UNIVERSIDAD DE BUENOS AIRES
FACULTAD DE CIENCIAS EXACTAS Y NATURALES
DEPARTAMENTO DE COMPUTACION

Ejecucion de controladores discretos
sintetizados a partir de una especificacion
de alto nivel para un robot modelo N6

Tesis presentada para optar al titulo de
Licenciado en Ciencias de la Computacion

Mariano J. Cerrutti

Director: Nicolas D’Ippolito
Buenos Aires, 2014

EJECUCION DE CONTROLADORES DISCRETOS SINTETIZADOS A
PARTIR DE UNA ESPECIFICACION DE ALTO NIVEL PARA UN ROBOT
MODELO N6

El objetivo de esta tesis es evaluar la adecuacion de las técnicas de control instrumenta-
das en la herramienta de modelado, verificacién y sintesis MTSA para un entorno industrial
que hace uso de un robot N6 satisfaciendo el suministro de bienes entre los puestos de tra-
bajo de una planta.

El problema se expresa con maquinas de transiciones etiquetadas (LTS) para cada uno de
los componentes involucrados y las propiedades son expresadas en un subconjunto de las
légicas temporales lineales que caracterizan juegos de reactividad generalizada con propie-
dades de seguridad (SGR(1)) sobre dominios falibles.

El robot utilizado es un modelo N6 producido por la empresa RobotGroup en Argentina con
fines didacticos.

Durante las fases de implementacion, adaptacién y ejecuciéon en el entorno de MTSA se
analiza la calidad de los controladores sintetizados, la respuesta ante cambios de configu-
racion en el sistema y los patrones emergentes que podrian motivar guias de trabajo para
problemas similares.

Palabras claves: Sintesis, Control, Cambio de Configuracion, Robot planar, LTS, FLTL.

ENACTMENT OF A DISCRETE CONTROLLER SYNTHETIZED FROM A
HIGH LEVEL SPECIFICATION TO BE USED WITH A N6 ROBOT

The objective of this thesis is to evalute de adequacy of the control techniques employed
by the MTSA, the modelling, synthesis and verification tool. The case study is done on an
industrial environment where a N6 robot is supposed to be taking items from one worksta-
tion to the other inside the facility.

The problem is expressed through labeled transition systems (LTS) describing each of the
components comprising the environment. System properties are expressed with FLTL for-
mulas.

The robot is a N6 model made by RobotGroup in Argentina for didactic purposes.

During implementation, adaptation and enactment within MTSA the quality of the synthe-
tized controllers is evaluated, as well as the response to configuration changes. Emerging
patterns are identified as they can provide guidelines for future work o similar domains.

Palabras claves: Controller Synthesis, Change of Configuration, Planar Robot, LTS, FLTL.

III

AGRADECIMIENTOS

Quisiera agradecer principalmente al grupo de gente que forma el laboratorio LaFHIS por
darme la oportunidad de acceder al mundo académico de una forma que no hubiese espera-
do. Cabe nombrar a los directores del laboratorio Victor Braberman y Sebastian Uchitel por
el trabajo que realizan sin pausa para edificar este espacio del que he tenido el privilegio
de participar. Reconocer especialmente el esfuerzo y el apoyo de Nicolas D’Ippolito como
director de esta tesis, colega de trabajo y amigo. Al enorme grupo de personas que trabajan
para permitir el acceso publico a la educacién, sin las cuales este trabajo y mi recorrido por
la universidad hubiera sido imposible.

Agradezco también a mis padres y a mis hermanos la ayuda econémica, logistica y emocio-
nal que ha sido necesaria en este dltimo tramo, a mis amigos por ayudarme a encontrar el
placer de vivir y a aquellas personas que fueron mi soporte afectivo durante el curso de mi
educacién de grado.

A los dragones de la probabilidad.

Indice general

LIntroduccion ... oL L L e e e 1
1.1, MotivaciOn e i e 3
1.2. Presentacion del casodeestudio. 4
1.3. Resumen de contribuciones 6
1.4. Estructuradelatesis 6

.. Fundamentos 7
2.1. ElMundoylaMaquina 7
2.2. Sistemas de Transicion Etiquetados 8
2.3. Légica Lineal Temporal de Flujos (Fluent Linear Temporal Logic) 9
2.4. Problemasdecontrol 10
2.5. Dominios falibles 11
2.6. Procesos de Estados Finitos (FSP) 12

.. MTSA como herramienta de modelado y sintesis 15
3.1. ConstrucCion e e e e e e e 15
3.2. Analisis e e 16
3.3. Modelandoel sistema, 16

3.3.1. Identificandomodelos 16
3.3.2. Robot e 17
3.3.3. Mapa e e 18
3.3.4. Bandejas e 19
3.3.5. Reubicacibonmanual 19
3.3.6. Definicion del controlador 20

.. Enactment, o entorno de ejecuciéon o 23
4.1. La necesidad de ejecutar estrategias 23
4.2. El componente de ejecucion: Enactor oo oL 24
4.3. Extensién de la herramienta 26

.. Robot modelo N6 y extensiones de software/hardware 27
5.1. Arquitecturadelrobot N6. 27

5.1.1. Arquitectura del procesador 27
5.2. Extensiones fisicas e 28
5.3. Fuentedefallas. 30
5.4. Software e e 31
5.4.1. Arquitecturageneral o 31
5.4.2. Logicadecontrol 34
5.4.3. Protocolo de comunicaciéon 35
5.5. Dificultades y lecciones aprendidas 39

6.. Extension de MTSA e 43

6.1. Frameworkdeenactment. 43
6.2. Adaptadores e e e e 43
6.3. Esquemadecontrol 44
6.4. Ejecutandoel controlador 44
T..Evaluacion e e e e 49
7.1. Casosdeestudio 49
7.2. Cambios de configuracion 49
7.2.1. Causas de cambio de configuracién 49

7.2.2. Resultados e 50

7.3, Discusion e e e e e e e 50

T4, Conclusiones o i i i e e 51

1. INTRODUCCION

La producciéon automatica de programas a partir de especificaciones declarativas es una
prometedora alternativa a la escritura manual, la técnica empleada en esta tesis goza de al
menos dos propiedades deseables: la conformidad con propiedades de progreso y seguridad
por construccion y la adecuacién a cambios de configuracién en el sistema. Las propiedades
se expresan como formulas de l6gica temporal lineal (LTL). Este subconjunto de las l6gicas
temporales es un acompafiante natural de los modelos basados en eventos. Se ha utilizado
con éxito en repetidas ocasiones y resulta eficiente para expresar gran parte de las pro-
piedades que se espera sean satisfechas por un sistema. En nuestro caso expresamos dos
tipos de propiedades, las de seguridad (safety) en las que se espera que una propiedad valga
siempre durante la ejecucion del sistema, y las de progreso (liveness) en las que, si se cum-
plen un conjunto de presunciones con infinita frecuencia, deberan cumplirse un conjunto
de objetivos con infinita frecuencia. Un ejemplo de ésto puede ser un par de propiedades
que expresen que una prensa no debe liberarse si otra herramienta esta trabajando sobre
la pieza prensada (safety) y que el sistema permita procesar piezas de forma continua, por
ejemplo tomando de una bandeja de entrada, prensando la pieza, perforandola y colocando-
la en una bandeja de salida (liveness). Uno esperaria que a partir de la presuncién de que
en la bandeja se colocaran piezas crudas con infinita frecuencia, piezas procesadas seran
colocadas en la bandeja de salida con infinita frecuencia.

Fig. 1.1: El robot N6 en un mapa rectangular

Los programas conseguidos con ésta técnica podrian ser adecuados para procesos indus-
triales cuya criticidad puede expresarse en el dominio de las 16gicas temporales lineales, que
es descripto con juegos de reactividad generalizada con propiedades de seguridad (SGR(1))
sobre dominios falibles.

2 1. Introduccion

En lo que respecta al cambio entre una configuracién y otra, como parte natural de un pro-
ceso en evolucién o que se encuentra en pleno refinamiento, al mantenerse en el plano decla-
rativo la técnica de produccién automatica de programas permite adaptarse rapidamente al
cambio sin la necesidad de realizar un trabajo manual por debajo de la especificaciéon, man-
teniendo las propiedades expresadas inicialmente. Incluso si se refinan las propiedades de
seguridad o progreso la técnica produce un programa que satisface el comportamiento es-
perado, en el caso de que tal programa exista.

En la fabricacion de productos o provisiéon de servicios a través de procesos industriales,
la calidad asociada al producto o al servicio se relaciona con la calidad de cada una de las
operaciones realizadas y a la calidad del proceso per se.

Se podria pensar en una segunda funcién que evaltde la calidad del producto a partir de
la calidad de las operaciones involucradas en el proceso, la calidad del proceso en si y la
confiabilidad de las técnicas de medicion de las operaciones y el proceso. Como ejemplo se
supone que al fijar dos piezas, un ajuste realizado con una herramienta manual y validado
por una llave de corte es menos preciso que una herramienta automatica con la capacidad
de sensado suficiente para reportar valores de torque y angulo con alguna cota de error. El
caso es que desde las operaciones mas béasicas hasta los procesos mas generales que pueden
incluso exceder a la ingenieria de procesos industriales (e.g. la ingenieria de producto que
cruza disciplinas como marketing, produccion, distribucién y venta), las medidas de calidad
se propagan a través de un mecanismo de presunciones y garantias.

En este trabajo se van a utilizar técnicas de control relacionadas con juegos de reactividad
generalizada en los que se pueden expresar propiedades de seguridad y progreso. Las pro-
piedades de progreso estdan vinculadas con la practica de la ingenieria de procesos en las
que el ingeniero es responsable de disefiar una estrategia de produccion que permita trans-
formar los bienes entrantes en un bien compuesto con cierto valor agregado. Uno podria
expresar una propiedad de progreso en la que exige que un producto sea entregado con in-
finita frecuencia como resultado de la aplicacion de operaciones atémicas. Las propiedades
de seguridad describen situaciones que el proceso debe evitar en todo momento. Permiten
verificar que un proceso cumple con ciertas garantias de seguridad. En nuestro caso las
estrategias obtenidas con la técnica de sintesis satisfacen ambos tipos de propiedades por
construccion.

Con las técnicas utilizadas en este trabajo no se declaran propiedades cuantitativas relacio-
nadas, por ejemplo, con el tiempo y el costo.

En los casos de estudio presentados se emplean robots auténomos en un entorno industrial
para el que permiten cumplir los requerimientos funcionales satisfaciendo alguna medida
de calidad. Su comportamiento en planta puede expresarse como un sistema que involucra
a otros agentes, debe satisfacer las propiedades mencionadas y puede ser sintetizado au-
tomaticamente. Estas estrategias o comportamientos son los responsables de coordinar la
interaccion de las partes para asegurar que el sistema una vez puesto en ejecuciéon y en su
totalidad (entendida como composicién de partes) cumpla con el comportamiento esperado.

El cambio de requerimientos es una actividad aceptada y practicada en el entorno de
aplicaciones industriales, inmanente a los procesos de produccién bajo demanda, provisiéon
y servicios. En el caso de la produccién es comin introducir un nuevo modelo de producto, o
una variacién de un producto existente e intentar satisfacer los nuevos requerimientos con
las herramientas instaladas en la planta, o introducir una nueva ruta en el caso de la pro-
vision y replanificar el suministro satisfaciendo las necesidades existentes sin modificar las

1.1. Motivacion 3

instalaciones. En un ambiente de éstas caracteristicas (o incluso en un caso de produccién
bajo demanda, donde las especificaciones se modifican en base a una orden de produccién
emergente) la utilizacion de técnicas de sintesis automatica cuentan con al menos dos pro-
piedades deseables; permite reconstruir un controlador que es correcto por definiciéon en
conformidad con las propiedades expresadas para el sistema en su totalidad, y permite a la
vez reconstruir un controlador que se adapte a los cambios en la descripcion de los procesos
o de las propiedades.

El objetivo principal de este trabajo es demostrar la aplicabilidad de las técnicas mencio-
nadas en un entorno que hace uso de un robot auténomo modelo N6 para satisfacer las
necesidades de distribucién de suministros en una linea de produccién industrial. Se mos-
trara asi también la forma en que un cambio en los requerimientos o la descripcién del
entorno son satisfechos sin necesidad de escribir otro controlador en forma manual.

Se presentan los fundamentos tedricos, los detalles de implementacion y la extension de las
herramientas existentes para permitir la puesta en marcha del controlador y los escenarios
de prueba.

El modelo presentado goza de caracteristicas interesantes porque permite desplazar el pro-
blema sobre varios ejes de cambio. Estos ejes pueden ser el tamafio del mapa, la cantidad
de bandejas, la capacidad de carga, la cantidad de items a desplazar, las especificaciones
de comportamiento del robot y la aparicién de obstaculos en las vias que comunican los
puestos.

1.1. Motivacion

Puede entenderse que el resultado de la sintesis a la que se ha hecho referencia al hablar
de los juegos SGR(1) es un programa, pero en verdad vale utilizar el término controlador
por resultar mas abarcativo y acertado. En particular uno cuyo comportamiento se expresa
como un sistema de transiciones etiquetadas, donde el conjunto de transiciones se particio-
na entre aquellas controlables (operaciones o, en el contexto de este trabajo, mensajes de
control) y aquellas no controlables (observaciones o, en el contexto de este trabajo, mensajes
de estado). Esto puede traducirse en un programa, en un nodo de control que se comunica
con otros componentes de naturaleza diversa, un disefio de légica digital, una estrategia pa-
ra realizar operaciones manuales o cualquier proceso basado en eventos que distinga entre
acciones controlables y no controlables.

La interaccion de diversos agentes en una planta industrial puede llevar facilmente a si-
tuaciones indeseadas. Esto puede deberse a que el sistema permitié llegar a una situacién
riesgosa para las personas o los equipos en planta, o porque no se consigue satisfacer un
objetivo de progreso. Estas situaciones demandan un anélisis de las causas de error, una
correccion y una puesta a prueba de un sistema que podria no estar cumpliendo (atn) los
objetivos deseados.

Se presentan situaciones similares cuando se produce un cambio en alguna dimensién del
sistema, ya sea en la especificacion de los procesos participantes o de los objetivos a cumplir.
Se repite el ciclo de andlisis, correccién y puesta a prueba.

Se analiza como subdominio de lo anterior un sistema en el que un robot planar mévil
transporta carga a través de una planta industrial, ya sea una planta de montaje donde
se transportan piezas entre una linea y la otra, o un depésito en el que ha de reubicarse
stock. En ambos casos se buscan satisfacer objetivos expresados en términos de seguridad y
progreso (sobre la presuncion de que los componentes se comportan conforme a una repre-

4 1. Introduccion

sentacion en la forma de un proceso de estados finitos).

Estos requerimientos permiten probar la integracion de las técnicas de modelado y sintesis
provistas dentro de la herramienta MTSA, como también validar el funcionamiento de las
extensiones necesarias para la ejecucion de un controlador (enactment) en el caso en que el
mismo opera sobre un conjunto de dispositivos fisicos.

El comportamiento esperado del sistema debe ser expresado en términos de suposiciones,
objetivos y un modelo operacional de las maquinas involucradas, de forma que al conse-
guir el controlador y componerlo con éstas satisfaga el comportamiento esperado. Para cada
maquina que se encuentra representando a un sistema externo se debe proveer un meca-
nismo de interaccion que permita relacionarlo con la representacién interna en tiempo de
ejecucion (que en el contexto de este trabajo sera referido como componente de ejecucion o
enactor).

En este trabajo se valida este enfoque construyendo un entorno apropiado a partir de las
herramientas existentes y las extensiones relacionadas con ejecucién (enactment).

1.2. Presentacion del caso de estudio

Como se ha dicho anteriormente el caso de estudio trata de un robot que transporta car-
ga entre puestos de trabajo en una planta industrial. El robot se desplaza entre un puesto y
otro siguiendo una linea negra pintada en el piso, en cada interseccién o punto de detencién
se reemplaza la linea negra por un area cuadrada pintada con un patrén que en promedio
puede leerse como un valor intermedio o gris.

N

Fig. 1.2: Sensores infrarrojos y microrreductores del robot modelo N6 (izq.) y nodo de inter-
seccion o detencién en un mapa rectangular (der.)

Los puntos de partida y llegada de la carga son representados como bandejas, pueden ser
de salida o de entrada. Para este trabajo se supone que la carga o descarga puede realizarse
en un punto particular de la linea cuando el robot se encuentra en una de cuatro posiciones
(con el frente hacia el norte, este, sur u oeste). Las bandejas de entrada se representan como
varillas rojas en la superficie de desplazamiento y las de salida como varillas negras en la
superficie. La carga se representa con tachuelas.

1.2. Presentacion del caso de estudio 5

Fig. 1.3: Mapa rectangular con bandejas de entrada roja y salida negra (izq.) y carga repre-
sentada con tachuelas (der.)

En las lineas de montaje de una planta industrial el robot suele estar compuesto por
un pequeio mecanismo de control, actuadores (generalmente neumaticos) y un carro para
transportar la carga. Para representar el carro de carga se ha adherido al revés del robot un
anillo de goma donde se pueden fijar las tachuelas que representan los items a transportar.

Fig. 1.4: Anillo de goma representando el carro de carga (izq.) y el robot modelo N6 llevando
carga (der.)

Para las pruebas que involucran cambios de configuracién se representara un obstaculo
en una de las vias que comunican un puesto con otro utilizando una pequena pieza de goma.
Por otra parte, dado que se trabaja sobre un dominio falible, donde se expresa la posibilidad
que el robot pierda rastro de la linea negra por errores de lectura, desgaste de la pista,
cambios de iluminacidon o errores emergentes, se introduce un componente que representa a

6 1. Introduccion

un mecanismo de reubicacién. El robot tiene capacidad suficiente para informar cuando ha
perdido el rastro de la linea, en cuyo caso se ejecuta este mecanismo de reubicacién (en este
escenario manual), que lleva al robot a una posiciéon y orientacién conocida, permitiendo
continuar la ejecucion de la estrategia desde ese punto.

Se espera que el controlador pueda describir un proceso que obligue al robot a desplazarse
a una bandeja de entrada en tanto haya carga, la tome, la lleve a destino y la descargue con
infinita frecuencia, atin sobre un dominio que tolera faltas no sistematicas.

1.3. Resumen de contribuciones

La mayor contribucién de esta tesis sea probablemente la de explorar un caso de estu-
dio horizontal que involucra no sélo el consumo de la teoria subyacente a la herramienta
de modelado y sintesis, sino a la implementacién de controles de bajo nivel y deméas com-
ponentes involucrados en la puesta en marcha de un escenario de estas caracteristicas. Se
co-desarrolla y pone en prueba el entorno de ejecucion como extensién de la herramienta, y
se escriben los adaptadores necesarios para ésta.

Por otra parte la puesta en ejecucion del controlador y la prueba de distintos esquemas de
ejecucion permiten razonar sobre el efecto que tiene el algoritmo de resolucién y quizas en
particular el sistema de ranking en los controladores resultantes. Un tinico caso de estudio
es insuficiente para realizar generalizacion y motivar con fundamento un analisis de éstos,
pero es un comienzo y precedente para el razonamiento guiado por ejecucion.

También se plantea el cambio de configuracién como caracteristica principal y deseable de
las técnicas empleadas, para esto se definen las dimensiones de cambio y las pruebas vin-
culadas. Si bien dicha caracteristica es cubierta se podria decir por definiciéon al utilizar
técnicas de modelado y sintesis de naturaleza declarativa, esta tesis intenta hacer evidente
esta capacidad como uno de los valores fundamentales del conjunto de teoria y herramienta
que forman el entorno de trabajo de MTSA.

1.4. Estructura de la tesis

La estructura de esta tesis es la siguiente: en el capitulo 2 se presentan los fundamen-
tos tedricos que dan soporte a las técnicas de sintesis y modelado. El capitulo 3 hace una
presentacion de la herramienta MTSA y de los modelos del sistema en la sintaxis extendida
de FSP. El capitulo 4 se explica la motivacién para extender la herramienta y dar soporte
a la ejecucion de controladores. El capitulo 5 describe el trabajo realizado para dar soporte
funcional al sistema a través del robot N6 y el trabajo de adaptacién al entorno de MTSA.
En 6 se detalla la extensién de la herramienta y la forma de utilizar la nueva funcionalidad
para ejecutar controladores sintetizados. En el capitulo 7 se describen los casos explorados,
se presentan resultados, una breve discusion sobre el trabajo realizado y conclusiones de
cierre.

2. FUNDAMENTOS

2.1. El Mundo y la Maquina

Comenzamos por ofrecer nociones acerca de la visién general de la ingenieria de reque-
rimientos. En particular, presento el punto de vista de ingenieria de requerimientos de Zave
y Jackson [3, 4, 14] y de Letier y Van Lamsweerde [13, 7]. Ambos puntos de vista estan
de acuerdo en que la distincién entre los problemas del Mundo y la solucion de Mdquina es
fundamental para comprender si la maquina resuelve correctamente el problema en cues-
tién. De hecho, el efecto de la maquina en el mundo y las suposiciones que hacemos acerca
de este mundo son fundamentales para el proceso de toma de requerimientos. El problema
define una parte del mundo real que queremos mejorar mediante la construccién de una
maquina. Por lo general, incluye algunos de los componentes que interactian con el mundo
siguiendo normas y procesos conocidos. Por ejemplo, una herramienta de perforacién, un
brazo de robot o las reglas para el procesamiento de productos que entran en una linea de
produccién (véase la Figura 2.1).

Por otra parte, se espera que la solucién de la maquina pueda resolver el problema.
Por ejemplo, el ejemplo de la Figura 2.1 muestra que la célula de produccién debe iniciar el
procesamiento de los productos, solo si estan disponibles en la bandeja de entrada. De hecho,
la sentencia inTraylpl — get.InTraylp]l muestra que se espera que el brazo del robot debe
recoger los productos de la bandeja en el caso de que estén listos para ser procesados. Por
ultimo, los fenémenos compartidos son una parte comin entre el problema mundo y la
soluciéon maquina. Por lo tanto, define la interfaz donde la maquina interactiia con el mundo,
representada como la interseccién de los dos conjuntos en la Figura 2.1. La maquina se hace
referencia en el contexto de sintesis como el controlador, se utilizar4 uno u otro término en
funcién del contexto. Podemos referirnos al problema mundo como el modelo de entorno.

Product In Tray — Arm Picks Product up ; g
. inTray[p] /get.InTray[p]

\

4
Ay &
s .

_-- Putdrill[id]

- -~ Get.InTraylid]

- == Robot Arm engine = ‘on’

World Shared Machine
Phenomena Phenomena Phenomena

Fig. 2.1: World and Machine Phenomena

Las sentencias que describen los fenémenos, tanto del mundo como la méaquina pueden
variar en alcance y forma [3, 11]. Las sentencias pueden ser en modo indicativo u optativo
[optative mood]. En [12], las sentencias que describen el sistema se caracterizan por ser
descriptivas y prescriptivas.

Sentencias descriptivas representan propiedades sobre el sistema que son independien-
tes de como se comporta el sistema. Las sentencias descriptivas estan en modo indicativo.

7

8 2. Fundamentos

Las sentencias prescriptivas afirman propiedades deseables que pueden estar presentes
o no. De hecho, las sentencias prescriptivas deben ser aplicadas por los componentes del
sistema. Naturalmente, las declaraciones prescriptivas pueden cambiar, fortaleciéndose /
debilitandose, o incluso ser eliminadas, mientras que no se pueden tornar descriptivas.

Como se mencioné anteriormente, los estados pueden variar en su alcance. Tanto las
sentencias prescriptivas como también descriptivas pueden referirse a caracteristicas de la
maquina que no son compartidas con el mundo. Otras sentencias pueden referirse a fenéme-
nos compartidos por la maquina y el mundo. Mas precisamente, una propiedad de dominio
es una sentencia descriptiva sobre el problema mundo. Estas se deben tener independien-
temente del comportamiento del sistema. En este trabajo llamamos Modelo Ambiente, al
conjunto de propiedades de dominio para un problema particular.

Un supuesto de ambiente es una sentencia que podria no suceder [may not hold] y debe
ser satisfecha por el ambiente. Un requisito de software, o Requisito para abreviar, es una
sentencia prescriptiva a ser aplicada por la maquina, independientemente de cémo se com-
porta el problema mundo y debe ser formulada en términos de los fenémenos compartidos
entre la maquina y problema mundo.

Siguiendo [13, 7] decimos que una accién es supervisada / controlable si tal accién es
supervisada / controlable por la maquina. Podemos referirnos a acciones supervisadas como
acciones no controlables, ya que estan controladas por el ambiente.

2.2. Sistemas de Transicion Etiquetados

Vamos a describir y fijar una notacion para los sistemas de transicion etiquetados o
Labeled Transition Systems (LTS) [6], que son ampliamente utilizados para el modelado y
analisis del comportamiento de los sistemas concurrentes y distribuidos. LTS es un sistema
de transicién de estados donde las transiciones se etiquetan con acciones. El conjunto de
las acciones de un LTS se llama su alfabeto para la comunicacién y las interacciones que el
sistema modelado puede tener con su entorno.

Definicion (Sistema de Transicién Etiquetado) [6] Sea States un conjunto universal de
estados, A ct un conjunto universal de etiquetas. Un Sistema de Transicién Etiquetado (LTS)
es una tupla E = (Sg,Ag,Ag,sg,), donde Sg < States es un conjunto finito de estados,
Afg € Act es un alfabeto finito, Ag < (Sg x Ag x Sg) es una relacion, y so€ Sg es el estado
inicial.

Dado (s,4,s') € Ag decimos que ¢ estd activo desde s en E. Decimos que un LTS E es
deterministico si (s,?,s") y (s,?,s") estan en Ag implica que s’ = s”. Para un estado s deno-
tamos Ag(s) ={¢ | (s,¢,s") € Ag}. Dado un LTS E, podriamos referirnos a su alfabeto como
akE.

Definiciéon (Composicion en Paralelo) Sea M = (Sy, Ay, Ay, sm,) y E = (Sg, Ag,Ag,
sg,) LTSs. Una Composicion en Paralelo || es un operador simétrico que E||M es el LTS
E|M=(Sg xSu,AgUANm, A, (sg,,5M,)), donde A es la relacion mas pequefia que satisface
las siguientes reglas, donde f € Az UeAj;:

(s,0,s")EAR
((s,8),4,(s",0))eA

(t,[,t/)EAM
((s,8),0 (s,t"))eA

[EAEI"TAM

[EAE\AM

(s,0,s"eAE, (t,0,teAy
((s,2),2,(s",t")eA

[EAM\AE

2.8. Logica Lineal Temporal de Flujos (Fluent Linear Temporal Logic) 9

Definicién (LTS Legal) Dado E = (Sg,Ag,Ag,sg,), M =Sy, Ay, Ay, su,) LTSs, y Ag, €
Ag. Decimos que M es un LTS Legal para E con respecto a Ag, si para todos (sg,sy) € E|M
sucede lo siguiente: Ag m((sg,sm))NAE, = Ag(sg)NAEg,

Intuitivamente, un LTS M es una LTS Legal para y LTS E con respecto a Ag,, si pa-
ra todos los estados en la composicon (sg,sy) € Sgjm los contiene, una accién ¢ € Ag, es
deshabilitada en (sg,sys) si y solo si ésta esta también deshabilitada en sg € E. En otras
palabras, M no restringe E con respecto a Ag, .

Definicion (Trazas) Considérese un LTS E = (S,A,A,sg). Una secuencia n = ¢y, ¥1,... es
una traza en E si existe una secuencia sg,g,S1,%1,..., donde para todo i tenemos (s;,¥;,s;+1) €
A.

Definicion (Estados Alcanzables) Considérese un LTS E = (Sg,Ag,Ag,sg). Un estado s €
Sg es alcanzable (desde el estado inicial) en E si existe una secuencia s, fg,s1,¢1,..., donde
para cada i tenemos (s;,#;,8;+1) € A y s = s;+1. Nos referimos a el conjunto de todos los
estados alcanzables en E como Reach(E).

A traves de esta tesis vamos a limitar la atencién a aquellos LTSs E donde todos sus
estados s € Sg, s son alcanzables.

2.3. Logica Lineal Temporal de Flujos (Fluent Linear Temporal Logic)

Loégica lineal temporal (LTL) es ampliamente usada para describir el comportamiento
de requerimientos [2, 13, 8, 5]. La motivacion para escoger un LTL de flujos es que este
provee un framework uniforme para especificar propiedades basada en estados en modelos
basados en eventos [2]. Fluent Linear Temporal Logic (FLTL) [2] es una légica linear-time
temporal para razonar acerca de flujos. Un flujo Fl es definido por un par de conjuntos y
un valor Booleano: FI = {(Ig;, T, Initg;), donde Iy € Act es el conjunto de acciones inicia-
doras , Tr; < Act es el conjunto de acciones finalizadoras y Ig; N Tr = @. Un flujo puede
ser inicializado con trueo false indicado por Initg;. Toda accién ¢ € Act induce un flujo, a
saber ¢ = (¢,Act \ {¢} false). Finalmente, el alfabeto de un flujo es la unién de sus acciones
iniciadoras y finalizadoras.

Sea & el conjunto de todas los posibles flujos sobre Act. Una formula FLTL es defini-
da inductivamente usando los conectores Booleanos estandards y operadores temporales
X (next), U (strong until) de la siguiente manera:

pu=Fll~plovy|XeleUy,

donde Fl € &. Introduciremos A, F (< eventually), y G (O always) como una comodidad
sintdctica. Sea I1 el conjunto de trazas infinitas sobre Act. La traza 7 = ¢y, /1, ... satisface un
flujo FI en la posicién i, denotado como 7,i |= FI, siy sélo si una de las siguientes condiciones
es valida:

L] InitFl/\(VjEN'OSjSi*[jiTFl)

w jeEN-(G<sinljelp)ANVReN-j<k<i —{l,¢Tpr)

Dada una traza infinita 7, la formula que satisface ¢ en la posicién i, denotada como
7,1 |= ¢, es definida como se muestra en la Figura 2.2. Decimos que ¢ se cumple en 7,
denotado como 7 |= ¢, si 7,0 |= ¢. Una férmula ¢ € FLTL es cierta si un LTS E (denotado
como E |=) si éste es cierto en toda traza infinita producida por E.

10 2. Fundamentos

n,i=Fl L gil=Fl
. A .
miEng = A(mikEe)
mikEevy 2 (mike)Vv(nikEy)
7,1 =X S m,1ll=¢
miEeUy 2 3Jj2i-mjEyAvVisk<j-mkEg

Fig. 2.2: Semantica para el operador de satisfaccion

2.4. Problemas de control

El problema de sintesis de control consiste en producir automaticamente una maquina
que restringe la ocurrencia de eventos controlados basada en la observacion de eventos que
han ocurrido. Cuando se despliega en un entorno apropiado esta maquina asegura la sa-
tisfaccion del conjunto de objetivos de sistema provistos. La satisfaccion de estos objetivos
depende de la satisfaccién de las presunciones por parte del entorno. En otras palabras,
damos una descripcion del entorno, presunciones, objetivos de sistema y un conjunto de ac-
ciones controlables.

Una solucion para el problema de control basado en eventos es encontrar una maquina tal
que si comportamiento concurrente al entorno satisface las presunciones satisface también
los objetivos.

Definimos el problema de sintesis de control para modelos basados en eventos de la si-
guiente forma: Dada una LTS que describe el comportamiento del entorno, un conjunto de
acciones controlables, un conjunto de formulas FLTL para las presunciones del ambiente
y un conjunto de férmulas FLTL para los objetivos de sistema, el problema de control LTS
consiste en encontrar una LTS que restringe sélo la ocurrencia de acciones controlables y
garantiza que la composicion paralela del ambiente con dicha LTS estara libre de deadlocks
y que, si las presunciones de ambiente son satisfechas, satisfacera también los objetivos de
sistema.

Definicion (Control LTS) Dada una especificacion de un entorno en forma de una LTS E,
un conjunto de acciones controlables A, y un conjunto H de pares (As;,G;) donde As; y G;
son formulas FLTL especificando presunciones y objetivos respectivamente, la solucion al
problema de control LTS e =< E,H,A_. > consiste en encontrar una LTS M de forma que M
sobre el conjunto de acciones controlables A . y el conjunto de acciones no controlables A, es
un entorno legal para E, E||M se encuentra libre de deadlocks, y para cada par (As;,G; € H)
y para cada traza m en E||M se cumple que si 7 |= As; entonces 7 |= G;.

Ahora definimos el problema de control SGR(1) que es computable en tiempo polinomial.
Tiene base en los problemas GR(1) y de seguridad pero en un contexto de modelado basa-
do en eventos. Requerimos que el modelo del entorno E sea una LTS deterministica para
asegurar que el controlador tenga observacién completa del estado del entorno. Requerimos
que H sea (¢,1),(A;,G) donde I es un invariante de seguridad de la forma Op las presun-
ciones As son una conjuncién de subférmulas FLTL de la forma O, el objetivo G es una
conjuncién de subférmulas FLTL de la forma Oy y p, ¢ ¥ ¥ son una combinacién booleana
de Flujos.

2.5. Dominios falibles 11

Definicion (Control LTS SGR(1)) Un problema de control LTS ¢ =< E,H,A. > es SGR(1)
si E es deterministico y H =(®,1),(As,G) donde I =0p, A = /\?:1D<></)i,G = /\;?1:1|:|<>yj, y
P, ¢ y v son una combinacién booleana de Flujos.

2.5. Dominios falibles

Consideramos una técnica que permite la sintesis de controladores atin en entornos que
exhiben fallas. Esta técnica toma el nombre de sintesis con fallas. Por lo general no puede
controlarse a un entorno malicioso para conseguir los objetivos de sistema. De todas formas,
proponemos nociones realistas de equidad que permiten a los controladores comportarse de
la forma esperada por ejemplo para el caso en el que deberian intentar repetir una accién
hasta conseguir una respuesta exitosa.

Distinguimos a las fallas de otras acciones de la siguiente manera: para cada problema de
control definimos un conjunto de triplas ¢ry —response (prueba, respuesta), una tripla de
ésta caracteristica captura la relacién entre acciones controlables y sus reacciones de éxito
o fracaso. Se precisa que 1) la accién "try"sea controlable, 2) todas las acciones pertenecien-
tes a una tripla ¢try — response sean tnicas con respecto a otras triplas del conjunto, 3) un
reintento no ocurra antes de una respuesta 4)las respuestas ocurran solamente como resul-
tado de un intento, 5)existe como maximo una respuesta por cada intento y 6) la decision de
fallar o tener éxito no sea forzada por otras acciones, con lo que la falla est4 habilitada si y
solo si el éxito esta habilitado.

Se define el operador W como (pUw) v Go.

Definicién (Try-Response) Dada una LTS M = (S, Ly, Ap,sm,) donde Lo < Ly, decimos
que un conjunto 7' = (¢ry;,suc;, fail;) es un conjunto try—response para M si se cumplen
las siguientes condiciones para todo i:

1. try; S Lc,suci,fail;e L\L¢ y suc; # fail;

2. Para todo j #1i, try;,suc;,fail;Nntry;,suc;,fail; =@
3. (fail; Vv suc)Wiry;

4. O@ry; = O¢try;W(fail; v siic;)))

5. O((fail;) v suc;) = O((fail; v sic;Wtry;))

6. Para todo s € Sy, fail; esta habilitado para s si y sélo si suc; esta habilitado para s

La técnica presentada demanda una nocion de equidad més fuerte, que describa la pre-
suncién de que si se ejecuta un intento con infinita frecuencia se debe conseguir un éxito
con infinita frecuencia. Esta nocion de equidad reforzada esta, de hecho, fuertemente vincu-
lada con la estructura de los modelos del entorno y el controlador. Lo que se precisa es que,
para cada estado global (un estado de E| M), un try; sucede con infinita frecuencia, fail;
no sucede con infinita frecuencia. Una forma mas intuitiva de expresarlo seria pensar que
la decisiéon de fallar es equitativa e independiente del estado del controlador o el entorno.
La siguiente definicion captura esta nocion de equidad reforzada. Requiere que para cada
transicién etiquetada con un try, si es tomada con infinita frecuencia luego success sucede
con infinita frecuencia antes del préximo ¢ry.

12 2. Fundamentos

Definicion (t-strong fairness) Dada una LTS M y un try-response T para M, una tra-
za 7 € tr(M) es t-strong fair (fuertemente t-equitativa) con respecto a M y T si para todo
(tryi,suci,fail;) € T y para todas las transiciones ¢ = (s, try;,s) vale que: 7' |z O{try; =
OO (~try;Usuc;), donde n’ = ¢’ |LMu{try§’}’ e =cl [s.try;.sb/s.try; tryb sb]> Y € €S una ejecucion de
Mtalquee'l, =

Cabe notarse que w | 4 es la proyeccién de la palabra w sobre el alfabeto A y que wy,

es el resultado de reemplazar en w todas las ocurrencias de v con v®.

Hace falta extender la nocion de equidad ain mas para cumplir la nocién intuitiva de

que las presunciones del entorno deben ser independientes de las fallas, particularmente
porque la eleccion de una falla o de un éxito puede entenderse como no-deterministica dado
que abstrae la verdadera causa del éxito o fracaso.
Formalizamos esta nocién de esta manera: restringimos las trazas de interés a aquellas que
satisfacen que las presunciones deben poder cumplirse con infinita frecuencia sin observar
fallas, o, méas precisamente, que si el controlador intenta con suficiente frecuencia, entonces
no sélo tendra éxito, sino que tendra éxito a la vez que satisface todas las presunciones.
Esto es, que si las presunciones y las fallas son verdaderamente independientes, intentar la
accion con suficiente frecuencia garantiza que en algin punto luego de un intento, ninguna
falla sucedera en tanto no se hayan satisfecho todas las presunciones.

Definicion (Strong Independent Fairness) Dada una LTS M y un try-response T para M y
A un conjunto de férmulas FLTL, una traza x € tr(M) se dice Strong Independent Fair (de
equidad reforzada independiente) respecto de A si para todo (¢ry;,suc;,fail;) € T y para to-
da transicién ¢ = (s, try;,s') vale que 7 |= OO try) = OO((0try; Usuci)/\(/\;‘:l(ﬂ(V;‘:1 fail)WA;))),
donde ' = ¢’ ILMUtryf”E, = €l [g 11y, b/s.try;.tryb 501 Y € €S una ejecucion de M tal que elp, =m.
Formalizamos a continuacion el problema de control bajo las condiciones de equidad
arriba presentadas. Toma el nombre de problema de control con éxito recurrente (recurrent
success control problem). Para todas las trazas que sean de equidad reforzada independien-
te garantiza propiedades generales de seguridad y progreso que son del tipo GR(1). Exten-
demos el problema de control SGR(1) definido en 2.4 introduciendo fallas y expectativas
sobre la equidad del ambiente.

Definicion (Recurrent Success) Dado un problema de control SGR(1) LTS ¥ =<E,H,L. >
y un try-response T para £, la solucién del problema de control de éxito recurrente Z =<
%£,T > consiste en encontrar un LTS M tal que M con acciones controlables L. y no controla-
bles L, es un entorno legal para E, E|| M no contiene deadlocks y para cada par (As;,G;)€ H,
paracada (¢ry;,suc;,fail;) y para cada traza de equidad reforzada independiente 7 en M || E
vale que si 7 |= As; entonces 7 |= G;.

2.6. Procesos de Estados Finitos (FSP)

Hasta ahora, hemos descripto LTSs (MTSs) definiendo sus componentes, ej. estados,
acciones, relaciones de transicion (requeridos y posibles), y el estado inicial. Esta repre-
sentacion es valida para LTSs (MTSs) con pocos estados. Sin embargo, esta representacién
se torna impractica cuando trabajamos con LTSs (MTSs) extensos. Por esta razén, usamos

2.6. Procesos de Estados Finitos (FSP) 13

un proceso simple llamado algebra de Procesos de Estados Finitos (FSP) que especifican
textualmente un LTSs [10, 9].

FSP es una especificacién de lenguaje con una bien definida semantica en términos de
LTSs (MTSs), que provee de manera concisa una forma de describir un LTSs. Cada expre-
sion FSP E puede ser mapeada en un LTS (MTS) finito, usaremos [¢s(E) para denotar el
LTS (MTS) que le corresponde. A continuacion discutiremos brevemente la sintaxis FSP.

Como un ejemplo, en la Figura 2.3, mostramos el cédigo FSP de un proceso de coccién
de ceramica.

En FSP, los nombres de procesos comienzan con mayusculas y las acciones comienzan
con mindscula. El cédigo para la cocciéon de ceramica define 2 procesos FSP, uno mode-
la el proceso que simplemente esta en espera, llamado fsp(IDLE), y otro proceso llamado
fsp(DOMAIN). Adicionalmente, fsp(DOMAIN) define los procesos auxiliares f sp(COOKING),
fsp(COOKED),y fsp(OH). Los procesos auxiliares son locales para el proceso FSP de la
forma que han sido definidos. fsp(DOMAIN) es definido usando la accién y el operador
fsp(—>) junto a la recursion. Por ejemplo, el proceso se encuentra definido para comenzar
ejecutando indistintamente fsp(idle) quedandose en este o fsp(cook) que comienza con el
proceso de fsp(COOKING).

IDLE = idle -> IDLE.
DOMAIN = (idle->DOMAIN | cook->COOKING),
COOKING = (cooking->COOKING | cook->0H

| finishedCooking->COOKED),
COOKED = (moveToBelt->DOMAIN | cook->COOKING),
OH = (overHeated->0OH).
| [IDLE_DOMAIN = (IDLE||DOMAIN).

Fig. 2.3: FSP Example

FSP soporta numerosos operadores para la composicién como la composicién en para-
lelo de LTS y MTS, o la fusién de MTSs [1]. El operador para composicién en paralelo,
denotado como fsp(||) es definido para preservar la semantica de la composicién en pa-
ralelo de LTS presentado en 2.2. Asi, dados dos procesos FSP fsp(P)y fsp(Q), tenemos
que:fsp(ts(P | 1 Q)=1ts(P)||1ts(Q)).

Los procesos FSP que son definidos mediante la composicién de dos procesos no auxilia-
res son llamados procesos compuestos y sus nombres contienen el prefijo fsp(||). Asi la com-
posicion en paralelo de los procesos FSP fsp(IDLE)y fsp(DOMAIN)es fsp(|[IDLEpOMAIN =
(IDLE||DOMAIN)).

Finalmente, un FSP posee un nimero de palabras reservadas que son usadas antes
de la definicién de un proceso y estas fuerzan al MTSA a desarrollar operaciones comple-
jas sobre el proceso. Por ejemplo, el comando fsp(minimal) indica que MTSA constru-
ya el LTS/MTS minimal respetando fuertemente la seméantica equivalente y la instruccién
fsp(deterministic) instruye para que MTSA construya el LTS minimal con respecto a su
traza.

También el FSP permite definir propiedades FLTL. Un flujo que marca aquellos esta-
dos donde la ceramica es cocinada puede ser expresado en FSP con el siguiente cédigo:
fsp(fluentCooking =< cook, finishedCooking > initially0). fsp(Cooking) se encuen-
tra inicialmente en falso, este se torna verdadero con fsp(cook)y este se torna falso nueva-
mente cuando ocurre fsp(finishedCooking).

14 2. Fundamentos

Sumarizando, FSP provee el soporte requerido para especificar LTSs and FLTL formu-
las. Dicho soporte es requerido para expresar el modelado del entorno y los objetivos del
controlador.

3. MTSA COMO HERRAMIENTA DE MODELADO Y SINTESIS

MTSA es una herramienta de modelado y sintesis basada en sistemas de transiciones
etiquetadas. En esta tesis es utilizada como marco de trabajo, cubriendo los siguientes re-
querimientos:

Modelado del comportamiento del robot, el mapa, las bandejas y las propiedades espera-
das del sistema a través de una extensién de la sintaxis de FSP que permite describir
propiedades como férmulas FLTL y controladores como un conjunto de propiedades
de progreso, seguridad, acciones falibles, controlables y no controlables

Sintesis del controlador expresado conforme a las propiedades declaradas, de forma que al
componerlo con el entorno permita satisfacer los objetivos de progreso y seguridad

Ejecucion del controlador sintetizado a través del marco de ejecucion, controlando los com-
ponentes del sistema a través de mensajes especificos de dominio

En el capitulo siguiente se describe la extensién de la herramienta para permitir ejecutar
el controlador sintetizado en el entorno fisico.

3.1. Construccion

En MTSA, los modelos se describen a través de una extension del lenguaje de Procesos
de Estados Finitos (FSP). FSP es un lenguaje textual centrado en la construccién composi-
cional de modelos complejos que originalmente fue usado para describir LTS.

FSP incluye varios operadores tradicionales para describir modelos de comportamiento, co-
mo puede ser el prefijo de accién (— >), eleccion (]), composicién secuencial (;), composicién
paralela (]|) y mezcla.

La semantica de mezcla es tal que dadas dos descripciones parciales del mismo componen-
te, el operador de mezcla devuelve una MTS que combina la informacién provista por las
descripciones parciales originales.

Audn cuando los operadores composicionales permiten la consruccion de MTS complejas,
construir los modelos a ser compuestos sigue siendo una tarea dificultosa de intenso trabajo
que requiere un grado considerable de experiencia. Para mitigar este problema, MTSA tam-
bién provee la funcionalidad que permite sintetizar modelos de comportamiento de forma
automatica a partir de las especificaciones declarativas de los requerimientos, escenarios y
casos de uso.

La palabra clave constraint de MTSA se usa en conjuncién con las propiedades de seguri-
dad (safety) formalizadas haciendo uso de Légica Lineal Temporal de Flujos (FLTL). Para
una declaracién de tipo constraint MTSA construye automéaticamente el modelo de MTS
que carateriza a todos los modelos LTS libres de deadlock que satisfacen la formula FLTL.
Al sintetizar y mezclar modelos MTS obtenidos con definiciones FLTL, se puede construir
de forma iterativa una MTS que carateriza a la cota superior de los sistemas de comporta-
miento esperados.

La palabra clave abstract de MTSA puede aplicarse a procesos FSP. Su seméntica es tal
que el modelo resultante es la MTS de menor refinamiento que garantiza el comportamiento

15

16 3. MTSA como herramienta de modelado y sintesis

requerido por los procesos FSP. Esta palabra clave, utilizada en conjuncién con los procesos
FSP que modelan el comportamiento descripto en la especificacion del escenario, provee una
MTS que caracteriza a todas la implementaciones que satisfacen dicha especificacion (i.e.
la cota inferior del comportamiento esperado del sistema).

3.2. Analisis

Habiendo construido una aproximacién inicial del comportamiento esperado del siste-
ma, el analisis pasa a ser una tarea crucial que puede brindar informacién del dominio tanto
del problema como de la solucién, aumentando la confianza que se tiene de la adecuacién y
correctitud del software y llama a proseguir la elaboracion del modelo parcial.

MTSA soporta varios tipos de analisis, el mas béasico involucra la inspeccién de modelos
MTS y esta soportado a través de la construccion automatica de representaciones visua-
les de los modelos MTS escritos usando FSP. Esta inspeccion queda sujeta al tamario del
modelo, esta limitacion puede mitigarse haciendo uso de los operadores de minimizacién y
ocultamiento.

Aunque la inspeccién y animacién no permiten una exploraciéon exhaustiva de los modelos
MTS, MTSA implementa un nimero de técnicas de andlisis automaticas para éste propési-
to. En particular, MTSA permite verificar si un modelo MTS satisface una propiedad expre-
sada en FLTL. Un modelo MTS caracteriza un conjunto de implementaciones, de las cuales
algunas pueden satisfacer la propiedad siendo verificada y algunas pueden violarla. Por este
motivo MTSA automaticamente verifica una relaciéon de satisfactibilidad trivaluada entre
el modelo MTS y una férmula FLTL. Mientras que un Modelo MTS M puede caracterizar a
un conjunto extremadamente grande, potencialmente infinito, de implementaciones, verifi-
car una propiedad en M con model checking se reduce a dos verificaciones tradicionales de
FLTL. Finalmente, MTSA permite verificar si un modelo es libre de deadlocks. Al igual que
en el caso de model checking para propiedades FLTL, el resultado de esta verificacion tiene
uno de tres valores: o bien todas las implementaciones exhiben deadlocks, o bien todas son
libres de deadlock o bien hay una combinacién de implementaciones que exhiben deadlocks
y otras que no.

3.3. Modelando el sistema

A continuacién se presentan los modelos que representan el comportamiento de los dis-
tintos componentes del sistema. Se describe informalmente su funcién y se da la represen-
tacién FSP de los mismos.

3.3.1. Identificando modelos

Para el caso de estudio propuesto se identifican cuatro sub-modelos para el ambiente,
estos son: el robot, el mapa, las bandejas de entrada y salida y el mecanismo de reubicacion.
Se describen por separado prestando cuidado a los estados en los que deben interactuar
para permitir que la composicién paralela provea una buena descripcién del ambiente en la
forma en que se comporta ante la ausencia de un controlador.

Los procesos representan el comportamiento de los agentes en el dominio restringido de
nuestro caso de estudio. Suponemos que la posicion del robot puede expresarse en la espe-
cificacion del mapa a partir de una posicién inicial, y de las relaciones entre los nodos de
control que capturan posicién en la grila y orientacién, esto no significa que, por ejemplo,

S UL W N

IO O W N

3.8. Modelando el sistema 17

la posicién del robot se exprese con suficiente detalle para otro dominio donde se podria
preferir una codificacién en el plano (x,y,60) con una aproximacién discreta conveniente.

La interaccion entre el robot y el mapa queda capturado en la especificacién del mapa, esto
puede romper, al menos conceptualmente, la separacion légica entre ambos. Una solucién
alternativa podria expresar los procesos con alfabetos disjuntos y luego reemplazar el nom-
bre de las acciones en el paso previo a la composicién.

3.3.2. Robot

El robot es de tipo planar, capaz de seguir lineas negras, detectar puntos de interseccion,
girar a derecha, izquierda, dar media vuelta y permitir la carga y descarga de un carro en
el que transporta los items.

Se restringe en el proceso del robot la capacidad de realizar dos giros seguidos, de forma que
luego de un giro debe realizarse un seguimiento. Esta restriccién, que aqui se realiza como
parte del modelo, podria codificarse como propiedad de seguridad, su motivacion tiene que
ver con reforzar (declarativamente) una nocién intuitiva de progreso, ya que la probabilidad
de recibir un mensaje de falla luego de un giro (el robot es incapaz de ubicarse nuevamente
sobre la linea negra) es mayor que la de recibir un mensaje de falla luego de realizar un
seguimiento.

El proceso de reubicacion se codifica también en el modelo con la secuencia:

ROBOT_MOVEMENT = (robot.follow->ROBOT_REPLY
|robot.turnRight->ROBOT_REPLY
|robot.turnLeft->ROBOT_REPLY
|robot . turnAround->ROBOT_REPLY) ,
ROBOT_LOST = (robot.retry->ROBOT_RETRY),
ROBOT_RETRY = (robot.lost->ROBOT_LOST |robot.successRetry->ROBOT_MOVEMENT)...

Notese que éste es un modelo simplificado del robot, cuya intencién es expresar el funcio-
namiento del mecanismo de reubicacién que opera en paralelo con el proceso del reubicador
manual.

RELOCATOR = (robot.successRetry->RELOCATOR_RELOCATE),
RELOCATOR_RELOCATE = (relocator.go_N_0_O_N->RELOCATOR) .

Asegurando que luego de un reintento el robot ha podido ubicarse sobre una linea negra,
sin importar cual, y el reubicador manual lo llevara a un nodo conocido desde el cual podra
continuar progresando hacia el objetivo. Se describe también la capacidad de carga del ro-
bot, se puede entender que hay dos maquinas muy similares para el movimiento del robot
y que la carga y descarga salta entre entre una y otra con un comportamiento mutuamente
exclusivo, esto es, la carga lleva a una maquina equivalente donde se restringe la carga y se
habilita la descarga, y la descarga lleva a una maquina donde se restringe la descarga y se
habilita la carga.

A continuacién la descripcién completa del robot para uno de los ejemplos de esta tesis.

ROBOT = ROBOT_MOVEMENT_U,
ROBOT_MOVEMENT_U = (inTray.unload -> ROBOT_LOADING_MOVING
| robot.follow->ROBOT_REPLY_U
| robot. turnRight->ROBOT_SHOULD_FOLLOW_U
| robot . turnLeft->ROBOT_SHOULD_FOLLOW_U
| robot . turnAround->ROBOT_SHOULD_FOLLOW_U) ,
ROBOT_SHOULD_FOLLOW_U = (robot.lost->ROBOT_LOST_U|robot.success->ROBOT_FOLLOW_U),

10
11
12

13

14
15
16
17
18
19
20
21
22
23
24

25

\V]

18 3. MTSA como herramienta de modelado y sintesis

ROBOT_FOLLOW_U = (inTray.unload -> ROBOT_LOADING_FOLLOWING |robot.follow->ROBOT_REPLY_U),
ROBOT_REPLY_U = (robot.lost->ROBOT_LOST_U|robot.success->ROBOT_MOVEMENT_U),
ROBOT_LOST_U = (robot.retry->ROBOT_RETRY_U),
ROBOT_RETRY_U = (robot.lost->ROBOT_LOST_U|robot.successRetry->ROBOT_MOVEMENT_U),
ROBOT_LOADING_MOVING = (inTray.unloaded -> ROBOT_MOVEMENT_L | inTray.fell ->
ROBOT_MOVEMENT_U) ,
ROBOT_LOADING_FOLLOWING = (inTray.unloaded -> ROBOT_FOLLOW_L | inTray.fell ->
ROBOT_FOLLOW_U),
ROBOT_MOVEMENT_L = (outTray.load -> ROBOT_UNLOADING_MOVING
| robot.follow->ROBOT_REPLY_L
| robot . turnRight ->ROBOT_SHOULD_FOLLOW_L
| robot . turnLeft->R0OBOT_SHOULD_FOLLOW_L
| robot . turnAround->ROBOT_SHOULD_FOLLOW_L),
ROBOT_SHOULD_FOLLOW_L = (robot.lost->ROBOT_LOST_L|robot.success->ROBOT_FOLLOW_L),
ROBOT_FOLLOW_L = (outTray.load -> ROBOT_UNLOADING_FOLLOWING |robot.follow->ROBOT_REPLY_L),
ROBOT_REPLY_L = (robot.lost->ROBOT_LOST_L |robot.success->ROBOT_MOVEMENT_L),
ROBOT_LOST_L = (robot.retry->ROBOT_RETRY_L),
ROBOT_RETRY_L = (robot.lost->ROBOT_LOST_L |robot.successRetry->ROBOT_MOVEMENT_L),
ROBOT_UNLOADING_MOVING = (outTray.loaded -> ROBOT_MOVEMENT_U | outTray.fell ->
ROBOT_MOVEMENT_U) ,
ROBOT_UNLOADING_FOLLOWING = (outTray.loaded -> ROBOT_FOLLOW_U | outTray.fell ->
ROBOT_FOLLOW_U) .

3.3.3. Mapa

El mapa describe la distribucion de los nodos de detencién, relacién entre ellos a través
de las vias (las bandas negras que llevan de un puesto a otro) y la ubicacién de las ban-
dejas en la planta. También guarda conocimiento de la orientacion del robot, de forma que
su ubicacién espacial puede darse por la tripla < x,y,0 > donde, si se piensa a la distri-
bucién de los puestos o nodos de interseccién como una grilla regular, x define la columna
sobre la que se encuentra el robot y la fila y o la orientacion perteneciendo al conjunto
(norte,este,sur,oeste). También se especifica el efecto de ejecutar el mecanismo de reubi-
caciéon manual con la transicién:

N_X_Y_0 = (relocator.go_ N_O_O_N -> N_O_O_N | robot.turnAround -> ...

Las bandejas se habilitan en una posicién y orientacion dada, por ejemplo:

N_0_1_S = (relocator.go_ N_O_O_N -> N.O_O_N | ... | outTray.load -> N_0_1_S)...

A continuacién una descripciéon completa del mapa.

N_0_O_N = (relocator.go_N_0_O_N -> N_O0_O_N | robot.turnAround -> N_0_0_S |

robot.turnRight -> N_O_O_E | robot.turnLeft -> N_0_O_W),
N_O_O_E = (relocator.go_N

MAP = N_1_O_N,

_0_0_N -> N_O_O_N | robot.turnAround -> N_O_O_W |
robot.turnRight -> N_0_0_S | robot.turnLeft -> N_O_O_N | robot.follow -> N_O_1_E),

N_0_0_S = (relocator.go_N_O_O_N -> N_O_O_N | robot.turnAround -> N_O_O_N |
robot.turnRight -> N_O_O_W | robot.turnLeft -> N_O_O_E | robot.follow -> N_1_0_S),

N_0_0_W = (relocator.go_N_O_O_N -> N_O_O_N | robot.turnAround -> N_O_O_E |

robot.turnRight -> N_O_O_N | robot.turnLeft -> N_0_0_S),

N_O_1_N = (relocator.go_N_O0_O_N -> N_O_O_N | robot.turnAround -> N_O_1_S |

robot.turnRight -> N_O_1_E | robot.turnLeft -> N_0_1_W),

N_O_1_E = (relocator.go_N_0_O_N -> N_O_O_N | robot.turnAround -> N_O_1_W |

robot.turnRight -> N_O_1_S | robot.turnLeft -> N_O_1_N),

10

11

12

13

14

15

16

17

3.8. Modelando el sistema

19

N_0_1_8 = (relocator.go | robot

robot.turnRight -> N_O_1_W | robot.turnLeft ->
outTray.load -> N_0_1_S),

N_0_1_W = (relocator.go_N_0_O_N -> N_O_O_N | robot
robot.turnRight -> N_O_1_N | robot.turnlLeft ->

N_1_0_N = (relocator.go_N_0_O_N -> N_O_O_N | robot

robot.turnRight -> N_1_O_E | robot.turnLeft ->
inTray.unload -> N_1_0_N),
N_1_0_E = (relocator.go_N_0_O_N -> N_O_O_N | robot
robot.turnRight -> N_1_0_S | robot.turnLeft ->
N_1_0_S = (relocator.go_N_0_O_N -> N_O_O_N | robot
robot.turnRight -> N_1_0_W | robot.turnlLeft ->
N_1_0_W = (relocator.go_N_O_O_N -> N_O_O_N | robot
robot.turnRight -> N_1_O_N | robot.turnlLeft ->
N_1_ 1 N = (relocator.go_N_O0_O_N -> N_O_O_N | robot
robot.turnRight -> N_1_1_E | robot.turnLeft ->
(relocator.go_N_0_O_N -> N_O_O_N | robot
.turnRight -> N_1_1_S | robot.turnlLeft ->

N_1_1 E =
(relocator.go_N_0_O_N -> N_O_O_N | robot

_N_O_O_N -> N_O_O_N

robot

N_1_1_S =
.turnRight -> N_1_1_W | robot.turnlLeft ->
(relocator.go_N_0_O_N -> N_O_O_N | robot

robot
N_1_1. W=
.turnRight -> N_1_1_N | robot.turnLeft ->

robot

.turnAround -> N_O_1_N |

N_O_1_E | robot.follow ->

.turnAround -> N_O_1_E |

N_O_1_S

| robot.follow ->

.turnAround -> N_1_0_S |

N_1_0_W | robot.follow ->

.turnAround -> N_1_0_W |

N_1_O_N | robot.follow ->

.turnAround -> N_1_O_N |

N_1_0_E),

.turnAround -> N_1_0_E |

N_1_0_8),

.turnAround -> N_1_1_S |

N_1_1_W

| robot.follow ->

.turnAround -> N_1_1_W |

N_1_1_N),

.turnAround -> N_1_1_N |

N_1_1_E),

.turnAround -> N_1_1_E |

N_1_1_S | robot.follow ->

N_1_1_S |

N_0_0_W),

N_0_O_N |

N_1_1_E),

N_O_1_N),

N_1_0_W).

3.3.4. Bandejas

Las bandejas de entrada y salida representan el punto de contacto con otras lineas de
la planta industrial o incluso con una fuente externa a la planta, por ejemplo un lote de
items provistos por una tercera entidad en las lineas de montaje. Se incluye la posibili-
dad de perder el item durante la carga o la descarga, representando la carga con la tripla

(inTray.load,inTray.unloaded,inTray.fell)y (outTray.load,outTray.loaded,outTray.fell)

de lo que se considera un dominio falible.

INTRAY = (inTray.load -> inTray.unload -> (inTray.unloaded -> INTRAY | inTray.fell ->

INTRAY)) .

OUTTRAY = (outTray.load ->(outTray.fell -> OUTTRAY | outTray.loaded -> outTray.unload ->

OUTTRAY)) .

3.3.5. Reubicacion manual

Dado que un mensaje de falla por parte del robot indica que su posicién dentro del
mapa es desconocida se introduce un mecanismo de reubicacién, en este caso manual, que
supone conocimiento de la posiciéon del robot y de un nodo de reubicacién de forma que el
controlador pueda asegurar la satisfaccién de los objetivos de sistema. Este componente
particular podria reemplazarse por un procedimiento automatico que incluya una camara
con capacidad de identificar la posicién y orientacion del robot y el mapa, y envie mensajes
de bajo nivel (control de los microrreductores) llevando al robot hasta el nodo de reubicacion.

1 RELOCATOR = (robot.successRetry->RELOCATOR_RELOCATE),

2

RELOCATOR_RELOCATE = (relocator.go

N_O_O_N->RELOCATOR) .

w

N O Otk W

© 00 30 U WN =

20 3. MTSA como herramienta de modelado y sintesis

3.3.6. Definicion del controlador

Para la definicion del controlador es necesario explicitar el conjunto de acciones con-
trolables, no controlables y falibles, esto puede expresarse en notacién FSP utilizando el
elemento de sintaxis set. Primero se describen los conjuntos segiin una particién légica.

set ActionCommands =
{robot.follow,robot.turnRight,robot.turnlLeft,robot.turnAround,robot.retry}
set RelocateCommands = {relocator.go_N_0_O_N}

set ReplyCommands = {robot.lost,robot.success,robot.successRetry}
set FailActions = {robot.lost,inTray.fell,outTray.fell}

Se particiona luego el espacio de acciones entre controlables y no controlables.

set ControllableActions = {ActionCommands,inTray.unload,outTray.load}

set UncontrollableActions =
{FailActions,RelocateCommands ,robot.success,robot.successRetry,inTray.load,
inTray.fell, inTray.unloaded,outTray.loaded,outTray.fell,outTray.unload}

Se define el conjunto universal para el sistema.

set Alphabet = {ControllableActions,UncontrollableActions}

Y el entorno como composicion paralela de los agentes involucrados.

| |IScenario = (MAP || ROBOT || RELOCATOR || INTRAY || OUTTRAY).

Se definen las propiedades de seguridad como méquinas que restringen el comporta-
miento indeseado.

property NO_2_RIGHT = (Alphabet\{robot.turnRight}->NO_2_RIGHT |
robot.turnRight->PREV_RIGHT),

PREV_RIGHT = (robot.success->PREV_RIGHT2 | Alphabet\{robot.success}->NO_2_RIGHT),

PREV_RIGHT2 = (Alphabet\{robot.turnRight}—>NO_2_RIGHT).

property NO_2_LEFT = (Alphabet\{robot.turnLeft}->NO_2_LEFT | robot.turnLeft->PREV_LEFT),

PREV_LEFT = (robot.success->PREV_LEFT2 | Alphabet\{robot.success}->NO_2_LEFT),

PREV_LEFT2 = (Alphabet\{robot.turnLeft}->NO_2_LEFT).

property NO_2_TURNAROUND = (Alphabet\{robot.turnTurnAround}->NO_2_TURNAROUND |
robot . turnTurnAround->PREV_TURNAROUND),

PREV_TURNAROUND = (robot.success->PREV_TURNAROUND2 |
Alphabet\{robot.success}->NO_2_TURNAROUND),

PREV_TURNAROUND2 = (Alphabet\{robot.turnTurnAround}->NO_2_TURNAROUND).

A continuacién los flujos que describen la condicion de bandeja de entrada llena INTRAY_FULL),

elemento agregado a la bandeja de salida (ADDED_TO_OUTTRAY) y bandeja de salida
vacia (OUTTRAY_EMPTY) y el flujo que describe las acciones falibles (F_FAILURES).

//DEFINED FLUENTS

fluent INTRAY_FULL = <inTray.load, inTray.unload> initially O

fluent ADDED_TO_OUTTRAY = <outTray.loaded, outTray.unload> initially O
fluent OUTTRAY_EMPTY = <outTray.unload, outTray.loaded> initially 1
fluent F_FAILURES = <FailActions,Alphabet\{FailActions}>

//DEFINED ASSERTIONS
assert ASSUME_ON_LOAD = (INTRAY_FULL)
assert ASSUME_ON_UNLOAD = (OUTTRAY_EMPTY)

10
11

© 0 30 UL W N

3.8. Modelando el sistema 21

assert GOAL_FOR_UNLOAD = ADDED_TO_OUTTRAY
assert Failures = F_FAILURES

El controlador se define como la restriccion del entorno a los objetivos definidos como

conjunto de propiedades de seguridad y progreso (safety,liveness), el conjunto de presun-
ciones (assumption), el de acciones controlables (controllable) y el conjunto de acciones
de falla (failure).
Cabe notarse que el objetivo de progreso describe que con infinita frecuencia la bandeja de
salida debe cargarse, ya que es el destino en el que esperamos pueda dejarse la carga, bajo
la presuncién de que sera descargada con inifnita frecuencia podemos suponer que el sis-
tema, en caso de conseguir un controlador, podra llevar de forma continua carga desde la
bandeja de entrada a la bandeja de salida.

controller ||C = (Scenario)~“{0Objective}.

controllerSpec Objective = {
safety = {NO_2_LEFT, NO_2_RIGHT}
failure = {Failures}
assumption = {ASSUME_ON_LOAD, ASSUME_ON_UNLOAD}
liveness = {GOAL_FOR_UNLOAD}
controllable = {ControllableActions}

22

3. MTSA como herramienta de modelado y sintesis

4. ENACTMENT, O ENTORNO DE EJECUCION

Enactment debe entenderse como la capacidad de poner en ejecucién un controlador. En

el marco de este trabajo se refiere a ejecutar un controlador sintetizado a partir de la espe-
cificaciéon que describe un juego SGR(1) sobre dominios falibles.
Se entiende que la puesta en ejecucion o enactment es entre otras cosas un area a desarro-
llar y una actividad de conocimiento. En su caracter cognitivo permite observar y refinar los
controladores construidos, las técnicas empleadas para construirlos y la forma en que éstos
se ajustan a un contexto preexistente, potencialmente desacoplado a la unidad de cémputo
que realiza la sintesis.

4.1. La necesidad de ejecutar estrategias

La forma natural de expresar un problema en la sintaxis de procesos finitos es descri-

biendo el comportamiento de cada proceso como un sistema de transiciones etiquetadas.
Suponiendo que de esta forma se expresa con suficiente detalle el comportamiento observa-
ble de un agente.
En la sintaxis propuesta se separan las transiciones controlables de las no-controlables. Se
propone a partir de esto una separaciéon entre los mensajes de control, que se corres-
ponden con las transiciones controlables en la especificacién y con los mensajes de entrada
para el agente, de los mensajes de estado que se corresponden con las transiciones no
controlables en la especificacién y mensajes de salida en el agente. Un caso particular de
las transiciones no controlables que puede echar mas luz sobre la distincién es el de los
timeouts o limites de tiempo. La transicion controlable podria ser un mensaje de control o
un pedido a un servicio particular y la transicién no controlable podria ser un mensaje de
estado, una respuesta por parte del servicio o un evento de timeout, que estaria capturando
la falta de respuesta dentro de un periodo aceptable de tiempo. En esta tesis trabajamos
con nodos controlables (donde todas las transiciones de salida son controlables) y no contro-
lables (donde todas las transiciones de salida son no controlables). En un estado particular,
no controlable, podria suceder que exista mas de una transicién de salida, una represen-
tando un mensaje de estado, otra representando un mensaje de timeout para expresar la
posibilidad de que una maquina no responda en un lapso razonable de tiempo. Estos peque-
fios ejemplos introducen algunas nociones relacionadas al proceso de modelado, como pudo
verse en los procesos escritos en el capitulo 3.3.

request
control request ¢ — T
- ¢ % —_reply —
status timeout .
timeout

Fig. 4.1: Transicién entre estados controlables y no controlables: control-estado (izq.),
request-timeout (centro), request-timeout,reply(der.)

Se indentifica un subconjunto de las transiciones no controlables en relacién al modelo

23

24 4. Enactment, o entorno de ejecucion

de fallas, indicando estados en los cuales una transicién puede suceder pero con cierta no-
cion de equidad. Estas transiciones del modelo de falla deben capturar un comportamiento
no sistematico, independiente entre si que va a dar lugar (eventualmente) a la ejecucién
de otra transicién en ese mismo estado. En esta tesis la tripla (¢ry;,suc;,fail;) permi-
te representar la naturaleza falible pero no sistematica del movimiento del robot (se ins-
tancia como (robot.follow,robot.destinationReached,robot.lost) o para el caso de las
bandejas, donde un item puede caer al ser cargado o descargado como (inTray.unload,
inTray.unloaded,inTray.fell)), que siguiendo una linea, puede perder rastro de la mis-
ma, pero ésto no se interpreta como un comportamiento potencialmente malicioso por parte
del entorno.

4.2. El componente de ejecucion: Enactor

El componente de ejecucién debe respetar un esquema de comunicacion asincrona. Se

espera que pueda alcanzarse un nivel de abstracciéon que permita que el control discreto sea
suficiente para controlar y monitorear el comportamiento de los enactors.
Se puede pensar que cada enactor expone una API. Los métodos publicos seran equivalen-
tes a los mensajes de control y los eventos disponibles equivalen a los mensajes de estado.
Puede suceder que el vinculo entre un mensaje en el dominio de control discreto y su con-
traparte en el dominio real oculte informacién, por ejemplo, en nuestro caso vincularemos
a través del enactor correspondiente los mensajes del protocolo de comunicacién con transi-
ciones del sistema discreto, cada vez que se envie un mensaje de control (representado por
la etiqueta correspondiente a la transicion) se crea en el enactor un paquete conforme al
protocolo de comunicacién y se lo envia a través de la interfaz inalambrica. Cada vez que la
interfaz de comunicacién recibe un mensaje del robot, el adaptador (enactor) lo interpreta
y produce un evento que contiene la informacién relacionada a la transicién no controlable
(mensaje de estado).

En la figura 4.2 se representa la relacién entre el modelo utilizado para construir la
especificacion del controlador y su implementacion. € representa a los estados controlables
en el modelo y % representa a los no controlables. ¢ representa a la implementacién del
controlador en el entorno de ejecucion y a representa al enactor en calidad de adaptador en-
tre los mensajes del entorno de ejecucién y los del dominio del componente (potencialmente)
externo al entorno de ejecucién. Se ve como las transiciones en el modelo se corresponden
con los mensajes de control y estado en el entorno de ejecucion.

controllable

status

Fig. 4.2: Relacion de ejecucion entre el modelo y los componentes de ejecucion

La relacion entre la implementaciéon en la tecnologia correspondiente y el modelo se

4.2. EIl componente de ejecucion: Enactor 25

muestra en la figura 4.3 representando al componente de ejecucién como e para indicar que
se esta hablando de un objeto Enactor que se ejecuta dentro de la herramienta. Segin
la arquitectura escogida las transiciones controlables y no controlables se relacionan con
llamadas a funcién y eventos respectivamente.

controllable

event

Fig. 4.3: Relacion de ejecucién entre el modelo y la implementacién final de los componentes
de ejecucion

En la figura 4.5 se expande la interaccién del Enactor con el componente externo, en
este caso el cliente de comunicacién del robot N6 (r en el esquema) para mostrar un flujo de
mensajes de un entorno de ejecucion en marcha. Aqui los mensajes de control se traducen
en mensajes serializados que se envian a través del emisor de radio y los mensajes de estado
se traducen a su vez de los mensajes serializados recibidos por la misma interfaz.

follow
C—_ U

destinationReached
| |

|
! | enact

| |

) follow() ! LAFHIS202...
/—\ M
c e; r

destinationReached LAFHIS203...
€o

Fig. 4.4: Esquema de ejecucion para el robot N6, vinculando los mensajes con el intercambio
de mensajes serializados

Si se sustrae la comunicacién por radio se puede exponer otra relacién interesante entre
las transiciones del modelo de eventos y el componente en ejecucion. Se puede entender
que el par < control,status > encierra la ejecuciéon de un bloque de control continuo que
eventualmente produce un mensaje de estado.

26 4. Enactment, o entorno de ejecucion

follow
C—_ U
destinationReached

|
| enact

enact |
U fOZZOW() start Cont.Control
c=<— ey 0 ——r
destinationReached statusMessage

Fig. 4.5: Esquema de ejecucion para el robot N6, vinculando los mensajes con la ejecucién y
reporte de estado de un bloque de control continuo

Este pequetio ejemplo expone la adecuacion de las técnicas de ejecucion para esquemas
de control continuo y otros esquemas de control de sistemas embebidos que suelen utilizar

maquinas de estado finito para representar su comportamiento (ya sea explicita o implici-
tamente).

4.3. Extension de la herramienta

En el capitulo 6 se detallan las modificaciones necesarias para que un controlador coor-
dine a los componentes de ejecucion en un entorno fisico. La intencién es permitir ejecutar
el controlador sintetizado a partir de la especificacion dentro de la herramienta MTSA.

5. ROBOT MODELO N6 Y EXTENSIONES DE SOFTWARE/HARDWARE

Se espera que el robot cuente con un mecanismo que le permita transitar la planta
en recorridos que visiten puntos distinguibles, que pueden representar las estaciones de
carga, descarga y cruce de caminos. El desplazamiento auténomo se consigue utilizando
una técnica de seguimiento de linea. Esto involucra:

= pintar las lineas correspondientes a los caminos en el piso de la planta
= pintar con un valor distintivo los cruces entre caminos
= brindar soporte de deteccién y seguimiento de lineas en el robot

El trazado de los caminos puede hacerse con pintura o con un cable eléctrico. En este trabajo
se utilizara pintura o tinta negra para representar los caminos y sensores infrarrojos en el
robot para poder detectar lineas en el piso.

El robot se desplazara tratando de mantener los sensores infrarrojos a ambos costados de
la linea, si detecta una desviacién significativa (diferencia de valor entre los sensores) com-
pensara modificando la velocidad de rotacién de cada rueda acorde a la magnitud del desvio.
En un intento de permitir recorridos variables en la grilla de caminos se introduce un valor
intermedio para los cruces de forma que el robot pueda decidir de forma auténoma cuando
se ha completado un tramo del camino.

La presencia de linea se percibe en el robot como un rango de lectura de un valor bajo en
al menos en uno de los sensores. La presencia de un rango de valor alto se interpreta como
consecuencia de que al menos uno de los sensores se encuentra sobre el mapa, pero fuera
de la linea. Los valores del mapa en los cruces se interpreta al obtener una lectura en un
rango intermedio de valores.

5.1. Arquitectura del robot N6

El modelo N6 es un robot producido en Argentina por la empresa RobotGroup con fines
didacticos. Se trata de un robot planar con dos microrreductores operando cada rueda de
forma independiente, dos fotosensores ubicados al frente y hacia la base, un sensor de ul-
trasonido y otro de radio ubicado en la parte superior.

La alimentacién es auténoma a través de tres pilas AA y el controlador de los motores DC
esta integrado en la placa.

Es entregado con bibliotecas provistas por Atmel Corporation, Arduino y utilidades,
configuracion del controlador y bootloader de RobotGroup.

5.1.1. Arquitectura del procesador

El robot cuenta con un procesador ATMega32u4 producido por Atmel Corporation. Se
trata de una arquitectura de 8 bits con un conjunto de instrucciones RISC operando sobre 32
registros de proposito general. La memoria de programa es de tipo flash con 32 KBytes de
capacidad, la memoria volatil de datos es una SRAM de 2.5 KBytes y la memoria no volatil
de datos es un EEPROM de 1 KByte.

27

28 5. Robot modelo N6 y extensiones de software/hardware

Fig. 5.1: Vista de frente (izq.) y de perfil (der.) del robot modelo N6

Los registros estan conectados directamente a la unidad aritmético légica (ALU) permitiendo
asi acceder a dos registros en un mismo ciclo de reloj. Tiene 26 lineas de entrada/salida de
propésito general, cuatro contadores/temporizadores y un contador de alta velocidad. Tiene
una USART, un interfaz serie de dos vias orientada a bytes, 12 canales ADC de 10 bits,
sensor de temperatura en el chip, un temporizador programable de vigia y una interfaz
JTAG para permitir seguimiento de ejecucién en el chip.

5.2. Extensiones fisicas

Se extendi6 el soporte de hardware en el robot con una placa de comunicacién XBee que
permite la colaboracion entre el robot y un nodo de control. La placa XBee se conecta a tra-
vés de una de las interfaces serie y transmite la informacién de forma serial a otro nodo
XBee.

El montaje de la placa requirié una minima modificacion en la estructura de la misma y un
cableado entre uno de los puertos serie de la placa central y la placa de comunicacién, como
asi también las lineas de alimentacion desde la placa central a la placa XBee.

5.2. Extensiones fisicas 29

Fig. 5.2: Placa XBee adaptada al robot modelo N6

El nodo de control cuenta con otra placa de comunicacién conectada a uno de sus puertos
serie.

30 5. Robot modelo N6 y extensiones de software/hardware

Fig. 5.3: Placa XBee conectada al puerto serie del nodo de control

Robot Placa XBee {---- | Placa XBee Controlador

Fig. 5.4: Comunicacion entre el robot y el controlador

5.3. Fuente de fallas

La arquitectura general del robot, comprendiendo las bibliotecas provistas, el soporte
de hardware y la plataforma de software escrita para el mismo dejan, en su conjunto, lugar
a fallas. Debe notarse que el control de velocidad en las ruedas es de lazo abierto, sin un
mecanismo de retroalimentacion que verifique el comportamiento consistente de los actua-
dores luego de ejecutada la logica de control. Por este motivo el resultado de ejecutar un
giro a izquierda, derecha o una media vuelta es de naturaleza falible. No hay un mecanismo
confiable para asegurar que el robot ha realizado un giro de aproximadamente noventa o
ciento ochenta grados, estas acciones son aproximadas. Si bien puede entenderse como una
falla de soporte o de arquitectura para el robot, un controlador sintetizado sobre un domi-
nio falible, debe poder dar garantias de progreso atn frente a errores de este tipo. La terna
(robot.turnright,robot.success, robot.lost) caracteriza este tipo de errores.

Los bloques de control proveen un mecanismo basico de seguridad de forma que al terminar
su ejecucion detienen el avance de las ruedas. Esto asegura, que ante una falta de respuesta
por parte del nodo de control, el robot se mantendra inactivo y en el lugar.

Existe otra fuente de fallas, no intencional, en el protocolo de comunicacién por la auscencia

5.4. Software 31

de un control de sanidad o checksum. Esto se debe a que el protocolo se model6 sobre la
base de un protocolo industrial que funciona sobre una capa de transporte que provee este
control. En nuestro caso los paquetes se envian directamente sobre una capa de mas bajo
nivel, sin ningdn control de este tipo.

5.4. Software
La funcionalidad requerida del robot segin lo presentado deberia permitir:
= Iniciar comunicacién inalambrica con un nodo de control
= Mantener el intercambio de mensajes con el nodo de control
= Cerrar la comunicacién inalambrica con un nodo de control

= Iniciar y mantener el seguimiento de una linea hasta alcanzar un cruce u obtener una
lectura errénea (i.e. no se puede leer linea)

= Informar cuando se haya alcanzado un cruce y detenerse
= Informar cuando se haya alcanzado una lectura errénea y detenerse

El robot cuenta con un procesador atmega32u4 que puede programarse en lenguaje en-
samblador y que también cuenta con un compilador de C y C++ (avr-gcc) y su respectivo
debugger (avr-gdb).

Para este trabajo utilizamos como base las bibliotecas provistas por RobotGroup que inclu-
yen una versién modificada de las bibliotecas provistas Atmel Corporationy la plataforma
Arduino. Estas exponen una interfaz de uso que abstrae la comunicacién y configuracion
del hardware al nivel mas bajo, programando también la memoria del procesador a través
de los fuses y lockbits.

Utilizamos el bootloader provisto por RobotGroup que permite cargar el programa en la
memoria del robot a través de una conexién USB.

En adelante se detallara la arquitectura del subsistema que satisface la funcionalidad men-
cionada anteriormente, que puede comprenderse como la légica de control y comunicacién
del robot.

5.4.1. Arquitectura general

Se supone un funcionamiento en modalidad maestro-esclavo donde el robot recibe men-
sajes de control de un nodo central y envia a este mismo mensajes de estado. Una vez
recibido un mensaje de control, el robot realiza de forma auténoma la tarea representada
por ese mensaje y una vez finalizada envia otro mensaje informando el estado en el que se
encuentra.

La asignacion de responsabilidades a componentes se realiza de la siguiente manera.

N6 desacopla el acceso a los sensores y actuadores del robot a través de una seméantica
de mayor nivel, permitiendo acceder a los valores de lectura y escritura con descrip-
ciones relacionadas a la configuracién actual, también es el responsable de asignar el
procesador de forma ordenada a los otros componentes

32 5. Robot modelo N6 y extensiones de software/hardware

MessageManager tiene conocimiento de las colas de comunicacién y de los serializadores,
deserializadores que permiten llevar un objeto de mensaje hacia y desde su represen-
tacion serial, expone una seméntica que permite preguntar si existe un mensaje en la
cola, pedirlo apropiadamente como un objeto y enviarlo a un destinatario

Conjunto de mensajes cada mensaje es representado por un objeto y esta relacionado a
un serializador/deserializador que es responsable de llevarlo desde y hacia su repre-
sentacion serial

Conjunto de comandos el objeto de comando encapsula el comportamiento que el robot
debe ejecutar en un momento dado, proveen una seméantica de inicializacién, ejecucion
y limpieza

La figura 5.5 intenta representar, de forma simplificada, la relaciéon entre los componen-
tes. El componente etiquetado como N6 abstrae el acceso a los puertos de entrada y salida
y se comunica con el controlador de mensajes para evaluar si hay algin mensaje de control
esperando ser leido, 0 un mensaje de estado por enviar. Si, en efecto existe un mensaje de
control que exige la ejecucion de un comando, el comando referido es instanciado y puesto
en ejecucion.

Mensaje 1 | ... | Mensaje N Comando 1
Emisor de Receptor de
M ensajes M ensajes
Serializador
de mensajes Comando M
Biblioteca N6
Biblioteca Atmel
Arduino
RobotGroup

Fig. 5.5: Esquema general de la arquitectura del robot

Se analiza la recepcion de un mensaje de control, su procesamiento y consecuente puesta
en marcha del comando relacionado. Al describir esta interaccién se describen parcialmente
los objetos relacionados, junto con sus estructuras de representacion, mensajes intercambia-
dos y nocién general de los algoritmos.

5.4. Software 33

Robot MessageManager MessageReceiver | | Message | | aCommand
[] hasPendingMessage()
hasPendingMessage()
. true D
o ____true | L]
getNextMessage()
e getNextMessage()
< 77777777777777777 D
deserialize(serializedMessage, messageLength)
oIz
deserialize() R
aMessage VD
s
processCommandMessage(aMessage)
-~ aCommand
aMessage
i

rgsetFromMessage(aMessage)

execute()

Fig. 5.6: Procesando un mensaje de control.

El punto de partida se define en el momento en que un nodo de control envia un mensaje
serializado a través de la antena de emisién, la placa de radio del robot recibira la informa-
cién transmitida en forma secuencial y mantendra una copia de la misma en su buffer.

El objeto que abstrae el software y cumple la funcion del scheduler (N6) recibe un mensaje
de actualizacién (update) y envia un mensaje al controlador de mensajes (MessageManager)
para evaluar si existe un mensaje esperando en la cola (hasNextMessage). El controla-
dor envia el mensaje a quién éste conoce como receptor de mensajes (MessageReceiver).
En verdad ésta clase y su contraparte el emisor de mensajes (MessageSender) son de ti-
po abstracto y en la practica su funcionalidad es cubierta por una tunica implementacién
que recibe y envia mensajes a través de un puerto serie (SerialSenderReceiver). Si el en-
vio del mensaje hasNextMessage desde N6 da como resultado un valor verdadero, entonces
se pide al MessageManager el préximo mensaje en cola a través de un envio del mensa-
je getNextMessage, que devuelve un objeto mensaje, involucrando a MessageManager que
pide al objeto de clase del mensaje relacionado (e.g. FollowLineMessage) un objeto de men-
saje materializado a través del mensaje deserialize. Entonces N6 consigue una referencia
al comando relacionado a través de una tabla que representa una funcién cuyo dominio es
el de los identificadores de mensaje y con imagen en los comandos existentes.

El comando asi relacionado recibe dos mensajes, primero el de resetFromMessage que le
permite inicializar o limpiar estructuras y luego execute que ejecuta la légica de control

34 5. Robot modelo N6 y extensiones de software/hardware

del comando.

A continuacion se detallan interacciones relevantes a este caso de estudio.

El objeto MessageManager contiene dos tablas relacionadas a la serializacién y deseriali-
zacion de un mensaje. La primera va a ser referida como mid y relaciona un cédigo de
identificacion de mensaje con el indice de la funcién de serializacién/deserializaciéon que se
encuentra referenciada con un puntero en la tabla que sera referida como serializers.

mid(x):int — int,serializers:int — (char+* — Message)

De forma que una vez leido el cédigo de mensaje (que por otro lado tiene ubicacién cono-
cida dentro de la cadena), el mensaje puede conseguirse con:

serializers(mid(code))

La existencia de una tabla para resolver la relacion entre el cédigo de mensaje y el indi-
ce del serializador en otra tabla esta motivada unicamente por las limitaciones de memoria
en el dispositivo. De forma andloga se relacionan los c6digos de mensaje de los mensajes de
control con los comandos a ejecutar como respuesta.

5.4.2. Logica de control

Como se ha visto cada mensaje de control se relaciona con un comando que representa
el comportamiento esperado por parte del robot.
Si bien se ha dicho que el médulo N6 cumple con la funcién de un scheduler, se debe aclarar
que se trata de un scheduler de naturaleza colaborativa, donde cada proceso (en este caso
comando) libera el procesador de forma activa, esto quiere decir que no se sigue una politica
de desalojo forzoso. Cada comando extiende la definicién de la clase Command sobreescribien-
do el método update. En cada ciclo de ejecucion el componente N6 envia éste mensaje a su
comando activo, el comando a su vez ejecuta el ciclo de control (que se supone acotado de
forma de no bloquear el comportamiento del robot en su totalidad) y libera al procesador
saliendo de la funcién (update). Si el comando considera que ha concluido su tarea o que ha
alcanzado un estado de error marca su variable de estado como terminada, emite en caso
de ser necesario el mensaje de estado correspondiente y concluye la ejecucién de la funcién
liberando asi al procesador.

5.4. Software 35

Resultado: true si la ejecucién termina correctamente o se alcanza el objetivo, false
si se alcanza un estado de error

ejecutar légica de control;

si se alcanza un estado de error entonces

enviar mensaje de error;

marcar estado del comando como terminado;

devolver false;
ino, si se consigue un estado objetivo entonces

enviar mensaje de confirmacion;
marcar estado del comando como terminado;

devolver
en otro caso
| devolver true y liberar el procesador;
Algoritmo 1: Esquema general de un comando

Debido a la limitada capacidad de memoria de programa y de datos del dispositivo se
ha implementado un conjunto reducido de comando que permitan cubrir la funcionalidad
esperada para el escenario propuesto. Se describe su funcionamiento en términos generales.

2]

FollowLineCommand define un comportamiento en el que se utiliza la lectura de los sen-
sores infrarrojos para mantener al robot centrado respecto de una linea negra que se
pinta sobre el piso. Se utiliza la diferencia de valor entre los sensores para compensar
la velocidad de los motores. Si se detecta un nimero de lecturas erréneas (por arriba
del valor de negro esperado en ambos sensores) se envia un mensaje de error y se de-
tiene la ejecucion del comando, si se realiza una lectura de valor intermedio (lectura
de valor definido en un rango inferior al rango de lectura de piso, blanco, y superior al
rango de lectura de linea, negro) se envia un mensaje de éxito y se detiene la ejecucion
del comando

TurnCommand se controlan los motores del robot para realizar un giro de noventa grados
a cualquiera de los lados o dar media vuelta, el comportamiento especifico del comando
depende del mensaje que lo haya iniciado, una vez relizado el giro se envia un mensaje
de éxito y se detiene la ejecucion del comando

SetMotorSpeedCommand se actualiza la velocidad de los motores con el valor recibido
a través del mensaje y se detiene la ejecucion del comando

5.4.3. Protocolo de comunicacion

Para controlar de forma remota cada robot se disefia e implementa un reducido proto-

colo de comunicacién. El control se hace intercambiando mensajes de control y estado. Los
mensajes son de longitud variable y estan divididos entre un encabezado de longitud fija y
el contenido de datos (payload).
La comunicacién se realiza entre un iniciador y un receptor como se muestra en el dia-
grama 5.7. El receptor acepta el mensaje de inicio de comunicacién si no se encuentra
intercambiando mensajes con otro nodo. El iniciador envia un mensaje de inicio Com-
municationStartMessage que puede ser respondido con un CommunicationStartAck-
nowledgeMessage dandose inicio al intercambio de mensajes de control y estado o con un
CommandErrorMessage indicando que no puede inicarse la comunicacién con el recep-
tor por un motivo especificado en el cédigo de error.

36 5. Robot modelo N6 y extensiones de software/hardware

Una vez que el intercambio de mensajes de control y estado finaliza el iniciador envia un
mensaje CommunicationStopMessage y ambas partes consideran la comunicacion ce-
rrada y realizan las tareas de mantenimiento necesarias. Si las partes no estan esperando
respuesta de un mensaje enviado previamente deberian enviar regularmente (en un inter-
valo cercano a los 200ms) un mensaje KeepAliveMessage para mantener abierto el canal.
A continuacion se describe el formato de mensaje y se da una descripcion de los mensajes
utilizados en este trabajo.

Iniciador Receptor

CommunicationStartMessage

CommunicationStartAcknowledgeMessage

CommunicationStopMessage

Fig. 5.7: Procesando un mensaje de control.

El paquete de mensaje es de longitud variable pero su cabecera es de longitud fija. El
formato general se describe en la figura 5.8.

01 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25

LAFHIS | Largo | MID | Rev |F| Para De

Campo Descripicién
LAFHIS Encabezado de sincronizacion
Largo Largo del mensaje expresado en bytes

MID Cédigo de identifiacion del mensaje
Rev Numero de revisiéon del mensaje

F Byte de mascara

De Cédigo del remitente del mensaje
Para Codigo del destinatario del mensaje

Fig. 5.8: Formato general del paquete de comunicacion

Cabe aclarar de los campos descriptos algunos detalles: el campo de Revisién permite
extender el protocolo con nuevas versiones respetando la retrocompatibilidad, el campo de
Flag o mascara permitiria marca en un futuro la posibilidad de enviar una respuesta a mo-
do de piggybacking.

Si una cola de recepcién, por ejemplo en la placa de comunicacién del robot, contiene una
cadena de cualquier longitud que no contiene el encabezado de sincronizacién, ésta se des-
carta y se continda leyendo hasta encontrarlo. Una vez ubicado se lee hasta la posicion del
valor de Largo del mensaje para saber si se han recibido suficientes bytes como para formar
el mensaje. De no ser asi se continua leyendo. Se aprovecha también que el c6digo de men-
saje se encuentra en una posicién conocida para buscar a partir de éste al deserializador

5.4. Software 37

correspondiente.

5.4.3.1. 001.CommunicationStartMessage

Mensaje de inicio de comunicacién. Es enviado por el iniciador para comenzar la comu-
nicacion con el nodo receptor, quien puede recibir como respuesta un mensaje Communi-
cationStartAcknowledgeMessage (5.4.3.2) o un mensaje CommandError(5.4.3.4)

01 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25

LAFHIS 26 0001 | 001 |0 XXXX | XXXX

5.4.3.2. 002.CommunicationStartAcknowledgeMessage

Mensaje de confirmacién al mensaje de inicio de comunicacion. Es enviado por el recep-
tor como confirmacién del inicio de la comunicacién.

01 2 3 4 5 6 7 8 9 101112 13 14 15 16 17 18 19 20 21 22 23 24 25

LAFHIS 26 0001 | 002 |0 XXXX | XXXX

5.4.3.3. 003.CommunicationStopMessage
Mensaje de fin de comunicacién. Es enviado por el iniciador para indicar que se finaliza
la comunicacion.

01 2 3 4 5 6 7 8 9 101112 13 14 15 16 17 18 19 20 21 22 23 24 25

LAFHIS 26 0001 | 003 |0] XXXX | XXXX

5.4.3.4. 004.CommandErrorMessage

Mensaje de error en respuesta a un mensaje recibido.

01 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

LAFHIS 32 0001 | 004 [0 XXXX | XXXX | Rej | E

Campo Descripiciéon

Rej Cédigo del mensaje rechazado
E Cédigo de error indicando el motivo por el cual se ha recha-
zado el mensaje

El significado del cédigo de error se explica en la tabla 5.4.3.4.

38 5. Robot modelo N6 y extensiones de software/hardware

Cédigo Descripicion

-2 El largo del mensaje no se corresponde con el valor provisto

-3 No se encuentra el caracter de fin de mensaje

-4 Se desconoce el c6digo de mensaje (MID)

5 Mensaje rechazado, puede deberse a que el receptor se en-
cuentra en comunicacién con otro iniciador

-6 El nodo receptor no tiene ninguna comunicacién en curso

-2 Se deconoce el c6digo de comando

5.4.3.5. 005.CommandAcceptedMessage

Mensaje de confirmacién en respuesta a un mensaje de control.

01 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

LAFHIS 32 0001 | 005 |0] XXXX | XXXX | Acc

Campo Descripiciéon

Acc Codigo del mensaje aceptado

5.4.3.6. 202.FollowLineMessage

Mensaje de control que indica que debe iniciarse un comando de seguimiento de linea.
Puede ser respondido por un CommandAcceptedMessage(5.4.3.5) o con un Comman-
dErrorMessage(5.4.3.4)

01 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25

LAFHIS 26 0001 | 202 |0 XXXX | XXXX

5.4.3.7. 203.DestinationReachedMessage

Mensaje de estado que indica que el robot ha encontrado un nodo de interseccién duran-
te la ejecucion de un comando.

01 2 3 4 5 6 7 8 9 101112 13 14 15 16 17 18 19 20 21 22 23 24 25

LAFHIS 26 0001 | 203 |0 XXXX | XXXX

5.4.3.8. 204.RobotLostMessage

Mensaje de estado que indica que el robot no ha podido realizar una lectura valida o por
algin motivo no puede determinar su ubicacién.

01 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25

LAFHIS 26 0001 | 204 |0] XXXX | XXXX

5.5. Dificultades y lecciones aprendidas 39

5.4.3.9. 205.TurnLeftMessage

Mensaje de control que indica que debe iniciarse un comando de giro a la izquierda.
Puede ser respondido por un CommandAcceptedMessage(5.4.3.5) o con un Comman-
dErrorMessage(5.4.3.4)

01 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25

LAFHIS 26 0001 | 205 |0] XXXX | XXXX

5.4.3.10. 206.TurnRightMessage

Mensaje de control que indica que debe iniciarse un comando de giro a la derecha. Puede
ser respondido por un CommandAcceptedMessage(5.4.3.5) o con un CommandError-
Message(5.4.3.4)

01 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25

LAFHIS 26 0001 | 206 |0 XXXX | XXXX

5.4.3.11. 207.TurnAroundMessage

Mensaje de control que indica que debe iniciarse un comando de medio giro. Puede ser
respondido por un CommandAcceptedMessage(5.4.3.5) o con un CommandErrorMes-
sage(5.4.3.4)

01 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25

LAFHIS 26 0001 | 207 |0] XXXX | XXXX

5.4.3.12. 911.KeepAliveMessage

Mensaje enviado entre las partes para mantener el canal de comunicacion abierto.

01 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25

LAFHIS 26 0001 | 911 |0] XXXX | XXXX

Para este trabajo el protocolo se ha implementado una versién en lenguaje C++ para
el nodo de recepcion, que corresponde al robot N6 y una versién en Java para el nodo de
control, que corresponde a la maquina que ejecuta el entorno de enactment.

5.5. Dificultades y lecciones aprendidas

El objetivo de esta tesis es probar la adecuacion de las técnicas de modelado y sintesis
antes mencionadas en un contexto industrial que hace uso de una tecnologia particular, el
robot modelo N6. Si bien se intenta consumir la teoria relacionada con este tipo de controla-
dores y las técnicas para producirlos, lo que se podria llamar el costado implementativo fue
la principal fuente de dificultades. La arquitectura limitada, principalmente en lo que toca a
la memoria principal del procesador del robot, (debe recordarse que se trata de 2.5kbytes

40 5. Robot modelo N6 y extensiones de software/hardware

para almacenar todos las estructuras vivas para el robot) inicié un trabajo de escritura y re-
escritura del cédigo de control y comunicacion para evitar un desborde de la memoria. Esto
limita por un lado la cantidad de bloques de control que pueden ejecutarse en un momento
(se limita por disefio a solamente uno) y a la cantidad de lo que podria llamarse factorias de
comandos y mensajes del protocolo de comunicacién, ya que cada uno de éstos registra una
funcién de inicializacion o deserializacion/serializacion en la estructura principal del robot.
El tamafio de la memoria de programa y datos (son espacios separados en esta arquitec-
tura) también limita de forma bastante similar la funcionalidad que el robot puede exponer.
Probablemente se podria haber tomado un enfoque mas estructurado, que evite la sobrecar-
ga de memoria que se produce como resultado de la divisién de responsabilidades en clases,
con macros y un uso mas intensivo de punteros a funcién. Al momento en que éstas difi-
cultades se volvieron mas evidentes el trabajo sobre la lgica del robot se encontraba muy
avanzado y la solucion practica fue reducir la cantidad de mensajes del protocolo de comu-
nicacion, la longitud de los mismos y deshacerse de légicas de control no fundamentales.
La falta de un emulador competente o la posibilidad de realizar on chip debugging
implicé que la tarea de depuracién y seguimiento se realice a partir de un método de punto
medio. Esto quiere decir que cuando se detectaba una anomalia, la forma de ubicar el codi-
go defectuoso (salvando el caso de una sobrecarga de memoria que suele producir reseteos
recurrentes del procesador) era dar una sefial sonora (utilizando el buzzer embebido en el
robot) para indicar que se habia superado cierta porcion de cédigo con éxito, por ejemplo, si
se parte el programa en dos, y se coloca la llamada al buzzer luego de la mitad del cédigo
puede suponerse (salvo situaciones que involucren la concurrencia de mas de una condicién
en el error) que la primera mitad fue ejecutada con éxito, luego se desplaza la llamada al
buzzer a la mitad de la porcién de cédigo que atin no se ha probado, si no se llega a ejecutar
la llamada (no se oye el pitido) se sabe que hay al menos un error en la primera mitad de la
segunda porcion del programa, asi se sigue dividiendo y refinando.

En relacién a la comunicacién inalambrica, el cédigo original del robot, tal como es entrega-
do por RobotGroup, hace uso de una versién de la biblioteca de Arduino en la que el puerto
serie es implementado con un tinico buffer, esto quiere decir que se utiliza una misma es-
tructura interna para almacenar los datos leidos y los escritos, de forma tal que si se escribe
un valor mientras se encontraba atn leyendo, se pisa el valor anterior desde el puntero al
fin del buffer circular en adelante. La solucién frente a esto es forzar lecto/escrituras exclu-
yentes, de forma que no se corrompan los datos que se encuentran en el buffer del puerto
serie.

La idea de utilizar el mismo par de sensores para el seguimiento de linea y la deteccién de
puntos de interseccién introduce un problema generado por la aparicién de un tercer va-
lor de lectura. Los robots que realizan seguimiento de linea suelen discriminar solamente
entre un valor de linea y uno de base, de forma que el espacio de valores puede dividirse
facilmente, incluso si hace falta reservar bandas de valor para las lecturas inciertas (esto
quiere decir, valores para los cuales no es posible determinar uno de los dos valores). Con la
aparicion de un tercer valor en un rango que se encuentra entre los valores de negro pleno y
blanco pleno, los errores introducidos en la lectura se vuelven mucho mas significativos, ya
que los rangos sobre los cuales se decide si un valor es negro, blanco o gris son mucho mas
angostos. La lectura del valor es de naturaleza erratica, depende de la intensidad de luz
ambiente, de su temperatura, de la distancia de los sensores a la banda y de la calidad de
impresion del mapa. Incluso el desgaste producido por las sucesivas pasadas del robot sobre
el mapa se vuelve mucho més evidente a la hora de realizar estas lecturas trivaluadas. Si

5.5. Dificultades y lecciones aprendidas 41

bien el problema sigue presente, se lo ha mitigado con un mecanismo sencillo bajo el cual
una lectura se determina por ejemplo negra, si se han realizado varias lecturas sucesivas
con el mismo valor.

Si bien han surgido varios inconvenientes de menor magnitud, se evidencia las dificultades
asociadas a trabajar con un caso de estudio que involucra varias arquitecturas y en parti-
cular una con un soporte tan reducido, al menos si se lo compara con tecnologias mas habi-
tuales o incluso maés robustas. Si bien se podria pensar en extender el alcance del modelado
y la sintesis hasta las capas de mas bajo nivel para intentar satisfacer ciertas propiedades
deseables en este sub-sistema, parece mas interesante atacar las limitaciones desde el mo-
delado de alto nivel, por ejemplo conteniendo los errores emergentes en la ejecucién con las
herramientas provistas por la extensiéon de dominios falibles o el modelado de un proceso
de reubicacion manual.

Se evidencia también la dificultad de llevar adelante, y a la par, un trabajo de implementa-
cion del soporte fisico (se entiende por esto la programacion del cédigo que se ejecuta en el
robot) junto al de modelado y sintesis. Probablemente la interaccion con un especialista o
un grupo, con conocimiento especifico de dominio y experiencia previa en la arquitectura de
destino, permita una exploraciéon mas agil y provechosa de la problematica de la ejecucion
de estrategias sobre un soporte de hardware/software particular.

42

5. Robot modelo N6 y extensiones de software/hardware

6. EXTENSION DE MTSA

Se presenta el trabajo realizado para ejecutar los controladores sintetizados a través de
la herramienta MTSA, una caracterizacion de los agentes de ejecucién (Enactor) y ejemplos
de adaptadores escritos siguiendo estas guias.

6.1. Framework de enactment
6.2. Adaptadores

Se discute la propuesta e implementacion del componente de ejecucion con intencion de

integrarlo a la herramienta de modelado, chequeo y sintesis. El lenguaje en el que se escribe
el componente es Java.
Para cada componente de ejecucion se escribe un adaptador que respeta la arquitectura Ya
que la respuesta de un agente en el marco de una ejecucion es potencialmente asincrona, i.e.
en el caso en que se envia un mensaje y se espera uno de varios mensajes en algin momento
futuro, se decidi6 en la implementacién del componente de ejecucion relajar el esquema de
intercambio de mensajes haciendo uso de eventos. Se presentan inicialmente dos objetos,
el de recepcién de eventos y su contraparte de emisién, luego el componente de ejecuciéon
sera una composicion natural de ambos, permitiendo tanto recibir mensajes (representando
la situacion en la que se envia un mensaje de control) o emitiéndolos a través de eventos
(mensajes de estado).

public abstract class TransitionDispatcher<Action> {
public synchronized void
addTransitionEventListener(ITransitionEventListener<Action> listener){

X
protected void fireTransitionEvent(Action action) throws Exception{

}

Fig. 6.1: Objecto de emision de mensajes (TransitionDispatcher)

En la figura 6.1 se presenta una simplificaciéon del objeto de emisién que muestra basica-
mente el mecanismo por el cual un colaborador que implemente la interfaz ITransitionE-
ventListener puede registrarse para recibir los mensajes de un enactor (addTransitionEventListener),
y la forma en la que el enactor envia un mensaje a sus suscriptores (fireTransitionEVent).
Se abstrae el tipo de datos de la accion (que representa una transicién en el sistema de tran-
siciones etiquetadas), y puede entenderse por el momento que el mismo es una cadena.

43

44 6. Extension de MTSA

public interface ITransitionEventListener<Action> {
public void handleTransitionEvent(TransitionEvent<Action>
transitionEvent) throws Exception ;

Fig. 6.2: Objecto de recepcion de mensajes (ITransitionEventListener)

En la figura 6.2 se presenta una simplificacién del objeto de recepcién de mensajes que
muestra basicamente el mecanismo por el cual un colaborador se declara como receptor de
mensajes (handleTransitionEvent). En conjuncién con el mecanismo de registro para un
emisor (addTransitionEventListener) se cubre la funcionalidad necesaria para permitir
el pasaje de mensajes entre agentes de ejecucion.

6.3. Esquema de control

A modo de prueba, y en respuesta a la necesidad de seleccionar la accién controlable en
cada estado controlable para una ejecucion particular, se define un componente Controller.
Se trata de una especificacion del tipo Enactor con un método abstracto takeNextAction
donde se define una légica para seleccionar la transicién a tomar dentro de las habilitadas
para el estado. A la hora de realizar este trabajo se han implementado el esquema Take-
FirstController que toma la primera transicién segin el orden definido por la estructura
interna de representaciéon y RandomController que toma una transicién controlable de
forma aleatoria.

6.4. Ejecutando el controlador

En la seccion 3.3 fueron presentados los procesos que describian a cada componente en
la sintaxis extendida de F'SP. Los componentes disponibles para la ejecucion son implemen-
tados en el paquete ar.uba.dc.lafhis.enactment, luego la instanciacién de adaptadores
disponibles se describe como entradas en el archivo de configuracién context.xml. A conti-
nuacion se presenta un extracto del mismo.

<?xml version="1.0" encoding="UTF-8"7>

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:context="http://www.springframework.org/schema/context"
xsi:schemalocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-3.0.xsd
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context-3.0.xsd">
<context:annotation-config/>

<!-- Enactors -->
<bean id="N6" class="ar.uba.dc.lafhis.enactment.robot.N6Robot">
<constructor-arg index="0" value="N6 Robot"/> <!-- Name-->

<constructor-arg index="1" value="robot.success"/>
<constructor-arg index="2" value="robot.fail"/>
<constructor-arg index="3" value="robot.lost"/>
<constructor-arg index="4" value="robot.follow"/>

6.4. Ejecutando el controlador 45

<constructor-arg index="5" value="robot.turnLeft"/>
<constructor-arg index="6" value="robot.turnRight"/>
<constructor-arg index="7" value="robot.turnAround"/>
<constructor-arg index="8" value="robot.readSensors"/>
<constructor-arg index="9" value="robot.readSensorsReply"/>
<constructor-arg index="10" value="robot.readUSSensor"/>
<constructor-arg index="11" value="robot.readUSSensorReply"/>
<constructor-arg index="12" value="robot.retry"/>
<constructor-arg index="13" value="robot.successRetry"/>

</bean>

<I--

-->

<!-- Enactor Factory -->

<bean id="enactorFactory" class="enactment.EnactorFactory"/>
<!-- Controller Strategies-->

<bean id="controllerScheduler"
class="ar.uba.dc.lafhis.enactment.TakeFirstController">
<constructor-arg index="0" value="Take First Controller"/>
</bean>
<bean id="randomScheduler"
class="ar.uba.dc.lafhis.enactment.RandomController">
<constructor-arg index="0" value="Random Controller"/>
</bean>
<!-- Scheduler Factory -->
<bean id="schedullerFactory" class="enactment.SchedulerFactory"/>
</beans>

Las entradas del archivo de configuracién describen los objetos que podran instanciarse en
la ejecucion, sus parametros tienen relacion directo con los parametros de entrada de sus
constructores.

En el curso de una ejecucion los pasos a seguir serian éstos:

Especificacion Se declara la especificacién en la sintaxis ya presentada, tanto de los pro-
cesos, propiedades y definicién del controlador

Sintesis Se sintetiza el controlador

Configuracion Se seleccionan los adaptadores y el esquema de control pertinentes a la
ejecucion (Enactment->0Options en la herramienta)

Ejecucion Se pone en marcha la ejecucién (Enactment->Run Model en la herramienta)

46

6. Extension de MTSA

Fig. 6.3: Describiendo los procesos, propiedades y especificacion del controlador en MTSA

le Edit Check Build MTS Window Help Options Enactment
DE W $B@-« B &I Hc B G 44

Edit | Output | Draw

A =
N robot. turnaround -» H_0_0S | robot.turnRight -> N.O_0_E | robot. turnLeft

W robot. turnAround -» N0 0W | robot.turnRight -> N_00_S | robot.turnleft robot. follow -> N_0_1_E).

N N | robot. turaRight -> N_0_OW | robot. turnLeft robot. follow -> N10.5).

W E | robot. turaRight -= I0_ON | robot. turnLeft -

H S | robot.turnRight -> N_O_1E | robot. turnleft

N0 W | robot. turnRight > N_0_1.S | robat. turnLeft

. H | robot. turnRight -> N_O1_W | robot. turleft robot.follow -> N_1_1_S | outTray.load -» N0
W E | robot. turnRight > N_0_1_N | robat. turnleft robot. follow -> N_0_0W).

W S | robot. turaRight ~= I_1_0_E | robot. turnLeft robat.follow -> N_OO_N | inTray.unload -» H_1.
1 W | robot. turnRight -> N_1_0_S | robat. turnLeft robot. follow -> N_1_1_E).

1Z0¢ | robot. turaRight = I_1_0W | robot. turnLeft

W E | robot. turnRight -> N_1_ON | robat. turnLeft

W S | robot. turaRight —= I1_1_E | robot. turnLeft robat. follow -> N_O_1_H).

N W | robot. turnRight > N11.S | robot. turnleft

W | robot. turaRight = I_1_1_W | robot. turnLeft

N robot. turnaround -» N_1_1E | robot.turnRight -> N_1_1_N | robot. turnleft robot. follow -> N_1_0W).

INTRAY = (inTray. losd -> infray.unlosd -> (inTray.unloaded -> INTRAY | inTray.fell -» INTRAY)).
OUTTRAY = (outTray-Load ->(outTray. fell -» OUTTRAY | outTray. oaded -> outTray.unlosd -> OUTTRAY)).|

Joeor

60 = (inTray.unload -> outTray.load
080T_VOVENENT_U,
ROSOT_OVEVENT.S = (AnraynlLoad -» ROBOT_LORDTNG_iOVING

| robot. follow->ROBOT_REPLY_U

| rabat. turnRight->ROBOT_SHOULD_FOLLOW U

Irobot. turnLeft--A0R0T_SHOUL.FoL L0 D

[robot. turnAround->ROBAT_SHOULD_FOLLOW_U),
FOBOT_SHOULD FOLLGHLU - (robot. Lost-»ROBOT_LOST_U] rebot. success-FOBOT_FOLLON),
ROBOT_FOLLOW U = (inTray.unload -> ROBOT_LOADING_FOLLOWING | robot. follon-»ROBOT_REPLY_U).
ROBUT REPLY 0 = (rabor.Soce-ROE0T LOST 01 rabcs. scece-sRUEST MOVENENT.0).
ROBOT_LOST U = (robot. retry-»ROBOT RETRY U),
ROBOT RETRY U = (rabot. lost->ROBOT_LOST_U| rabot. successRetry->ROBOT_WOVENENT_U),
ROBOT_LOADTG_WOVING = (inTray.unloaded -» ROBOT_WOVENENT L | inTray.fell -» ROBOT_WOVENENT U),
ROBOT_LOADING_FOLLOWING = (inTray.unloaded -> ROBOT_FOLLOW_L | inTray. fell -» ROBOT_FOLLOW D).
ROBOT_MOVEUENT_L. » {outTray. losd - ROBOT WLOADING_VOVING

| abot- TolLow-~ROROT_REP

1 abo. urneghe-sROEST SKBULO_FoLLOH_L

| rabot. turnLeft-~ROBOT_SHOULD_FOLLOW L

[rabot. turnAround-»ROBIT_SHOULD_FOLLOW_L),
ROBOT_SHOULD-FOLLOUL - (robot.lost- »ROBET_LOST_L | rebo. sccess->ROBDT_FOLLONL).
ROBUT_FOLLON L = (outTray.1oad -~ ROROT_UNLOAVING.FOLLONING robot. fellon--R0B0T_REPLY_L).

i siiccess->ROBOT_MOVENENT_L).

ROBUTLOST [= Creoe:resry-ROROT FETRT L),
ROBOT RETRT_L = (robot. 1o51--ROBOT LOST.L| rebot. successRetry-~ROEOT wovEiENT L),
ROBOT_UNLOADING_NOVING = (outTray. Tosded -> ROBOT_MOVEHENT_U | outTray.f ROBOT_HOVENENT_U)
OG0T ML OADTMG.FOLLOVING . (ovetsay-naaded o RUBOT FOLLORLU' | ootTray. Se11 -» ROBOT-FOLLONLD).

ROBOT_CAR(

CATOR = (robot. successRetry->RELOCATOR_RELOCATE),
RELOCATOR RELOCATE = (relocator.go_N_0_0_H->RELOCATOR).

set ActionCommands = {robot.follow, robot. turnRight, robot. turnLeft, robot. d.robot. retry}
set RelocateCommands » {relocator.go.H.0.0M)
set Repl {ro bot. "

Toady

set Controllabl
Set Feilhctions = {robot- tost, inTray felt, nutTIay ety
set Uncontral ailAct teComnands, robot robot, y.inTray.load, inTrsy.fell, inTray.unloaded, outTray. Losded, outTrsy. fell,outTray. unload]

Set Ripnabes =" flontrot1dbiehc hons. Uncomsre obicncrions)

|[Scenario = (AP || ROBOT || RELOCATOR || INTRAY || OUTTRAY). -

R W ¥ BRvoc B &I B e 44%
Edit Output Draw
Compiled: MAP A
Compiled: ROBOT
Compiled: RELOCATOR
Compiled: INTRAY
Compiled: OUTTRAY
Composition:
Scenario = Scenario.MAP || Scenario.ROBOT || Scenario.RELOCATOR || Scenario.INTRAY ||
Scenario.OUTTRAY
State Space:
16 * 16 * 2 * 3 * 3 = 2 ** 13
Composing...
potential DEADLOCK
-- States: 1369 Transitions: 4315 Memory used: 43522K
Composed in 90ms
Composition:
C = Scenario
State Space:
1369 = 2 ** 11
Composing...
potential DEADLOCK
-- States: 1369 Transitions: 4315 Memory used: 53218K
Composed in 42ms
Solving the LTS control problem.
Environment states: 1369
Game states: 1582
Analysis time: 1936ms.
Controller [1007] generated successfully.

Fig. 6.4: Sintetizando el controlador en MTSA

6.4. Ejecutando el controlador

47

Enactment Options

N6 Robot

Input and Output Tray

Enactors: ralocator

Random Controller

Scheduler: Random Controller i v |

@ i_[}'ancall |

Fig. 6.5: Seleccionando los adaptadores y el equema de control

k Build MTS Win

BEH 4 BE- =
Edit Output Draw Listening for actions
Scenario o

lic

secondinTray.load | | secondinTray.unloaded

NN e e st

TR i tTray.Fell
Pause Simulation | | Stop & Close| |+ \inTsafall] (eutmaylaadad) LU s

Help Options Enactment

Listening for actions

v
A

> &

relocator.go_N_0_0_N

LTS trace

robot.lost | robot.successRetry | go farward

go backward| [go left| | go right| [stop

Fig. 6.6: Ejecutando el controlador

48

6. Extension de MTSA

7. EVALUACION

Contando con la extension de la herramienta MTSA, el soporte de hardware/software
en el robot N6, la definicién y confeccion del mapa y las bandejas, y de los adaptadores y
esquemas de control necesarios, resta definir las dimensiones de cambio sobre las que se
ha de evaluar la adecuaciéon de las técnicas y los individuos que han de representar una
posicion en el espacio de pruebas.

7.1. Casos de estudio

Se definen seis casos distintos sobre un mapa rectangular de cuatro nodos, un robot
posicionado en la esquina del nodo (1,0,N) que significa, la segunda fila, primera columna
mirando al norte, la bandeja de entrada se encuentra habilitada en (1,0,N) y la de salida
en (0,1,S8). Las diferencias entre los casos se detallan a continuacién:

Caso A el robot debe llevar carga de la bandeja de entrada a la de salida con infinita fre-
cuencia

Caso B como el caso A pero con la conexién entre (1,0) y (1,1) bloqueada por un obstaculo

Caso C como el caso B pero con la restriccion de que el robot no puede hacer dos giros a
izquierda ni dos giros a derecha como restriccion de seguridad

Caso D como el caso A pero con la restricciéon de que el robot no puede hacer dos giros a
izquierda como restriccion del proceso que describe el movimiento del robot

Caso E como el caso A pero también puede tomar carga en (0,0,S)

7.2. Cambios de configuracion

La idea es presentar cambios en la descripcién del problema e interpretarlos como cam-
bios de configuracién, para mostrar como la técnica permite sintetizar controladores frente
a la eventualidad de un cambio sin precisar un trabajo adicional por debajo de la especifica-
cion. Obviamente que, en el caso en que se precise funcionalidad no provista por el conjunto
de maquinas disponibles, esto pierde validez y se deberda implementar la funcionalidad de
bajo nivel, el adaptador y extender la configuracién del entorno de ejecucion.

7.2.1. Causas de cambio de configuracion

Los cambios de configuracién son de caracter heterogéneo, tanto en su descripcién como
en sus causas. Pueden ser motivados por un cambio funcional o un refinamiento del do-
minio, ya que, por ejemplo al poner en ejecucién una estrategia, se gana conocimiento del
sistema y de la interaccion de las partes. Como consecuencia de ésto se enriquece el razo-
namiento y esto puede resultar en una modificaciéon en la descripcion de los procesos o las
propiedades de sistema.

Uno podria por ejemplo desear restringir, como es el caso, la ejecucion de dos giros consecu-
tivos a izquierda o derecha al observar que éstos presentan una mayor probabilidad de falla

49

50 7. Evaluacion

que si se ejecutan de forma aislada. O podria suceder que, ante un cambio en el entorno (se
agrega una bandeja de entrada) se deba redefinir €l o los procesos que describe o describen
la parte afectada.

7.2.2. Resultados

A modo de referencia se presentan algunos datos cuantitativos de los controladores sin-
tetizados para los casos A hasta E. Las pruebas se ejecutaron en una maquina Intel® Co-
re™2 Duo CPU E8500 @ 3.16GHz x 2 con 3.8Gb de memoria principal con un sistema ope-
rativo Ubuntu Release 12.04 64-bit Kernel Linux 3.2.0-60-generic. Los controladores fueron
sintetizados, sus estrategias ejecutadas y para cada una se ha creado un archivo en disco
para la traza de ejecucién, un video a través de una camara que ha capturado la ejecucién
sobre el mapa, un archivo con el controlador resultante y otro archivo con los datos de tiem-
po de procesamiento y demaés valores relacionados con el proceso de sintesis.

Si bien se habia planeado extender esta prueba incrementando el tamafo del mapa por
potencias de dos, esto resulté impracticable ya que rapidamente los controladores eran im-
posibles de conseguir por falta de memoria o por cotas temporales en el proceso de sintesis.

Caso #Estados #Trans. Memoria Tiempo #Estados Tiempo #Estados
entorno entorno Usada composi- juego sintesis controla-
cién dor
A 1369 4315 21696K 162ms 1582 1813ms 1007
B 1297 4039 57341K 5ms 1510 1176ms 763
C 1989 6037 22061K 147ms 2202 1655ms 815
D 1036 3338 36109K 105ms 1241 333ms 1241
E 2758 10079 27354K 166ms 1582 1813ms 1007

Se puede ver que para el resto de los casos los resultados son bastante similares.

Durante las ejecuciones se ha comprobado que en tanto las presunciones valgan, el siste-
ma satisface los objetivos, atun frente al dominio falible. Esto se traduce informalmente en
lo siguiente: en tanto las presunciones no valgan (no hay carga en la bandeja de entrada)
el controlador libera al robot para que se mueva con libertad por el mapa, pero en cuanto
aparece carga en la bandeja de entrada, el robot se dirige a ésta, intenta cargar y llevar
directamente a la bandeja de salida. En el caso de la falla por pérdida del item, vuelve al
comportamiento antes descripto, salvo que haya caido al descargar en la bandeja de salida
siendo que la bandeja de entrada ya se ha cargado nuevamente, en cuyo caso vuelve a reco-
ger carga de la bandeja de entrada. En el caso de que el robot se pierda siguiendo una linea
o girando, se dispara el mecanismo de reubicacién (en este caso manual que implica colocar
al robot en la posicién (0,0,N)) y a partir de ésto el robot continua con el comportamiento
anterior, esto es, si se encuentra cargado intentara descargar en la bandeja de salida, caso
contrario esperara a que aparezca carga o ird a buscarla a la bandeja de entrada.

7.3. Discusion

En el curso de esta tesis se ha intentado probar la adecuacién de las técnicas de modela-
do y sintesis al caso de una linea de distribucién que hace uso de un robot modelo N6. Esto
ha motivado la escritura de cédigo tanto para el robot como para la extensién de la herra-
mienta, los adaptadores y las especificaciones correspondientes, dando lugar a un trabajo
desplegado a lo ancho entre varios componentes y en diverso grado de abstraccion.

7.4. Conclusiones 51

La interaccién con el mundo fisico a través de los sensores y actuadores (en este caso con-
centrados en el robot) ha sido fuente de refinamiento del control de bajo nivel y ha motivado
el uso de la extensién de dominios falibles a la hora de modelar y sintetizar. Por otro lado se
ha prestado como campo de prueba sobre la forma de describir los procesos, las propiedades
de sistema y en general los modos de relacionar el modelo con los componentes de ejecucion.
La puesta en marcha de las estrategias o controladores da muestra de forma perceptiva de
su calidad, cabe preguntarse por ejemplo si es correcto que un robot recorra el mapa sin
mayor criterio s6lo porque las presunciones no valen, luego no es necesario satisfacer el ob-
jetivo. Esto podria (si llegase a probarse 1til y correcto), motivar el uso de una transiciéon
de no operacién en el proceso que describe al robot, de forma que un esquema de ejecucién
pueda, siendo que se encuentra habilitada en un nodo controlable, tomar ésta por sobre las
otras.

El uso de transiciones falibles ha demostrado ser muy provechoso para describir las situa-
ciones donde una operaciéon puede fallar de forma no sistemética como se ha dicho ante-
riormente, en particular para el movimiento del robot, que efectivamente falla. No se trata
de una falla simulada como la de las bandejas sino una falla real causada por errores de
lectura y condiciones irregulares en el entorno.

La extension de la herramienta para soportar la ejecuciéon de las estrategias convierte a
la herramienta en un entorno de trabajo, donde no sélo se modela un problema sino que se
construye un controlador que permite satisfacer los requerimientos y se lo pone en ejecucion
para validar que la ejecucién muestra es conforme a lo esperado.

7.4. Conclusiones

Si bien se cree que el objetivo inicial esta satisfecho se sustraen varias ideas o conclusio-
nes de esta tesis. Por un lado se probé la adecuacion de la técnica a entornos afine a aquellos
que hacen uso de un robot planar en una planta de distribucién. Cabe preguntarse qué ca-
racteristicas se espera que tenga un problema para validar la adecuaciéon de una parte de
la teoria o de las herramientas. Por ejemplo, parece evidente que para el caso de estudio de
esta tesis el dominio falible no es s6lo conveniente sino que necesario. Dificilmente puedan
sintetizarse controladores sin esta extension.

Se podria realizar un relevamiento sobre objetivos de sistema para problemas de indole
industrial o relacionados al uso de robots, para validar que estos objetivos expresados en
términos de un juego SGR(1) sobre dominios falibles sean suficientes.

El entorno de ejecucion se encuentra hoy dia acoplado a la herramienta de modelado y
sintesis, pero podria sin mayor inconveniente existir independientemente de ésta. Esto per-
mitiria desacoplar el proceso de modelado y sintesis del de ejecucién, mejorando tiempos
para pruebas repetitivas de un controlador, dando la posibilidad de ejecutar un controlador
en otro nodo fisico, o incluso distribuyéndolo entre varios nodos.

La caracteristica regular del mapa motiva una nocién (intuitiva) de que ciertas estructuras
deberian permitir reducir el espacio sobre el cual se construye el controlador.

Hay un punto particular que seria interesante modelar a futuro. La motivacién es esta:
si por alguna falla sistematica en el canal de comuniaciones el porcentaje de mensajes
erréneos comienza a aumentar, y los reintentos son infrutuosos, se podria incorporar un
mecanismo de timeout que lleve al robot a un estado estable. Probablemente haciendo uso
del mecanismo de reubicacion y enviando un mensaje que restituya el estado légico del ro-

52 7. Evaluacion

bot a la configuracién inicial. En particular seria un escenario interesante para probar un
mecanismo de timeout y recuperacion, que parece justificado en entornos industriales.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

Bibliografia

D. Fischbein, N. R. D’Ippolito, G. Brunet, M. Chechik, and S. Uchitel. Weak alphabet
merging of partial behaviour models. In IEEE Transactions on software engineering
and Methodology, to appear, New York, NY, USA, 2010. ACM.

D. Giannakopoulou and J. Magee. Fluent model checking for event-based systems.
In Proceedings of the 9th European software engineering conference held jointly with
11th ACM SIGSOFT international symposium on Foundations of software engineering,
ESEC/FSE-11, pages 257-266, New York, NY, USA, 2003. ACM.

M. Jackson. Software requirements & specifications: a lexicon of practice, principles
and prejudices. ACM Press/Addison-Wesley Publishing Co., New York, NY, USA, 1995.

M. Jackson. The world and the machine. In Proceedings of the 17th international
conference on Software engineering, ICSE ’95, pages 283-292, New York, NY, USA,
1995. ACM.

R. Kazhamiakin, M. Pistore, and M. Roveri. Formal verification of requirements using
spin: A case study on web services. In Proceedings of the Software Engineering and For-
mal Methods, Second International Conference, SEFM ’04, pages 406—415, Washing-
ton, DC, USA, 2004. IEEE Computer Society.

R. M. Keller. Formal verification of parallel programs. Communications of the ACM,
19:371-384, July 1976.

A. V. Lamsweerde. Goal-Oriented Requirements Engineering: A Guided Tour. In Pro-
ceedings of the Fifth IEEE International Symposium on Requirements Engineering,
volume 0, page 0249, Los Alamitos, CA, USA, 2001. IEEE Computer Society Washing-
ton, DC, USA, IEEE Computer Society.

E. Letier and A. van Lamsweerde. Agent-based tactics for goal-oriented requirements
elaboration. In Proceedings of the 24th International Conference on Software Enginee-
ring, ICSE ’02, pages 83-93, New York, NY, USA, 2002. ACM.

dJ. Magee and J. Kramer. Concurrency: state models & Java programs. Wiley New York,
2006.

J. Magee, J. Kramer, and D. Giannakopoulou. Analysing the behaviour of distribu-
ted software architectures: a case study. In FTDCS, pages 240-247. IEEE Computer
Society, 1997.

D. L. Parnas and J. Madey. Functional documents for computer systems. Science of
Computer Programming, 25(1):41 — 61, 1995.

A. van Lamsweerde. Requirements Engineering - From System Goals to UML Models
to Software Specifications. Wiley, 2009.

A. van Lamsweerde and E. Letier. Handling obstacles in goal-oriented requirements
engineering. IEEE Transactions on Software Engineering, 26:978-1005, October 2000.

53

54 Bibliografia

[14] P. Zave and M. Jackson. Four dark corners of requirements engineering. ACM Tran-
sactions on Software Engineering and Methodology (TOSEM), 6:1-30, January 1997.

	Portada
	Resumen
	Abstract
	Agradecimientos
	Índice general
	Introducción
	Motivación
	Presentación del caso de estudio
	Resumen de contribuciones
	Estructura de la tesis

	Fundamentos
	El Mundo y la Máquina
	Sistemas de Transición Etiquetados
	Lógica Lineal Temporal de Flujos (Fluent Linear Temporal Logic)
	Problemas de control
	Dominios falibles
	Procesos de Estados Finitos (FSP)

	MTSA como herramienta de modelado y síntesis
	Construcción
	Análisis
	Modelando el sistema
	Identificando modelos
	Robot
	Mapa
	Bandejas
	Reubicación manual
	Definición del controlador

	Enactment, o entorno de ejecución
	La necesidad de ejecutar estrategias
	El componente de ejecución: Enactor
	Extensión de la herramienta

	Robot modelo N6 y extensiones de software/hardware
	Arquitectura del robot N6
	Arquitectura del procesador

	Extensiones físicas
	Fuente de fallas
	Software
	Arquitectura general
	Lógica de control
	Protocolo de comunicación

	Dificultades y lecciones aprendidas

	Extensión de MTSA
	Framework de enactment
	Adaptadores
	Esquema de control
	Ejecutando el controlador

	Evaluación
	Casos de estudio
	Cambios de configuración
	Causas de cambio de configuración
	Resultados

	Discusión
	Conclusiones

	Bibliografía

