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EJECUCIÓN DE CONTROLADORES DISCRETOS SINTETIZADOS A
PARTIR DE UNA ESPECIFICACIÓN DE ALTO NIVEL PARA UN ROBOT

MODELO N6

El objetivo de esta tesis es evaluar la adecuación de las técnicas de control instrumenta-
das en la herramienta de modelado, verificación y síntesis MTSA para un entorno industrial
que hace uso de un robot N6 satisfaciendo el suministro de bienes entre los puestos de tra-
bajo de una planta.
El problema se expresa con máquinas de transiciones etiquetadas (LTS) para cada uno de
los componentes involucrados y las propiedades son expresadas en un subconjunto de las
lógicas temporales lineales que caracterizan juegos de reactividad generalizada con propie-
dades de seguridad (SGR(1)) sobre dominios falibles.
El robot utilizado es un modelo N6 producido por la empresa RobotGroup en Argentina con
fines didácticos.
Durante las fases de implementación, adaptación y ejecución en el entorno de MTSA se
analiza la calidad de los controladores sintetizados, la respuesta ante cambios de configu-
ración en el sistema y los patrones emergentes que podrían motivar guías de trabajo para
problemas similares.

Palabras claves: Síntesis, Control, Cambio de Configuración, Robot planar, LTS, FLTL.
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ENACTMENT OF A DISCRETE CONTROLLER SYNTHETIZED FROM A
HIGH LEVEL SPECIFICATION TO BE USED WITH A N6 ROBOT

The objective of this thesis is to evalute de adequacy of the control techniques employed
by the MTSA, the modelling, synthesis and verification tool. The case study is done on an
industrial environment where a N6 robot is supposed to be taking items from one worksta-
tion to the other inside the facility.
The problem is expressed through labeled transition systems (LTS) describing each of the
components comprising the environment. System properties are expressed with FLTL for-
mulas.
The robot is a N6 model made by RobotGroup in Argentina for didactic purposes.
During implementation, adaptation and enactment within MTSA the quality of the synthe-
tized controllers is evaluated, as well as the response to configuration changes. Emerging
patterns are identified as they can provide guidelines for future work o similar domains.

Palabras claves:Controller Synthesis, Change of Configuration, Planar Robot, LTS, FLTL.
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1. INTRODUCCIÓN

La producción automática de programas a partir de especificaciones declarativas es una
prometedora alternativa a la escritura manual, la técnica empleada en esta tesis goza de al
menos dos propiedades deseables: la conformidad con propiedades de progreso y seguridad
por construcción y la adecuación a cambios de configuración en el sistema. Las propiedades
se expresan como fórmulas de lógica temporal lineal (LTL). Este subconjunto de las lógicas
temporales es un acompañante natural de los modelos basados en eventos. Se ha utilizado
con éxito en repetidas ocasiones y resulta eficiente para expresar gran parte de las pro-
piedades que se espera sean satisfechas por un sistema. En nuestro caso expresamos dos
tipos de propiedades, las de seguridad (safety) en las que se espera que una propiedad valga
siempre durante la ejecución del sistema, y las de progreso (liveness) en las que, sí se cum-
plen un conjunto de presunciones con infinita frecuencia, deberán cumplirse un conjunto
de objetivos con infinita frecuencia. Un ejemplo de ésto puede ser un par de propiedades
que expresen que una prensa no debe liberarse si otra herramienta está trabajando sobre
la pieza prensada (safety) y que el sistema permita procesar piezas de forma contínua, por
ejemplo tomando de una bandeja de entrada, prensando la pieza, perforándola y colocándo-
la en una bandeja de salida (liveness). Uno esperaría que a partir de la presunción de que
en la bandeja se colocarán piezas crudas con infinita frecuencia, piezas procesadas serán
colocadas en la bandeja de salida con infinita frecuencia.

Fig. 1.1: El robot N6 en un mapa rectangular

Los programas conseguidos con ésta técnica podrían ser adecuados para procesos indus-
triales cuya criticidad puede expresarse en el dominio de las lógicas temporales lineales, que
es descripto con juegos de reactividad generalizada con propiedades de seguridad (SGR(1))
sobre dominios falibles.
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2 1. Introducción

En lo que respecta al cambio entre una configuración y otra, como parte natural de un pro-
ceso en evolución o que se encuentra en pleno refinamiento, al mantenerse en el plano decla-
rativo la técnica de producción automática de programas permite adaptarse rápidamente al
cambio sin la necesidad de realizar un trabajo manual por debajo de la especificación, man-
teniendo las propiedades expresadas inicialmente. Incluso si se refinan las propiedades de
seguridad o progreso la técnica produce un programa que satisface el comportamiento es-
perado, en el caso de que tal programa exista.
En la fabricación de productos o provisión de servicios a través de procesos industriales,
la calidad asociada al producto o al servicio se relaciona con la calidad de cada una de las
operaciones realizadas y a la calidad del proceso per se.
Se podría pensar en una segunda función que evalúe la calidad del producto a partir de
la calidad de las operaciones involucradas en el proceso, la calidad del proceso en sí y la
confiabilidad de las técnicas de medición de las operaciones y el proceso. Como ejemplo se
supone que al fijar dos piezas, un ajuste realizado con una herramienta manual y validado
por una llave de corte es menos preciso que una herramienta automática con la capacidad
de sensado suficiente para reportar valores de torque y ángulo con alguna cota de error. El
caso es que desde las operaciones más básicas hasta los procesos más generales que pueden
incluso exceder a la ingeniería de procesos industriales (e.g. la ingeniería de producto que
cruza disciplinas como marketing, producción, distribución y venta), las medidas de calidad
se propagan a través de un mecanismo de presunciones y garantías.
En este trabajo se van a utilizar técnicas de control relacionadas con juegos de reactividad
generalizada en los que se pueden expresar propiedades de seguridad y progreso. Las pro-
piedades de progreso están vinculadas con la práctica de la ingeniería de procesos en las
que el ingeniero es responsable de diseñar una estrategia de producción que permita trans-
formar los bienes entrantes en un bien compuesto con cierto valor agregado. Uno podría
expresar una propiedad de progreso en la que exige que un producto sea entregado con in-
finita frecuencia como resultado de la aplicacion de operaciones atómicas. Las propiedades
de seguridad describen situaciones que el proceso debe evitar en todo momento. Permiten
verificar que un proceso cumple con ciertas garantías de seguridad. En nuestro caso las
estrategias obtenidas con la técnica de síntesis satisfacen ambos tipos de propiedades por
construcción.
Con las técnicas utilizadas en este trabajo no se declaran propiedades cuantitativas relacio-
nadas, por ejemplo, con el tiempo y el costo.
En los casos de estudio presentados se emplean robots autónomos en un entorno industrial
para el que permiten cumplir los requerimientos funcionales satisfaciendo alguna medida
de calidad. Su comportamiento en planta puede expresarse como un sistema que involucra
a otros agentes, debe satisfacer las propiedades mencionadas y puede ser sintetizado au-
tomáticamente. Estas estrategias o comportamientos son los responsables de coordinar la
interacción de las partes para asegurar que el sistema una vez puesto en ejecución y en su
totalidad (entendida como composición de partes) cumpla con el comportamiento esperado.

El cambio de requerimientos es una actividad aceptada y practicada en el entorno de
aplicaciones industriales, inmanente a los procesos de producción bajo demanda, provisión
y servicios. En el caso de la producción es común introducir un nuevo modelo de producto, o
una variación de un producto existente e intentar satisfacer los nuevos requerimientos con
las herramientas instaladas en la planta, o introducir una nueva ruta en el caso de la pro-
visión y replanificar el suministro satisfaciendo las necesidades existentes sin modificar las
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instalaciones. En un ambiente de éstas características (o incluso en un caso de producción
bajo demanda, donde las especificaciones se modifican en base a una orden de producción
emergente) la utilización de técnicas de síntesis automática cuentan con al menos dos pro-
piedades deseables; permite reconstruir un controlador que es correcto por definición en
conformidad con las propiedades expresadas para el sistema en su totalidad, y permite a la
vez reconstruir un controlador que se adapte a los cambios en la descripción de los procesos
o de las propiedades.
El objetivo principal de este trabajo es demostrar la aplicabilidad de las técnicas mencio-
nadas en un entorno que hace uso de un robot autónomo modelo N6 para satisfacer las
necesidades de distribución de suministros en una línea de producción industrial. Se mos-
trará así también la forma en que un cambio en los requerimientos o la descripción del
entorno son satisfechos sin necesidad de escribir otro controlador en forma manual.
Se presentan los fundamentos teóricos, los detalles de implementación y la extensión de las
herramientas existentes para permitir la puesta en marcha del controlador y los escenarios
de prueba.
El modelo presentado goza de características interesantes porque permite desplazar el pro-
blema sobre varios ejes de cambio. Estos ejes pueden ser el tamaño del mapa, la cantidad
de bandejas, la capacidad de carga, la cantidad de ítems a desplazar, las especificaciones
de comportamiento del robot y la aparición de obstáculos en las vías que comunican los
puestos.

1.1. Motivación

Puede entenderse que el resultado de la síntesis a la que se ha hecho referencia al hablar
de los juegos SGR(1) es un programa, pero en verdad vale utilizar el término controlador
por resultar más abarcativo y acertado. En particular uno cuyo comportamiento se expresa
como un sistema de transiciones etiquetadas, donde el conjunto de transiciones se particio-
na entre aquellas controlables (operaciones o, en el contexto de este trabajo, mensajes de
control) y aquellas no controlables (observaciones o, en el contexto de este trabajo, mensajes
de estado). Esto puede traducirse en un programa, en un nodo de control que se comunica
con otros componentes de naturaleza diversa, un diseño de lógica digital, una estrategia pa-
ra realizar operaciones manuales o cualquier proceso basado en eventos que distinga entre
acciones controlables y no controlables.
La interacción de diversos agentes en una planta industrial puede llevar fácilmente a si-
tuaciones indeseadas. Esto puede deberse a que el sistema permitió llegar a una situación
riesgosa para las personas o los equipos en planta, o porque no se consigue satisfacer un
objetivo de progreso. Estas situaciones demandan un análisis de las causas de error, una
corrección y una puesta a prueba de un sistema que podría no estar cumpliendo (aún) los
objetivos deseados.
Se presentan situaciones similares cuando se produce un cambio en alguna dimensión del
sistema, ya sea en la especificación de los procesos participantes o de los objetivos a cumplir.
Se repite el ciclo de análisis, corrección y puesta a prueba.
Se analiza como subdominio de lo anterior un sistema en el que un robot planar móvil
transporta carga a través de una planta industrial, ya sea una planta de montaje donde
se transportan piezas entre una línea y la otra, o un depósito en el que ha de reubicarse
stock. En ambos casos se buscan satisfacer objetivos expresados en términos de seguridad y
progreso (sobre la presunción de que los componentes se comportan conforme a una repre-
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sentación en la forma de un proceso de estados finitos).
Estos requerimientos permiten probar la integración de las técnicas de modelado y síntesis
provistas dentro de la herramienta MTSA, como también validar el funcionamiento de las
extensiones necesarias para la ejecución de un controlador (enactment) en el caso en que el
mismo opera sobre un conjunto de dispositivos físicos.
El comportamiento esperado del sistema debe ser expresado en términos de suposiciones,
objetivos y un modelo operacional de las máquinas involucradas, de forma que al conse-
guir el controlador y componerlo con éstas satisfaga el comportamiento esperado. Para cada
máquina que se encuentra representando a un sistema externo se debe proveer un meca-
nismo de interacción que permita relacionarlo con la representación interna en tiempo de
ejecución (que en el contexto de este trabajo será referido como componente de ejecución o
enactor).
En este trabajo se valida este enfoque construyendo un entorno apropiado a partir de las
herramientas existentes y las extensiones relacionadas con ejecución (enactment).

1.2. Presentación del caso de estudio

Como se ha dicho anteriormente el caso de estudio trata de un robot que transporta car-
ga entre puestos de trabajo en una planta industrial. El robot se desplaza entre un puesto y
otro siguiendo una línea negra pintada en el piso, en cada intersección o punto de detención
se reemplaza la línea negra por un área cuadrada pintada con un patrón que en promedio
puede leerse como un valor intermedio o gris.

Fig. 1.2: Sensores infrarrojos y microrreductores del robot modelo N6 (izq.) y nodo de inter-
sección o detención en un mapa rectangular (der.)

Los puntos de partida y llegada de la carga son representados como bandejas, pueden ser
de salida o de entrada. Para este trabajo se supone que la carga o descarga puede realizarse
en un punto particular de la línea cuando el robot se encuentra en una de cuatro posiciones
(con el frente hacia el norte, este, sur u oeste). Las bandejas de entrada se representan como
varillas rojas en la superficie de desplazamiento y las de salida como varillas negras en la
superficie. La carga se representa con tachuelas.
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Fig. 1.3: Mapa rectangular con bandejas de entrada roja y salida negra (izq.) y carga repre-
sentada con tachuelas (der.)

En las líneas de montaje de una planta industrial el robot suele estar compuesto por
un pequeño mecanismo de control, actuadores (generalmente neumáticos) y un carro para
transportar la carga. Para representar el carro de carga se ha adherido al revés del robot un
anillo de goma donde se pueden fijar las tachuelas que representan los ítems a transportar.

Fig. 1.4: Anillo de goma representando el carro de carga (izq.) y el robot modelo N6 llevando
carga (der.)

Para las pruebas que involucran cambios de configuración se representará un obstáculo
en una de las vías que comunican un puesto con otro utilizando una pequeña pieza de goma.
Por otra parte, dado que se trabaja sobre un dominio falible, donde se expresa la posibilidad
que el robot pierda rastro de la línea negra por errores de lectura, desgaste de la pista,
cambios de iluminación o errores emergentes, se introduce un componente que representa a
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un mecanismo de reubicación. El robot tiene capacidad suficiente para informar cuando ha
perdido el rastro de la línea, en cuyo caso se ejecuta este mecanismo de reubicación (en este
escenario manual), que lleva al robot a una posición y orientación conocida, permitiendo
continuar la ejecución de la estrategia desde ese punto.
Se espera que el controlador pueda describir un proceso que obligue al robot a desplazarse
a una bandeja de entrada en tanto haya carga, la tome, la lleve a destino y la descargue con
infinita frecuencia, aún sobre un dominio que tolera faltas no sistemáticas.

1.3. Resumen de contribuciones

La mayor contribución de esta tesis sea probablemente la de explorar un caso de estu-
dio horizontal que involucra no sólo el consumo de la teoría subyacente a la herramienta
de modelado y síntesis, sino a la implementación de controles de bajo nivel y demás com-
ponentes involucrados en la puesta en marcha de un escenario de estas características. Se
co-desarrolla y pone en prueba el entorno de ejecución como extensión de la herramienta, y
se escriben los adaptadores necesarios para ésta.
Por otra parte la puesta en ejecución del controlador y la prueba de distintos esquemas de
ejecución permiten razonar sobre el efecto que tiene el algoritmo de resolución y quizás en
particular el sistema de ranking en los controladores resultantes. Un único caso de estudio
es insuficiente para realizar generalización y motivar con fundamento un análisis de éstos,
pero es un comienzo y precedente para el razonamiento guiado por ejecución.
También se plantea el cambio de configuración como característica principal y deseable de
las técnicas empleadas, para esto se definen las dimensiones de cambio y las pruebas vin-
culadas. Si bien dicha característica es cubierta se podría decir por definición al utilizar
técnicas de modelado y síntesis de naturaleza declarativa, esta tesis intenta hacer evidente
esta capacidad como uno de los valores fundamentales del conjunto de teoría y herramienta
que forman el entorno de trabajo de MTSA.

1.4. Estructura de la tesis

La estructura de esta tesis es la siguiente: en el capítulo 2 se presentan los fundamen-
tos teóricos que dan soporte a las técnicas de síntesis y modelado. El capítulo 3 hace una
presentación de la herramienta MTSA y de los modelos del sistema en la sintaxis extendida
de FSP. El capítulo 4 se explica la motivación para extender la herramienta y dar soporte
a la ejecución de controladores. El capítulo 5 describe el trabajo realizado para dar soporte
funcional al sistema a través del robot N6 y el trabajo de adaptación al entorno de MTSA.
En 6 se detalla la extensión de la herramienta y la forma de utilizar la nueva funcionalidad
para ejecutar controladores sintetizados. En el capítulo 7 se describen los casos explorados,
se presentan resultados, una breve discusión sobre el trabajo realizado y conclusiones de
cierre.



2. FUNDAMENTOS

2.1. El Mundo y la Máquina

Comenzamos por ofrecer nociones acerca de la visión general de la ingeniería de reque-
rimientos. En particular, presento el punto de vista de ingeniería de requerimientos de Zave
y Jackson [3, 4, 14] y de Letier y Van Lamsweerde [13, 7]. Ambos puntos de vista están
de acuerdo en que la distinción entre los problemas del Mundo y la solución de Máquina es
fundamental para comprender si la máquina resuelve correctamente el problema en cues-
tión. De hecho, el efecto de la máquina en el mundo y las suposiciones que hacemos acerca
de este mundo son fundamentales para el proceso de toma de requerimientos. El problema
define una parte del mundo real que queremos mejorar mediante la construcción de una
máquina. Por lo general, incluye algunos de los componentes que interactúan con el mundo
siguiendo normas y procesos conocidos. Por ejemplo, una herramienta de perforación, un
brazo de robot o las reglas para el procesamiento de productos que entran en una línea de
producción (véase la Figura 2.1).

Por otra parte, se espera que la solución de la máquina pueda resolver el problema.
Por ejemplo, el ejemplo de la Figura 2.1 muestra que la célula de producción debe iniciar el
procesamiento de los productos, solo si están disponibles en la bandeja de entrada. De hecho,
la sentencia inTray[p]→ get.InTray[p] muestra que se espera que el brazo del robot debe
recoger los productos de la bandeja en el caso de que estén listos para ser procesados. Por
último, los fenómenos compartidos son una parte común entre el problema mundo y la
soluciónmáquina. Por lo tanto, define la interfaz donde la máquina interactúa con el mundo,
representada como la intersección de los dos conjuntos en la Figura 2.1. La máquina se hace
referencia en el contexto de síntesis como el controlador, se utilizará uno u otro término en
función del contexto. Podemos referirnos al problema mundo como el modelo de entorno.

Fig. 2.1: World and Machine Phenomena

Las sentencias que describen los fenómenos, tanto del mundo como la máquina pueden
variar en alcance y forma [3, 11]. Las sentencias pueden ser en modo indicativo u optativo

[optative mood]. En [12], las sentencias que describen el sistema se caracterizan por ser
descriptivas y prescriptivas.

Sentencias descriptivas representan propiedades sobre el sistema que son independien-
tes de cómo se comporta el sistema. Las sentencias descriptivas están en modo indicativo.

7
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Las sentencias prescriptivas afirman propiedades deseables que pueden estar presentes
o no. De hecho, las sentencias prescriptivas deben ser aplicadas por los componentes del
sistema. Naturalmente, las declaraciones prescriptivas pueden cambiar, fortaleciéndose /
debilitándose, o incluso ser eliminadas, mientras que no se pueden tornar descriptivas.

Como se mencionó anteriormente, los estados pueden variar en su alcance. Tanto las
sentencias prescriptivas como también descriptivas pueden referirse a características de la
máquina que no son compartidas con el mundo. Otras sentencias pueden referirse a fenóme-
nos compartidos por la máquina y el mundo. Más precisamente, una propiedad de dominio

es una sentencia descriptiva sobre el problema mundo. Estas se deben tener independien-
temente del comportamiento del sistema. En este trabajo llamamos Modelo Ambiente, al
conjunto de propiedades de dominio para un problema particular.

Un supuesto de ambiente es una sentencia que podría no suceder [may not hold] y debe
ser satisfecha por el ambiente. Un requisito de software, o Requisito para abreviar, es una
sentencia prescriptiva a ser aplicada por la máquina, independientemente de cómo se com-
porta el problema mundo y debe ser formulada en términos de los fenómenos compartidos
entre la máquina y problema mundo.

Siguiendo [13, 7] decimos que una acción es supervisada / controlable si tal acción es
supervisada / controlable por la máquina. Podemos referirnos a acciones supervisadas como
acciones no controlables, ya que están controladas por el ambiente.

2.2. Sistemas de Transición Etiquetados

Vamos a describir y fijar una notación para los sistemas de transición etiquetados o
Labeled Transition Systems (LTS) [6], que son ampliamente utilizados para el modelado y
análisis del comportamiento de los sistemas concurrentes y distribuidos. LTS es un sistema
de transición de estados donde las transiciones se etiquetan con acciones. El conjunto de
las acciones de un LTS se llama su alfabeto para la comunicación y las interacciones que el
sistema modelado puede tener con su entorno.

Definición (Sistema de Transición Etiquetado) [6] Sea States un conjunto universal de
estados, Act un conjunto universal de etiquetas. Un Sistema de Transición Etiquetado (LTS)
es una tupla E = (SE,AE,∆E, sE0), donde SE ⊆ States es un conjunto finito de estados,
AE ⊆ Act es un alfabeto finito, ∆E ⊆ (SE × AE ×SE) es una relación, y s0∈SE es el estado
inicial.

Dado (s,ℓ, s′) ∈ ∆E decimos que ℓ está activo desde s en E. Decimos que un LTS E es
determinístico si (s,ℓ, s′) y (s,ℓ, s′′) están en ∆E implica que s′ = s′′. Para un estado s deno-
tamos ∆E(s) = {ℓ | (s,ℓ, s′) ∈ ∆E}. Dado un LTS E, podríamos referirnos a su alfabeto como
αE.

Definición (Composición en Paralelo) Sea M = (SM , AM , ∆M, sM0) y E = (SE , AE,∆E,
sE0) LTSs. Una Composición en Paralelo ‖ es un operador simétrico que E‖M es el LTS
E‖M = (SE×SM , AE∪AM , ∆, (sE0 , sM0)), donde ∆ es la relación mas pequeña que satisface
las siguientes reglas, donde ℓ ∈ AE∪ eAM:

(s,ℓ,s′)∈∆E

((s,t),ℓ,(s′,t))∈∆ ℓ∈AE\AM
(t,ℓ,t′)∈∆M

((s,t),ℓ,(s,t′))∈∆ ℓ∈AM\AE

(s,ℓ,s′)∈∆E , (t,ℓ,t′)∈∆M

((s,t),ℓ,(s′,t′))∈∆ ℓ∈AE∩AM
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Definición (LTS Legal) Dado E = (SE ,AE,∆E, sE0), M = (SM , AM ,∆M, sM0) LTSs, y AEu
∈

AE. Decimos que M es un LTS Legal para E con respecto a AEu
, si para todos (sE, sM)∈ E‖M

sucede lo siguiente: ∆E‖M((sE, sM))∩AEu
=∆E(sE)∩AEu

Intuitivamente, un LTS M es una LTS Legal para y LTS E con respecto a AEu
, si pa-

ra todos los estados en la composicón (sE, sM) ∈ SE‖M los contiene, una acción ℓ ∈ AEu
es

deshabilitada en (sE, sM) si y solo si ésta está también deshabilitada en sE ∈ E. En otras
palabras, M no restringe E con respecto a AEu

.

Definición (Trazas) Considérese un LTS E = (S,A,∆, s0). Una secuencia π = ℓ0,ℓ1, . . . es
una traza en E si existe una secuencia s0,ℓ0, s1,ℓ1, . . ., donde para todo i tenemos (s i,ℓi, s i+1) ∈
∆.

Definición (Estados Alcanzables) Considérese un LTS E = (SE ,AE,∆E, s0). Un estado s ∈

SE es alcanzable (desde el estado inicial) en E si existe una secuencia s0,ℓ0, s1,ℓ1, . . ., donde
para cada i tenemos (s i,ℓi, s i+1) ∈ ∆ y s = s i+1. Nos referimos a el conjunto de todos los
estados alcanzables en E como Reach(E).

A traves de esta tesis vamos a limitar la atención a aquellos LTSs E donde todos sus
estados s ∈SE , s son alcanzables.

2.3. Lógica Lineal Temporal de Flujos (Fluent Linear Temporal Logic)

Lógica lineal temporal (LTL) es ampliamente usada para describir el comportamiento
de requerimientos [2, 13, 8, 5]. La motivación para escoger un LTL de flujos es que este
provee un framework uniforme para especificar propiedades basada en estados en modelos
basados en eventos [2]. Fluent Linear Temporal Logic (FLTL) [2] es una lógica linear-time
temporal para razonar acerca de flujos. Un flujo Fl es definido por un par de conjuntos y
un valor Booleano: Fl = 〈IFl,TFl,InitFl〉, donde IFl ⊆ Act es el conjunto de acciones inicia-
doras , TFl ⊆ Act es el conjunto de acciones finalizadoras y IFl∩TFl = ;. Un flujo puede
ser inicializado con trueo f alse indicado por InitFl. Toda acción ℓ ∈ Act induce un flujo, a
saber ℓ̇= 〈ℓ,Act\{ℓ },false〉. Finalmente, el alfabeto de un flujo es la unión de sus acciones
iniciadoras y finalizadoras.

Sea F el conjunto de todas los posibles flujos sobre Act. Una fórmula FLTL es defini-
da inductivamente usando los conectores Booleanos estándards y operadores temporales
X (next), U (strong until) de la siguiente manera:

ϕ ::=Fl | ¬ϕ |ϕ∨ψ |Xϕ |ϕUψ,

donde Fl ∈ F . Introduciremos ∧, F (♦ eventually), y G (ä always) como una comodidad
sintáctica. Sea Π el conjunto de trazas infinitas sobre Act. La traza π= ℓ0,ℓ1, . . . satisface un
flujo Fl en la posición i, denotado como π, i |=Fl, si y sólo si una de las siguientes condiciones
es válida:

InitFl∧ (∀ j ∈N ·0≤ j ≤ i→ ℓ j ∉ TFl)
∃ j ∈N · ( j ≤ i∧ℓ j ∈ IFl)∧ (∀k ∈N · j < k≤ i → ℓk ∉ TFl)

Dada una traza infinita π, la fórmula que satisface ϕ en la posición i, denotada como
π, i |= ϕ, es definida como se muestra en la Figura 2.2. Decimos que ϕ se cumple en π,
denotado como π |= ϕ, si π,0 |= ϕ. Una fórmula ϕ ∈ FLTL es cierta si un LTS E (denotado
como E |=ϕ) si éste es cierto en toda traza infinita producida por E.
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π, i |=Fl , π, i |=Fl

π, i |= ¬ϕ , ¬(π, i |=ϕ)
π, i |=ϕ∨ψ , (π, i |=ϕ)∨ (π, i |=ψ)
π, i |=Xϕ , π,1 |=ϕ

π, i |=ϕUψ , ∃ j ≥ i ·π, j |=ψ∧∀ i≤ k< j ·π,k |=ϕ

Fig. 2.2: Semántica para el operador de satisfacción

2.4. Problemas de control

El problema de síntesis de control consiste en producir automáticamente una máquina
que restringe la ocurrencia de eventos controlados basada en la observación de eventos que
han ocurrido. Cuando se despliega en un entorno apropiado esta máquina asegura la sa-
tisfacción del conjunto de objetivos de sistema provistos. La satisfacción de estos objetivos
depende de la satisfacción de las presunciones por parte del entorno. En otras palabras,
damos una descripción del entorno, presunciones, objetivos de sistema y un conjunto de ac-
ciones controlables.
Una solución para el problema de control basado en eventos es encontrar una máquina tal
que si comportamiento concurrente al entorno satisface las presunciones satisface también
los objetivos.
Definimos el problema de síntesis de control para modelos basados en eventos de la si-
guiente forma: Dada una LTS que describe el comportamiento del entorno, un conjunto de
acciones controlables, un conjunto de fórmulas FLTL para las presunciones del ambiente
y un conjunto de fórmulas FLTL para los objetivos de sistema, el problema de control LTS
consiste en encontrar una LTS que restringe sólo la ocurrencia de acciones controlables y
garantiza que la composición paralela del ambiente con dicha LTS estará libre de deadlocks
y que, si las presunciones de ambiente son satisfechas, satisfacerá también los objetivos de
sistema.

Definición (Control LTS) Dada una especificación de un entorno en forma de una LTS E,
un conjunto de acciones controlables Ac y un conjunto H de pares (As i,G i) donde As i y G i

son fórmulas FLTL especificando presunciones y objetivos respectivamente, la solución al
problema de control LTS ε=<E,H,Ac > consiste en encontrar una LTS M de forma que M

sobre el conjunto de acciones controlables Ac y el conjunto de acciones no controlables Ac es
un entorno legal para E, E‖M se encuentra libre de deadlocks, y para cada par (As i,G i ∈H)
y para cada traza π en E‖M se cumple que si π |= As i entonces π |=G i.

Ahora definimos el problema de control SGR(1) que es computable en tiempo polinomial.
Tiene base en los problemas GR(1) y de seguridad pero en un contexto de modelado basa-
do en eventos. Requerimos que el modelo del entorno E sea una LTS determinística para
asegurar que el controlador tenga observación completa del estado del entorno. Requerimos
que H sea (;, I), (As,G) donde I es un invariante de seguridad de la forma äρ las presun-
ciones As son una conjunción de subfórmulas FLTL de la forma ä♦φ, el objetivo G es una
conjunción de subfórmulas FLTL de la forma ä♦γ y ρ, φ y γ son una combinación booleana
de Flujos.
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Definición (Control LTS SGR(1)) Un problema de control LTS ε =< E,H,Ac > es SGR(1)
si E es determinístico y H = (;, I), (As,G) donde I =äρ, As =

∧n
i=1ä♦φi,G =

∧m
j=1ä♦γ j, y

ρ, φ y γ son una combinación booleana de Flujos.

2.5. Dominios falibles

Consideramos una técnica que permite la síntesis de controladores aún en entornos que
exhiben fallas. Esta técnica toma el nombre de síntesis con fallas. Por lo general no puede
controlarse a un entorno malicioso para conseguir los objetivos de sistema. De todas formas,
proponemos nociones realistas de equidad que permiten a los controladores comportarse de
la forma esperada por ejemplo para el caso en el que deberían intentar repetir una acción
hasta conseguir una respuesta exitosa.
Distinguimos a las fallas de otras acciones de la siguiente manera: para cada problema de
control definimos un conjunto de triplas tr y− response (prueba, respuesta), una tripla de
ésta característica captura la relación entre acciones controlables y sus reacciones de éxito
o fracaso. Se precisa que 1) la acción "try"sea controlable, 2) todas las acciones pertenecien-
tes a una tripla tr y− response sean únicas con respecto a otras triplas del conjunto, 3) un
reintento no ocurra antes de una respuesta 4)las respuestas ocurran solamente como resul-
tado de un intento, 5)existe como máximo una respuesta por cada intento y 6) la decisión de
fallar o tener éxito no sea forzada por otras acciones, con lo que la falla está habilitada sí y
sólo sí el éxito está habilitado.
Se define el operador W como (φUψ)∨Gφ.

Definición (Try-Response) Dada una LTS M = (SM ,LM,∆M, sM0) donde LC ⊆ LM , decimos
que un conjunto T = (tr yi, suc i, f ail i) es un conjunto tr y− response para M si se cumplen
las siguientes condiciones para todo i:

1. tr yi ⊆LC, suc i, f ail i ∈ L\LC y suc i 6= f ail i

2. Para todo j 6= i, tr yi, suc i, f ail i∩ tr yi, suc i, f ail i =;

3. ¬( ˙f ail i∨ ˙suc i)W ˙tr yi

4. ä( ˙tr yi ⇒©(¬ ˙tr yiW( ˙f ail i∨ ˙suc i)))

5. ä(( ˙f ail i)∨ ˙suc i)⇒©(¬( ˙f ail i∨ ˙suc iW ˙tr yi))

6. Para todo s ∈SM, f ail i está habilitado para s sí y sólo sí suc i está habilitado para s

La técnica presentada demanda una noción de equidad más fuerte, que describa la pre-
sunción de que si se ejecuta un intento con infinita frecuencia se debe conseguir un éxito
con infinita frecuencia. Esta noción de equidad reforzada está, de hecho, fuertemente vincu-
lada con la estructura de los modelos del entorno y el controlador. Lo que se precisa es que,
para cada estado global (un estado de E‖M), un tr yi sucede con infinita frecuencia, f ail i
no sucede con infinita frecuencia. Una forma más intuitiva de expresarlo sería pensar que
la decisión de fallar es equitativa e independiente del estado del controlador o el entorno.
La siguiente definición captura esta noción de equidad reforzada. Requiere que para cada
transición etiquetada con un tr y, si es tomada con infinita frecuencia luego success sucede
con infinita frecuencia antes del próximo tr y.
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Definición (t-strong fairness) Dada una LTS M y un try-response T para M, una tra-
za π ∈ tr(M) es t-strong fair (fuertemente t-equitativa) con respecto a M y T si para todo
(tr yi, suc i, f ail i) ∈ T y para todas las transiciones t = (s, tr yi, s′) vale que: π′ |= ä♦tr y′

i
⇒

ä♦(¬tr yiUsuc i), donde π′ = ε′|LM∪{tryb
i
}, ε

′ = ε|[s.tryi .sb /s.tryi .trybi ,s
b], y ε es una ejecución de

M tal que ε′|LM
=π.

Cabe notarse que w|A es la proyección de la palabra w sobre el alfabeto A y que w[v/vb]
es el resultado de reemplazar en w todas las ocurrencias de v con vb.

Hace falta extender la noción de equidad aún más para cumplir la noción intuitiva de
que las presunciones del entorno deben ser independientes de las fallas, particularmente
porque la elección de una falla o de un éxito puede entenderse como no-determinística dado
que abstrae la verdadera causa del éxito o fracaso.
Formalizamos esta noción de esta manera: restringimos las trazas de interés a aquellas que
satisfacen que las presunciones deben poder cumplirse con infinita frecuencia sin observar
fallas, o, más precisamente, que si el controlador intenta con suficiente frecuencia, entonces
no sólo tendrá éxito, sino que tendrá éxito a la vez que satisface todas las presunciones.
Esto es, que si las presunciones y las fallas son verdaderamente independientes, intentar la
acción con suficiente frecuencia garantiza que en algún punto luego de un intento, ninguna
falla sucederá en tanto no se hayan satisfecho todas las presunciones.

Definición (Strong Independent Fairness) Dada una LTS M y un try-response T para M y
A un conjunto de fórmulas FLTL, una traza π ∈ tr(M) se dice Strong Independent Fair (de
equidad reforzada independiente) respecto de A si para todo (tr yi, suc i, f ail i)∈ T y para to-
da transición t= (s, tr yi, s′) vale que π |=ä♦tr y′

i
⇒ä♦((¬tr yiUsuc i)∧(

∧n
i=1(¬(

∨n
j=1 f ail j)WA i))),

donde π′ = ε′|LM∪tryb
i
,ε′ = ε|[s.tryi .sb/s.tryi .trybi ,s

b], y ε es una ejecución de M tal que ε′|LM
=π.

Formalizamos a continuación el problema de control bajo las condiciones de equidad
arriba presentadas. Toma el nombre de problema de control con éxito recurrente (recurrent
success control problem). Para todas las trazas que sean de equidad reforzada independien-
te garantiza propiedades generales de seguridad y progreso que son del tipo GR(1). Exten-
demos el problema de control SGR(1) definido en 2.4 introduciendo fallas y expectativas
sobre la equidad del ambiente.

Definición (Recurrent Success) Dado un problema de control SGR(1) LTS L =<E,H,Lc >

y un try-response T para L , la solución del problema de control de éxito recurrente R =<

L ,T > consiste en encontrar un LTS M tal que M con acciones controlables Lc y no controla-
bles Lc es un entorno legal para E, E‖M no contiene deadlocks y para cada par (As i,G i)∈H,
para cada (tr yi, suc i, f ail i) y para cada traza de equidad reforzada independiente π en M‖E

vale que si π |= As i entonces π |=G i.

2.6. Procesos de Estados Finitos (FSP)

Hasta ahora, hemos descripto LTSs (MTSs) definiendo sus componentes, ej. estados,
acciones, relaciones de transición (requeridos y posibles), y el estado inicial. Esta repre-
sentación es válida para LTSs (MTSs) con pocos estados. Sin embargo, esta representación
se torna impráctica cuando trabajamos con LTSs (MTSs) extensos. Por esta razón, usamos
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un proceso simple llamado algebra de Procesos de Estados Finitos (FSP) que especifican
textualmente un LTSs [10, 9].

FSP es una especificación de lenguaje con una bien definida semántica en términos de
LTSs (MTSs), que provee de manera concisa una forma de describir un LTSs. Cada expre-
sión FSP E puede ser mapeada en un LTS (MTS) finito, usaremos l ts(E) para denotar el
LTS (MTS) que le corresponde. A continuación discutiremos brevemente la sintaxis FSP.

Como un ejemplo, en la Figura 2.3, mostramos el código FSP de un proceso de cocción
de cerámica.

En FSP, los nombres de procesos comienzan con mayúsculas y las acciones comienzan
con minúscula. El código para la cocción de cerámica define 2 procesos FSP, uno mode-
la el proceso que simplemente está en espera, llamado f sp(IDLE), y otro proceso llamado
f sp(DOMAIN). Adicionalmente, f sp(DOMAIN) define los procesos auxiliares f sp(COOKING),
f sp(COOKED), y f sp(OH). Los procesos auxiliares son locales para el proceso FSP de la
forma que han sido definidos. f sp(DOMAIN) es definido usando la acción y el operador
f sp(−>) junto a la recursión. Por ejemplo, el proceso se encuentra definido para comenzar
ejecutando indistintamente f sp(idle) quedándose en este o f sp(cook) que comienza con el
proceso de f sp(COOKING).

Fig. 2.3: FSP Example

FSP soporta numerosos operadores para la composición como la composición en para-
lelo de LTS y MTS, o la fusión de MTSs [1]. El operador para composición en paralelo,
denotado como f sp(||) es definido para preservar la semántica de la composición en pa-
ralelo de LTS presentado en 2.2. Así, dados dos procesos FSP f sp(P) y f sp(Q), tenemos
que: f sp(lts(P||Q)=lts(P)||lts(Q)).

Los procesos FSP que son definidos mediante la composición de dos procesos no auxilia-
res son llamados procesos compuestos y sus nombres contienen el prefijo f sp(||). Así la com-
posición en paralelo de los procesos FSP f sp(IDLE) y f sp(DOMAIN) es f sp(||IDLEDOMAIN =

(IDLE||DOMAIN)).
Finalmente, un FSP posee un número de palabras reservadas que son usadas antes

de la definición de un proceso y estas fuerzan al MTSA a desarrollar operaciones comple-
jas sobre el proceso. Por ejemplo, el comando f sp(minimal) indica que MTSA constru-
ya el LTS/MTS minimal respetando fuertemente la semántica equivalente y la instrucción
f sp(deterministic) instruye para que MTSA construya el LTS minimal con respecto a su
traza.

También el FSP permite definir propiedades FLTL. Un flujo que marca aquellos esta-
dos donde la cerámica es cocinada puede ser expresado en FSP con el siguiente código:
f sp( f luentCooking=< cook, f inishedCooking> initiall y0). f sp(Cooking) se encuen-
tra inicialmente en falso, este se torna verdadero con f sp(cook) y este se torna falso nueva-
mente cuando ocurre f sp( f inishedCooking).
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Sumarizando, FSP provee el soporte requerido para especificar LTSs and FLTL formu-
las. Dicho soporte es requerido para expresar el modelado del entorno y los objetivos del
controlador.



3. MTSA COMO HERRAMIENTA DE MODELADO Y SÍNTESIS

MTSA es una herramienta de modelado y síntesis basada en sistemas de transiciones
etiquetadas. En esta tesis es utilizada como marco de trabajo, cubriendo los siguientes re-
querimientos:

Modelado del comportamiento del robot, el mapa, las bandejas y las propiedades espera-
das del sistema a través de una extensión de la sintaxis de FSP que permite describir
propiedades como fórmulas FLTL y controladores como un conjunto de propiedades
de progreso, seguridad, acciones falibles, controlables y no controlables

Síntesis del controlador expresado conforme a las propiedades declaradas, de forma que al
componerlo con el entorno permita satisfacer los objetivos de progreso y seguridad

Ejecución del controlador sintetizado a través del marco de ejecución, controlando los com-
ponentes del sistema a través de mensajes específicos de dominio

En el capítulo siguiente se describe la extensión de la herramienta para permitir ejecutar
el controlador sintetizado en el entorno físico.

3.1. Construcción

En MTSA, los modelos se describen a través de una extensión del lenguaje de Procesos
de Estados Finitos (FSP). FSP es un lenguaje textual centrado en la construcción composi-
cional de modelos complejos que originalmente fue usado para describir LTS.
FSP incluye varios operadores tradicionales para describir modelos de comportamiento, co-
mo puede ser el prefijo de acción (−>), elección (|), composición secuencial (;), composición
paralela (||) y mezcla.
La semántica de mezcla es tal que dadas dos descripciones parciales del mismo componen-
te, el operador de mezcla devuelve una MTS que combina la información provista por las
descripciones parciales originales.
Aún cuando los operadores composicionales permiten la consrucción de MTS complejas,
construir los modelos a ser compuestos sigue siendo una tarea dificultosa de intenso trabajo
que requiere un grado considerable de experiencia. Para mitigar este problema, MTSA tam-
bién provee la funcionalidad que permite sintetizar modelos de comportamiento de forma
automática a partir de las especificaciones declarativas de los requerimientos, escenarios y
casos de uso.
La palabra clave constraint de MTSA se usa en conjunción con las propiedades de seguri-
dad (safety) formalizadas haciendo uso de Lógica Lineal Temporal de Flujos (FLTL). Para
una declaración de tipo constraint MTSA construye automáticamente el modelo de MTS
que carateriza a todos los modelos LTS libres de deadlock que satisfacen la fórmula FLTL.
Al sintetizar y mezclar modelos MTS obtenidos con definiciones FLTL, se puede construir
de forma iterativa una MTS que carateriza a la cota superior de los sistemas de comporta-
miento esperados.
La palabra clave abstract de MTSA puede aplicarse a procesos FSP. Su semántica es tal
que el modelo resultante es la MTS de menor refinamiento que garantiza el comportamiento

15
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requerido por los procesos FSP. Esta palabra clave, utilizada en conjunción con los procesos
FSP que modelan el comportamiento descripto en la especificación del escenario, provee una
MTS que caracteriza a todas la implementaciones que satisfacen dicha especificación (i.e.
la cota inferior del comportamiento esperado del sistema).

3.2. Análisis

Habiendo construido una aproximación inicial del comportamiento esperado del siste-
ma, el análisis pasa a ser una tarea crucial que puede brindar información del dominio tanto
del problema como de la solución, aumentando la confianza que se tiene de la adecuación y
correctitud del software y llama a proseguir la elaboración del modelo parcial.
MTSA soporta varios tipos de análisis, el más básico involucra la inspección de modelos
MTS y está soportado a través de la construcción automática de representaciones visua-
les de los modelos MTS escritos usando FSP. Esta inspección queda sujeta al tamaño del
modelo, esta limitación puede mitigarse haciendo uso de los operadores de minimización y
ocultamiento.
Aunque la inspección y animación no permiten una exploración exhaustiva de los modelos
MTS, MTSA implementa un número de técnicas de análisis automáticas para éste propósi-
to. En particular, MTSA permite verificar si un modelo MTS satisface una propiedad expre-
sada en FLTL. Un modelo MTS caracteriza un conjunto de implementaciones, de las cuales
algunas pueden satisfacer la propiedad siendo verificada y algunas pueden violarla. Por este
motivo MTSA automáticamente verifica una relación de satisfactibilidad trivaluada entre
el modelo MTS y una fórmula FLTL. Mientras que un Modelo MTS M puede caracterizar a
un conjunto extremadamente grande, potencialmente infinito, de implementaciones, verifi-
car una propiedad en M con model checking se reduce a dos verificaciones tradicionales de
FLTL. Finalmente, MTSA permite verificar si un modelo es libre de deadlocks. Al igual que
en el caso de model checking para propiedades FLTL, el resultado de esta verificación tiene
uno de tres valores: o bien todas las implementaciones exhiben deadlocks, o bien todas son
libres de deadlock o bien hay una combinación de implementaciones que exhiben deadlocks
y otras que no.

3.3. Modelando el sistema

A continuación se presentan los modelos que representan el comportamiento de los dis-
tintos componentes del sistema. Se describe informalmente su función y se da la represen-
tación FSP de los mismos.

3.3.1. Identificando modelos

Para el caso de estudio propuesto se identifican cuatro sub-modelos para el ambiente,
estos son: el robot, el mapa, las bandejas de entrada y salida y el mecanismo de reubicación.
Se describen por separado prestando cuidado a los estados en los que deben interactuar
para permitir que la composición paralela provea una buena descripción del ambiente en la
forma en que se comporta ante la ausencia de un controlador.
Los procesos representan el comportamiento de los agentes en el dominio restringido de
nuestro caso de estudio. Suponemos que la posición del robot puede expresarse en la espe-
cificación del mapa a partir de una posición inicial, y de las relaciones entre los nodos de
control que capturan posición en la grila y orientación, esto no significa que, por ejemplo,
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la posición del robot se exprese con suficiente detalle para otro dominio donde se podría
preferir una codificación en el plano (x, y,θ) con una aproximación discreta conveniente.
La interacción entre el robot y el mapa queda capturado en la especificación del mapa, esto
puede romper, al menos conceptualmente, la separación lógica entre ambos. Una solución
alternativa podría expresar los procesos con alfabetos disjuntos y luego reemplazar el nom-
bre de las acciones en el paso previo a la composición.

3.3.2. Robot

El robot es de tipo planar, capaz de seguir líneas negras, detectar puntos de intersección,
girar a derecha, izquierda, dar media vuelta y permitir la carga y descarga de un carro en
el que transporta los ítems.
Se restringe en el proceso del robot la capacidad de realizar dos giros seguidos, de forma que
luego de un giro debe realizarse un seguimiento. Ésta restricción, que aquí se realiza como
parte del modelo, podría codificarse como propiedad de seguridad, su motivación tiene que
ver con reforzar (declarativamente) una noción intuitiva de progreso, ya que la probabilidad
de recibir un mensaje de falla luego de un giro (el robot es incapaz de ubicarse nuevamente
sobre la línea negra) es mayor que la de recibir un mensaje de falla luego de realizar un
seguimiento.
El proceso de reubicación se codifica también en el modelo con la secuencia:

1 ROBOT_MOVEMENT = (robot.follow->ROBOT_REPLY

2 |robot.turnRight->ROBOT_REPLY

3 |robot.turnLeft->ROBOT_REPLY

4 |robot.turnAround->ROBOT_REPLY),

5 ROBOT_LOST = (robot.retry->ROBOT_RETRY),

6 ROBOT_RETRY = (robot.lost->ROBOT_LOST|robot.successRetry->ROBOT_MOVEMENT)...

Nótese que éste es unmodelo simplificado del robot, cuya intención es expresar el funcio-
namiento del mecanismo de reubicación que opera en paralelo con el proceso del reubicador
manual.

1 RELOCATOR = (robot.successRetry->RELOCATOR_RELOCATE),

2 RELOCATOR_RELOCATE = (relocator.go_N_0_0_N->RELOCATOR).

Asegurando que luego de un reintento el robot ha podido ubicarse sobre una línea negra,
sin importar cual, y el reubicador manual lo llevará a un nodo conocido desde el cual podrá
continuar progresando hacia el objetivo. Se describe también la capacidad de carga del ro-
bot, se puede entender que hay dos máquinas muy similares para el movimiento del robot
y que la carga y descarga salta entre entre una y otra con un comportamiento mutuamente
exclusivo, esto es, la carga lleva a una máquina equivalente donde se restringe la carga y se
habilita la descarga, y la descarga lleva a una máquina donde se restringe la descarga y se
habilita la carga.
A continuación la descripción completa del robot para uno de los ejemplos de esta tesis.

1 ROBOT = ROBOT_MOVEMENT_U,

2 ROBOT_MOVEMENT_U = (inTray.unload -> ROBOT_LOADING_MOVING

3 |robot.follow->ROBOT_REPLY_U

4 |robot.turnRight->ROBOT_SHOULD_FOLLOW_U

5 |robot.turnLeft->ROBOT_SHOULD_FOLLOW_U

6 |robot.turnAround->ROBOT_SHOULD_FOLLOW_U),

7 ROBOT_SHOULD_FOLLOW_U = (robot.lost->ROBOT_LOST_U|robot.success->ROBOT_FOLLOW_U),



18 3. MTSA como herramienta de modelado y síntesis

8 ROBOT_FOLLOW_U = (inTray.unload -> ROBOT_LOADING_FOLLOWING|robot.follow->ROBOT_REPLY_U),

9 ROBOT_REPLY_U = (robot.lost->ROBOT_LOST_U|robot.success->ROBOT_MOVEMENT_U),

10 ROBOT_LOST_U = (robot.retry->ROBOT_RETRY_U),

11 ROBOT_RETRY_U = (robot.lost->ROBOT_LOST_U|robot.successRetry->ROBOT_MOVEMENT_U),

12 ROBOT_LOADING_MOVING = (inTray.unloaded -> ROBOT_MOVEMENT_L | inTray.fell ->

ROBOT_MOVEMENT_U),

13 ROBOT_LOADING_FOLLOWING = (inTray.unloaded -> ROBOT_FOLLOW_L | inTray.fell ->

ROBOT_FOLLOW_U),

14 ROBOT_MOVEMENT_L = (outTray.load -> ROBOT_UNLOADING_MOVING

15 |robot.follow->ROBOT_REPLY_L

16 |robot.turnRight->ROBOT_SHOULD_FOLLOW_L

17 |robot.turnLeft->ROBOT_SHOULD_FOLLOW_L

18 |robot.turnAround->ROBOT_SHOULD_FOLLOW_L),

19 ROBOT_SHOULD_FOLLOW_L = (robot.lost->ROBOT_LOST_L|robot.success->ROBOT_FOLLOW_L),

20 ROBOT_FOLLOW_L = (outTray.load -> ROBOT_UNLOADING_FOLLOWING|robot.follow->ROBOT_REPLY_L),

21 ROBOT_REPLY_L = (robot.lost->ROBOT_LOST_L|robot.success->ROBOT_MOVEMENT_L),

22 ROBOT_LOST_L = (robot.retry->ROBOT_RETRY_L),

23 ROBOT_RETRY_L = (robot.lost->ROBOT_LOST_L|robot.successRetry->ROBOT_MOVEMENT_L),

24 ROBOT_UNLOADING_MOVING = (outTray.loaded -> ROBOT_MOVEMENT_U | outTray.fell ->

ROBOT_MOVEMENT_U),

25 ROBOT_UNLOADING_FOLLOWING = (outTray.loaded -> ROBOT_FOLLOW_U | outTray.fell ->

ROBOT_FOLLOW_U).

3.3.3. Mapa

El mapa describe la distribución de los nodos de detención, relación entre ellos a través
de las vías (las bandas negras que llevan de un puesto a otro) y la ubicación de las ban-
dejas en la planta. También guarda conocimiento de la orientación del robot, de forma que
su ubicación espacial puede darse por la tripla < x, y, o > donde, si se piensa a la distri-
bución de los puestos o nodos de intersección como una grilla regular, x define la columna
sobre la que se encuentra el robot y la fila y o la orientación perteneciendo al conjunto
(norte, este, sur, oeste). También se especifica el efecto de ejecutar el mecanismo de reubi-
cación manual con la transición:

1 N_X_Y_O = (relocator.go_N_0_0_N -> N_0_0_N | robot.turnAround -> ...

Las bandejas se habilitan en una posición y orientación dada, por ejemplo:

1 N_0_1_S = (relocator.go_N_0_0_N -> N_0_0_N | ... | outTray.load -> N_0_1_S)...

A continuación una descripción completa del mapa.

1 MAP = N_1_0_N,

2 N_0_0_N = (relocator.go_N_0_0_N -> N_0_0_N | robot.turnAround -> N_0_0_S |

robot.turnRight -> N_0_0_E | robot.turnLeft -> N_0_0_W),

3 N_0_0_E = (relocator.go_N_0_0_N -> N_0_0_N | robot.turnAround -> N_0_0_W |

robot.turnRight -> N_0_0_S | robot.turnLeft -> N_0_0_N | robot.follow -> N_0_1_E),

4 N_0_0_S = (relocator.go_N_0_0_N -> N_0_0_N | robot.turnAround -> N_0_0_N |

robot.turnRight -> N_0_0_W | robot.turnLeft -> N_0_0_E | robot.follow -> N_1_0_S),

5 N_0_0_W = (relocator.go_N_0_0_N -> N_0_0_N | robot.turnAround -> N_0_0_E |

robot.turnRight -> N_0_0_N | robot.turnLeft -> N_0_0_S),

6 N_0_1_N = (relocator.go_N_0_0_N -> N_0_0_N | robot.turnAround -> N_0_1_S |

robot.turnRight -> N_0_1_E | robot.turnLeft -> N_0_1_W),

7 N_0_1_E = (relocator.go_N_0_0_N -> N_0_0_N | robot.turnAround -> N_0_1_W |

robot.turnRight -> N_0_1_S | robot.turnLeft -> N_0_1_N),
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8 N_0_1_S = (relocator.go_N_0_0_N -> N_0_0_N | robot.turnAround -> N_0_1_N |

robot.turnRight -> N_0_1_W | robot.turnLeft -> N_0_1_E | robot.follow -> N_1_1_S |

outTray.load -> N_0_1_S),

9 N_0_1_W = (relocator.go_N_0_0_N -> N_0_0_N | robot.turnAround -> N_0_1_E |

robot.turnRight -> N_0_1_N | robot.turnLeft -> N_0_1_S | robot.follow -> N_0_0_W),

10 N_1_0_N = (relocator.go_N_0_0_N -> N_0_0_N | robot.turnAround -> N_1_0_S |

robot.turnRight -> N_1_0_E | robot.turnLeft -> N_1_0_W | robot.follow -> N_0_0_N |

inTray.unload -> N_1_0_N),

11 N_1_0_E = (relocator.go_N_0_0_N -> N_0_0_N | robot.turnAround -> N_1_0_W |

robot.turnRight -> N_1_0_S | robot.turnLeft -> N_1_0_N | robot.follow -> N_1_1_E),

12 N_1_0_S = (relocator.go_N_0_0_N -> N_0_0_N | robot.turnAround -> N_1_0_N |

robot.turnRight -> N_1_0_W | robot.turnLeft -> N_1_0_E),

13 N_1_0_W = (relocator.go_N_0_0_N -> N_0_0_N | robot.turnAround -> N_1_0_E |

robot.turnRight -> N_1_0_N | robot.turnLeft -> N_1_0_S),

14 N_1_1_N = (relocator.go_N_0_0_N -> N_0_0_N | robot.turnAround -> N_1_1_S |

robot.turnRight -> N_1_1_E | robot.turnLeft -> N_1_1_W | robot.follow -> N_0_1_N),

15 N_1_1_E = (relocator.go_N_0_0_N -> N_0_0_N | robot.turnAround -> N_1_1_W |

robot.turnRight -> N_1_1_S | robot.turnLeft -> N_1_1_N),

16 N_1_1_S = (relocator.go_N_0_0_N -> N_0_0_N | robot.turnAround -> N_1_1_N |

robot.turnRight -> N_1_1_W | robot.turnLeft -> N_1_1_E),

17 N_1_1_W = (relocator.go_N_0_0_N -> N_0_0_N | robot.turnAround -> N_1_1_E |

robot.turnRight -> N_1_1_N | robot.turnLeft -> N_1_1_S | robot.follow -> N_1_0_W).

3.3.4. Bandejas

Las bandejas de entrada y salida representan el punto de contacto con otras líneas de
la planta industrial o incluso con una fuente externa a la planta, por ejemplo un lote de
ítems provistos por una tercera entidad en las líneas de montaje. Se incluye la posibili-
dad de perder el ítem durante la carga o la descarga, representando la carga con la tripla
(inTray.load, inTray.unloaded, inTray. f ell) y (outTray.load,outTray.loaded, outTray. f ell)
de lo que se considera un dominio falible.

1 INTRAY = (inTray.load -> inTray.unload -> (inTray.unloaded -> INTRAY | inTray.fell ->

INTRAY)).

2 OUTTRAY = (outTray.load ->(outTray.fell -> OUTTRAY | outTray.loaded -> outTray.unload ->

OUTTRAY)).

3.3.5. Reubicación manual

Dado que un mensaje de falla por parte del robot indica que su posición dentro del
mapa es desconocida se introduce un mecanismo de reubicación, en este caso manual, que
supone conocimiento de la posición del robot y de un nodo de reubicación de forma que el
controlador pueda asegurar la satisfacción de los objetivos de sistema. Este componente
particular podría reemplazarse por un procedimiento automático que incluya una cámara
con capacidad de identificar la posición y orientación del robot y el mapa, y envíe mensajes
de bajo nivel (control de los microrreductores) llevando al robot hasta el nodo de reubicación.

1 RELOCATOR = (robot.successRetry->RELOCATOR_RELOCATE),

2 RELOCATOR_RELOCATE = (relocator.go_N_0_0_N->RELOCATOR).
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3.3.6. Definición del controlador

Para la definición del controlador es necesario explicitar el conjunto de acciones con-
trolables, no controlables y falibles, esto puede expresarse en notación FSP utilizando el
elemento de sintaxis set. Primero se describen los conjuntos según una partición lógica.

1 set ActionCommands =

{robot.follow,robot.turnRight,robot.turnLeft,robot.turnAround,robot.retry}

2 set RelocateCommands = {relocator.go_N_0_0_N}

3 set ReplyCommands = {robot.lost,robot.success,robot.successRetry}

4 set FailActions = {robot.lost,inTray.fell,outTray.fell}

Se particiona luego el espacio de acciones entre controlables y no controlables.

1 set ControllableActions = {ActionCommands,inTray.unload,outTray.load}

2 set UncontrollableActions =

{FailActions,RelocateCommands,robot.success,robot.successRetry,inTray.load,

inTray.fell, inTray.unloaded,outTray.loaded,outTray.fell,outTray.unload}

Se define el conjunto universal para el sistema.

1 set Alphabet = {ControllableActions,UncontrollableActions}

Y el entorno como composición paralela de los agentes involucrados.

1 ||Scenario = ( MAP || ROBOT || RELOCATOR || INTRAY || OUTTRAY).

Se definen las propiedades de seguridad como máquinas que restringen el comporta-
miento indeseado.

1 property NO_2_RIGHT = (Alphabet\{robot.turnRight}->NO_2_RIGHT |

robot.turnRight->PREV_RIGHT ),

2 PREV_RIGHT = (robot.success->PREV_RIGHT2 | Alphabet\{robot.success}->NO_2_RIGHT),

3 PREV_RIGHT2 = (Alphabet\{robot.turnRight}->NO_2_RIGHT ).

4 property NO_2_LEFT = (Alphabet\{robot.turnLeft}->NO_2_LEFT | robot.turnLeft->PREV_LEFT ),

5 PREV_LEFT = (robot.success->PREV_LEFT2 | Alphabet\{robot.success}->NO_2_LEFT),

6 PREV_LEFT2 = (Alphabet\{robot.turnLeft}->NO_2_LEFT ).

7 property NO_2_TURNAROUND = (Alphabet\{robot.turnTurnAround}->NO_2_TURNAROUND |

robot.turnTurnAround->PREV_TURNAROUND ),

8 PREV_TURNAROUND = (robot.success->PREV_TURNAROUND2 |

Alphabet\{robot.success}->NO_2_TURNAROUND),

9 PREV_TURNAROUND2 = (Alphabet\{robot.turnTurnAround}->NO_2_TURNAROUND ).

A continuación los flujos que describen la condición de bandeja de entrada llena (INTRAY_FULL),
elemento agregado a la bandeja de salida (ADDED_TO_OUTTRAY) y bandeja de salida
vacía (OUTTRAY_EMPTY) y el flujo que describe las acciones falibles (F_FAILURES).

1 //DEFINED FLUENTS

2 fluent INTRAY_FULL = <inTray.load, inTray.unload> initially 0

3 fluent ADDED_TO_OUTTRAY = <outTray.loaded, outTray.unload> initially 0

4 fluent OUTTRAY_EMPTY = <outTray.unload, outTray.loaded> initially 1

5 fluent F_FAILURES = <FailActions,Alphabet\{FailActions}>

6
7 //DEFINED ASSERTIONS

8 assert ASSUME_ON_LOAD = (INTRAY_FULL)

9 assert ASSUME_ON_UNLOAD = (OUTTRAY_EMPTY)
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10 assert GOAL_FOR_UNLOAD = ADDED_TO_OUTTRAY

11 assert Failures = F_FAILURES

El controlador se define como la restricción del entorno a los objetivos definidos como
conjunto de propiedades de seguridad y progreso (safety,liveness), el conjunto de presun-
ciones (assumption), el de acciones controlables (controllable) y el conjunto de acciones
de falla (failure).
Cabe notarse que el objetivo de progreso describe que con infinita frecuencia la bandeja de
salida debe cargarse, ya que es el destino en el que esperamos pueda dejarse la carga, bajo
la presunción de que será descargada con inifnita frecuencia podemos suponer que el sis-
tema, en caso de conseguir un controlador, podrá llevar de forma contínua carga desde la
bandeja de entrada a la bandeja de salida.

1 controller ||C = (Scenario)~{Objective}.

2
3 controllerSpec Objective = {

4 safety = {NO_2_LEFT, NO_2_RIGHT}

5 failure = {Failures}

6 assumption = {ASSUME_ON_LOAD, ASSUME_ON_UNLOAD}

7 liveness = {GOAL_FOR_UNLOAD}

8 controllable = {ControllableActions}

9 }
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4. ENACTMENT, O ENTORNO DE EJECUCIÓN

Enactment debe entenderse como la capacidad de poner en ejecución un controlador. En
el marco de este trabajo se refiere a ejecutar un controlador sintetizado a partir de la espe-
cificación que describe un juego SGR(1) sobre dominios falibles.
Se entiende que la puesta en ejecución o enactment es entre otras cosas un área a desarro-
llar y una actividad de conocimiento. En su carácter cognitivo permite observar y refinar los
controladores construidos, las técnicas empleadas para construirlos y la forma en que éstos
se ajustan a un contexto preexistente, potencialmente desacoplado a la unidad de cómputo
que realiza la síntesis.

4.1. La necesidad de ejecutar estrategias

La forma natural de expresar un problema en la sintaxis de procesos finitos es descri-
biendo el comportamiento de cada proceso como un sistema de transiciones etiquetadas.
Suponiendo que de esta forma se expresa con suficiente detalle el comportamiento observa-
ble de un agente.
En la sintaxis propuesta se separan las transiciones controlables de las no-controlables. Se
propone a partir de esto una separación entre los mensajes de control, que se corres-
ponden con las transiciones controlables en la especificación y con los mensajes de entrada
para el agente, de los mensajes de estado que se corresponden con las transiciones no
controlables en la especificación y mensajes de salida en el agente. Un caso particular de
las transiciones no controlables que puede echar más luz sobre la distinción es el de los
timeouts o límites de tiempo. La transición controlable podría ser un mensaje de control o
un pedido a un servicio particular y la transición no controlable podría ser un mensaje de
estado, una respuesta por parte del servicio o un evento de timeout, que estaría capturando
la falta de respuesta dentro de un período aceptable de tiempo. En esta tesis trabajamos
con nodos controlables (donde todas las transiciones de salida son controlables) y no contro-
lables (donde todas las transiciones de salida son no controlables). En un estado particular,
no controlable, podría suceder que exista más de una transición de salida, una represen-
tando un mensaje de estado, otra representando un mensaje de timeout para expresar la
posibilidad de que una máquina no responda en un lapso razonable de tiempo. Estos peque-
ños ejemplos introducen algunas nociones relacionadas al proceso de modelado, como pudo
verse en los procesos escritos en el capítulo 3.3.

C U

control

status

C U

request

timeout

C U

request

repl y

timeout

Fig. 4.1: Transición entre estados controlables y no controlables: control-estado (izq.),
request-timeout (centro), request-timeout,reply(der.)

Se indentifica un subconjunto de las transiciones no controlables en relación al modelo
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de fallas, indicando estados en los cuales una transición puede suceder pero con cierta no-
ción de equidad. Estas transiciones del modelo de falla deben capturar un comportamiento
no sistemático, independiente entre sí que va a dar lugar (eventualmente) a la ejecución
de otra transición en ese mismo estado. En esta tesis la tripla (tr yi, suc i, f ail i) permi-
te representar la naturaleza falible pero no sistemática del movimiento del robot (se ins-
tancia como (robot. f ollow, robot.destinationReached, robot.lost) o para el caso de las
bandejas, donde un ítem puede caer al ser cargado o descargado como (inTray.unload,
inTray.unloaded, inTray. f ell)), que siguiendo una línea, puede perder rastro de la mis-
ma, pero ésto no se interpreta como un comportamiento potencialmente malicioso por parte
del entorno.

4.2. El componente de ejecución: Enactor

El componente de ejecución debe respetar un esquema de comunicación asíncrona. Se
espera que pueda alcanzarse un nivel de abstracción que permita que el control discreto sea
suficiente para controlar y monitorear el comportamiento de los enactors.
Se puede pensar que cada enactor expone una API. Los métodos públicos serán equivalen-
tes a los mensajes de control y los eventos disponibles equivalen a los mensajes de estado.
Puede suceder que el vínculo entre un mensaje en el dominio de control discreto y su con-
traparte en el dominio real oculte información, por ejemplo, en nuestro caso vincularemos
a través del enactor correspondiente los mensajes del protocolo de comunicación con transi-
ciones del sistema discreto, cada vez que se envíe un mensaje de control (representado por
la etiqueta correspondiente a la transición) se crea en el enactor un paquete conforme al
protocolo de comunicación y se lo envía a través de la interfaz inalámbrica. Cada vez que la
interfaz de comunicación recibe un mensaje del robot, el adaptador (enactor) lo interpreta
y produce un evento que contiene la información relacionada a la transición no controlable
(mensaje de estado).

En la figura 4.2 se representa la relación entre el modelo utilizado para construir la
especificación del controlador y su implementación. C representa a los estados controlables
en el modelo y U representa a los no controlables. c representa a la implementación del
controlador en el entorno de ejecución y a representa al enactor en calidad de adaptador en-
tre los mensajes del entorno de ejecución y los del dominio del componente (potencialmente)
externo al entorno de ejecución. Se ve como las transiciones en el modelo se corresponden
con los mensajes de control y estado en el entorno de ejecución.

C U

c a

enact enact

controllable

non− controllable

control

status

Fig. 4.2: Relación de ejecución entre el modelo y los componentes de ejecución

La relación entre la implementación en la tecnología correspondiente y el modelo se
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muestra en la figura 4.3 representando al componente de ejecución como e para indicar que
se está hablando de un objeto Enactor que se ejecuta dentro de la herramienta. Según
la arquitectura escogida las transiciones controlables y no controlables se relacionan con
llamadas a función y eventos respectivamente.

C U

c e

enact enact

controllable

non− controllable

APIcall

event

Fig. 4.3: Relación de ejecución entre el modelo y la implementación final de los componentes
de ejecución

En la figura 4.5 se expande la interacción del Enactor con el componente externo, en
este caso el cliente de comunicación del robot N6 (r en el esquema) para mostrar un flujo de
mensajes de un entorno de ejecución en marcha. Aquí los mensajes de control se traducen
en mensajes serializados que se envían a través del emisor de radio y los mensajes de estado
se traducen a su vez de los mensajes serializados recibidos por la misma interfaz.

C U

c e i r

eo

enact enact

f ollow

destinationReached

f ollow()

destinationReached

LAFHIS202...

LAFHIS203...

Fig. 4.4: Esquema de ejecución para el robot N6, vinculando los mensajes con el intercambio
de mensajes serializados

Si se sustrae la comunicación por radio se puede exponer otra relación interesante entre
las transiciones del modelo de eventos y el componente en ejecución. Se puede entender
que el par < control, status> encierra la ejecución de un bloque de control contínuo que
eventualmente produce un mensaje de estado.
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C U

c e i r

eo

enact enact

f ollow

destinationReached

f ollow()

destinationReached

start.Cont.Control

statusMessage

Fig. 4.5: Esquema de ejecución para el robot N6, vinculando los mensajes con la ejecución y
reporte de estado de un bloque de control contínuo

Este pequeño ejemplo expone la adecuación de las técnicas de ejecución para esquemas
de control contínuo y otros esquemas de control de sistemas embebidos que suelen utilizar
máquinas de estado finito para representar su comportamiento (ya sea explícita o implíci-
tamente).

4.3. Extensión de la herramienta

En el capítulo 6 se detallan las modificaciones necesarias para que un controlador coor-
dine a los componentes de ejecución en un entorno físico. La intención es permitir ejecutar
el controlador sintetizado a partir de la especificación dentro de la herramienta MTSA.
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Se espera que el robot cuente con un mecanismo que le permita transitar la planta
en recorridos que visiten puntos distinguibles, que pueden representar las estaciones de
carga, descarga y cruce de caminos. El desplazamiento autónomo se consigue utilizando
una técnica de seguimiento de línea. Esto involucra:

pintar las líneas correspondientes a los caminos en el piso de la planta

pintar con un valor distintivo los cruces entre caminos

brindar soporte de detección y seguimiento de líneas en el robot

El trazado de los caminos puede hacerse con pintura o con un cable eléctrico. En este trabajo
se utilizará pintura o tinta negra para representar los caminos y sensores infrarrojos en el
robot para poder detectar líneas en el piso.
El robot se desplazará tratando de mantener los sensores infrarrojos a ambos costados de
la línea, si detecta una desviación significativa (diferencia de valor entre los sensores) com-
pensará modificando la velocidad de rotación de cada rueda acorde a la magnitud del desvío.
En un intento de permitir recorridos variables en la grilla de caminos se introduce un valor
intermedio para los cruces de forma que el robot pueda decidir de forma autónoma cuando
se ha completado un tramo del camino.
La presencia de línea se percibe en el robot como un rango de lectura de un valor bajo en
al menos en uno de los sensores. La presencia de un rango de valor alto se interpreta como
consecuencia de que al menos uno de los sensores se encuentra sobre el mapa, pero fuera
de la línea. Los valores del mapa en los cruces se interpreta al obtener una lectura en un
rango intermedio de valores.

5.1. Arquitectura del robot N6

El modelo N6 es un robot producido en Argentina por la empresa RobotGroup con fines
didácticos. Se trata de un robot planar con dos microrreductores operando cada rueda de
forma independiente, dos fotosensores ubicados al frente y hacia la base, un sensor de ul-
trasonido y otro de radio ubicado en la parte superior.
La alimentación es autónoma a través de tres pilas AA y el controlador de los motores DC
está integrado en la placa.

Es entregado con bibliotecas provistas por Atmel Corporation, Arduino y utilidades,
configuración del controlador y bootloader de RobotGroup.

5.1.1. Arquitectura del procesador

El robot cuenta con un procesador ATMega32u4 producido por Atmel Corporation. Se
trata de una arquitectura de 8 bits con un conjunto de instrucciones RISC operando sobre 32
registros de proposito general. La memoria de programa es de tipo flash con 32 KBytes de
capacidad, la memoria volátil de datos es una SRAM de 2.5 KBytes y la memoria no volátil
de datos es un EEPROM de 1 KByte.

27
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Fig. 5.1: Vista de frente (izq.) y de perfil (der.) del robot modelo N6

Los registros están conectados directamente a la unidad aritmético lógica (ALU) permitiendo
así acceder a dos registros en un mismo ciclo de reloj. Tiene 26 líneas de entrada/salida de
propósito general, cuatro contadores/temporizadores y un contador de alta velocidad. Tiene
una USART, un interfaz serie de dos vías orientada a bytes, 12 canales ADC de 10 bits,
sensor de temperatura en el chip, un temporizador programable de vigía y una interfaz
JTAG para permitir seguimiento de ejecución en el chip.

5.2. Extensiones físicas

Se extendió el soporte de hardware en el robot con una placa de comunicación XBee que
permite la colaboración entre el robot y un nodo de control. La placa XBee se conecta a tra-
vés de una de las interfaces serie y transmite la información de forma serial a otro nodo
XBee.
El montaje de la placa requirió una mínima modificación en la estructura de la misma y un
cableado entre uno de los puertos serie de la placa central y la placa de comunicación, como
así también las líneas de alimentación desde la placa central a la placa XBee.
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Fig. 5.2: Placa XBee adaptada al robot modelo N6

El nodo de control cuenta con otra placa de comunicación conectada a uno de sus puertos
serie.
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Fig. 5.3: Placa XBee conectada al puerto serie del nodo de control

Robot Placa XBee Placa XBee Controlador

Fig. 5.4: Comunicación entre el robot y el controlador

5.3. Fuente de fallas

La arquitectura general del robot, comprendiendo las bibliotecas provistas, el soporte
de hardware y la plataforma de software escrita para el mismo dejan, en su conjunto, lugar
a fallas. Debe notarse que el control de velocidad en las ruedas es de lazo abierto, sin un
mecanismo de retroalimentación que verifique el comportamiento consistente de los actua-
dores luego de ejecutada la logica de control. Por este motivo el resultado de ejecutar un
giro a izquierda, derecha o una media vuelta es de naturaleza falible. No hay un mecanismo
confiable para asegurar que el robot ha realizado un giro de aproximadamente noventa o
ciento ochenta grados, estas acciones son aproximadas. Si bien puede entenderse como una
falla de soporte o de arquitectura para el robot, un controlador sintetizado sobre un domi-
nio falible, debe poder dar garantías de progreso aún frente a errores de este tipo. La terna
(robot.turnright, robot.success, robot.lost) caracteriza este tipo de errores.
Los bloques de control proveen un mecanismo básico de seguridad de forma que al terminar
su ejecución detienen el avance de las ruedas. Esto asegura, que ante una falta de respuesta
por parte del nodo de control, el robot se mantendrá inactivo y en el lugar.
Existe otra fuente de fallas, no intencional, en el protocolo de comunicación por la auscencia
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de un control de sanidad o checksum. Esto se debe a que el protocolo se modeló sobre la
base de un protocolo industrial que funciona sobre una capa de transporte que provee este
control. En nuestro caso los paquetes se envían directamente sobre una capa de más bajo
nivel, sin ningún control de este tipo.

5.4. Software

La funcionalidad requerida del robot según lo presentado debería permitir:

Iniciar comunicación inalámbrica con un nodo de control

Mantener el intercambio de mensajes con el nodo de control

Cerrar la comunicación inalámbrica con un nodo de control

Iniciar y mantener el seguimiento de una línea hasta alcanzar un cruce u obtener una
lectura errónea (i.e. no se puede leer línea)

Informar cuando se haya alcanzado un cruce y detenerse

Informar cuando se haya alcanzado una lectura errónea y detenerse

El robot cuenta con un procesador atmega32u4 que puede programarse en lenguaje en-
samblador y que también cuenta con un compilador de C y C++ (avr-gcc) y su respectivo
debugger (avr-gdb).
Para este trabajo utilizamos como base las bibliotecas provistas por RobotGroup que inclu-
yen una versión modificada de las bibliotecas provistas Atmel Corporation y la plataforma
Arduino. Éstas exponen una interfaz de uso que abstrae la comunicación y configuración
del hardware al nivel más bajo, programando también la memoria del procesador a través
de los fuses y lockbits.
Utilizamos el bootloader provisto por RobotGroup que permite cargar el programa en la
memoria del robot a través de una conexión USB.
En adelante se detallará la arquitectura del subsistema que satisface la funcionalidad men-
cionada anteriormente, que puede comprenderse como la lógica de control y comunicación
del robot.

5.4.1. Arquitectura general

Se supone un funcionamiento en modalidad maestro-esclavo donde el robot recibe men-
sajes de control de un nodo central y envía a este mismo mensajes de estado. Una vez
recibido un mensaje de control, el robot realiza de forma autónoma la tarea representada
por ese mensaje y una vez finalizada envía otro mensaje informando el estado en el que se
encuentra.
La asignación de responsabilidades a componentes se realiza de la siguiente manera.

N6 desacopla el acceso a los sensores y actuadores del robot a través de una semántica
de mayor nivel, permitiendo acceder a los valores de lectura y escritura con descrip-
ciones relacionadas a la configuración actual, también es el responsable de asignar el
procesador de forma ordenada a los otros componentes
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MessageManager tiene conocimiento de las colas de comunicación y de los serializadores,
deserializadores que permiten llevar un objeto de mensaje hacia y desde su represen-
tación serial, expone una semántica que permite preguntar si existe un mensaje en la
cola, pedirlo apropiadamente como un objeto y enviarlo a un destinatario

Conjunto de mensajes cada mensaje es representado por un objeto y está relacionado a
un serializador/deserializador que es responsable de llevarlo desde y hacia su repre-
sentación serial

Conjunto de comandos el objeto de comando encapsula el comportamiento que el robot
debe ejecutar en unmomento dado, proveen una semántica de inicialización, ejecución
y limpieza

La figura 5.5 intenta representar, de forma simplificada, la relación entre los componen-
tes. El componente etiquetado como N6 abstrae el acceso a los puertos de entrada y salida
y se comunica con el controlador de mensajes para evaluar si hay algún mensaje de control
esperando ser leído, o un mensaje de estado por enviar. Si, en efecto existe un mensaje de
control que exige la ejecución de un comando, el comando referido es instanciado y puesto
en ejecución.

Mensaje 1 .. . Mensaje N

Emisor de
Mensajes

Receptor  de
Mensajes

Serializador
de  mensa jes

Comando 1

.. .

Comando M

Biblioteca N6

Biblioteca Atmel
Arduino

RobotGroup

Fig. 5.5: Esquema general de la arquitectura del robot

Se analiza la recepción de unmensaje de control, su procesamiento y consecuente puesta
en marcha del comando relacionado. Al describir esta interacción se describen parcialmente
los objetos relacionados, junto con sus estructuras de representación, mensajes intercambia-
dos y noción general de los algoritmos.
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Robot MessageManager MessageReceiver Message aCommand

hasPendingMessage()

hasPendingMessage()

true

true

getNextMessage()

getNextMessage()

deserialize(serializedMessage, messageLength)

deserialize()

aMessage

processCommandMessage(aMessage)

aCommand
aMessage

resetFromMessage(aMessage)

execute()

Fig. 5.6: Procesando un mensaje de control.

El punto de partida se define en el momento en que un nodo de control envía un mensaje
serializado a través de la antena de emisión, la placa de radio del robot recibirá la informa-
ción transmitida en forma secuencial y mantendrá una copia de la misma en su buffer.
El objeto que abstrae el software y cumple la función del scheduler (N6) recibe un mensaje
de actualización (update) y envía un mensaje al controlador de mensajes (MessageManager)
para evaluar si existe un mensaje esperando en la cola (hasNextMessage). El controla-
dor envía el mensaje a quién éste conoce como receptor de mensajes (MessageReceiver).
En verdad ésta clase y su contraparte el emisor de mensajes (MessageSender) son de ti-
po abstracto y en la práctica su funcionalidad es cubierta por una única implementación
que recibe y envía mensajes a través de un puerto serie (SerialSenderReceiver). Si el en-
vío del mensaje hasNextMessage desde N6 da como resultado un valor verdadero, entonces
se pide al MessageManager el próximo mensaje en cola a través de un envío del mensa-
je getNextMessage, que devuelve un objeto mensaje, involucrando a MessageManager que
pide al objeto de clase del mensaje relacionado (e.g. FollowLineMessage) un objeto de men-
saje materializado a través del mensaje deserialize. Entonces N6 consigue una referencia
al comando relacionado a través de una tabla que representa una función cuyo dominio es
el de los identificadores de mensaje y con imagen en los comandos existentes.
El comando así relacionado recibe dos mensajes, primero el de resetFromMessage que le
permite inicializar o limpiar estructuras y luego execute que ejecuta la lógica de control
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del comando.
A continuación se detallan interacciones relevantes a este caso de estudio.
El objeto MessageManager contiene dos tablas relacionadas a la serialización y deseriali-
zación de un mensaje. La primera va a ser referida como mid y relaciona un código de
identificación de mensaje con el índice de la función de serialización/deserialización que se
encuentra referenciada con un puntero en la tabla que será referida como serial izers.

mid(x) : int→ int, serializers : int→ (char∗→Message)

De forma que una vez leído el código de mensaje (que por otro lado tiene ubicación cono-
cida dentro de la cadena), el mensaje puede conseguirse con:

serial izers(mid(code))

La existencia de una tabla para resolver la relación entre el código de mensaje y el índi-
ce del serializador en otra tabla está motivada unicamente por las limitaciones de memoria
en el dispositivo. De forma análoga se relacionan los códigos de mensaje de los mensajes de
control con los comandos a ejecutar como respuesta.

5.4.2. Lógica de control

Como se ha visto cada mensaje de control se relaciona con un comando que representa
el comportamiento esperado por parte del robot.
Si bien se ha dicho que el módulo N6 cumple con la función de un scheduler, se debe aclarar
que se trata de un scheduler de naturaleza colaborativa, donde cada proceso (en este caso
comando) libera el procesador de forma activa, esto quiere decir que no se sigue una política
de desalojo forzoso. Cada comando extiende la definición de la clase Command sobreescribien-
do el método update. En cada ciclo de ejecución el componente N6 envía éste mensaje a su
comando activo, el comando a su vez ejecuta el ciclo de control (que se supone acotado de
forma de no bloquear el comportamiento del robot en su totalidad) y libera al procesador
saliendo de la función (update). Sí el comando considera que ha concluído su tarea o que ha
alcanzado un estado de error marca su variable de estado como terminada, emite en caso
de ser necesario el mensaje de estado correspondiente y concluye la ejecución de la función
liberando así al procesador.
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Resultado: true si la ejecución termina correctamente o se alcanza el objetivo, false
si se alcanza un estado de error

ejecutar lógica de control;
si se alcanza un estado de error entonces

enviar mensaje de error;
marcar estado del comando como terminado;
devolver false;

sinó, si se consigue un estado objetivo entonces
enviar mensaje de confirmacion;
marcar estado del comando como terminado;
devolver

en otro caso
devolver true y liberar el procesador;

Algoritmo 1: Esquema general de un comando
Debido a la limitada capacidad de memoria de programa y de datos del dispositivo se

ha implementado un conjunto reducido de comando que permitan cubrir la funcionalidad
esperada para el escenario propuesto. Se describe su funcionamiento en términos generales.

FollowLineCommand define un comportamiento en el que se utiliza la lectura de los sen-
sores infrarrojos para mantener al robot centrado respecto de una línea negra que se
pinta sobre el piso. Se utiliza la diferencia de valor entre los sensores para compensar
la velocidad de los motores. Si se detecta un número de lecturas erróneas (por arriba
del valor de negro esperado en ambos sensores) se envía un mensaje de error y se de-
tiene la ejecución del comando, si se realiza una lectura de valor intermedio (lectura
de valor definido en un rango inferior al rango de lectura de piso, blanco, y superior al
rango de lectura de línea, negro) se envía un mensaje de éxito y se detiene la ejecución
del comando

TurnCommand se controlan los motores del robot para realizar un giro de noventa grados
a cualquiera de los lados o darmedia vuelta, el comportamiento específico del comando
depende del mensaje que lo haya iniciado, una vez relizado el giro se envía unmensaje
de éxito y se detiene la ejecución del comando

SetMotorSpeedCommand se actualiza la velocidad de los motores con el valor recibido
a través del mensaje y se detiene la ejecución del comando

5.4.3. Protocolo de comunicación

Para controlar de forma remota cada robot se diseña e implementa un reducido proto-
colo de comunicación. El control se hace intercambiando mensajes de control y estado. Los
mensajes son de longitud variable y están divididos entre un encabezado de longitud fija y
el contenido de datos (payload).
La comunicación se realiza entre un iniciador y un receptor como se muestra en el dia-
grama 5.7. El receptor acepta el mensaje de inicio de comunicación si no se encuentra
intercambiando mensajes con otro nodo. El iniciador envía un mensaje de inicio Com-
municationStartMessage que puede ser respondido con un CommunicationStartAck-
nowledgeMessage dándose inicio al intercambio de mensajes de control y estado o con un
CommandErrorMessage indicando que no puede inicarse la comunicación con el recep-
tor por un motivo especificado en el código de error.
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Una vez que el intercambio de mensajes de control y estado finaliza el iniciador envía un
mensaje CommunicationStopMessage y ambas partes consideran la comunicación ce-
rrada y realizan las tareas de mantenimiento necesarias. Si las partes no están esperando
respuesta de un mensaje enviado previamente deberían enviar regularmente (en un inter-
valo cercano a los 200ms) un mensaje KeepAliveMessage para mantener abierto el canal.
A continuación se describe el formato de mensaje y se da una descripción de los mensajes
utilizados en este trabajo.

Iniciador Receptor

CommunicationStartMessage

CommunicationStartAcknowledgeMessage

...

...

CommunicationStopMessage

Fig. 5.7: Procesando un mensaje de control.

El paquete de mensaje es de longitud variable pero su cabecera es de longitud fija. El
formato general se describe en la figura 5.8.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

LAFHIS Largo MID Rev F Para De

Campo Descripición
LAFHIS Encabezado de sincronización
Largo Largo del mensaje expresado en bytes
MID Código de identifiación del mensaje
Rev Número de revisión del mensaje
F Byte de máscara
De Código del remitente del mensaje
Para Código del destinatario del mensaje

Fig. 5.8: Formato general del paquete de comunicación

Cabe aclarar de los campos descriptos algunos detalles: el campo de Revisión permite
extender el protocolo con nuevas versiones respetando la retrocompatibilidad, el campo de
Flag o máscara permitiría marca en un futuro la posibilidad de enviar una respuesta a mo-
do de piggybacking.
Si una cola de recepción, por ejemplo en la placa de comunicación del robot, contiene una
cadena de cualquier longitud que no contiene el encabezado de sincronización, ésta se des-
carta y se continúa leyendo hasta encontrarlo. Una vez ubicado se lee hasta la posición del
valor de Largo del mensaje para saber si se han recibido suficientes bytes como para formar
el mensaje. De no ser así se contínua leyendo. Se aprovecha también que el código de men-
saje se encuentra en una posición conocida para buscar a partir de éste al deserializador
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correspondiente.

5.4.3.1. 001.CommunicationStartMessage

Mensaje de inicio de comunicación. Es enviado por el iniciador para comenzar la comu-
nicación con el nodo receptor, quien puede recibir como respuesta un mensaje Communi-
cationStartAcknowledgeMessage (5.4.3.2) o un mensaje CommandError(5.4.3.4)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

LAFHIS 26 0001 001 0 XXXX XXXX

5.4.3.2. 002.CommunicationStartAcknowledgeMessage

Mensaje de confirmación al mensaje de inicio de comunicación. Es enviado por el recep-
tor como confirmación del inicio de la comunicación.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

LAFHIS 26 0001 002 0 XXXX XXXX

5.4.3.3. 003.CommunicationStopMessage

Mensaje de fin de comunicación. Es enviado por el iniciador para indicar que se finaliza
la comunicación.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

LAFHIS 26 0001 003 0 XXXX XXXX

5.4.3.4. 004.CommandErrorMessage

Mensaje de error en respuesta a un mensaje recibido.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

LAFHIS 32 0001 004 0 XXXX XXXX Rej E

Campo Descripición
Rej Código del mensaje rechazado

E
Código de error indicando el motivo por el cual se ha recha-
zado el mensaje

El significado del código de error se explica en la tabla 5.4.3.4.
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Código Descripición
-2 El largo del mensaje no se corresponde con el valor provisto
-3 No se encuentra el caracter de fin de mensaje
-4 Se desconoce el código de mensaje (MID)

-5
Mensaje rechazado, puede deberse a que el receptor se en-
cuentra en comunicación con otro iniciador

-6 El nodo receptor no tiene ninguna comunicación en curso
-2 Se deconoce el código de comando

5.4.3.5. 005.CommandAcceptedMessage

Mensaje de confirmación en respuesta a un mensaje de control.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

LAFHIS 32 0001 005 0 XXXX XXXX Acc

Campo Descripición
Acc Código del mensaje aceptado

5.4.3.6. 202.FollowLineMessage

Mensaje de control que indica que debe iniciarse un comando de seguimiento de línea.
Puede ser respondido por un CommandAcceptedMessage(5.4.3.5) o con un Comman-
dErrorMessage(5.4.3.4)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

LAFHIS 26 0001 202 0 XXXX XXXX

5.4.3.7. 203.DestinationReachedMessage

Mensaje de estado que indica que el robot ha encontrado un nodo de intersección duran-
te la ejecución de un comando.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

LAFHIS 26 0001 203 0 XXXX XXXX

5.4.3.8. 204.RobotLostMessage

Mensaje de estado que indica que el robot no ha podido realizar una lectura válida o por
algún motivo no puede determinar su ubicación.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

LAFHIS 26 0001 204 0 XXXX XXXX
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5.4.3.9. 205.TurnLeftMessage

Mensaje de control que indica que debe iniciarse un comando de giro a la izquierda.
Puede ser respondido por un CommandAcceptedMessage(5.4.3.5) o con un Comman-
dErrorMessage(5.4.3.4)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

LAFHIS 26 0001 205 0 XXXX XXXX

5.4.3.10. 206.TurnRightMessage

Mensaje de control que indica que debe iniciarse un comando de giro a la derecha. Puede
ser respondido por un CommandAcceptedMessage(5.4.3.5) o con un CommandError-
Message(5.4.3.4)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

LAFHIS 26 0001 206 0 XXXX XXXX

5.4.3.11. 207.TurnAroundMessage

Mensaje de control que indica que debe iniciarse un comando de medio giro. Puede ser
respondido por un CommandAcceptedMessage(5.4.3.5) o con un CommandErrorMes-
sage(5.4.3.4)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

LAFHIS 26 0001 207 0 XXXX XXXX

5.4.3.12. 911.KeepAliveMessage

Mensaje enviado entre las partes para mantener el canal de comunicación abierto.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

LAFHIS 26 0001 911 0 XXXX XXXX

Para este trabajo el protocolo se ha implementado una versión en lenguaje C++ para
el nodo de recepción, que corresponde al robot N6 y una versión en Java para el nodo de
control, que corresponde a la máquina que ejecuta el entorno de enactment.

5.5. Dificultades y lecciones aprendidas

El objetivo de esta tesis es probar la adecuación de las técnicas de modelado y síntesis
antes mencionadas en un contexto industrial que hace uso de una tecnología particular, el
robot modelo N6. Si bien se intenta consumir la teoría relacionada con este tipo de controla-
dores y las técnicas para producirlos, lo que se podría llamar el costado implementativo fue
la principal fuente de dificultades. La arquitectura limitada, principalmente en lo que toca a
lamemoria principal del procesador del robot, (debe recordarse que se trata de 2.5kbytes



40 5. Robot modelo N6 y extensiones de software/hardware

para almacenar todos las estructuras vivas para el robot) inició un trabajo de escritura y re-
escritura del código de control y comunicación para evitar un desborde de la memoria. Esto
limita por un lado la cantidad de bloques de control que pueden ejecutarse en un momento
(se limita por diseño a solamente uno) y a la cantidad de lo que podría llamarse factorías de
comandos y mensajes del protocolo de comunicación, ya que cada uno de éstos registra una
función de inicialización o deserialización/serialización en la estructura principal del robot.
El tamaño de lamemoria de programa y datos (son espacios separados en esta arquitec-
tura) también limita de forma bastante similar la funcionalidad que el robot puede exponer.
Probablemente se podría haber tomado un enfoque más estructurado, que evite la sobrecar-
ga de memoria que se produce como resultado de la división de responsabilidades en clases,
con macros y un uso más intensivo de punteros a función. Al momento en que éstas difi-
cultades se volvieron más evidentes el trabajo sobre la lógica del robot se encontraba muy
avanzado y la solución práctica fue reducir la cantidad de mensajes del protocolo de comu-
nicación, la longitud de los mismos y deshacerse de lógicas de control no fundamentales.
La falta de un emulador competente o la posibilidad de realizar on chip debugging
implicó que la tarea de depuración y seguimiento se realice a partir de un método de punto
medio. Esto quiere decir que cuando se detectaba una anomalía, la forma de ubicar el códi-
go defectuoso (salvando el caso de una sobrecarga de memoria que suele producir reseteos
recurrentes del procesador) era dar una señal sonora (utilizando el buzzer embebido en el
robot) para indicar que se había superado cierta porción de código con éxito, por ejemplo, si
se parte el programa en dos, y se coloca la llamada al buzzer luego de la mitad del código
puede suponerse (salvo situaciones que involucren la concurrencia de más de una condición
en el error) que la primera mitad fue ejecutada con éxito, luego se desplaza la llamada al
buzzer a la mitad de la porción de código que aún no se ha probado, si no se llega a ejecutar
la llamada (no se oye el pitido) se sabe que hay al menos un error en la primera mitad de la
segunda porción del programa, así se sigue dividiendo y refinando.
En relación a la comunicación inalámbrica, el código original del robot, tal como es entrega-
do por RobotGroup, hace uso de una versión de la biblioteca de Arduino en la que el puerto
serie es implementado con un único buffer, esto quiere decir que se utiliza una misma es-
tructura interna para almacenar los datos leídos y los escritos, de forma tal que si se escribe
un valor mientras se encontraba aún leyendo, se pisa el valor anterior desde el puntero al
fin del buffer circular en adelante. La solución frente a esto es forzar lecto/escrituras exclu-
yentes, de forma que no se corrompan los datos que se encuentran en el buffer del puerto
serie.
La idea de utilizar el mismo par de sensores para el seguimiento de línea y la detección de
puntos de intersección introduce un problema generado por la aparición de un tercer va-
lor de lectura. Los robots que realizan seguimiento de línea suelen discriminar solamente
entre un valor de línea y uno de base, de forma que el espacio de valores puede dividirse
facilmente, incluso si hace falta reservar bandas de valor para las lecturas inciertas (esto
quiere decir, valores para los cuales no es posible determinar uno de los dos valores). Con la
aparición de un tercer valor en un rango que se encuentra entre los valores de negro pleno y
blanco pleno, los errores introducidos en la lectura se vuelven mucho más significativos, ya
que los rangos sobre los cuales se decide si un valor es negro, blanco o gris son mucho más
angostos. La lectura del valor es de naturaleza errática, depende de la intensidad de luz
ambiente, de su temperatura, de la distancia de los sensores a la banda y de la calidad de
impresión del mapa. Incluso el desgaste producido por las sucesivas pasadas del robot sobre
el mapa se vuelve mucho más evidente a la hora de realizar estas lecturas trivaluadas. Si
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bien el problema sigue presente, se lo ha mitigado con un mecanismo sencillo bajo el cual
una lectura se determina por ejemplo negra, si se han realizado varias lecturas sucesivas
con el mismo valor.
Si bien han surgido varios inconvenientes de menor magnitud, se evidencia las dificultades
asociadas a trabajar con un caso de estudio que involucra varias arquitecturas y en parti-
cular una con un soporte tan reducido, al menos si se lo compara con tecnologías más habi-
tuales o incluso más robustas. Si bien se podría pensar en extender el alcance del modelado
y la síntesis hasta las capas de más bajo nivel para intentar satisfacer ciertas propiedades
deseables en este sub-sistema, parece más interesante atacar las limitaciones desde el mo-
delado de alto nivel, por ejemplo conteniendo los errores emergentes en la ejecución con las
herramientas provistas por la extensión de dominios falibles o el modelado de un proceso
de reubicación manual.
Se evidencia también la dificultad de llevar adelante, y a la par, un trabajo de implementa-
ción del soporte físico (se entiende por esto la programación del código que se ejecuta en el
robot) junto al de modelado y síntesis. Probablemente la interacción con un especialista o
un grupo, con conocimiento específico de dominio y experiencia previa en la arquitectura de
destino, permita una exploración más ágil y provechosa de la problemática de la ejecución
de estrategias sobre un soporte de hardware/software particular.
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6. EXTENSIÓN DE MTSA

Se presenta el trabajo realizado para ejecutar los controladores sintetizados a través de
la herramientaMTSA, una caracterización de los agentes de ejecución (Enactor) y ejemplos
de adaptadores escritos siguiendo estas guías.

6.1. Framework de enactment

6.2. Adaptadores

Se discute la propuesta e implementación del componente de ejecución con intención de
integrarlo a la herramienta de modelado, chequeo y síntesis. El lenguaje en el que se escribe
el componente es Java.
Para cada componente de ejecución se escribe un adaptador que respeta la arquitectura Ya
que la respuesta de un agente en el marco de una ejecución es potencialmente asíncrona, i.e.
en el caso en que se envía un mensaje y se espera uno de varios mensajes en algún momento
futuro, se decidió en la implementación del componente de ejecución relajar el esquema de
intercambio de mensajes haciendo uso de eventos. Se presentan inicialmente dos objetos,
el de recepción de eventos y su contraparte de emisión, luego el componente de ejecución
será una composición natural de ambos, permitiendo tanto recibir mensajes (representando
la situación en la que se envía un mensaje de control) o emitiéndolos a través de eventos
(mensajes de estado).

public abstract class TransitionDispatcher<Action> {

public synchronized void

addTransitionEventListener(ITransitionEventListener<Action> listener){

...

}

protected void fireTransitionEvent(Action action) throws Exception{

...

}

}

Fig. 6.1: Objecto de emisión de mensajes (TransitionDispatcher)

En la figura 6.1 se presenta una simplificación del objeto de emisión que muestra basica-
mente el mecanismo por el cual un colaborador que implemente la interfaz ITransitionE-
ventListener puede registrarse para recibir los mensajes de un enactor (addTransitionEventListener),
y la forma en la que el enactor envía un mensaje a sus suscriptores (fireTransitionEVent).
Se abstrae el tipo de datos de la acción (que representa una transición en el sistema de tran-
siciones etiquetadas), y puede entenderse por el momento que el mismo es una cadena.
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public interface ITransitionEventListener<Action> {

public void handleTransitionEvent(TransitionEvent<Action>

transitionEvent) throws Exception ;

}

Fig. 6.2: Objecto de recepción de mensajes (ITransitionEventListener)

En la figura 6.2 se presenta una simplificación del objeto de recepción de mensajes que
muestra basicamente el mecanismo por el cual un colaborador se declara como receptor de
mensajes (handleTransitionEvent). En conjunción con el mecanismo de registro para un
emisor (addTransitionEventListener) se cubre la funcionalidad necesaria para permitir
el pasaje de mensajes entre agentes de ejecución.

6.3. Esquema de control

A modo de prueba, y en respuesta a la necesidad de seleccionar la acción controlable en
cada estado controlable para una ejecución particular, se define un componenteController.
Se trata de una especificación del tipo Enactor con un método abstracto takeNextAction

donde se define una lógica para seleccionar la transición a tomar dentro de las habilitadas
para el estado. A la hora de realizar este trabajo se han implementado el esquema Take-
FirstController que toma la primera transición según el orden definido por la estructura
interna de representación y RandomController que toma una transición controlable de
forma aleatoria.

6.4. Ejecutando el controlador

En la sección 3.3 fueron presentados los procesos que describían a cada componente en
la sintaxis extendida de FSP. Los componentes disponibles para la ejecución son implemen-
tados en el paquete ar.uba.dc.lafhis.enactment, luego la instanciación de adaptadores
disponibles se describe como entradas en el archivo de configuración context.xml. A conti-
nuación se presenta un extracto del mismo.

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:context="http://www.springframework.org/schema/context"

xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-3.0.xsd

http://www.springframework.org/schema/context

http://www.springframework.org/schema/context/spring-context-3.0.xsd">

<context:annotation-config/>

<!-- Enactors -->

<bean id="N6" class="ar.uba.dc.lafhis.enactment.robot.N6Robot">

<constructor-arg index="0" value="N6 Robot"/> <!-- Name-->

<constructor-arg index="1" value="robot.success"/>

<constructor-arg index="2" value="robot.fail"/>

<constructor-arg index="3" value="robot.lost"/>

<constructor-arg index="4" value="robot.follow"/>
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<constructor-arg index="5" value="robot.turnLeft"/>

<constructor-arg index="6" value="robot.turnRight"/>

<constructor-arg index="7" value="robot.turnAround"/>

<constructor-arg index="8" value="robot.readSensors"/>

<constructor-arg index="9" value="robot.readSensorsReply"/>

<constructor-arg index="10" value="robot.readUSSensor"/>

<constructor-arg index="11" value="robot.readUSSensorReply"/>

<constructor-arg index="12" value="robot.retry"/>

<constructor-arg index="13" value="robot.successRetry"/>

</bean>

<!--

...

-->

<!-- Enactor Factory -->

<bean id="enactorFactory" class="enactment.EnactorFactory"/>

<!-- Controller Strategies-->

<bean id="controllerScheduler"

class="ar.uba.dc.lafhis.enactment.TakeFirstController">

<constructor-arg index="0" value="Take First Controller"/>

</bean>

<bean id="randomScheduler"

class="ar.uba.dc.lafhis.enactment.RandomController">

<constructor-arg index="0" value="Random Controller"/>

</bean>

<!-- Scheduler Factory -->

<bean id="schedullerFactory" class="enactment.SchedulerFactory"/>

</beans>

Las entradas del archivo de configuración describen los objetos que podrán instanciarse en
la ejecución, sus parámetros tienen relación directo con los parámetros de entrada de sus
constructores.
En el curso de una ejecución los pasos a seguir serían éstos:

Especificación Se declara la especificación en la sintaxis ya presentada, tanto de los pro-
cesos, propiedades y definición del controlador

Síntesis Se sintetiza el controlador

Configuración Se seleccionan los adaptadores y el esquema de control pertinentes a la
ejecución (Enactment->Options en la herramienta)

Ejecución Se pone en marcha la ejecución (Enactment->Run Model en la herramienta)
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Fig. 6.3: Describiendo los procesos, propiedades y especificación del controlador en MTSA

Fig. 6.4: Sintetizando el controlador en MTSA
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Fig. 6.5: Seleccionando los adaptadores y el equema de control

Fig. 6.6: Ejecutando el controlador
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7. EVALUACIÓN

Contando con la extensión de la herramienta MTSA, el soporte de hardware/software
en el robot N6, la definición y confección del mapa y las bandejas, y de los adaptadores y
esquemas de control necesarios, resta definir las dimensiones de cambio sobre las que se
ha de evaluar la adecuación de las técnicas y los individuos que han de representar una
posición en el espacio de pruebas.

7.1. Casos de estudio

Se definen seis casos distintos sobre un mapa rectangular de cuatro nodos, un robot
posicionado en la esquina del nodo (1,0,N) que significa, la segunda fila, primera columna
mirando al norte, la bandeja de entrada se encuentra habilitada en (1,0,N) y la de salida
en (0,1,S). Las diferencias entre los casos se detallan a continuación:

Caso A el robot debe llevar carga de la bandeja de entrada a la de salida con infinita fre-
cuencia

Caso B como el caso A pero con la conexión entre (1,0) y (1,1) bloqueada por un obstáculo

Caso C como el caso B pero con la restricción de que el robot no puede hacer dos giros a
izquierda ni dos giros a derecha como restricción de seguridad

Caso D como el caso A pero con la restricción de que el robot no puede hacer dos giros a
izquierda como restricción del proceso que describe el movimiento del robot

Caso E como el caso A pero también puede tomar carga en (0,0,S)

7.2. Cambios de configuración

La idea es presentar cambios en la descripción del problema e interpretarlos como cam-
bios de configuración, para mostrar como la técnica permite sintetizar controladores frente
a la eventualidad de un cambio sin precisar un trabajo adicional por debajo de la especifica-
ción. Obviamente que, en el caso en que se precise funcionalidad no provista por el conjunto
de máquinas disponibles, esto pierde validez y se deberá implementar la funcionalidad de
bajo nivel, el adaptador y extender la configuración del entorno de ejecución.

7.2.1. Causas de cambio de configuración

Los cambios de configuración son de carácter heterogéneo, tanto en su descripción como
en sus causas. Pueden ser motivados por un cambio funcional o un refinamiento del do-
minio, ya que, por ejemplo al poner en ejecución una estrategia, se gana conocimiento del
sistema y de la interacción de las partes. Como consecuencia de ésto se enriquece el razo-
namiento y esto puede resultar en una modificación en la descripción de los procesos o las
propiedades de sistema.
Uno podría por ejemplo desear restringir, como es el caso, la ejecución de dos giros consecu-
tivos a izquierda o derecha al observar que éstos presentan una mayor probabilidad de falla
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que si se ejecutan de forma aislada. O podría suceder que, ante un cambio en el entorno (se
agrega una bandeja de entrada) se deba redefinir él o los procesos que describe o describen
la parte afectada.

7.2.2. Resultados

A modo de referencia se presentan algunos datos cuantitativos de los controladores sin-
tetizados para los casos A hasta E. Las pruebas se ejecutaron en una máquina Intel® Co-

re™2 Duo CPU E8500 @ 3.16GHz × 2 con 3.8Gb de memoria principal con un sistema ope-
rativo Ubuntu Release 12.04 64-bit Kernel Linux 3.2.0-60-generic. Los controladores fueron
sintetizados, sus estrategias ejecutadas y para cada una se ha creado un archivo en disco
para la traza de ejecución, un video a través de una cámara que ha capturado la ejecución
sobre el mapa, un archivo con el controlador resultante y otro archivo con los datos de tiem-
po de procesamiento y demás valores relacionados con el proceso de síntesis.
Si bien se había planeado extender esta prueba incrementando el tamaño del mapa por
potencias de dos, esto resultó impracticable ya que rápidamente los controladores eran im-
posibles de conseguir por falta de memoria o por cotas temporales en el proceso de síntesis.

Caso #Estados
entorno

#Trans.
entorno

Memoria
Usada

Tiempo
composi-
ción

#Estados
juego

Tiempo
síntesis

#Estados
controla-
dor

A 1369 4315 21696K 162ms 1582 1813ms 1007
B 1297 4039 57341K 5ms 1510 1176ms 763
C 1989 6037 22061K 147ms 2202 1655ms 815
D 1036 3338 36109K 105ms 1241 333ms 1241
E 2758 10079 27354K 166ms 1582 1813ms 1007

Se puede ver que para el resto de los casos los resultados son bastante similares.
Durante las ejecuciones se ha comprobado que en tanto las presunciones valgan, el siste-
ma satisface los objetivos, aún frente al dominio falible. Esto se traduce informalmente en
lo siguiente: en tanto las presunciones no valgan (no hay carga en la bandeja de entrada)
el controlador libera al robot para que se mueva con libertad por el mapa, pero en cuanto
aparece carga en la bandeja de entrada, el robot se dirige a ésta, intenta cargar y llevar
directamente a la bandeja de salida. En el caso de la falla por pérdida del ítem, vuelve al
comportamiento antes descripto, salvo que haya caído al descargar en la bandeja de salida
siendo que la bandeja de entrada ya se ha cargado nuevamente, en cuyo caso vuelve a reco-
ger carga de la bandeja de entrada. En el caso de que el robot se pierda siguiendo una línea
o girando, se dispara el mecanismo de reubicación (en este caso manual que implica colocar
al robot en la posición (0,0,N)) y a partir de ésto el robot continua con el comportamiento
anterior, esto es, si se encuentra cargado intentará descargar en la bandeja de salida, caso
contrario esperará a que aparezca carga o irá a buscarla a la bandeja de entrada.

7.3. Discusión

En el curso de esta tesis se ha intentado probar la adecuación de las técnicas de modela-
do y síntesis al caso de una línea de distribución que hace uso de un robot modelo N6. Esto
ha motivado la escritura de código tanto para el robot como para la extensión de la herra-
mienta, los adaptadores y las especificaciones correspondientes, dando lugar a un trabajo
desplegado a lo ancho entre varios componentes y en diverso grado de abstracción.
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La interacción con el mundo físico a través de los sensores y actuadores (en este caso con-
centrados en el robot) ha sido fuente de refinamiento del control de bajo nivel y ha motivado
el uso de la extensión de dominios falibles a la hora de modelar y sintetizar. Por otro lado se
ha prestado como campo de prueba sobre la forma de describir los procesos, las propiedades
de sistema y en general los modos de relacionar el modelo con los componentes de ejecución.
La puesta en marcha de las estrategias o controladores da muestra de forma perceptiva de
su calidad, cabe preguntarse por ejemplo si es correcto que un robot recorra el mapa sin
mayor criterio sólo porque las presunciones no valen, luego no es necesario satisfacer el ob-
jetivo. Esto podría (si llegase a probarse útil y correcto), motivar el uso de una transición
de no operación en el proceso que describe al robot, de forma que un esquema de ejecución
pueda, siendo que se encuentra habilitada en un nodo controlable, tomar ésta por sobre las
otras.
El uso de transiciones falibles ha demostrado ser muy provechoso para describir las situa-
ciones donde una operación puede fallar de forma no sistemática como se ha dicho ante-
riormente, en particular para el movimiento del robot, que efectivamente falla. No se trata
de una falla simulada como la de las bandejas sino una falla real causada por errores de
lectura y condiciones irregulares en el entorno.
La extensión de la herramienta para soportar la ejecución de las estrategias convierte a
la herramienta en un entorno de trabajo, donde no sólo se modela un problema sino que se
construye un controlador que permite satisfacer los requerimientos y se lo pone en ejecución
para validar que la ejecución muestra es conforme a lo esperado.

7.4. Conclusiones

Si bien se cree que el objetivo inicial está satisfecho se sustraen varias ideas o conclusio-
nes de esta tesis. Por un lado se probó la adecuación de la técnica a entornos afine a aquellos
que hacen uso de un robot planar en una planta de distribución. Cabe preguntarse qué ca-
racterísticas se espera que tenga un problema para validar la adecuación de una parte de
la teoría o de las herramientas. Por ejemplo, parece evidente que para el caso de estudio de
esta tesis el dominio falible no es sólo conveniente sino que necesario. Dificílmente puedan
sintetizarse controladores sin esta extensión.
Se podría realizar un relevamiento sobre objetivos de sistema para problemas de índole
industrial o relacionados al uso de robots, para validar que estos objetivos expresados en
términos de un juego SGR(1) sobre dominios falibles sean suficientes.
El entorno de ejecución se encuentra hoy día acoplado a la herramienta de modelado y
síntesis, pero podría sin mayor inconveniente existir independientemente de ésta. Esto per-
mitiría desacoplar el proceso de modelado y síntesis del de ejecución, mejorando tiempos
para pruebas repetitivas de un controlador, dando la posibilidad de ejecutar un controlador
en otro nodo físico, o incluso distribuyéndolo entre varios nodos.
La característica regular del mapa motiva una noción (intuitiva) de que ciertas estructuras
deberían permitir reducir el espacio sobre el cual se construye el controlador.
Hay un punto particular que sería interesante modelar a futuro. La motivación es esta:
si por alguna falla sistemática en el canal de comuniaciones el porcentaje de mensajes
erróneos comienza a aumentar, y los reintentos son infrutuosos, se podría incorporar un
mecanismo de timeout que lleve al robot a un estado estable. Probablemente haciendo uso
del mecanismo de reubicación y enviando un mensaje que restituya el estado lógico del ro-
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bot a la configuración inicial. En particular sería un escenario interesante para probar un
mecanismo de timeout y recuperación, que parece justificado en entornos industriales.
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