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TRANSFER LEARNING EFICIENTE CON MODELOS
PRE-ENTRENADOS DE HABLA PARA IDENTIFICACIÓN DE

HABLANTES

En los últimos años, el avance acelerado del aprendizaje automático ha transformado
el procesamiento de datos, ofreciendo modelos pre-entrenados capaces de capturar repre-
sentaciones semánticas complejas. Sin embargo, esta evolución ha venido acompañada de
un creciente costo computacional, centralización de recursos en pocas instituciones y un
enfoque orientado a maximizar los resultados, dejando en segundo plano la comprensión
de las razones detrás de muchas decisiones de diseño de la arquitectura y el entrenamiento
de modelos.

En esta tesis, exploramos técnicas eficientes de transfer learning aplicadas a modelos
pre-entrenados de habla para la tarea de identificación de hablantes (Speaker Identifi-
cation, SID). En este marco, nuestro objetivo principal fue comprender en profundidad
el impacto de configuraciones clave en el diseño y entrenamiento de modelos. Primero,
experimentamos con múltiples arquitecturas e hiperparámetros con el fin de encontrar el
mejor modelo downstream utilizando WavLM Base+ como modelo upstream. En este pro-
ceso, analizamos factores como la tasa de aprendizaje, diferentes mecanismos de pooling y
normalización. Entre nuestros hallazgos más significativos, demostramos que la incorpora-
ción de mecanismos de atención en el pooling temporal y de capas puede ofrecer ventajas
significativas, alcanzando resultados estado del arte con una cantidad de parámetros am-
pliamente inferior. A su vez, investigamos técnicas de full fine-tuning y de fine-tuning
eficientes en parámetros (Parameter Efficient Fine-Tuning, PEFT), en particular, LoRA
y las ventajas que puede traer su uso.

Palabras claves: Identificación de Hablantes, Modelos Pre-entrenados de Habla, Proce-
samiento del Habla, Fine-Tuning, Transfer Learning, Transformers.
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EFFICIENT TRANSFER LEARNING FOR PRE-TRAINED SPEECH
MODELS IN SPEAKER IDENTIFICATION

In recent years, the rapid advancement of machine learning has transformed data pro-
cessing, enabling pre-trained models to capture complex semantic representations. Howe-
ver, this progress has been accompanied by increasing computational costs, a centralization
of resources within a few institutions, and a predominant focus on maximizing results, of-
ten at the expense of understanding the rationale behind many architectural and training
design decisions.

In this thesis, we explore efficient transfer learning techniques applied to pre-trained
speech models for Speaker Identification (SID). Within this framework, our primary ob-
jective was to gain a deeper understanding of the impact of key configurations in model
design and training. We conducted extensive experimentation with multiple architectures
and hyperparameters to identify the optimal downstream model, using WavLM Base+ as
the upstream model. In this process, we analyzed factors such as learning rate, different
pooling mechanisms, and normalization techniques. Among our most significant findings,
we demonstrated that the incorporation of attention mechanisms in temporal and layer-
wise pooling can provide substantial benefits, achieving state-of-the-art results with a
significantly smaller number of parameters. Furthermore, we investigated full fine-tuning
techniques and Parameter-Efficient Fine-Tuning (PEFT) approaches, specifically LoRA,
and explored the benefits it can offer.

Keywords: Speaker Identification, Pre-trained Speech Models, Speech Processing, Fine-
Tuning, Transfer Learning, Transformers.
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Mis ojos miran hacia arriba llenos de felicidad, de gracias, de palabras, de esperanzas
que no entiendo. El haber llegado, la vida entre las cosas, el camino. En este último tiempo,
aprend́ı lo que tantas veces se me fue olvidando. Ni la profesión, ni las letras, ninguna de
las obligaciones de la vida que llevo con mis tontas ambiciones. Los amigos, la familia, la
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1. INTRODUCCIÓN

En los últimos años la comunidad cient́ıfica ha experimentado una gran cantidad de
avances en el campo del aprendizaje automático, que con una enorme vertiginosidad en-
tregan cada vez mejores resultados en las aplicaciones más diversas. En campos donde
se utilizaban técnicas variadas y espećıficas a sus problemas, se comienza a observar una
convergencia en el uso de herramientas de aprendizaje automático como redes neuronales,
fine-tuning, embeddings, atención. Tanto los modelos como los datos con los que son en-
trenados han crecido exponencialmente, logrando una revolución en la representación de
distintos datos como textos, audios e imágenes, llegando incluso a encontrar cierto sentido
semántico en estas representaciones.

Sin embargo, si bien actualmente es mucho más sencillo llegar a grandes resultados,
esta evolución ha hecho que los recursos necesarios para desarrollar estos modelos sean
cada vez más restrictivos. Mientras estos modelos crecieron en complejidad, la capacidad
de entender sus resultados se ha visto afectada, y en general, ignorada. Asimismo, las
limitaciones de recursos hicieron que la investigación de estos modelos grandes se concentre
en pocas empresas e instituciones. Esto último y el afán de poseer el mejor modelo (o
la supuesta carrera por una inteligencia artificial general) devino en que el foco de la
investigación y las publicaciones sea más los resultados que la comprensión de los mismos.
En reiteradas ocasiones, muchas de las configuraciones del entrenamiento son expuestas
sin ser justificadas, y las razones viven en la intuición de quienes realizan los experimentos.

A ráız de lo expuesto, consideramos necesario democratizar estos conocimientos impĺıci-
tos. En este trabajo nos proponemos emprender un camino de construcción de uno de estos
modelos compartiendo los aprendizajes que sustentan las intuiciones posteriores. Elegire-
mos un ambiente acotado donde podremos explorar algunos de los fundamentos de la
arquitectura y entrenamiento de este tipo de modelos.

Los datos que utilizaremos son audios, más precisamente, audios de habla humana. El
aprendizaje de la representación de audios ha quedado un tanto rezagado en comparación
a imágenes y texto. En particular, los audios de habla se ven expuestos a diversas com-
plejidades, como exponen de manera clara Mohamed et al. (2022). Son datos secuenciales,
como el texto, pero su segmentación o tokenización es un problema en śı mismo. Más aún,
las señales de habla son continuas por lo que no es directa la definición de un vocabulario
finito. Por otro lado, una representación semántica de un audio de habla debeŕıa tener
información muy variada, hasta incluso ortogonal, ya que las tareas de procesamiento
de habla son muy diversas: tareas como transcripción requieren extraer información del
contenido mientras que ignoran la información paralingǘıstica, y otras tareas como iden-
tificación de hablantes se concentran en aquella información paralingǘıstica, el cómo está
dicho el contenido (prosodia, timbre de la voz, entre otros).

Por otra parte, la tarea que seleccionamos para resolver es identificación de hablantes
(SID, por sus siglas en inglés). Esta tarea consiste en clasificar al hablante presente en
un audio dado. Si bien puede haber ruido de fondo, entre los que puede haber voces,
estos audios debeŕıan poseer una voz principal claramente marcada. La elección de esta
tarea se debe a que es una de las tareas mejor definidas en habla, las etiquetas no poseen
ambigüedades ni subjetividad como puede ser el caso de reconocimiento de emociones. A
su vez, como el proceso de etiquetado es sencillo, hay una gran disponibilidad de datos
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2 1. Introducción

que se pueden utilizar para entrenar.
SID es una de las tareas más fundamentales en el procesamiento del habla. En cuanto

a su importancia, se pueden destacar algunos puntos clave. La primera y más importante,
es que, como mencionan Lin et al. (2024), identificación de hablantes junto con reconoci-
miento de fonemas, son dos tareas que por śı solas sirven como buenos estimadores de la
performance de un modelo en el SUPERB benchmark (Yang et al., 2021) 1. Nótese que
estas dos tareas cubren el espectro de contenido y forma mencionado anteriormente. SID
cubriŕıa lo relativo a la forma aśı como elementos para-lingǘısticos que caracterizan la
identidad individual de cada hablante. Adicionalmente, está la importancia para el desa-
rrollo de modelos de verificación de hablantes, para los cuales es usual comenzar con una
fase de entrenamiento previo en SID.

De esta manera, en primer lugar, en el capitulo 2 se presenta el marco teórico necesario
para comprender la investigación. En segundo lugar, en el caṕıtulo 3 se presenta el ambiente
de experimentación: los datos y los recursos que se van a utilizar. Luego, en el caṕıtulo 4
comienza la exploración buscando el mejor modelo downstream para la tarea seleccionada.
La experimentación continúa en una segunda parte en el caṕıtulo 5, donde se entrena
también al modelo upstream. Finalmente, en el caṕıtulo 6 se presentan las conclusiones
del trabajo aśı como también posible trabajo futuro.

1 El benchmark más completo y utilizado para evaluar modelos pre-entrenados de habla en las tareas
más populares.



2. MARCO TEÓRICO

En este caṕıtulo, introducimos los conceptos fundamentales de la tesis necesarios para
el entendimiento de todo el trabajo. El tratamiento de estos conceptos es acotado por la
naturaleza de la sección, y está fuertemente basado en los trabajos de Mitchell (1997);
James et al. (2023); Goodfellow et al. (2016).

El presente trabajo se enmarca en el campo del aprendizaje automático o machine

learning, una disciplina que se centra en el desarrollo de modelos capaces de aprender
patrones y representaciones a partir de datos. Esta disciplina se encuentra dentro del
campo de la inteligencia artificial (IA) o inteligencia computacional. A diferencia de lo
que se estudia en otras áreas de IA donde el aprendizaje es basado en conocimiento, el
aprendizaje automático es basado en datos.

Por su parte, los problemas que se resuelven en el área suelen dividirse en dos cate-
goŕıas: regresión y clasificación. Los problemas de regresión son aquellos donde se tiene
como resultado una predicción de un valor, el ejemplo clásico es la predicción del precio
de un inmueble dadas sus caracteŕısticas. En contraparte, los problemas de clasificación
tienen como resultado una clase o categoŕıa; SID es un ejemplo de ello, donde se espera la
identificación de una persona como resultado.

A su vez, otra subdivisión que surge en aprendizaje automático es el aprendizaje su-

pervisado y el no supervisado. En el aprendizaje supervisado se tiene para cada entrada
una etiqueta o resultado esperado asociado. El objetivo es aprender una función que, a
partir de observaciones etiquetadas, relacione las entradas con sus resultados esperados,
de manera que pueda generalizar para predecir los resultados en nuevas entradas. Métodos
como regresiones lineales, regresiones loǵısticas y support vector machines están dentro del
dominio de esta área. En contraposición, en aprendizaje no supervisado no se posee una
respuesta asociada a la entrada. En estos contextos se busca encontrar relaciones entre
las entradas, siendo una de las herramientas más populares en estos casos el clustering,
que separa automáticamente en grupos a las entradas. Veremos una técnica dentro del
aprendizaje no supervisado llamada Self-Supervised Learning, que es usada para el
desarrollo de Foundation Models, modelos que pueden representar o transformar las
entradas en una señal, o embedding, que facilite la resolución de tareas con respecto a
utilizar directamente las entradas.

A continuación, presentaremos los temas principales dentro de la disciplina que son
el núcleo de este trabajo. Abordaremos redes neuronales artificiales, aśı como me-
canismos y arquitecturas como Atención y Transformers. También introduciremos el
campo de Representation Learning y el uso de Transfer Learning.

2.1. Redes Neuronales Artificiales

Las redes neuronales artificiales, o simplemente redes neuronales, son la piedra funda-
mental del aprendizaje profundo. Estos modelos tienen como objetivo aproximar funciones.
En problemas de clasificación, por ejemplo, la red aprende a aproximar una función que
asocia cada entrada con su correspondiente etiqueta. Más aún, Cybenko (1989) muestra
que una red neuronal es capaz de aproximar la mayoŕıa de las funciones y su error en la
aproximación tiene una cota superior.

3



4 2. Marco teórico

En su concepción más simple, la unidad fundamental de una red neuronal es el per-
ceptrón o neurona. Dada una entrada X = x1, x2, ...xn ∈ IRn, el perceptrón calcula la
siguiente función:

y = f

(

n
∑

i=1

wixi + b

)

= f(W TX + b) (2.1)

Donde, W = [w1, w2, ..., wn]
T son los pesos, b es el bias o sesgo, y f es la función de

activación. Como se puede observar, la función es muy similar a la que se calcula en una
regresión lineal, a excepción de la función de activación que se le aplica a la suma de la
combinación lineal de la entrada con el bias. Por su parte, la función de activación es
una transformación no lineal que le permite a los modelos capturar relaciones complejas,
no linealidades e interacciones. Espećıficamente, existen diversos ejemplos de función de
activación, la más clásica es la función sigmoidea aunque hoy en d́ıa la más popular es ReLU
(f = max(0, x)) y funciones derivadas de ésta. De esta manera, durante el entrenamiento
se ajustarán los valores de los pesos y sesgos, mientras que f es una elección de diseño.

Dada una neurona como la presentada anteriormente, se pueden conectar neuronas
entre śı formando una red neuronal denominada perceptrón multicapa (MLP, por sus
siglas en inglés). En cuanto a su arquitectura, las neuronas en una MLP se organizan en
una secuencia de capas, donde una capa es un conjunto de neuronas que operan en paralelo.
Más aún, una MLP consiste en tres tipos de capas: una capa de entrada que recibe los
datos originales, una o más capas ocultas que realizan transformaciones intermedias, y una
capa de salida que produce la predicción final.

Fig. 2.1: Una red neuronal con una única capa oculta. La capa oculta computa las activaciones
A1, ...A5, transformaciones no lineales de la combinación lineal de la entrada X1, ...X4.
Figura extráıda de James et al. (2023)

En cada capa, las neuronas calculan su activación siguiendo la misma fórmula que
el perceptrón. Estas activaciones se propagan a través de la red, donde la salida de cada
neurona sirve como entrada para las neuronas de la capa siguiente. De este modo, se define
una composición jerárquica de funciones que puede expresarse como:
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a1 = f1(W1X + b1)

ai = fi(Wiai−1 + bi), ∀i = 2, . . . , L

y = aL (2.2)

donde ai es la activación de la capa i, L es el número de capas, Wi son las matrices
de pesos para cada capa, bi son los vectores de sesgos, y fi son las funciones de activación
respectivas a cada capa.

Respecto a su estructura, cuando en la unión de neuronas cada una obtiene como en-
trada la salida de una capa anterior (enlaces forward) o la entrada de la red, la red es
llamada feed-forward network ya que el flujo de información en estas redes es siempre hacia
adelante. Por otra parte, cuando cada neurona de una capa está conectada con todas las
neuronas de la capa siguiente, estas capas se denominan completamente conectadas o den-
sas (fully-connected layers o dense layers), siendo este tipo de arquitectura el más común
en las redes feed-forward. Asimismo, si estas redes se extienden con conexiones hacia atrás
(feedback), de manera que una neurona puede recibir la salida de una neurona posterior,
se denominan redes neuronales recurrentes (RNNs). Por último, todos los valores que son
ajustados durante el entrenamiento de las redes neuronales se denominan parámetros, en
cambio, los que no se ajustan son hiperparámetros, y su elección es parte del diseño del
modelo.

Las dimensiones de la capa de entrada y de salida están limitadas respectivamente
por la definición del problema, esto no ocurre con las capas ocultas, cuya dimensión es
un hiperparámetro más llamado tamaño oculto. En general, cada capa puede tener una
dimensión diferente, en cuyo caso no hay un único tamaño oculto, sino uno por capa. En
este trabajo, al mencionar un único tamaño oculto estaremos refiriéndonos a utilizar el
mismo tamaño oculto para todas las capas. A su vez, la cantidad de capas en una MLP
es otro de los principales hiperparámetros. El término red neuronal profunda se acuña
cuando la red tiene múltiples capas ocultas. De esta manera, se suele hablar del ancho de
la red haciendo referencia al tamaño oculto, y el largo refiere a la cantidad de capas.

Resta explicar cómo se ajustan los parámetros de una red neuronal durante el entrena-
miento. En primer lugar, debemos notar que dados valores fijos para los parámetros de la
red, ésta calcula una función que es la composición de las funciones que calcula cada neuro-
na, como se mostró en 2.2. En segundo lugar, para entrenar redes neuronales se define una
función de pérdida, una medida del error en la estimación. Hay múltiples funciones de
pérdida posibles, las clásicas son error cuadrático medio para regresión y entroṕıa cruzada
para clasificación. Teniendo en cuenta estos dos factores, el objetivo del entrenamiento
de las redes neuronales va a ser minimizar el error en la estimación. Aśı, se tiene que el
problema de entrenar redes neuronales es un problema de búsqueda de los parámetros que
minimicen el error. La clave de los dos puntos mencionados es que la función de pérdida va
a ser diferenciable, por lo que se puede computar el gradiente. El gradiente de una función
en un punto dado indica la dirección de máximo crecimiento de esa función. Por lo tanto,
para minimizar la función de pérdida podemos mover los parámetros en la dirección donde
la función decrece más rápidamente, que es precisamente la dirección opuesta al gradiente.

Sobre estas bases, funciona el algoritmo de descenso por el gradiente, entre otros
algoritmos, que iterativamente calcula el gradiente del error sobre todos los datos, ajusta
los parámetros y sigue iterando hasta converger. Para calcular el gradiente, el algoritmo
que se utiliza es backpropagation, que aprovechando la estructura jerárquica de las redes
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neuronales, utiliza la regla de la cadena para calcular de manera eficiente los gradientes
de la función de pérdida con respecto a los parámetros de cada capa. De esta manera en
cada iteración se ajustan los valores de los parámetros siguiendo la siguiente ecuación:

θt+1 = θt − η∇L(θt,D) (2.3)

θ es el conjunto de todos los parámetros del modelo, mientras η se denomina la tasa
de aprendizaje y ∇L(θt,D) es el gradiente de la función de pérdida L con respecto a θt

y a los datos de entrenamiento D. El supeŕındice t indica el instante de tiempo o paso
(step, cantidad de actualizaciones). La tasa de aprendizaje es un hiperparámetro de gran
importancia en el entrenamiento que controla el tamaño del paso que se da en la dirección
opuesta al gradiente durante la actualización de los parámetros.

Por último, debemos mencionar que el descenso por el gradiente resulta ineficiente
por lo que en la práctica se utiliza una variación llamada descenso por el gradiente

estocástico. El proceso de calcular el gradiente sobre todo el conjunto de datos para cada
actualización de parámetros es muy costoso computacionalmente, especialmente conside-
rando que se requieren numerosas iteraciones para alcanzar la convergencia. Es por esto
que la variante mencionada propone que en cada paso se seleccione un subconjunto (gene-
ralmente, aleatorio) llamado lote (batch) y que la actualización se haga en base al gradiente
promedio en ese lote. De esta forma, la ecuación de actualización de los parámetros (2.3)
en vez de calcular la función de pérdida sobre todos los datos lo hará exclusivamente sobre
un lote. A su vez, la tasa de aprendizaje adquiere una mayor complejidad porque ponde-
ra la importancia del lote, i.e.: un η muy grande sobreajustará a cada lote limitando la
capacidad de generalizar a todo el conjunto de entrenamiento.

2.1.1. Mecanismos de Atención y Transformers

En muchos problemas de aprendizaje automático, los datos pueden representarse co-
mo vectores independientes, lo que permite modelarlos eficazmente con redes MLP. Sin
embargo, en áreas como el procesamiento de habla, los datos tienen una estructura secuen-
cial, donde cada punto de la señal guarda una relación de orden con los puntos anteriores
y posteriores. Modelar estas dependencias es crucial para capturar patrones temporales
y contextuales. Para abordar este desaf́ıo, es común dividir la señal en frames. Un frame
es una ventana o segmento temporal corto —generalmente entre 20 y 40 ms— del audio
original que se utiliza como unidad básica de procesamiento en los modelos de procesa-
miento de audio. Los MLPs no están diseñados para capturar relaciones entre frames, ya
que procesan cada entrada de forma aislada. Más aún, modelar estas secuencias de frames
trae grandes desaf́ıos, ya que:

1. La longitud de las secuencias es variable y puede ser muy extensa.

2. Existen dependencias a corto y largo plazo entre distintos frames.

3. La información relevante no está distribuida de manera uniforme a lo largo de la
secuencia.

Esto ha llevado al desarrollo de arquitecturas especializadas para secuencias, partiendo
de modelos más simples basados en MLPs como las Time-Delayed Neural Networks (Wai-
bel et al., 1989; Snyder et al., 2015), como las ya mencionadas RNNs (Graves et al., 2013),
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CNNs temporales (Abdel-Hamid et al., 2013) y, más recientemente, los mecanismos de
atención y Transformers, que permiten modelar de manera más efectiva las dependencias
temporales en la señal de habla.

El mecanismo de atención, introducido por Bahdanau et al. (2014) en el contexto de
traducción automática, ha revolucionado el campo del aprendizaje profundo al permitir
que los modelos se enfoquen dinámicamente en diferentes partes de la entrada según la
tarea. La atención ha demostrado ser particularmente útil en secuencias largas, donde redes
como RNNs tienen limitaciones significativas debido a problemas como el desvanecimiento
del gradiente y la capacidad limitada de capturar dependencias a largo plazo (abordando
directamente el desaf́ıo 2 mencionado anteriormente). En términos generales, el mecanismo
de atención permite a los modelos calcular una representación ponderada de la entrada,
donde los pesos reflejan la importancia relativa de cada elemento (respondiendo al desaf́ıo
3: distribución no uniforme de información).

Tres años después, Vaswani et al. (2017) introduce los Transformers, una red neuronal
que se centra en el mecanismo de atención, eliminando por completo la necesidad de
estructuras recurrentes o convolucionales. Fundamentalmente, esto se logra a través de
una arquitectura que combina múltiples capas de auto-atención (Self-Attention) con redes
feed-forward posicionadas entre ellas. En Self-Attention lo que se pondera es la importancia
de las partes de la entrada misma. Formalmente, se expresa de la siguiente manera:

Attention(Q,K, V ) = softmax

(

QK⊤

√
dk

)

V (2.4)

Q (queries, consultas), K (keys, claves) y V (values, valores) son matrices que se
obtienen al proyectar linealmente la entrada, mientras que dk actúa como un factor de
escalado. El resultado de QK⊤ obtiene el nombre de matriz de atención, y sus valores
se transforman al rango (0, 1) mediante la función softmax, que también asegura que la
suma de los valores sea 1. Conceptualmente, se puede interpretar la operación como un
promedio pesado de los values, donde los pesos surgen de la interacción entre Q y K.

Respecto a su implementación, la arquitectura de los Transformers se ilustra en la
figura 2.2. A continuación, se detalla cada uno de los bloques principales que conforman
esta arquitectura:
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Fig. 2.2: Esquema de la arquitectura Transfomer presentada por Vaswani et al. (2017).

Encoder-Decoder : El encoder (bloque de la izquierda) tiene la finalidad de procesar
la secuencia de entrada y generar una representación de la misma, que luego el
decoder (bloque de la derecha) utilizará para generar de manera auto-regresiva la
secuencia de salida. Como es posible notar en el esquema, en el segundo bloque de
atención del decoder, parte de la entrada es la salida proveniente del encoder. Más
precisamente, K y V provienen de la salida del encoder, mientras que Q proviene de
la salida de la capa anterior del decoder para el token previo (por el shift-right).

Auto-Atención Multi-Cabeza (Multi-Head Self-Attention): Extiende el mecanis-
mo de atención al calcular múltiples representaciones en paralelo, lo que permite
al modelo capturar relaciones en diferentes subespacios de la entrada. De manera
formal:

MultiHead(Q,K, V ) = Concat(head1, head2, . . . , headh) W
O

donde headi = Attention(QWQ
i ,K WK

i , V W V
i ) (2.5)

Donde WQ
i ,WK

i ,W V
i ∈ IRdmodel×dh son matrices que aprenden a proyectar la entra-

da de cada cabeza con dh = dmodel/h. Como se ilustra en 2.3, luego de que cada
cabeza aplique atención sobre su entrada, las salidas son concatenadas y nuevamen-
te proyectadas linealmente con WO ∈ IRdmodel×dmodel . Cabe destacar, que con este
mecanismo la cantidad de parámetros del modelo no vaŕıa al modificar la cantidad
de cabezas.
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Fig. 2.3: Esquema del funcionamiento de Multi-Head Self-Attention.

Positional Encoding (PE): Dado que los Transformers no tienen un mecanis-
mo intŕınseco para capturar el orden de las secuencias, se introduce información
posicional expĺıcita a los embeddings de entrada mediante funciones sinusoidales o
embeddings aprendidos. En concreto, a la entrada se le suma un valor en cada po-
sición de manera que el modelo tenga la posibilidad de reconocer la posición en la
secuencia al reconocer el patrón de esta perturbación. La codificación más clásica
sigue la siguiente definición:

PE(pos,2i) = sin

(

pos

10000
2i

d

)

, PE(pos,2i+1) = cos

(

pos

10000
2i

d

)

(2.6)

Donde pos es la posición en la secuencia, i es el ı́ndice de la dimensión en el embed-
ding, y d es la dimensión del embedding.

Regularización: Técnicas como normalización por capas (Layer Normalization)
y Dropout son incorporadas para estabilizar el entrenamiento y prevenir el sobre-
ajuste. El mecanismo de Dropout coloca ceros de manera aleatoria en elementos
de la entrada y ha demostrado ser una técnica efectiva de regularización que evita
la co-adaptación de neuronas (cuando distintas unidades tienen un comportamien-
to altamente correlacionado) (Hinton et al., 2012). Layer Normalization aplica una
operación de normalización en cada batch con parámetros que son aprendidos du-
rante el entrenamiento según describe Ba et al. (2016). De esta manera, se reduce la
variación no informativa en los valores de salida entre capas.

2.2. Representation Learning y Transfer Learning

Las tareas de procesamiento de información (texto, audio, imágenes) pueden ser muy
sencillas o muy dif́ıciles dependiendo de cómo se representa a la información. Una forma
de ilustrarlo es mediante una analoǵıa: si estamos buscando a nuestros anteojos y tenemos
mioṕıa (baja resolución a la distancia) encontrarlos puede ser muy dif́ıcil, mientras que con
una buena resolución esto es mucho más sencillo. Representation Learning es el campo que
estudia cómo aprender las mejores representaciones, ¿Y qué es una buena representación?
Una primera respuesta indica que es aquella que hace que las tareas subsiguientes sean
más fáciles.
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En redes neuronales, se puede pensar que las capas ocultas están aprendiendo repre-
sentaciones. Particularmente en clasificación, la última capa suele ser una capa lineal a
la que se le aplica softmax, las capas anteriores aprenden representaciones que hacen que
la clasificación sea más sencilla para la última capa. Dicho de otro modo, las capas in-
termedias llevan la entrada a un espacio más fácil de separar en las clases de interés.
Ya décadas atrás, Rumelhart et al. (1986) mencionó cómo con backpropagation las capas
ocultas representan features relevantes para la tarea de interés.

Una arquitectura que resulta de particular interés en el área son los Auto-Encoders
(Lecun and Soulie Fogelman, 1987) que en una o más capas llevan la entrada a una
dimensión menor (codificación), y luego en una o más capas vuelven a la dimensión original
(decodificación). Para el entrenamiento se configura como objetivo que estas redes retornen
como salida lo mismo que la entrada. El resultado logrado es que las capas ocultas aprenden
representaciones de menor dimensión, alcanzando dimensión mı́nima en la capa del medio.
Nótese que la función de pérdida se define automáticamente sin necesidad de una etiqueta,
por lo que pueden ser entrenadas en grandes volúmenes de datos sin etiquetar.

Goodfellow et al. (2016) explica que el renacimiento moderno del aprendizaje profundo
se da con el descubrimiento del Greedy Layer-Wise Unsupervised Pre-training (Hinton
et al., 2006). No entraremos en detalles del algoritmo; nos quedaremos con las bases que
cimienta, el pre-entrenamiento no supervisado. El entrenamiento es dividido en dos
etapas, una primera que entrena a parte de la red neuronal, y otra que ajusta a todo el
modelo.

La primera etapa es llamada pre-training, en este pre-entrenamiento el objetivo es
aprender una tarea auxiliar que hará a la tarea de interés más sencilla. El resultado
deseado de esta tarea es llevar la entrada a un espacio en el que separar en las clases
deseadas es más sencillo: aprender una representación. En la literatura, es usual encontrar
que este espacio vectorial es llamado espacio latente o espacio de embeddings, un espacio
donde los elementos que se parecen entre śı están ubicados más cerca unos de otros.

Luego de esta primera etapa, los modelos pre-entrenados llevan el nombre de upstream.
Posteriormente, se incorpora un modelo espećıfico para la tarea de interés, conocido co-
mo downstream, que se entrena desde cero utilizando como entrada las representaciones
generadas por el modelo pre-entrenado.

A continuación, en la segunda etapa, se realiza el fine-tuning, donde partiendo de los
pesos resultantes de la primera etapa se ajustan algunas capas (comúnmente las últimas)
o todas a la vez en conjunto con el modelo downstream. Con este método se han alcanzado
mejores resultados que entrenando a todo el modelo en una única etapa de entrenamiento.
En algunos casos, también puede haber una etapa intermedia en la que primero se entrena
únicamente el modelo downstream manteniendo fijo el modelo upstream, antes de proceder
al ajuste conjunto en el fine-tuning.

Más tarde, ésta metodoloǵıa llevaŕıa a una revolución ya que abre las puertas a en-
trenar sobre una enorme cantidad de datos sin necesidad de etiquetar y trayendo grandes
beneficios. En procesamiento del lenguaje natural (NLP) se avanzó en la representación
de palabras (Mikolov et al., 2013; Pennington et al., 2014) y luego en representaciones
teniendo en cuenta su contexto (Dai and Le, 2015; Howard and Ruder, 2018; Radford and
Narasimhan, 2018). En particular, nos detendremos en BERT (Devlin et al., 2019), que
marcó un hito en pre-training al lograr resultados estado del arte en tareas muy varia-
das con esta técnica. Su arquitectura, compuesta únicamente por bloques bidireccionales
de Transformers, se pre-entrena inicialmente con texto sin etiquetar y posteriormente se
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adapta a tareas espećıficas mediante fine-tuning, proceso en el cual solo se agrega una
capa de salida especializada.

En cuanto a los detalles del pre-entrenamiento, el proceso se llevó a cabo mediante dos
tareas complementarias:

Predicción de palabras enmascaradas: se enmascara un porcentaje aleatorio de la
entrada y luego se entrena al modelo para que prediga el texto enmascarado. El
objetivo de esta tarea es que el modelo aprenda a representar el sentido de las
palabras dentro de una oración. Basada en Taylor (1953), la idea detrás de esta tarea
también fue adaptada en imágenes mediante oclusiones y en audio enmascarando
segmentos.

Predicción de la siguiente oración: esta tarea ayudaŕıa al modelo a entender la rela-
ción entre oraciones.

Todas estas técnicas de aprendizaje no supervisado se engloban dentro de lo que se
denomina Self-Supervised Learning (SSL). Con SSL se pueden aprovechar de manera
sencilla grandes volúmenes de datos para llevar a cabo tareas pretexto (pretext tasks), como
las mencionadas, dando como resultados a estos modelos pre-entrenados. Estos modelos
llevan también la definición de foundation models (Bommasani et al., 2021) por el cambio
de paradigma que representan en el campo de la inteligencia artificial. El término enfatiza
que estos modelos, si bien son incompletos por si mismos, sirven como base común sobre
la cual se construyen modelos espećıficos para distintas tareas mediante adaptación.

Por su parte, en audio, los datos disponibles son más escasos y más aún la cantidad
de datos etiquetados, cuyas etiquetas son mucho más costosas de generar. Aún aśı, aun-
que un tanto rezagado, el procesamiento de audio siguió un camino paralelo con redes
convolucionales, como por ejemplo en Wav2Vec (Schneider et al., 2019) y VQ-Wav2Vec
(Baevski et al., 2019)). Más tarde el desarrollo de modelos continuó integrando Trans-
formers siguiendo la idea de enmascarado en el pre-entrenamiento. Algunos ejemplos son
Wav2Vec 2.0 (Baevski et al., 2020), HuBERT (Hsu et al., 2021) y WavLM (Chen et al.,
2021)). En algunos casos se trabaja directamente sobre formas de onda y en otros con
representaciones espectrales.

En particular, haremos un breve hincapié en WavLM, que es un modelo que utiliza-
remos en este trabajo. En cuanto a su arquitectura, podemos observar en la figura 2.4
que consiste fundamentalmente en un encoder convolucional seguido de un encoder Trans-
former, al igual que Wav2Vec2.0 y HuBERT. A diferencia de estos últimos dos modelos,
WavLM incorpora el mecanismo Gated Relative Position Bias (Chi et al., 2022) en las
capas Transformer, que modifica la ecuación 2.4 de atención agregando un término (bias)
al que se le aplica softmax. Esta técnica, basada en el mecanismo de Gated Recurrent
Unit (GRU; Cho et al. (2014)), funciona como un positional embedding que no solo tiene
en cuenta la posición sino también el contenido del frame. En el contexto de WavLM, un
frame es el resultado de dividir la señal de audio continua en pequeños fragmentos de igual
duración en el encoder convolucional. La intuición otorgada detrás del uso del mecanismo
es que el offset de las distancias entre dos frames tiene distintos roles dependiendo del
contenido de los frames, los autores dan como ejemplo a cuando un frame pertenece a un
segmento de silencio y otro a uno de habla.

Por otro lado, en cuanto a las tareas de pre-entrenamiento de WavLM, los autores pro-
pusieron un framework de eliminación de ruido y predicción de segmentos enmascarados.
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Fig. 2.4: Arquitectura del modelo WavLM (Chen et al., 2021) y diagrama de su pre-entrenamiento,
donde ”[M ]”hace referencia a los segmentos enmascarados de la entrada. Al mismo tiem-
po, las distintas ondas de colores en la entrada hacen referencia al agregado de habla
superpuesta y ruido, mientras que los zi son las pseudo-etiquetas correspondientes a cada
frame.

Espećıficamente, durante el entrenamiento se simularon entradas ruidosas y con superpo-
sición de voces; seleccionaron aleatoriamente algunos segmentos de habla y las mezclaron
con ruido de fondo o con un segmento del habla secundario. Tanto el audio de ruido como
la uterancia secundaria se seleccionan al azar del mismo batch, se recortan aleatoriamente
y se escalan según una proporción también aleatoria de la enerǵıa de la fuente.

Luego, la tarea consiste en predecir pseudo-etiquetas del audio original en regiones (se-
cuencias de frames) enmascaradas. Estas pseudo-etiquetas se generan utilizando un modelo
de k-means clustering, que asigna cada frame a una clase basándose en representaciones
espectrales (como MFCCs) o representaciones latentes de otros modelos. La función de
pérdida utilizada, conocida comoMask Prediction Loss, se calcula como la entroṕıa cruzada
entre las predicciones del modelo para los frames enmascarados y estas pseudo-etiquetas.
Mediante esta tarea de predicción y eliminación de ruido en regiones enmascaradas, el
modelo aprende a predecir información faltante en la señal, la cual podŕıa corresponderse
con fonemas y caracteŕısticas t́ımbricas y prosódicas de la voz. Para lograr un buen des-
empeño en esta tarea, el modelo debeŕıa aprender a utilizar el contexto, desarrollando una
capacidad de identificar fonemas, tono y timbre de voz, entre otras caracteŕısticas de la
señal. A su vez, al utilizar contextos con ruido durante el pre-entrenamiento se promueve
robustez ante entornos acústicos complejos. De esta manera, esta estrategia permite al
modelo desarrollar robustez ante entornos acústicos complejos.

Al realizar un fine-tuning con un modelo downstream estamos realizando lo que se
denomina transfer learning, cuando un modelo que fue entrenado en un ambiente (tarea
y datos) lo usamos para entrenar en otro ambiente distinto. En la presente sección, ya
hemos expuesto un ejemplo de esta técnica: la utilización de representaciones aprendidas
con SSL para resolver una tarea de clasificación.

Sobre la evaluación de estos modelos, hay diferentes datasets y benchmarks que evalúan
a estos modelos pre-entrenados con downstreams fijos para cada tarea. En habla, como
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fue mencionado, uno de los benchmarks más usados es SUPERB (Yang et al., 2021).
Puntualmente para SID, uno de los datasets más utilizados es VoxCeleb1 (Nagrani et al.,
2017), que es utilizado por SUPERB para evaluar en esta tarea. El baseline para SID sin
pre-entrenamiento es de una accuracy de 80,5 (Nagrani et al., 2017) utilizando una red
convolucional de 67M parámetros. En SUPERB, con un downstream de menos de 1M de
parámetros se publicaron los siguientes resultados:

Modelo Arquitectura #Params Accuracy Top 1%

Wav2Vec 19-Conv 32.54M 56.56
VQ-Wav2Vec 20-Conv 34.15M 38.80

Wav2Vec 2.0 Base 7-Conv 12-Trans 95.04M 75.18
Wav2Vec 2.0 Large 7-Conv 24-Trans 317.38M 86.14
HuBERT Base 7-Conv 12-Trans 94.68M 81.42
HuBERT Large 7-Conv 24-Trans 316.61M 90.33
WavLM Base+ 7-Conv 12-Trans 94.70M 89.42
WavLM Large 7-Conv 24-Trans 316.62M 95.49

Tab. 2.1: Resultados reportados en SUPERB para SID en VoxCeleb1. La cantidad de parámetros
corresponde al modelo pre-entrenado mientras que el modelo downstream es el mismo
para todos los casos, con menos de 1M de parámetros.

2.3. Técnicas de fine-tuning eficientes en parámetros (PEFT)

Con el continuo crecimiento de la cantidad de parámetros de los modelos pre-entrenados,
la adaptación a tareas downstream se ha vuelto un desaf́ıo, especialmente en ambientes
con limitados recursos computacionales. Más aún, si bien el fine-tuning permite alcan-
zar mejores resultados en datos dentro de la distribución de entrenamiento, esta técnica
puede resultar en un peor desempeño cuando se trabaja con datos fuera de dicha dis-
tribución (Kumar et al., 2022). Este fenómeno, conocido como domain-shift, hace que el
fine-tuning no sea la técnica más robusta para luego realizar inferencia en escenarios varia-
dos. Adicionalmente, al modificar los pesos del upstream, las representaciones se ajustan
espećıficamente a la tarea downstream, lo que requiere almacenar una copia completa del
modelo para cada tarea.

Estas limitaciones motivaron el desarrollo de técnicas de fine-tuning eficientes en
parámetros, conocidas como Parameter Efficient Fine-Tuning (PEFT). Houlsby et al.
(2019) propone el uso de módulos adaptadores (Adapters), que incorporan una pequeña
cantidad de parámetros entrenables dentro del modelo mientras dejan fijos los demás. En
concreto, los Adapters son pequeñas capas que se insertan entre las capas existentes del
modelo pre-entrenado. T́ıpicamente, su arquitectura consiste en una proyección lineal que
reduce la dimensión de los embeddings, seguida de una no-linealidad y una proyección
que restaura la dimensión original (véase la figura 2.5). Esta configuración permite cap-
turar adaptaciones espećıficas de la tarea mientras mantiene la mayor parte de los pesos
pre-entrenados sin modificar, resultando en una significativa reducción de parámetros en-
trenables y menor riesgo de sobreajuste. De esta manera, no es necesario almacenar una
copia completa del modelo por tarea sino solo una fracción.

Una limitación de este enfoque es que el adapter incrementa el costo temporal de
inferencia al incorporar nuevas capas en la secuencia. Sin embargo, el éxito de los adapters
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Fig. 2.5: Arquitectura del módulo adapter y su integración con Transformer. Izquierda: Se agrega el
módulo adapter dos veces a cada capa del Transformer: después de la proyección que sigue
a la atención multi-cabeza y después de las dos capas feed-forward. Derecha: El adapter
consiste en un cuello de botella con una conexión residual. Durante el entrenamiento del
adapter (adapter tuning), las capas verdes se entrenan con los datos downstream, esto
incluye al adapter, los parámetros de Layer Norm y la capa de clasificación final (no
mostrada en la figura). Extráıdo de Houlsby et al. (2019).

impulsó el desarrollo de diferentes alternativas. Entre los métodos PEFT más utilizados se
destaca LoRA (Low-Rank Adaptation). En lugar de agregar nuevas capas, LoRA aproxima
en paralelo las actualizaciones de los pesos mediante matrices de bajo rango:

Fig. 2.6: Reparametrización de LoRA, que solo entrena las matrices A y B. r refiere al rango
de las matrices y d a la dimensión oculta del modelo upstream. Las igualdades son las
inicializaciones de cada matriz. Extráıdo de Hu et al. (2022).

El rango r que se observa en la figura 2.6 es un hiperparámetro nuevo. Además, Lo-
RA introduce un segundo hiperparámetro α que escala el gradiente en la ecuación de
actualización de pesos por α

r
. A su vez, al implementar matrices en paralelo, los tiempos

de inferencia no se ven alterados. Más aún, si bien se incorporan nuevos parámetros con
LoRA, estos pueden ser combinados con los pesos originales de las capas y mantener el
mismo desempeño en inferencia. De esta manera, LoRA logra reducir significativamente
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la cantidad de parámetros entrenables mientras mantiene un desempeño competitivo.
No obstante, persiste una brecha en el desempeño entre LoRA y el fine-tuning comple-

to; Biderman et al. (2024) muestra que esta brecha es consistente en múltiples dominios,
sin embargo, LoRA tiene un menor olvido del dominio original con el que fue entrena-
do el modelo y mantiene una capacidad de generalización más diversa. De esta manera,
esta técnica motivó el desarrollo de nuevas variaciones que puedan reducir o superar la
diferencia con el fine-tuning completo manteniendo las buenas propiedades.
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3. CONFIGURACIÓN EXPERIMENTAL

Tesista, no hay modelo, se hace
modelo al experimentar.

En este caṕıtulo, describimos el diseño experimental adoptado para la búsqueda de
hiperparámetros con el fin de encontrar una arquitectura óptima y eficiente para SID,
considerando las restricciones de recursos computacionales disponibles. Nuestra metodo-
loǵıa divide la exploración en dos fases principales: primero, la optimización del modelo
downstream manteniendo congelado al modelo upstream (caṕıtulo 4), y segundo, el entre-
namiento conjunto de ambos modelos (caṕıtulo 5).

Cabe notar que el código que sustenta los modelos y diferentes configuraciones creció
a la par de los experimentos manteniendo buenas prácticas de desarrollo de software. Este
código se encuentra disponible en un repositorio de GitHub1, con el cual cada experimento
puede volver a realizarse ejecutando un comando. Siempre que sea oportuno realizaremos
consideraciones en cuanto a las limitaciones de recursos.

3.1. Dataset

Durante los siguientes experimentos vamos a estar utilizando VoxCeleb1 (Nagrani
et al., 2017) como dataset, que es uno de lo más utilizados para SID y SV. VoxCeleb1
cuenta con 153516 audios extráıdos de videos de YouTube que pertenecen a 1251 cele-
bridades. Cada audio corresponde a un segmento de un video, estos segmentos fueron
extráıdos de 22168 videos. En cuanto a las estad́ısticas de los segmentos, la duración pro-
medio es de 8,245 segundos, con un desv́ıo estándar de 5,31, duración mı́nima de 3,96 y
máxima de 144,92 segundos. Al mismo tiempo, cada hablante tiene en promedio 18 vi-
deos, como mı́nimo poseen 6 y como máximo 36. Están disponibles particiones oficiales en
conjuntos para entrenamiento, evaluación y validación con 138361, 8251 y 6904 audios res-
pectivamente. Disponemos de información sobre la nacionalidad y género de los hablantes,
en la figura 3.1 podemos observar la proporción de cada una. Otra información relevante a
la hora de identificar voces podŕıa ser la edad, sin embargo, esta información no es provista
en el dataset y debido a que la recopilación fue hecha en diferentes momentos de la vida
de cada hablante esta tarea no es sencilla.

1 https://github.com/erikernst4/speech-hypertuning
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Fig. 3.1: Estad́ısticas de VoxCeleb1.

En cuanto a la evaluación y selección de modelos, se utilizará como criterio principal el
desempeño en el conjunto de evaluación, eligiendo aquél que obtenga las mejores métricas.
De esta manera, al tomar decisiones sobre este conjunto, es importante señalar que esta
metodoloǵıa limita la comparación directa con otros modelos de la literatura. La causa
por la que elegimos esta metodoloǵıa es que ya sobre el conjunto de validación también se
tomarán decisiones. Más precisamente, se determinará cuándo un modelo convergió obser-
vando las métricas sobre este conjunto de datos. En consecuencia, dado que se tomarán
decisiones sobre el conjunto de validación durante el proceso de entrenamiento, éste no
resulta apropiado para la comparación final entre nuestros modelos. De todos modos, he-
mos observado una correlación alta entre los resultados en validación y evaluación, y no
hemos percibido diferencias significativas. En conclusión, una comparación rigurosa con
otros trabajos requeriŕıa un conjunto de datos completamente independiente, sobre el cual
no se haya tomado ninguna decisión, ni durante el entrenamiento ni durante la evaluación.

3.2. Modelo

En primer lugar, antes de poder emprender la búsqueda del mejor modelo downstream
hay que fijar un modelo upstream. En nuestro caso hemos optado por el modelo WavLM
Base+, un modelo de 94.4M parámetros entrenado en 94k horas de audio sin etiquetar.
La elección se debe a que es uno de los modelos que mejor se desempeñó en SUPERB,
en particular en SID como se mostró en la tabla 2.1, con una cantidad de parámetros
considerablemente menor a los modelos large. La implementación del modelo que hemos
seleccionado es la que se encuentra disponible en S3PRL 2, código con los que son evaluados
los modelos en SUPERB. Durante la búsqueda del mejor modelo downstream el modelo
upstream estará congelado, es decir, no modificará sus pesos.

En segundo lugar, debemos definir un primer bosquejo del downstream para tener un

2 https://github.com/s3prl/s3prl
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modelo completo de clasificación. Antes, debemos tener algunas consideraciones sobre la
salida del modelo upstream. Al hacer inferencia con un audio, WavLM Base+ nos devuelve
las representaciones de 13 capas: la salida del encoder convolucional y cada una de las capas
Transformer. A su vez, retorna una representación cada cierta cantidad de tiempo, dando
lugar a C secuencias de representaciones con tamaño TxD, en donde C es la cantidad de
capas (13 en este caso), T es la cantidad de ’frames’, y D es la dimensionalidad de cada
representación (768).

En este contexto, el pooling es una operación fundamental que nos permite reducir
la dimensionalidad de las representaciones mientras preservamos la información más rele-
vante para la tarea. Espećıficamente, necesitamos aplicar pooling en dos dimensiones: la
dimensión temporal y la dimensión de las capas. El pooling temporal es necesario para
condensar la información de todos los frames en una única representación que capture las
caracteŕısticas globales del audio, independientemente de su duración. Por otro lado, el
pooling de capas nos permite combinar la información de las diferentes capas del modelo,
conservando la información más útil para la tarea en cuestión.

Con estos contenidos en mente, se propone una arquitectura inicial que utilizará al
promedio como pooling temporal, seguido de un promedio pesado como pooling de capas
y un perceptrón multicapa final. La salida es un vector de tamaño igual a la cantidad
de hablantes del problema. Por defecto, en el perceptrón multicapa configuramos en 2 la
cantidad de capas y en 128 su dimensión oculta. Gráficamente, la arquitectura sigue la
siguiente estructura:

Fig. 3.2: Esquema del primer modelo propuesto. Los colores distinguen el upstream del downs-
tream, mientras que en las flechas se indican las dimensiones de las salidas de cada capa.

Considerando que el factor más determinante en el tiempo de ejecución de una pasada
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forward es el modelo upstream, y que no será entrenado en las primeras exploraciones,
es deseable poseer la entrada pre-calculada a la parte del modelo que śı entrenaremos.
Almacenar embeddings de dimensión (13, #Frames, 768) no es viable, ya que implica una
enorme cantidad de memoria. Es por ello que se decidió el orden de los poolings propuesto,
ya que el Temporal Mean Pooling no posee parámetros entrenables y es determińıstico,
por lo que el modelo a entrenar comienza con el Weighted Average Layer Pooling. De esta
manera, se puede pre-calcular la entrada al pooling de capas y propagar las activaciones
desde ese punto en el entrenamiento. Durante la experimentación distinguiremos la utili-
zación de embeddings pre-computados y embeddings on-the-fly, que son calculados en el
momento haciendo una pasada forward por el upstream.

3.3. Métricas de evaluación

Particularmente, las métricas que optimizamos durante el entrenamiento fueron en-

troṕıa cruzada y entroṕıa cruzada normalizada (Ferrer, 2022) en la partición de
validación. La utilización de la entroṕıa cruzada normalizada surge de que la cantidad de
hablantes afecta directamente el rango de valores posibles de la entroṕıa cruzada, lo cual
dificulta la comparación directa entre modelos al variar esta cantidad. La versión normali-
zada divide a la entroṕıa cruzada por −

∑n
i=1 P (i) log(P (i)), la entroṕıa de la distribución

a priori, donde n es el cardinal del conjunto de etiquetas. De esta manera, esta métrica
permite comparar el desempeño de diferentes modelos independientemente de la cantidad
y balance de clases de la tarea, y obtenemos una métrica interpretable donde valores ma-
yores a 1 indican que el sistema es peor que el naive, que en nuestro caso seŕıa asignar una
probabilidad proporcional a la cantidad de instancias de cada hablante.

A su vez, al evaluar también reportamos accuracy top-1 y accuracy top-5. La accuracy
top-1 es la métrica clásica que refiere a la proporción de predicciones donde la etiqueta
estimada coincide con la etiqueta verdadera. En nuestro contexto, esta métrica indica el
porcentaje de segmentos de audio en los que el modelo asigna la probabilidad más alta al
hablante correcto. Por su parte, la accuracy top-5 refiere a la proporción de predicciones
donde la etiqueta verdadera se encuentra entre las cinco etiquetas con mayor probabili-
dad asignada por el modelo. Esta métrica resulta especialmente relevante en tareas de
reconocimiento de hablantes con un elevado número de clases, donde interesa evaluar si el
modelo al menos considera al hablante correcto entre sus predicciones más probables.

3.4. Consideraciones adicionales

A lo largo de la experimentación utilizamos Adam (Kingma and Ba, 2014) como opti-
mizador, una de las variantes más usadas de descenso por el gradiente estocástico. A su
vez, para agilizar la ejecución de experimentos recurrimos al mecanismo de Early Stopping,
que consiste en detener el entrenamiento cuando cierta métrica monitoreada (en nuestro
caso, entroṕıa cruzada) no mejora después de una cantidad determinada de chequeos. A
su vez, es posible definir un umbral mı́nimo a ser superado para considerar que ha habido
una mejora. Por otro lado, la frecuencia con la que se monitoreó la entroṕıa cruzada varió
según experimento y tamaño del mismo, aśı como también la paciencia (pasos tolerados
sin mejora) y el umbral mı́nimo de mejora.
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3.5. Hardware

Sobre el hardware utilizado, la búsqueda del mejor modelo downstream en el cápitulo
4 fue realizada en una computadora con procesador Intel Core i7-12700 y placa gráfica
NVIDIA GeForce RTX 3060. En esta configuración, disponemos de 32GB de memoria
RAM y 12GB de memoria en la GPU. Más tarde, los experimentos en los que se entrena
al upstream en el caṕıtulo 5 se llevaron a cabo en otra computadora con procesador AMD
Ryzen 9 7950X 16-Core Processor y dos GPUs NVIDIA RTX A5000, aśı disponiendo de
24GB por GPU y 128GB de memoria RAM.
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4. EXPLORACIÓN DEL MODELO DOWNSTREAM

La búsqueda del mejor modelo downstream sigue una estrategia incremental. En es-
te caṕıtulo comenzamos explorando los hiperparámetros fundamentales en un contexto
controlado y reducido, utilizando una arquitectura downstream simple y una porción limi-
tada de los datos. Esta aproximación nos permite establecer una base y obtener intuiciones
preliminares sobre el comportamiento del modelo. Posteriormente, expandimos nuestros
experimentos al conjunto completo de datos, investigando aspectos más sofisticados co-
mo diferentes métodos de pooling, normalización de embeddings y la interacción entre
distintas métricas de rendimiento.

En la experimentación realizada en esta tesis no se compilan resultados favorables de
experimentos óptimos, los más valiosos aprendizajes fueron adquiridos en la experimenta-
ción misma. A lo largo de los experimentos comentaremos propuestas que no funcionaron,
y mejoras en el diseño de experimentos que fueron incorporadas con posterioridad.

En búsqueda de una arquitectura y configuración óptima, como primer acercamiento,
comenzaremos explorando los hiperparámetros más esenciales como tasas de aprendiza-
je, capas ocultas del modelo downstream y tamaño oculto. Para poder realizar muchos
experimentos rápidamente, primero utilizaremos una porción pequeña de los datos: 100
hablantes (50 mujeres y 50 hombres) y 25 audios por hablante (19 para entrenamiento, 3
para validación y 3 para evaluación), donde cada audio corresponde a un video distinto.
Para todos estos datos precalcularemos los embeddings del upstream de manera que no
necesitemos hacer inferencia sobre el upstream durante el entrenamiento.

4.1. Tasas de aprendizaje

La tasa de aprendizaje (LR, por sus siglas en inglés) es uno de los factores más in-
fluyentes en el entrenamiento y desempeño de modelos (Wu et al., 2019a). Como primer
experimento, exploramos la utilización de distintas tasas fijas de aprendizaje. El tamaño
de batch fue de 64 para entrenamiento. Se realizó una validación por época, en este caso,
esto ocurre aproximadamente cada 30 steps. Se configuró la paciencia del early stopping
en 20 y un umbral mı́nimo de mejora en 0, 001.

Las primeras tasas con las que experimentamos fueron las predeterminadas y estándar
en la mayoŕıa de los casos: 0, 001, 0, 0001, 0, 00001 y 0, 000001.

23
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Fig. 4.1: Evolución del cross entropy en validación durante el entrenamiento al experimentar con
diferentes LRs.

Como era esperable, observamos que LR más chicos llevan a converger más tard́ıamen-
te. Sin embargo, si bien la intuición es que a menor LR mayor granularidad para recorrer
el espacio de gradientes, esto no garantiza converger a un valor menor en la función de
pérdida. A su vez, se observa en la figura 4.1 una pequeña curva azul que ilustra que con
10−6 no alcanzó a haber una mejora respecto al modelo inicial y se detuvo el entrenamiento
al alcanzar la paciencia del Early Stopping.

En la siguiente tabla se describe el desempeño de cada modelo entrenado en la partición
de evaluación:

LR Cross Entropy Accuracy Top 1 Accuracy Top 5

10−3 1.3620 0.6500 0.9367
7,5 ∗ 10−4 1.3532 0.6433 0.9333
5 ∗ 10−4 1.2622 0.6367 0.9400

2,5 ∗ 10−4 1.2825 0.6567 0.9233
10−4 1.2689 0.6333 0.9267
10−5 2.5214 0.3400 0.7267
10−6 4.6064 0.0100 0.0500

Tab. 4.1: Resultados en la partición de test de la experimentación con LR fijos. En color se distin-
guen los modelos que provienen de un refinamiento posterior.

Como muestra la tabla 4.1, con LR 10−3 se obtuvo mayor accuracy mientras que con
LR 10−4 se obtuvo menor cross entropy entre los primeros valores explorados. Luego, se
decidió explorar valores intermedios entre 10−3 y 10−4 buscando mejores resultados, y
aśı experimentamos también con 2,5 ∗ 10−4, 5 ∗ 10−4 y 7,5 ∗ 10−4. Esto llevó a una cross
entropy mı́nima en la partición de test con LR 5 ∗ 10−4, por lo que mantendremos este
hiperparámetro con ese valor en los experimentos siguientes.
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4.2. Capas ocultas

Otro hiperparámetro fundamental en la construcción del modelo downstream es la
cantidad de capas de la MLP final. En tareas de clasificación es común el uso de una única
capa final donde la entrada tiene dimensión igual a la dimensión de la representación de la
última capa del modelo upstream y la salida tiene dimensión igual a la cantidad de clases.
En el modelo propuesto (véase la figura 3.2), antes de esta capa final se propuso el uso de
una MLP con 2 capas y tamaño oculto 128. En este experimento exploraremos la cantidad
de capas con 128 de tamaño oculto.

Capas Ocultas Accuracy Top1 Accuracy Top5 Cross Entropy

0 0.6333 0.8867 1.3254
1 0.7033 0.9400 0.9998

2 0.6367 0.9400 1.2622
3 0.4700 0.8900 1.6514

Tab. 4.2: Métricas en la partición de evaluación al experimentar sobre el número de las capas de
la MLP.

El caso de 0 capas refiere a la no utilización de la MLP, es decir, que la salida del pooling
de capas vaya directamente a la capa de salida. Como se puede observar en la tabla 4.2
obtuvimos los mejores resultados en la partición de evaluación con 1 capa oculta. Cabe
notar que es posible que la cantidad óptima de capas pueda ser mayor con una mayor
cantidad de datos. No obstante, revisitar todas las decisiones tomadas en el camino haŕıa
impracticable a la experimentación, por lo que continuaremos utilizando 1 capa oculta
para próximos experimentos.

4.3. Tamaño oculto

El tercer hiperparámetro fundamental en la configuración de una MLP es el tamaño
oculto, la dimensión de las capas ocultas. Aśı como la cantidad de capas determina el
tamaño a lo alto de la MLP, la dimensión oculta determina el tamaño a lo ancho. Con
este parámetro es habitual el uso de potencias de 2, por lo que decidimos experimentar
con las potencias de 2 desde 64 a 4096.
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Fig. 4.2: Evolución de la cross entropy en la partición de validación durante el entrenamiento al
experimentar con diferentes tamaños ocultos en la MLP.

Tamaño Oculto Accuracy Top1 Accuracy Top5 Cross Entropy

64 0.6667 0.9033 1.2010
128 0.7033 0.9400 0.9998
256 0.7267 0.9433 0.9104
512 0.7633 0.9500 0.8432
1024 0.7733 0.9600 0.7724
2048 0.7833 0.9500 0.6829
4096 0.7933 0.9633 0.6218

Tab. 4.3: Métricas en la partición de evaluación al experimentar sobre el tamaño oculto en la MLP.

Se observa que a mayor tamaño oculto mayor es la accuracy y menor la entroṕıa
cruzada. Sin embargo, al aumentar el tamaño oculto, aumenta la complejidad del modelo y
su cantidad de parámetros. La cantidad de parámetros entrenados del modelo downstream
está dada por los parámetros de los poolings, la MLP y la capa de salida. El Temporal
Mean Pooling no posee parámetros entrenables y el Weighted Average Layer Pooling tiene
13 parámetros entrenables. La MLP en este punto es una única capa y la cantidad de
parámetros es el producto de la dimensión de la representación de las capas del modelo
upstream (768) y el tamaño oculto. Los parámetros de la capa de salida son el producto del
tamaño oculto de la MLP y la cantidad de hablantes. Concretamente, con tamaño oculto
4096 se tienen 768 ∗ 4096 + 4096 ∗ 100 = 3,555,328 ≈ 3, 5M . En general, se espera que
el tamaño del modelo downstream sea significativamente menor al upstream, siendo uno
de los grandes beneficios de utilizar un modelo pre-entrenado. No debe perderse de vista
que el tamaño de este downstream escala con la cantidad de hablantes. Usaremos 4096
como tamaño oculto en los próximos experimentos, que ha dado los mejores resultados y
mantiene el modelo downstream con un tamaño razonable.

Por otro lado, en la Figura 4.2 se puede observar que a medida que crece la complejidad
del modelo en general decrece la cantidad de steps necesarios para converger. En resumen,
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modelos con mayor tamaño oculto en la MLP llegan antes a mejores resultados.

4.4. Relación entre el tamaño del batch y la tasa de aprendizaje

Hasta este punto, utilizamos 64 como tamaño de batch (BS, por sus siglas en inglés), un
valor arbitrario. Sin embargo, con el modelo y la porción del dataset que estamos usando,
podemos usar batches de mayor tamaño. En la literatura (Godbole et al., 2023), se suele
recomendar el uso de batch con el tamaño más grande posible aunque no son acompañadas
de demostraciones o fundamentos convincentes. Cuando los modelos entran en memoria,
el siguiente factor más limitante para poder entrenar un modelo es el tamaño de batch.
Por lo tanto, consideramos de importancia entender su influencia en el entrenamiento.

Por otro lado, la elección de un tamaño de batch guarda relación con el LR. Intuitiva-
mente, si el BS es chico, no es representativo de la totalidad del dataset, por lo que un LR
alto haŕıa que se sobreajuste a cada batch sin poder llegar a aprender de todo el dataset
simultáneamente. En el lado opuesto, batches muy grandes tardarán mucho en aprender
con LR muy pequeños. Es por esto que nos propusimos explorar esta interacción para
seleccionar los valores más adecuados. Barreremos valores de LR de 0,000001 a 1, y BS de
1 a toda la partición de entrenamiento (’all ’, 1900 segmentos de audio). A continuación,
puede verse una visualización de la cross entropy en la partición de evaluación para cada
una de estas configuraciones.

Fig. 4.3: Interacción entre el LR y BS al medir CE en la partición de evaluación.

Los valores más oscuros de la figura hacen referencia a configuraciones que no conver-
gieron, en estos casos el Early Stopping detuvo los entrenamientos al no encontrar una
mejora.

En cuanto a la selección de valores óptimos de BS y LR, considerando los experimentos
que vendrán a continuación, en vez de elegir el punto mı́nimo (0,5448 de cross entropy en
test con BS = 1900 y LR = 0,0005) elegimos buscar los valores más estables. Determina-
mos que los más estables son aquellos cercanos en promedio al mı́nimo cross entropy y con
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menor desviación estándar, que seŕıan los más consistentes en configuraciones distintas.
Ambas estad́ısticas surgen de los resultados obtenidos con cada configuración dejando fijo
un hiperparámetro y variando el otro, los valores de toda una fila o una columna en la
Figura 4.3 respectivamente.

Learning Rate Mean Std

0.000001 3.2823 1.3048
0.000005 1.9571 1.3487
0.00001 1.4510 1.0361
0.00005 0.7311 0.1239
0.0001 0.6457 0.0314

0.0005 0.6207 0.0410
0.001 0.6312 0.0492
0.005 0.8168 0.2506
0.01 1.1848 0.6729
0.05 2.3626 1.8757
0.1 2.8411 1.7941
0.5 5.2534 0.8493
1 469.3508 1600.9756

Tab. 4.4: Estad́ısticas de Cross Entropy para
diferentes Learning Rates

Batch Size Mean Std

all 429.1469 1539.5639
1024 2.4032 2.5779
512 2.8707 4.1958
256 2.3934 3.2403
128 1.7666 1.6262

64 1.8139 1.6908
32 1.8783 1.6527
16 2.1156 1.8646
8 2.2099 1.9562
4 2.1940 1.9235
2 2.2305 2.0086
1 2.3265 2.1465

Tab. 4.5: Estad́ısticas de Cross Entropy para
diferentes tamaños de Batch.

De esta manera optamos 0,0005 como LR y 128 como BS. Esta combinación obtuvo
0,6158 de cross entropy en la partición de evaluación, 0,7967 de accuracy Top1 y 0,9633 de
accuracy Top5. Si bien buscamos la elección de los valores más estables, es natural que en
algún momento futuro de la experimentación se deba modificar alguna de estas elecciones
por diferentes restricciones de tiempo o espacio. Para entender cómo esas modificaciones
podŕıan influir, los siguientes gráficos (4.4) muestran cómo se modifica el desempeño al
fijar uno de estos parámetros y alterar el otro:
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Fig. 4.4: Cross entropy en la partición de evaluación fijando uno de los hiperparámetros seleccio-
nados.
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De la anterior figura se desprende que con BS = 128 modificar el LR alrededor de
0,0005 no implica grandes cambios de desempeño, ya que se encuentra amesetado en ese
punto. En cuanto al LR, en caso de tener que reducir el BS de 128 hasta 8 lleva a
una degradación de la entroṕıa cruzada menor al 0,01, lo cual no seŕıa una alteración
significativa al momento de seleccionar a los hiperparámetros óptimos.

4.5. Experimentando con el dataset completo

A partir de este punto, los siguientes experimentos realizados son utilizando la totalidad
del dataset y con las particiones oficiales de VoxCeleb1.

En primer lugar, al momento de precalcular el resto de los embeddings del dataset
nos encontramos con que los audios pueden ser muy largos, resultando en problemas de
limitaciones de la memoria. Este problema existe tanto para precalcular los embeddings
como para entrenar calculando embeddings on-the-fly directamente. Un factor determi-
nante para los ĺımites de memoria en este punto es el tamaño del batch. La diferencia es
que al precalcular embeddings podŕıa incluso usarse BS = 1 ya que solo se hará una vez,
mientras que ese tamaño de batch no es viable para entrenar como se vio en el experimento
4.4. Para precalcular embeddings limitamos el tamaño de los audios a 70 segundos, mien-
tras que para entrenar calculando embeddings on-the-fly utilizamos porciones (chunks) de
5 segundos tomadas aleatoriamente cada vez. Estos valores son razonables teniendo en
cuenta las estad́ısticas de las duraciones de los audios en el dataset (presentadas en 3.1) y
que la tarea es clasificación de hablantes, donde el hablante a identificar estará presente
en la totalidad del audio, con excepción de los silencios. De esta forma, al calcular los
embeddings on-the-fly nos vimos también limitados a usar BS = 32.

Aśı, se realizó un primer entrenamiento con el modelo que mejores resultados hab́ıa
dado hasta el momento. De los anteriores experimentos se desprende que el modelo con
4096 de tamaño oculto en la MLP, tiene el mejor desempeño en cuanto a cross entropy
y convergencia. En este momento, fue cuando verificamos la observación hecha en el ex-
perimento 4.3 en cuanto al tamaño del downstream. Llevando el tamaño oculto a 4096 y
teniendo 1251 hablantes en el dataset, la cantidad de parámetros del downstream alcanzó
los 8,3M . Por lo tanto, antes de continuar, probamos usando un tamaño oculto menor
como muestra la Tabla 4.6. Incorporamos también el tamaño oculto 32768 que, en el otro
extremo, posee una cantidad de parámetros en el orden del tamaño del upstream.

Métricas en Evaluación Métricas en Entrenamiento

Tamaño #Params Acc Top1 Acc Top5 CE NCE Acc Top1 Acc Top5 CE NCE Steps

1024 2.1M 0.8571 0.9524 0.6210 0.0890 0.9871 0.9992 0.0488 0.0070 66000
4096 8.3M 0.8614 0.9546 0.6295 0.0903 0.9946 0.9998 0.0196 0.0028 52000

32768 66M 0.8538 0.9530 0.6480 0.0929 0.9956 0.9997 0.0197 0.0028 54000

Tab. 4.6: Resultados para diferentes tamaños ocultos en la MLP del downstream utilizando las
particiones oficiales de VoxCeleb1, mostrando métricas tanto en evaluación como en en-
trenamiento. NCE: Normalized Cross Entropy.

En primer lugar, se puede observar que con tamaño oculto 1024 se pudo obtener
resultados levemente mejores en entroṕıa cruzada en los datos de evaluación. Al analizar
los resultados en la partición de entrenamiento vemos que el modelo con tamaño oculto
4096 es quien alcanzó mejor desempeño en entroṕıa cruzada, lo que es un indicador de un
mayor over-fitting dado que el rendimiento de este modelo en los datos de evaluación es
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peor que para el modelo más chico. A pesar de que con mayor tamaño oculto se obtuvo
una más rápida convergencia, ésta está en el mismo orden de magnitud, mientras que la
cantidad de parámetros entrenados es significativamente menor con tamaño oculto 1024,
haciéndolo un downstream más razonable. Por su parte, el uso de 32768 como tamaño
oculto no produjo resultados favorables y es el que muestra el mayor grado de over-fitting,
alcanzando peor convergencia y desempeño que con 4096. En este momento, también
aprovechamos para examinar el uso de 0 capas ocultas, el cual corresponde a usar un
modelo lineal como downstream. Sin embargo el modelo converǵıa muy lentamente por
lo que debimos interrumpir el entrenamiento luego de más de 200.000 steps sin llegar
a buenos resultados. Por lo tanto, si bien 4096 tiene mejor accuracy en evaluación, se
determinó continuar la experimentación usando tamaño oculto 1024 en la MLP por su
menor tamaño y menor entroṕıa cruzada.

4.6. Efecto del “modo evaluación”

El siguiente experimento surgió accidentalmente al agregar tests de regresión. Estos
últimos fallaron al ser creados y la causa radicaba en que las salidas del modelo no eran
siempre las mismas, y el origen no estaba en el downstream sino en el upstream. Los em-
beddings del upstream no eran los mismos aún utilizando el modo determińıstico: requeŕıa
que se use el modelo en modo evaluación. Este modo sirve para que capas o partes del
modelo que deben comportarse distinto durante inferencia que durante entrenamiento se
comporten en modo inferencia. Ejemplos de esto son las capas de Dropout (que duran-
te el entrenamiento coloca aleatoriamente ceros en parte de la entrada), LayerDrop (que
descarta capas enteras), o Batch Norm (que aprende a normalizar a cada batch).

Por lo tanto, la utilización de los embeddings precalculados del upstream sin este
cuidado no seŕıa del todo correcta. En la Tabla 4.7 se puede observar la diferencia en
el desempeño entre usar los embeddings precalculados con y sin el modo evaluación, en
ambos casos con BS = 32.

Modo evaluación Acc Top1 Acc Top5 CE Normalized CE Steps

✗ 0.8571 0.9525 0.6210 0.0890 66000

✓ 0.8649 0.9562 0.6128 0.0879 78000

Tab. 4.7: Métricas en test comparando la utilización del modo evaluación en el modelo upstream.

Las diferencias son favorables al uso del modo evaluación. Cabe recordar, que calculan-
do embeddings on-the-fly el modelo upstream recibe segmentos aleatorios de 5 segundos
mientras que los embeddings precalculados corresponden a segmentos de hasta 70 segun-
dos, lo que podŕıa favorecerlo. Además, si bien la cantidad de steps del modelo sin el modo
evaluación fue menor hay una gran diferencia en los tiempos de entrenamiento. Al utilizar
embeddings on-the-fly la velocidad de entrenamiento en promedio es de 2,20it/s, mientras
que con embeddings precalculados es de 31,55it/s, más de diez veces más rápido.

4.7. Normalización de los embeddings del modelo upstream

En la literatura, es usual encontrar que se refieren a la inferencia del upstream como
extracción de features, aśı como también el uso intercambiado de espacio de embeddings y
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espacio de features. En esa misma ĺınea, puede pensarse al modelo upstream como la fuente
de información de la que aprenderá el modelo downstream. Más aún, siguiendo las ideas de
aprendizaje automático clásico, es razonable pensar en la posibilidad de normalizar estos
datos de manera que los features puedan tener todos un tratamiento uniforme.

En este experimento exploraremos el uso de tres métodos para normalizar:

Length Normalization (Garcia-Romero and Espy-Wilson, 2011): Normalizar los
embeddings del upstream usando la norma 2 vectorial, con la norma 2 del propio
embedding de cada audio.

Normalización Z Global: Calcular la media y desviación estándar de los em-
beddings de toda la partición de entrenamiento de todas las capas. Luego a cada
embedding se le restará esa media y se lo dividirá por la desviación estándar.

Normalización Z por capa: Igual a la normalización Z Global, pero tomando la
media y desviación estándar de cada capa en vez de todos los embeddings de todas
las capas. Este método entendeŕıa a cada capa del upstream como una fuente de
información distinta.

La utilización de normalización Z requiere agregar un paso previo al entrenamiento
donde se calculan los correspondientes valores de medias y desv́ıos estándar de los embed-
dings del upstream.

Debido a que la utilización de los embeddings pre-calculados reduce el uso de memoria,
esto nos permite aumentar el BS a 128, que era nuestro valor elegido en el experimento 4.4.
Para mantener la frecuencia de validaciones y checkpoints por cantidad de actualizaciones
del gradiente redujimos acordemente este intervalo de 2000 a 500. Asimismo, para tener
un resultado comparable volvimos a correr el modelo sin normalización con estos cambios.

En el siguiente gráfico podemos observar las curvas de la cross entropy normalizada en
la partición de validación durante el entrenamiento.
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Fig. 4.5: Evolución de la Cross Entropy Normalizada en validación para los diferentes métodos de
normalización.
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Se puede observar que los modelos con normalización Z convergen significativamente
más temprano y a valores menores de cross entropy. Por su parte, Length Normalization no
produce una mejora sino un leve deterioro, lo que podŕıa indicar que la utilización de este
método significa una leve pérdida de información. Con este último método las diferencias
en las magnitudes entre embeddings de distintos audios se pierde, si bien el espacio de
embeddings se vuelve más compacto, el modelo parece beneficiarse de la riqueza de las
diferentes magnitudes de los embeddings de WavLM.

Al observar que los modelos con normalización Z converǵıan tanto más temprano pero
teńıan valores menores en accuracy, probamos también reduciendo el LR de 5 ∗ 10−4 a
10−4. Los resultados de estos modelos tuvieron una convergencia similar al modelo sin
normalización en la cantidad de steps pero no lo superaron en accuracy ni tuvieron menor
cross entropy. En la siguiente tabla se exponen los resultados de estos modelos en la
partición de test.

Método de normalización Acc Top1 Acc Top5 CE Normalized CE Steps

Sin Normalización 0.8560 0.9553 0.6097 0.0874 28500

Length Normalization 0.8509 0.9524 0.6328 0.0907 30500
Normalización Z Global 0.8418 0.9519 0.5647 0.0810 5500

Normalización Z por capa 0.8477 0.9529 0.5757 0.0826 8000
Normalización Z Global con LR 10−4 0.8520 0.9549 0.56701 0.0813 27500
Normalización Z por capa con LR 10−4 0.8515 0.9538 0.57812 0.08290 27500

Tab. 4.8: Métricas en la partición de evaluación comparando la utilización de distintos métodos de
normalización de los embeddings del modelo upstream.

En conclusión, notamos que la normalización Z por capa tiene una pequeña ventaja en
accuracy sobre la normalización Z global, pero no aśı en cross entropy y convergencia. Por
lo tanto, en adelante utilizaremos la técnica de normalización Z global, que proporcionó
la menor cross entropy y la convergencia más rápida.

4.8. Métodos de pooling

En esta sección, exploraremos las capas de poolings, buscando entender las ventajas y
desventajas de cada método.

4.8.1. Pooling en el tiempo

Hasta este punto, para realizar pooling sobre la dimensión temporal el modelo que
hemos constrúıdo utiliza Temporal Mean Pooling. Si bien es una práctica usual, en esta
sección exploraremos métodos alternativos que puedan ser superadores o que ofrezcan
alguna ventaja comparativa.

Poolings fijos

En primer lugar, experimentaremos con diferentes poolings fijos. Llamamos poolings
fijos a aquellos que no tienen parámetros entrenables y son determińısticos. La gran ventaja
de estos poolings, como fue observado en el experimento sobre el modo de evaluación en el
modelo upstream (4.6), es que pueden ser precalculados una única vez y luego utilizados
durante el entrenamiento ahorrando memoria y tiempo. Usaremos estad́ısticas t́ıpicas sobre
los valores de cada dimensión del embedding del upstream: mı́nimo (min), máximo (max),
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desviación estándar (std), y combinaciones entre ellos concatenándolos. Cabe notar que
al concatenar estas estad́ısticas la dimensión del input a la MLP se multiplica, por lo que
aumenta la cantidad de parámetros entrenables del downstream.

Pooling #Params Acc Top1 Acc Top5 CE Normalized CE Steps

mean 2.1M 0.8418 0.9519 0.5647 0.0810 5500

std 2.1M 0.4139 0.6433 1.7533 0.2514 8000
min 2.1M 0.4530 0.6947 2.0504 0.2940 8000
max 2.1M 0.4492 0.6873 2.0757 0.2977 5500

min+max 2.9 M 0.5302 0.7570 1.4874 0.2133 5500
mean+std 2.9 M 0.7685 0.9102 0.6985 0.1002 4500

mean+std+min+max 4.4M 0.7332 0.8950 0.7781 0.1116 3500

Tab. 4.9: Comparación de distintos poolings fijos en la dimensión temporal. La cantidad de paráme-
tros hace referencia a los parámetros del modelo downstream.

De los resultados se desprende que la media es el pooling temporal fijo que mejor
se desempeña. En cuanto a la convergencia, se repite el resultado de que modelos más
complejos convergen más rápido. Cabe destacar que mean+std es usado usualmente en
modelos de verificación de hablante (Snyder et al., 2018), del cual no se observan mejoras
salvo por la mejor convergencia. Puede objetarse que el LR es muy alto y con un menor
LR los resultados podŕıan ser distintos, por lo que, también aprovechando la rápida con-
vergencia de estos modelos, experimentamos con LR = 10−4. Aún aśı, no se observaron
mejoras. En casi todos los casos hay un leve empeoramiento, salvo pequeñas mejoŕıas,
ninguna superando el rendimiento de mean con LR = 5 ∗ 10−4 .

Poolings con mecanismos de atención

Self-Attention El uso del promedio como pooling temporal tiene el efecto de dar un
mismo peso a todos los frames, esto hace que frames que pueden contener silencio tengan la
misma importancia que frames en los que la persona habla en su totalidad. En Mirsamadi
et al. (2017) se muestra que con un mecanismo de atención local es posible sobreponerse a
este fenómeno y otorgarle más peso a los frames con habla. En los siguientes experimentos,
exploraremos el uso de Self-Attention, particularmente con la implementación de PyTorch
de Vaswani et al. (2017). El uso que le daremos como pooling consiste en propagar las ac-
tivaciones por esta capa y luego promediar en la dimensión temporal. Al haber pasado por
el mecanismo de atención esperamos que los valores de los embeddings estén ponderados
según su importancia para la tarea.

Es importante destacar que hasta aqúı el pooling temporal no teńıa parámetros entre-
nables, en cambio, la utilización de Self-Attention como mecanismo de pooling temporal
implica 2,4M parámetros adicionales a entrenar. A su vez, tener parámetros entrenables
implica tener que nuevamente calcular los embeddings on-the-fly en vez de precalcularlos.

De esta manera, ejecutamos un primer experimento con este pooling con una única
cabeza de atención, obteniendo resultados peores que al usar Temporal Mean Pooling. Esto
no era lo esperado ya que con atención se podŕıa aprender a hacer un promedio también.
Este comportamiento puede explicarse desde la perspectiva del bias-variance tradeoff :
mientras que el promedio temporal es un mecanismo simple con alto sesgo pero baja
varianza, el self-attention es más flexible y puede aprender patrones más complejos, lo que
implica menor sesgo pero mayor varianza. Esta mayor capacidad expresiva puede llevar a
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que el modelo prefiera ajustarse a patrones espećıficos del conjunto de entrenamiento en
lugar de aprender la solución más simple (el promedio), resultando en overfitting.

Para abordar este desaf́ıo, exploramos dos aspectos del entrenamiento que podŕıan
ayudar a controlar mejor el balance entre sesgo y varianza. En primer lugar, consideramos
que el LR podŕıa ser demasiado grande: al entrenar más parámetros, es posible que sean
beneficiosos cambios más pequeños en cada paso para evitar que el modelo se ajuste de-
masiado rápido a patrones espećıficos (en este punto también podŕıa ser útil experimentar
con una etapa de warm-up, como será hecho luego en la sección 5.1). En segundo lugar,
analizamos si la capa oculta podŕıa estar actuando como un cuello de botella al proyectar
los embeddings, limitando la capacidad del modelo para aprender representaciones útiles.
Por lo tanto, continuamos explorando este mecanismo de pooling con diferentes configu-
raciones de LR y capas ocultas de la MLP. En la siguiente tabla se observan los resultados
de cuatro configuraciones que fueron examinadas:

Capas Ocultas LR Acc Top1 Acc Top5 CE Normalized CE Steps

1 10−4 0.7380 0.9137 1.2739 0.1827 48000
1 5 ∗ 10−4 0.7941 0.9350 1.1016 0.1580 22000
0 10−4 0.8527 0.9590 0.6453 0.0925 102000
0 5 ∗ 10−4 0.8655 0.9644 0.6349 0.0910 30000

Temporal Mean Pooling 0.8638 0.9569 0.5540 0.0794 18000

Tab. 4.10: Comparación de resultados utilizando Self-Attention y Temporal Mean Pooling como
métodos de pooling temporal bajo distintas configuraciones.

En primer lugar, puede observarse que los resultados con Temporal Mean Pooling
no son los mismos que en su último experimento (4.8.1), esto se debe a que en aquel
experimento se utilizaba 128 como tamaño de batch mientras que al calcular embeddings
on-the-fly como entrada utilizamos 32. Por lo que, se volvió a entrenar ese modelo con
BS = 32 y, en contra lo esperado, sus métricas mejoran levemente. Al momento de buscar
el BS óptimo en el experimento 4.4 128 poséıa una pequeña diferencia a favor por sobre 32,
en aquel experimento no utilizábamos ningún método de normalización y la MLP poséıa
un tamaño oculto de 4096.

En segundo lugar, observamos que la utilización de 0 capas ocultas es lo que más afectó
los resultados, y con ésto se supera la accuracy obtenida con Temporal Mean Pooling, lo
que nos motiva a seguir explorando este mecanismo. Cuando hab́ıamos probado 0 capas
ocultas en el experimento 4.5 el modelo no alcanzaba a converger en un tiempo razonable.
Por lo que, al ahora ser beneficioso, significaŕıa que con el uso de Self-Attention se consi-
guen mejores representaciones para la tarea, ya que un modelo más simple las aprovecha
mejor. En cuanto al LR, en todos los casos reducirlo condujo a peores resultados y una
convergencia más lenta.

A ráız de los resultados que se observan en la tabla anterior, continuaremos la explo-
ración de este pooling con la configuración que posee 0 capas ocultas y se entrena con LR
fijo en 5∗10−4. Por otro lado, cabe mencionar que estos cuatro modelos fueron entrenados
sin la normalización Z global vista en el experimento 4.7. El siguiente paso será entonces
analizar el efecto de su uso, que puede ser visto en la siguiente tabla:
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Normalización Z Global Acc Top1 Acc Top5 CE Normalized CE Steps

✗ 0.8655 0.9644 0.6349 0.0910 30000
✓ 0.8496 0.9604 0.6433 0.0923 12000

Tab. 4.11: Efecto del uso de la normalización Z global con Self-Attention Time Pooling con una
cabeza de atención.

Notamos que en este caso la normalización Z global lleva a un leve deterioro del des-
empeño. En contrapartida, con normalización Z global el modelo converge en la mitad del
tiempo. Con el objetivo de agilizar la experimentación y asumiendo que la normalización
Z global no interactúa con los próximos hiperparámetros, mantendremos el uso de la nor-
malización Z global y al final de este experimento entrenaremos al modelo con la mejor
configuración de Self-Attention Time Pooling quitando la normalización Z global.

Como siguiente paso, examinaremos el uso de Positional Encoding. Espećıficamente,
usaremos el encoding más clásico definido en la ecuación 2.6.

Positional Encoding Acc Top1 Acc Top5 CE Normalized CE Steps

✗ 0.8496 0.9604 0.6433 0.0923 12000
✓ 0.6114 0.8446 2.0620 0.29567 10000

Tab. 4.12: Resultados al usar Positional Encoding con Self-Attention Time Pooling con una cabeza
de atención, sin normalización Z global y con 0 capas ocultas en la MLP.

Los resultados arrojan que no es útil el Positional Encoding para el pooling temporal,
ya que las métricas se deterioran mucho con su uso. Si bien el modelo con este método
alcanza en una etapa más temprana del entrenamiento su mejor desempeño en valida-
ción, este comportamiento solo indica que el modelo comienza a sobreajustar a los datos
de entrenamiento antes empeorando en validación. Un posible problema con el encoding
propuesto es la escala, es posible que los valores del encoding dominen al valor original
del embedding generando una pérdida de información. Tanto analizar posibles soluciones
a esto como probar otras codificaciones queda como posible trabajo futuro.

El siguiente hiperparámetro con el que buscaremos la mejor configuración para esta
capa es la cantidad de cabezas de atención. Suele decirse que cada una de estas cabezas se
encarga de almacenar información de distinta ı́ndole; en NLP, Clark et al. (2019) muestra
que diferentes cabezas de atención se especializan en diferentes aspectos de la sintaxis.
Si bien no hay garant́ıas de que esto pueda ser interpretado por humanos, al resultar en
distintos segmentos del embedding de salida y tener diferentes conjuntos de pesos, cada
una de estas cabezas es libre de aprender funciones distintas. Como los embeddings suelen
tener tamaños múltiplos de 2, la cantidad de cabezas de atención suelen también seguir
este patrón, aunque bien podŕıan ser números arbitrarios. En la siguiente tabla se observa
las diferentes cantidades de cabezas de atención que hemos explorado y sus resultados:
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Cabezas de Atención Acc Top1 Acc Top5 CE Normalized CE Steps

1 0.8496 0.9604 0.6433 0.0923 12000
8 0.8697 0.9646 0.5963 0.0855 10000
16 0.8691 0.9663 0.5492 0.0787 8000

32 0.8684 0.9670 0.5554 0.0796 8000

Temporal Mean Pooling 0.8638 0.9569 0.5540 0.0794 18000

Tab. 4.13: Impacto del número de cabezas de atención en el rendimiento del modelo con Self-
Attention Time Pooling.

Al sumar cabezas de atención, observamos que mejora la accuracy en dos puntos apro-
ximadamente y al mismo tiempo mejora la convergencia. Siguiendo el mismo criterio que
hemos adoptado a lo largo del trabajo, nos quedaremos con el modelo de 16 cabezas de
atención ya que alcanzó la menor entroṕıa cruzada.

Por otro lado, ocurrió posteriormente por azar y error humano, que ejecutamos un
entrenamiento del modelo de 16 cabezas con LR = 10−4 obteniendo ostensiblemente
mejores resultados con una convergencia diez veces más lenta. Al ahondar en la causa
de esto, encontramos que las cabezas de atención interactúan con el LR: más cabezas de
atención se benefician de learning rates más bajos. No profundizaremos en esta cuestión,
pero creemos que es un buen experimento explorar esta interacción, ya que es muy grande
su influencia en los resultados, que pueden ser vistos en la siguiente tabla:

LR Acc Top1 Acc Top5 CE Normalized CE Steps

10−4 0.9320 0.9839 0.3227 0.0463 80000
5 ∗ 10−4 0.8691 0.9663 0.5492 0.0787 8000

Tab. 4.14: Evaluación del Self-Attention Time Pooling con 16 cabezas de atención variando la tasa
de aprendizaje.

Finalmente, como la normalización Z global no hab́ıa arrojado mejores resultados
(véase 4.11) con una cabeza de atención, veremos qué ocurre con este último modelo
con 16 cabezas de atención al quitar esta normalización:

Normalización Z Global Acc Top1 Acc Top5 CE Normalized CE Steps

✓ 0.9320 0.9839 0.3227 0.0463 80000

✗ 0.9179 0.9773 0.4055 0.0581 152000

Tab. 4.15: Resultados de la utilización de normalización Z global con Self-Attention Time Pooling
en su configuración con 16 cabezas de atención y LR = 10−4.

Anteriormente, utilizar normalización Z global significaba un leve deterioro de la en-
troṕıa cruzada y peor accuracy. En este caso, la normalización Z global es beneficiosa para
todas las métricas que monitoreamos. Por lo que conservaremos el uso de la normalización
Z global, y con esto concluimos nuestra búsqueda del mejor pooling temporal con Self-
Attention. La configuración final es usar un downstream de 0 capas ocultas, LR = 10−4,
con normalización Z global, sin Positional Encoding y con 16 cabezas de atención.

Mecanismos alternativos de atención En la búsqueda del mejor mecanismo de aten-
ción, exploramos dos alternativas: Transformers (Vaswani et al., 2017) y SummaryMixing
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(Parcollet et al., 2024). Transformers es una extensión natural del anterior experimento,
ya que mantiene el bloque de Self-Attention mientras suma una capa de normalización e
incorpora una MLP al final. Por su parte, SummaryMixing es una alternativa de meno-
res recursos a Self-Attention propuesta para reconocimiento automático del habla (ASR),
que reduce la complejidad cuadrática en la cantidad de frames de su contraparte a una
complejidad lineal. A su vez, hay disponibles dos sabores de este mecanismo: su versión
lite y su versión completa, que incorpora bloques de MLPs.

En cuanto a la configuración de Transformers, utilizamos un único bloque con una
única capa en su MLP con tamaño oculto 2048 (default de PyTorch). Al mismo tiempo,
mantuvimos la configuración óptima de Self-Attention que encontramos en el anterior
experimento.

De esta manera, utilizamos estos mecanismos de atención alternativos siguiendo la
misma idea que con Self-Attention, propagamos las activaciones por la capa que realiza
este mecanismo y luego promediamos en la dimensión temporal.

Método de pooling #Params Acc Top1 Acc Top5 CE Normalized CE Steps

Temporal Mean Pooling 0 0.8638 0.9569 0.5540 0.0794 18000

Self-Attention 2.4M 0.9320 0.9839 0.3227 0.0463 80000

Summary Mixing Lite 50.4K 0.5433 0.7645 2.3168 0.3322 614000
Summary Mixing 1.1M 0.7458 0.8988 1.1641 0.1669 58000

Transformer 11M 0.9435 0.9875 0.2229 0.0320 48000

Tab. 4.16: Resultados al usar diferentes métodos de pooling en el tiempo basados en mecanismos de
atención en comparación con los anteriores métodos vistos. La cantidad de parámetros
corresponde a la capa de pooling temporal.

En primer lugar, observamos que Transformer logra superar a los otros métodos en
todas las métricas menos convergencia. Aún aśı, converge en una menor cantidad de pasos
que Self-Attention, lo cual es esperable debido a su mayor complejidad. En consecuencia,
en lo sucesivo usaremos Transformer como pooling temporal.

En segundo lugar, notamos que Summary Mixing, aunque puede ser un buen reemplazo
de Self-Attention dentro de la arquitectura Transformer para ASR, no es un método ade-
cuado para realizar un pooling temporal. Los resultados obtenidos son significativamente
peores que los de Self-Attention e incluso inferiores a los de Temporal Mean Pooling, que
no posee parámetros entrenables.

4.8.2. Pooling de capas

El pooling de capas consiste en extraer información del embedding de cada capa. Luego
de este pooling la dimensión de las capas es colapsada. En este experimento, probaremos
si los métodos que fueron exitosos para el pooling temporal también son efectivos para
el pooling de capas. De igual manera que con los mecanismos de atención en el pooling
temporal, luego de pasar por estas capas promediaremos, esta vez, en la dimensión co-
rrespondiente a las capas. Hasta este momento hemos utilizado el promedio pesado como
pooling de capas (Weighted Average Layer Pooling), que al entrenar un peso por cada capa
nos otorga la capacidad de interpretar la importancia de la información de cada una para
la tarea dada. En la práctica, la técnica más difundida al momento de usar embeddings
es quedarse con la representación de la última capa. Por lo tanto, también exploraremos
el uso de ésta. A su vez, sumaremos un método más, Mejor Capa, que consiste en di-
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rectamente quedarse con el embedding correspondiente a la mejor capa. El criterio para
determinar cuál es esta capa será seleccionar aquella cuyos pesos otorgados en el Weighted
Average son máximos, en el siguiente gráfico puede observarse los pesos del experimento
anterior:
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Fig. 4.6: Pesos de la capa Weighted Average Layer Pooling para los modelos comparados en el
experimento 4.8.1.

La Figura 4.6 muestra que la capa 4 tiene máximo peso para dos de los tres métodos
de pooling temporal. Esta conclusión es consistente con la obtenida en el paper original
de WavLM (Chen et al., 2021), donde para WavLM Base+ se observa un gran dominio
de la capa 4 en SID en el análisis de pesos de las capas. Cabe destacar, que si bien la
capa 4 posee el mayor peso, esto no implica que sea necesariamente la capa con mejores
resultados al usar únicamente las representaciones de ésta.

Aśı experimentamos con diferentes métodos de pooling de capas usando Transformer
como pooling temporal:

Método #Parámetros Acc Top1 Acc Top5 CE Normalized CE Steps

Weighted Average 13 0.9435 0.9875 0.2229 0.0320 48000

Última capa 0 0.6752 0.8578 1.5177 0.2176 44000
Mejor capa 0 0.9450 0.9876 0.2253 0.0323 40000

Self-Attention 2.4M 0.9139 0.9769 0.4719 0.0677 54000
Transformer 11M 0.9470 0.9858 0.2294 0.0329 40000

Tab. 4.17: Resultados al usar diferentes mecanismos de poolings de capas usando Transformer
Time Pooling. La cantidad de parámetros corresponde a la capa de pooling de capas del
modelo upstream.

El primer resultado saliente es que la utilización de las representaciones de la última
capa por śı solas se traducen en un gran deterioro en el desempeño. Si bien es una técnica
adecuada para otros contextos (otros modelos con otras tareas u otras disciplinas como
NLP) para este modelo upstream y esta tarea no lo es. Contrariamente, usando la capa 4
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se obtiene resultados comparables con los de de Weighted Average, por lo que es razonable
pensar que esta capa encapsula la información necesaria del upstream para esta tarea. Por
su parte, usar Self-Attention en el pooling de capas trajo peores resultados, mientras que
con Transformer se obtuvo una pequeña mejora en Accuracy Top1 manteniendo una
buena convergencia. Esto significaŕıa que el mecanismo de atención por śı solo no es
suficiente para el pooling de capas, pero śı lo es al ser usado con una MLP y demás
incorporaciones de la arquitectura Transformer. A su vez, recordemos que la cantidad de
steps no es indicativa del tiempo de entrenamiento ya que a mayor cantidad de parámetros
más demora cada step, aśı la convergencia más rápida pertenece a Mejor capa. De esta
manera, con estos resultados la mejor configuración mantiene Weighted Average como
mejor pooling de capas, ya que con una cantidad mı́nima de parámetros obtiene la menor
cross entropy y accuracies comparables con las mejores.

4.8.3. El estado del arte

En este punto de la experimentación nos detuvimos a observar y entender mejor el
estado del arte en esta tarea. Como mencionamos anteriormente, el benchmark que se
suele observar es SUPERB (Yang et al., 2021). En la tabla de resultados en SID del
benchmark se publica únicamente la accuracy top1 de cada modelo en la partición de test,
y con WavLM Base+ se reporta una accuracy de 0,8942. El downstream utilizado para
esto utiliza lo que denominamos Weighted Average Layer Pooling, seguido de una capa
intermedia, y luego Temporal Mean Pooling. La capa intermedia permitiŕıa una adaptación
del input del pooling temporal. A su vez, es usado para reducir la dimensión de 768
a 256. Esto último sospechamos que se debe a que el resto del modelo downstream es
compartido por diferentes modelos con diferentes dimensiones en las representaciones del
upstream. Con la accuracy mencionada WavLM Base+ ocupa el tercer lugar, mientras
que los primeros dos son WavLM Large (316.62M de parámetros y accuracy 0,9549) y
HuBERT Large (300M de parámetros y accuracy 0,9033) (véase la tabla 2.1).

Nuestro modelo con Temporal Mean Pooling alcanzaba una accuracy top1 de 0,8638
con cross entropy 0,5540, por lo que buscamos entender esta diferencia. Aśı, como es de
código abierto, decidimos replicar los resultados utilizando el código provisto. Al correr el
código como se indica en la documentación, se obtuvo una accuracy máxima de 72,12 en
200.000 steps (este limite de steps es el predeterminado por la biblioteca):
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Fig. 4.7: Evolución de la accuracy del modelo predeterminado de S3PRL con WavLM Base+.

Al observar que el modelo no converǵıa, decidimos probar aumentando el LR. Ante-
riormente estaba en 0,0001 y lo aumentamos a 0,001:

Fig. 4.8: Evolución de la accuracy con diferentes LRs del modelo predeterminado de S3PRL con
WavLM Base +.

De esta manera el modelo śı convergió y logró obtener 0,8610 de accuracy top 1 con
cross entropy 0,9027, una accuracy similar con una cross entropy mucho mayor a nuestro
modelo aśı como también una convergencia más tard́ıa. La diferencia en la convergencia
está en linea con los resultados de la sección 4.7, donde incorporamos el uso de normaliza-
ción Z global. Aún aśı, no se alcanzó la accuracy reportada y puede que requiera algunos
ajustes más, aunque al no ser el foco de nuestra investigación decidimos no continuar
con esta exploración. Mientras que construir el modelo downstream desde cero fue muy
enriquecedor, a partir del experimento realizado, hemos aprendido que es fundamental
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priorizar, en las etapas iniciales de la experimentación, un entendimiento profundo de los
baselines, puntos de referencia del estado del arte.

De este experimento nos llevamos algunas ideas interesantes. En primer lugar, el orden
de los poolings utilizado es distinto, por lo que en un próximo experimento exploraremos
esto. En segundo lugar, se utiliza una capa intermedia entre poolings, si bien puede que su
razón se deba simplemente a la adaptación de distintos upstreams, nos parece una buena
idea darle al modelo una oportunidad de adaptar los features antes de poolearlos en el
tiempo. Por otro lado, en este benchmark no hay reportes de entroṕıa cruzada, y los en-
trenamientos de estos modelos buscan la mayor accuracy sin monitorear entroṕıa cruzada,
que śı se usa como función de pérdida. En nuestro caso, nos concentramos en minimizar
la entroṕıa cruzada, y esto puede ocasionar diferencias en los resultados. Finalmente, no-
tamos que nuestros mejores resultados al momento se posicionaŕıan en un segundo lugar
con menos de un tercio de la cantidad de parámetros que WavLM Large y potencialmente
en mucho menor tiempo de entrenamiento (menos steps y con un modelo más pequeño).

4.8.4. Orden de los poolings

Motivados por el orden inverso en los poolings usado en el downstream del SUPERB
benchmark, decidimos explorar el orden de los poolings y sus posibles combinaciones.
En nuestro caso y en su momento, el orden era conveniente para poder pre-calcular los
embeddings luego de pasar por el pooling temporal. En este momento, al usar poolings
con parámetros a aprender, el orden no afecta tanto el tiempo de ejecución de cada step.

De esta manera, probamos distintas combinaciones y ordenes de los poolings estudia-
dos, seleccionando los que mejores resultados hab́ıan obtenido anteriormente:

Primer pooling Segundo pooling Acc Top1 Acc Top5 CE NCE Steps

Weighted Average Layer Pooling Temporal Mean Pooling 0.8702 0.9601 0.5317 0.0762 20000
Temporal Mean Pooling Weighted Average Layer Pooling 0.8638 0.9569 0.5540 0.0794 18000

Weighted Average Layer Pooling Self-Attention Time Pooling 0.9206 0.9819 0.3621 0.0519 96000
Self-Attention Time Pooling Weighted Average Layer Pooling 0.9320 0.9839 0.3227 0.0463 80000

Weighted Average Layer Pooling Transformer Time Pooling 0.9281 0.9828 0.2736 0.0392 44000
Transformer Time Pooling Weighted Average Layer Pooling 0.9435 0.9875 0.2229 0.0320 48000

Mejor capa Temporal Mean Pooling 0.8662 0.9433 0.5960 0.0855 58000
Mejor capa Self-Attention Time Pooling 0.9226 0.9796 0.3340 0.0479 36000
Mejor capa Transformer Time Pooling 0.9450 0.9876 0.2253 0.0323 40000

Self-Attention Layer Pooling Self-Attention Time Pooling 0.9127 0.9781 0.4553 0.0653 48000
Self-Attention Time Pooling Self-Attention Layer Pooling 0.8921 0.9729 0.5719 0.0820 52000

Transformer Layer Pooling Transformer Time Pooling 0.9406 0.9860 0.2433 0.0349 70000
Transformer Time Pooling Transformer Layer Pooling 0.9470 0.9858 0.2294 0.0399 40000

Tab. 4.18: Resultados al combinar los distintos poolings vistos en diferentes órdenes.

De los resultados se desprende que no hay un orden entre pooling temporal y de capas
que sea siempre mejor; depende de cada modelo. Usando Weighted Average Layer Pooling
y Temporal Mean Pooling se obtiene una pequeña mejora utilizando el orden introduci-
do en S3PRL (primero pooling de capas). A su vez, la configuración Transformer Time
Pooling con Weighted Average Layer Pooling se mantiene con la cross entropy mı́nima,
mientras que Transformer Time Pooling con Transformer Layer Pooling tiene máxima ac-
curacy top1. Por otro lado, cabe mencionar que al emplear Mejor capa no tiene sentido
intercambiar el orden ya que no hay interacción entre capas en el pooling temporal.
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4.8.5. Capa entre poolings

El modelo downstream de SUPERB luego de pasar por el upstream y el pooling de
capas hace una pasada por una capa intermedia antes de realizar un pooling temporal.
Esta capa permitiŕıa una adaptación del input al pooling temporal. A su vez, es usado
para reducir la dimensión de 768 a 256. En nuestro caso no reduciremos la dimensión sino
que mantendremos la dimensión en 768 tanto en la entrada como en la salida de esta capa
intermedia, aśı esta capa realiza una transformación lineal que incorpora 590k parámetros
adicionales a entrenar.

Experimentaremos con esta capa intermedia con los que consideramos los tres modelos
más atractivos para esto, aquellos con los siguientes poolings: Self-Attention Time Pooling
+ Weighted Average Layer Pooling, Transformer Time Pooling + Weighted Average La-
yer Pooling, y Transformer Time Pooling + Transformer Layer Pooling. Respectivamente,
estas configuraciones poseen 2.4M, 11M y 22M parámetros a entrenar, barriendo aśı di-
ferentes complejidades. El segundo fue el modelo que menor cross entropy obtuvo en el
experimento anterior, mientras que el tercero fue el que llegó a la mejor accuracy. Por su
parte, el primero tiene la configuración que alcanza los mejores resultados con su tamaño
reducido, siendo aśı una buena alternativa ante limitaciones de recursos.

Primer pooling Capa intermedia Segundo pooling Acc Top1 Acc Top5 CE NCE Steps

Self-Attention ✗ Weighted Average 0.9320 0.9839 0.3227 0.0463 80000
Self-Attention ✓ Weighted Average 0.9110 0.9800 0.4075 0.0584 44000

Transformer ✗ Weighted Average 0.9435 0.9875 0.2229 0.0320 48000
Transformer ✓ Weighted Average 0.9020 0.9783 0.4332 0.0621 40000

Transformer ✗ Transformer 0.9470 0.9858 0.2294 0.0399 40000

Transformer ✓ Transformer 0.9474 0.9874 0.2107 0.0302 40000

Tab. 4.19: Resultados al incorporar una capa intermedia lineal entre los poolings. En los tres casos,
el primer pooling es en el tiempo y el segundo pooling es a nivel capas.

De esta manera, se obtuvo que Transformer Time Pooling + Transformer Layer Poo-
ling con una capa intermedia obtiene la menor cross entropy, y a la vez, la mayor accuracy
top1.

Notamos que en los otros dos casos, donde el pooling posterior a la capa intermedia
es Weighted Average Layer Pooling, los resultados son peores aunque la convergencia es
más rápida. El efecto en los resultados puede parecer razonable: esta capa intermedia
está realizando una proyección del embedding de cada capa (obtenido luego del pooling
temporal), que podŕıa verse como una adaptación previa al pooling de capas. En esa ĺınea,
se vio en el experimento 4.7 que la normalización Z por capas no mejoró a la normalización
Z global, indicando que no hay grandes diferencias entre las representaciones de cada
capa. Por lo cual, no habŕıa beneficio en adaptar los embeddings de cada capa antes
de poolearlos. Sin embargo, Transformer Layer Pooling śı se ve beneficiado por la capa
intermedia anterior. Ello podŕıa deberse a que este pooling, a diferencia del promedio
pesado, combina la información interna de cada capa, nutriendo al embedding de cada
capa del contexto de las otras capas.

Por otro lado, la convergencia más rápida es consistente con los resultados que fuimos
obteniendo hasta aqúı, donde los modelos más complejos convergen más rápido. En el
caso de Transformer Time Pooling + Transformer Layer Pooling tiene sentido que no sea
observable una mejor convergencia si observamos el aumento relativo de la complejidad al
sumar la capa intermedia: para Self-Attention + Weighted Average Layer Pooling significa
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un aumento del 16, 81%, para Transformer Time Pooling + Weighted Average Layer Poo-
ling 4, 96%, mientras que para Transformer Time Pooling + Transformer Layer Pooling
2, 58%.

4.9. Interacción entre el cross entropy y la accuracy

A lo largo de la experimentación, fuimos notando que al detener el entrenamiento con
Early Stopping, si bien la entroṕıa cruzada hab́ıa convergido, la accuracy segúıa mejorando.
Surgió entonces como hipótesis que al extender el entrenamiento encontraŕıamos modelos
con mejor accuracy al costo de peor entroṕıa cruzada. Este fenómeno es relevante porque
en la actualidad la publicación de resultados en tareas de clasificación como SID mantiene
como práctica reportar la accuracy de los modelos como única métrica. La diferencia entre
la entroṕıa cruzada y la accuracy es que la entroṕıa cruzada evalúa la calidad de las
posteriors y la accuracy la calidad de las decisiones que se toman con esas posteriors para
una función de costo espećıfica donde todos los errores valen lo mismo. Por un lado, la
entroṕıa cruzada no depende de cómo se toman las decisiones. Por el otro lado, siempre
es posible calibrar el modelo de mejor accuracy manteniendo la discriminación y logrando
una mejor calidad de posteriors. En todo caso, al menos, no debemos ignorar a la entroṕıa
cruzada.

En este experimento, decidimos entrenar los 3 modelos del experimento anterior, en
sus configuraciones con mejor desempeño, por 250000 steps observando sus evoluciones en
cross entropy y accuracy.

De esta manera, en el modelo con Self-Attention Time Pooling + Weighted Average
Layer Pooling pudimos observar el fenómeno que entrevéıamos y se grafica en la figura
4.9. Si bien la cross entropy alcanza su convergencia a los 74000 steps, la accuracy máxi-
ma no se logra hasta los 218000 steps. El modelo que alcanza la mayor accuracy supera
por un punto porcentual al modelo con menor cross entropy, aunque presenta aproxima-
damente un punto más de normalized cross entropy. Esta observación nos lleva a una
conclusión importante sobre la metodoloǵıa de entrenamiento: para optimizar el desem-
peño en términos de accuracy, es preferible seleccionar el modelo con la mayor accuracy y
posteriormente realizar un proceso de calibración. Este paso de calibración es fundamental,
ya que la selección basada en accuracy tiende a producir modelos descalibrados, es decir,
modelos cuyas probabilidades de salida no reflejan con accuracy su verdadera confianza,
t́ıpicamente sobre-estimando sus predicciones.
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Fig. 4.9: Evolución de las métricas en validación durante el entrenamiento para el modelo con Self-
Attention Time Pooling + Weighted Average Layer Pooling.

No obstante, este comportamiento no se observó en el modelo con mejores resultados
del experimento 4.8.5, como se puede observar en la siguiente figura:
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Fig. 4.10: Evolución de las métricas en validación durante el entrenamiento para el modelo con
Transfomer Time Pooling + Capa intermedia + Transfomer Layer Pooling.

Por último, el modelo con Transformer Time Pooling + Weighted Average Layer Poo-
ling reveló un comportamiento inesperado. A diferencia del experimento anterior, donde
este modelo no hab́ıa obtenido los mejores resultados, en esta ocasión logró superar a los
demás modelos tanto en cross entropy como en accuracy después de 214000 steps:
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Fig. 4.11: Evolución de las métricas en validación durante el entrenamiento para el modelo con
Transformer Time Pooling + Weighted Average Layer Pooling.

Esta observación cuestiona la efectividad del Early Stopping en algunos casos, ya que
en este caso logró mejores resultados sin su uso (al utilizar Early Stopping hab́ıamos
obtenido 0.9435 de accuracy y 0.2229 de entroṕıa cruzada en 48000 steps, véase la Tabla
4.19). Al no ser sencillo identificar cuáles serán estos casos donde el Early Stopping no es
efectivo, puede llegar a ser conveniente fijar la cantidad de steps a realizarse o monitorear
oscilaciones que determinen mejor cuando un modelo convergió. Aún aśı, en la figura
anterior, se observa un caso en el que el Early Stopping śı funcionó adecuadamente para
encontrar al mejor modelo.

Es importante aclarar que este experimento fue replicado en una etapa final de la inves-
tigación, posterior a la secuencia experimental que se presenta a continuación en esta tesis.
Si bien los resultados obtenidos cuestionan la eficacia del Early Stopping y demuestran
un mejor desempeño del modelo Transformer Time Pooling + Weighted Average Layer
Pooling, los experimentos subsiguientes mantienen el uso de Early Stopping por sus venta-
jas computacionales. Asimismo, se continuará considerando al modelo Transformer Time
Pooling + Capa intermedia + Transformer Layer Pooling como el modelo downstream
óptimo obtenido en nuestra investigación.

4.10. Conclusiones de la exploración del modelo downstream

En este caṕıtulo hemos llevado a cabo una exploración exhaustiva de la configuración
del modelo downstream con el objetivo de optimizar su desempeño en la tarea de identi-
ficación de hablantes. A continuación, sintetizamos los principales hallazgos obtenidos en
cada uno de los aspectos evaluados.

Uno de los elementos más analizados fue la tasa de aprendizaje, donde se observó que
los valores predeterminados en la literatura (i.e., 10−3, 5 ∗ 10−4, 10−4) suelen ser los más
estables (ver Sección 4.4) . Adicionalmente, se evidenció la clara interacción entre el LR
y el tamaño del batch, permitiendo cuantificar el grado de degradación del desempeño
al reducir BS. Esto nos proporcionó información clave para entender cómo se modificaŕıa
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el desempeño con nuestras limitaciones de recursos. Más adelante, también se notó una
relación entre la cantidad de cabezas de atención y el LR, sobre la que no se profundizó,
pero fue uno de los factores más influyentes al usar Self-Attention.

En los primeros experimentos observamos que el modelo downstream escalaba mejor a
lo ancho que a lo largo: no mejoraba al aumentar la cantidad de capas pero śı al aumentar
el tamaño oculto. De esta manera, la MLP propuesta inicialmente antes de la capa de
salida quedó reducida a una única capa.

Luego, al utilizar el conjunto de datos completo, detectamos que los modelos más gran-
des eran más propensos al sobre-ajuste. Esto nos llevó a reconsiderar la configuración y
optar por un modelo con un tamaño oculto menor. Esta decisión resalta la importancia de
evaluar el desempeño del modelo en diferentes escalas del dataset. Aún aśı, la utilización
de una partición reducida de datos fue vital en las etapas iniciales para poder realizar una
exploración minuciosa antes de escalar los experimentos al conjunto de datos completo.
Otro factor determinante en la factibilidad de nuestra exploración fue la estrategia de pre-
cálculo de embeddings del modelo upstream, que redujo el tiempo de entrenamiento en
más de un orden de magnitud. Gracias a esta técnica, pudimos realizar experimentaciones
más extensas y con mayor granularidad en los hiperparámetros sin que el costo compu-
tacional fuera prohibitivo. Posteriormente, la normalización de los embeddings mediante
el normalización Z global propuesto mejoró notoriamente la convergencia, reduciendo a
un tercio la cantidad de steps en el entrenamiento.

Finalmente, en lo que respecta a los métodos de pooling, la exploración progresiva de
diferentes técnicas y la incorporación de mecanismos de atención fue clave para optimizar
el desempeño final del modelo. El promedio de los embeddings, siendo la estrategia más
simple, se sostuvo como una técnica adecuada y la estad́ıstica más informativa. Luego, la
investigación de los mecanismos de atención abarcó desde configuraciones básicas hasta ar-
quitecturas más sofisticadas como SummaryMixing y Transformers. En esta investigación
la cantidad de cabezas de atención en conjunto con un ajuste del LR demostraron ser los
factores más influyentes en el rendimiento, como se mencionó anteriormente. La configu-
ración óptima se logró utilizando Transformers tanto para el pooling temporal como para
el de capas. En cuanto a la arquitectura general del modelo, los experimentos revelaron
que el impacto del orden de los poolings está estrechamente ligado a los distintos métodos
de pooling y no hay un orden que sea siempre superior. Análogamente, el efecto de una
capa intermedia entre poolings demostró ser altamente dependiente de la configuración
espećıfica, sugiriendo que la arquitectura óptima requiere una consideración cuidadosa de
estas interacciones.

En resumen, la exploración detallada del modelo downstream nos permitió no solo
alcanzar resultados de vanguardia en SID (0,9474 de accuracy top 1 y 0,2107 de cross
entropy) con un modelo upstream pequeño, sino también entender los fundamentos detrás
de cada decisión de diseño y entrenamiento. Estos hallazgos no solo optimizaron nuestro
modelo final, sino que también ofrecen lineamientos valiosos para futuras investigaciones
en optimización de modelos de habla en escenarios de recursos limitados.
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Hasta este punto, hemos buscado el modelo downstream con la arquitectura y configu-
ración de hiperparámetros óptima manteniendo siempre congelado al modelo upstream, es
decir, sin modificar sus pesos durante los entrenamientos. En esta sección, entrenaremos
también al modelo upstream, analizando sus costos y beneficios. Acuñaremos el término
full-finetuning para referirnos al entrenamiento con el upstream completamente descon-
gelado. Si bien no analizaremos descongelamientos parciales del modelo upstream, este
término explicita que el descongelamiento es total y nos permitirá distinguirlo del uso de
técnicas PEFT que se verá más adelante.

Como modelo downstream, seleccionamos el que utiliza Transformer Time Pooling,
una capa intermedia, y Transformer Layer Pooling. Este modelo es el más grande en-
tre los modelos downstream evaluados, con 23.6M de parámetros. Aunque también iden-
tificamos modelos más pequeños con resultados similares, al realizar full-finetuning las
diferencias en el tamaño de los modelos downstream no son tan significativas. En este con-
texto, los recursos computacionales necesarios entre los diferentes modelos downstream
no resultan en diferencias relativas considerables, por lo que tiene sentido en este caṕıtulo
evaluar full-finetuning utilizando el mejor downstream independientemente de su cantidad
de parámetros.

5.1. Programación de la tasa de aprendizaje

El primer y más sencillo experimento es simplemente descongelar el upstream. Sin
embargo, al hacer esto nos encontramos con que no se obtuvieron mejores resultados
(véase la tabla 5.2) incluso con mucho más parámetros entrenables. No sólo eso, sino que
los resultados son significativamente peores. Entonces, al ahondar en las causas, nuestro
primer acercamiento fue sospechar del LR. Estos modelos suelen utilizar estrategias más
complejas que un LR fijo ya que nos encontramos entrenando un orden de magnitud de
parámetros más grande y múltiples capas de Transformers. Por consiguiente, indagamos
acerca de las estrategias de fine-tuning empleadas en tareas análogas y aśı arribamos a un
reporte 1 en el repositorio oficial del modelo. En este sitio reportan la programación del
LR que usaron los autores para Speaker Verification (SV), una tarea ı́ntimamente ligada
a SID.

La programación de LR planteada en ese foro incluye tres etapas, donde en la pri-
mera solo se entrena al downstream, y en las otras dos, a ambos. En todas las etapas se
utiliza descenso por el gradiente estocástico (SGD) con momentum como optimizador (a
diferencia de lo que venimos usando nosotros hasta aqúı, que es el optimizador Adam)
y una programación de LR con algunas épocas de warm-up y luego un decrecimiento
exponencial. Esta estrategia hace uso de los siguientes conceptos clave:

Momentum (Polyak, 1964): Esta técnica acelera el descenso por el gradiente al acu-
mular un vector de velocidad υ en direcciones donde persistentemente se reduce la
función de pérdida. Formalmente, en su versión clásica se modifica la ecuación de
actualización de parámetros (2.3) de la siguiente manera:

1 https://github.com/microsoft/unilm/issues/695
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υt+1 = µυt − η∇L(θt,D) (5.1)

θt+1 = θt + υt+1 (5.2)

Donde µ ∈ [0, 1] es el coeficiente del momentum. Para mayor detalle, Sutskever
et al. (2013) explica la importancia de la inicialización del LR aśı como el uso del
momentum.

Weight decay : También conocida como regularización L2, es una técnica de regula-
rización que modifica la función de pérdida agregando un término de penalización
proporcional a la norma euclidiana de los parámetros:

Lnueva(θ,D) = Lanterior(θ
t,D) + λ ∥θ∥22 (5.3)

Donde λ es un valor que determina la magnitud de la penalización, haciendo que
valores más altos promuevan parámetros de menor magnitud.

Warm-up: Consiste en aumentar gradualmente desde cero hasta un valor objetivo
al LR durante la etapa inicial del entrenamiento. La etapa de warm-up permite que
el modelo se adapte gradualmente a los patrones en los datos sin sobre-ajustarse
prematuramente a caracteŕısticas espećıficas o incidentales que podŕıan aparecer al
inicio del entrenamiento. De esta manera, el warm-up actúa como un mecanismo de
regularización inicial. Kalra and Barkeshli (2024) muestra que el warm-up permite
utilizar mayores LRs aśı como también previene la divergencia del modelo durante
el entrenamiento.

Exponential Decay : Empezar con un LR grande y luego decrementarlo múltiples
veces es una técnica de facto en el entrenamiento de redes neuronales modernas
que ha mostrado resultados emṕıricos favorables. Si bien hay discusión acerca de
las causas de esto (You et al., 2019), mientras un LR inicial grande evita mı́nimos
locales, el decrecimiento ayuda al modelo a converger e incluso aprender patrones
más complejos (que requieran cambios sutiles en los pesos).

Antes de definir las configuraciones concretas de cada etapa de la programación de
LR, una cuestión muy importante a tener en cuenta es que en la primera etapa reportan
haber usado 1024 como tamaño de batch, en la segunda 512 y en la tercera 192. Nosotros
hemos estado restringidos a un batch de 32, y como concluimos del experimento 4.4, este
parámetro tiene interacción con el LR, por lo que debemos ajustar los valores dados para
el BS = 32. Una manera de solucionar esto es ajustar siguiendo una proporción lineal
(Goyal et al., 2017):

nuevo lr = anterior lr ∗ nuevo batch size

anterior batch size
(5.4)

La siguiente tabla resume la configuración usada en cada una de las tres etapas de la
estrategia planteada con el escalamiento mencionado:
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Etapa Modelo a optimizar Weight Decay Warm-up Epochs LR after warm-up LR Final

1 Downstream 4 ∗ 10−4 1 2 ∗ 10−2 1,25 ∗ 10−5

2 Upstream + Downstream 10−4 3 5 ∗ 10−4 2,75 ∗ 10−4

3 Upstream + Downstream 10−4 2 1,33 ∗ 10−4 3,33 ∗ 10−5

Tab. 5.1: Valores de los distintos hiperparámetros para las distintas etapas de la programación de
LR propuesta.

En todas las etapas se utiliza momentum = 0,9.

Como primer acercamiento al fine-tuning experimentamos con full fine-tuning, entre-
nando conjuntamente todos los parámetros de los modelos upstream y downstream. En
este primer experimento exploramos full fine-tuning sin la etapa inicial en la que se entrena
solo el downstream. Para ello primero consideramos usar la configuración de la etapa 2 de
la programación de LR, que está pensada para usarse con el upstream descongelado. Sin
embargo, al usar esta configuración para entrenar a todo el modelo sin haber entrenado
al downstream antes se alcanzaron resultados peores que utilizando un LR fijo. Creemos
que esto se debe a que la etapa 2 está pensada como refinamiento partiendo de un downs-
tream entrenado, a su vez se tiene un especial cuidado en no sobre-ajustar al realizar full
fine-tuning, por lo que es más conservador en la modificación de pesos. Luego, probamos
utilizando la configuración del LR de la etapa 1 pero optimizando ambos modelos, cuyos
resultados son mostrados en la Tabla 5.2 junto con los obtenidos al usar un LR fijo. Para
una obtener una comparación completa también entrenamos al modelo downstream con
el upstream congelado utilizando la configuración de la etapa 1 de la programación de
LR o un LR fijo. Los valores de la tabla con LR ’dinámico’ corresponden al uso de la
configuración de la etapa 1.

LR Upstream Descongelado Acc Top1 Acc Top5 CE Normalized CE Steps

Fijo ✗ 0.9474 0.9874 0.2107 0.0302 40000
Fijo ✓ 0.8241 0.9377 0.7553 0.1083 22000

Dinámico ✗ 0.9617 0.9899 0.2186 0.0314 82000
Dinámico ✓ 0.9485 0.9879 0.2563 0.0368 62000

Tab. 5.2: Comparación de resultados al entrenar en una etapa con LR fijo en 10−4 y con la pro-
gramación de LR (Dinámico) de la etapa 1 de la Tabla 5.1 con el upstream congelado y
descongelado (full fine-tuning).

En cuanto a los resultados, observamos que la programación de LR logra mejoras
notables para hacer full fine-tuning. Al entrenar solamente el downstream la programación
mejora la accuracy en detrimento leve de la cross entropy y una convergencia en el doble
de tiempo. En cuanto a la convergencia del full fine-tuning los modelos convergen en
una menor cantidad de pasos aunque cada paso es más lento (aproximadamente 1,88it/s
contra 2,77it/s) ya que al descongelar el upstream se ajustan más parámetros durante el
entrenamiento.

En el siguiente gráfico se puede comparar las distintas evoluciones de la cross entropy
en entrenamiento con el LR fijo y con la programación presentada para full fine-tuning.
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(b) Función de pérdida suavizada a lo largo del entrenamiento.

Fig. 5.1: Evolución del LR y la cross entropy en batches de la partición de entrenamiento durante
el entrenamiento con full fine-tuning, correspondiente a los valores de la tabla 5.2.

De estos gráficos se desprende que la programación de LR logra una convergencia más
suave con el decrecimiento exponencial. A su vez, con la programación de LR se consigue
una función de pérdida consistentemente menor a lo largo del entrenamiento. Consideramos
que la anterior visualización es fundamental para ajustar las diferentes estrategias de LR a
diferentes contextos y reconocer si hay que ajustar ciertos hiperparámetros. Por ejemplo,
seŕıa razonable mantener el warm-up hasta notar un incremento en la varianza de la
función de pérdida. También, el decrecimiento exponencial del LR fuerza la convergencia
al tender a cero a los ajustes en los pesos, por lo que podŕıa considerarse sostener un LR
constante (podŕıa ser alrededor del 10−4, que hemos utilizado hasta aqúı) a partir de cierto
punto antes de continuar su decrecimiento a cero (una tercera parte de la programación
con la técnica Reduce LR On Plateau). No obstante, nos atendremos a la programación
antes descrita y mantenemos como posible trabajo futuro la exploración de técnicas ad-hoc
y alternativas.



5.2. LoRA 51

El siguiente paso de la experimentación de la programación de LR es probar un en-
trenamiento en etapas. La primera etapa corresponde en entrenar el downstream, y las
siguientes etapas harán full fine-tuning tomando como base al modelo entrenado en la
etapa anterior. En cada etapa, se utilizará la configuración correspondiente de la progra-
mación de LR presentada anteriormente.

Etapa Accuracy Top1 Accuracy Top5 Cross Entropy Normalized Cross Entropy Steps

1 0.9617 0.9899 0.2186 0.0314 82000
2 0.9697 0.9926 0.1775 0.0255 50000
3 0.9697 0.9926 0.1775 0.0255 22000

Tab. 5.3: Resultados del entrenamiento de cada etapa con las programaciones de LR presentadas
anteriormente, con los valores de hiperparámetros detallados en la tabla 5.1.

Al analizar los resultados presentados en la tabla, se observa que la ejecución de la
etapa 3 no produjo mejoras en el rendimiento del modelo, lo cual sugiere que esta etapa
adicional de entrenamiento no aportó valor al proceso de optimización. Las razones de esto
pueden ser múltiples: la programación propuesta era para SV (una tarea más compleja que
SID), sobre otro dataset más grande (VoxCeleb2), y utilizando otros tamaños de chunk al
entrenar (nosotros usamos siempre 5s mientras que en el esquema propuesto han variado
entre etapas). Por otro lado, vemos que la segunda etapa, en la que se entrena el upstream,
se consigue pequeñas ganancias en todas las métricas por el costo de 50000 steps de full
fine-tuning. De todas maneras, toda ganancia es valiosa y más aún en estos niveles de
performance, donde cada vez es más dif́ıcil conseguirlas. Nos quedaremos entonces con
las primeras dos etapas como el mejor esquema encontrado para realizar fine-tuning en
nuestro contexto.

Finalmente, podemos notar que la programación de LR presentada en esta sección es
un ejemplo claro de estas configuraciones axiomáticas que se suelen presentar en algunos
papers, y mencionamos como motivación en la introducción de este trabajo. Como no
tenemos la capacidad de explorar en profundidad todos los valores de hiperparámetros
que se presentan, solo nos vemos en capacidad de implementar lo expuesto y probar con
los valores dados ajustándolos a nuestro contexto. Los sustentos de estos valores suelen
ser que son la adaptación de otro paper en un contexto similar, o bien los sustentos
simplemente residen en la intuición de los autores. Más aún, en este caso, el acceso a esta
información se encuentra únicamente en el foro del repositorio oficial.

5.2. LoRA

En este experimento, evaluamos reemplazar el full fine-tuning por técnicas PEFT, en
particular, LoRA. Espećıficamente, los módulos seleccionados para la adaptación son las
capas de la feed-forward en los bloques de Transformers, como fue hecho en Lin et al. (2024)
para reconocimiento de emociones en el habla (Speaker Emotion Recognition, SER).

Aśı, en primer lugar, realizamos una comparación entrenando los modelos con estas
técnicas sin haber entrenado al downstream antes, de la misma forma que comenzamos el
experimento anterior. En cuanto al LR, utilizaremos la configuración etapa 1 del crono-
grama expuesto en el anterior experimento. Para la configuración de los métodos PEFT,
siguiendo los valores predeterminados en modelos similares adoptamos r = 16 y α = 32,
esta proporción entre ambos (2r = α) ha mostrado obtener el mejor desempeño (Biderman
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et al., 2024). También, por defecto, se suele utilizar Dropout con probabilidad 0,05 sobre
la entrada de las matrices de LoRA. Con rango 16, en WavLM Base+ se está aproximan-
do matrices de pesos de 768x3072 con matrices de 768X16 y 16x3072, es decir, ajustes
de 2.36M de parámetros aproximados con 61440 parámetros. Con esta dimensionalidad
es posible que no se logre capturar la suficiente complejidad de los ajustes, es por eso
que también experimentamos con otra configuración con la que se han visto buenos re-
sultados (Biderman et al., 2024; Raschka, 2023): r = 256 y α = 512. También, sumamos
r = 64, α = 128 como configuración intermedia ya que r = 256 aumenta la cantidad de
parámetros considerablemente.

PEFT Parámetros entrenados Acc Top1 Acc Top5 CE NCE Steps

✗ 23.6M (downstream) 0.9617 0.9899 0.2186 0.0314 82000
✗ 118M (upstream + downstream) 0.9485 0.9879 0.2563 0.0368 62000

LoRA (r = 16, α = 32) 25.1 M 0.9598 0.9910 0.2265 0.0325 60000
LoRA (r = 64, α = 128) 29.5 M 0.9674 0.9931 0.2011 0.0288 56000

LoRA (r = 256, α = 512) 47.2 M 0.9690 0.9944 0.1914 0.0274 68000

Tab. 5.4: Resultados al usar PEFT para entrenar en una única etapa. La cruz en la columna PEFT
hace referencia a la no utilización de técnicas PEFT.

Los resultados muestran que la implementación de LoRA en estos módulos mantiene
un desempeño consistentemente por encima del full fine-tuning. Más aún, con r = 64 y
r = 256 la utilización de LoRA logra superar al rendimiento del modelo en que solo se en-
trenó al downstream. En términos de eficiencia computacional, la cantidad de parámetros
entrenados impacta directamente en el consumo de recursos de GPU durante el entre-
namiento. Mientras el full-finetuning incorpora 94.4M de parámetros entrenables, LoRA
con r = 16 incorpora 1.5M y con r = 256, 22.6M. Con r = 64 se incorporan 5.9M de
parámetros y se obtienen resultados intermedios, por lo que también son una opción a
considerar. Esta reducción significativa en el uso de recursos computacionales representa
una ventaja importante de los métodos PEFT.

Por lo tanto, hemos visto que una configuración de LoRA logra mejorar la primera
etapa de entrenamiento, por lo que cabe la duda de cuál es la mejor estrategia de entre-
namiento al usar esta técnica. El siguiente paso, siguiendo los resultados del experimento
5.1, será entrenar partiendo del downstream entrenado reemplazando el full fine-tuning
por el método PEFT.

PEFT Parámetros entrenados Acc Top1 Acc Top5 CE NCE Steps

✗ 118M 0.9697 0.9926 0.1775 0.0255 50000
LoRA (r = 16, α = 32) 25.1 M 0.9667 0.9924 0.1680 0.0241 68000
LoRA (r = 64, α = 128) 29.5 M 0.9676 0.9930 0.1632 0.0234 74000
LoRA (r = 256, α = 512) 47.2 M 0.9678 0.9930 0.1608 0.0231 44000

Tab. 5.5: Comparación de resultados al utilizar métodos PEFT en la segunda etapa de entrena-
miento, es decir, partiendo del mejor downstream entrenado.

En este caso, notamos que los métodos PEFT en sus diferentes configuraciones no
mejoran el desempeño en accuracy del full fine-tuning pero śı logran una menor cross
entropy, que es la métrica que buscamos optimizar con nuestra configuración de entrena-
miento. Además, con r = 16, en este contexto śı se consigue también mejorar el desempeño
con respecto a solo entrenar el modelo downstream. Por lo tanto, esta configuración se
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presenta como una alternativa atractiva para disminuir la cross entropy y mejorar ligera-
mente la accuracy con una cantidad mı́nima de parámetros adicionales. Por su parte, con
r = 256 entrenando en esta segunda etapa se alcanza una mejora notable en cross entropy,
pero una accuracy menor a entrenar en una única etapa. A su vez, con r = 64 se alcanza
una accuracy equivalente, por lo que la elección de 256 como rango solo se sostiene en
búsqueda de la menor cross entropy.

En conclusión, consideramos que la utilización de LoRA en este contexto no solo es una
alternativa atractiva por su menor cantidad de parámetros sino que es preferible para tener
una menor cross entropy. La eficiencia computacional de este método no solo posibilita un
entrenamiento más veloz sino que además permite utilizar batches más grandes al ocupar
menos memoria.
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6. CONCLUSIONES Y TRABAJO FUTURO

En este trabajo, exploramos distintas técnicas, hiperparámetros y arquitecturas para
realizar Transfer Learning en SID y llegamos a resultados estados del arte. Los resultados
compilados en la experimentación son el reflejo de más de 3233 horas de tiempo de eje-
cución, más de cuatro meses y medio. Además, si bien ha quedado impĺıcito por no ser
el foco del trabajo, este proceso nos dejó aprendizajes y un gran desarrollo técnico en la
implementación del código necesario para realizar cada experimento.

En el caṕıtulo 4 nos enfocamos en optimizar el modelo downstream, logrando con un
modelo upstream pequeño (WavLM Base+) alcanzar mejores resultados que modelos con
una cantidad de parámetros tres veces superior. Comenzamos la experimentación con los
hiperparámetros más esenciales de una red neuronal, con los que pudimos profundizar en
los fundamentos detrás de cada decisión de diseño. Identificamos como factores determi-
nantes para el desempeño del modelo al LR y la utilización de atención en los mecanismos
de pooling. Este último aspecto requirió una exploración detallada de hiperparámetros,
dado que los resultados presentaron alta varianza. Aunque inicialmente la atención co-
mo método de pooling produjo resultados inferiores al promedio, una afinada exploración
permitió obtener mejoras significativas en el desempeño. En particular, el factor que más
marcó la diferencia fue la cantidad de cabezas de atención en combinación con el LR.

En cuanto a la convergencia, en reiteradas ocasiones observamos que modelos más
complejos convergen más tempranamente, y si bien muchas veces alcanzan un mejor des-
empeño, también son más propensos a sobre-ajustar a los datos de entrenamiento. A su
vez, logramos reducir hasta la mitad el tiempo de entrenamiento con la utilización de
técnicas de normalización Z. Otro factor fundamental en los tiempos de ejecución y que
nos permitió poder explorar más hiperparámetros fue pre-calcular los embeddings del
upstream.

Por otro lado, entre los elementos que no mostraron buenos resultados se encuentran la
utilización de diferentes estad́ısticas concatenadas en reemplazo del promedio como poo-
ling temporal, y el uso del Positional Encoding convencional en el pooling temporal con
atención. Las razones por las que obtuvimos estos resultados en la concatenación de dis-
tintas estad́ısticas creemos que podŕıan radicar en que la distribución resultante presenta
valores at́ıpicos que distorsionan la representación, o simplemente, estas estad́ısticas no
aportan información adicional usando los embeddings de WavLM Base+. En cuanto al
Positional Encoding, una posible explicación para su bajo rendimiento podŕıa estar re-
lacionada con la escala de los valores generados. Es posible que el encoding introduzca
magnitudes que dominen los valores originales de los embeddings, provocando una pérdida
de información relevante para la tarea. Otra explicación posible es que la tarea de identi-
ficación de hablante no se beneficia de un entendimiento del orden temporal, ya que las
caracteŕısticas que determinan la identidad podŕıan estar presentes en toda la señal de
audio y ser locales.

Tras explorar los distintos hiperparámetros y aprender qué combinaciones llevaban a
un mejor desempeño, arribamos a un modelo downstream que utiliza transformers tanto
para pooling temporal como de capas y que alcanzó los mejores resultados: 0,9474 de
accuracy y 0,2107 de cross entropy.

Luego, en el caṕıtulo 5 incursionamos en el fine-tuning del modelo upstream. Aśı, en-
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contramos que entrenar a todo el modelo no es una buena estrategia por śı sola, y que
requiere un mayor cuidado en el ajuste de los pesos. Obtuvimos ligeras mejoras en el des-
empeño con un entrenamiento por etapas con diferentes programaciones dinámicas de LR.
A su vez, nos adentramos en métodos PEFT experimentando con LoRA y entendiendo su
funcionamiento e hiperparámetros. De esta manera, arribamos a una cross entropy mı́nima
de 0,1608 entrenando primero el downstream y luego entrenando también el upstream con
LoRA. La accuracy máxima (0,9697) fue alcanzada haciendo full fine-tuning en la segunda
etapa. Como conclusión de la sección, notamos que no siempre modelos con mayor canti-
dad de parámetros llegan a mejores resultados sino que a mayor cantidad de parámetros
se requiere un mayor cuidado para ajustar el LR e integrar el modelo upstream, el cual ya
se encuentra pre-entrenado, con el modelo downstream, que posee pesos aleatorios. Esta
diferencia en el conocimiento adquirido por las distintas partes de la red, puede llevar a que
el upstream se modifique demasiado durante el finetuning, compensando la falta de entre-
namiento del downstream, y olvidando su conocimiento previo llevando a un sobreajuste
de los datos.

Por último, a lo largo de la investigación se fueron sembrando múltiples interrogantes
que quedaron fuera del alcance de este trabajo, pero que representan direcciones pro-
metedoras para futuras investigaciones. Entre las principales cuestiones destacamos las
siguientes:

Exploración en otras tareas y datos: Experimentar con el modelo downstream
hallado en distintas tareas y conjuntos de datos. ¿Son consistentes nuestros hallazgos
en otros contextos y dominios?

Evaluación de múltiples modelos upstream: Analizar si modelos más comple-
jos, como WavLM Large, pueden aprovechar mejor las ventajas del full fine-tuning y
explorar si estas capacidades se traducen en un mejor desempeño en tareas espećıfi-
cas.

Técnicas de full fine-tuning : Experimentar con diversas técnicas de finetuning y
full-finetuning, entre ellas: (1) entrenar únicamente la última capa, (2) la técnica de
gradual unfreezing, (3) diferentes programaciones de LR para cada capa .

Profundización en la programación del LR: Si bien hay trabajo precedente
(Wu et al., 2019b), todav́ıa queda un vasto espacio para comprender a fondo las pro-
gramaciones de LR y cómo determinar estrategias óptimas. Una pregunta espećıfica
en la misma ĺınea es cómo interactúan las cabezas de atención con el LR.

Relación entre la complejidad del modelo downstream y el domain-shift :
Al haber incorporado mayor complejidad en el downstream y alcanzado resulta-
dos que han sido mejorados solo levemente por el finetuning nos surge la siguiente
pregunta: ¿Un mejor downstream hace que el upstream tenga menor domain-shift?
¿Cómo se compara con técnicas PEFT?

Medición de la importancia de los hiperparámetros: Diseñar una métrica para
evaluar la relevancia de cada hiperparámetro. Esto permitiŕıa asignar los recursos
de manera más eficiente al focalizar la exploración de hiperparámetros en los más
influyentes para el desempeño final.
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Adapters vs Downstream: ¿Es mejor incorporar nuevos pesos dentro del modelo
upstream, como hace LoRA, o más pesos en el downstream? En nuestro downstream
final utilizamos distintos mecanismos de atención, ¿Cómo se compara adaptar módu-
los de atención con agregar mecanismos de atención en el downstream?

A pesar de las múltiples direcciones de investigación que quedan abiertas, consideramos
que este trabajo nos ha proporcionado una comprensión más profunda de los mecanismos
de Transfer Learning aplicados a SID. Hemos logrado establecer una metodoloǵıa sis-
temática para la optimización de modelos downstream y hemos demostrado que modelos
relativamente pequeños, cuidadosamente optimizados, pueden competir e incluso superar
a arquitecturas mucho más complejas. Los hallazgos sobre la interacción entre mecanismos
de atención, estrategias de pooling y programaciones de LR no solo contribuyen al avance
del estado del arte en identificación de hablantes, sino que también ofrecen valiosas pers-
pectivas para el diseño de soluciones más eficientes en tareas de procesamiento de audio
en general.

Más allá de los resultados numéricos, este proyecto fue una oportunidad invaluable para
profundizar en los fundamentos del aprendizaje profundo y adquirir experiencia práctica
en la implementación y optimización de modelos complejos en PyTorch. En definitiva, este
trabajo demuestra que el éxito en Transfer Learning no siempre radica en utilizar modelos
más grandes, sino de comprender a fondo cómo aprovechar y adaptar eficientemente las
representaciones pre-entrenadas para tareas espećıficas.
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