén de esto es que el tokenizador determina el
vocabulario sobre el que el modelo fue entrenado y por lo tanto también el vocabulario
sobre el que puede ser aplicado. Sin embargo en este punto hay que tomar una decisiéon
que puede tener consecuencias luego: tanto BERT como RoBERTa tienen una ventana
de contexto de exactamente 512 tokens, lo que significa que aquellos informes que tengan
menos tokens deben agregar tokens de padding'® y los que tengan mds deben truncarse!.
Esto segun el caso concreto puede traer problemas. En nuestro caso particular, los informes
que tienen mas de 512 tokens y perderian informacion al truncarse estan en el orden del
1%, por lo que no es un gran inconveniente por ese lado. En la gran mayoria de los casos se
estd muy por debajo de este nimero (el 95 % de los informes tiene 181 tokens o menos) sin
embargo existe otro problema: la gran diversidad de largos de los documentos. Esto resulta
problemético ya que termina generando una ineficiencia computacional considerable al
momento de realizar el entrenamiento con batches que tienen longitud variable y requieren

18 Los tokens de padding son un valor especial que representa un token de relleno que solo sirve para
asegurar que el tamaifio de entrada sea el correcto, sin aportar informacién adicional.

19 Bl proceso de truncado consiste en descartar todos aquellos tokens que vengan después del méximo
soportado.
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un ajuste de padding dindmico. La soluciéon que adoptamos es una de uso habitual cuando
se cuenta con tanta diversidad de largos entre los textos: unificamos todos los tokens en un
solo gran texto, adicionando tokens especiales que representan separadores de documentos,
y luego lo dividimos en chunks de un tamano fijo. De esta manera no se pierde texto y
se mantienen batches de tamano fijo. Este procedimiento se conoce como chunking. En
nuestro caso escogimos hacer chunks de 128 tokens. El principal factor de esta decision es
la restriccién que nos impone la memoria RAM de la GPU que fue utilizada para entrenar:
con mas tokens por chunk suceden errores por falta de memoria.

Otra decisién importante a tomar respecto de la entrada del entrenamiento es como
generar las méscaras que el modelo tratard de completar. Una primera decisién es si
las méscaras deberfan aplicarse a nivel de los tokens o de las palabras (que en gene-
ral se componen de varios tokens). Si optamos por la primera opcién puede suceder
que una palabra se enmascare parcialmente (por ejemplo, “Higado” podria quedar co-
mo “<MASK>ado”). En el segundo caso, nos asegurariamos que se ponga un token de
méascara por cada token que componga la palabra (en el ejemplo previo, “Higado” quedaria
como “<MASK><MASK>"). Una duda que podria surgir en este segundo caso es por
qué no reemplazar completamente la palabra “Higado” por un solo token “<MASK>",
en lugar de dos. La explicacién es que si hiciéramos eso, dado que el modelo de lenguaje
solo puede predecir un token por cada méscara, jamas seria capaz de predecir la palabra
“Higado” completa. Nosotros optamos por esta opcién de enmascarar palabras completas.

La otra decisién importante, referente al enmascaramiento, es si las méscaras deberian
definirse una unica vez antes de entrenar o si por el contrario deberian definirse dinamica-
mente (y bajo una distribucién de probabilidad sobre los tokens/palabras) cada vez que se
genera un mini-batch durante el entrenamiento. Dado que las herramientas lo permiten,
optamos por la segunda opcion que ofrece una mayor diversidad de escenarios para el
modelo lo cual puede ser bueno para evitar overfitting. La distribucién escogida fue una
Bernoulli(0.15), lo que significa que al armar un nuevo mini-batch cada palabra tiene
un 15 % de probabilidad de enmascararse, independientemente del resto de las palabras.
Es bueno notar que como la probabilidad es por palabra y cada palabra puede estar com-
puesta por muiltiples tokens, entonces la probabilidad de enmascarar un token puede ser
de hecho superior al 15 % y depende de cudntos tokens més conformen la misma palabra.

En cuanto a la duracién del entrenamiento, empiricamente determinamos que a partir
de los 15 epochs los modelos empezaban a converger en su funcién de pérdida y, ademas,
se obtenian resultados similares o mejores que con 30 epochs al observar los resultados
de la tarea de NER con SpRadIE. Por lo tanto optamos por entrenar todos los modelos
durante 20 epochs, utilizando una funcionalidad de la biblioteca de HuggingFace que per-
mite quedarse siempre con la epoch que minimiza la funcién de pérdida a optimizar. De
esta forma el resultado es méds robusto frente a la volatilidad que puede aparecer en el
entrenamiento.

Modelos basados en FastText

En el caso de los modelos de FastText si realizamos entrenamientos completamente de
cero, utilizando inicamente los datos de anonymized-ultrasounds-80k. La decisién de ir
por este camino y no intentar basarnos en otros embeddings de FastText pre-entrenados
se sustenta en gran medida sobre los resultados presentados en la tesis de licenciatura de
Minces Miiller [44]. En dicho trabajo, el autor se basa en el mismo conjunto de datos que
nosotros y evaltia el uso de distintas variantes de FastText, concluyendo que los mejores
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resultados los obtiene con el modelo entrenado de cero. Aunque vale aclarar que el proble-
ma que se trata es distinto (deteccién de relaciones), no deja de ser un resultado relevante
y preferimos no profundizar mucho més ahi para enfocarnos en otros métodos.

A diferencia de los modelos basados en Transformers, aqui si tenemos libertad para
escoger el tokenizer deseado. Probamos varios enfoques distintos para esto, utilizando des-
de técnicas simples como separacién por espacio o expresiones regulares ligeramente més
complejas, hasta herramientas populares en el &mbito de NLP como NLTK? y spaCy?!.
Las consideraciones mas importantes que tuvimos fueron: que la tokenizaciéon no fuera
destructiva (esto significa que no se pierden caracteres al tokenizar, por ejemplo los signos
de puntuacién) y que el resultado de fuera lo més similar posible a la tokenizacién realiza-
da por el script que convierte los informes de SpRadIE de formato Brat a BIO (ver 4.1).
En general las diferencias fueron pocas, siendo una de la méas notorias como se separaban
las mediciones: spaCy separa “7cm” en “7” y “cm”, mientras que el método basado en
RegEx conserva “7cm” como un solo token. Si bien el comportamiento de spaCy puede
parecer el més deseable, el script de conversion de formatos hace lo segundo. Por lo tanto,
terminamos optando por el método basado en RegEx (el cdédigo Python puede verse en el
Apéndice 7.3).

Para entrenar el modelo, utilizamos la implementacién de FastText que provee la bi-
blioteca gensim?2. Los hiperpardmetros se mantuvieron mayoritariamente en sus valores
por defecto:

= Tamano de la ventana de contexto: 5

= Cantidad minima de apariciones de una palabra en el corpus para no ser ignorada:
5

= Largo minimo de n-grams de caracteres: 3
= Largo maximo de n-grams de caracteres: 6

Los tinicos hiperparametros que tocamos fueron la cantidad de epochs que configuramos
en 30% (aproximadamente media hora de entrenamiento) y el tamafio de los vectores:
generamos vectores de 100 y 200 dimensiones respectivamente.

Modelos basados en Flair

Como mencionamos anteriormente, para los modelos de lenguaje basados en Flair
recurrimos a la técnica del fine-tuning (domain adaptation) del mismo modo que lo hicimos
con los Transformers. En este caso solo tenemos un modelo a tunear que es CLINICAL
FLAIR.

En este caso la tokenizacién se resuelve de forma mas sencilla: trabajamos con tokens
a nivel de caracteres, aunque vale aclarar que internamente la implementacién de Flair

20 https://www.nltk.org/

2! https://spacy.io/

22 https://radimrehurek. com/gensim/models/fasttext . html

28 La cantidad de epochs fue determinada empiricamente y basandonos en las mejores practicas que
encontramos en la comunidad. Lo idea serfa realizar un monitor de la loss funcion para analizar los quiebres
de comportamiento y evitar caer en un sobreajuste. Lamentablemente, a dia de hoy la implementacién de
Gensim no soporta hacer un monitoreo de dicha métrica. Ver https://github.com/piskvorky/gensim/
issues/2617.
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segmenta estos tokens por oraciones. Sobre los hiperparametros utilizados, mayoritaria-
mente nos basamos en los valores por defecto nuevamente. En términos de estructura de
modelo, lo tnico que especificamos fue la dimensién del vector al cual se mappean los
inputs y que luego es consumido por la LSTM que termina generando el embedding: le
pusimos un valor de 100. Esta decisién nuevamente se basa es pruebas empiricas, teniendo
en cuenta que es un hiperpardmetro que tiene un alto impacto en el tiempo y recursos de
entrenamiento.

A diferencia de los modelos mencionados anteriormente, aqui la eleccién de la cantidad
de epochs puede hacerse con un criterio un poco mas metddico. Debido a que la biblioteca
de Flair cuenta con la posibilidad de usar early stopping?*, pudimos poner una tolerancia
de 5 epochs sin mejora. Ademds, Flair lleva trazabilidad de cual fue la mejor epoch en
términos de perplezity, por lo que siempre nos podemos quedar con la iteracién que mejor
di6 al finalizar el entrenamiento.

Como se menciona al principio de la seccién, en realidad no se trata de un modelo sino
de dos (uno forward y otro backward) cuyos resultados se concatenan en un tnico vector.
Los hiperparametros descriptos aplican al entrenamiento de ambos modelos. Cada modelo
produce vectores de 2048 dimensiones, por lo que el resultado del modelo concatenado
es de 4096 dimensiones, siendo por bastante diferencia la representacion mas grande que
probamos aqui (los vectores basados en BERT-base tiene 768 dimensiones).

4.4. Modelos de NER

En la seccion anterior se explica cémo fue el proceso de seleccién de modelos de embed-
dings y lenguaje, asi como también el proceso de entrenamiento o fine-tuning de cada uno
segin correspondiera. Dichos modelos tnicamente tienen la capacidad de generar repre-
sentaciones vectoriales a partir de un texto dado. En esta seccién, cubrimos la siguiente
etapa que es la entrenar los modelos finales que serdn capaces de convertir estas repre-
sentaciones vectoriales en predicciones sobre cudl deberia ser la etiqueta de cada palabra,
basdndonos en las entidades de SpRadlIE. Para esto se realizaran entrenamientos sobre
el corpus spradie-corpus-bio-format (ver 4.2.2). Para diferenciarlos de los modelos de
embeddings y lenguaje, nos referiremos a estos modelos como modelos de NER o sequence
taggers (del inglés, “etiquetador de secuencias”).

Tanto para Flair como FastTex usaremos el mismo sequence tagger, que es uno de los
que disponibiliza la biblioteca de Flair. En el caso de los BERT y RoBERTa, el procedi-
miento es un poco diferente y lo realizamos con la misma biblioteca de HugginFace que
usamos para su fine-tuning previo.

Una aclaracién importante que aplica a todos los entrenamientos que se hicieron de
modelos para reconocimiento de entidades nombradas: durante el desarrollo de los métodos
y las pruebas preliminares se trabaja siempre con las particiones de train, devSameSample
y devHeldOut de SpRadIE. La primera se usa para los entrenamientos y las otras dos
para la validacién de los resultados durante el desarrollo de los modelos. Por simplicidad
a veces hablamos de particion de Validation para hacer referencia a la combinacion de
devSameSample y devHeldOut. Sin embargo en la 1iltima ejecucion, se entrena utilizando

24 Early stopping es una técnica de entrenamiento que consiste en monitorear una métrica especifica
durante el entrenamiento (por ejemplo, perplerity) y cortar autométicamente el entrenamiento cuando
pasan una cierta cantidad de epochs sin mejoras. A esta cantidad de iteraciones sin mejoras se la llama
“tolerancia”.
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todos los datos combinados de train, devSameSample y devHeldOut, y se evalia usando
la particién de test. Los resultados de esta ultima evaluacién son los que se reportan en el
capitulo 5.

4.4.1. Entrenamiento para NER basado en Transformers

En este caso tomamos los modelos de BERT y RoBERTa presentados en la seccién 4.3,
tanto en sus versiones base como en sus versiones con domain adaptation, pero esta vez les
aplicamos task adaptation (ver seccién 2.7). Esto basicamente consiste en que tomamos
los modelos que fueron entrenados para predecir la palabra mas probable dentro de un
contexto (Masked Language Model) y lo adaptamos para que ahora sea capaz de predecir
las entidades de SpRadIE (NER o sequence tagging).

La forma de hacer esto consiste en reemplazar la capa de salida (header) de los modelos
entrenados para la tarea de Masked Language Model por una capa especial de clasificacion,
con una neurona por cada clase posible a predecir. La etiqueta a predecir serd la corres-
pondiente a la unidad que retorne el valor méas grande. Esta tdltima capa tiene también
pesos entrenables, sin embargo inicialmente se agrega con valores random.

Nuevamente se usan valores de referencia para los hiperpardmetros. En cuanto a la
forma de pasarle los datos de entrenamiento al modelo, se pasa oraciéon por oracién y no
informes completos. Esto es una decisién que tomamos por simplicidad, sin embargo es
algo que podria profundizarse para ver si realmente es lo mejor. Una de las ventajas de
esto es que ninguna oracién supera el limite de 512 tokens lo que simplifica la ingesta. La
generacién del padding necesario se realiza de forma automatica y dindmica durante el
entrenamiento.

Posiblemente el aspecto mas complejo de todos, antes de poder empezar a entrenar, es
el de alinear correctamente las etiquetas que aparecen en spradie-corpus-bio-format
con los tokens generados por los tokenizadores propios de cada modelo. Recordemos que
las etiquetas en el corpus en formato BIO estian asignadas a nivel palabra, sin embargo
los tokenizadores usados por los modelos basados en BERT descomponen las palabras en
varios tokens de sub-palabras. Esto conlleva a que sea necesario mantener trazabilidad
de a que palabra original corresponde cada token para luego poder asignarle la etiqueta
correspondiente. Fuera de esto, no es necesario realizar mayores acciones al momento de
pre-procesar los datos. Dado que los informes son mayoritariamente cortos El padding se
resuelve dindmicamente, agregando lo que haga falta para cada informe.

4.4.2. Entrenamiento para NER basado en Flair o FastText

En este caso, utilizaremos nuevamente un modelo de BiLSTM, pero en lugar de que
sea para generar embeddings serd para la tarea de reconocer las entidades, tomando como
input los embeddings generados (por FastText o por Flair). Los resultados de salida de
esta BiLSTM son procesados por una capa de Conditional Random Fields (CRF) ?® que
es lo que termina determinando la probabilidad de cada una de las etiquetas posibles.

25 Los Conditional Random Fields son modelos probabilisticos discriminativos utilizados para etiqueta-
do secuencial, donde se consideran dependencias entre etiquetas adyacentes para optimizar asignaciones
globales en lugar de decisiones independientes. Cuando se combinan con BiLSTMs, las representaciones
contextuales generadas por las redes neuronales bidireccionales se utilizan como entradas al CRF, mejo-
rando la precision del etiquetado al capturar tanto el contexto de las palabras como las relaciones entre
etiquetas consecutivas.
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En este caso no es necesario realizar un alineamiento adicional, ya que la biblioteca se
encarga automaticamente de gestionar esto. Aqui también el entrenamiento y prediccién
se realizan oracién por oracién.

4.5. Evaluacion extrinseca

En esta seccién se presenta una descripcion detallada de como se evaliian los modelos,
incluyendo las métricas utilizadas y el proceso que se sigue. La figura 4.4 muestra, en
forma simplificada, cudles son los principales grupos de tareas que se tienen que realizar
para poder llegar al punto de analizar los resultados. Mientras que la figura 4.5 expande
cada uno de estos grupos y muestra las tareas con mayor detalle, incluyendo su orden y
dependencias. En total hay cuatro lineas de evaluacién, tres extrinsecas y una intrinseca.
En esta seccion nos enfocaremos en las extrinsecas mientras que la intrinseca se detalla en
la seccién 4.6.

Las tres principales lineas que seguimos para la evaluacion extrinseca son:

» Comparacion entre los modelos entrenados usando intervalos de confianza: buscamos
comparar de manera lo mas estadisticamente robusta posible los resultados de los
distintos modelos aqui entrenados.

» Estudio de ablacién: a través de reemplazar componentes de la arquitectura de los
modelos, intentamos aislar el efecto que tienen los embeddings entrenados sobre el
resultado final de la tarea de NER.

= Comparacién contra los resultados publicados de la competencia de SpRadIE: bus-
camos analizar si logramos mejorar el estado del arte en una tarea concreta. Aqui
consideramos no solo los modelos de Machine Learning sino también la heuristica
para identificar abreviaturas que se describe mas adelante en esta seccién. Como
parte de esta seccién, realizamos también un andlisis manual de los errores para
determinar oportunidades de mejora en el entrenamiento de nuestros modelos.

Fine-tuning a los
modelos de lenguaje
base y entrenamiento
embeddings FastText

Generacion de
predicciones de NER
con/sin bootstrapping

Andlisis extrinsecos e
intrinseco

Entrenamiento de
modelos para NER

Fig. 4.4: Diagrama simplificado que muestra los principales cuatro conjuntos de tareas a realizar
en el trabajo, para poder llegar a los andlisis de resultados.

Las métricas utilizadas para evaluar la tarea de NER son exactamente las mismas que
se usaron en la competencia de SpRadlE [17]. El contenido presentado en esta subseccién
estd mayormente tomado de esa publicacién. En total se computan seis métricas Precision,
Recall y F1-Score (o simplemente F'1) para match parcial, y las mismas tres pero evaluadas
con match exacto. Match parcial significa que se da una ponderacion relativa a predecir
una anotacién en forma parcialmente correcta (es decir que se reconocen cosas de menos o
de mds) mientras que el match exacto solo considera predicciones exactas. Para SpRadlE,
la métrica que se tomé como referencia para escoger a un ganador fue el F1-Score para
match parcial, considerando que una anotaciéon aunque no sea perfecta puede ser 1util en
muchas tareas.
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BIiLSTM
base pre-
entrenada
de Flair

Transformers
base pre-
entrenados
de HF

v

Entrenamiento de
embeddings de FastText

=/

Fine-tuning sobre los
Language Models base

Fine-tuning a todos los
Transformers base

Entrenamiento de
modelos de NER
usando BiLSTM+CRF

Entrenamiento de </
\>|  modelos de NER
simplificados (ablacion)

<

Heuristica para
ABBREVIATION

Generacion de
predicciones sobre Test
SIN bootstrapping

Andlisis manual de
errores para entender
areas de mejora

Andlisis comparando
resultados contra los de
la competencia SpRadlE

Generacion de
predicciones sobre Test
CON bootstrapping

Analisis de desempefio
de los modelos segln su
tipo y si se uso FT 0 no

Andlisis cualitativo de
clusters para los
mejores modelos

Entrenamiento de
modelos de NER </
usando HF

degradan

Andlisis de cuanto se

al reemplazar la capa de
NER por una mas
simple (ablacion)

Sobre particién de train
de ultrasounds-raw-80k
(~70 mil informes)

Sobre SpRadIE usando
particiones de
Train + Validation

los resultados

Sobre SpRadlE

usando particién de
TEST

Sobre particidn de test
de ultrasounds-raw-80k
(~10 mil informes)

Fig. 4.5: Diagrama muestra el proceso de evaluacién de los modelos, desde los entrenamientos
realizados hasta llegar a los diferentes andlisis realizados. Los pasos se ordenan cronologi-
camente de arriba hacia abajo, manteniendo en el mismo nivel aquellas tareas que pueden
ejecutarse en paralelo. Se incluyen tanto las evaluaciones extrinsecas como las cualitativas.
Para representar a los modelos pre-entrenados de los que partimos, utilizamos rombos.
Los rectangulos son usados para representar las distintas acciones que a su vez generan
resultados para ser consumidos en la siguiente accién. El color de cada rectangulo re-
presenta a cual de los cuatro grupos de tareas, diagramados en la figura 4.4, pertenece.
Algunas siglas son utilizadas por una cuestién de espacio: HF (HugginFace), FT (Fine

Tuning) y WE (Word Embeddings).
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Una aclaracién importante es que todas las métricas reportadas en este trabajo se
computan utilizando micro-average. Esto implica que todas las instancias de predicciones
y referencias tienen el mismo peso al calcular Precision, Recall y F1-score, independiente-
mente de a qué entidad correspondan. Este enfoque se diferencia del macro-average, donde
las métricas se computan por cada clase de entidad primero y luego se promedian dichos
resultados para obtener la métrica general (por ejemplo, primero se computaria Precision
para cada una de nuestras 10 entidades por separado, y luego se haria el promedio de
esas 10 métricas para obtener el macro-average Precision). La principal diferencia entre
ambos métodos radica en como se comportan frente a problemas con clases desbalancea-
das (es decir, que hay clases que concentran més ejemplos que otras). El micro-average,
al considerar todos los ejemplos con la misma importancia, resulta mas afectado por los
resultados obtenidos para las clases mayoritarias. Mientras que el macro-average le asigna
la misma importancia a todas las clases, independientemente de si una representa el 99 %
de los casos y otra solo el 1%. Ambas son ttiles y la eleccién de una u otra depende del
caso concreto y lo que se quiera priorizar.

Para el calculo de todas estas métricas, lo primero que hay que hacer es computar
el indice de Jaccard, que consiste en una medida de similitud entre la referencia y la
prediccién. En término de conjuntos, la forma de calcularlo consiste en hacer un ratio de
la interseccion entre la referencia y la prediccién sobre la unién de las mismas. La funcién
J expresa el calculo del indice Jaccard en el contexto de similitud entre fragmentos de
texto:

long(solapamiento(ref, pred))
d) = 4.1
I (ref, pred) long(ref) + long(pred) — long(solapamiento(ref, pred)) (41)

donde ref es el texto de referencia anotado en nuestro ground truth, pred es el texto
reconocido por nuestro modelo, long es la funcién que devuelve el largo de una cadena de
caracteres y solapamiento es una funciéon que devuelve la sub-cadena de caracteres méds
larga que es compartida por dos cadenas, teniendo en cuenta el orden de los caracteres.
Notar que si ref y pred son iguales, entonces la funcién vale 1. Mientras que si ref y pred
no comparten nada en comun, entonces el indice da 0.

A partir de este indice definimos las métricas a evaluar de la siguiente forma:

Z (ref,pred)e M J(I‘ef, pred)

PREC arcial = = (4.2)
REC - etz J0E0re) 03
PREC, ey — [{(ref, pred) € MJ:DJ(ref, pred) = 1}| (4.4)
REC,.o0s — |{ (ref, pred) € M : J(ref,pred) = 1}| (45)

R

donde P es el ntimero total de anotaciones predichas, R es el total de anotaciones de
referencia y M es un conjunto de pares de referencias y anotaciones dado. El como definir
M no es trivial y en SpRadlE se escoge resolver esto con una heruristica de tipo greedy
que itera sobre las anotaciones predichas y las empareja con la mejor anotacién del ground
truth.
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Por ltimo, a partir de los valores calculados para Precision y Recall podemos computar
el F1 siguiendo la siguiente férmula:

Precision x Recall
Fi1- =2 4.6
seore % Precision + Recall (4.6)

Notar que la misma férmula sirve tanto para match parcial como exacto, y el tipo del
F1 estard dado por el tipo de Precision y Recall utilizados.

Para asegurar que nuestros resultados sean comparables con los de la competencia,
calculamos todas estas métricas utilizando el script provisto en la pagina de SpRadlE?S,

4.5.1. Intervalos de confianza con bootstrapping

Como forma de poder tener una comparaciéon mas robusta entre los distintos modelos
de NER entrenados, aplicamos la técnica de bootstrapping, introducida en la secciéon 2.8,
para estimar intervalos de confianza del 95 %.

El algoritmo seguido para aplicar el bootstrapping y estimar los intervalos para cada
uno de los modelos fue el siguiente:

1. Tomamos los 207 infomes de la particién de test de SpRadlE?” y generamos los
archivos en formato .ann (ver Brat Format en 4.2.2) a partir de las predicciones del
modelo.

2. A partir de esta muestra base de 207 predicciones del modelo, generamos 1000 nuevas
muestras (con 207 informes cada una) a través del muestreo con reposicién (boots-

trapping).

3. Para cada una de las mil muestras, ejecutamos el script de evaluaciéon de SpRadlE,
mencionado en la seccién anterior. Esto nos da distintos resultados de f1-score (tanto
exacto como parcial) para cada una de las muestras.

4. Sobre estas métricas calculadas, tomamos la mediana como estimador del valor es-
perado del f1-score para el modelo. Por otro lado, nos quedamos con el 2.5-percentil
como estimador del limite inferior del intervalo, y el 97.5-percentil como estimador
del limite superior.

Una ventaja de construir los intervalos de esta manera, a partir de los percentiles, es
que no dependemos de asumir hipétesis de normalidad sobre los datos muestreados.

4.5.2. Estudio de ablacién

Un estudio de ablacién es un enfoque sistematico para evaluar el impacto de los com-
ponentes individuales dentro de un modelo de Machine Learning. Al eliminar o reemplazar
selectivamente ciertas partes de la arquitectura, es posible cuantificar sus contribuciones
al rendimiento general. Esta técnica es particularmente 1til para comprender el papel de
submodulos o arquitecturas complejas en la obtencién de los resultados reportados.

26 https://github.com/francolq/spradie

27 Es importante aclarar que la particién de test fue usada tnicamente en la ejecucién final como forma
de generar los datos a reportar. En lo restante del desarrollo, se trabajé siempre usando los conjuntos de
devSameSample y devHeldOut.
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En nuestro caso, todos los modelos de NER entrenados pueden separarse en dos seccio-
nes principales: una “seccién de embedding”, que se encarga de generar una representacion
interna a partir del texto analizado; y una “seccién de etiquetado” (o sequence tagger),
que es la encargada de interpretar estas representaciones y generar las etiquetas corres-
pondientes. En el caso de los modelos basados en FastText o Flair esta diferencia es méas
notoria: ambos métodos se enfocan en generar embeddings directamente reutilizables por
otras arquitecturas, como por ejemplo las BILSTM+CRF (sequence tagger) que escogimos
aqui. Y en general cuando se entrena la seccién de etiquetado no se modifican los pesos de
la seccién de embedding. Por su parte, en los Transformers esta distincién puede ser menos
evidente: la capa de salida del Transformer (head) podria considerarse el sequence tagger,
mientras que el resto de capas ocultas serian las encargadas de armar el embedding. Sin
embargo, cuando se entrena para la tarea de NER generalmente también se actualizan los
pesos de varias o todas las capas internas.

Estas diferencias que se dan en la seccién de etiquetado entre los distintos modelos
entrenados en este trabajo, hace que una comparacién directa del aporte de los embeddings
en cada caso sea complicada. Alin maés, a veces estos sequence tagger son tan poderosos en si
mismos que logran aprender nuevas relaciones complejas entre los inputs aun cuando estas
no hayan sido capturadas en los embeddings. Por ejemplo, los BILSTM son una arquitectura
que se caracteriza justamente por su capacidad de retener dependencias de largo plazo en
si misma, lo que puede suplir carencias que tienen los embeddings estéaticos, por ejemplo
FastText. En el caso de los Transformers, si bien la capa de salida no es particularmente
compleja, el hecho de que se estén reentrenando todas las capas del modelo de lenguaje al
momento de aprender a etiquetar, genera un efecto similar.

Debido a que el propdsito de esta tesis es evaluar a los embeddings y modelos de len-
guaje no solo desde el punto de vista de la utilidad para una tarea puntual, sino también
desde sus propiedades inherentes, optamos por realizar un estudio de ablacién en el que
reemplazamos los complejos sequence taggers de todos los modelos por una capa de eti-
quetado lineal méas un CRF. Dicha capa puede proyectar los embeddings al espacio de
salida deseado, pero no tiene posibilidad de capturar propiedades seménticas o retener de-
pendencias de largo plazo adicionales. Para este experiemento nos basamos en un analisis
planteado en el articulo fundacional de Flair [2].

4.5.3. Algoritmo para abreviaturas

Un hallazgo que fue importante tras las pruebas iniciales con la particién de Validation,
es el bajo desempenio que lograban todos los modelos sobre la categoria Abbreviations,
especialmente en términos de recall. En todos los casos se obtuvieron valores por debajo
de 0.25 para recall al evaluar sobre la particién de validacién. Al analizarlo, encontramos
que es un fendémeno consistente con la metodologia de resolucién de anotaciones solapadas
que describimos en la seccién 4.2.2: las abreviaturas son la entidad mas penalizada por
este criterio debido a que la mayoria de las veces son partes de entidades més grandes,
como Measure o Anatomical_Entity, y terminan quedando muy subrepresentadas en el
conjunto de entrenamiento en formato BIO. Por ejemplo, algunas de las Abbreviations
més comunes son “cm”, “mm”, “RD” y “RI”. Las dos primeras suelen aparecer dentro
de mediciones, mientras que las iltimas dos son entidades anatémicas (rinén derecho y
rinén izquierdo, respectivamente). Adicionalmente, como puede observarse en la figura
4.1, la entidad Abbreviation es la segunda en frecuencia después de Anatomical_Entity,
representando el 19.4 % del total de las etiquetas. Esto provoca que sus resultados tengan
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un alto impacto en el micro-average de las métricas, como se explica en la seccion 4.5.

Debido a estos motivos y al hecho de que los mejores resultados de la competencia
original fueron obtenidos por aquellos que decidian usar una estrategia de segmentar enti-
dades para entrenar modelos especialistas, optamos por excluir la etiqueta de Abbreviation
del entrenamiento de los modelos. En su lugar, para este tipo de entidad utilizamos un
algoritmo simple basado en expresiones regulares (RegEz) que se explica a continuacién.

Primero analizamos la frecuencia de ocurrencia de las distintas palabras marcadas co-
mo Abbreviation en la particion de Train de spradie-corpus. La figura 4.6 muestra la
distribucién tipo long-tail que presenta esta entidad: es decir que pocas palabras repre-
sentan la gran mayoria de las ocurrencias, mientras que hay muchas palabras con muy
pocas ocurrencias. Esto significa que simplemente quedandonos con un pequenio grupo de
las palabras mads frecuentes podemos cubrir la mayoria de anotaciones. A partir de esta
observacién armamos una lista de las 24 palabras més frecuentes para Abbreviation, que
puede encontrar en el Apéndice (7.2).

Frecuencia de los 20 tokens mas comunes con etiqueta Abbreviation

350 1

300 4

250 4

200 1

Frecuencia

150 4

100 4

50 1

EEQRZEQQ2UELCESEERESZE FET
SEETES§ gTagNegC VRS

Token

Fig. 4.6: Grafico de barras mostrando la frecuencia de las veinte palabras mas frecuentes etiqueta-
das como Abbreviation en el conjunto de entrenamiento de spradie-corpus

Con dicha lista se aplica un algoritmo simple para anotar las palabras: buscamos en
cada informe ocurrencias de palabras en la lista, siempre y cuando no estén precedidas o
seguidas directamente por otras letras. Con este ltimo criterio lo que hacemos es prevenir
Falsos Positivos por anotar sub-palabras erroneamente. Por ejemplo, la Abbreviation “izq”
puede ser encontrada dentro de la palabra “izquierda” que no es una Abbreviation.

Vale la pena destacar que como el principal objetivo de la tesis es identificar la utilidad
y aporte de las representaciones vectoriales, al momento de realizar las evaluaciones nos
enfocamos en los modelos de Machine Learning, dejando de lado la categoria de Abbre-
viation para estos andlisis. En el tinico caso donde realmente nos importan y las usamos
en combinacion con los resultados de los modelos, es en la seccién 5.3.2 cuando hacemos
el benchmark contra el estado del arte.

4.6. Evaluacion intrinseca

Como se comenta en el capitulo 3 la escasez de gold standards para el dominio de andli-
sis de ecografias o afines en idioma espanol dificulta la evaluacion intrinseca, al menos de
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una forma facil de cuantificar y comparar. Por este motivo decidimos implementar esta
evaluacién intrinseca a través de un andlisis cualitativo que nos permita comprender un
poco mejor cudn bien nuestros embeddings capturan la seméantica del dominio, indepen-
dientemente de una tarea objetivo especifica. Debido a que este sistema requiere un gran
esfuerzo de andlisis manual, optamos por no hacerlo para todos los modelos sino solo para
los que nos dieron los mejores resultados en las pruebas extrinsecas.

El marco general consiste en realizar tres pasos: generar los embeddings para cada
uno de los informes, aplicar una reduccién de dimensionalidad y por tltimo un andlisis de
los clusters formados en este espacio reducido. A continuacién presentamos los métodos
aplicados para dicho anélisis.

Como mencionamos arriba, los modelos usados para este andlisis son solo algunos
basados en Transformers, y mas especificamente basados en la arquitectura de BERT.
Para obtener los embeddings seguimos el procedimiento explicado en la seccién 2.4.2. En
nuestro caso, por simplicidad y dado que hasta donde conocemos no hay ningin estudio
que generalice la mejor forma de usar los estados internos para embeddings, decidimos
proceder unicamente con la ultima capa oculta.

Esta metodologia la aplicamos sobre una particién de Test con 8222 informes sepa-
rados de anonymized-ultrasounds-80k-with-diacritics antes de entrenar. Escogemos
realizar los embeddings sobre los informes completos, promediando los embeddings obte-
nidos para cada token que compone un informe. Otro tipo de anélisis que podria resultar
interesante es el de hacer los embeddings a nivel de oraciones.

Debido a que los embeddings tienen 768 dimensiones resulta complejo analizarlos. Por
tal motivo aplicamos técnicas de reduccion de dimensionalidad para llevarlos a un es-
pacio mas manejable. Especificamente usamos Principal Component Analysis (PCA) y
t-Distributed Stochastic Neighbor Embedding (t-SNE), que fueron introducidas en 2.9. El
foco lo ponemos sobre t-SNE ya que nuestro principal interés estd en poder hacer un anali-
sis gréfico en 2-dimensiones. Sin embargo también realizamos algunas pruebas con PCA y
PCA + t-SNE (reduciendo las dimensiones de los embeddings de 768 a 50 mediante PCA
y luego aplicando t-SNE sobre esto).

Una vez reducida la dimensionalidad de los embeddings pasamos a aplicar algunas
técnicas de clustering para tratar de simplificar el andlisis de los clusters que se forman.
Los métodos usados son K-Means, DBSCAN y HDBSCAN, todos introducidos en 2.10.
Vale aclarar que acd no estamos tratando de optimizar nada, solo ayudarnos de estos
métodos para poder segmentar de forma semi-automética algunas areas interesantes para
analizar en el espacio reducido.

El objetivo es ver si se forman clusters y si los mismos son consistentes con la seméantica
de los informes representados por los puntos de dichos clusters.
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En este capitulo analizamos los resultados obtenidos para la tarea objetivo (SpRadIE)
utilizando los distintos modelos de lenguaje y embeddings mencionados en el capitulo an-
terior. Todos los resultados que se presentan a continuacién fueron calculados sobre la
particion de Test de la tarea de SpRadlE. Para el computo de las métricas se ejecuto
exactamente el mismo script utilizado en dicha competencia. En todos los caso, las métri-
cas de Precision, Recall y F1-Score fueron calculadas con micro-average sobre todas las
entidades analizadas.

Este capitulo se divide en cuatro secciones principales: primero analizamos los resul-
tados generales de los modelos entrenados apoyandonos en la técnica de bootstrapping:;
luego hacemos lo propio con el estudio de ablaciéon propuesto; continuamos con una com-
paracién de nuestros resultados contra el estado del arte; y por ultimo, cerramos haciendo
un analisis manual de los errores que nos permite ganar un mayor entendimiento sobre el
comportamiento del modelo.

5.1. Analisis usando Bootstrapping

En esta seccién presentamos los resultados obtenidos para todos los modelos entrena-
dos al evaluarlos sobre la particién de Test. Para poder sacar conclusiones estadisticamente
significativas, presentamos las medianas del F1-Score tanto exacto (Exact F1-Score) como
parcial (Lenient F1-Score) en conjunto con sus intervalos de al menos 95% de confian-
zal. Dichos resultados se muestran en la tabla 5.1, agrupados segiin el tipo de modelo de
lenguaje pre-entrenado que se usé. También diferenciamos los resultados obtenidos por
aquellos clasificadores que se construyeron directamente a partir de estos modelos (“Ba-
se”) de aquellos que lo hicieron sobre los modelos con fine-tuning sobre nuestros datos
(“Finetuned”). En el caso particular de los clasificadores basados en FastText, dado que
no son modelos de lenguaje ni tampoco se usaron pesos pre-entrenados, nos referimos a
estos como “Trained”, como forma de destacar que fueron completamente entrenados por
nosotros y sobre nuestros datos.

1 Si bien fueron estimados intervalos de confianza del 95 % usando bootstrapping, los mismos no tienen
porque ser simétricos respecto de la mediana ya que no asumimos una distribucién particular sobre las
muestras. Sin embargo en la practica vemos que en la mayoria de los casos resultan simétricos o casi
simétricos, por lo que decidimos escoger siempre tomar un intervalo simétrico respecto de la media, para
poder simplificar la notacién y usar el simbolo +. Por ejemplo, si la mediana fuera 80, el limite inferior
del intervalo 79,5 (—0,5) y el superior 81 (+1), entonces registramos 80 + 1. Esta metodologia asegura que
el intervalo de confianza del 95 % estimado con el método de bootstrapping siempre esté incluido en el
intervalo presentado. Y por este motivo hablamos de que los intervalos son de “al menos 95 %”.
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5. Resultados de Evaluacion Extrinseca

Modelo Lenient F1-Score Exact F1-Score
BETO CLINICAL WL

Base 83.8 = 1.2 785+ 1.6

Finetuned 85.3 + 1.2 80.1 £ 1.5
ROBERTA BIO CLINICAL

Base 83.8 £ 1.3 789 £ 1.6

Finetuned 849 £+ 1.1 795 + 1.5
BETO CASED

Base 84.2 £ 1.2 79.0 £ 1.6

Finetuned 84.9 +£1.2 799 + 1.5
BETO UNCASED

Base 83.8 £ 1.2 786 £ 1.4

Finetuned 84.6 = 1.2 79.7 £ 14
ROBERTA CLINICAL WL

Base 844 +1.2 7.8 £ 1.6

Finetuned 84.5 +1.3 79.1 £ 1.5
ROBERTA BNE

Base 82.5 £ 1.3 77.0 £ 1.6

Finetuned 84.1 +£1.3 79.0 £ 1.5
CLINICAL FLAIR

Base 824 + 1.4 76.6 = 1.6

Finetuned 83.7 £ 1.2 779 + 1.5
FASTTEXT200

Trained 815+ 14 74.8 £ 1.7
FASTTEXT100

Trained 805+ 1.4 746 £ 1.5

Tab. 5.1: Mediana de los F1-Scores (micro-averaged) estimando intervalos de al menos 95% de
confianza mediante bootstrapping, tanto para match exacto como parcial. Los modelos
estdn ordenados de mayor a menor Lenient F1-score del modelo finetuneado.

Como primer observacién viendo los resultados en la tabla 5.1 podemos notar que
los modelos que mejor se desempenaron fueron todos aquellos basados en Transformers,
seguidos de los modelos basados en Flair (BiLSTM) y por ultimo aquellos basados en
FASTTEXT. Entre el mejor y el peor modelo hay una diferencia de 5 puntos porcentuales
(pp) para match parcial y de 5.5 pp para match exacto.

Todos los modelos presentan mejores resultados para el match parcial que para el
exacto. Si bien esto no sorprende, es destacable que en todos los casos (independientemente
del tipo de modelo y del tratamiento que recibi6 respecto al fine-tuning) la diferencia entre
el resultado exacto y parcial estd entre 5 y 6 pp. Una hipétesis del porqué esta diferencia
se mantiene casi constante entre todos los modelos podria ser que exista un sub-conjunto
de informes para el cudl resulta particularmente desafiante lograr un match exacto. Esta
es una hipotesis que no profundizamos en este trabajo.

Un punto a destacar es que, para los casos de los modelos de lenguaje donde se realizé
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fine-tuning sobre el corpus anonymized-ultrasounds-80k, los resultados son sostenida-
mente mejores en comparacion a los casos donde se utilizé directamente el modelo base,
aunque no por demasiado. En algunos casos la diferencia es incluso casi nula (por ejem-
plo, en ROBERTA CLINICAL WL y en BETO CASED) sobretodo si se consideran los
intervalos de confianza.

Dentro de lo que son los modelos basados en Transformers, no vemos diferencias de-
masiado grandes entre los modelos finetuneados. No hay en principio una dominancia
clara entre los modelos basados en arquitecturas del tipo BERT, de aquellos basados en
arquitecturas del tipo RoBERTa.

Si bien en algin punto es alentador ver que por lo menos el proceso de domain adapta-
tion sobre el modelo de lenguaje mantiene o mejora los resultados, a prior: esperdbamos
ver diferencias més significativas. Recordemos que aqui técnicamente se estdn haciendo
dos fine-tunings por cada modelo: el primero es un domain adaptation no-supervisado a
nivel del modelo de lenguaje (o embedding) y el segundo es una task adaptation para la
tarea de NER especifica. Nuestro objetivo principal es medir la ganancia generada por el
primer proceso y en ese sentido el segundo proceso puede generar cierta distorsién. Por
eso realizar un estudio de ablacion resulta de gran ayuda para entender mejor esto.

5.2. Estudio de ablacion

En esta seccion se presentan los resultados del estudio de ablacién, que como se ex-
plicé previamente en 4.5.2 consiste en utilizar una capa lineal combinada con Conditional
Random Fields como forma de clasificar las entidades del NER. Al hacer esta simplifica-
cién en la capa de clasificaciéon podemos apreciar mejor la contribucién de los embeddings
entrenados al resultado final.

En la tabla 5.2 podemos ver el resultado de dicho estudio. El formato de esta tabla
es similar al de la tabla 5.1 con un agregado: para cada métrica se pone entre paréntesis
de cuantos puntos porcentuales fue la caida en el desempeno respecto de los resultados
mostrados en la seccién anterior. Para simplificar un poco la cantidad de informacion a
mostrar en la tabla se omitieron los resultados basados en los modelos BETO CASED,
BETO UNCASED y FASTTEXT100 por no presentar caracteristicas adicionales a las que
mencionamos a continuacion.

El primer punto que se observa es que los modelos basados en FASTTEXT (no con-
textuales) son los que sufren la mayor caida de performance al aplicar la ablacién: la caida
estd en torno a los 24 puntos porcentuales (pp) para el F1-Score con match parcial y 27 pp
para el match exacto. Mientras que para las representaciones contextualizadas, la caida
maxima estd en alrededor de los 10 pp, con la tnica excepcién de ROBERTA BNE, donde
la caida es mayor (entre 11 y 14 pp) pero sigue lejos de la de FASTTEXT. Es destacable
que estos resultados son muy similares a los que se presentan en el paper fundacional de
Flair [2] de donde tomamos inspiracién para realizar este andlisis. Este caso también pone
en evidencia el peso que tiene el uso de un algoritmo de NER que se apalanque en la
informacién contextual por si mismo, mostrando que al menos para el caso de SpRadlE
puede compensar el uso de representaciones no tan potentes.

Yendo al caso de los modelos contextualizados hay varios aspectos interesantes para
notar. La primera de todas es que al realizar la ablacién de los modelos el orden del
ranking que se ve en la tabla 5.1 cambia. BETO CLINICAL WL con finetuning, que
habia presentado los mejores resultados, pasa a quedar en un tercer lugar al cambiar su
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Modelo

F1-Score Parcial

F1-Score Exacta

BETO CLINICAL WL
Base + Ablation
Finetuned + Ablation

77.8 + 1.5 (| 6 pp)
78.6 + 1.5 (| 6.7 pp)

71.2 + 1.9 (| 7.3 pp)
71.7 £ 2.0 (| 8.4 pp)

ROBERTA BIO CLINICAL
Base + Ablation
Finetuned + Ablation

78.2 + 1.5 (J 5.6 pp)
76.1 + 1.7 (| 8.8 pp)

71.3 + 1.7 (L 7.6 pp)
69.1 + 2.0 (i 10.4 pp)

ROBERTA BNE
Base + Ablation
Finetuned 4+ Ablation

69.1 + 1.8 (| 13.4 pp)
73.2 + 1.6 (J 10.9 pp)

63.2 + 2.0 (| 13.8 pp)
65.8 + 1.8 (| 13.2 pp)

ROBERTA CLINICAL WL
Base + Ablation
Finetuned + Ablation

77.8 £ 1.6 (| 6.6 pp)
79.6 + 1.4 (| 4.9 pp)

69.7 = 1.8 (1 9.1 pp)
73.0 + 1.7 (| 6.1 pp)

CLINICAL FLAIR
Base + Ablation
Finetuned + Ablation

73.6 + 2.1 (| 8.8 pp)
82.0 + 1.3 (L 1.7 pp)

68.4 + 2.1 (| 8.2 pp)
76.1+ 1.5 (| 1.8 pp)

FASTTEXT200
Trained + Ablation

57.2 + 2.6 (J 24.3 pp)

47.6 + 2.8 (1 27.2 pp)

Tab. 5.2: Mediana de los micro-averaged F1-Scores (tanto para match parcial como para match
exacto) estimando intervalos de al menos 95% de confianza mediante bootstrapping.
Ademads, entre paréntesis se presenta la caida de performance medida en puntos por-
centuales (pp) con respecto a los resultados presentados en la tabla 5.1 para mismo
modelo pero sin aplicar la ablaciéon. Dichas caidas deben considerarse en forma aproxi-
mada debido a que los méargenes de error de las mediana no se estan teniendo en cuenta
para este cédlculo. Por simplicidad y claridad los resultados para BETO CASED, BETO
UNCASED y FASTTEXT100 fueron omitidos aqui.
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ultima capa, quedando por detrdas de CLINICAL FLAIR y ROBERTA CLINICAL WL
respectivamente (ambos con finetuning). Es de destacar el caso de CLINICAL FLAIR
que previamente habia mostrado el peor resultado para los modelos contextualizados (si
bien fue por una diferencia ajustada) y tras la ablacién queda en primer lugar con cierta
diferencia (alrededor de 2 pp respecto del segundo mejor y 3 pp respecto del tercero).

Otro punto que resulta relevante analizar es el impacto de la presencia de fine-tuning
o no en los modelos. El caso de CLINICAL FLAIR es de los més llamativos ya que si
comparamos las pérdidas de desempeinio entre el modelo base y el finetuneado, vemos que
el primero tiene una caida significativa (cercana a 9 pp) mientras que el segundo recibe
un impacto mucho més acotado (por debajo de 2 pp). Esto parece evidenciar que en este
caso el proceso de domain adaptation es exitoso en capturar informacién interna de la
estructura de los informes y generar representaciones que simplifican la tarea de reconocer
las entidades ain con un algoritmo lineal. También suma un punto més al argumento de
que el uso de modelos complejos (como Redes Neuronales Recurrentes en este caso) para
la capa de reconocimiento de entidades nombradas opaca en buena medida la diferencia
de calidad de los embeddings que se usen como entrada. Al respecto de esto basta notar en
la tabla 5.1, de la seccién anterior, que la diferencia entre el modelo base y el finetuneado
era menor a 2 pp sin aplicar la ablacién.

Volviendo al anélisis de la relevancia del fine-tuning de los modelos de lenguaje, si ahora
nos enfocamos en los modelos basados en Transformers observamos un comportamiento
mixto. BETO CLINICAL WL, ROBERTA CLINICAL WL y ROBERTA BNE performan
un poco mejor o igual en sus versiones finetuneadas respecto de las base. Sin embargo,
ROBERTA BIO CLINICAL por algiin motivo performa mejor en su versién base (a pesar
de que en el modelo sin ablacién se desempeniaba mejor la versién finetuneada) por una
diferencia aproximada de 2 pp.

A modo de comentario de cierre de esta seccién, es importante sefialar que este estudio
no es suficiente por si solo para determinar que un embedding es mejor que otro. Al estar
poniendo un clasificador lineal en la capa de salida, basicamente estamos condicionando
que las representaciones usadas pertenezcan a un espacio donde las anotaciones de las
entidades sean linealmente separables. Si bien la separabilidad lineal es una propiedad
generalmente deseable, no necesariamente eso quita que embeddings que no la cumplan
puedan resultar méas propicios para otro tipo de capas de salida. También hay que tener en
cuenta que un mismo embedding puede ser reaprovechado para distintos problemas donde
no necesariamente la representacién cumpla separabilidad lineal. Para profundizar en esto
se aconseja la lectura de la seccién 15.1.1 del libro “Deep Learning” [27].

5.3. Comparacion de resultados respecto de trabajos previos

En lo que sigue se realiza un analisis de los resultados obtenidos comparandolos di-
rectamente contra los mejores resultados publicados en la competencia de SpRadIE. Un
resumen de los resultados alcanzados por cada equipo participante puede encontrarse en
“Overview of CLEF eHealth Task 1-SpRadIE: A challenge on information extraction from
Spanish Radiology Reports.” [17]. Las métricas son calculadas siguiendo exactamente el
mismo procedimiento que se uso en la competencia (ver seccién 4.5) de forma tal que
pueda realizarse efectivamente la comparacién. Este es el motivo por el que los resultados
presentados en esta sub-seccién no incluyen un intervalo de confianza estimado, ya que
aqui se considera unicamente la métrica computada sobre la totalidad de la particién de
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Test.

Para esto, ademads es necesario incluir predicciones para las entidades de tipo Abbre-
viation que hasta ahora excluimos de los resultados presentados pero que son parte de
los resultados obtenidos por los participantes de la competencia. En la primera parte de
esta seccién explicamos cémo se realizan las predicciones para esta entidad especifica.
Luego, presentamos los resultados finales combinando los resultados obtenidos para las 10
entidades etiquetadas en el corpus.

5.3.1. Etiqueta Abbreviation

En la tabla 5.3 presentamos los resultados obtenidos a través del algoritmo desarro-
llado para detectar abreviaturas. Este algoritmo fue introducido en la seccién 4.5.3. Una
observacién interesante es que por el funcionamiento del mismo, que identifica patrones
exactos en el texto, las métricas dan practicamente el mismo resultado para match parcial
y para match exacto . Por ese motivo, informamos tnicamente el valor obtenido aplicando
match exacto.

Métrica | Valor
Precision | 97.6
Recall 88.1
F1 92.6

Tab. 5.3: Métricas de Precision, Recall y F1-Score (todas micro-averaged) con match exacto obte-
nidas para la identificacién de entidades de tipo Abbreviation, usando el algoritmo basado
en Regex.

Estos resultados son mejores que el promedio obtenido para el resto de las entidades,
sacando una diferencia favorable en el orden de 10 puntos porcentuales (si comparamos
métrica a métrica con los resultados vistos en la tabla 5.1, para cualquiera de los mo-
delos que se tome como referencia). A continuacién, en la seccién 5.3.2, se reportan los
resultados sobre el conjunto de Test combinando tanto este método (aplicado tinicamente
para detectar Abbreviation) como los basados en modelos de lenguaje (que se aplican para
detectar el resto de las entidades descriptas en 4.1.2). De este modo, se logra un resultado
comparable con los reportados en la competencia de SpRadIE [17].

5.3.2. Comparacion con la competencia

Ahora presentamos los resultados obtenidos al realizar la evaluacién de los modelos de
reconocimiento de entidades nombradas, sobre el conjunto de Test entero y combinandolos
con los resultados presentados en la seccién 5.3.1 para las abreviaciones. En las tablas 5.4
y 5.5 se vuelcan los resultados obtenidos para match parcial y exacto respectivamente.
Ademis se incluyen los resultados de los modelos que, hasta el momento de la publicacién
de este trabajo, eran los mejores publicados para la tarea de SpRadIE. Recordemos que el
criterio que se escogié para seleccionar al mejor modelo en la competencia fue aquel que
alcanzara mayor F1-Score (micro-averaged) con match parcial sobre todas las entidades
descriptas en la seccién 4.1.2.
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Model Precision | Recall | F1 Score
FT BETO CLINICAL WL Reges 91.2 83.1 86.9
FT BETO CASED_ rege 91.2 82.5 86.6
FT ROBERTA BIO CLINICAL, reges 91.1 82.6 86.6
FT BETO UNCASED/ regex 90.5 82.5 86.3
FT ROBERTA CLINICAL WL reges 90.6 82.4 86.3
ROBERTA CLINICAL WL reger 90.6 82.2 86.2
BETO CASED, gegex 90.1 82.3 86.0
FT ROBERTA BNE+Regex 90.7 81.7 86.0
ROBERTA BIO CLINICAL reges 89.9 82.0 85.8
BETO UNCASED reger 89.7 82.1 85.8
BETO CLINICAL WL reges 89.2 82.5 85.7
EdIE (UK) — run2 87.2 83.9 85.5
ROBERTA BNE_ regex 89.0 81.0 84.8
LSI (Spain) — runl 90.3 78.3 83.9
FT FASTTEXT2004 regex 89.1 79.3 83.9
FT CLINICAL FLAIR{ reges 88.9 79.1 83.7
FT FASTTEXTlOO—i-Regex 89.0 78.2 83.2
BASE CLINICAL FLAIR4 regex 87.2 78.1 82.4

Tab. 5.4: Métricas de Precision, Recall y F1-Score (todas micro-averaged) con match parcial, cal-
culadas bajo el mismo procedimiento que se utilizé en la competencia de SpRadIE. En
esta tabla se combinan los resultados obtenidos para Abbreviations (usando Regex) con
los resultados para las restantes 9 entidades (usando Deep Learning). A fines de com-
paracién se incluyen también los dos mejores resultados de la competencia (resaltados
en negrita). Los modelos estdn ordenados por micro-averaged F1-Score de forma des-
cendente y en negrita se resaltan los mejores resultados para cada métrica. La sigla FT
(por fine-tuned) al comienzo del nombre indica que dicho modelo de NER se basa en un
modelo de lenguaje o embedding fine-tuneado por nosotros. Caso contrario, parte de uno
de los modelos base senalados en la seccion 4.3.
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Model Precision | Recall | F1 Score
FT BETO CLINICAL WL Reges 86.9 79.2 82.9
FT BETO CASED_ rege 87.1 78.8 82.7
FT BETO UNCASED_ regex 86.5 78.9 82.5
FT ROBERTA BIO CLINICAL, reges 86.6 78.5 82.3
FT ROBERTA CLINICAL WL reges 86.2 78.4 82.1
BETO CASED/ geger 85.8 78.4 82.0
FT ROBERTA BNE, reges 86.5 77.9 82.0
ROBERTA BIO CLINICAL reges 85.8 78.3 81.9
ROBERTA CLINICAL WL regeq 86.0 78.0 81.8
BETO UNCASED reger 85.4 78.2 81.6
BETO CLINICAL WL reges 84.9 78.5 81.6
ROBERTA BNE_ regexr 84.4 76.8 80.4
EdIE (UK) — run2 81.9 78.7 80.3
LSI (Spain) — runl 86.2 74.8 80.1
FT FASTTEXT2004 regex 83.5 74.3 78.7
FT CLINICAL FLAIR{ reges 82.8 73.7 78.0
FT FASTTEXTlOO—i-Regex 84.0 73.8 78.6
BASE CLINICAL FLAIR4 regex 81.1 72.6 76.6

Tab. 5.5: Métricas de Precision, Recall y F1-Score (todas micro-averaged) con match exacto, cal-
culadas bajo el mismo procedimiento que se utilizé en la competencia de SpRadIE. En
esta tabla se combinan los resultados obtenidos para Abbreviations (usando Regex) con
los resultados para las restantes 9 entidades (usando Deep Learning). A fines de com-
paracién se incluyen también los dos mejores resultados de la competencia (resaltados
en negrita). Los modelos estdn ordenados por micro-averaged F1-Score de forma des-
cendente y en negrita se resaltan los mejores resultados para cada métrica. La sigla FT
(por fine-tuned) al comienzo del nombre indica que dicho modelo de NER se basa en un
modelo de lenguaje o embedding fine-tuneado por nosotros. Caso contrario, parte de uno
de los modelos base senalados en la seccién 4.3.

Observamos que no solo obtuvimos uno sino varios modelos que performaron mejor
que los mejores resultados publicados hasta ahora, tanto para match parcial como exacto.
Es justo mencionar que aun asi los resultados son muy ajustados para match parcial: 1.4
pp separan a nuestro mejor modelo del de EAIE, lo que representa una mejora de un 1.6 %.
La diferencia es un poco mas significativa en el caso de match exacto: el nuevo modelo
saca 2.6 pp de ventaja, representando una mejora del 3.2 %.

Quizas lo mas destacable es que se logré obtener resultados comparables e incluso
mejores con una solucién significativamente menos compleja que la implementada por
EdIE (una descripcién de la misma se encuentra en la seccién 3.2). Ellos realizan algunos
pre-procesamientos al dataset y algunas correcciones de etiquetas, ademas de usar algunos
métodos mas sofisticados para tratar de representar mejor las entidades anidadas. También
hacen uso de un BETO separado por cada tipo de entidad para resolver palabras con
anotaciones de distintos tipos y lidiar mejor con el desbalanceo, ademéas de un método
adicional basado en andlisis de frecuencia de patrones. Probablemente fue gracias a estos
ultimos esfuerzos que consiguieron obtener el mejor Recall para match parcial. Por nuestro
lado ningiin preprocesamiento de los datos fue realizado mas alla de la conversion de
formato, y la resoluciéon de solapamientos y discontinuidades se hizo en forma naive. Se
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entrend un unico modelo para todas las entidades con excepcién de Abbreviation, y para
esta ultima se realizé un método simple, basado en RegEr para encontrar los patrones
mas frecuentes.

En la tabla 5.6 presentamos con mayor detalle las métricas obtenidas por nuestro mejor
modelo, FT BETO CLINICAL WL, para cada tipo de entidad nombrada por separado.
Ademas mostramos el soporte de cada entidad, que es la cantidad total de etiquetas que
existen en el corpus para dicha entidad. Esto nos permite dimensionar mejor el impacto
que tiene el desempeno del modelo por entidad en el resultado conjunto de cada métrica
(que al ser micro-averaged le da més peso a las entidades con mayor soporte, como se
explica en la seccién 4.5). Una apreciacién que podemos hacer es que la diferencia favorable
conseguida en los resultados globales, respecto de los mejores de la competencia, no se
explica por la forma particular en la que tratamos a las Abbreviations. El equipo ganador
de SpRadIE tuvo incluso mejores resultados en esta categoria: nuestro F1-Score fue de 92.8
para Abbreviations mientras que el del equipo EdIE fue de 95.4. Esto es destacable ya que
muestra que el diferencial positivo que conseguimos se genera en el resto de las categorias,
que fue donde centramos nuestros esfuerzos con los modelos de Deep Learning . Ademas
es la segunda categoria con mas peso (observando el soporte) y en la que menos esfuerzo
invertimos, por lo que es razonable pensar que podemos mejorarla (quizds simplemente
agregando mas patrones a nuestro sistema de expresiones regulares) e incrementar aun
més nuestro F1-Score.

Tipo de entidad Parcial Exacto Soporte
Precision Recall F1 | Precision Recall F1

Anatomical Entity 92.9 83.4 87.9 86.9 78.0 82.2 1772
Abbreviation 97.8 88.3 92.8 97.6 88.1 92.6 1652
Measure 93.5 82.2 87.5 90.1 79.3 84.3 1258
Finding 80.4 79.5 80.0 70.7 69.9 70.3 1000
Location 77.4 65.2 70.8 72.2 60.8 66.1 646
Type of measure 96.0 89.1 92.4 91.6 85.0  88.2 558
Negation 94.7 95.9 95.3 93.5 94.7  94.1 453
Degree 85.2 67.5 75.4 83.1 65.9 73.5 82
Uncertainty 86.4 67.5 75.8 84.2 65.8 73.8 73
Conditional Temporal 45.5 62.5 52.6 45.5 62.5 52.6 8

Tab. 5.6: Métricas de Precision, Recall y F1-Score (todas micro-averaged y computadas tanto con
match exacto como parcial) para el modelo FT BETO CLINICAL WL, desagregadas por
tipo de entidad nombrada. Para cada entidad, ademads, se muestra el soporte.

Otra nota interesante, al compararnos con el equipo de EdIE, es que en su trabajo
([61]) ellos mencionan que no lograron predecir ninguno de las ocho fragmentos anotados
como Conditional Temporal, obteniendo un F1-Score de 0 para esta categoria. Mientras
que nosotros logramos reconocer el 62.5 % con una precisiéon del 45.5 % (promediando un
F1 de 52.6 %). Si bien este resultado es anecddtico en el contexto de la competencia (ya que
al ser solo 8 casos no representan ni siquiera el 0.1 % de la métrica) se puede considerar
como un resultado alentador en cuanto a la capacidad de nuestro modelo y un indicio
de que el proceso de transfer learning favorece el aprendizaje de categorias altamente
sub-representadas.
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5.3.3. Analisis manual de los errores

Para entender un poco mejor los resultados de FT BETO CLINICAL WL (nuestro
mejor modelo) y analizar sus oportunidades de mejora, procedimos con un andlisis manual
de algunos de los errores que cometié el modelo al realizar predicciones sobre el conjunto
de Test. Escogemos dicho modelo dado que fue el que mejores resultados presenté para la
métrica de F1-Score (tanto en esta seccién como en el andlisis usando bootstrapping de la
secci6én 5.1). Para este andlisis excluimos la entidad Abbreviation, ya que inicamente nos
interesa buscar oportunidades para mejorar el modelo de lenguaje o el modelo de NER.

Primero repasamos algunos detalles de notacién. Usamos el término “prediccién” para
referirnos a las etiquetas sugeridas por el modelo y “anotacién” para referirnos a las
etiquetas provistas en SpRadlE. Recordemos que cuando hablamos de error aqui nos
referimos a los casos donde el indice de Jaccard (explicado en 4.5) entre la prediccién y
la anotacién es estrictamente menor a 1 (es decir que no son exactamente iguales). En
particular, hablaremos de “error parcial” si el indice es distinto de 0 y de “error completo”
si el indice es exactamente 0. Ahora si, pasamos a repasar los principales hallazgos.

En la tabla 5.7 se muestran la cantidad y tipo de errores cometidos por el modelo
FT BETO CLINICAL WL para cada uno de los tipos de entidad nombrada. Podemos
observar que las dos entidades con mayor cantidad de errores son Location (30) y Degree
(23). En cambio Anatomical Entity es la entidad que menos errores tiene (solo un error
parcial). Analizamos un poco més a fondo los casos de Location y Degree para entender
a que se deben estos errores.

Entidad Error Parcial | Error Completo | Total
Location 8 22 30
Degree 2 21 23
Uncertainty 3 10 13
Type of Measure 3 10 13
Measure 7 ) 12
Finding 6 5 11
Negation 1 5 6
Conditional Temporal 0 5 5
Anatomical Entity 1 0 1
Total 31 83 114

Tab. 5.7: Cantidad y tipo de errores por entidad para el modelo FT BETO CLINICAL WL eva-
luado sobre la particiéon de Test de SpRadIE. Llamamos “error parcial” a aquellos errores
donde el indice de Jaccard entre la prediccién y la anotacién es estrictamente mayor a
0 y estrictamente menor a 1. Los “errores completos” son aquellos donde el indice de
Jaccard es exactamente 0. La columna “Total” refleja la suma de los errores parciales y
completos para cada tipo de entidad. Las entidades estdn ordenadas por esta columna,
de mayor a menor. Por iltimo, la fila “Total” resume la cantidad de errores segin su tipo
(parciales y completos) y en total (para todos los tipos y entidades).

En el caso de Location (LOC) analizamos 18 de los 30 errores totales. En la muestra,
observamos que el tipo de error predominante son los Falsos Negativos (16 de los 18),
es decir ya sea total o parcialmente hay cosas que el modelo no estd prediciendo como
Location cuando deberia. Vemos en varios casos (al menos 5) que el problema se debe a
una limitacion intrinseca de nuestro modelado: el modelo solo permite asignar una etiqueta
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a cada palabra por lo que en los casos donde dos entidades distintas se solapan sobre una
palabra, solo una de las dos puede ser asignada. Veamos los siguiente ejemplos:

Ejemplo 5.3.1. Nodulo isoecoco conocido en lobulo izquierdo hepatico de 41x338x30
mm

Ejemplo 5.3.2. Pequenas adenopatias cervicolaterales dispuestas en cadena de ecoes-
tructura conservada.

En el caso del ejemplo 5.3.1 “hepatico” (resaltado en amarillo) fue anotado manual-
mente como Location aunque también forma parte de una Anatomical Entity (resaltada
en rojo). Por otro lado en 5.3.2 “cervicolaterales” (en amarillo) fue marcado también como
Location en la anotacién, pero a su vez pertenece a un Finding (en rojo). En ambos casos
el modelo falla en reconocer las Location pero identifica con éxito la Anatomical Entity
y el Finding respectivamente. En este sentido podemos decir que el modelo estd haciendo
“lo mejor que puede”, dado que si identificara adecuadamente la LOC entonces reduciria
su desempeno en las otras entidades. Notar que el motivo por el que en estos casos se
priorizan otras entidades por sobre las Location viene de la forma en que se resolvieron
las entidades solapadas durante el preprocesamiento de la particion de Train: recordemos
que si una entidad estd anidada dentro de otra mas grande entonces solo conservamos la
entidad mds grande al convertir de Brat a BIO (ver seccién 4.2.2), perdiendo la més corta.
Por lo tanto es consistente que en estos casos Location, al ser la la entidad més corta, sea
la que se falle en reconocer.

Para los casos de arriba es facil identificar el impacto de la estrategia naive que segui-
mos para resolver los anidamientos. Sin embargo tenemos la hipdtesis de que esto también
afecta de una forma indirecta a otros Falsos Negativos de Location. Veamos nuevamente
un ejemplo para ilustrar esto:

Ejemplo 5.3.3. Quiste ovarico derecho

En el ejemplo 5.3.3 la anotacion indica que “Quiste ovarico derecho” es un Finding
(FI) y que “ovarico derecho” es una LOC. Sin embargo el modelo falla en predecir ambas
cosas: predice en forma parcialmente correcta “quiste ovarico” como FI, pero “derecho” se
anota como Anatomical Entity (AE). Claramente esta dltima anotacién no tiene sentido
y sin embargo vemos que este comportamiento se repite en otros casos también: “dere-
cho”, “izq”, “ambas”, “inferiores” son palabras que vemos que el modelo anota en forma
individual como AE o FI segun el caso. Aqui la hipdtesis: si bien estas palabras anotadas
como AE o FI por si solas no tienen sentido, ciertamente son palabras que suelen ser parte
de AE o FI, y por como funciona el mecanismo que se explicé anteriormente para resolver
anidamientos, resulta entendible que el modelo asocie estas palabras con AE o FI antes que
con LOC. El modelo nunca pudo aprender a reconocer estos tokens como LOC durante su
entrenamiento ya que, en casos similares, se descartaron las anotaciones de LOC en favor
de entidades generalmente més grandes como AE o FI.

Para estos casos donde el problema nace de la existencia de entidades solapadas posi-
blemente la mejor estrategia sea hacer una segmentacién de modelos por tipo de entidad
similar a la que hizo el equipo de EdIE. De esta forma se pueden identificar independien-
temente los distintos tipos de entidades y evitamos estos efectos cruzados que se generan.

El caso de Degree (DE) es practicamente igual al de LOC en cuanto a los anidamientos
se refiere, y posiblemente se ve agravado porque esta entidad representa solo el 1 % de todas
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las anotaciones del corpus (ver figura 4.1) por lo que es aiin més complejo para el modelo
poder aprender sobre esta categoria. Sorprendentemente, a pesar de estos factores el F1-
Score es mejor para Degree (75.4) que para LOC (70.8) si vemos la tabla 5.6. A priori una
teoria de por qué puede pasar esto viene dada por la composiciéon de la categoria: dentro
de DE pueden distinguirse principalmente adjetivos (por ejemplo, “minimo”) y adverbios
(por ejemplo, “minimamente”). Al analizar los errores vemos que en casi todos los casos
se trata de adjetivos, lo cual tiene sentido ya que es extrano que un adverbio sea parte de
una Anatomical Entity o de un Finding, a diferencia de los adjetivos. De hecho, los dos
casos de errores que involucran adverbios se tratan de Falsos Positivos, como consecuencia
de anotaciones manuales incompletas. Veamos un ejemplo de solapamiento y otro de falso
positivo:

Ejemplo 5.3.4. Ambos rinones hidronefroticos, con espesor parenquimatoso minimo .

Ejemplo 5.3.5. BAZO: minimamente aumentado de tamano.

En el ejemplo 5.3.4 la palabra “minimo” (resaltada en amarillo) es anotada como DE,
mientras que lo resaltado en rojo es un FI. De esta forma, el solapamiento dificulta la
potencial prediccién de la entidad Degree. En cambio, en el caso de 5.3.5 lo que sucede es
distinto: la prediccién indica que “minimamente” es un DE (lo cual tiene sentido) pero no
fue incluida en las anotaciones manuales. En este caso se trata de un error de anotacién,
hablaremos un poco de los mismos a continuacién.

Algo que vimos en varias oportunidades tanto en este andlisis sobre el conjunto de
Test de SpRadlIE como en algunos anteriores sobre las otras particiones, es que hay varios
errores en la anotacién. En algunos casos los errores son evidentes y en otros hay cierta
ambigiiedad que puede requerir una revision adicional de los criterios de anotacién. Los
errores mas frecuentes que hemos visto son por omisién: en algunos casos se omite una
palabra o entidad completa; en otros la anotacién estd bien pero falta o sobra algun
caracter. Para la muestra de errores analizados del conjunto de Test, se hallaron al menos
8 errores de anotaciéon y 7 mas en las particiones de validacion. En ambos casos no se
consideraron las anotaciones de tipo Abbreviation.

Algunos otros tipos de errores fueron vistos con menor frecuencia. Uno de los mas
destacables es el caso de las entidades discontinuas.

Ejemplo 5.3.6. Vasos iliacos, femorales,popliteos y tibiales permeables en ambos miem-
bros inferiores.

El caso de 5.3.6 es un buen ejemplo de lo que sucede frente a una discontinuidad en
las anotaciones. Recordemos que, cuando se hace la conversion a BIO format, este caso
es resuelto con una estrategia que implica hacer una sola gran anotacién que incluya los
fragmentos intermedios, que originalmente no fueron anotados. En este caso, se anotaron
manualmente 4 entidades de tipo Anatomical Entity: “Vasos iliacos”, “Vasos femorales”,
“Vasos popliteos” y “Vasos tibiales”. Sin embargo, el modelo predice una sola anotacién:
“Vasos iliacos, femorales, popliteos y tibiales”. Es un caso imposible de resolver con nuestra
forma de modelado actual y, a diferencia del anidamiento o el desbalanceo, no se resuelve
haciendo una segmentaciéon de modelos.

En general los errores vistos parecen provenir de decisiones de modelado o de errores
en el criterio de anotacion, y no de una falta de entrenamiento del modelo, sobreajuste,
inconvenientes en la convergencia u otros problemas que pueden surgir al entrenar modelos
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de Machine Learning. El principal aspecto que identificamos para mejorar el desempeno
en la tarea es la segmentacion de modelos por tipo de entidad: en lugar de tener un solo
modelo para todas las entidades, tener algunos modelos dedicados a entidades especificas
podria aliviar el problema de los solapamientos. Sigue quedando el caso de las anotaciones
discontinuas como un problema mas dificil de resolver y para el que aiin no tenemos una
propuesta clara.

5.4. Conclusiones del capitulo

En este capitulo hemos analizado los resultados obtenidos en la tarea de reconocimiento
de entidades nombradas en informes de ecografias en espanol (SpRadIE), evaluando dis-
tintos modelos de lenguaje y representaciones de texto. A través del andlisis de métricas
obtenidas mediante bootstrapping, observamos que los modelos basados en Transformers
superaron a los enfoques mas tradicionales, con un margen de mejora de hasta 5.5 puntos
porcentuales en F1-Score. También evidenciamos que el fine-tuning sobre nuestro cor-
pus especifico aporta mejoras, aunque en general la ganancia fue menor a la esperada.
Mediante un estudio de ablacién, confirmamos la relevancia del uso de representaciones
contextuales, destacando que el modelo basado en Clinical Flair mostré una caida minima
en desempeno al ser evaluado con una arquitectura simplificada. En la comparacién con
el estado del arte, nuestros modelos superaron los mejores resultados publicados hasta la
fecha para la tarea de SpRadlE, alcanzando un F1-Score superior en 1.4 puntos porcen-
tuales para match parcial y 2.6 puntos porcentuales para match exacto. Finalmente, el
andlisis manual de errores permitio identificar limitaciones en la anotacién del corpus y en
el modelado del problema, sefialando que una posible via de mejora radica en segmentar
modelos segun el tipo de entidad y en revisar la estrategia de resolucion de anotaciones
solapadas y discontinuas.
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6. RESULTADOS DE EVALUACION INTRINSECA

En este capitulo presentamos algunos de los resultados obtenidos para el andlisis cua-
litativo planteado en 4.6. Debido al alto esfuerzo manual que requiere este tipo de anélisis,
solo profundizamos en detalle para dos de los modelos de lenguaje entrenados: FT BETO
CLINICAL WL (por considerarlo el mejor modelo en términos generales) y FT CLINICAL
FLAIR (por ser el modelo que dio los mejores resultados en el test de ablacién).

En la seccién 4.6 mencionamos varias combinaciones posibles de técnicas de reduccién
de dimensionalidad y clustering. Sin embargo, al probarlas notamos que PCA (para re-
duccién) y K-Means (para clustering) no aportaban significativamente al andlisis. En el
caso de PCA se probaron dos cosas:

= Reducir las dimensiones de las 768 originales a las 50 que mayor varianza describen
(un 94 % aproximadamente) y luego aplicar técnicas de clustering sobre este espacio.
Sin embargo, los resultados son mas dificiles de interpretar que al utilizar solamente
t-SNE, y al no ser factible hacer una visualizacién grafica de las 50 dimensiones,
también es dificil evaluar la calidad de los clusters hallados® y la biisqueda de los
mejores hiperpardmetros excede el objetivo de esta tesis.

» Aplicar PCA antes de aplicar t-SNE (una de las estrategias mencionadas en la seccién
2.9). Con este procedimiento terminamos obteniendo un grafico précticamente igual
al obtenido usando solo t-SNE. Ademds por la cantidad de datos usados, aplicar
directamente t-SNE resulta factible en tiempos de cémputo por lo que no hay una
ganancia aqui por usar PCA antes.

Descartada entonces la utilizacién de PCA y K-Means, en lo que sigue se trabaja sobre
los embeddings con dimensionalidad reducida mediante la técnica de t-SNE y el clustering
se hace utilizando DBSCAN. Recordar que cada uno de los embeddings originales, so-
bre los que se aplica t-SNE, representan un informe completo de la particién de test de
anonymized-ultrasounds-80k.

En las figuras 6.1 y 6.2 pueden observarse los clusters correspondientes a los modelos
FT BETO CLINICAL WL y FT CLINICAL FLAIR respectivamente. Ambos muestran la
representacién de los puntos en un espacio reducido de 2-dimensiones generado mediante
la técnica de t-SNE. Es importante tener en cuenta que estos puntos fueron obtenidos con
la siguiente conﬁguracién2: perplexity=30 e iteraciones del algoritmo=1000. Esto
es importante ya que estudios empiricos han mostrado que la representaciéon generada por
t-SNE puede ser muy sensible a estos hiperparametros®, por lo que cambios en sus valores
pueden conducir a representaciones diferentes. Adicionalmente, el coloreo de los puntos

1'Si bien no lo hemos mencionado hasta ahora dado que no es el foco que queremos darle a este an4lisis,
existen una serie de métricas que intentan evaluar la calidad con la que se segmentan los clusters: el
Coeficiente de Silhouette, el indice Rand, el indice Davies-Bouldin, entre otros. El siguiente articulo hace
una breve descripcién de los métodos mds usados https://medium.com/@surajsutar37/evaluation-metrics-
for-clustering-algorithms-c9baee50e328.

2 Segtin la documentacién de sklearn, cuya implementacién de t-SNE utilizamos aqui, se sugiere uti-
lizar un valor de perplexity entre 5 y 50. Ademads, a mayor cantidad de datos se recomiendan valores
mds grandes y que el valor escogido siempre sea menor al nimero de muestras. Fuente: https://scikit-
learn.org/stable/modules/generated /sklearn. manifold. TSNE.html

3 Ver https://distill.pub/2016 /misread-tsne/
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estd basado en la técnica de clustering de DBSCAN. Aqui nuevamente la eleccién de los
hiperpardametros juega un rol clave sobre la forma y tamano que tendran los clusters.
Es conveniente notar que, sin embargo, nuestro objetivo no es obtener una clusterizacion
que sea util en si misma para alguna tarea, sino que simplemente queremos tener una
orientacién sobre como analizar la similitud de informes cercanos en el espacio, de acuerdo a
la representacién bidimensional arrojada por t-SNE. Esto implica que podemos ser flexibles
en cuanto a la forma de clusterizar siempre y cuando sea 1til para nuestro analisis.

Visualizacion de los clusters usando HDBSCAN
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Fig. 6.1: Visualizacién en 2-dimensiones de los embeddings generados por el modelo FT BETO CLI-
NICAL WL para los informes de la particiéon de Test de anonymized-ultrasounds-80k,
usando el método de t-SNE. Los parametros utilizados de t-SNE para generar esta re-
presentacion fueron: perplexity=30 e iteraciones=1000. El coloreo fue obtenido tras
aplicar el algoritmo de DBSCAN con los hiperpardmetros eps=3.3, min_samples=10,
leaf_size=30. A la derecha de la figura se asignan numeros a cada cluster.
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Fig. 6.2: Visualizacién en 2-dimensiones de los embeddings generados por el modelo FT CLINI-
CAL FLAIR para los informes de la particiéon de Test de anonymized-ultrasounds-80k,
usando el método de t-SNE. Los pardametros utilizados de t-SNE para generar esta re-
presentacion fueron: perplexity=30 e iteraciones=1000. El coloreo fue obtenido tras
aplicar el algoritmo de DBSCAN con los hiperpardmetros eps=3.3, min_samples=10,
leaf _size=30. A la derecha de la figura se asignan nimeros a cada cluster.

A continuacion comentamos algunos fenémenos interesantes que hallamos al profundi-
zar en el andlisis de cada uno de los clusters generados. Antes de eso es importante tener
en cuenta algunas consideraciones: por la naturaleza semi-estructurada de los informes,
muchos tienen sintaxis y vocabularios altamente similares entre si. Esto naturalmente hace
que estén muy cercanos en el espacio vectorial de forma mas o menos independiente del
algoritmo usado. Dicho de otra forma: incluso un muy mal algoritmo de embeddings va a
proyectar dos textos idénticos al mismo vector siempre. Por lo tanto, podemos considerar
como un caso trivial aquellos clusters donde los informes tienen variacién casi nula, y enfo-
carnos mas en aquellos ejemplos que se salen de esta norma. También es bueno notar que,
aunque puede resultar tentador hacer una comparacién directa entre las representaciones
correspondientes a los modelos FT BETO CLINICAL WL y FT CLINICAL FLAIR, no
es lo més recomendable debido a que t-SNE es un algoritmo estocastico y la visualizacién
generada puede variar arbitrariamente segin el conjunto de vectores que se le pasen como
entrada. Igualmente, como observamos luego, puede destacarse que aunque la represen-
tacion espacial varie un poco, el tipo de clusters que se forman en cada caso no es tan
diferente entre si (es decir, las agrupaciones suelen darse alrededor de los mismos tépicos,
o al menos muy similares).

Empecemos analizando particularidades que hallamos en algunos clusters del modelo
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FT BETO CLINICAL WL. Por ejemplo, haciendo una rapida inspeccién manual de los
informes pertenecientes al cluster nimero 5 (segin la numeracién presentada a la derecha
en la figura 6.1) nos encontramos con que los mismos parecen pertenecer a dos subtipos
de ecograffas: ecografias de partes blandas? y Doppler venoso. En la figura 6.3 se resalta
dicho cluster en el espacio vectorial reducido de tSNE y puede notarse que en la practica
en realidad se aprecian dos sub-clusters: uno mas grande en la parte superior y otro més
pequenio en la parte inferior, aunque ambos se encuentran muy préximos entre si. En la
tabla 6.1 listamos apenas algunos ejemplos de informes pertenecientes a dicho cluster. El
cluster tiene casi 1000 informes.

Visualizacion de los embeddings usandot-SNE

Fig. 6.3: Visualizacién en 2-dimensiones de los embeddings generados por el modelo FT BETO CLI-
NICAL WL para los informes de la particién de Test de anonymized-ultrasounds-80k,
usando el método de t-SNE. En rojo se senalan inicamente aquellos puntos que pertene-
cen al cluster 5, segun la clusterizacion presentada en la Figura 6.1.

Adicionalmente a esta muestra aleatoria, también analizamos algunos casos en forma
dirigida a analizar la diferencia entre los dos sub-clusters mencionados anteriormente y ver
si habia una relacién posible con los dos tipos de ecografias identificadas. De esta forma
hallamos que efectivamente el cluster inferior y mas pequeno esta orientado a estudios
del tipo Doppler, mientras que el superior se enfoca méas en los estudios articulares y
subcutaneos (es decir, partes blandas). Sin embargo, ninguno de los dos es completamente
“puro” y esta mezcla particular parece tener sentido al analizar que hay algunos informes
donde se involucran tanto estudios Doppler como de partes blandas, sugiriendo que son
cosas que en muchas ocasiones se realizan juntas. Por ejemplo, pueden verse los siguientes
casos:

Informe 58313: Paciente con IRC, realizacion de fistula 24 hs previas. Se
observa flujo arterial (braquial) y venoso (antecubital) conservado , union de
anastomosis sin imagenes sugerentes de estenosis. Anastomosis con flujo con-
servado, trazado Doppler normal. Alteracion del TCS (aumento de espesor y
ecogenicidad), sin imagenes sugerentes de coleccion.

Informe 93099: Se exploro pantorrilla izquierda. No se observan alteraciones

4 Citado de https://www.dra-martinezmiravete.com/ecografia-partes-blandas/ : “El objetivo de
las ecografias de partes blandas es evaluar tanto la anatomia como la funcionalidad de los diferentes com-
ponente osteoarticulares que nos permite valorar estructuras musculares, tendinosas y tejido subcutaneo.
Esta ecografia nos permite realizar el diagndstico, tratamiento y seguimiento de las lesiones.”



77

En realcion a lo palapable en region subamaxilar derecha se observa imagen heterogenea,
hipecoica, de bordes irregulares, que mide aproximadamente 2 x 1 x 2 cm. La misma
impresiona interrumpir la cortical del hueso maxilar en su rama horizontal. Aumento de
la ecogenicidad del tejido celular subcutaneo. Presencia de adenopatias laterocervicales el
mayor de los cuales mide 2 cm. Glandulas Tlroides, parotidas y submaxilares sin particu-
laridades.

ECOGRAFIA DE PARTES BLANDAS En rodilla izquierda se observa minimo aumento
de espesor de partes blandas ,no se observan colecciones intrarticulares ni extrarticulares,
ni modificaciones en la ecogenicidad de partes blandas, ni alteraciones en el periostio al
mamento del examen.

Parotida derecha aumentada de tamano, de ecoestructura heterogenea con multiples ima-
genes hipoecoicas redondeadas en su interior y ganglios intraparotideos. Mide: 47 x 30 x
23 mm. Parotida derecha de ecoestructura conservada. Mide. 44 x 26 x 19 mm. Tiroides
de ecoestructura conservada. Dg presuntivo: parotiditis recidivante.

Se realiza ecografia a nivel de linea media sobre lesion palpable y visible. Se observa
imagen hipoecoica , ovalada, circunscripta a nivel de TCS de 1.6 x 0.46 x 1.5 cm, sin
vascularizacion. Se encuentra a 5.8 mm de la piel al centro de la lesion. No se observa
compromiso de estructuras profundas. Dicha formacion podria corrsponder a lipoma en
primer termino.

En mama derecha por debajo de areola a nivel del TCS se visualiza imagen heterogenea
a predominio hipoecoico de 1,5 x 1 x 1,8 cm, que podria corresponder a coleccion.

Se observa por debajo de herida quirurgica en fosa iliaca izquierda, en Douglas y fosa
iliaca derecha imagen heterogenea de predominio hipoecoica no vascularizada compatible
con coleccion. Dimensiones aproximadas: 7,6 x 11,2 x 3,9 cm

Se evalu6 flujo de vasos penianos observandose sefial Doppler color arterial conservada
bilateral y simétrica, sin evidancia de imagenes que sugieran fistula o malformacién vas-
cular. Se identificé trayecto lineal ecogénico en cuerpo cavernoso derecho de aprox. 1.3 x
0.3 x 0.2cm

Leve engrosamiento difuso de partes blandas en el musio izquierdo sin evidencia de colec-
ciones. Se observo permeabilidad con sefial doppler color conservada para arteria y vena
en trayecto femoral comun y superficial izquierdo. Psoas y cadera izquierda libres.

ECOGRAFIA DE PARTES BLANDAS En dorso de pie derecho, entre el plano muscular
y los huesos del tetarso se observa pequefia coleccion de 1.1 ¢cm x 1.4 cm x 0.3 cm. Se
observa liquido en la vaina del extensor comun de los dedos y aumento de espesor y de
ecogenicidad de partes blandas de dorso de pie.

Ambas mamas presentan ecoestructura heterogenea difusa, sin evidencia de imagenes no-
dulares solidas ni quisticas. Areas axilares libres.

En cavidad abdominal se observa importante ascitis no tabicada. Se realiza marcacion en
piel a nivel de Fosa iliaca derecha con distancia de 6.5 cm desde piel hasata punto medio
de mayor volumen de liquido.

Se exploraron arteria carotida, vena yugular y art y vena subclavia bilateral. Se observa
disminucion de flujo en vena yugular derecha con onda demenor amplitud. Adecuada sefial
Doppler color y espectral en el resto sde los vasos.

Tab. 6.1: Muestra aleatoria de 12 informes pertenecientes al cluster nimero 5 (segtn la clusteriza-
cién presentada en la Figura 6.1).
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en el TCS ni plano muscular. Senal Doppler color y espectral conservada para
arteria y vena poplitea y tibial posterior izquierda.

Si bien en ambos casos los informes estan més centrados en el estudio de los
vasos sanguineos (“Doppler”, “flujo arterial y venoso”, “anastomosis”) tam-
bién hacen alusiones al tejido subcutdneo (“TCS”). Es interesante ver como
los embeddings logran capturar la relacién entre estos dos tipos de estudios,
especialmente en un subconjunto de los informes donde el estilo de escritura
es particularmente heterogéneo.

Vemos ahora un caso del modelo FT CLINICAL FLAIR pero en lugar de
analizar un tnico cluster tomamos un conjunto de 6 clusters que se encuen-
tran cercanos en el espacio. Para simplificar la visualizacién, en la imagen 6.4
dejamos coloreados unicamente los puntos correspondientes a los clusters que
vamos a analizar en detalle y el resto quedan en gris. Ademads en este caso agre-
gamos, junto al nimero del cluster, una breve referencia al tipo de contenido
principal de cada uno (ginecoldgicos, 16bulos tiroideos y testiculos). Simplifi-
cando un poco, lo que queda en gris puede dividirse en tres grandes segmentos:
sistema urinario (vejiga, rifiones, uréteres), sistema digestivo (péncreas, higa-
do, vesicula, etc) y partes blandas (como ya se menciono anteriormente). Estos
segmentos también pueden asociarse a distintos clusters aunque la division es
un poco mas dificil de visualizar debido a la cantidad de puntos y su cercania
en el espacio (probablemente, porque son comunes los informes que integran
dos o0 mas segmentos). Més adelante hablamos un poco de los clusters de siste-
ma urinario, pero no profundizamos en el analisis del resto. Es algo que podria
analizarse para futuros trabajos.
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Fig. 6.4: Visualizacién en 2-dimensiones de los embeddings generados por el modelo FT CLINI-
CAL FLAIR para los informes de la particién de Test de anonymized-ultrasounds-80k,
usando el método de t-SNE. Se colorean, con diferentes colores, los clusters 2, 5, 6, 7,
20 y 21 (siguiendo la numeracién presentada en la Figura 6.2). El resto de los puntos
aparecen pintados de gris. Adicionalmente, el cuadro de referencias (en la parte superior
izquierda) complementa cada nimero de cluster con un rétulo que resume el contenido
de los informes de dicho cluster.

La eleccion de estos camulos se debe a que se encuentran en una misma region
del espacio pero a su vez estan marcadamente separados entre si, lo que nos
lleva a hipotetizar que deberia haber factores similares entre ellos pero a su
vez claras diferencias. En efecto, si por ejemplo empezamos observando los
clusters 2, 5 y 20 hallamos que los tres se centran en el estudio de entidades
ginecoldgicas: principalmente ttero y ovarios. Sin embargo, la forma en que los
informes estdn escritos es notoriamente diferente entre ellos. En la tabla 6.2
se muestran algunos ejemplos, a modo ilustrativo, de cada uno de estos tres
clusters.
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Cluster

Informe de ejemplo

2

Ambos ovarios y utero de caracteristicas ecograficas normales. Dimensiones:
Ovario derecho: 3.4(cm) x 3.8(cm) x 1.8(cm) Volumen: 12(cc) Ovario izquier-
do: 5,4(cm) x 3.4(cm) x 2(cm) Volumen: 17(cc) Utero: diametro longitudinal
8.3(cm), anteroposterior 2.2(cm), transversal 2.7(cm) Endometrio 0.5 cm.

Quiste ovarico derecho de 2.8(cm) de diametro. Resto del parenquima sin alte-
raciones. Ovario izquierdo de caracteristicas normales. Utero en RVF, homo-
geneo. Endometrio homogeneo, mide 0.7 cm. Ovario derecho: 5(cm) x 2.7(cm)
x 3.5(cm) Volumen: 24(cc) Ovario izquierdo: 3.5(cm) x 2.3(cm) x 1.5(cm) Vo-
lumen: 6.3(cc) Utero: diametro longitudinal 7.4(cm), anteroposterior 3.6(cm),
transversal 4.5(cm) Douglas libre.

UTERO: En AVF, de forma,tamano y estructura conservada. Endometrio des-
doblado con pequena coleccion liquida laminar. (espesor endometrial 6.3 mm)
diametro longitudinal 10(cm), transversal 5.5(cm), anteroposterior 3(cm),
OVARIO DERECHO: de forma,tamano y estructura conservada 3(cm) x
2.6(cm) x 2.2(cm) Volumen: 9.4(cc) OVARIO IZQUIERDO: de forma,tamano
y estructura conservada 3.7(cm) x 2.6(cm) x 2.3(cm) Volumen: 12(cc)

Paciente con antecedentes de ooforectomia izquierda. UTERO: En AVF, de
forma, tamano y estructura conservada. Endometrio: 4 mm. diametro longitu-
dinal 7(cm), transversal 3(cm) anteroposterior 1.8(cm) OVARIO DERECHO:
de forma, tamafio y estructura conservada 4.6(cm) x 2.3(cm) x 2.3(cm) Volu-
men: 13.3(cc)

20

Paciente con antecedente de reseccion de ovario derecho. Presenta utero tu-
bular de caracteristicas infantiles. Ovario unico izquierdo de tamano, forma
y ecoestructura conservada, con multiples imagenes foliculares . La mayor de
0.60 cm. Tamano: 2.4 cm x 0.88 cm x 1.1 ecm. Vol.: 1.2 cc. No se observa liquido
libre.

20

Se visualiza utero de 1.5cm x 1 cm de caracteristicas infantiles. No puedo
visualizar ovarios. Rinon derecho muy pequeno de 2.8cm Rinon izquierdo de
caracteristicas normales sin dilataciones.Longitudinal 8.8cm.

Tab. 6.2: Ejemplos de informes tomados de los clusters 2, 5 y 20 (basdndonos en la numeracién

que aparece en la figura 6.2). La primer columna muestra el niimero del cluster, mientras

que la segunda incluye un ejemplo tomado de dicho cluster.

Algo llamativo del cluster 20 es que, a diferencia de los otros dos, pueden
encontrarse referencias a otras entidades anatomicas no relacionadas a la gi-
necologia (por ejemplo vejiga, rinones o higado) aunque siempre hay al menos
una mencién al utero. Esto es coherente con la posicion espacial que tiene el
cluster: es el mas “central” de todos, estando cerca de clusters enfocados en
entidades anatomicas de los sistemas urinario y digestivo.

Por otra parte, los clusters 7 y 21 se caracterizan por ser informes sobre eco-
grafias de los l6bulos tiroideos. Si bien ambos clusters suelen mantener es-
tructuras muy similares, hay una caracteristica bastante interesante que los
diferencia: los informes del cluster 7 tratan de “l6bulos tiroideos (e istmo) con
estructura homogénea (o finamente heterogénea)”, mientras que los del cluster
21 presentan “l6bulos tiroideos con eco-estructura heterogénea difusa, no no-



81

dular”. Es interesante como esta diferencia (generalmente presente al comienzo
de los informes) logra diferenciar marcadamente a los informes, aun cuando el
resto de su estructura puede ser muy similar. Esto probablemente se deba a
la capacidad de los modelos de lenguaje de dar mayor peso a ciertas partes
del texto, de acuerdo al contexto especifico. Por ultimo, el cluster 6 esta en-
focado en ecografias testiculares de pacientes varones. Es destacable como en
este cluster el estilo de escritura es bastante heterogéneo asi como el uso de
abreviaciones, por ejemplo: “testiculo izquierdo” puede encontrarse también
como “testiculo izq.”, “TT”, “TIz”, entre otras. Esto resalta la capacidad del
modelo de lenguaje de poder capturar similaridad semantica mas alla de la
similaridad sintactica.

Volviendo al motivo original por el que escogimos estos seis clusters, nos pre-
guntamos entonces si hay un motivo particular para su cercania relativa. Cree-
mos que hay dos motivos principales. Uno es la estructura de los informes
que comparte ciertos razgos en comun, al menos en los casos mas estructu-
rados: “Ambos ... presentan ... Dimensiones: Entidad izquierda: ... Entidad
derecha: ... Otras entidades: ...”. Este ejemplo de estructura muestra el otro
motivo que, consideramos, es compartido y puede influenciar la distribucién:
en todas estas entidades prevalece el uso de la palabra “ambos” debido a la
naturaleza simétrica de los érganos involucrados: ovarios, testiculos y 16bulos
(tiroideos en este caso). De hecho esta prevalencia de la palabra “ambos” po-
demos verla en todo el semieje positivo del Componente 1 de la figura 6.2.
Los clusters 1, 22, 24 y 29 (que se encuentran ahi y pueden visualizarse con
mayor claridad en la figura 6.5) se centran en sistema urinario, con una fuerte
presencia de menciones a los rinones y (en mucho menor medida) los uréteres,
que suelen presentarse también con la palabra “ambos” (“ambos rinones” o
“ambos uréteres”). En oposicién, en el semieje negativo del Componente 1 se
encuentran clusters centrados en entidades anatémicas como higado, pancreas,
via biliar, bazo, arterias, venas y otras que no comparten esta propiedad de
duplicidad /simetria. Aun si aparecen algunas menciones a “ambos rifiones”,
distan de ser el topico central de los informes, a diferencia de los casos antes
mencionados.
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Fig. 6.5: Visualizacién en 2-dimensiones de los embeddings generados por el modelo FT CLINI-
CAL FLAIR para los informes de la particién de Test de anonymized-ultrasounds-80k,
usando el método de t-SNE. Se colorean, con diferentes colores, los clusters 1, 22, 24 y 29
(siguiendo la numeracién presentada en la Figura 6.2). Estos clusters se centran princi-
palmente en el sistema urinario. El resto de los puntos aparecen pintados de gris.

6.1. Conclusiones del capitulo

En este capitulo realizamos un andlisis cualitativo de los embeddings genera-
dos por los modelos FT BETO CLINICAL WL y FT CLINICAL FLAIR para
evaluar su capacidad de estructuraciéon seméntica sobre informes ecograficos.
Tras probar diversas combinaciones de técnicas de reduccion de dimensiona-
lidad, optamos por la combinacién de t-SNE para reduccién y DBSCAN pa-
ra clustering. A partir de la representacién en dos dimensiones, identificamos
patrones de agrupacién que reflejan la similitud seméantica de los informes,
destacando la formaciéon de clusters coherentes en torno a tipos de estudios
especificos, como ecografias ginecoldgicas, de partes blandas, testiculares y del
sistema urinario. El analisis manual revel6 que la segmentacion se ve influen-
ciada tanto por el contenido anatémico de los estudios como por caracteristicas
estilisticas y de redaccién, evidenciando la capacidad de los modelos de lengua-
je para capturar estas relaciones. Ademas, observamos que la proximidad entre
ciertos clusters sugiere que los modelos reconocen relaciones semdanticas entre
estudios complementarios, como la coexistencia de evaluaciones Doppler con
estudios musculoesqueléticos. Finalmente, la estabilidad de las agrupaciones
entre ambos modelos indica que, si bien las visualizaciones pueden variar por
la naturaleza estocastica de t-SNE, las estructuras semanticas subyacentes se
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preservan, lo que refuerza la validez de los embeddings como representaciones
lutiles para la organizacion de informacién en informes médicos.
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7. CONCLUSIONES Y TRABAJO FUTURO

En este trabajo nos propusimos estudiar el impacto de contar con embeddings
especificamente entrenados para andlisis de texto médico, particularmente en
un sub-dominio poco explorado hasta ahora: informes de ecografias escritos
en espanol. Se analizaron distintos tipos de embeddings, tanto estaticos (Fast-
Text) como contextuales (BILSTM y Transformers). Para su entrenamiento fue
necesario realizar algunos procesamientos sobre nuestro corpus, siendo el mas
complejo de todos la anonimizacién. Para la evaluacion extrinseca, usamos la
tarea de reconocimiento de entidades nombradas de la competencia SpRadlE.
Mientras que para la evaluacién intrinseca, planteamos un andlisis cualitativo
usando reduccion de dimensionalidad y clustering.

Los resultados expuestos en el capitulo 5 muestran que, al menos para la tarea
de reconocimiento de entidades nombradas sobre el corpus de SpRadlE, efec-
tivamente se logré tener un impacto positivo en los resultados, superando a los
mejores resultados publicados hasta ahora. Ademas se observé que la utiliza-
cion de domain adaptation permitié alcanzar mejores resultados, comparando
con las variantes que no lo usaban. Esto ltimo resulta un incentivo importante
para seguir buscando generar representaciones mas especificas de los distintos
dominios clinicos.

Se vio que los embeddings contextuales (basados en modelos de lenguaje) supe-
raron en todos los casos a nuestros embeddings estaticos, que implementamos
usando FastText.

Observamos que los métodos basados en Transformers superaron con un mar-
gen pequeno pero significativo a aquellos basados en BiLSTMs (Flair) en la
tarea de NER. Sin embargo, como se vio en el estudio de ablacién, si simplifica-
mos la capa de clasificacién y partimos de los embeddings generados por cada
método, esta relacién se revierte. Esto sugiere que en términos de capacidad
para capturar relaciones semanticas, el embedding generado por Flair puede
resultar més eficiente. Al hacer el andlisis cualitativo de las representaciones
notamos que ambas comparten caracteristicas similares, no pudiendo sacar con-
clusiones significativas sobre las diferencias. Si pudimos observar propiedades
deseables en cuanto a la proximidad de las representaciones y su relatedness.

Como un resultado de este trabajo, se obtuvieron varios modelos de lenguaje
basados en BERT y Flair finetuneados para informes de ecografias escritos en
espanol. Se podra evaluar a futuro su publicacién, con la debida aprobacion de
los duenos de los datos utilizados, para que la comunidad pueda probarlos en
otras tareas. Ademads, como se comentd, fue ejecutado un proceso exhaustivo de
anonimizacién sobre los informes involucrados. Nuevamente, con aprobacién de
las instituciones correspondientes, dicho corpus anonimizado también podria
ser publicado, siendo un recurso de gran valor dada la escasez de corpora de
dominio clinico que se ha mencionado al comienzo de este trabajo.
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7. Conclusiones y trabajo futuro

7.1. Trabajo futuro

En linea con tratar de mejorar atin mas los resultados obtenidos para la tarea
de SpRadlE, se senala en el capitulo 5 que seria provechoso aplicar un marco de
trabajo mas adecuado para tratar las entidades disjuntas y anidadas. Para estas
dltimas, un enfoque basado en segmentar modelos para reconocer entidades
especificas (por ejemplo, un modelo que solo identifique Location, otro que
solo identifique Degree, etc) deberia conducir a una mejora de desemperio. Una
prueba que quedd por fuera de esta tesis es la de probar los més recientes Large
Language Models, que tienen la particularidad de destacarse en escenario de
zero-shot y few-shot learning, por lo que podrian aportar un valor interesante
en este escenario en el que contamos con un nimero relativamente pequeno
de datos. También, al tratarse de modelos generativos, podrian ser una forma
interesante de lidiar con los casos de entidades disjuntas, dado que no estan
limitados en el formato de su respuesta, a diferencia de los modelos de lenguaje
expuestos en esta tesis.

Un aspecto completamente diferente que aparecié al hacer los andlisis, es que se
identificaron oportunidades (algunas concretas y otras que requieren revisarse
junto con un médico) para hacer mejoras en el corpususado en la tarea de
SpRadIE.

En este trabajo se prob6 con un challenge especifico de BioNLP (SpRadlIE)
pero seria interesante a futuro poder evaluar la utilidad de los embeddings y
modelos de lenguaje aqui presentados en otros conjuntos de datos, incluso sa-
liendo de la tarea de NER (por ejemplo, para deteccién de relaciones entre
entidades nombradas). Por otro lado, para el entrenamiento de los modelos de
embeddings nos limitamos a utilizar informes de ecografias ya que eran afines
al conjunto de informes de SpRadlE e incluian algunos preprocesamientos ya
realizados en trabajos pasados. Sin embargo, contamos con otros tipos de infor-
mes provistos por la misma institucién que incluyen resonancias magnéticas y
tomografias computarizadas. Sin dudas es de interés incluirlos como parte del
corpusde entrenamiento de los modelos (posterior a realizar un proceso de re-
visién y anonimizacién) con la hipdtesis de obtener embeddings 1tiles para mas
sub-dominios relacionados. También nos permitiria validar si “diversificar” los
sub-dominios sobre los que se entrenan los embeddings tiene un impacto (po-
sitivo o negativo) sobre las tareas especificas.

Por 1ltimo, si bien en este trabajo propusimos un analisis cualitativo como for-
ma de intentar tener una nocién de la calidad de los embeddings sin necesidad
de depender de una tarea externa, este andlisis no es facil de escalar (debido
a que es un proceso mayoritariamente manual y subjetivo) ni permite reali-
zar comparaciones concluyentes entre modelos. Por lo tanto, vemos un area
de oportunidad en construir un conjunto de benchmark que incluya casos de
palabras similares o relacionadas (del mismo modo que lo hacen UMNSRS-sim
y UMNSRS-rel) para el sub-dominio de informes de ecografias en espanol.
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7. APENDICE

7.2. Lista de palabras usadas para el reconocimiento de abre-
viaturas con RegEx

= Diam
= RD
s RI

= long
= Long
= cC

= FID
= EP
= VN
= RX
= AP
= OV
= ECO
= VSH
= izq

= Izq
= der
= Der
= vol

= aprox
= Tiz

n rder

7.3. Tokenizacién para FastText basada en regex
import re
DELIMITERS = "([,.:;\s\(\)1)"

def regex_tokenize_report(report):
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tokenized_report
tokenized_report

return tokenized_

= re.split(DELIMITERS, report)

= [token for token in tokenized_report
if token and not token.isspace()]

report
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