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TRANSFER LEARNING EFICIENTE CON MODELOS
PRE-ENTRENADOS DE HABLA PARA IDENTIFICACION DE
HABLANTES

En los dltimos afnos, el avance acelerado del aprendizaje automatico ha transformado
el procesamiento de datos, ofreciendo modelos pre-entrenados capaces de capturar repre-
sentaciones semanticas complejas. Sin embargo, esta evoluciéon ha venido acompanada de
un creciente costo computacional, centralizaciéon de recursos en pocas instituciones y un
enfoque orientado a maximizar los resultados, dejando en segundo plano la comprensién
de las razones detras de muchas decisiones de diseno de la arquitectura y el entrenamiento
de modelos.

En esta tesis, exploramos técnicas eficientes de transfer learning aplicadas a modelos
pre-entrenados de habla para la tarea de identificaciéon de hablantes (Speaker Identifi-
cation, SID). En este marco, nuestro objetivo principal fue comprender en profundidad
el impacto de configuraciones clave en el disefio y entrenamiento de modelos. Primero,
experimentamos con multiples arquitecturas e hiperparametros con el fin de encontrar el
mejor modelo downstream utilizando WavLM Base+ como modelo upstream. En este pro-
ceso, analizamos factores como la tasa de aprendizaje, diferentes mecanismos de pooling y
normalizacién. Entre nuestros hallazgos mas significativos, demostramos que la incorpora-
cién de mecanismos de atencién en el pooling temporal y de capas puede ofrecer ventajas
significativas, alcanzando resultados estado del arte con una cantidad de pardmetros am-
pliamente inferior. A su vez, investigamos técnicas de full fine-tuning y de fine-tuning
eficientes en parametros (Parameter Efficient Fine-Tuning, PEFT), en particular, LoRA
y las ventajas que puede traer su uso.

Palabras claves: Identificacién de Hablantes, Modelos Pre-entrenados de Habla, Proce-
samiento del Habla, Fine-Tuning, Transfer Learning, Transformers.






EFFICIENT TRANSFER LEARNING FOR PRE-TRAINED SPEECH
MODELS IN SPEAKER IDENTIFICATION

In recent years, the rapid advancement of machine learning has transformed data pro-
cessing, enabling pre-trained models to capture complex semantic representations. Howe-
ver, this progress has been accompanied by increasing computational costs, a centralization
of resources within a few institutions, and a predominant focus on maximizing results, of-
ten at the expense of understanding the rationale behind many architectural and training
design decisions.

In this thesis, we explore efficient transfer learning techniques applied to pre-trained
speech models for Speaker Identification (SID). Within this framework, our primary ob-
jective was to gain a deeper understanding of the impact of key configurations in model
design and training. We conducted extensive experimentation with multiple architectures
and hyperparameters to identify the optimal downstream model, using WavLM Base+ as
the upstream model. In this process, we analyzed factors such as learning rate, different
pooling mechanisms, and normalization techniques. Among our most significant findings,
we demonstrated that the incorporation of attention mechanisms in temporal and layer-
wise pooling can provide substantial benefits, achieving state-of-the-art results with a
significantly smaller number of parameters. Furthermore, we investigated full fine-tuning
techniques and Parameter-Efficient Fine-Tuning (PEFT) approaches, specifically LoRA,
and explored the benefits it can offer.

Keywords: Speaker Identification, Pre-trained Speech Models, Speech Processing, Fine-
Tuning, Transfer Learning, Transformers.
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1. INTRODUCCION

En los ultimos anos la comunidad cientifica ha experimentado una gran cantidad de
avances en el campo del aprendizaje automédtico, que con una enorme vertiginosidad en-
tregan cada vez mejores resultados en las aplicaciones maés diversas. En campos donde
se utilizaban técnicas variadas y especificas a sus problemas, se comienza a observar una
convergencia en el uso de herramientas de aprendizaje automéatico como redes neuronales,
fine-tuning, embeddings, atencion. Tanto los modelos como los datos con los que son en-
trenados han crecido exponencialmente, logrando una revolucién en la representaciéon de
distintos datos como textos, audios e imagenes, llegando incluso a encontrar cierto sentido
semdntico en estas representaciones.

Sin embargo, si bien actualmente es mucho més sencillo llegar a grandes resultados,
esta evolucién ha hecho que los recursos necesarios para desarrollar estos modelos sean
cada vez mas restrictivos. Mientras estos modelos crecieron en complejidad, la capacidad
de entender sus resultados se ha visto afectada, y en general, ignorada. Asimismo, las
limitaciones de recursos hicieron que la investigacion de estos modelos grandes se concentre
en pocas empresas e instituciones. Esto tltimo y el afdn de poseer el mejor modelo (o
la supuesta carrera por una inteligencia artificial general) devino en que el foco de la
investigacién y las publicaciones sea mas los resultados que la comprensién de los mismos.
En reiteradas ocasiones, muchas de las configuraciones del entrenamiento son expuestas
sin ser justificadas, y las razones viven en la intuicién de quienes realizan los experimentos.

A raiz de lo expuesto, consideramos necesario democratizar estos conocimientos implici-
tos. En este trabajo nos proponemos emprender un camino de construcciéon de uno de estos
modelos compartiendo los aprendizajes que sustentan las intuiciones posteriores. Elegire-
mos un ambiente acotado donde podremos explorar algunos de los fundamentos de la
arquitectura y entrenamiento de este tipo de modelos.

Los datos que utilizaremos son audios, més precisamente, audios de habla humana. El
aprendizaje de la representacion de audios ha quedado un tanto rezagado en comparacion
a imagenes y texto. En particular, los audios de habla se ven expuestos a diversas com-
plejidades, como exponen de manera clara Mohamed et al. (2022). Son datos secuenciales,
como el texto, pero su segmentacién o tokenizacién es un problema en si mismo. Mas atn,
las senales de habla son continuas por lo que no es directa la definicién de un vocabulario
finito. Por otro lado, una representacién semantica de un audio de habla deberia tener
informacién muy variada, hasta incluso ortogonal, ya que las tareas de procesamiento
de habla son muy diversas: tareas como transcripcién requieren extraer informacién del
contenido mientras que ignoran la informacién paralingiiistica, y otras tareas como iden-
tificacién de hablantes se concentran en aquella informacién paralingiiistica, el cémo esta
dicho el contenido (prosodia, timbre de la voz, entre otros).

Por otra parte, la tarea que seleccionamos para resolver es identificacion de hablantes
(SID, por sus siglas en inglés). Esta tarea consiste en clasificar al hablante presente en
un audio dado. Si bien puede haber ruido de fondo, entre los que puede haber voces,
estos audios deberian poseer una voz principal claramente marcada. La eleccion de esta
tarea se debe a que es una de las tareas mejor definidas en habla, las etiquetas no poseen
ambigiiedades ni subjetividad como puede ser el caso de reconocimiento de emociones. A
su vez, como el proceso de etiquetado es sencillo, hay una gran disponibilidad de datos
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que se pueden utilizar para entrenar.

SID es una de las tareas mas fundamentales en el procesamiento del habla. En cuanto
a su importancia, se pueden destacar algunos puntos clave. La primera y méas importante,
es que, como mencionan Lin et al. (2024), identificacién de hablantes junto con reconoci-
miento de fonemas, son dos tareas que por si solas sirven como buenos estimadores de la
performance de un modelo en el SUPERB benchmark (Yang et al., 2021) 1. Nétese que
estas dos tareas cubren el espectro de contenido y forma mencionado anteriormente. SID
cubrirfa lo relativo a la forma asi como elementos para-lingiiisticos que caracterizan la
identidad individual de cada hablante. Adicionalmente, esté la importancia para el desa-
rrollo de modelos de verificacion de hablantes, para los cuales es usual comenzar con una
fase de entrenamiento previo en SID.

De esta manera, en primer lugar, en el capitulo 2 se presenta el marco tedrico necesario
para comprender la investigacién. En segundo lugar, en el capitulo 3 se presenta el ambiente
de experimentacion: los datos y los recursos que se van a utilizar. Luego, en el capitulo 4
comienza la exploracién buscando el mejor modelo downstream para la tarea seleccionada.
La experimentacién contintia en una segunda parte en el capitulo 5, donde se entrena
también al modelo upstream. Finalmente, en el capitulo 6 se presentan las conclusiones
del trabajo asi como también posible trabajo futuro.

L El benchmark més completo y utilizado para evaluar modelos pre-entrenados de habla en las tareas
md&s populares.



2. MARCO TEORICO

En este capitulo, introducimos los conceptos fundamentales de la tesis necesarios para
el entendimiento de todo el trabajo. El tratamiento de estos conceptos es acotado por la
naturaleza de la seccidn, y estd fuertemente basado en los trabajos de Mitchell (1997);
James et al. (2023); Goodfellow et al. (2016).

El presente trabajo se enmarca en el campo del aprendizaje automatico o machine
learning, una disciplina que se centra en el desarrollo de modelos capaces de aprender
patrones y representaciones a partir de datos. Esta disciplina se encuentra dentro del
campo de la inteligencia artificial (IA) o inteligencia computacional. A diferencia de lo
que se estudia en otras areas de IA donde el aprendizaje es basado en conocimiento, el
aprendizaje automatico es basado en datos.

Por su parte, los problemas que se resuelven en el area suelen dividirse en dos cate-
gorias: regresion y clasificacion. Los problemas de regresion son aquellos donde se tiene
como resultado una predicciéon de un valor, el ejemplo clasico es la prediccién del precio
de un inmueble dadas sus caracteristicas. En contraparte, los problemas de clasificacion
tienen como resultado una clase o categoria; SID es un ejemplo de ello, donde se espera la
identificaciéon de una persona como resultado.

A su vez, otra subdivisién que surge en aprendizaje automético es el aprendizaje su-
pervisado y el no supervisado. En el aprendizaje supervisado se tiene para cada entrada
una etiqueta o resultado esperado asociado. El objetivo es aprender una funcién que, a
partir de observaciones etiquetadas, relacione las entradas con sus resultados esperados,
de manera que pueda generalizar para predecir los resultados en nuevas entradas. Métodos
como regresiones lineales, regresiones logisticas y support vector machines estan dentro del
dominio de esta area. En contraposicion, en aprendizaje no supervisado no se posee una
respuesta asociada a la entrada. En estos contextos se busca encontrar relaciones entre
las entradas, siendo una de las herramientas més populares en estos casos el clustering,
que separa automaticamente en grupos a las entradas. Veremos una técnica dentro del
aprendizaje no supervisado llamada Self-Supervised Learning, que es usada para el
desarrollo de Foundation Models, modelos que pueden representar o transformar las
entradas en una senal, o embedding, que facilite la resolucién de tareas con respecto a
utilizar directamente las entradas.

A continuacién, presentaremos los temas principales dentro de la disciplina que son
el nucleo de este trabajo. Abordaremos redes neuronales artificiales, asi como me-
canismos y arquitecturas como Atencion y Transformers. También introduciremos el
campo de Representation Learning y el uso de Transfer Learning.

2.1. Redes Neuronales Artificiales

Las redes neuronales artificiales, o simplemente redes neuronales, son la piedra funda-
mental del aprendizaje profundo. Estos modelos tienen como objetivo aproximar funciones.
En problemas de clasificacién, por ejemplo, la red aprende a aproximar una funciéon que
asocia cada entrada con su correspondiente etiqueta. Mas atin, Cybenko (1989) muestra
que una red neuronal es capaz de aproximar la mayoria de las funciones y su error en la
aproximacién tiene una cota superior.
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En su concepcién mas simple, la unidad fundamental de una red neuronal es el per-
ceptréon o neurona. Dada una entrada X = xz1,xz9,...x, € IR", el perceptrén calcula la
siguiente funcién:

y=f (S wiai+0) = FOVTX +0) (2.1)
i=1

Donde, W = [w1,ws, ..., w,]T son los pesos, b es el bias o sesgo, y f es la funcién de
activacion. Como se puede observar, la funcién es muy similar a la que se calcula en una
regresion lineal, a excepciéon de la funcién de activaciéon que se le aplica a la suma de la
combinacién lineal de la entrada con el bias. Por su parte, la funciéon de activacién es
una transformacién no lineal que le permite a los modelos capturar relaciones complejas,
no linealidades e interacciones. Especificamente, existen diversos ejemplos de funcién de
activacién, la mas cldsica es la funcién sigmoidea aunque hoy en dia la més popular es ReLU
(f = max(0,x)) y funciones derivadas de ésta. De esta manera, durante el entrenamiento
se ajustaran los valores de los pesos y sesgos, mientras que f es una eleccién de diserno.

Dada una neurona como la presentada anteriormente, se pueden conectar neuronas
entre si formando una red neuronal denominada perceptrén multicapa (MLP, por sus
siglas en inglés). En cuanto a su arquitectura, las neuronas en una MLP se organizan en
una secuencia de capas, donde una capa es un conjunto de neuronas que operan en paralelo.
Maés atun, una MLP consiste en tres tipos de capas: una capa de entrada que recibe los
datos originales, una o mas capas ocultas que realizan transformaciones intermedias, y una
capa de salida que produce la prediccién final.

Input Hidden Output
Layer Layer Layer

(X)) — Y

Z/

N

Fig. 2.1: Una red neuronal con una tnica capa oculta. La capa oculta computa las activaciones
Aq,...As, transformaciones no lineales de la combinacién lineal de la entrada Xi,...X4.
Figura extraida de James et al. (2023)

En cada capa, las neuronas calculan su activacion siguiendo la misma férmula que
el perceptrén. Estas activaciones se propagan a través de la red, donde la salida de cada
neurona sirve como entrada para las neuronas de la capa siguiente. De este modo, se define
una composicién jerdrquica de funciones que puede expresarse como:
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ap = fi(W1 X +by)
a; = fi(Wiaj—1 +b;), Yi=2,...,L
y=ar (2.2)

donde a; es la activacion de la capa i, L es el namero de capas, W; son las matrices
de pesos para cada capa, b; son los vectores de sesgos, y f; son las funciones de activacién
respectivas a cada capa.

Respecto a su estructura, cuando en la uniéon de neuronas cada una obtiene como en-
trada la salida de una capa anterior (enlaces forward) o la entrada de la red, la red es
llamada feed-forward network ya que el flujo de informacién en estas redes es siempre hacia
adelante. Por otra parte, cuando cada neurona de una capa estd conectada con todas las
neuronas de la capa siguiente, estas capas se denominan completamente conectadas o den-
sas (fully-connected layers o dense layers), siendo este tipo de arquitectura el mas comun
en las redes feed-forward. Asimismo, si estas redes se extienden con conexiones hacia atrds
(feedback), de manera que una neurona puede recibir la salida de una neurona posterior,
se denominan redes neuronales recurrentes (RNNs). Por dltimo, todos los valores que son
ajustados durante el entrenamiento de las redes neuronales se denominan pardmetros, en
cambio, los que no se ajustan son hiperpardmetros, y su eleccion es parte del diseno del
modelo.

Las dimensiones de la capa de entrada y de salida estan limitadas respectivamente
por la definicién del problema, esto no ocurre con las capas ocultas, cuya dimension es
un hiperpardmetro mas llamado tamano oculto. En general, cada capa puede tener una
dimensién diferente, en cuyo caso no hay un tnico tamafio oculto, sino uno por capa. En
este trabajo, al mencionar un dnico tamafio oculto estaremos refiriéndonos a utilizar el
mismo tamafio oculto para todas las capas. A su vez, la cantidad de capas en una MLP
es otro de los principales hiperparametros. El término red neuronal profunda se acuna
cuando la red tiene multiples capas ocultas. De esta manera, se suele hablar del ancho de
la red haciendo referencia al tamafio oculto, y el largo refiere a la cantidad de capas.

Resta explicar como se ajustan los parametros de una red neuronal durante el entrena-
miento. En primer lugar, debemos notar que dados valores fijos para los pardmetros de la
red, ésta calcula una funcion que es la composicién de las funciones que calcula cada neuro-
na, como se mostro en 2.2. En segundo lugar, para entrenar redes neuronales se define una
funcién de pérdida, una medida del error en la estimacion. Hay multiples funciones de
pérdida posibles, las clasicas son error cuadratico medio para regresién y entropia cruzada
para clasificacién. Teniendo en cuenta estos dos factores, el objetivo del entrenamiento
de las redes neuronales va a ser minimizar el error en la estimacién. Asi, se tiene que el
problema de entrenar redes neuronales es un problema de bisqueda de los parametros que
minimicen el error. La clave de los dos puntos mencionados es que la funcién de pérdida va
a ser diferenciable, por lo que se puede computar el gradiente. El gradiente de una funcién
en un punto dado indica la direccién de méximo crecimiento de esa funcién. Por lo tanto,
para minimizar la funcién de pérdida podemos mover los pardmetros en la direcciéon donde
la funcién decrece mas rapidamente, que es precisamente la direccion opuesta al gradiente.

Sobre estas bases, funciona el algoritmo de descenso por el gradiente, entre otros
algoritmos, que iterativamente calcula el gradiente del error sobre todos los datos, ajusta
los parametros y sigue iterando hasta converger. Para calcular el gradiente, el algoritmo
que se utiliza es backpropagation, que aprovechando la estructura jerarquica de las redes
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neuronales, utiliza la regla de la cadena para calcular de manera eficiente los gradientes
de la funcién de pérdida con respecto a los pardmetros de cada capa. De esta manera en
cada iteracion se ajustan los valores de los parametros siguiendo la siguiente ecuacion:

o't = ¢! — nVL(6', D) (2.3)

0 es el conjunto de todos los pardmetros del modelo, mientras 7 se denomina la tasa
de aprendizaje y VL(0',D) es el gradiente de la funcién de pérdida L con respecto a 6
y a los datos de entrenamiento D. El superindice ¢ indica el instante de tiempo o paso
(step, cantidad de actualizaciones). La tasa de aprendizaje es un hiperpardmetro de gran
importancia en el entrenamiento que controla el tamano del paso que se da en la direccién
opuesta al gradiente durante la actualizacién de los parametros.

Por dltimo, debemos mencionar que el descenso por el gradiente resulta ineficiente
por lo que en la practica se utiliza una variaciéon llamada descenso por el gradiente
estocastico. El proceso de calcular el gradiente sobre todo el conjunto de datos para cada
actualizaciéon de parametros es muy costoso computacionalmente, especialmente conside-
rando que se requieren numerosas iteraciones para alcanzar la convergencia. Es por esto
que la variante mencionada propone que en cada paso se seleccione un subconjunto (gene-
ralmente, aleatorio) llamado lote (batch) y que la actualizacién se haga en base al gradiente
promedio en ese lote. De esta forma, la ecuacién de actualizacién de los pardmetros (2.3)
en vez de calcular la funcién de pérdida sobre todos los datos lo hard exclusivamente sobre
un lote. A su vez, la tasa de aprendizaje adquiere una mayor complejidad porque ponde-
ra la importancia del lote, i.e.: un n muy grande sobreajustard a cada lote limitando la
capacidad de generalizar a todo el conjunto de entrenamiento.

2.1.1. Mecanismos de Atencién y Transformers

En muchos problemas de aprendizaje automaético, los datos pueden representarse co-
mo vectores independientes, lo que permite modelarlos eficazmente con redes MLP. Sin
embargo, en areas como el procesamiento de habla, los datos tienen una estructura secuen-
cial, donde cada punto de la senal guarda una relacién de orden con los puntos anteriores
y posteriores. Modelar estas dependencias es crucial para capturar patrones temporales
y contextuales. Para abordar este desafio, es comtun dividir la senal en frames. Un frame
es una ventana o segmento temporal corto —generalmente entre 20 y 40 ms— del audio
original que se utiliza como unidad bésica de procesamiento en los modelos de procesa-
miento de audio. Los MLPs no estan disefiados para capturar relaciones entre frames, ya
que procesan cada entrada de forma aislada. Mdas atin, modelar estas secuencias de frames
trae grandes desafios, ya que:

1. La longitud de las secuencias es variable y puede ser muy extensa.
2. Existen dependencias a corto y largo plazo entre distintos frames.

3. La informacion relevante no estd distribuida de manera uniforme a lo largo de la
secuencia.

Esto ha llevado al desarrollo de arquitecturas especializadas para secuencias, partiendo
de modelos més simples basados en MLPs como las Time-Delayed Neural Networks (Wai-
bel et al., 1989; Snyder et al., 2015), como las ya mencionadas RNNs (Graves et al., 2013),
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CNNs temporales (Abdel-Hamid et al., 2013) y, mds recientemente, los mecanismos de
atencién y Transformers, que permiten modelar de manera mas efectiva las dependencias
temporales en la senal de habla.

El mecanismo de atencién, introducido por Bahdanau et al. (2014) en el contexto de
traduccién automadtica, ha revolucionado el campo del aprendizaje profundo al permitir
que los modelos se enfoquen dindmicamente en diferentes partes de la entrada segun la
tarea. La atencién ha demostrado ser particularmente 1til en secuencias largas, donde redes
como RNNSs tienen limitaciones significativas debido a problemas como el desvanecimiento
del gradiente y la capacidad limitada de capturar dependencias a largo plazo (abordando
directamente el desafio 2 mencionado anteriormente). En términos generales, el mecanismo
de atencién permite a los modelos calcular una representacién ponderada de la entrada,
donde los pesos reflejan la importancia relativa de cada elemento (respondiendo al desafio
3: distribucién no uniforme de informacién).

Tres anos después, Vaswani et al. (2017) introduce los Transformers, una red neuronal
que se centra en el mecanismo de atencién, eliminando por completo la necesidad de
estructuras recurrentes o convolucionales. Fundamentalmente, esto se logra a través de
una arquitectura que combina multiples capas de auto-atencién (Self-Attention) con redes
feed-forward posicionadas entre ellas. En Self-Attention lo que se pondera es la importancia
de las partes de la entrada misma. Formalmente, se expresa de la siguiente manera:

Attention(Q, K, V') = softma (QKT> Vv (2.4)
Y ) - X .
Vg

Q@ (queries, consultas), K (keys, claves) y V (wvalues, valores) son matrices que se
obtienen al proyectar linealmente la entrada, mientras que di actiia como un factor de
escalado. El resultado de QK T obtiene el nombre de matriz de atencién, y sus valores
se transforman al rango (0, 1) mediante la funcién softmaz, que también asegura que la
suma de los valores sea 1. Conceptualmente, se puede interpretar la operacién como un
promedio pesado de los values, donde los pesos surgen de la interaccién entre Q y K.

Respecto a su implementacién, la arquitectura de los Transformers se ilustra en la
figura 2.2. A continuacion, se detalla cada uno de los bloques principales que conforman
esta arquitectura:
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Fig. 2.2: Esquema de la arquitectura Transfomer presentada por Vaswani et al. (2017).

» Encoder-Decoder: El encoder (bloque de la izquierda) tiene la finalidad de procesar
la secuencia de entrada y generar una representacion de la misma, que luego el
decoder (bloque de la derecha) utilizard para generar de manera auto-regresiva la
secuencia de salida. Como es posible notar en el esquema, en el segundo bloque de
atencién del decoder, parte de la entrada es la salida proveniente del encoder. Mas
precisamente, K y V provienen de la salida del encoder, mientras que ) proviene de
la salida de la capa anterior del decoder para el token previo (por el shift-right).

» Auto-Atencién Multi-Cabeza (Multi-Head Self-Attention): Extiende el mecanis-
mo de atencién al calcular multiples representaciones en paralelo, lo que permite
al modelo capturar relaciones en diferentes subespacios de la entrada. De manera
formal:

MultiHead(Q, K, V) = Concat(head;, heads, ..., heady,) wo
donde head; = Attention(Q W2, K W v w}) (2.5)

Donde WZ-Q, WZ-K , VVZ-V € R%medaerxdn gon matrices que aprenden a proyectar la entra-
da de cada cabeza con dp = dpodel/h. Como se ilustra en 2.3, luego de que cada
cabeza aplique atencién sobre su entrada, las salidas son concatenadas y nuevamen-
te proyectadas linealmente con WO € IR%modelXdmodel  Cabe destacar, que con este
mecanismo la cantidad de parametros del modelo no varia al modificar la cantidad
de cabezas.
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Fig. 2.3: Esquema del funcionamiento de Multi-Head Self-Attention.

» Positional Encoding (PE): Dado que los Transformers no tienen un mecanis-

2.2.

mo intrinseco para capturar el orden de las secuencias, se introduce informacién
posicional explicita a los embeddings de entrada mediante funciones sinusoidales o
embeddings aprendidos. En concreto, a la entrada se le suma un valor en cada po-
sicién de manera que el modelo tenga la posibilidad de reconocer la posiciéon en la
secuencia al reconocer el patrén de esta perturbacion. La codificacién mas clasica
sigue la siguiente definicién:

) POS pos
PE(ppss,) = sin <> PE(pps,.,) = COS <> (2.6)
(pos,2:) 100007 (pos,2i11) 100007

Donde pos es la posicién en la secuencia, i es el indice de la dimensién en el embed-
ding, y d es la dimensién del embedding.

Regularizacién: Técnicas como normalizacién por capas (Layer Normalization)
v Dropout son incorporadas para estabilizar el entrenamiento y prevenir el sobre-
ajuste. El mecanismo de Dropout coloca ceros de manera aleatoria en elementos
de la entrada y ha demostrado ser una técnica efectiva de regularizacion que evita
la co-adaptacién de neuronas (cuando distintas unidades tienen un comportamien-
to altamente correlacionado) (Hinton et al., 2012). Layer Normalization aplica una
operacion de normalizaciéon en cada batch con parametros que son aprendidos du-
rante el entrenamiento segin describe Ba et al. (2016). De esta manera, se reduce la
variacion no informativa en los valores de salida entre capas.

Representation Learning y Transfer Learning

Las tareas de procesamiento de informacién (texto, audio, imdgenes) pueden ser muy
sencillas o muy dificiles dependiendo de cémo se representa a la informacién. Una forma
de ilustrarlo es mediante una analogia: si estamos buscando a nuestros anteojos y tenemos
miopia (baja resolucién a la distancia) encontrarlos puede ser muy dificil, mientras que con
una buena resolucién esto es mucho maés sencillo. Representation Learning es el campo que
estudia como aprender las mejores representaciones, ;Y qué es una buena representacién?
Una primera respuesta indica que es aquella que hace que las tareas subsiguientes sean
més faciles.
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En redes neuronales, se puede pensar que las capas ocultas estan aprendiendo repre-
sentaciones. Particularmente en clasificacion, la ltima capa suele ser una capa lineal a
la que se le aplica softmax, las capas anteriores aprenden representaciones que hacen que
la clasificacién sea mds sencilla para la ultima capa. Dicho de otro modo, las capas in-
termedias llevan la entrada a un espacio mas facil de separar en las clases de interés.
Ya décadas atrds, Rumelhart et al. (1986) mencioné cémo con backpropagation las capas
ocultas representan features relevantes para la tarea de interés.

Una arquitectura que resulta de particular interés en el drea son los Auto-Encoders
(Lecun and Soulie Fogelman, 1987) que en una o més capas llevan la entrada a una
dimensién menor (codificacién), y luego en una o méas capas vuelven a la dimensién original
(decodificacién). Para el entrenamiento se configura como objetivo que estas redes retornen
como salida lo mismo que la entrada. El resultado logrado es que las capas ocultas aprenden
representaciones de menor dimensién, alcanzando dimensién minima en la capa del medio.
Noétese que la funcion de pérdida se define automaticamente sin necesidad de una etiqueta,
por lo que pueden ser entrenadas en grandes volimenes de datos sin etiquetar.

Goodfellow et al. (2016) explica que el renacimiento moderno del aprendizaje profundo
se da con el descubrimiento del Greedy Layer-Wise Unsupervised Pre-training (Hinton
et al., 2006). No entraremos en detalles del algoritmo; nos quedaremos con las bases que
cimienta, el pre-entrenamiento no supervisado. El entrenamiento es dividido en dos
etapas, una primera que entrena a parte de la red neuronal, y otra que ajusta a todo el
modelo.

La primera etapa es llamada pre-training, en este pre-entrenamiento el objetivo es
aprender una tarea auxiliar que hard a la tarea de interés mas sencilla. El resultado
deseado de esta tarea es llevar la entrada a un espacio en el que separar en las clases
deseadas es mas sencillo: aprender una representacion. En la literatura, es usual encontrar
que este espacio vectorial es llamado espacio latente o espacio de embeddings, un espacio
donde los elementos que se parecen entre si estan ubicados mas cerca unos de otros.

Luego de esta primera etapa, los modelos pre-entrenados llevan el nombre de upstream.
Posteriormente, se incorpora un modelo especifico para la tarea de interés, conocido co-
mo downstream, que se entrena desde cero utilizando como entrada las representaciones
generadas por el modelo pre-entrenado.

A continuacién, en la segunda etapa, se realiza el fine-tuning, donde partiendo de los
pesos resultantes de la primera etapa se ajustan algunas capas (comtinmente las tltimas)
o todas a la vez en conjunto con el modelo downstream. Con este método se han alcanzado
mejores resultados que entrenando a todo el modelo en una tnica etapa de entrenamiento.
En algunos casos, también puede haber una etapa intermedia en la que primero se entrena
unicamente el modelo downstream manteniendo fijo el modelo upstream, antes de proceder
al ajuste conjunto en el fine-tuning.

Mis tarde, ésta metodologia llevaria a una revolucién ya que abre las puertas a en-
trenar sobre una enorme cantidad de datos sin necesidad de etiquetar y trayendo grandes
beneficios. En procesamiento del lenguaje natural (NLP) se avanzé en la representacién
de palabras (Mikolov et al., 2013; Pennington et al., 2014) y luego en representaciones
teniendo en cuenta su contexto (Dai and Le, 2015; Howard and Ruder, 2018; Radford and
Narasimhan, 2018). En particular, nos detendremos en BERT (Devlin et al., 2019), que
marco un hito en pre-training al lograr resultados estado del arte en tareas muy varia-
das con esta técnica. Su arquitectura, compuesta tnicamente por bloques bidireccionales
de Transformers, se pre-entrena inicialmente con texto sin etiquetar y posteriormente se
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adapta a tareas especificas mediante fine-tuning, proceso en el cual solo se agrega una
capa de salida especializada.

En cuanto a los detalles del pre-entrenamiento, el proceso se llevé a cabo mediante dos
tareas complementarias:

= Prediccién de palabras enmascaradas: se enmascara un porcentaje aleatorio de la
entrada y luego se entrena al modelo para que prediga el texto enmascarado. El
objetivo de esta tarea es que el modelo aprenda a representar el sentido de las
palabras dentro de una oracién. Basada en Taylor (1953), la idea detrés de esta tarea
también fue adaptada en imagenes mediante oclusiones y en audio enmascarando
segmentos.

» Prediccién de la siguiente oracion: esta tarea ayudaria al modelo a entender la rela-
cién entre oraciones.

Todas estas técnicas de aprendizaje no supervisado se engloban dentro de lo que se
denomina Self-Supervised Learning (SSL). Con SSL se pueden aprovechar de manera
sencilla grandes volimenes de datos para llevar a cabo tareas pretexto (pretext tasks), como
las mencionadas, dando como resultados a estos modelos pre-entrenados. Estos modelos
llevan también la definicién de foundation models (Bommasani et al., 2021) por el cambio
de paradigma que representan en el campo de la inteligencia artificial. El término enfatiza
que estos modelos, si bien son incompletos por si mismos, sirven como base comun sobre
la cual se construyen modelos especificos para distintas tareas mediante adaptacién.

Por su parte, en audio, los datos disponibles son mas escasos y més aun la cantidad
de datos etiquetados, cuyas etiquetas son mucho mas costosas de generar. Ain asi, aun-
que un tanto rezagado, el procesamiento de audio siguié un camino paralelo con redes
convolucionales, como por ejemplo en Wav2Vec (Schneider et al., 2019) y VQ-Wav2Vec
(Baevski et al., 2019)). Mas tarde el desarrollo de modelos continué integrando Trans-
formers siguiendo la idea de enmascarado en el pre-entrenamiento. Algunos ejemplos son
Wav2Vec 2.0 (Baevski et al., 2020), HuBERT (Hsu et al., 2021) y WavLM (Chen et al.,
2021)). En algunos casos se trabaja directamente sobre formas de onda y en otros con
representaciones espectrales.

En particular, haremos un breve hincapié en WavLM, que es un modelo que utiliza-
remos en este trabajo. En cuanto a su arquitectura, podemos observar en la figura 2.4
que consiste fundamentalmente en un encoder convolucional seguido de un encoder Trans-
former, al igual que Wav2Vec2.0 y HuBERT. A diferencia de estos tltimos dos modelos,
WavLM incorpora el mecanismo Gated Relative Position Bias (Chi et al., 2022) en las
capas Transformer, que modifica la ecuacién 2.4 de atencién agregando un término (bias)
al que se le aplica softmax. Esta técnica, basada en el mecanismo de Gated Recurrent
Unit (GRU; Cho et al. (2014)), funciona como un positional embedding que no solo tiene
en cuenta la posicién sino también el contenido del frame. En el contexto de WavLM, un
frame es el resultado de dividir la senal de audio continua en pequenos fragmentos de igual
duracién en el encoder convolucional. La intuiciéon otorgada detras del uso del mecanismo
es que el offset de las distancias entre dos frames tiene distintos roles dependiendo del
contenido de los frames, los autores dan como ejemplo a cuando un frame pertenece a un
segmento de silencio y otro a uno de habla.

Por otro lado, en cuanto a las tareas de pre-entrenamiento de WavLM, los autores pro-
pusieron un framework de eliminacién de ruido y prediccién de segmentos enmascarados.
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Fig. 2.4: Arquitectura del modelo WavLM (Chen et al., 2021) y diagrama de su pre-entrenamiento,
donde ”[M]”hace referencia a los segmentos enmascarados de la entrada. Al mismo tiem-
po, las distintas ondas de colores en la entrada hacen referencia al agregado de habla
superpuesta y ruido, mientras que los z; son las pseudo-etiquetas correspondientes a cada
frame.

Especificamente, durante el entrenamiento se simularon entradas ruidosas y con superpo-
sicién de voces; seleccionaron aleatoriamente algunos segmentos de habla y las mezclaron
con ruido de fondo o con un segmento del habla secundario. Tanto el audio de ruido como
la uterancia secundaria se seleccionan al azar del mismo batch, se recortan aleatoriamente
y se escalan segin una proporcién también aleatoria de la energia de la fuente.

Luego, la tarea consiste en predecir pseudo-etiquetas del audio original en regiones (se-
cuencias de frames) enmascaradas. Estas pseudo-etiquetas se generan utilizando un modelo
de k-means clustering, que asigna cada frame a una clase basandose en representaciones
espectrales (como MFCCs) o representaciones latentes de otros modelos. La funcién de
pérdida utilizada, conocida como Mask Prediction Loss, se calcula como la entropia cruzada
entre las predicciones del modelo para los frames enmascarados y estas pseudo-etiquetas.
Mediante esta tarea de prediccién y eliminacion de ruido en regiones enmascaradas, el
modelo aprende a predecir informacion faltante en la sefial, la cual podria corresponderse
con fonemas y caracteristicas timbricas y prosédicas de la voz. Para lograr un buen des-
empeno en esta tarea, el modelo deberia aprender a utilizar el contexto, desarrollando una
capacidad de identificar fonemas, tono y timbre de voz, entre otras caracteristicas de la
senial. A su vez, al utilizar contextos con ruido durante el pre-entrenamiento se promueve
robustez ante entornos acusticos complejos. De esta manera, esta estrategia permite al
modelo desarrollar robustez ante entornos actusticos complejos.

Al realizar un fine-tuning con un modelo downstream estamos realizando lo que se
denomina transfer learning, cuando un modelo que fue entrenado en un ambiente (tarea
y datos) lo usamos para entrenar en otro ambiente distinto. En la presente seccion, ya
hemos expuesto un ejemplo de esta técnica: la utilizacién de representaciones aprendidas
con SSL para resolver una tarea de clasificacién.

Sobre la evaluacion de estos modelos, hay diferentes datasets y benchmarks que evaliian
a estos modelos pre-entrenados con downstreams fijos para cada tarea. En habla, como
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fue mencionado, uno de los benchmarks més usados es SUPERB (Yang et al., 2021).
Puntualmente para SID, uno de los datasets mas utilizados es VoxCelebl (Nagrani et al.,
2017), que es utilizado por SUPERB para evaluar en esta tarea. El baseline para SID sin
pre-entrenamiento es de una accuracy de 80,5 (Nagrani et al., 2017) utilizando una red
convolucional de 67M parametros. En SUPERB, con un downstream de menos de 1M de
pardmetros se publicaron los siguientes resultados:

Modelo Arquitectura #Params | Accuracy Top 1%
Wav2Vec 19-Conv 32.54M 56.56
VQ-Wav2Vec 20-Conv 34.15M 38.80
Wav2Vec 2.0 Base 7-Conv 12-Trans 95.04M 75.18
Wav2Vec 2.0 Large 7-Conv 24-Trans  317.38M 86.14
HuBERT Base 7-Conv 12-Trans 94.68M 81.42
HuBERT Large 7-Conv 24-Trans  316.61M 90.33
WavLM Base+ 7-Conv 12-Trans 94.70M 89.42
WavLM Large 7-Conv 24-Trans  316.62M 95.49

Tab. 2.1: Resultados reportados en SUPERB para SID en VoxCelebl. La cantidad de pardmetros
corresponde al modelo pre-entrenado mientras que el modelo downstream es el mismo
para todos los casos, con menos de 1M de parametros.

2.3. Técnicas de fine-tuning eficientes en parametros (PEFT)

Con el continuo crecimiento de la cantidad de parametros de los modelos pre-entrenados,
la adaptacién a tareas downstream se ha vuelto un desafio, especialmente en ambientes
con limitados recursos computacionales. Mds aun, si bien el fine-tuning permite alcan-
zar mejores resultados en datos dentro de la distribuciéon de entrenamiento, esta técnica
puede resultar en un peor desempeno cuando se trabaja con datos fuera de dicha dis-
tribucién (Kumar et al., 2022). Este fenémeno, conocido como domain-shift, hace que el
fine-tuning no sea la técnica mas robusta para luego realizar inferencia en escenarios varia-
dos. Adicionalmente, al modificar los pesos del upstream, las representaciones se ajustan
especificamente a la tarea downstream, lo que requiere almacenar una copia completa del
modelo para cada tarea.

Estas limitaciones motivaron el desarrollo de técnicas de fine-tuning eficientes en
pardmetros, conocidas como Parameter Efficient Fine-Tuning (PEFT). Houlsby et al.
(2019) propone el uso de médulos adaptadores (Adapters), que incorporan una pequena
cantidad de parametros entrenables dentro del modelo mientras dejan fijos los demas. En
concreto, los Adapters son pequefias capas que se insertan entre las capas existentes del
modelo pre-entrenado. Tipicamente, su arquitectura consiste en una proyeccién lineal que
reduce la dimensiéon de los embeddings, seguida de una no-linealidad y una proyecciéon
que restaura la dimensién original (véase la figura 2.5). Esta configuracién permite cap-
turar adaptaciones especificas de la tarea mientras mantiene la mayor parte de los pesos
pre-entrenados sin modificar, resultando en una significativa reduccién de pardmetros en-
trenables y menor riesgo de sobreajuste. De esta manera, no es necesario almacenar una
copia completa del modelo por tarea sino solo una fraccion.

Una limitacion de este enfoque es que el adapter incrementa el costo temporal de
inferencia al incorporar nuevas capas en la secuencia. Sin embargo, el éxito de los adapters



14 2. Marco tedrico

~ Adapter
Layer

feXeXoXoXoXel

Feedforward
up-project

Transformer
Layer

2x Feed-forward
layer

Nonlinearity

Feedforward
down-project

[O0O000O]

Multi-headed
attention

Fig. 2.5: Arquitectura del médulo adapter y su integracién con Transformer. Izquierda: Se agrega el
modulo adapter dos veces a cada capa del Transformer: después de la proyeccién que sigue
a la atencién multi-cabeza y después de las dos capas feed-forward. Derecha: El adapter
consiste en un cuello de botella con una conexién residual. Durante el entrenamiento del
adapter (adapter tuning), las capas verdes se entrenan con los datos downstream, esto
incluye al adapter, los pardmetros de Layer Norm y la capa de clasificacién final (no
mostrada en la figura). Extraido de Houlsby et al. (2019).

impulsé el desarrollo de diferentes alternativas. Entre los métodos PEFT mas utilizados se
destaca LoR A (Low-Rank Adaptation). En lugar de agregar nuevas capas, LoRA aproxima
en paralelo las actualizaciones de los pesos mediante matrices de bajo rango:

h ]

RN

Pretrained
Weights

= RdXd

xC———— ]

Fig. 2.6: Reparametrizacion de LoRA, que solo entrena las matrices A y B. r refiere al rango
de las matrices y d a la dimensién oculta del modelo upstream. Las igualdades son las
inicializaciones de cada matriz. Extraido de Hu et al. (2022).

El rango r que se observa en la figura 2.6 es un hiperpardmetro nuevo. Ademas, Lo-
RA introduce un segundo hiperpardmetro o que escala el gradiente en la ecuacién de
actualizacién de pesos por . A su vez, al implementar matrices en paralelo, los tiempos
de inferencia no se ven alterados. Mdas aun, si bien se incorporan nuevos parametros con
LoRA, estos pueden ser combinados con los pesos originales de las capas y mantener el
mismo desempeno en inferencia. De esta manera, LoRA logra reducir significativamente
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la cantidad de parametros entrenables mientras mantiene un desempefio competitivo.

No obstante, persiste una brecha en el desempeiio entre LoRA y el fine-tuning comple-
to; Biderman et al. (2024) muestra que esta brecha es consistente en multiples dominios,
sin embargo, LoRA tiene un menor olvido del dominio original con el que fue entrena-
do el modelo y mantiene una capacidad de generalizacién mas diversa. De esta manera,
esta técnica motivé el desarrollo de nuevas variaciones que puedan reducir o superar la
diferencia con el fine-tuning completo manteniendo las buenas propiedades.
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3. CONFIGURACION EXPERIMENTAL

Tesista, no hay modelo, se hace
modelo al experimentar.

En este capitulo, describimos el disefio experimental adoptado para la busqueda de
hiperparametros con el fin de encontrar una arquitectura éptima y eficiente para SID,
considerando las restricciones de recursos computacionales disponibles. Nuestra metodo-
logia divide la exploracion en dos fases principales: primero, la optimizacién del modelo
downstream manteniendo congelado al modelo upstream (capitulo 4), y segundo, el entre-
namiento conjunto de ambos modelos (capitulo 5).

Cabe notar que el cédigo que sustenta los modelos y diferentes configuraciones crecié
a la par de los experimentos manteniendo buenas précticas de desarrollo de software. Este
c6digo se encuentra disponible en un repositorio de GitHub!, con el cual cada experimento
puede volver a realizarse ejecutando un comando. Siempre que sea oportuno realizaremos
consideraciones en cuanto a las limitaciones de recursos.

3.1. Dataset

Durante los siguientes experimentos vamos a estar utilizando VoxCelebl (Nagrani
et al., 2017) como dataset, que es uno de lo mas utilizados para SID y SV. VoxCelebl
cuenta con 153516 audios extraidos de videos de YouTube que pertenecen a 1251 cele-
bridades. Cada audio corresponde a un segmento de un video, estos segmentos fueron
extraidos de 22168 videos. En cuanto a las estadisticas de los segmentos, la duracién pro-
medio es de 8,245 segundos, con un desvio estandar de 5,31, duracién minima de 3,96 y
méaxima de 144,92 segundos. Al mismo tiempo, cada hablante tiene en promedio 18 vi-
deos, como minimo poseen 6 y como maximo 36. Estan disponibles particiones oficiales en
conjuntos para entrenamiento, evaluacién y validacién con 138361, 8251 y 6904 audios res-
pectivamente. Disponemos de informacién sobre la nacionalidad y género de los hablantes,
en la figura 3.1 podemos observar la proporciéon de cada una. Otra informacién relevante a
la hora de identificar voces podria ser la edad, sin embargo, esta informacion no es provista
en el dataset y debido a que la recopilacion fue hecha en diferentes momentos de la vida
de cada hablante esta tarea no es sencilla.

! https://github.com /erikernst4/speech-hypertuning
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(a) Balance por género. (b) Distribucién de nacionalidades.

Fig. 3.1: Estadisticas de VoxCelebl.

En cuanto a la evaluacién y selecciéon de modelos, se utilizarda como criterio principal el
desempeiio en el conjunto de evaluacion, eligiendo aquél que obtenga las mejores métricas.
De esta manera, al tomar decisiones sobre este conjunto, es importante senalar que esta
metodologia limita la comparacion directa con otros modelos de la literatura. La causa
por la que elegimos esta metodologia es que ya sobre el conjunto de validacién también se
tomaran decisiones. Mds precisamente, se determinard cudndo un modelo convergié obser-
vando las métricas sobre este conjunto de datos. En consecuencia, dado que se tomaran
decisiones sobre el conjunto de validacién durante el proceso de entrenamiento, éste no
resulta apropiado para la comparacion final entre nuestros modelos. De todos modos, he-
mos observado una correlacién alta entre los resultados en validacién y evaluacion, y no
hemos percibido diferencias significativas. En conclusién, una comparacién rigurosa con
otros trabajos requeriria un conjunto de datos completamente independiente, sobre el cual
no se haya tomado ninguna decisién, ni durante el entrenamiento ni durante la evaluacién.

3.2. Modelo

En primer lugar, antes de poder emprender la buisqueda del mejor modelo downstream
hay que fijar un modelo upstream. En nuestro caso hemos optado por el modelo WavLM
Base+, un modelo de 94.4M parametros entrenado en 94k horas de audio sin etiquetar.
La eleccion se debe a que es uno de los modelos que mejor se desempené en SUPERB,
en particular en SID como se mostré en la tabla 2.1, con una cantidad de pardmetros
considerablemente menor a los modelos large. La implementacion del modelo que hemos
seleccionado es la que se encuentra disponible en S3PRL 2, cédigo con los que son evaluados
los modelos en SUPERB. Durante la bisqueda del mejor modelo downstream el modelo
upstream estard congelado, es decir, no modificara sus pesos.

En segundo lugar, debemos definir un primer bosquejo del downstream para tener un

2 https://github.com/s3prl/s3prl
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modelo completo de clasificacion. Antes, debemos tener algunas consideraciones sobre la
salida del modelo upstream. Al hacer inferencia con un audio, WavLM Base+ nos devuelve
las representaciones de 13 capas: la salida del encoder convolucional y cada una de las capas
Transformer. A su vez, retorna una representacién cada cierta cantidad de tiempo, dando
lugar a C' secuencias de representaciones con tamano TxD, en donde C es la cantidad de
capas (13 en este caso), T es la cantidad de 'frames’, y D es la dimensionalidad de cada
representacion (768).

En este contexto, el pooling es una operacion fundamental que nos permite reducir
la dimensionalidad de las representaciones mientras preservamos la informacién mas rele-
vante para la tarea. Especificamente, necesitamos aplicar pooling en dos dimensiones: la
dimension temporal y la dimensién de las capas. El pooling temporal es necesario para
condensar la informacién de todos los frames en una Unica representacion que capture las
caracteristicas globales del audio, independientemente de su duraciéon. Por otro lado, el
pooling de capas nos permite combinar la informacion de las diferentes capas del modelo,
conservando la informacién mas 1til para la tarea en cuestion.

Con estos contenidos en mente, se propone una arquitectura inicial que utilizara al
promedio como pooling temporal, seguido de un promedio pesado como pooling de capas
y un perceptrén multicapa final. La salida es un vector de tamano igual a la cantidad
de hablantes del problema. Por defecto, en el perceptréon multicapa configuramos en 2 la
cantidad de capas y en 128 su dimensién oculta. Graficamente, la arquitectura sigue la
siguiente estructura:

WavLM Base+

(#Batch, 13, #Frames, 768)

Temporal Mean

Pooling

(#Batch, 13, 768)

Weighted Average
Layer Pooling

(#Batch, 768)

(#Batch, 768)

(#Batch, #Speakers)

Fig. 3.2: Esquema del primer modelo propuesto. Los colores distinguen el upstream del downs-
tream, mientras que en las flechas se indican las dimensiones de las salidas de cada capa.

Considerando que el factor més determinante en el tiempo de ejecucién de una pasada
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forward es el modelo upstream, y que no serd entrenado en las primeras exploraciones,
es deseable poseer la entrada pre-calculada a la parte del modelo que si entrenaremos.
Almacenar embeddings de dimensién (13, #Frames, 768) no es viable, ya que implica una
enorme cantidad de memoria. Es por ello que se decidié el orden de los poolings propuesto,
ya que el Temporal Mean Pooling no posee parametros entrenables y es deterministico,
por lo que el modelo a entrenar comienza con el Weighted Average Layer Pooling. De esta
manera, se puede pre-calcular la entrada al pooling de capas y propagar las activaciones
desde ese punto en el entrenamiento. Durante la experimentacién distinguiremos la utili-
zacién de embeddings pre-computados y embeddings on-the-fly, que son calculados en el
momento haciendo una pasada forward por el upstream.

3.3. Meétricas de evaluacion

Particularmente, las métricas que optimizamos durante el entrenamiento fueron en-
tropia cruzada y entropia cruzada normalizada (Ferrer, 2022) en la particién de
validacion. La utilizacion de la entropia cruzada normalizada surge de que la cantidad de
hablantes afecta directamente el rango de valores posibles de la entropia cruzada, lo cual
dificulta la comparacion directa entre modelos al variar esta cantidad. La versiéon normali-
zada divide a la entropia cruzada por — > ; P(i)log(P(i)), la entropia de la distribucién
a priori, donde n es el cardinal del conjunto de etiquetas. De esta manera, esta métrica
permite comparar el desempeno de diferentes modelos independientemente de la cantidad
y balance de clases de la tarea, y obtenemos una métrica interpretable donde valores ma-
yores a 1 indican que el sistema es peor que el naive, que en nuestro caso seria asignar una
probabilidad proporcional a la cantidad de instancias de cada hablante.

A su vez, al evaluar también reportamos accuracy top-1y accuracy top-5. La accuracy
top-1 es la métrica clasica que refiere a la proporcién de predicciones donde la etiqueta
estimada coincide con la etiqueta verdadera. En nuestro contexto, esta métrica indica el
porcentaje de segmentos de audio en los que el modelo asigna la probabilidad maés alta al
hablante correcto. Por su parte, la accuracy top-5 refiere a la proporcién de predicciones
donde la etiqueta verdadera se encuentra entre las cinco etiquetas con mayor probabili-
dad asignada por el modelo. Esta métrica resulta especialmente relevante en tareas de
reconocimiento de hablantes con un elevado nimero de clases, donde interesa evaluar si el
modelo al menos considera al hablante correcto entre sus predicciones mas probables.

3.4. Consideraciones adicionales

A lo largo de la experimentacion utilizamos Adam (Kingma and Ba, 2014) como opti-
mizador, una de las variantes mas usadas de descenso por el gradiente estocastico. A su
vez, para agilizar la ejecucién de experimentos recurrimos al mecanismo de Early Stopping,
que consiste en detener el entrenamiento cuando cierta métrica monitoreada (en nuestro
caso, entropia cruzada) no mejora después de una cantidad determinada de chequeos. A
su vez, es posible definir un umbral minimo a ser superado para considerar que ha habido
una mejora. Por otro lado, la frecuencia con la que se monitored la entropia cruzada varié
segin experimento y tamano del mismo, asi como también la paciencia (pasos tolerados
sin mejora) y el umbral minimo de mejora.
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3.5. Hardware

Sobre el hardware utilizado, la bisqueda del mejor modelo downstream en el cépitulo
4 fue realizada en una computadora con procesador Intel Core i7-12700 y placa grafica
NVIDIA GeForce RTX 3060. En esta configuracién, disponemos de 32GB de memoria
RAM y 12GB de memoria en la GPU. Més tarde, los experimentos en los que se entrena
al upstream en el capitulo 5 se llevaron a cabo en otra computadora con procesador AMD
Ryzen 9 7950X 16-Core Processor y dos GPUs NVIDIA RTX A5000, asi disponiendo de
24GB por GPU y 128GB de memoria RAM.



22

3. Configuracién Experimental




4. EXPLORACION DEL MODELO DOWNSTREAM

La busqueda del mejor modelo downstream sigue una estrategia incremental. En es-
te capitulo comenzamos explorando los hiperparametros fundamentales en un contexto
controlado y reducido, utilizando una arquitectura downstream simple y una porcién limi-
tada de los datos. Esta aproximacién nos permite establecer una base y obtener intuiciones
preliminares sobre el comportamiento del modelo. Posteriormente, expandimos nuestros
experimentos al conjunto completo de datos, investigando aspectos mas sofisticados co-
mo diferentes métodos de pooling, normalizacién de embeddings y la interaccién entre
distintas métricas de rendimiento.

En la experimentacion realizada en esta tesis no se compilan resultados favorables de
experimentos Optimos, los mas valiosos aprendizajes fueron adquiridos en la experimenta-
cién misma. A lo largo de los experimentos comentaremos propuestas que no funcionaron,
y mejoras en el disefio de experimentos que fueron incorporadas con posterioridad.

En busqueda de una arquitectura y configuracién éptima, como primer acercamiento,
comenzaremos explorando los hiperparametros mas esenciales como tasas de aprendiza-
je, capas ocultas del modelo downstream y tamafno oculto. Para poder realizar muchos
experimentos rapidamente, primero utilizaremos una porcién pequena de los datos: 100
hablantes (50 mujeres y 50 hombres) y 25 audios por hablante (19 para entrenamiento, 3
para validacién y 3 para evaluacién), donde cada audio corresponde a un video distinto.
Para todos estos datos precalcularemos los embeddings del upstream de manera que no
necesitemos hacer inferencia sobre el upstream durante el entrenamiento.

4.1. Tasas de aprendizaje

La tasa de aprendizaje (LR, por sus siglas en inglés) es uno de los factores mds in-
fluyentes en el entrenamiento y desempeno de modelos (Wu et al., 2019a). Como primer
experimento, exploramos la utilizacién de distintas tasas fijas de aprendizaje. El tamano
de batch fue de 64 para entrenamiento. Se realizé una validacién por época, en este caso,
esto ocurre aproximadamente cada 30 steps. Se configurd la paciencia del early stopping
en 20 y un umbral minimo de mejora en 0,001.

Las primeras tasas con las que experimentamos fueron las predeterminadas y estandar
en la mayoria de los casos: 0,001, 0,0001, 0,00001 y 0,000001.

23
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Fig. 4.1: Evolucién del cross entropy en validacién durante el entrenamiento al experimentar con
diferentes LRs.

Como era esperable, observamos que LR mas chicos llevan a converger mas tardiamen-
te. Sin embargo, si bien la intuicién es que a menor LR mayor granularidad para recorrer
el espacio de gradientes, esto no garantiza converger a un valor menor en la funcién de
pérdida. A su vez, se observa en la figura 4.1 una pequefia curva azul que ilustra que con
1075 no alcanzé a haber una mejora respecto al modelo inicial y se detuvo el entrenamiento
al alcanzar la paciencia del Farly Stopping.

En la siguiente tabla se describe el desempeno de cada modelo entrenado en la particiéon
de evaluacién:

LR Cross Entropy Accuracy Top 1 Accuracy Top 5
1073 1.3620 0.6500 0.9367
7,5%1074 1.3532 0.6433 0.9333
5%1074 1.2622 0.6367 0.9400
2,5% 1074 1.2825 0.6567 0.9233
104 1.2689 0.6333 0.9267
107° 2.5214 0.3400 0.7267
1076 4.6064 0.0100 0.0500

Tab. 4.1: Resultados en la particion de test de la experimentacion con LR fijos. En color se distin-
guen los modelos que provienen de un refinamiento posterior.

Como muestra la tabla 4.1, con LR 1073 se obtuvo mayor accuracy mientras que con
LR 10~ se obtuvo menor cross entropy entre los primeros valores explorados. Luego, se
decidié explorar valores intermedios entre 1072 y 10~* buscando mejores resultados, y
as{ experimentamos también con 2,5 * 1074, 5% 10~% y 7,5 % 10~%. Esto llevé a una cross
entropy minima en la particién de test con LR 5 % 1074, por lo que mantendremos este
hiperparametro con ese valor en los experimentos siguientes.



4.2. Capas ocultas 25

4.2. Capas ocultas

Otro hiperparametro fundamental en la construcciéon del modelo downstream es la
cantidad de capas de la MLP final. En tareas de clasificacién es comun el uso de una unica
capa final donde la entrada tiene dimensién igual a la dimensién de la representaciéon de la
ultima capa del modelo upstream y la salida tiene dimensién igual a la cantidad de clases.
En el modelo propuesto (véase la figura 3.2), antes de esta capa final se propuso el uso de
una MLP con 2 capas y tamano oculto 128. En este experimento exploraremos la cantidad
de capas con 128 de tamano oculto.

Capas Ocultas | Accuracy Topl Accuracy Top5 Cross Entropy

0 0.6333 0.8867 1.3254
1 0.7033 0.9400 0.9998
2 0.6367 0.9400 1.2622
3 0.4700 0.8900 1.6514

Tab. 4.2: Métricas en la particién de evaluacién al experimentar sobre el niimero de las capas de
la MLP.

El caso de 0 capas refiere a la no utilizacién de la MLP, es decir, que la salida del pooling
de capas vaya directamente a la capa de salida. Como se puede observar en la tabla 4.2
obtuvimos los mejores resultados en la particién de evaluacién con 1 capa oculta. Cabe
notar que es posible que la cantidad éptima de capas pueda ser mayor con una mayor
cantidad de datos. No obstante, revisitar todas las decisiones tomadas en el camino haria
impracticable a la experimentacién, por lo que continuaremos utilizando 1 capa oculta
para proximos experimentos.

4.3. Tamano oculto

El tercer hiperparametro fundamental en la configuracion de una MLP es el tamano
oculto, la dimensién de las capas ocultas. Asi como la cantidad de capas determina el
tamanio a lo alto de la MLP, la dimensién oculta determina el tamano a lo ancho. Con
este parametro es habitual el uso de potencias de 2, por lo que decidimos experimentar
con las potencias de 2 desde 64 a 4096.
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Fig. 4.2: Evolucién de la cross entropy en la particién de validacién durante el entrenamiento al
experimentar con diferentes tamanos ocultos en la MLP.

Tamano Oculto | Accuracy Topl Accuracy Top5 Cross Entropy

64 0.6667 0.9033 1.2010

128 0.7033 0.9400 0.9998

256 0.7267 0.9433 0.9104

512 0.7633 0.9500 0.8432
1024 0.7733 0.9600 0.7724
2048 0.7833 0.9500 0.6829
4096 0.7933 0.9633 0.6218

Tab. 4.3: Métricas en la particion de evaluacion al experimentar sobre el tamano oculto en la MLP.

Se observa que a mayor tamano oculto mayor es la accuracy y menor la entropia
cruzada. Sin embargo, al aumentar el tamano oculto, aumenta la complejidad del modelo y
su cantidad de parametros. La cantidad de parametros entrenados del modelo downstream
estd dada por los pardmetros de los poolings, la MLP y la capa de salida. El Temporal
Mean Pooling no posee parametros entrenables y el Weighted Average Layer Pooling tiene
13 parametros entrenables. La MLP en este punto es una tunica capa y la cantidad de
parametros es el producto de la dimensién de la representacion de las capas del modelo
upstream (768) y el tamafio oculto. Los pardmetros de la capa de salida son el producto del
tamano oculto de la MLP y la cantidad de hablantes. Concretamente, con tamano oculto
4096 se tienen 768 x 4096 4 4096 * 100 = 3,555,328 ~ 3,5M. En general, se espera que
el tamano del modelo downstream sea significativamente menor al upstream, siendo uno
de los grandes beneficios de utilizar un modelo pre-entrenado. No debe perderse de vista
que el tamano de este downstream escala con la cantidad de hablantes. Usaremos 4096
como tamano oculto en los préximos experimentos, que ha dado los mejores resultados y
mantiene el modelo downstream con un tamano razonable.

Por otro lado, en la Figura 4.2 se puede observar que a medida que crece la complejidad
del modelo en general decrece la cantidad de steps necesarios para converger. En resumen,
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modelos con mayor tamano oculto en la MLP llegan antes a mejores resultados.

4.4. Relacién entre el tamano del batch y la tasa de aprendizaje

Hasta este punto, utilizamos 64 como tamano de batch (BS, por sus siglas en inglés), un
valor arbitrario. Sin embargo, con el modelo y la porcién del dataset que estamos usando,
podemos usar batches de mayor tamafio. En la literatura (Godbole et al., 2023), se suele
recomendar el uso de batch con el tamano mas grande posible aunque no son acompanadas
de demostraciones o fundamentos convincentes. Cuando los modelos entran en memoria,
el siguiente factor mas limitante para poder entrenar un modelo es el tamano de batch.
Por lo tanto, consideramos de importancia entender su influencia en el entrenamiento.

Por otro lado, la eleccién de un tamano de batch guarda relacién con el LR. Intuitiva-
mente, si el BS es chico, no es representativo de la totalidad del dataset, por lo que un LR
alto haria que se sobreajuste a cada batch sin poder llegar a aprender de todo el dataset
simultdneamente. En el lado opuesto, batches muy grandes tardaran mucho en aprender
con LR muy pequenos. Es por esto que nos propusimos explorar esta interaccién para
seleccionar los valores mas adecuados. Barreremos valores de LR de 0,000001 a 1, y BS de
1 a toda la particién de entrenamiento ('all’, 1900 segmentos de audio). A continuacién,
puede verse una visualizacién de la cross entropy en la particién de evaluacién para cada
una de estas configuraciones.
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Fig. 4.3: Interaccién entre el LR y BS al medir CE en la particiéon de evaluacion.

Los valores mas oscuros de la figura hacen referencia a configuraciones que no conver-
gieron, en estos casos el Farly Stopping detuvo los entrenamientos al no encontrar una
mejora.

En cuanto a la seleccién de valores éptimos de BS y LR, considerando los experimentos
que vendran a continuacién, en vez de elegir el punto minimo (0,5448 de cross entropy en
test con BS = 1900 y LR = 0,0005) elegimos buscar los valores més estables. Determina-
mos que los més estables son aquellos cercanos en promedio al minimo cross entropy y con
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menor desviacién estandar, que serfan los mas consistentes en configuraciones distintas.
Ambas estadisticas surgen de los resultados obtenidos con cada configuracién dejando fijo
un hiperparametro y variando el otro, los valores de toda una fila o una columna en la
Figura 4.3 respectivamente.

Learning Rate Mean Std .
g Batch Size Mean Std
0.000001 3.2823 1.3048
all 429.1469 1539.5639
0.000005 1.9571 1.3487
1024 2.4032 2.5779
0.00001 1.4510 1.0361
512 2.8707 4.1958
0.00005 0.7311 0.1239
256 2.3934 3.2403
0.0001 0.6457 0.0314
128 1.7666 1.6262
0.0005 0.6207 0.0410
64 1.8139 1.6908
0.001 0.6312 0.0492
32 1.8783 1.6527
0.005 0.8168 0.2506
16 2.1156 1.8646
0.01 1.1848 0.6729
8 2.2099 1.9562
0.05 2.3626 1.8757
4 2.1940 1.9235
0.1 2.8411 1.7941
2 2.2305 2.0086
0.5 5.2534 0.8493 1 9 3965 9 1465
1 469.3508 1600.9756

Tab. 4.5: Estadisticas de Cross Entropy para

Tab. 4.4: Estadisticas de Cross Entropy para diferentes tamafios de Batch.

diferentes Learning Rates

De esta manera optamos 0,0005 como LR y 128 como BS. Esta combinacién obtuvo
0,6158 de cross entropy en la particién de evaluacién, 0,7967 de accuracy Topl y 0,9633 de
accuracy Topb. Si bien buscamos la eleccion de los valores més estables, es natural que en
algin momento futuro de la experimentacion se deba modificar alguna de estas elecciones
por diferentes restricciones de tiempo o espacio. Para entender como esas modificaciones
podrian influir, los siguientes graficos (4.4) muestran cémo se modifica el desempeno al
fijar uno de estos parametros y alterar el otro:
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Fig. 4.4: Cross entropy en la particién de evaluacién fijando uno de los hiperparametros seleccio-
nados.



4.5. Experimentando con el dataset completo 29

De la anterior figura se desprende que con BS = 128 modificar el LR alrededor de
0,0005 no implica grandes cambios de desempeno, ya que se encuentra amesetado en ese
punto. En cuanto al LR, en caso de tener que reducir el BS de 128 hasta 8 lleva a
una degradacién de la entropia cruzada menor al 0,01, lo cual no seria una alteraciéon
significativa al momento de seleccionar a los hiperparametros 6ptimos.

4.5. Experimentando con el dataset completo

A partir de este punto, los siguientes experimentos realizados son utilizando la totalidad
del dataset y con las particiones oficiales de VoxCelebl.

En primer lugar, al momento de precalcular el resto de los embeddings del dataset
nos encontramos con que los audios pueden ser muy largos, resultando en problemas de
limitaciones de la memoria. Este problema existe tanto para precalcular los embeddings
como para entrenar calculando embeddings on-the-fly directamente. Un factor determi-
nante para los limites de memoria en este punto es el tamano del batch. La diferencia es
que al precalcular embeddings podria incluso usarse BS = 1 ya que solo se hard una vez,
mientras que ese tamano de batch no es viable para entrenar como se vio en el experimento
4.4. Para precalcular embeddings limitamos el tamano de los audios a 70 segundos, mien-
tras que para entrenar calculando embeddings on-the-fly utilizamos porciones (chunks) de
5 segundos tomadas aleatoriamente cada vez. Estos valores son razonables teniendo en
cuenta las estadisticas de las duraciones de los audios en el dataset (presentadas en 3.1) y
que la tarea es clasificacion de hablantes, donde el hablante a identificar estara presente
en la totalidad del audio, con excepcién de los silencios. De esta forma, al calcular los
embeddings on-the-fly nos vimos también limitados a usar B.S = 32.

Asi, se realiz6 un primer entrenamiento con el modelo que mejores resultados habia
dado hasta el momento. De los anteriores experimentos se desprende que el modelo con
4096 de tamaifio oculto en la MLP, tiene el mejor desempeno en cuanto a cross entropy
y convergencia. En este momento, fue cuando verificamos la observacién hecha en el ex-
perimento 4.3 en cuanto al tamafio del downstream. Llevando el tamano oculto a 4096 y
teniendo 1251 hablantes en el dataset, la cantidad de parametros del downstream alcanzé
los 8,3M. Por lo tanto, antes de continuar, probamos usando un tamano oculto menor
como muestra la Tabla 4.6. Incorporamos también el tamano oculto 32768 que, en el otro
extremo, posee una cantidad de parametros en el orden del tamano del upstream.

Meétricas en Evaluacién Meétricas en Entrenamiento
Acc Topl Acc Top5 CE NCE | Acc Topl Acc Topb CE NCE | Steps

Tamano #Params

1024 2.1M 0.8571 0.9524 0.6210 0.0890 0.9871 0.9992 0.0488  0.0070 | 66000
4096 8.3M 0.8614 0.9546 0.6295  0.0903 0.9946 0.9998 0.0196 0.0028 | 52000
32768 66M 0.8538 0.9530 0.6480  0.0929 0.9956 0.9997 0.0197  0.0028 | 54000

Tab. 4.6: Resultados para diferentes tamanos ocultos en la MLP del downstream utilizando las
particiones oficiales de VoxCelebl, mostrando métricas tanto en evaluacién como en en-
trenamiento. NCE: Normalized Cross Entropy.

En primer lugar, se puede observar que con tamano oculto 1024 se pudo obtener
resultados levemente mejores en entropia cruzada en los datos de evaluacién. Al analizar
los resultados en la particién de entrenamiento vemos que el modelo con tamano oculto
4096 es quien alcanzé mejor desempeno en entropia cruzada, lo que es un indicador de un
mayor over-fitting dado que el rendimiento de este modelo en los datos de evaluacién es
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peor que para el modelo més chico. A pesar de que con mayor tamaino oculto se obtuvo
una mas rapida convergencia, ésta estd en el mismo orden de magnitud, mientras que la
cantidad de parametros entrenados es significativamente menor con tamano oculto 1024,
haciéndolo un downstream mas razonable. Por su parte, el uso de 32768 como tamano
oculto no produjo resultados favorables y es el que muestra el mayor grado de over-fitting,
alcanzando peor convergencia y desempeno que con 4096. En este momento, también
aprovechamos para examinar el uso de 0 capas ocultas, el cual corresponde a usar un
modelo lineal como downstream. Sin embargo el modelo convergia muy lentamente por
lo que debimos interrumpir el entrenamiento luego de més de 200.000 steps sin llegar
a buenos resultados. Por lo tanto, si bien 4096 tiene mejor accuracy en evaluacién, se
determiné continuar la experimentacién usando tamafio oculto 1024 en la MLP por su
menor tamano y menor entropia cruzada.

4.6. Efecto del “modo evaluacién”

El siguiente experimento surgié accidentalmente al agregar tests de regresiéon. Estos
ultimos fallaron al ser creados y la causa radicaba en que las salidas del modelo no eran
siempre las mismas, y el origen no estaba en el downstream sino en el upstream. Los em-
beddings del upstream no eran los mismos aun utilizando el modo deterministico: requeria
que se use el modelo en modo evaluacion. Este modo sirve para que capas o partes del
modelo que deben comportarse distinto durante inferencia que durante entrenamiento se
comporten en modo inferencia. Ejemplos de esto son las capas de Dropout (que duran-
te el entrenamiento coloca aleatoriamente ceros en parte de la entrada), LayerDrop (que
descarta capas enteras), o Batch Norm (que aprende a normalizar a cada batch).

Por lo tanto, la utilizacién de los embeddings precalculados del upstream sin este
cuidado no seria del todo correcta. En la Tabla 4.7 se puede observar la diferencia en
el desempeno entre usar los embeddings precalculados con y sin el modo evaluacién, en
ambos casos con BS = 32.

Modo evaluacién ‘ Acc Topl Acc Top5 CE Normalized CE Steps
X 0.8571 0.9525 0.6210 0.0890 66000
v 0.8649 0.9562 0.6128 0.0879 78000

Tab. 4.7: Métricas en test comparando la utilizacién del modo evaluacion en el modelo upstream.

Las diferencias son favorables al uso del modo evaluacién. Cabe recordar, que calculan-
do embeddings on-the-fly el modelo upstream recibe segmentos aleatorios de 5 segundos
mientras que los embeddings precalculados corresponden a segmentos de hasta 70 segun-
dos, lo que podria favorecerlo. Ademas, si bien la cantidad de steps del modelo sin el modo
evaluacién fue menor hay una gran diferencia en los tiempos de entrenamiento. Al utilizar
embeddings on-the-fly la velocidad de entrenamiento en promedio es de 2,20it/s, mientras
que con embeddings precalculados es de 31,55it/s, més de diez veces més rapido.

4.7. Normalizaciéon de los embeddings del modelo upstream

En la literatura, es usual encontrar que se refieren a la inferencia del upstream como
extraccion de features, asi como también el uso intercambiado de espacio de embeddings y
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espacio de features. En esa misma linea, puede pensarse al modelo upstream como la fuente
de informacién de la que aprenderd el modelo downstream. Mas atn, siguiendo las ideas de
aprendizaje automatico clasico, es razonable pensar en la posibilidad de normalizar estos
datos de manera que los features puedan tener todos un tratamiento uniforme.

En este experimento exploraremos el uso de tres métodos para normalizar:

» Length Normalization (Garcia-Romero and Espy-Wilson, 2011): Normalizar los
embeddings del upstream usando la norma 2 vectorial, con la norma 2 del propio
embedding de cada audio.

= Normalizacion Z Global: Calcular la media y desviacion estandar de los em-
beddings de toda la particiéon de entrenamiento de todas las capas. Luego a cada
embedding se le restard esa media y se lo dividird por la desviacién estandar.

= Normalizacion Z por capa: Igual a la normalizaciéon Z Global, pero tomando la
media y desviacién estandar de cada capa en vez de todos los embeddings de todas
las capas. Este método entenderia a cada capa del upstream como una fuente de
informacién distinta.

La utilizacién de normalizacién Z requiere agregar un paso previo al entrenamiento
donde se calculan los correspondientes valores de medias y desvios estandar de los embed-
dings del upstream.

Debido a que la utilizacion de los embeddings pre-calculados reduce el uso de memoria,
esto nos permite aumentar el BS a 128, que era nuestro valor elegido en el experimento 4.4.
Para mantener la frecuencia de validaciones y checkpoints por cantidad de actualizaciones
del gradiente redujimos acordemente este intervalo de 2000 a 500. Asimismo, para tener
un resultado comparable volvimos a correr el modelo sin normalizacién con estos cambios.

En el siguiente grafico podemos observar las curvas de la cross entropy normalizada en
la particiéon de validacién durante el entrenamiento.

Método de normalizacién
—— Sin Normalizacién
0.8 Length Normalization
—— Normalizacién Z Global
—— Normalizacién Z por capa

0.6 1

0.4

Cross Entropy Normalizada

0.2 1

T T T T T T T T
0 5000 10000 15000 20000 25000 30000 35000
Step

Fig. 4.5: Evolucién de la Cross Entropy Normalizada en validacién para los diferentes métodos de
normalizacion.



32 4. Exploracion del modelo downstream

Se puede observar que los modelos con normalizacién Z convergen significativamente
mas temprano y a valores menores de cross entropy. Por su parte, Length Normalization no
produce una mejora sino un leve deterioro, lo que podria indicar que la utilizacién de este
método significa una leve pérdida de informacién. Con este ultimo método las diferencias
en las magnitudes entre embeddings de distintos audios se pierde, si bien el espacio de
embeddings se vuelve mas compacto, el modelo parece beneficiarse de la riqueza de las
diferentes magnitudes de los embeddings de WavL M.

Al observar que los modelos con normalizacién Z convergian tanto mas temprano pero
tenfan valores menores en accuracy, probamos también reduciendo el LR de 5% 107% a
10~%. Los resultados de estos modelos tuvieron una convergencia similar al modelo sin
normalizacién en la cantidad de steps pero no lo superaron en accuracy ni tuvieron menor
cross entropy. En la siguiente tabla se exponen los resultados de estos modelos en la
particién de test.

Método de normalizacién Acc Topl Acc Top5 CE Normalized CE Steps

Sin Normalizacién 0.8560 0.9553 0.6097 0.0874 28500

Length Normalization 0.8509 0.9524 0.6328 0.0907 30500
Normalizacién Z Global 0.8418 0.9519 0.5647 0.0810 5500
Normalizacién Z por capa 0.8477 0.9529 0.5757 0.0826 8000
Normalizacién Z Global con LR 10~* 0.8520 0.9549 0.56701 0.0813 27500
Normalizacién Z por capa con LR 1074 0.8515 0.9538 0.57812 0.08290 27500

Tab. 4.8: Métricas en la particién de evaluacion comparando la utilizacién de distintos métodos de
normalizacion de los embeddings del modelo upstream.

En conclusién, notamos que la normalizaciéon Z por capa tiene una pequena ventaja en
accuracy sobre la normalizacién Z global, pero no asi en cross entropy y convergencia. Por
lo tanto, en adelante utilizaremos la técnica de normalizacién Z global, que proporciond
la menor cross entropy y la convergencia mas rapida.

4.8. Meétodos de pooling

En esta seccién, exploraremos las capas de poolings, buscando entender las ventajas y
desventajas de cada método.

4.8.1. Pooling en el tiempo

Hasta este punto, para realizar pooling sobre la dimension temporal el modelo que
hemos construido utiliza Temporal Mean Pooling. Si bien es una practica usual, en esta
seccion exploraremos métodos alternativos que puedan ser superadores o que ofrezcan
alguna ventaja comparativa.

Poolings fijos

En primer lugar, experimentaremos con diferentes poolings fijos. Llamamos poolings
fijos a aquellos que no tienen pardmetros entrenables y son deterministicos. La gran ventaja
de estos poolings, como fue observado en el experimento sobre el modo de evaluacién en el
modelo upstream (4.6), es que pueden ser precalculados una tnica vez y luego utilizados
durante el entrenamiento ahorrando memoria y tiempo. Usaremos estadisticas tipicas sobre
los valores de cada dimensién del embedding del upstream: minimo (min), méximo (max),
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desviacion estandar (std), y combinaciones entre ellos concatendndolos. Cabe notar que
al concatenar estas estadisticas la dimensién del input a la MLP se multiplica, por lo que
aumenta la cantidad de parametros entrenables del downstream.

Pooling #Params | Acc Topl Acc Top5 CE Normalized CE Steps

mean 2.1M 0.8418 0.9519 0.5647 0.0810 5500

std 2.1M 0.4139 0.6433 1.7533 0.2514 8000

min 2.1M 0.4530 0.6947 2.0504 0.2940 8000

max 2.1M 0.4492 0.6873 2.0757 0.2977 5500
min—+max 2.9 M 0.5302 0.7570 1.4874 0.2133 5500
mean+-std 2.9 M 0.7685 0.9102 0.6985 0.1002 4500
mean+std+min+max 4.4M 0.7332 0.8950 0.7781 0.1116 3500

Tab. 4.9: Comparacién de distintos poolings fijos en la dimensién temporal. La cantidad de parame-
tros hace referencia a los parametros del modelo downstream.

De los resultados se desprende que la media es el pooling temporal fijo que mejor
se desempena. En cuanto a la convergencia, se repite el resultado de que modelos més
complejos convergen mas rapido. Cabe destacar que mean+std es usado usualmente en
modelos de verificacién de hablante (Snyder et al., 2018), del cual no se observan mejoras
salvo por la mejor convergencia. Puede objetarse que el LR es muy alto y con un menor
LR los resultados podrian ser distintos, por lo que, también aprovechando la réapida con-
vergencia de estos modelos, experimentamos con LR = 10™%. Atin asi, no se observaron
mejoras. En casi todos los casos hay un leve empeoramiento, salvo pequenas mejorias,
ninguna superando el rendimiento de mean con LR = 5 x 1074 .

Poolings con mecanismos de atencién

Self-Attention El uso del promedio como pooling temporal tiene el efecto de dar un
mismo peso a todos los frames, esto hace que frames que pueden contener silencio tengan la
misma importancia que frames en los que la persona habla en su totalidad. En Mirsamadi
et al. (2017) se muestra que con un mecanismo de atencién local es posible sobreponerse a
este fendmeno y otorgarle mas peso a los frames con habla. En los siguientes experimentos,
exploraremos el uso de Self-Attention, particularmente con la implementaciéon de PyTorch
de Vaswani et al. (2017). El uso que le daremos como pooling consiste en propagar las ac-
tivaciones por esta capa y luego promediar en la dimensién temporal. Al haber pasado por
el mecanismo de atencién esperamos que los valores de los embeddings estén ponderados
segun su importancia para la tarea.

Es importante destacar que hasta aqui el pooling temporal no tenia parametros entre-
nables, en cambio, la utilizacion de Self-Attention como mecanismo de pooling temporal
implica 2,4M parametros adicionales a entrenar. A su vez, tener parametros entrenables
implica tener que nuevamente calcular los embeddings on-the-fly en vez de precalcularlos.

De esta manera, ejecutamos un primer experimento con este pooling con una unica
cabeza de atencién, obteniendo resultados peores que al usar Temporal Mean Pooling. Esto
no era lo esperado ya que con atencién se podria aprender a hacer un promedio también.
Este comportamiento puede explicarse desde la perspectiva del bias-variance tradeoff:
mientras que el promedio temporal es un mecanismo simple con alto sesgo pero baja
varianza, el self-attention es més flexible y puede aprender patrones mas complejos, lo que
implica menor sesgo pero mayor varianza. Esta mayor capacidad expresiva puede llevar a
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que el modelo prefiera ajustarse a patrones especificos del conjunto de entrenamiento en
lugar de aprender la solucién més simple (el promedio), resultando en overfitting.

Para abordar este desafio, exploramos dos aspectos del entrenamiento que podrian
ayudar a controlar mejor el balance entre sesgo y varianza. En primer lugar, consideramos
que el LR podria ser demasiado grande: al entrenar mas parametros, es posible que sean
beneficiosos cambios mas pequenios en cada paso para evitar que el modelo se ajuste de-
masiado rapido a patrones especificos (en este punto también podria ser ttil experimentar
con una etapa de warm-up, como serd hecho luego en la seccién 5.1). En segundo lugar,
analizamos si la capa oculta podria estar actuando como un cuello de botella al proyectar
los embeddings, limitando la capacidad del modelo para aprender representaciones tutiles.
Por lo tanto, continuamos explorando este mecanismo de pooling con diferentes configu-
raciones de LR y capas ocultas de la MLP. En la siguiente tabla se observan los resultados
de cuatro configuraciones que fueron examinadas:

Capas Ocultas LR |Acc Topl Acc Top5 CE Normalized CE Steps
1 1074 0.7380 0.9137 1.2739 0.1827 48000

1 5% 1074 0.7941 0.9350 1.1016 0.1580 22000

0 1074 0.8527 0.9590 0.6453 0.0925 102000

0 5%107%| 0.8655 0.9644  0.6349 0.0910 30000
Temporal Mean Pooling 0.8638 0.9569 0.5540 0.0794 18000

Tab. 4.10: Comparacion de resultados utilizando Self-Attention y Temporal Mean Pooling como
métodos de pooling temporal bajo distintas configuraciones.

En primer lugar, puede observarse que los resultados con Temporal Mean Pooling
no son los mismos que en su ultimo experimento (4.8.1), esto se debe a que en aquel
experimento se utilizaba 128 como tamano de batch mientras que al calcular embeddings
on-the-fly como entrada utilizamos 32. Por lo que, se volvié a entrenar ese modelo con
BS = 32y, en contra lo esperado, sus métricas mejoran levemente. Al momento de buscar
el BS 6ptimo en el experimento 4.4 128 poseia una pequena diferencia a favor por sobre 32,
en aquel experimento no utilizibamos ningiin método de normalizaciéon y la MLP poseia
un tamano oculto de 4096.

En segundo lugar, observamos que la utilizacién de 0 capas ocultas es lo que mas afecté
los resultados, y con ésto se supera la accuracy obtenida con Temporal Mean Pooling, lo
que nos motiva a seguir explorando este mecanismo. Cuando habiamos probado 0 capas
ocultas en el experimento 4.5 el modelo no alcanzaba a converger en un tiempo razonable.
Por lo que, al ahora ser beneficioso, significaria que con el uso de Self-Attention se consi-
guen mejores representaciones para la tarea, ya que un modelo més simple las aprovecha
mejor. En cuanto al LR, en todos los casos reducirlo condujo a peores resultados y una
convergencia mas lenta.

A raiz de los resultados que se observan en la tabla anterior, continuaremos la explo-
racién de este pooling con la configuracion que posee 0 capas ocultas y se entrena con LR
fijo en 5% 10~%. Por otro lado, cabe mencionar que estos cuatro modelos fueron entrenados
sin la normalizacién Z global vista en el experimento 4.7. El siguiente paso serd entonces
analizar el efecto de su uso, que puede ser visto en la siguiente tabla:
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Normalizaciéon Z Global ‘ Acc Topl Acc Top5 CE Normalized CE Steps
X 0.8655 0.9644 0.6349 0.0910 30000
v 0.8496 0.9604 0.6433 0.0923 12000

Tab. 4.11: Efecto del uso de la normalizacién Z global con Self-Attention Time Pooling con una
cabeza de atencion.

Notamos que en este caso la normalizacién Z global lleva a un leve deterioro del des-
empeno. En contrapartida, con normalizacion Z global el modelo converge en la mitad del
tiempo. Con el objetivo de agilizar la experimentacion y asumiendo que la normalizacién
Z global no interactia con los préximos hiperparametros, mantendremos el uso de la nor-
malizacién Z global y al final de este experimento entrenaremos al modelo con la mejor
configuracién de Self-Attention Time Pooling quitando la normalizacién Z global.

Como siguiente paso, examinaremos el uso de Positional Encoding. Especificamente,
usaremos el encoding mas clasico definido en la ecuacion 2.6.

Positional Encoding ‘ Acc Topl Acc Top5 CE Normalized CE Steps
X 0.8496 0.9604 0.6433 0.0923 12000
v 0.6114 0.8446 2.0620 0.29567 10000

Tab. 4.12: Resultados al usar Positional Encoding con Self-Attention Time Pooling con una cabeza
de atencién, sin normalizacién Z global y con 0 capas ocultas en la MLP.

Los resultados arrojan que no es 1til el Positional Encoding para el pooling temporal,
ya que las métricas se deterioran mucho con su uso. Si bien el modelo con este método
alcanza en una etapa més temprana del entrenamiento su mejor desempeno en valida-
cién, este comportamiento solo indica que el modelo comienza a sobreajustar a los datos
de entrenamiento antes empeorando en validacién. Un posible problema con el encoding
propuesto es la escala, es posible que los valores del encoding dominen al valor original
del embedding generando una pérdida de informacién. Tanto analizar posibles soluciones
a esto como probar otras codificaciones queda como posible trabajo futuro.

El siguiente hiperpardametro con el que buscaremos la mejor configuraciéon para esta
capa es la cantidad de cabezas de atencion. Suele decirse que cada una de estas cabezas se
encarga de almacenar informacién de distinta indole; en NLP, Clark et al. (2019) muestra
que diferentes cabezas de atencién se especializan en diferentes aspectos de la sintaxis.
Si bien no hay garantias de que esto pueda ser interpretado por humanos, al resultar en
distintos segmentos del embedding de salida y tener diferentes conjuntos de pesos, cada
una de estas cabezas es libre de aprender funciones distintas. Como los embeddings suelen
tener tamanos multiplos de 2, la cantidad de cabezas de atencién suelen también seguir
este patrén, aunque bien podrian ser niimeros arbitrarios. En la siguiente tabla se observa
las diferentes cantidades de cabezas de atencién que hemos explorado y sus resultados:
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Cabezas de Atencién | Acc Topl Acc Topb CE Normalized CE Steps
1 0.8496 0.9604 0.6433 0.0923 12000
8 0.8697 0.9646 0.5963 0.0855 10000
16 0.8691 0.9663 0.5492 0.0787 8000
32 0.8684 0.9670 0.5554 0.0796 8000
Temporal Mean Pooling 0.8638 0.9569 0.5540 0.0794 18000

Tab. 4.13: Impacto del nimero de cabezas de atencién en el rendimiento del modelo con Self-
Attention Time Pooling.

Al sumar cabezas de atencién, observamos que mejora la accuracy en dos puntos apro-
ximadamente y al mismo tiempo mejora la convergencia. Siguiendo el mismo criterio que
hemos adoptado a lo largo del trabajo, nos quedaremos con el modelo de 16 cabezas de
atencion ya que alcanzé la menor entropia cruzada.

Por otro lado, ocurrié posteriormente por azar y error humano, que ejecutamos un
entrenamiento del modelo de 16 cabezas con LR = 10~* obteniendo ostensiblemente
mejores resultados con una convergencia diez veces més lenta. Al ahondar en la causa
de esto, encontramos que las cabezas de atencién interactiian con el LR: mas cabezas de
atencién se benefician de learning rates mas bajos. No profundizaremos en esta cuestién,
pero creemos que es un buen experimento explorar esta interaccién, ya que es muy grande
su influencia en los resultados, que pueden ser vistos en la siguiente tabla:

LR ‘ Acc Topl Acc Top5 CE Normalized CE Steps
1072 0.9320 0.9839 0.3227 0.0463 80000
5% 1074 0.8691 0.9663 0.5492 0.0787 8000

Tab. 4.14: Evaluacion del Self-Attention Time Pooling con 16 cabezas de atencién variando la tasa
de aprendizaje.

Finalmente, como la normalizacién Z global no habia arrojado mejores resultados
(véase 4.11) con una cabeza de atencién, veremos qué ocurre con este ultimo modelo
con 16 cabezas de atencién al quitar esta normalizacion:

Normalizacion Z Global ‘ Acc Topl Acc Top5 CE Normalized CE Steps
v 0.9320 0.9839 0.3227 0.0463 80000
X 0.9179 0.9773 0.4055 0.0581 152000

Tab. 4.15: Resultados de la utilizacién de normalizacién Z global con Self-Attention Time Pooling
en su configuracién con 16 cabezas de atencién y LR = 1074,

Anteriormente, utilizar normalizacién Z global significaba un leve deterioro de la en-
tropia cruzada y peor accuracy. En este caso, la normalizacién Z global es beneficiosa para
todas las métricas que monitoreamos. Por lo que conservaremos el uso de la normalizacion
Z global, y con esto concluimos nuestra bisqueda del mejor pooling temporal con Self-
Attention. La configuracién final es usar un downstream de 0 capas ocultas, LR = 1074,
con normalizaciéon Z global, sin Positional Encoding y con 16 cabezas de atencion.

Mecanismos alternativos de atencion FEn la bisqueda del mejor mecanismo de aten-
cién, exploramos dos alternativas: Transformers (Vaswani et al., 2017) y SummaryMizing
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(Parcollet et al., 2024). Transformers es una extension natural del anterior experimento,
ya que mantiene el bloque de Self-Attention mientras suma una capa de normalizacion e
incorpora una MLP al final. Por su parte, SummaryMizing es una alternativa de meno-
res recursos a Self-Attention propuesta para reconocimiento automético del habla (ASR),
que reduce la complejidad cuadratica en la cantidad de frames de su contraparte a una
complejidad lineal. A su vez, hay disponibles dos sabores de este mecanismo: su versién
lite y su versidon completa, que incorpora bloques de MLPs.

En cuanto a la configuracién de Transformers, utilizamos un unico bloque con una
unica capa en su MLP con tamano oculto 2048 (default de PyTorch). Al mismo tiempo,
mantuvimos la configuracién éptima de Self-Attention que encontramos en el anterior
experimento.

De esta manera, utilizamos estos mecanismos de atencion alternativos siguiendo la
misma idea que con Self-Attention, propagamos las activaciones por la capa que realiza
este mecanismo y luego promediamos en la dimensién temporal.

Método de pooling #Params | Acc Topl Acc Top5 CE Normalized CE Steps
Temporal Mean Pooling 0 0.8638 0.9569 0.5540 0.0794 18000
Self-Attention 2.4M 0.9320 0.9839 0.3227 0.0463 80000
Summary Mixing Lite 50.4K 0.5433 0.7645 2.3168 0.3322 614000
Summary Mixing 1.1M 0.7458 0.8988 1.1641 0.1669 58000
Transformer 11M 0.9435 0.9875 0.2229 0.0320 48000

Tab. 4.16: Resultados al usar diferentes métodos de pooling en el tiempo basados en mecanismos de
atencién en comparaciéon con los anteriores métodos vistos. La cantidad de parametros
corresponde a la capa de pooling temporal.

En primer lugar, observamos que Transformer logra superar a los otros métodos en
todas las métricas menos convergencia. Aun asi, converge en una menor cantidad de pasos
que Self-Attention, lo cual es esperable debido a su mayor complejidad. En consecuencia,
en lo sucesivo usaremos Transformer como pooling temporal.

En segundo lugar, notamos que Summary Mizing, aunque puede ser un buen reemplazo
de Self-Attention dentro de la arquitectura Transformer para ASR, no es un método ade-
cuado para realizar un pooling temporal. Los resultados obtenidos son significativamente
peores que los de Self-Attention e incluso inferiores a los de Temporal Mean Pooling, que
no posee parametros entrenables.

4.8.2. Pooling de capas

El pooling de capas consiste en extraer informacion del embedding de cada capa. Luego
de este pooling la dimensién de las capas es colapsada. En este experimento, probaremos
si los métodos que fueron exitosos para el pooling temporal también son efectivos para
el pooling de capas. De igual manera que con los mecanismos de atenciéon en el pooling
temporal, luego de pasar por estas capas promediaremos, esta vez, en la dimensién co-
rrespondiente a las capas. Hasta este momento hemos utilizado el promedio pesado como
pooling de capas ( Weighted Average Layer Pooling), que al entrenar un peso por cada capa
nos otorga la capacidad de interpretar la importancia de la informacion de cada una para
la tarea dada. En la préctica, la técnica mas difundida al momento de usar embeddings
es quedarse con la representacion de la ultima capa. Por lo tanto, también exploraremos
el uso de ésta. A su vez, sumaremos un método mas, Mejor Capa, que consiste en di-
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rectamente quedarse con el embedding correspondiente a la mejor capa. El criterio para
determinar cudl es esta capa serd seleccionar aquella cuyos pesos otorgados en el Weighted
Average son maximos, en el siguiente grafico puede observarse los pesos del experimento
anterior:

Métodos de pooling temporal
0.30 1 —— Self-Attention
Mean Time Pooling
0.25 - —— Transformer
0.20 A
[e]
wn
& 0.15
0.10
0.05 -
0.00 -

0 1 2 3 4 5 6 7 8 9 10 11 12

Fig. 4.6: Pesos de la capa Weighted Average Layer Pooling para los modelos comparados en el
experimento 4.8.1.

La Figura 4.6 muestra que la capa 4 tiene maximo peso para dos de los tres métodos
de pooling temporal. Esta conclusion es consistente con la obtenida en el paper original
de WavLM (Chen et al., 2021), donde para WavLM Base+ se observa un gran dominio
de la capa 4 en SID en el andlisis de pesos de las capas. Cabe destacar, que si bien la
capa 4 posee el mayor peso, esto no implica que sea necesariamente la capa con mejores
resultados al usar tinicamente las representaciones de ésta.

Asi experimentamos con diferentes métodos de pooling de capas usando Transformer
como pooling temporal:

Método #Parametros | Acc Topl Acc Top5 CE Normalized CE Steps
Weighted Average 13 0.9435 0.9875 0.2229 0.0320 48000
Ultima capa 0 0.6752 0.8578 1.5177 0.2176 44000
Mejor capa 0 0.9450 0.9876 0.2253 0.0323 40000
Self-Attention 2.4M 0.9139 0.9769 0.4719 0.0677 54000
Transformer 11M 0.9470 0.9858 0.2294 0.0329 40000

Tab. 4.17: Resultados al usar diferentes mecanismos de poolings de capas usando Transformer
Time Pooling. La cantidad de parametros corresponde a la capa de pooling de capas del
modelo upstream.

El primer resultado saliente es que la utilizacién de las representaciones de la dltima
capa por si solas se traducen en un gran deterioro en el desempeno. Si bien es una técnica
adecuada para otros contextos (otros modelos con otras tareas u otras disciplinas como
NLP) para este modelo upstream y esta tarea no lo es. Contrariamente, usando la capa 4
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se obtiene resultados comparables con los de de Weighted Average, por lo que es razonable
pensar que esta capa encapsula la informacién necesaria del upstream para esta tarea. Por
su parte, usar Self-Attention en el pooling de capas trajo peores resultados, mientras que
con Transformer se obtuvo una pequena mejora en Accuracy Topl manteniendo una
buena convergencia. Esto significaria que el mecanismo de atencién por si solo no es
suficiente para el pooling de capas, pero si lo es al ser usado con una MLP y demas
incorporaciones de la arquitectura Transformer. A su vez, recordemos que la cantidad de
steps no es indicativa del tiempo de entrenamiento ya que a mayor cantidad de parametros
mas demora cada step, asi la convergencia més rapida pertenece a Mejor capa. De esta
manera, con estos resultados la mejor configuracion mantiene Weighted Average como
mejor pooling de capas, ya que con una cantidad minima de pardmetros obtiene la menor
cross entropy y accuracies comparables con las mejores.

4.8.3. El estado del arte

En este punto de la experimentacién nos detuvimos a observar y entender mejor el
estado del arte en esta tarea. Como mencionamos anteriormente, el benchmark que se
suele observar es SUPERB (Yang et al., 2021). En la tabla de resultados en SID del
benchmark se publica tinicamente la accuracy topl de cada modelo en la particién de test,
y con WavLM Base+ se reporta una accuracy de 0,8942. El downstream utilizado para
esto utiliza lo que denominamos Weighted Average Layer Pooling, seguido de una capa
intermedia, y luego Temporal Mean Pooling. La capa intermedia permitiria una adaptacion
del input del pooling temporal. A su vez, es usado para reducir la dimensién de 768
a 256. Esto ultimo sospechamos que se debe a que el resto del modelo downstream es
compartido por diferentes modelos con diferentes dimensiones en las representaciones del
upstream. Con la accuracy mencionada WavLM Base+ ocupa el tercer lugar, mientras
que los primeros dos son WavLM Large (316.62M de parametros y accuracy 0,9549) y
HuBERT Large (300M de pardmetros y accuracy 0,9033) (véase la tabla 2.1).

Nuestro modelo con Temporal Mean Pooling alcanzaba una accuracy topl de 0,8638
con cross entropy 0,5540, por lo que buscamos entender esta diferencia. Asi, como es de
c6digo abierto, decidimos replicar los resultados utilizando el cédigo provisto. Al correr el
c6digo como se indica en la documentacién, se obtuvo una accuracy maxima de 72,12 en
200.000 steps (este limite de steps es el predeterminado por la biblioteca):
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Fig. 4.7: Evolucién de la accuracy del modelo predeterminado de S3PRL con WavLLM Base—+.

Al observar que el modelo no convergia, decidimos probar aumentando el LR. Ante-
riormente estaba en 0,0001 y lo aumentamos a 0,001:
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Fig. 4.8: Evolucién de la accuracy con diferentes LRs del modelo predeterminado de S3PRL con
WavLM Base +.

De esta manera el modelo si convergié y logré obtener 0,8610 de accuracy top 1 con
cross entropy 0,9027, una accuracy similar con una cross entropy mucho mayor a nuestro
modelo asi como también una convergencia més tardia. La diferencia en la convergencia
estd en linea con los resultados de la seccién 4.7, donde incorporamos el uso de normaliza-
cién Z global. Aun asi, no se alcanzé la accuracy reportada y puede que requiera algunos
ajustes mds, aunque al no ser el foco de nuestra investigacién decidimos no continuar
con esta exploracién. Mientras que construir el modelo downstream desde cero fue muy
enriquecedor, a partir del experimento realizado, hemos aprendido que es fundamental
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priorizar, en las etapas iniciales de la experimentacién, un entendimiento profundo de los
baselines, puntos de referencia del estado del arte.

De este experimento nos llevamos algunas ideas interesantes. En primer lugar, el orden
de los poolings utilizado es distinto, por lo que en un préximo experimento exploraremos
esto. En segundo lugar, se utiliza una capa intermedia entre poolings, si bien puede que su
razén se deba simplemente a la adaptacion de distintos upstreams, nos parece una buena
idea darle al modelo una oportunidad de adaptar los features antes de poolearlos en el
tiempo. Por otro lado, en este benchmark no hay reportes de entropia cruzada, y los en-
trenamientos de estos modelos buscan la mayor accuracy sin monitorear entropia cruzada,
que si se usa como funcién de pérdida. En nuestro caso, nos concentramos en minimizar
la entropia cruzada, y esto puede ocasionar diferencias en los resultados. Finalmente, no-
tamos que nuestros mejores resultados al momento se posicionarian en un segundo lugar
con menos de un tercio de la cantidad de parametros que WavLLM Large y potencialmente
en mucho menor tiempo de entrenamiento (menos steps y con un modelo mas pequeno).

4.8.4. Orden de los poolings

Motivados por el orden inverso en los poolings usado en el downstream del SUPERB
benchmark, decidimos explorar el orden de los poolings y sus posibles combinaciones.
En nuestro caso y en su momento, el orden era conveniente para poder pre-calcular los
embeddings luego de pasar por el pooling temporal. En este momento, al usar poolings
con parametros a aprender, el orden no afecta tanto el tiempo de ejecucién de cada step.

De esta manera, probamos distintas combinaciones y ordenes de los poolings estudia-
dos, seleccionando los que mejores resultados habian obtenido anteriormente:

Primer pooling Segundo pooling Acc Topl Acc Topb CE NCE Steps
Weighted Average Layer Pooling Temporal Mean Pooling 0.8702 0.9601 0.5317  0.0762 20000
Temporal Mean Pooling Weighted Average Layer Pooling 0.8638 0.9569 0.5540  0.0794 18000
Weighted Average Layer Pooling Self-Attention Time Pooling 0.9206 0.9819 0.3621  0.0519 96000
Self-Attention Time Pooling Weighted Average Layer Pooling 0.9320 0.9839 0.3227  0.0463 80000
Weighted Average Layer Pooling Transformer Time Pooling 0.9281 0.9828 0.2736  0.0392 44000
Transformer Time Pooling Weighted Average Layer Pooling 0.9435 0.9875 0.2229 0.0320 48000
Mejor capa Temporal Mean Pooling 0.8662 0.9433 0.5960  0.0855 58000

Mejor capa Self-Attention Time Pooling 0.9226 0.9796 0.3340  0.0479 36000

Mejor capa Transformer Time Pooling 0.9450 0.9876 0.2253  0.0323 40000
Self-Attention Layer Pooling Self-Attention Time Pooling 0.9127 0.9781 0.4553  0.0653 48000
Self-Attention Time Pooling Self-Attention Layer Pooling 0.8921 0.9729 0.5719  0.0820 52000
Transformer Layer Pooling Transformer Time Pooling 0.9406 0.9860 0.2433  0.0349 70000
Transformer Time Pooling Transformer Layer Pooling 0.9470 0.9858 0.2294  0.0399 40000

Tab. 4.18: Resultados al combinar los distintos poolings vistos en diferentes 6rdenes.

De los resultados se desprende que no hay un orden entre pooling temporal y de capas
que sea siempre mejor; depende de cada modelo. Usando Weighted Average Layer Pooling
y Temporal Mean Pooling se obtiene una pequenia mejora utilizando el orden introduci-
do en S3PRL (primero pooling de capas). A su vez, la configuracién Transformer Time
Pooling con Weighted Average Layer Pooling se mantiene con la cross entropy minima,
mientras que Transformer Time Pooling con Transformer Layer Pooling tiene méxima ac-
curacy topl. Por otro lado, cabe mencionar que al emplear Mejor capa no tiene sentido
intercambiar el orden ya que no hay interaccién entre capas en el pooling temporal.
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4.8.5. Capa entre poolings

El modelo downstream de SUPERB luego de pasar por el upstream y el pooling de
capas hace una pasada por una capa intermedia antes de realizar un pooling temporal.
Esta capa permitiria una adaptacién del input al pooling temporal. A su vez, es usado
para reducir la dimensién de 768 a 256. En nuestro caso no reduciremos la dimensién sino
que mantendremos la dimensién en 768 tanto en la entrada como en la salida de esta capa
intermedia, asi esta capa realiza una transformacién lineal que incorpora 590k parametros
adicionales a entrenar.

Experimentaremos con esta capa intermedia con los que consideramos los tres modelos
m4és atractivos para esto, aquellos con los siguientes poolings: Self-Attention Time Pooling
+ Weighted Average Layer Pooling, Transformer Time Pooling + Weighted Average La-
yer Pooling, y Transformer Time Pooling + Transformer Layer Pooling. Respectivamente,
estas configuraciones poseen 2.4M, 11M y 22M parametros a entrenar, barriendo asi di-
ferentes complejidades. El segundo fue el modelo que menor cross entropy obtuvo en el
experimento anterior, mientras que el tercero fue el que llegd a la mejor accuracy. Por su
parte, el primero tiene la configuracién que alcanza los mejores resultados con su tamaifio
reducido, siendo asi una buena alternativa ante limitaciones de recursos.

Primer pooling Capa intermedia Segundo pooling | Acc Topl Acc Top5 CE NCE Steps
Self-Attention X Weighted Average 0.9320 0.9839 0.3227  0.0463 80000
Self-Attention v Weighted Average 0.9110 0.9800 0.4075  0.0584 44000

Transformer X Weighted Average 0.9435 0.9875 0.2229  0.0320 48000
Transformer v Weighted Average 0.9020 0.9783 0.4332  0.0621 40000
Transformer X Transformer 0.9470 0.9858 0.2294  0.0399 40000
Transformer v Transformer 0.9474 0.9874 0.2107 0.0302 40000

Tab. 4.19: Resultados al incorporar una capa intermedia lineal entre los poolings. En los tres casos,
el primer pooling es en el tiempo y el segundo pooling es a nivel capas.

De esta manera, se obtuvo que Transformer Time Pooling + Transformer Layer Poo-
ling con una capa intermedia obtiene la menor cross entropy, y a la vez, la mayor accuracy
topl.

Notamos que en los otros dos casos, donde el pooling posterior a la capa intermedia
es Weighted Average Layer Pooling, los resultados son peores aunque la convergencia es
mas rapida. El efecto en los resultados puede parecer razonable: esta capa intermedia
estd realizando una proyeccién del embedding de cada capa (obtenido luego del pooling
temporal), que podria verse como una adaptacién previa al pooling de capas. En esa linea,
se vio en el experimento 4.7 que la normalizaciéon Z por capas no mejord a la normalizacion
7 global, indicando que no hay grandes diferencias entre las representaciones de cada
capa. Por lo cual, no habria beneficio en adaptar los embeddings de cada capa antes
de poolearlos. Sin embargo, Transformer Layer Pooling si se ve beneficiado por la capa
intermedia anterior. Ello podria deberse a que este pooling, a diferencia del promedio
pesado, combina la informacién interna de cada capa, nutriendo al embedding de cada
capa del contexto de las otras capas.

Por otro lado, la convergencia més rapida es consistente con los resultados que fuimos
obteniendo hasta aqui, donde los modelos m&s complejos convergen mas rapido. En el
caso de Transformer Time Pooling + Transformer Layer Pooling tiene sentido que no sea
observable una mejor convergencia si observamos el aumento relativo de la complejidad al
sumar la capa intermedia: para Self-Attention + Weighted Average Layer Pooling significa
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un aumento del 16,81 %, para Transformer Time Pooling + Weighted Average Layer Poo-
ling 4,96 %, mientras que para Transformer Time Pooling + Transformer Layer Pooling
2,58 %.

4.9. Interaccion entre el cross entropy y la accuracy

A lo largo de la experimentacién, fuimos notando que al detener el entrenamiento con
FEarly Stopping, si bien la entropia cruzada habia convergido, la accuracy seguia mejorando.
Surgié entonces como hipétesis que al extender el entrenamiento encontrariamos modelos
con mejor accuracy al costo de peor entropia cruzada. Este fenémeno es relevante porque
en la actualidad la publicacién de resultados en tareas de clasificacién como SID mantiene
como practica reportar la accuracy de los modelos como tnica métrica. La diferencia entre
la entropia cruzada y la accuracy es que la entropia cruzada evalia la calidad de las
posteriors y la accuracy la calidad de las decisiones que se toman con esas posteriors para
una funcién de costo especifica donde todos los errores valen lo mismo. Por un lado, la
entropia cruzada no depende de como se toman las decisiones. Por el otro lado, siempre
es posible calibrar el modelo de mejor accuracy manteniendo la discriminacién y logrando
una mejor calidad de posteriors. En todo caso, al menos, no debemos ignorar a la entropia
cruzada.

En este experimento, decidimos entrenar los 3 modelos del experimento anterior, en
sus configuraciones con mejor desempeiio, por 250000 steps observando sus evoluciones en
cross entropy y accuracy.

De esta manera, en el modelo con Self-Attention Time Pooling + Weighted Average
Layer Pooling pudimos observar el fendmeno que entreveiamos y se grafica en la figura
4.9. Si bien la cross entropy alcanza su convergencia a los 74000 steps, la accuracy maéxi-
ma no se logra hasta los 218000 steps. El modelo que alcanza la mayor accuracy supera
por un punto porcentual al modelo con menor cross entropy, aunque presenta aproxima-
damente un punto mas de normalized cross entropy. Esta observaciéon nos lleva a una
conclusién importante sobre la metodologia de entrenamiento: para optimizar el desem-
peno en términos de accuracy, es preferible seleccionar el modelo con la mayor accuracy y
posteriormente realizar un proceso de calibracién. Este paso de calibracién es fundamental,
ya que la selecciéon basada en accuracy tiende a producir modelos descalibrados, es decir,
modelos cuyas probabilidades de salida no reflejan con accuracy su verdadera confianza,
tipicamente sobre-estimando sus predicciones.
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Fig. 4.9: Evolucién de las métricas en validacién durante el entrenamiento para el modelo con Self-
Attention Time Pooling + Weighted Average Layer Pooling.

del experimento 4.8.5, como se puede observar en la siguiente figura:

Metric Value

No obstante, este comportamiento no se observé en el modelo con mejores resultados

0.8 |

o
o
1

o
IS
|

0.2

0.0 1

|
|

Max Acc Topl

Acc Topl: 0.9518
Acc Top5: 0.9877
NCE: 0.0296

CE: 0.2063

Acc Topl: 0.9518
Acc Top5: 0.9877
NCE: 0.0296

CE: 0.2063

Min Cross Entrgpy

0e%% ...o-'.u."o..Oo"'o""o‘o"*’."'”on0u.o.00.".n"-ﬁ.o.o.o-u-o.".“o“oo. 690%00%,09%0,_0,0000 o, 0q00

Metrics
—e— Accuracy Topl
—eo— Normalized Cross Entropy

Y \

250000

50000

100000

Step

150000

200000

Fig. 4.10: Evolucién de las métricas en validacién durante el entrenamiento para el modelo con
Transfomer Time Pooling + Capa intermedia + Transfomer Layer Pooling.

Por 1ltimo, el modelo con Transformer Time Pooling + Weighted Average Layer Poo-

ling revel6 un comportamiento inesperado. A diferencia del experimento anterior, donde
este modelo no habia obtenido los mejores resultados, en esta ocasion logré superar a los
demas modelos tanto en cross entropy como en accuracy después de 214000 steps:
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Fig. 4.11: Evolucién de las métricas en validacién durante el entrenamiento para el modelo con
Transformer Time Pooling + Weighted Average Layer Pooling.

Esta observacién cuestiona la efectividad del Early Stopping en algunos casos, ya que
en este caso logré mejores resultados sin su uso (al utilizar Early Stopping habiamos
obtenido 0.9435 de accuracy y 0.2229 de entropia cruzada en 48000 steps, véase la Tabla
4.19). Al no ser sencillo identificar cudles serén estos casos donde el Early Stopping no es
efectivo, puede llegar a ser conveniente fijar la cantidad de steps a realizarse o monitorear
oscilaciones que determinen mejor cuando un modelo convergié. Aun asi, en la figura
anterior, se observa un caso en el que el Farly Stopping si funcioné adecuadamente para
encontrar al mejor modelo.

Es importante aclarar que este experimento fue replicado en una etapa final de la inves-
tigacién, posterior a la secuencia experimental que se presenta a continuacién en esta tesis.
Si bien los resultados obtenidos cuestionan la eficacia del Farly Stopping y demuestran
un mejor desempeno del modelo Transformer Time Pooling + Weighted Average Layer
Pooling, los experimentos subsiguientes mantienen el uso de Farly Stopping por sus venta-
jas computacionales. Asimismo, se continuard considerando al modelo Transformer Time
Pooling + Capa intermedia + Transformer Layer Pooling como el modelo downstream
6ptimo obtenido en nuestra investigacion.

4.10. Conclusiones de la exploracién del modelo downstream

En este capitulo hemos llevado a cabo una exploracién exhaustiva de la configuracién
del modelo downstream con el objetivo de optimizar su desempeno en la tarea de identi-
ficacién de hablantes. A continuacién, sintetizamos los principales hallazgos obtenidos en
cada uno de los aspectos evaluados.

Uno de los elementos més analizados fue la tasa de aprendizaje, donde se observé que
los valores predeterminados en la literatura (i.e., 1073, 5 % 107%,10™%) suelen ser los mas
estables (ver Seccién 4.4) . Adicionalmente, se evidencié la clara interaccién entre el LR
y el tamano del batch, permitiendo cuantificar el grado de degradacién del desempeno
al reducir BS. Esto nos proporcioné informacién clave para entender cémo se modificaria

250000
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el desempeno con nuestras limitaciones de recursos. Mas adelante, también se noté una
relacién entre la cantidad de cabezas de atencién y el LR, sobre la que no se profundizd,
pero fue uno de los factores més influyentes al usar Self-Attention.

En los primeros experimentos observamos que el modelo downstream escalaba mejor a
lo ancho que a lo largo: no mejoraba al aumentar la cantidad de capas pero si al aumentar
el tamano oculto. De esta manera, la MLP propuesta inicialmente antes de la capa de
salida quedd reducida a una tnica capa.

Luego, al utilizar el conjunto de datos completo, detectamos que los modelos mas gran-
des eran mas propensos al sobre-ajuste. Esto nos llevd a reconsiderar la configuracion y
optar por un modelo con un tamano oculto menor. Esta decision resalta la importancia de
evaluar el desempeno del modelo en diferentes escalas del dataset. Adn asi, la utilizacién
de una particién reducida de datos fue vital en las etapas iniciales para poder realizar una
exploracién minuciosa antes de escalar los experimentos al conjunto de datos completo.
Otro factor determinante en la factibilidad de nuestra exploracion fue la estrategia de pre-
célculo de embeddings del modelo upstream, que redujo el tiempo de entrenamiento en
més de un orden de magnitud. Gracias a esta técnica, pudimos realizar experimentaciones
mas extensas y con mayor granularidad en los hiperparametros sin que el costo compu-
tacional fuera prohibitivo. Posteriormente, la normalizacién de los embeddings mediante
el normalizaciéon Z global propuesto mejoré notoriamente la convergencia, reduciendo a
un tercio la cantidad de steps en el entrenamiento.

Finalmente, en lo que respecta a los métodos de pooling, la exploraciéon progresiva de
diferentes técnicas y la incorporacién de mecanismos de atencién fue clave para optimizar
el desempeiio final del modelo. El promedio de los embeddings, siendo la estrategia més
simple, se sostuvo como una técnica adecuada y la estadistica mas informativa. Luego, la
investigacién de los mecanismos de atencién abarco desde configuraciones bésicas hasta ar-
quitecturas mas sofisticadas como SummaryMizing y Transformers. En esta investigacién
la cantidad de cabezas de atencién en conjunto con un ajuste del LR demostraron ser los
factores mas influyentes en el rendimiento, como se mencioné anteriormente. La configu-
racion optima se logré utilizando Transformers tanto para el pooling temporal como para
el de capas. En cuanto a la arquitectura general del modelo, los experimentos revelaron
que el impacto del orden de los poolings esté estrechamente ligado a los distintos métodos
de pooling y no hay un orden que sea siempre superior. Andlogamente, el efecto de una
capa intermedia entre poolings demostré ser altamente dependiente de la configuracion
especifica, sugiriendo que la arquitectura éptima requiere una consideracion cuidadosa de
estas interacciones.

En resumen, la exploracion detallada del modelo downstream nos permitié no solo
alcanzar resultados de vanguardia en SID (0,9474 de accuracy top 1 y 0,2107 de cross
entropy) con un modelo upstream pequeno, sino también entender los fundamentos detras
de cada decisién de diseno y entrenamiento. Estos hallazgos no solo optimizaron nuestro
modelo final, sino que también ofrecen lineamientos valiosos para futuras investigaciones
en optimizaciéon de modelos de habla en escenarios de recursos limitados.
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Hasta este punto, hemos buscado el modelo downstream con la arquitectura y configu-
racion de hiperparametros éptima manteniendo siempre congelado al modelo upstream, es
decir, sin modificar sus pesos durante los entrenamientos. En esta seccion, entrenaremos
también al modelo upstream, analizando sus costos y beneficios. Acunaremos el término
full-finetuning para referirnos al entrenamiento con el upstream completamente descon-
gelado. Si bien no analizaremos descongelamientos parciales del modelo upstream, este
término explicita que el descongelamiento es total y nos permitira distinguirlo del uso de
técnicas PEFT que se vera mas adelante.

Como modelo downstream, seleccionamos el que utiliza Transformer Time Pooling,
una capa intermedia, y Transformer Layer Pooling. Este modelo es el mas grande en-
tre los modelos downstream evaluados, con 23.6M de parametros. Aunque también iden-
tificamos modelos m&s pequenios con resultados similares, al realizar full-finetuning las
diferencias en el tamafio de los modelos downstream no son tan significativas. En este con-
texto, los recursos computacionales necesarios entre los diferentes modelos downstream
no resultan en diferencias relativas considerables, por lo que tiene sentido en este capitulo
evaluar full-finetuning utilizando el mejor downstream independientemente de su cantidad
de parametros.

5.1. Programacién de la tasa de aprendizaje

El primer y mas sencillo experimento es simplemente descongelar el upstream. Sin
embargo, al hacer esto nos encontramos con que no se obtuvieron mejores resultados
(véase la tabla 5.2) incluso con mucho més parametros entrenables. No sélo eso, sino que
los resultados son significativamente peores. Entonces, al ahondar en las causas, nuestro
primer acercamiento fue sospechar del LR. Estos modelos suelen utilizar estrategias mas
complejas que un LR fijo ya que nos encontramos entrenando un orden de magnitud de
parametros mas grande y multiples capas de Transformers. Por consiguiente, indagamos
acerca de las estrategias de fine-tuning empleadas en tareas anédlogas y asi arribamos a un
reporte ! en el repositorio oficial del modelo. En este sitio reportan la programacién del
LR que usaron los autores para Speaker Verification (SV), una tarea intimamente ligada
a SID.

La programacién de LR planteada en ese foro incluye tres etapas, donde en la pri-
mera solo se entrena al downstream, y en las otras dos, a ambos. En todas las etapas se
utiliza descenso por el gradiente estocédstico (SGD) con momentum como optimizador (a
diferencia de lo que venimos usando nosotros hasta aqui, que es el optimizador Adam)
y una programaciéon de LR con algunas épocas de warm-up y luego un decrecimiento
exponencial. Esta estrategia hace uso de los siguientes conceptos clave:

s Momentum (Polyak, 1964): Esta técnica acelera el descenso por el gradiente al acu-
mular un vector de velocidad v en direcciones donde persistentemente se reduce la
funcién de pérdida. Formalmente, en su versién clasica se modifica la ecuacion de
actualizacion de pardametros (2.3) de la siguiente manera:

! https://github.com/microsoft /unilm/issues/695
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vt = ot — nVIL(6', D) (5.1)

ot = ot 4 1! (5.2)

Donde p € [0,1] es el coeficiente del momentum. Para mayor detalle, Sutskever
et al. (2013) explica la importancia de la inicializacién del LR asi como el uso del
momentum.

. Weight decay: También conocida como regularizacion L2, es una técnica de regula-
rizacién que modifica la funcién de pérdida agregando un término de penalizacién
proporcional a la norma euclidiana de los parametros:

Lnueva(eu D) = Lanterior(eta D) +A ”9||§ (53)

Donde A es un valor que determina la magnitud de la penalizacién, haciendo que
valores mas altos promuevan pardmetros de menor magnitud.

= Warm-up: Consiste en aumentar gradualmente desde cero hasta un valor objetivo
al LR durante la etapa inicial del entrenamiento. La etapa de warm-up permite que
el modelo se adapte gradualmente a los patrones en los datos sin sobre-ajustarse
prematuramente a caracteristicas especificas o incidentales que podrian aparecer al
inicio del entrenamiento. De esta manera, el warm-up actiia como un mecanismo de
regularizacién inicial. Kalra and Barkeshli (2024) muestra que el warm-up permite
utilizar mayores LRs asi como también previene la divergencia del modelo durante
el entrenamiento.

= Faponential Decay: Empezar con un LR grande y luego decrementarlo multiples
veces es una técnica de facto en el entrenamiento de redes neuronales modernas
que ha mostrado resultados empiricos favorables. Si bien hay discusién acerca de
las causas de esto (You et al., 2019), mientras un LR inicial grande evita minimos
locales, el decrecimiento ayuda al modelo a converger e incluso aprender patrones
mas complejos (que requieran cambios sutiles en los pesos).

Antes de definir las configuraciones concretas de cada etapa de la programacion de
LR, una cuestién muy importante a tener en cuenta es que en la primera etapa reportan
haber usado 1024 como tamano de batch, en la segunda 512 y en la tercera 192. Nosotros
hemos estado restringidos a un batch de 32, y como concluimos del experimento 4.4, este
parametro tiene interaccién con el LR, por lo que debemos ajustar los valores dados para
el BS = 32. Una manera de solucionar esto es ajustar siguiendo una proporcién lineal
(Goyal et al., 2017):

. nuevo_batch_size
nuevo_lr = anterior_lr x , - (5.4)
anterior_batch_size

La siguiente tabla resume la configuracién usada en cada una de las tres etapas de la
estrategia planteada con el escalamiento mencionado:
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Etapa ‘ Modelo a optimizar Weight Decay Warm-up Epochs LR after warm-up LR Final

1 Downstream 4%x1071 1 2% 1072 1,25 %1077
2 Upstream + Downstream 1074 3 5% 1074 2,75 %1074
3 Upstream + Downstream 1074 2 1,33%107 3,33%107°

Tab. 5.1: Valores de los distintos hiperparametros para las distintas etapas de la programacién de
LR propuesta.

En todas las etapas se utiliza momentum = 0,9.

Como primer acercamiento al fine-tuning experimentamos con full fine-tuning, entre-
nando conjuntamente todos los parametros de los modelos upstream y downstream. En
este primer experimento exploramos full fine-tuning sin la etapa inicial en la que se entrena
solo el downstream. Para ello primero consideramos usar la configuracion de la etapa 2 de
la programacién de LR, que estd pensada para usarse con el upstream descongelado. Sin
embargo, al usar esta configuracion para entrenar a todo el modelo sin haber entrenado
al downstream antes se alcanzaron resultados peores que utilizando un LR fijo. Creemos
que esto se debe a que la etapa 2 esta pensada como refinamiento partiendo de un downs-
tream entrenado, a su vez se tiene un especial cuidado en no sobre-ajustar al realizar full
fine-tuning, por lo que es mas conservador en la modificacion de pesos. Luego, probamos
utilizando la configuracion del LR de la etapa 1 pero optimizando ambos modelos, cuyos
resultados son mostrados en la Tabla 5.2 junto con los obtenidos al usar un LR fijo. Para
una obtener una comparacién completa también entrenamos al modelo downstream con
el upstream congelado utilizando la configuracién de la etapa 1 de la programacién de
LR o un LR fijo. Los valores de la tabla con LR ’dindmico’ corresponden al uso de la
configuracién de la etapa 1.

LR Upstream Descongelado | Acc Topl Acc Top5 CE Normalized CE Steps

Fijo X 0.9474 0.9874 0.2107 0.0302 40000
Fijo v 0.8241 0.9377 0.7553 0.1083 22000
Dinamico X 0.9617 0.9899 0.2186 0.0314 82000
Dindmico v 0.9485 0.9879 0.2563 0.0368 62000

Tab. 5.2: Comparacién de resultados al entrenar en una etapa con LR fijo en 10~ y con la pro-
gramacién de LR (Dindmico) de la etapa 1 de la Tabla 5.1 con el upstream congelado y
descongelado (full fine-tuning).

En cuanto a los resultados, observamos que la programacién de LR logra mejoras
notables para hacer full fine-tuning. Al entrenar solamente el downstream la programacién
mejora la accuracy en detrimento leve de la cross entropy y una convergencia en el doble
de tiempo. En cuanto a la convergencia del full fine-tuning los modelos convergen en
una menor cantidad de pasos aunque cada paso es mas lento (aproximadamente 1,88it/s
contra 2,77it/s) ya que al descongelar el upstream se ajustan mds pardmetros durante el
entrenamiento.

En el siguiente grafico se puede comparar las distintas evoluciones de la cross entropy
en entrenamiento con el LR fijo y con la programacién presentada para full fine-tuning.
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(b) Funcién de pérdida suavizada a lo largo del entrenamiento.

Fig. 5.1: Evolucién del LR y la cross entropy en batches de la particién de entrenamiento durante
el entrenamiento con full fine-tuning, correspondiente a los valores de la tabla 5.2.

De estos graficos se desprende que la programaciéon de LR logra una convergencia mas
suave con el decrecimiento exponencial. A su vez, con la programacién de LR se consigue
una funcion de pérdida consistentemente menor a lo largo del entrenamiento. Consideramos
que la anterior visualizacion es fundamental para ajustar las diferentes estrategias de LR a
diferentes contextos y reconocer si hay que ajustar ciertos hiperparametros. Por ejemplo,
seria razonable mantener el warm-up hasta notar un incremento en la varianza de la
funcion de pérdida. También, el decrecimiento exponencial del LR fuerza la convergencia
al tender a cero a los ajustes en los pesos, por lo que podria considerarse sostener un LR
constante (podria ser alrededor del 10~#, que hemos utilizado hasta aqui) a partir de cierto
punto antes de continuar su decrecimiento a cero (una tercera parte de la programacién
con la técnica Reduce LR On Plateau). No obstante, nos atendremos a la programacién
antes descrita y mantenemos como posible trabajo futuro la exploracién de técnicas ad-hoc
y alternativas.
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El siguiente paso de la experimentacién de la programacion de LR es probar un en-
trenamiento en etapas. La primera etapa corresponde en entrenar el downstream, y las
siguientes etapas haran full fine-tuning tomando como base al modelo entrenado en la
etapa anterior. En cada etapa, se utilizard la configuracién correspondiente de la progra-
macién de LR presentada anteriormente.

Etapa ‘ Accuracy Topl Accuracy Top5 Cross Entropy Normalized Cross Entropy Steps

1 0.9617 0.9899 0.2186 0.0314 82000
2 0.9697 0.9926 0.1775 0.0255 50000
3 0.9697 0.9926 0.1775 0.0255 22000

Tab. 5.3: Resultados del entrenamiento de cada etapa con las programaciones de LR presentadas
anteriormente, con los valores de hiperparametros detallados en la tabla 5.1.

Al analizar los resultados presentados en la tabla, se observa que la ejecucién de la
etapa 3 no produjo mejoras en el rendimiento del modelo, lo cual sugiere que esta etapa
adicional de entrenamiento no aporté valor al proceso de optimizacién. Las razones de esto
pueden ser multiples: la programacién propuesta era para SV (una tarea mas compleja que
SID), sobre otro dataset més grande (VoxCeleb2), y utilizando otros tamanos de chunk al
entrenar (nosotros usamos siempre 5s mientras que en el esquema propuesto han variado
entre etapas). Por otro lado, vemos que la segunda etapa, en la que se entrena el upstream,
se consigue pequenas ganancias en todas las métricas por el costo de 50000 steps de full
fine-tuning. De todas maneras, toda ganancia es valiosa y mas aun en estos niveles de
performance, donde cada vez es mas dificil conseguirlas. Nos quedaremos entonces con
las primeras dos etapas como el mejor esquema encontrado para realizar fine-tuning en
nuestro contexto.

Finalmente, podemos notar que la programacion de LR presentada en esta secciéon es
un ejemplo claro de estas configuraciones axiomaticas que se suelen presentar en algunos
papers, y mencionamos como motivacién en la introduccién de este trabajo. Como no
tenemos la capacidad de explorar en profundidad todos los valores de hiperparametros
que se presentan, solo nos vemos en capacidad de implementar lo expuesto y probar con
los valores dados ajustandolos a nuestro contexto. Los sustentos de estos valores suelen
ser que son la adaptacién de otro paper en un contexto similar, o bien los sustentos
simplemente residen en la intuicién de los autores. Mas atin, en este caso, el acceso a esta
informacién se encuentra tinicamente en el foro del repositorio oficial.

5.2. LoRA

En este experimento, evaluamos reemplazar el full fine-tuning por técnicas PEFT, en
particular, LoRA. Especificamente, los médulos seleccionados para la adaptacién son las
capas de la feed-forward en los bloques de Transformers, como fue hecho en Lin et al. (2024)
para reconocimiento de emociones en el habla (Speaker Emotion Recognition, SER).

Asi, en primer lugar, realizamos una comparacién entrenando los modelos con estas
técnicas sin haber entrenado al downstream antes, de la misma forma que comenzamos el
experimento anterior. En cuanto al LR, utilizaremos la configuracién etapa 1 del crono-
grama expuesto en el anterior experimento. Para la configuracion de los métodos PEFT,
siguiendo los valores predeterminados en modelos similares adoptamos r = 16 y a = 32,
esta proporcién entre ambos (2r = «) ha mostrado obtener el mejor desempeno (Biderman
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et al., 2024). También, por defecto, se suele utilizar Dropout con probabilidad 0,05 sobre
la entrada de las matrices de LoRA. Con rango 16, en WavLM Base+ se estd aproximan-
do matrices de pesos de 768x3072 con matrices de 768X16 y 1623072, es decir, ajustes
de 2.36M de parametros aproximados con 61440 pardametros. Con esta dimensionalidad
es posible que no se logre capturar la suficiente complejidad de los ajustes, es por eso
que también experimentamos con otra configuracién con la que se han visto buenos re-
sultados (Biderman et al., 2024; Raschka, 2023): » = 256 y o = 512. También, sumamos
r = 64,a = 128 como configuracion intermedia ya que r = 256 aumenta la cantidad de
parametros considerablemente.

PEFT Parametros entrenados ‘ Acc Topl Acc Topb CE NCE Steps

X 23.6M (downstream) 0.9617 0.9899 0.2186  0.0314 82000

X 118M (upstream + downstream) 0.9485 0.9879 0.2563  0.0368 62000

LoRA (r =16, = 32) 25.1 M 0.9598 0.9910 0.2265 0.0325 60000

LoRA (r =64, = 128) 29.5 M 0.9674 0.9931 0.2011  0.0288 56000
LoRA (r = 256,a = 512) 472 M 0.9690 0.9944 0.1914 0.0274 68000

Tab. 5.4: Resultados al usar PEFT para entrenar en una tnica etapa. La cruz en la columna PEFT
hace referencia a la no utilizacién de técnicas PEFT.

Los resultados muestran que la implementacién de LoRA en estos médulos mantiene
un desempeno consistentemente por encima del full fine-tuning. Méds ain, con r = 64 y
r = 256 la utilizacién de LoRA logra superar al rendimiento del modelo en que solo se en-
trend al downstream. En términos de eficiencia computacional, la cantidad de parametros
entrenados impacta directamente en el consumo de recursos de GPU durante el entre-
namiento. Mientras el full-finetuning incorpora 94.4M de parametros entrenables, LoRA
con r = 16 incorpora 1.5M y con r = 256, 22.6M. Con r = 64 se incorporan 5.9M de
pardmetros y se obtienen resultados intermedios, por lo que también son una opcién a
considerar. Esta reduccion significativa en el uso de recursos computacionales representa
una ventaja importante de los métodos PEFT.

Por lo tanto, hemos visto que una configuracién de LoRA logra mejorar la primera
etapa de entrenamiento, por lo que cabe la duda de cudl es la mejor estrategia de entre-
namiento al usar esta técnica. El siguiente paso, siguiendo los resultados del experimento
5.1, serd entrenar partiendo del downstream entrenado reemplazando el full fine-tuning
por el método PEFT.

PEFT Parametros entrenados ‘ Acc Topl Acc Topb CE NCE Steps

X 118M 0.9697 0.9926 0.1775  0.0255 50000

LoRA (r =16, = 32) 25.1 M 0.9667 0.9924 0.1680  0.0241 68000

LoRA (r =64, = 128) 29.5 M 0.9676 0.9930 0.1632  0.0234 74000
LoRA (r = 256,a = 512) 472 M 0.9678 0.9930 0.1608 0.0231 44000

Tab. 5.5: Comparacién de resultados al utilizar métodos PEFT en la segunda etapa de entrena-
miento, es decir, partiendo del mejor downstream entrenado.

En este caso, notamos que los métodos PEFT en sus diferentes configuraciones no
mejoran el desempeno en accuracy del full fine-tuning pero si logran una menor cross
entropy, que es la métrica que buscamos optimizar con nuestra configuracion de entrena-
miento. Ademads, con r = 16, en este contexto si se consigue también mejorar el desempeno
con respecto a solo entrenar el modelo downstream. Por lo tanto, esta configuracién se
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presenta como una alternativa atractiva para disminuir la cross entropy y mejorar ligera-
mente la accuracy con una cantidad minima de pardmetros adicionales. Por su parte, con
r = 256 entrenando en esta segunda etapa se alcanza una mejora notable en cross entropy,
pero una accuracy menor a entrenar en una unica etapa. A su vez, con r = 64 se alcanza
una accuracy equivalente, por lo que la eleccién de 256 como rango solo se sostiene en
busqueda de la menor cross entropy.

En conclusién, consideramos que la utilizacién de LoRA en este contexto no solo es una
alternativa atractiva por su menor cantidad de pardmetros sino que es preferible para tener
una menor cross entropy. La eficiencia computacional de este método no solo posibilita un
entrenamiento mas veloz sino que ademas permite utilizar batches mas grandes al ocupar
menos memoria.
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6. CONCLUSIONES Y TRABAJO FUTURO

En este trabajo, exploramos distintas técnicas, hiperparametros y arquitecturas para
realizar Transfer Learning en SID y llegamos a resultados estados del arte. Los resultados
compilados en la experimentacion son el reflejo de méas de 3233 horas de tiempo de eje-
cucién, méas de cuatro meses y medio. Ademads, si bien ha quedado implicito por no ser
el foco del trabajo, este proceso nos dejé aprendizajes y un gran desarrollo técnico en la
implementacién del cédigo necesario para realizar cada experimento.

En el capitulo 4 nos enfocamos en optimizar el modelo downstream, logrando con un
modelo upstream pequeno (WavLM Base+) alcanzar mejores resultados que modelos con
una cantidad de parametros tres veces superior. Comenzamos la experimentacién con los
hiperparametros mas esenciales de una red neuronal, con los que pudimos profundizar en
los fundamentos detras de cada decisién de diseno. Identificamos como factores determi-
nantes para el desempeno del modelo al LR y la utilizacion de atencién en los mecanismos
de pooling. Este dltimo aspecto requirié una exploraciéon detallada de hiperparametros,
dado que los resultados presentaron alta varianza. Aunque inicialmente la atencién co-
mo método de pooling produjo resultados inferiores al promedio, una afinada exploracién
permitié obtener mejoras significativas en el desempeno. En particular, el factor que més
marcé la diferencia fue la cantidad de cabezas de atencién en combinacién con el LR.

En cuanto a la convergencia, en reiteradas ocasiones observamos que modelos mas
complejos convergen més tempranamente, y si bien muchas veces alcanzan un mejor des-
empeno, también son m&as propensos a sobre-ajustar a los datos de entrenamiento. A su
vez, logramos reducir hasta la mitad el tiempo de entrenamiento con la utilizacion de
técnicas de normalizacién Z. Otro factor fundamental en los tiempos de ejecucion y que
nos permitié poder explorar mas hiperpardametros fue pre-calcular los embeddings del
upstream.

Por otro lado, entre los elementos que no mostraron buenos resultados se encuentran la
utilizacién de diferentes estadisticas concatenadas en reemplazo del promedio como poo-
ling temporal, y el uso del Positional Encoding convencional en el pooling temporal con
atencién. Las razones por las que obtuvimos estos resultados en la concatenacién de dis-
tintas estadisticas creemos que podrian radicar en que la distribucién resultante presenta
valores atipicos que distorsionan la representacién, o simplemente, estas estadisticas no
aportan informacién adicional usando los embeddings de WavLM Base+. En cuanto al
Positional Encoding, una posible explicacién para su bajo rendimiento podria estar re-
lacionada con la escala de los valores generados. Es posible que el encoding introduzca
magnitudes que dominen los valores originales de los embeddings, provocando una pérdida
de informacion relevante para la tarea. Otra explicacion posible es que la tarea de identi-
ficacién de hablante no se beneficia de un entendimiento del orden temporal, ya que las
caracteristicas que determinan la identidad podrian estar presentes en toda la senal de
audio y ser locales.

Tras explorar los distintos hiperparametros y aprender qué combinaciones llevaban a
un mejor desempeno, arribamos a un modelo downstream que utiliza transformers tanto
para pooling temporal como de capas y que alcanzd los mejores resultados: 0,9474 de
accuracy y 0,2107 de cross entropy.

Luego, en el capitulo 5 incursionamos en el fine-tuning del modelo upstream. Asi, en-

95



56 6. Conclusiones y trabajo futuro

contramos que entrenar a todo el modelo no es una buena estrategia por si sola, y que
requiere un mayor cuidado en el ajuste de los pesos. Obtuvimos ligeras mejoras en el des-
empeno con un entrenamiento por etapas con diferentes programaciones dinamicas de LR.
A su vez, nos adentramos en métodos PEFT experimentando con LoRA y entendiendo su
funcionamiento e hiperpardmetros. De esta manera, arribamos a una cross entropy minima
de 0,1608 entrenando primero el downstream y luego entrenando también el upstream con
LoRA. La accuracy méxima (0,9697) fue alcanzada haciendo full fine-tuning en la segunda
etapa. Como conclusién de la seccién, notamos que no siempre modelos con mayor canti-
dad de pardmetros llegan a mejores resultados sino que a mayor cantidad de parametros
se requiere un mayor cuidado para ajustar el LR e integrar el modelo upstream, el cual ya
se encuentra pre-entrenado, con el modelo downstream, que posee pesos aleatorios. Esta
diferencia en el conocimiento adquirido por las distintas partes de la red, puede llevar a que
el upstream se modifique demasiado durante el finetuning, compensando la falta de entre-
namiento del downstream, y olvidando su conocimiento previo llevando a un sobreajuste
de los datos.

Por 1ltimo, a lo largo de la investigacién se fueron sembrando multiples interrogantes
que quedaron fuera del alcance de este trabajo, pero que representan direcciones pro-
metedoras para futuras investigaciones. Entre las principales cuestiones destacamos las
siguientes:

= Exploracién en otras tareas y datos: Experimentar con el modelo downstream
hallado en distintas tareas y conjuntos de datos. ; Son consistentes nuestros hallazgos
en otros contextos y dominios?

= Evaluaciéon de miiltiples modelos upstream: Analizar si modelos méas comple-
jos, como WavLM Large, pueden aprovechar mejor las ventajas del full fine-tuning y
explorar si estas capacidades se traducen en un mejor desempeno en tareas especifi-
cas.

= Técnicas de full fine-tuning: Experimentar con diversas técnicas de finetuning y
full-finetuning, entre ellas: (1) entrenar unicamente la tltima capa, (2) la técnica de
gradual unfreezing, (3) diferentes programaciones de LR para cada capa .

= Profundizacién en la programacion del LR: Si bien hay trabajo precedente
(Wu et al., 2019b), todavia queda un vasto espacio para comprender a fondo las pro-
gramaciones de LR y como determinar estrategias 6ptimas. Una pregunta especifica
en la misma linea es como interactian las cabezas de atencién con el LR.

= Relacién entre la complejidad del modelo downstream y el domain-shift:
Al haber incorporado mayor complejidad en el downstream y alcanzado resulta-
dos que han sido mejorados solo levemente por el finetuning nos surge la siguiente
pregunta: ; Un mejor downstream hace que el upstream tenga menor domain-shift?
;,Coémo se compara con técnicas PEFT?

= Medicion de la importancia de los hiperparametros: Disefiar una métrica para
evaluar la relevancia de cada hiperpardmetro. Esto permitiria asignar los recursos
de manera mas eficiente al focalizar la exploracién de hiperparametros en los mas
influyentes para el desempertio final.
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= Adapters vs Downstream: ; Es mejor incorporar nuevos pesos dentro del modelo
upstream, como hace LoRA, o més pesos en el downstream? En nuestro downstream
final utilizamos distintos mecanismos de atencion, ; Cémo se compara adaptar médu-
los de atencién con agregar mecanismos de atencién en el downstream?

A pesar de las multiples direcciones de investigacion que quedan abiertas, consideramos
que este trabajo nos ha proporcionado una comprension mas profunda de los mecanismos
de Transfer Learning aplicados a SID. Hemos logrado establecer una metodologia sis-
tematica para la optimizacion de modelos downstream y hemos demostrado que modelos
relativamente pequenos, cuidadosamente optimizados, pueden competir e incluso superar
a arquitecturas mucho mas complejas. Los hallazgos sobre la interacciéon entre mecanismos
de atencién, estrategias de pooling y programaciones de LR no solo contribuyen al avance
del estado del arte en identificaciéon de hablantes, sino que también ofrecen valiosas pers-
pectivas para el diseno de soluciones mas eficientes en tareas de procesamiento de audio
en general.

Mis alla de los resultados numéricos, este proyecto fue una oportunidad invaluable para
profundizar en los fundamentos del aprendizaje profundo y adquirir experiencia préactica
en la implementacién y optimizacién de modelos complejos en PyTorch. En definitiva, este
trabajo demuestra que el éxito en Transfer Learning no siempre radica en utilizar modelos
mas grandes, sino de comprender a fondo como aprovechar y adaptar eficientemente las
representaciones pre-entrenadas para tareas especificas.
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