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Abstract

Obtaining and processing demographical and sociological data have been some of the

most important processes for understanding population-wide phenomena since at least

17th century [Fri06], and finding simple and intuitive ways of visualizing them has

a big impact in our ways of understanding the data [Min44, Sno55]. Common ways

of obtaining useful qualitative data on socioeconomic stratification usually involved

archival research or social surveys [Bul77], and rely on statistical methods.

Telecommunication operators (“telcos”) have access to a wealth of information

about their users’ communications and habits [Huu03], but the ability to store and

process that data has taken large strides in the last few years thanks to new and more

powerful computers and data mining techniques. The same can be said for sociological

and economic information owned by banks and credit cards, and the relation between

these two data sources.

Large scale data mining of data from the telecommunications industry is a relatively

new area that’s been so far mostly used for internal applications [HAK+02], but

the gigantic wealth of real-time sociological data has been of interest for academic

purposes related to sociology. This thesis builds on methods used by Óskarsdottir

et al. [ÓBV+16] and Singh et al. [SFLP13], along with a large dataset of information

for a certain telco and a large bank to find that the income distribution of the users

follows closely (but not exactly) the income distribution of the whole population.

We have observed a strong homophily between the incomes of contacts in the telco,

which along with the uneven distribution of wealth in the population is leveraged to

create a methodology, grounded in Bayesian statistics, to infer socioeconomic level

of a large subset of users in the network without banking information which is very

accurate at AUC = 0.746. The Bayesian method is later compared to several other

methods based on supervised machine learning to prove that, even though it uses less

input information, it is a better predictor of social features in this particular kind of

network.
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Resumen

Obtener y procesar datos demográficos y sociológicos fueron uno de los procesos más

importantes para entender fenómenos que afectan a toda la población desde por lo

menos el Siglo XVII [Fri06], y encontrar formas simples e intuitivas de visualizarlos tiene

un gran impacto en nuestra manera de entender los datos [Min44, Sno55]. Formas

comunes de obtener datos cuantitativos de estratificación económica usualmente

involucran investigación de archivos o encuestas sociales [Bul77], y dependen de

métodos estadísticos.

Las operadoras de telecomunicaciones (“telcos”) tienen acceso a una gran cantidad

de información sobre las comunicaciones y hábitos de sus usuarios [Huu03], pero la

habilidad de guardar y procesar esos datos ha dado grandes pasos en los últimos

años gracias a nuevas y más poderosas computadoras y técnicas de minería de datos.

Lo mismo puede decirse sobre la información sociológica y económica contenida por

bancos y tarjetas de crédito, y por la relación entre estas dos fuentes de datos.

La minería de datos de telcos a gran escala es un área relativamente nueva que

se usa principalmente para aplicaciones internas [HAK+02], pero la gran cantidad de

información sociológica es de gran interés para temas académicos relacionados a la

sociología. Esta tesis se basa en métodos usaros por Óskarsdottir et al. [ÓBV+16]

y Singh et al. [SFLP13], además de una fuente de información de una telco y de un

banco grande para encontrar que la distribución de ingresos de los usuarios sigue de

manera cercana (pero no exacta) la distribución de ingresos de la población en general.

Hay una fuerte homofilia entre los ingresos de contactos en la telco, que se usa junto

con la distribución desigual de dinero en la población para crear una metodología,

basada en estadística bayesiana, para inferir el nivel socioeconómico de un gran

subconjunto de usuarios en la red sin información bancaria con AUC = 0.746. El

método bayesiano es luego comparado con otros métodos basados en aprendizaje

automático supervisado para probar que, aunque toma menos información de entrada,

es un mejor predictor de características sociales en este tipo particular de red.
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Chapter 1

Introduction

1.1 Motivation of the Thesis

In recent years, we have witnessed an exponential growth in the capacity to gather,

store and manipulate massive amounts of data across a broad spectrum of disciplines:

in astrophysics our capacity to gather and analyze massive datasets from astronomical

observations has significantly transformed our capacity to model the dynamics of our

cosmos; in sociology our capacity to track and study traits from individuals within a

population of millions is allowing us to create social models at multiple scales, tracking

individual and collective behavior both in space and time, with a granularity not even

imagined twenty years ago.

In particular, mobile phone datasets provide a very rich view into the social

interactions and the physical movements of large segments of a population. The voice

calls and text messages exchanged between people, together with the call locations

(recorded through cell tower usages), allow us to construct a rich social graph which

can give us interesting insights on the users’ social fabric, detailing not only particular

social relationships and traits, but also regular patterns of behavior both in space and

time, such as their daily and weekly mobility patterns [GHB08, PSS13, SLPA15].

Demographic factors play an important role in the constitution and preservation of

social links. In particular concerning their age, individuals have a tendency to establish

links with others of similar age. This phenomenon is called age homophily [MSLC01],

and has been verified in mobile phone communications graph [BE10, SBB14] as well

as the Facebook graph [UKBM11].

Economic factors are also believed to have a determining role in both the social

network’s structure and dynamics. However, there are still very few large-scale

quantitative analyses on the interplay between economic status of individuals and their

social network. In [LFAH+16], the authors analyze the correlations between mobile

phone data and banking transaction information, revealing the existence of social

1



Chapter 1. Introduction 2

stratification. They also show the presence of socioeconomic homophily among the

networks participants using users’ income, purchasing power and debt as indicators.

The authors of [LMS+17] studied the correlation between the position of a node in a

mobile phone communications graph and its socio-economic status. They showed that

the position and topological attributes in the graph can be used to generate inferences

of the users’ financial status. In particular the study [LMS+17] shows the value of the

Collective Influence [MM15] as a topological attribute for the prediction of individual

financial status.

1.2 Summary of our Approach

In this work, we leverage the socioeconomic homophily present in the cellular phone

network to generate inferences of socioeconomic status in the communication graph.

To this aim we will use the following data sources: (i) the Call Detail Records (CDRs)

from the operator allow us to construct a social graph and to establish social affinities

among users; (ii) banking reported income for a subset of their clients obtained from

a large bank data source. We then construct an inferential algorithm that allows us

to predict the socioeconomic status of users close to those for which we have banking

information. To our knowledge, this is the first time both mobile phone and banking

information has been integrated in this way to make inferences based on a social

telecommunication graph. Part of this work was published in [FBB+16].

The work done on this thesis is based the hypotheses that there is a significant level

of homophily between a person’s socioeconomic level and the one from its contacts

(Section 5.1), and that using this correlation we can infer the first from the second

(Section 5.2). At the same time, this thesis presents several “conventional” Machine

Learning algorithms (Chapter 7) along with an inference algorithm based in Bayesian

Inference which works thanks to the correlation hypothesis (Chapter 5). This extra

information should give this algorithm better results than the conventional ones.

Multiple strategies can be used to generate network features based on the CDRs.

For instance, in [ÓBV+16] the authors evaluate different collective inference methods

applied to the churn prediction problem. Furthermore, the work [ÓBV+17] studies the

impact of the social graph definition on the performance of the prediction methods.

This motives the second part of the thesis, where we perform a comparative study of
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methods to generate network features for the nodes in the communication graph, and

evaluate their impact on the inference of the income. We also compare the effectiveness

of machine learning methods such as Logistic Regression and Random Forest on the

different feature sets.

1.3 Summary of Results

The final results are presented in Chapters 6 and 7. This section presents a short

summary.

• When using the Bayesian Algorithm, the Area Under the Curve (which is

the target metric user in this thesis) is maximized when the socioeconomic

comparison is done by number of contacts (Table 6.3) to a value of 0.746.

• Of the common machine learning methods used, the ones which use the labels

of the neighbouring users to make a prediction have a better result of the ones

which don’t. However, even in this case the results are worse than in the Bayesian

Algorithm (Section 7.6).

1.4 Organisation of the Thesis

The remainder of the thesis is separated into 7 chapters.

Chapter 2 provides an introduction to the theoretical ideas used in the thesis: the

concept of homophily in social networks, introductions to concepts in Bayesian

probability and machine learning, and some techniques used to define the level

of homophily in the dataset.

Chapter 3 reviews some of the related work on correlations in social-economic

networks and on relation between socioeconomic status and mobile phone use

that was used as a base for this thesis.

Chapter 4 reviews the telecommunications and bank sources used in this study, how

they work together, and also some extra insights about the data that can be

found after merging both datasets.
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Chapter 5 presents the Bayesian Algorithm, used as the main inference algorithm

in this thesis. In the first part, it presents a theoretical justification of its

correctness using the dataset. Later, it formally presents the algorithm and its

possible variations.

Chapter 6 contains a high level description of the testing environment and of the eval-

uation method of the Bayesian Algorithm. It later finds optimal hyperparameters

and, in Table 6.3, presents the final results of the algorithm.

Chapter 7 Presents other algorithms of differing complexity that work in the same

dataset as the previous one, including ones based in common Machine Learn-

ing with novel feature extraction methods. The final results are presented in

Section 7.6.

Chapter 8 Presents the conclusions of the work, along with some possible work to

be done in the future using this same dataset.



Chapter 2

Theoretical Building Blocks

2.1 Social Homophily

“People love those who are like

themselves.”

Rhetoric

Aristotle

Similarity breeds connection [MSLC01]. People have several visible characteristics,

such as age, gender, and socioeconomic status, for which contact between people with

similar properties occurs at a higher rate than between dissimilar people.

There are two overall types of homophily that can be distinguished in groups [PFL54]:

status homophily, in which similarity is based on status, and value homophily, which

is based on values, attitudes, and beliefs. Status homophily, a part of which is the

main study of this thesis, includes the major sociodemographic dimensions that strat-

ify society — ascribed characteristics like race, ethnicity, sex, or age, and acquired

characteristics like religion, education, occupation, and behaviour patterns.

2.1.1 Age Homophily

One of the most common homophily patterns in human relations is related to the

people’s ages [ea11][MSLC01]. This result is expected because of the many societal

reasons that explain the homophily: schools tend to group people according to age

into the same classrooms, work opportunities tend to be clustered into age groups,

which affects work environments and neighbourhood composition, and people have a

strong tendency to confide in someone of one’s own age.

This correlation has a waterfall effect. Since this kind of homophily is present

early into people’s life, the produced connections are closer, longer lived, have a larger

number of exchanges, and tend to be more personal than other kinds of connections.

5
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There’s an interesting exception to this homophily: there is a significant number

of connections between parents and their younger children [SBB14]. This exception is

addressed later in this paper.

2.1.2 Gender Homophily

McPherson et al. also noted an important degree of homophily between members of

the same gender [MSLC01]. In particular, ever since school age children learn that

gender is a permanent personal characteristic, homophily can be observed in play

patterns and friend groups.

By the time people are adults, people’s friendship networks are relatively gender-

integrated. However, when controlling for kinship networks and not counting close

family members, there is a considerable level of gender homophily [Mar88]. However,

this level is still lower than the one for race, education, age, and many other social

dimensions.

Gender homophily is lower among the young and the highly educated[Mar87].

One of the main reasons for this is that most environments where people make their

networks, such as work establishments and voluntary organizations, are highly sex

segregated. Therefore, it is not surprising that the networks formed in these settings

display a significant amount of baseline homophily on gender.

2.2 Spearman’s Coefficient

Spearman’s Rank Correlation Coefficient (also known as Spearman’s rho) is a non-

parametric measure of rank correlation which measures how well the relationship

between two variables can be described using a monotonic function [Mye03]. Unlike

Pearson’s Correlation Coefficient, which measures lineal relationship between variables,

Spearman’s Coefficient uses the rank of the variables in its calculations; therefore is

measures its monotonicity.

For a sample of size n with scores Xi and Yi, the Spearman Coefficient rs is defined

as in Equation (2.2.1).

rs = ρrank(X) rank(Y ) =
cov(rank(x), rank(y))

σrank(X)σrank(Y )

(2.2.1)
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Where ρa,b denotes the Pearson Correlation between the variables a and b. This

value will be closer to 1 when the variables are directly monotonic, closer to -1 when

they are inversely monotonic, and closer to 0 when there is no tendency for either

variable to increase or decrease when the other increases.

2.3 Bayesian Inference

“Given the number of times in which

an unknown event has happened and

failed: required the chance that the

probability of its happening in a

single trial lies somewhere between

any two degrees of probability that

can be named.”

An Essay towards solving a Problem

in the Doctrine of Changes [Bay63]

Thomas Bayes

This work uses a Bayesian approach to statistics instead of the usual Frequentist

approach. In the Frequentist point of view, parameters are fixed and unknown:

hypotheses are either true or false, and they cannot be described with a probability. In

the Bayesian approach, anything unknown is described with a probability distribution

since uncertainty must be described by probability [Mac03].

2.3.1 Bayes Theorem

The base of Bayesian Inference is Bayes’ Theorem, presented in Equation (2.3.1),

which describes the probability of an event base on prior knowledge of conditions that

may be related to it [GCSR03].

P (H | E) =
P (E | H) · P (H)

P (E)
(2.3.1)

Each one of the terms in Equation (2.3.1) has a different definition and interpreta-

tion.
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• P (H | E), the Posterior Probability is the conditional probability that is

assigned after the relevant evidence is taken into account.

• P (H), the Prior Probability, expresses the assumptions made on the problem

before the experiments. While these assumptions will be subjective, the same

thing can be said about the other probabilities in this model.

• P (E | H), the Likelihood, is the degree of belief in E given that H is true. In

most real world problems, this tends to be easier to define than the Prior.

• P (E), the Marginal Likelihood, as the likelihood function where some pa-

rameter variables were marginalized. It is used as a normalizing constant to

that the Posterior Probability integrates to 1, thus making it a valid probability.

Since it is constant on the perspective of H, it is usually ignored when taking

proportionality, as in Equation (2.3.3).

It can be proven in a simple way by using basic theorems of the probability, as

seen in Equation (2.3.2).

P (H ∩ E) = P (H | E)P (E)

= P (E | H)P (H)

P (H | E)P (E) = P (E | H)P (H)

P (H | E) =
P (E | H)P (H)

P (E)

(2.3.2)

Most of the equations presented in this section deal with continuous probabilities,

which by definition must integrate to 1 [Kol56]. Therefore, the theorem is usually

used in the version presented in Equation (2.3.3), which defines the proportionality of

the Posterior.

P (H | E) ∝ P (E | H) · P (H) (2.3.3)

2.3.2 Conjugate Priors

For a single problem there may be many different possible Prior Probabilities, which

can be defined depending on the approach taken on defining the model to represent
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Figure 2.1: Graphical visualization of Bayes Theorem between two probabilities A
and B by the superposition of two decision trees starting in hypothesis space Ω.

different measures of knowledge and certainty about the data∗. In particular, if the

prior is less informative then the posterior is more likely to be determined by the data.

A simple way to choose a correct prior is using a Conjugate Prior. A distribution

P (H) is Conjugate to P (H | E) if multiplying the two distributions together and

normalizing the results in another distribution has the same form as P (H).

The Conjugate Prior has some philosophical significance in the context of Bayesian

Estimator. In the practical case, the Prior Probability contains more or less information

compared to the Posterior Probability depending on the amount of data seen. In

particular, if the experiment has seen little data, a single datapoint can influence your

beliefs significantly. On the other hand, if the experiment has a lot of data, then one

single extra datapoint shouldn’t influence them as much [GCSR03].

2.4 The Beta Distribution

The Beta Distribution is a family of continuous probability distributions defined in

the interval [0, 1] which is parametrized by two shape parameters, α and β.

∗An extreme case is the Jeffreys Prior, used to express total ignorance about the data [Jef46].



Chapter 2. Theoretical Building Blocks 10

The distribution can be used to model the behaviour of Random Variables limited

to intervals of a finite length. It is often used as a statistical function to model unknown

data from a known sample, such as allele frequencies in population genetics [BN95],

Malaysian sunshine data [SOWZ99], and heterogeneity in the probability of HIV

transmission [WHP89].

In the context of Bayesian Inference, the Beta Distribution is the Conjugate Prior

of the Binomial Distribution, which allows us to describe initial knowledge concerning

probability of success of a single bi-variate distribution. In layman terms, this allows

us to know what is the distribution of the continuous p parameter of a binomial

distribution for which we have α positive and β negative samples.

2.4.1 Probability Density Function

Given a variable 0 ≤ x ≤ 1, which represents the unknown probability of having a

Positive Sample from the distribution, and the shape parameters α > 0 and β > 0,

the Probability Density Function of the beta distribution can be described as in

Equation (2.4.1), where κ represents some constant.

f (x;α, β) = κ · xα−1(1− x)β−1

=
xα−1(1− x)β−1∫ 1

0

uα−1(1− u)β−1du

=
Γ (α + β)

Γ (α) Γ (β)
· xα−1(1− x)β−1

=
1

B (α, β)
· xα−1(1− x)β−1

(2.4.1)

B (α, β) =
Γ (α + β)

Γ (α) Γ (β)
(2.4.2)

Equation (2.4.2), describes the Beta Function, which is related to the Gamma

Function and describes a similar pattern [Art64].

Regarding this thesis, the Beta Distribution will be used to model a real life

problem in Chapter 5. In this problem, both α ∈ N and β ∈ N, so the Beta Function

can be simplified using the identity (x− 1)! = Γ (x) as shown in Equation (2.4.3).
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Figure 2.2: Beta distribution with different parameters

B(α, β) =
(α + β − 1)!

(α− 1)! · (β − 1)!
(2.4.3)

Additionally, the Beta Function can be generalized into the Incomplete Beta

Function for some parameter x as in Equation (2.4.4). This function is, confusingly,

also represented with the Greek letter B; to ease comprehension this thesis will refer

to it as Binc.

Binc(x;α, β) =

∫ x

0

tα−1(1− t)β−1dt (2.4.4)

As we get more data from the sampling, the Beta distribution turns more concen-

trated towards the actual θ and its shapes resembles more a normal curve, as can

be seen in Figure 2.2. This represents the increased certainty which comes from the

acquired knowledge of the problem.

2.4.2 Cumulative Distribution Function

The Cumulative Distribution Function of the Beta Distribution is defined in Equa-

tion (2.4.6).



Chapter 2. Theoretical Building Blocks 12

X ∼ Beta (α, β)

F (x;α, β) = P (X ≤ x)
(2.4.5)

F (x;α, β) =

∫ x

0

f (t;α, β) dt

=

∫ x

0

1

B (α, β)
tα−1(1− t)β−1dt

=
1

B (α, β)
·
∫ x

0

tα−1(1− t)β−1dt

=
Binc (x;α, β)

B (α, β)

(2.4.6)

F is also known as the Regularized Incomplete Beta Function, represented as

Ix(α, β). This function is related to the Cumulative Distribution Function of the

Binomial Distribution, as shown in Equation (2.4.7).

X ∼ Binom (n, p)

P (X ≤ k) = I1−p (n− k, k + 1)
(2.4.7)

2.4.3 Inverse Cumulative Distribution Function

The problems solved in this thesis require the use of the Inverse Cumulative Distribution

Function (also known as the Quantile Function or the Percent-Point Function) of

the Beta Distribution, which returns a value such x that meets the expression in

Equation (2.4.5) is equal to some value p. It can also be expressed as in Equation (2.4.8).

Q (p) = inf {x ∈ R | p ≤ F (x)} (2.4.8)

Like with the Cumulative Distribution Function, there is no closed form formula for

expressing its inverse [Kip13]. However, there are fast and accurate ways of computing

it using either Interval Halving or Newton’s Method, such as the incbi implementation

in the Cephes library [Mos10] which is use in this thesis via a wrapper from sklearn,

as explained in Section 6.1.
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2.4.4 The Beta-Binomial Model

In the Beta-Binomial Model compromises a family of discrete probability distributions

similar to the Binomial Distribution, with the important difference that, instead of

each trial having a constant probability of success, that probability is random and

follows the Beta Distribution [Sch96].

Given a binary experiment which is run n times, and the probability of success

of any of those experiment is some constant θ, the Probability Distribution of the

amount of successes k can be modelled with a Binomial Distribution, as shown in

Equation (2.4.9).

k | n, θ ∼ Bin (θ, n)

P (k = x | n, θ) =

(
n

k

)
· θk(1− θ)n−k

(2.4.9)

θ is a random continuous probability distribution, which is defined using the Beta

Distribution in Equation (2.4.10).

θ | α, β ∼ B (α, β)

P (θ | α, β) =
1

B (α, β)
· θα−1(1− θ)β−1

(2.4.10)

Once the binary experiment is run, the model has additional information which

may change the distribution of θ. This can be modelled as a Posterior Distribution

using Bayes Theorem [NP14].

P (θ | n, k, α, β) =
P (k | n, θ)P (θ | n, α, β)

P (k | n, α, β)

∝ P (k | n, θ)P (θ | n, α, β)

= P (k | n, θ)P (θ | α, β)

P (θ | n, k, α, β) =

(
n

k

)
θk(1− θ)n−k · 1

B (α, β)
θα−1(1− θ)β−1

∝ θk(1− θ)n−k · θα−1(1− θ)β−1

= θk+α−1(1− θ)n−k+β−1

(2.4.11)

This is exactly the same function as the one in Equation (2.4.10). That is, the

Posterior Distribution of this model is also a Beta Distribution.
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θ | k, n, α, β ∼ Beta (α + k, β + n− k) (2.4.12)

This way it is possible to see that the Beta Distribution has the properties of a

Conjugate Prior Distribution seen in Section 2.3.2 to the Binomial Likelihood. This

makes it extremely desirable for Bayesian Analysis, and for this reason it is used as

the main model of this thesis. This is seen in more detail Section 5.2.5.

2.5 Machine Learning Validation Metrics

In the following subsections we present the outline of several supervised machine

learning algorithms which are used to compare the Bayesian method to a more realistic

baseline. First, we’ll present several ways to validate the different algorithms when

applied to the data. In the following section, we’ll present many of the algorithms

used for comparison.

Given a set of features Z, all of which belong to members of a population which

belong to a certain category, and a random subset of those features X ⊆ Z whose

category y is known, the models should be trained with X and y in order to correctly

predict the values corresponding to all the features in Z. Since those values are

unknown validation of the output is impossible; therefore, we validate the model using

the known values in X and y.

There are many metrics that can be used to measure the performance of a classifier

or a predictor [Pow07]; different fields have different preferences due to different goals.

In this section, we present many metrics to evaluate different results that are commonly

used in the area of mobile phone data analysis [ÓBV+16].

2.5.1 Classification of individual results

Once we define out classifier g and run it against a matrix of features, we get a

predicted result ypred which, when compared to the actual result ytrue = y, can be

classified as the one in Table 2.1.

Additionally, this table can be easily seen in a graphical way in Figure 2.3.
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Predicted Condition
Total Population Condition Positive Condition Negative

True
Condition

Condition Positive True Positive False Negative
(Type II error)

Condition Negative False Positive
(Type I Error) True Negative

Table 2.1: Confusion Table, showing different classifications of an individual prediction.
True and False Positives (TP/FP) refer to the number of predicted positives that were
correct/incorrect, and similarly for True and False Negatives (TN/FN).

Figure 2.3: Visual explanation of Precision and Recall
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2.5.2 Precision and Recall

Precision denotes the proportion of predicted positive cases that are correctly real

positive. Trying to maximize this would allow us to adjust a particular predictor so

that the majority of the predicted cases are actually positive. Conversely, recall is the

proportion of real positive cases that are correctly predicted positive, and maximizing

it would allow us to adjust a predictor so that the majority of positive cases are

predicted.

Precision = TPA =
TP

TP + FP

Recall = TPR =
TP

TP + FN

(2.5.1)

These two measures and their combinations focus only on the positive examples

and predictions, although between them they capture some information about the rates

and kind of errors made [Pow07]. While the recall has been shown to have a major

weight in working with machine translation [FM07], they aren’t particularly useful to

use alone since they don’t take into account many factors of the prediction [Pow07].

2.5.3 Inverse Precision and Inverse Recall

As a corollary of the previous metrics, we can add metrics that measure the proportion

of real negative cases that are correctly predicted negative, referred as the Inverse Recall,

and the proportion of predicted negatives that are real negatives, referred as the

Inverse Precision[Pow07]. We can see that these are equivalent to finding the Precision

and Recall of the negative category.

Inverse Precision = TNR =
TN

FP + TN

Inverse Recall = TNA =
TN

FN + TN

(2.5.2)

2.5.4 Accuracy

The accuracy, commonly referred in the context of binary classifiers as Rand Ac-

curacy[Pow15], is used as a statistical measure of how well a binary classification
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test identifies or excludes a condition. Unlike the precision, it takes into account the

negatives, and it is expressible [Pow07] both as a weighted average of precision and

inverse precision or recall and inverse recall.

Accuracy =
TP + TN

N
(2.5.3)

This can be more simply expressed using the weighted average of either the

Precision and Inverse Precision or the Recall and the Inverse Recall.

Accuracy = (TP + TN) · TPR + (FP + TN) · TNR

= (TP + FP) · TPA + (FN + TN) · TNA
(2.5.4)

2.5.5 ROC Curve

A Receiver Operating Characterising graph is a technique for visualizing, organizing,

and selecting classifiers based on their performance [Faw05]. The curve is created by

plotting the True Positive Rate against the False Positive Rate at various threshold

settings.

This allows to compare different classifiers before having to select a particular

threshold value for them. In particular, a random classifier will score near the positive

diagonal (FPR = TPR), while a perfect classifier will score in the top left hand corner

(FPR = 1,TPR = 0) and a worst case classifier will score in the bottom right hand

corner∗[Pow07].

2.5.6 Area Under the Curve

The ROC Curve allows us to compare classifiers and choose the one which is closer

to optimal in some sense. While there are many possible parametrizations, the most

common is to minimize the Area Under the Curve, which is equal to the probability

that a classifier will rank a randomly chosen positive instance higher than a randomly

chosen negative one [Faw05]. This can be formulated as shown in Equation (2.5.5).

∗Note that, for any binary classifier, it is trivial to transpose the entire ROC curve (or a part of

it) to the other part of the diagonal; therefore the worst “realistic” case is the random one
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Figure 2.4: A ROC Curve, where the Area Under the Curve is marked. This particular
graph comes from data used in early experiments to finding the socioeconomic index
of a person, which is explained with more detail in Chapter 5.

AUC = P (X1 > X0)

=

∫ 1

0

TPR (t) FPR′ (t) dt
(2.5.5)

2.5.7 F-measure

The F-measure is another measure of a tests accuracy. It considers both the Precision

and the Recall of the test to compute the score. It can be considered the weighted

average of both values for some weight β, where Fβ reaches the best score 1 when

both precision and recall are 1.

Fβ =
(
1 + β2

)
· TPA ·TPR

(β2 · TPA) + TPR

=
(1 + β2) · TP

(1 + β2) · TP +β2 · FN + FP

(2.5.6)

The most commonly used F-measure, F1, measures the Precision and Recall is

that harmonic mean of the Precision and Recall. In particular, for an F-measure with

β > 1 weights Recall higher than Precision, while with β < 1 weights Precision higher

than Recall.
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2.6 Supervised Machine Learning Models

This section presents several Supervised Machine Learning models that are used in

the paper.

Models are separated into two different groups depending on how they describe

the input and output variables.

Continuous Models take a matrix X ∈ Rn×f and a vector y ∈ Rn of the same

height where each element represents the features corresponding to some user

and its real value, respectively. Its accuracy is measured according to some

function of the result of the regression ypred and ytrue = y.

Categorical Models take a matrix X ∈ Rn×f and a vector y ∈ Sn, for some set of

Categories S, and predicts the correct category each of the users in y belongs

to. Its accuracy is measured according to several metrics which are explained in

Section 2.5.

2.6.1 Linear Regression

A Linear Regression is an approach for modeling the relationship between the matrix

X and the real vector y. While it is possible to predict many variables in what’s

known as the Multivariate Linear Regression [MBK79], this thesis will focus in the

single-dimensional variant.

The regression assumes that the relationship between the sum of some linear

combination of the elements of X and y is itself linear. This combination is represented

by the variable β, and the relationship is represented through an unobserved random

vector ε as the Error Term.

The model takes the form of Equation (2.6.1).

y = Xβ + ε (2.6.1)
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where

X =


xT1

xT2
...

xTn

 =


1 x11 · · · x1f

1 x21 · · · x2f
...

... . . . ...

1 xn1 · · · xnf



y =


y1

y2
...

yn

 , β =


β0

β1
...

βf

 , ε =


ε1

ε2
...

εn



(2.6.2)

β is a vector with size f + 1, where β0 is called the Constant Term. The statistical

estimation and inference focuses in this variable, as two different models of Linear

Regression will give different results where this parameter is different [Yan09].

εi is called the Error Term or Noise. The variable captures the factors which

influence the vector y other than the matrix X and the Constant Term β. The

relationship between ε and those variables and knowing whether they are correlated is

important in the formulation of an Linear Regression model [Yan09].

This model makes several assumptions about the data.

Weak Exogenety implies than the variables in X can be treated as fixed values,

rather than random variables.

Linearity implies that the mean of the response variable is a linear combination of

the parameters.

Homoscedasticity implies that different response variables have the same Variance

in their errors. While this is almost never true in practice, since variables tend

to vary over a large scale, the data is usually Standardised so that this is true.

Independence of errors implies that the errors in response variables are uncorre-

lated with each other, even if they are statistically dependent.

Lack of multicollinearity implies that the matrix X must have full column rank;

there can’t be two perfectly correlated input variables. In this case there won’t

be a unique solution for the vector β.
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There are many ways of effectively calculating the optimal Lineal Regression for a

particular pair 〈X, y〉. One of them is using the Least Squares Estimation, which

can be solved through the Least Squares Principle.

β̂ = argminβ

[
(y −Xβ)T (y −Xβ)

]
(2.6.3)

Where β̂T = (b0, b1, . . . , bk−1), a k-dimensional vector of the estimations of the

regression coefficients.

Assuming
(
XTX

)
is a non-singular matrix, the Least Squares Estimation of β can

for the model in Equation (2.6.1) can be found from Equation (2.6.4) [Yan09].

β̂ =
(
XTX

)−1
XTy (2.6.4)

Additionally, Equation (2.6.4) presents an unbiased estimator of β [Yan09].

2.6.2 Logistic Regression

The Logistic Regression, also referred to as the Logit Model [Fre09] is a regression model

similar to the Linear Regression, with the particularity that the Dependent Variable y

is categorical. While it is possible to calculate the variable for sets of categories of

several finite sizes (when it is referred to as a Multinomial Logistic Regression [Gre11])

or even for ordered sets of categories (an Ordinal Logistic Regression [McC80]), this

thesis will focus on the case where y ∈ {0, 1}n, that is, each variable in y is binary.

The model uses the results of a Linear Regression on the data 〈X, y〉, where
coefficients that solve Equation (2.6.1) are found. The result of that regression is a real

value, which is normalized using a function f : R→ [0, 1], whose result is considered

the probability that the result of some element is 1.

A commonly used function for f is the Logistic Function σ : R→ [0, 1], defined in

Equation (2.6.5) and plot in Figure 2.5.

σ (t) =
et

et + 1
=

1

1 + e−t
(2.6.5)

This probability is used for estimating the value of y, namely as defined in

Equation (2.6.6).
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Figure 2.5: The standard logistic sigmoid function y = σ(x)

P (yi = 1 | X) = σ (Xiβ)

P (yi = 0 | X) = 1− σ (Xiβ)
(2.6.6)

The inverse of the Logistic Function, referred to as the Logit Function, gives the

logarithm of the Odds of a certain element belonging to some category.

logit (x) = log

(
σ (x)

1− σ (x)

)
(2.6.7)

The logit model says that the vector y is independent given the matrix X [Fre09],

and can be considered as inverse of the probability defined in Equation (2.6.6).

logitP (yi = 1 | X) = Xiβ (2.6.8)

The regression is usually calculated usingMaximum Likelihood Estimation [FCH+08]

and, unlike the estimation of the Linear Regression presented in Section 2.6.1, it is

not possible to find a closed form expression of the coefficients that maximize the

value of the likelihood function. Instead, the iterative Newton’s Method is used.

The exact formulas used to ensure fast and correct conversed used in this thesis

are the ones present in LIBLINEAR, which is presented in [HZL].
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Figure 2.6: A decision tree. This is a simplified version of one of the decision trees
used in the Random Forest predictors in Section 7.4.2.

2.6.3 Decision Trees

A Decision Tree is a decision support tool that uses a tree of decisions and their

possible consequences, including change event outcomes. They are commonly used in

decision analysis to help identify the most optimal strategy to reach a goal.

The tree themselves contain a root at the top, and each non-final node (including

the root) contains a binary test of a certain variable; each one of these nodes contains

exactly two edges connecting it to the following level, one which is followed in the case

the condition is true and another for the case when the condition is false.

In the context of Machine Learning, it can be used as a supervised predictive model

which matches properties about the list of features X to the likeliest category y [MR08].

In the binary case, each of the final nodes contains the output label which, according

to the input data, is the most probable given the result of the tests corresponding to

the previous nodes to this one along with the probability of this label being true.

There are many algorithms that can generate a tree that’s optimized for many

different metrics. A common one is the Classification and Regression Trees (CART)

method, introduced in [Bre93], which builds the tree starting from the root and, for
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Figure 2.7: Overfitting in decision trees. When training and testing on the same data,
making a classifier more complex makes the accuracy of the prediction increasingly
higher until it is pretty much perfect. This result is wrong since the classifier is
Overfitting its tree to the training data. When testing with different data, it is possible
to see how the prediction actually becomes worse. This graph was simulated by
training decision trees with data from the sklearn.datasets.make_classification
from the sklearn library[PVG+11].

each non-leaf node, the variable that generates the best split according to some metric

is selected [Loh11]. This is applied recursively until CART detects that no further

gains can be made, or some pre-set stopping rules are met.

Decision trees are prone to overfitting [MR08]. Since a single tree can make an

arbitrarily good classification of a set of features despite their properties (unlike models

like linear regression, where the data has to be linearly separable), it can lose the

capability to generalize for instances not presented in training. This occurs when the

tree has too many nodes relative to the amount of training data; Figure 2.7 illustrates

the overfitting process.

A common mechanism to prevent overfitting in Decision Trees is Pruning, which

reduces the size of decision tree by cutting sections that provide relatively little

improvement of the result on the training data.



Chapter 2. Theoretical Building Blocks 25

2.6.4 Random Forest

Random Forests are an ensemble learning method commonly used for classification

tasks. While they use ideas that are similar to the ones used in Section 2.6.3 to build

Decision Trees, their design prevents them from having problems with overfitting in

regards to the training set[HTF03].

A trained Random Forest consists of a set of different Decision Trees on the same

feature space. However, these trees should have different biases to compensate for

the bias of a single one, since generally using multiple distinct classifiers lowers this

value[HHS94]. To achieve these two objectives, each Decision Tree is trained on

a different subset of the initial feature set[Ho95]. Each of these trees classifies the

training data with 100% of accuracy within its feature subspace, yet it generalizes the

classification in a different way. Since there are 2m possible subspaces for m features,

there are many choices in practice.

There are many ways to select which features to use to build each tree. A simple

one is Bagging (Bootstrap aggregating)[Bre96], which separates the training set X

into m subsets X ′1...m uniformly and with replacement. Later, the m models are fitted

using the bootstrap samples, and their output is combined by average the output.

Other methods include Random Split Selection, which uses randomization by

computing the k (where k = 20 in the original paper) top candidate splits, and

choosing one of them at random[Die00]. The best results are seen when using Adaboost

(for which its authors won the Gödel Prize), a method of Boosting, where the features

in each tree are selected because of the misclassifications in previous classifiers[FS+96].

Given the set of features X ∈ Rn×f and the set of labels y ∈ {0, 1}n, each iteration

of Adaboost creates a new decision tree depending on the Error of the previous

classifiers. Given a set of already build trees k1 . . . kl which output a classification

ki (xi) ∈ {0, 1} for each item, we can define the current random forest as a linear

combination of the previous classifiers Cl. With these values, we can find the weighted

Error E.
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Cl (xi) =
l∑

i=1

αiki (xi)

Cl+1 (xi) = Cl (xi) + αmkm (xi)

E =
n∑
i=1

e−yiCm(xi)

(2.6.9)

These values can be later used to improve the current random forest Cl+1 that

minimizes this error.

Along with Logistic Regression, Random Forests are one of the learning methods

used in the practical parts of this thesis. In Chapter 7 it is used to classify the resulting

inputs of many feature extraction methods with the Bayesian Algorithm introduced

in Chapter 5. As Section 7.6.1 shows, while the latter algorithm is better suited for

our data, using Random Forest on a good set of features performs consistently better

than other generic Machine Learning algorithms.



Chapter 3

Related Work

This thesis adds new data and experiments to the fast-growing area of Mobile Phone

Social Network Analysis.

Earlier works in the general area of Social Network Analysis and Socioeconomic

Indices and their relation to demographic features were drawn from sparse sociological

studies [KC01] and surveys analyzing a single nation [Dea97]. However, the advent

of massive clusters of real-world data along with computers big enough to process it

completely changed the landscape of human data analysis, both for industry purposes

and for academia.

This chapter will discuss several scientific papers in this area which were relevant

for the research done in this one.

3.1 Correlations of Consumption Patterns in Social-Economic Networks

Léo et. al. present correlations between purchasing patterns and socioeconomic position

of users from a dataset similar to the one used in this thesis [LKSF16]. In particular,

the authors have access to a database of credit card purchases for a set of users, with

information about the amount of money spent and the general category (MCC) to

which the purchase belongs, and also to a cellphone communications graph which

allows them to infer the relationship between any two people.

The first of two interesting studies this thesis makes is to categorize the population

depending on their total spending, and find out the spending level of each user category

on one of several aggregated purchase groups. It makes it easy to see the difference

in spending for lower income and higher income people: the former group tends to

spend comparatively more money in entertainment and retail stores, while the latter

group spends more money in hotels and vehicles.

The second study presented in this paper relates to the correlation between people

who buy from each of these groups to find categories which are commonly purchased

27
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Figure 3.1: Data from the study of categories of purchases. The heatmap on the left
side is the adjacency matrix of Gρ, shown with logarithmically scaled colors. The graph
on the right represents G>

ρ , a weighted subgraph of Gρ which shows only significant
correlations where ρ(ci, cj) > 1.5.

together. Some groups, like Transportation, IT, or Personal Services play a central

role and are connected to many other communities, while some others like Car Sales

and Maintenance and Hardware Stores and pairwise connected.

The correlation between two categories is presented in Equation (3.1.1), where

r(ci, u) quantifies the fraction of money spent on a category ci by a user u.

ρ (ci, cj) =
n (
∑

u r(ci, u)r(cj, u))

(
∑

u r(ci, u)) (
∑

u r(cj, u))
(3.1.1)

If ρ(ci, cj) > 1, then categories ci and cj are positively correlated; if ρ(ci, cj) < 1,

then the categories are negatively correlated. Using this data, the authors build the

weighted correlation traph Gρ = (Vρ, Eρ, ρ), where links (ci, cj) ∈ Eρ are weighted by

the ρ(ci, cj) correlation values. This graph can be seen intuitively in Figure 3.1.

This thesis uses similar methods to find a correlation between the socioeconomic

index of a user and the ones of his contacts. In addition, there’s merit in the observation

that just as wealthier people spend more money in entertainment, they also are more

active users of their telephones.
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Figure 3.2: Response rate versus Collective Influence, a measure of the variance
between links.

3.2 Inferring Personal Economic Status from Social Network Location

Luo et. al. show that an individual’s location is highly correlated with its socioeconomic

status [LMS+17]. In addition, the paper also finds the interesting observation that

some social network patterns mimic the economic inequality patterns, and that there

is a significant (R2 = 0.96) correlation between the diversity of an individual’s links

and their financial status: the wealthiest 1-percenters have higher diversity in mobile

contacts and are centrally located, surrounded by other highly connected people

(network hubs). On the other hand, the poorest individuals have low contact diversity

and are weakly connected to fewer hubs.

The results were validated by performing a social marketing campaign for the

acquisition of new credit card clients by sending message for individuals that were

predicted to be affluent. Compared to a control group, the users with the most

covariance between their links (that is, with the highest link diversity) would more

probably request the offered product, which was ideal for affluent users. These results

can be seen in Figure 3.2.

Additionally, to prove that the results were not dependent on the validation

campaign, the authors produced an Analysis of Covariance[WA78] on all the features

they had access to test the variance caused by network metrics and other factors. This

resulted in the conclusion that the correlation between collective influence is positive

and significant in all groups of geographical communities, across genders, and among

all age groups older than 24 years. Such robust network effects imply that network
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metrics are a potential indicator for financial status.

Unlike this thesis, this paper is completely observational and doesn’t provide a

direct inference method for socioeconomic status. However, both its strict methodology

and its prediction of Collective Influence were useful for completing many parts of

this work, specially since the dataset used by Luo et al. has many similarities with

the one used in this.

3.3 Socioeconomic Status and Mobile Phone Use

Blumenstock and Eagle combines data from direct demographic surveys with Call

Details Records obtained from a phone company to get demographical data about

cellphone users in Rwanda [BE10].

The paper combines data about the overall demographic composition of Rwanda

with the demographic composition of a representative sample of mobile phone users,

along with voluntary survey results and the call history of the survey residents.

Two interesting tests made to measure the socioeconomic status of the respondents,

which is particularly hard in a country where a significant percentage most people’s

income derives from informal channels.

• Asking the respondents directly some of the demographic questions previously

used in a nation-wide survey from the Rwandan government. This resulted a

stark difference in socioeconomic level between the general population and the

cellphone-owning people in the survey.

• Using this same government survey to compute total expenditures by aggregating

expenditures across some subcategories as explained in [DZ02], and then fit the

model to the data.

With this data it was possible to characterize economic stratification and inequality

within the population of mobile phone users. Additionally, using the CDRs, it was

possible to characterize graph properties for rich and poor users, in addition to

other demographic indicators such as gender. In particular, while the mobile phone

population is in general wealthier than the general population of Rwanda, there’s still

considerable inequality within the group of mobile phone users.
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The analysis on users’ CDRs is very similar to the one used in this thesis. In

particular, the stratification of the nodes in the graph into “rich” and “poor”, along

with other demographic patterns, to find previously unknown data is the same one

that was used here.

3.4 Understanding Individual Human Mobility Patterns

Gonzalez et. al. explore the statistical properties of a population’s mobility patterns

by using a mobile phone dataset similar to the one used in this thesis [GHB08]. In

it, the authors find that the distribution of displacements of users over time can be

approximated by a truncated Lévy flight[Man82].

P (∆r) = (∆r + ∆r0)
−β exp (−∆r/κ) (3.4.1)

Where β = 1.75 ± 0.15, ∆r0 = 1.5km, and cutoff values κ|D1 = 400km and

κ|D2 = 80km.

The author also proposes 3 distinct hypothesis for this behaviour: A each indi-

vidual follows a Lévy trajectory, B the distribution captures heterogeneity between

individuals’ movement patterns, or C some heterogeneity coexists with Lévy patterns.

To distinguish between these hypotheses, the author approximated the Radius

of Gyration rg for each user, interpreted as the characteristic distance travelled by

some user at some time. While the ensemble of Lévy agents had a significant level of

heterogeneity, the author suggests that this is because of the big range of mobility

patterns in individuals, thus ruling out hypothesis A .

Conversely, the data also shows that users with small rg travel mostly over small

distances, whereas those with large radius display a combination of small and large

jump sizes. After rescaling all the distributions with this value, the author shows that

the data collapsed into a single curve. Therefore, travel patterns of individual user

may be approximated by a Lévy flight up to a distance characterized by rg; with this

definition we can see that large displacements are statistically absent. This indicates

that the jump size distribution of P (∆r) is the convolution between the statistics of

individual trajectories P (∆rg | |rg) and the population heterogeneity P (rg), which is

consistent with hypothesis C .
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This study demonstrates that the individual trajectories are characterized by the

same rg-independent probability distribution, and this suggests that the statistical

elements of individual categories are indistinguishable after rescaling. Therefore, this

has the basic ingredients of realistic agent-based models. Given the known correlations

between spatial proximity and social links, this could help quantify the role of space

in network development and evolution, and improve the general understanding of

diffusion processes.

3.5 Link-based Classification

Lu et. al. propose a statistical framework for modeling distributions between linked

documents (such as relational databases or URLs in websites) to use in machine

learning [LG03]. This is a hard problem, since naïvely applying traditional statistical

inference procedures, that assume that links are independent, can lead to inappropriate

conclusions[Jen99].

The study proposes using several features for these links, while later using a

logistic regression model for each of the features. Since the original problem required

multilabeling classification, the study calculates the probability of each label given the

features in a one-against-others model and picked the one for the highest posterior

probability.

The authors also propose an iterative algorithm to compute the category of each

link depending on the labels of their neighbour (which change on each step), which

reports an improvement in classification accuracy.

Some of the algorithms proposed in Chapter 7 are inspired by this paper. In

particular, the methodology of having two independent sets of feature extraction and

prediction methods is the same one used in this thesis.

3.6 Socioeconomic Correlations in Communications Networks

Léo et. al. use a similar dataset to the one used in this thesis that collects communication

and bank information about individuals, and shows that consumption patterns are

correlated with identified socioeconomic classes leading to social stratification in a

similar way to the paper discussed in Section 3.1 [LFAH+16]. In addition, the paper
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introduces a correlation between merchant categories.

Given the set of users’ purchases, the authors separate it into 17 categories, and

measure the fractional distribution of spending for each one as the amount of money

each user spent into each category over the total money spent.

As expected, people in lower socioeconomic classes spend more in groups associated

with essential needs, such as retail stores, gas stations, or service providers, while

people in higher socioeconomic classes spend the majority of the money on jewelry,

automobiles, and professional services.,

3.7 A Comparative Study of Social Network Classifiers

Óskarsdottir et. al. present several methods to address machine learning classification

in social networks and other graph-related structures [ÓBV+16]. The methods are

separated into several categories.

1. Relational Classifiers, which infer labels for each node based on the strength of

the links to other nodes and the labels to those nodes.

2. Collective Inference methods, which infer labels for the nodes of the network

while taking into account how the inferred labels affect each other.

The paper uses telco data from many separate sources for testing, and uses a single

logistic regression model to predict the correct label from the given features. Despite

testing it with several metrics, there are some feature generating methods that are

better than the other ones in every single one.

The way this paper presented several features, and the methods it used for testing,

were a great inspiration for the work in this thesis.



Chapter 4

Experimental Data Sources

4.1 Mobile Phone Data Source

4.1.1 Dataset Description

The data used in this study consist of a multiset P of composed of voice calls, and

another multiset S composed of text messages from a telecommunication company

(telco) for a 3 month period. These two sets are referred as the Call Detail Records, or

CDRs.

Every call p ∈ P contains the phone numbers of the caller and callee 〈po, pd〉, which
are anonymized using a cryptographic hash function for privacy reasons, the starting

time pt, and the call duration ps. The same datum, except for the call duration, can

be found for each element s ∈ S.

Additionally, the latitude and longitude of the antenna used for each call and SMS

〈py, px〉 are given for certain users V ′. Subsets P ′ ⊆ P and S ′ ⊆ S contain those calls.

Given that our collections P and S of CDRs are coming from one telephone

company, we are able to reconstruct all communication links between clients of this

company N , as well as communications between the clients and other users. However,

we have no information on communications where neither users are clients of our telco

company, and therefore users not in N don’t have complete call information.

The Communications Graph G = 〈V,E〉 is composed of he set of nodes V =

Po ∪ Pd ∪ So ∪ Sd, and the set of directed edges E, where each element e ∈ E is

composed of an origin and destination 〈eo, ed〉, the total amount of calls between these

two users ec, the total time of all calls et, and the amount of SMS es. Unlike the

multisets P and S, there is at most one element per every pair 〈eo, ed〉 (although there

may be two distinct elements with those values flipped).

The set E can be formally constructed with the instructions of the Equation (4.1.1).

34
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Figure 4.1: Distribution of amount of total contacts per user.

(∀e ∈ E)

ec = |{p ∈ P | 〈po, pd〉 = 〈eo, ed〉}|

es = |{s ∈ S | 〈so, sd〉 = 〈eo, ed〉}|

et =
∑
p∈P

〈po,pd〉=〈eo,ed〉

pt


(4.1.1)

For simplicity sake, this paper will also refer to the elements of these three sets as

callse, smse, and timee respectively.

4.1.2 Magnitudes and Distributions

As a corollary, GN can be defined as the graph 〈N,EN〉, where EN contains only calls

between users of the telco, and G′ as 〈V ′, E ′〉, where E ′ contains the calls from and to

users whose calls are located. This form of graph can be seen in Figures 4.1 and 4.2.

Both the amount of calls and the amount of contacts per user are distributed roughly

in a negative exponential distribution. Since the Average Call Time isn’t anywhere
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Figure 4.2: Distribution of amount of total calls per user.

near 0, the pattern of Call Durations follows a Gamma Distribution Γ (3.8,−8.4),

where Γ corresponds to the standard version of the distribution with location and

shape parameters.

4.2 Banking Information

For this study we also obtained the set B of account balanced of over 10 million

clients of a certain bank for a period of 6 months, which finishes at the same date as

the period used in Section 4.1. This dataset is represented by the set B, and each

client b ∈ B contains the phone number bp, anonymized with the same hash as the

datasets in the previous section, along with the reported income of this person in over

6 months bs0 , . . . , bs5 . We average these 6 values to obtain bs, the estimate of each

users’ monthly income.

The bank also provided us demographic information for a subset of its clients

A ⊆ B. For each user a ∈ A, we are given the age aa and the gender ag of the user,

which allows us to observe differences in the income distribution according to the age.

The distribution is shown in Figure 4.4.

Our data source requested the income data to be agnostic of currency. Since this
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Figure 4.3: Distribution of the durations of calls.

study could apply to any country with a similar level of bancarization, we’ll use the $

symbol to refer to a generic currency.

The demographic data can be easily combined with the income data to show

income by age, as figured in Figure 4.5. The data shows how the median income

increases with age up to the age of retirement, at around 60–65 years, and later it

rapidly decreases.

In another line of work, homophily with respect to age has been observed and used

to generate inferences [BBMS14].

The income distribution, as shown in Figure 4.6 presents a similar distribution to

the values in the dataset presented in Section 4.1.2.

4.3 Matching of Bank and Telco Information

Since the phone numbers in each call in the list of users V are anonymized with the

same hash function as the phone number in the bank data in the set B, the users

can be matched to their unique phone to augment the Social Graph G, where the

elements in the set S = V ∩B contain banking information.
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Figure 4.4: Amount of users in B by gender and age.

Figure 4.5: Distribution of income as as a factor of age aa. This is consistent with
real-world data from the country where the data for this thesis comes from.
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Figure 4.6: Distribution of incomes of users, represented by the set B, with different
percentiles marked. This plot helps appreciate the unequal distribution of income,
since the 50th percentile has a comparatively low income, while the differential between
higher percentile of incomes is each time higher.
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Figure 4.7: Distribution of incomes for users of both the bank and telco, represented
by the set S.

G = 〈V,E〉

(∀e ∈ E)

eo = bp =⇒ eso = bs

ed = bp =⇒ esd = bs

(4.3.1)

The distribution of bank users in S is similar to the one in B, as shown in

Figure 4.7. This demonstrates that the users of this particular telco have mostly the

same socioeconomic patterns as the clients of the bank in general.

4.4 Outlier Filtering

The dataset contains information about bank and telco users, some of which may

not directly correspond to a human user, or may not have useful information for our

research.

Most of the telco users in the first case are already filtered by the intersection

between the bank and the telco data. However, to make sure the users are relevant

enough for this study, we only keep the users which have a minimum amount of
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Figure 4.8: Lorenz curve representing the distribution of income of bank clients.

information, defined in the following items.

• A monthly income of at least $1000.

• A monthly income in the 99th percentile (i.e. we filter users with a monthly

income in the top 1%).

4.5 Unequal Distribution of Income

We provide here some observations of the distribution of income of the bank clients.

These observations correspond to the filtered dataset, obtained after applying the

filters of the previous section.

Figure 4.8 shows the Lorenz curve, graphical representation of the distribution of

income [Sat87]. The curve plots the cumulative share of clients, sorted by income, to

the fraction of the total income of the population.

From the Lorenz curve, we can compute the Gini coefficient as the area that lies

between the line of perfect equality and the Lorenz curve over the total area under

the line of equality. The data presents a coefficient of Gini = 0.45.
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According to the World Bank [Ban16], the Gini coefficient for the population of

the country where the data used on this thesis belongs was 0.481 in 2012. Our result

is consistent with this information, since the income inequality is expected to be lower

when accounting only to bank clients than within the whole population of the country.

Analyzing Figure 4.6, we can observe that the top 10% of the people accumulate

33% of the total income, while the top 20% accumulate 50.5% and the top 30%

accumulate 63.1%; the rest of the income is distributed among the remaining 70% of

the population.



Chapter 5

The Bayesian Method

5.1 Income Homophily

The main contribution of this work is the estimation of the income of the telco users

for which we lack banking data, but have bank clients in their neighborhood of the

network graph. To show the feasibility of this task, we first show the existence of a

strong income homophily in the telco graph.

Using the values of G = 〈V,E〉, the Social Graph defined in Chapter 4 that contains

communication data and bank data of a set of users, Figure 5.1 is defined so that the

color in each point 〈X, Y 〉 is the amount of pairs {〈go, gd〉 ∈ G | gos ∈ X ∧ gds ∈ Y }.
A simple glance reveals a significant correlation between X and Y .

Given the broad non-Gaussian distribution of the income’s values, we choose

to use a rank-based measure of correlation which is robust to outliers. Namely, the

Spearman’s rank correlation, as defined in Section 2.2, is computed to test the statistical

dependence of sets of incomes of callers and callees. Applying this formula to the data

gives a correlation coefficient of rs = 0.474.

The result was compared with a randomized null hypothesis, where links between

users are selected randomly disregarding income data, obtaining a p-value of p < 10−6.

These values for rs and p show a strong indication of income homophily among users

in our communication graph. This observation is consistent with the results reported

in other investigation of similar data, namely [LFAH+16].

We can take advantage of this homophily to propagate income information to the

rest of our graph G, where the income of the complete set of users is unknown.

43
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Figure 5.1: Heatmap showing the number of calls between users, according to their
monthly income. There is a higher probability that the callee and the caller have
similar income levels.
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5.2 Prediction Algorithm

5.2.1 Discrimination by Wealth

The main objective of this research is to identify users with higher income. To make the

task simpler and more efficient, the actual income values as described in Section 4.2 are

forfeited and instead the customers are separated into distinct groups: H1, containing

customers whose income is lower or equal than the median, and H2, containing users

whose income is higher than this value. From now on, these will be referred as Low

Income and High Income users respectively.

The median value in the dataset, after accounting for outliers as explained in

Section 4.4, is of exactly $6300∗. This way, we can define the two groups as in

Equation (5.2.1).

H1 ∪H2 = S

(∀h ∈ H1)hs ≤ 6300

(∀h ∈ H2)hs > 6300

(5.2.1)

5.2.2 Feature Accumulation

Given the Social Graph G = 〈V,E〉, as defined in Chapter 4, contains information

about the Calls, SMS, and Total Time of each link between two users. These can be

accumulated for each user, along with its Degree, to produce the User Data, which is

used for another evaluation in Section 7.3.1.

Another possible way to accumulate these values is discriminating them by the

category to which the other endpoint belong. That is, for every edge feature F and

for the Degree, it is possible to define two features Flow and Fhigh that only accumulate

features from edges whose other endpoint is a user with Low Income or High Income,

respectively. This approach is formalized in Equations (5.2.2) to (5.2.5).

∗The input data, including the source country, is anonymized. The symbol $ refers to a certain

world currency and not necessarily the American Dollar.
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callslowv =
∑
e∈E
ed=v
eo∈H1

ec +
∑
e∈E
eo=v
ed∈H1

ec callshighv =
∑
e∈E
ed=v
eo∈H2

ec +
∑
e∈E
eo=v
ed∈H2

ec (5.2.2)

timelowv =
∑
e∈E
ed=v
eo∈H1

et +
∑
e∈E
eo=v
ed∈H1

et timehighv =
∑
e∈E
ed=v
eo∈H2

et +
∑
e∈E
eo=v
ed∈H2

et (5.2.3)

smslowv =
∑
e∈E
ed=v
eo∈H1

es +
∑
e∈E
eo=v
ed∈H1

es smshighv =
∑
e∈E
ed=v
eo∈H2

es +
∑
e∈E
eo=v
ed∈H2

es (5.2.4)

contactslowv = |{e ∈ E | eo = v ∧ ed ∈ H1} ∪ {e ∈ E | ed = v ∧ eo ∈ H1}|

contactshighv = |{e ∈ E | eo = v ∧ ed ∈ H2} ∪ {e ∈ E | ed = v ∧ eo ∈ H2}|
(5.2.5)

5.2.3 Uncertainty

One important thing to note is that the only nodes accumulated in Equations (5.2.2)

to (5.2.5) for some node v ∈ V are the neighboring ones that belong to S. Equa-

tion (5.2.6) indicates how to build the subset D ⊆ S of bank users who also have a

neighbor in the Social Graph G which is also part of the bank.

ED = {e ∈ E | eo ∈ S ∧ ed ∈ S}

D = ED
o ∪ ED

d

(5.2.6)

D is defined as a subset of S, instead of one of V , because we cannot analyze the

performance of a predictor on telco users who aren’t part of the bank.

There is an additional level of uncertainty: while the data contains information

about calls, and the inference assumes that callee and caller know each other, there

is simply no information about the socioeconomic level of acquaintances who don’t

share phone calls. However, the more calls a user makes, and the more people it calls,

the more certain we can be that the algorithm in this section is correct.

5.2.4 Modelling Users — Frequentist Approach

The final objective of this thesis is to detect High Income users in a dataset by just

knowing their calls using the hypothesis, described in Section 5.1, that a user will

mostly call people from his same income category. For this, some calculations will be
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made for some property $∗ on the low and high income users, which is one of the

values defined in Equation (5.2.7). Part of the performance in Chapter 6 will imply

finding the $ which maximizes some score.

$ ∈ {calls, time, sms, contacts} (5.2.7)

As it was discussed in Section 5.2.3, even having that data it is impossible to have

complete information about a user’s relationships. However, it is possible to create a

Model where we can predict the rate of High Income to Low Income contacts a user

has, and with that data the Probability pv that this user v ∈ V \B is a High Income

user.

The naïve way of solving this problem would be to assign this probability using

only the current data, as in Equation (5.2.8).

pv = P (v ∈ H2) =
$high
v

$high
v +$low

v

(5.2.8)

This method fails to account for the Certainty that a user belongs to some category,

which can be exemplified in scenarios where the probability of a user with only 1 High

Income contact being High Income is slightly higher than one for another user with

100 High Income contacts and 1 Low Income contact.

5.2.5 Modelling Users — Bayesian Approach

This section uses a variant of the Beta-Binomial Model presented in Section 2.4.4.

For each user v ∈ V \ B we define a Beta Distribution Betav which can define

the probability of pv falling between two numbers. This approach is formalized in

Equation (5.2.9).

Bv ∼ Betav
(
$high
v + 1, $low

v + 1
)

(5.2.9)

The previous equation allows us to define a formula for the probability of each

users pv, as shown in Equation (5.2.10).

∗$ is a variant of the Greek letter π, which represents a Property.
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P (Bv ≤ x) =
1

B
(
$high
v + 1, $low

v + 1
) · ∫ x

0

t$
high
v (1− t)$

low
v dt (5.2.10)

Here it is also possible to assign the probability depending on the Mean or the Mode

of the distribution. However, that would also fail to account for the Certainty of the

numbers, which is the disadvantage discussed in the method defined in Section 5.2.4.

Instead, given the definition of an arbitrary Θ ∈ [0, 1], it is possible to use the

formula presented in Section 2.4.3 to define a suitable pv, as shown in Equation (5.2.11).

pv = Q (Θ)

= inf {x ∈ [0, 1] | Θ ≤ F (x)}
(5.2.11)

This probability represents the Posterior Probability of pv given the data. To

adjust the prediction, the method compares the value for each user with the rest and

assumes that, if pv > pu for two users v and u, then v has a higher probability of

being wealthy.

Since we don’t have any prior information about a good value of Θ, we initially take

a value from Jeffrey’s Prior. This distribution, which was defined by Harold Jeffreys

in 1946 [Jef46], is a completely uninformative prior distribution for a parameter that

makes it possible to parametrize prior ignorance about values in a Bernoulli model.

The Probability Density Function of the prior for a parameter γ is presented in

Equation (5.2.12). It is interesting to note that this is the same PDF than in the one

for a Beta Distribution with parameters α = 0.5, β = 0.5.

P (Θ = γ) ∝ 1√
γ (1− γ)

(5.2.12)

5.2.6 Categorizing Users

In the previous section the probability of belonging of being a High Income user pv
was defined for every v ∈ V \B. While this value alone doesn’t give any information

about whether user v belongs which category, it does tell that his category will be

higher or equal than users with a lower probability. This approach is formalized in

Equation (5.2.13).
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(∀u,w ∈ V \B)
pu > pw ∧ u ∈ H1 =⇒ w ∈ H1

pu < pw ∧ u ∈ H2 =⇒ w ∈ H2

pu = pw =⇒ (u ∈ H1 ⇐⇒ w ∈ H1)


(5.2.13)

Thanks to this approach we can define some limit, τ , and categorize each user

v ∈ V \B as either category depending on the magnitude of pv compared to τ , as in

Equation (5.2.14).

pv ≤ τ =⇒ v ∈ H1

pv > τ =⇒ v ∈ H2

(5.2.14)

τ represents the Threshold on which this algorithm separates the Low Income

and High Income users. Since its value changes many metrics on the model that are

related to the final labels, it can be set to arbitrarily increase or decrease Precision,

Recall, or any combination of those.

5.3 Performance Evaluation

It is easy to evaluate the performance by calculating pv for all v ∈ B, which allows us

to know whether each value is a True Positive, a False Positive, a False Negative, or a

True Negative, and collecting any of the metrics described in Section 2.5.

One advantage of this method is that it is possible to evaluate the method by

calculating the Area Under the Curve without having to specify a particular τ , since

this follows the necessary pattern defined in Section 2.5.6. This way it is possible to

select the best $ without having to select the respective τ .

Once this methods defines which $ ∈ {calls, time, sms, contacts} it will use, it

chooses Θ as to maximize the Area Under the Curve of the model. While calculating

the Inverse Cumulative Function for the Beta Distribution is particularly slow, it is

possible to infer less datapoints by using a Statistical Prior, as defined in Section 5.2.5.

Another probability (still unexplored) is to figure out that the Area Under the Curve

for a particular $ is monotonic increasing until the optimal Θ, and later is monotonic
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decreasing, as shown in the later Figure 6.1. If this hypothesis were true, it would be

possible to use Ternary Search to find the best value of Θ.

After finding a $ and Θ, it is possible to find the point pv at which the Beta

Distribution Bv of each user v ∈ V integrates to Θ. Having this data we can find the

τ that maximizes the Accuracy of the model by comparing the predicted categories to

the data in the Testing Set.
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5.4 Bayesian Graphical Model

An alternative way of seeing this problem is through a Bayesian Graphical Model,

which is explained in more detail in [LW14].

In the model, shown in Figure 5.2, doesn’t directly define a Beta Distribution

Bv ∼ Beta($high
v + 1, $low

v + 1) for every user v. Instead, the problem is defined as

the Binomial Distribution in Equation (5.4.1) for some probability πv.

$high
v ∼ Binom

(
$low
v +$high

v , πv
)

(5.4.1)

For simplicity, other two new categorical variables are defined for this model for

each user v: κv∗, which is 1 if and only if v is part of the high category of income,

and κ̂v, which is 1 if and only if v is predicted to be of the high category of income.

Additionally, nv = $low
v +$high

v and kv = $high
v .

nv

kv

πv

pvΘ

κ̂v

κv

τ

v ∈ V ∩B

kv ∼ Binom (nv, πv)

Θ ∼ Beta (0.5, 0.5)

πv ∼ Beta (1, 1)

pv = Qπv (Θ)

τ = argmax
t∈[0,1]

∣∣{v ∈ V ∩B | pv ≥ t ⇐⇒ kv
}∣∣

κ̂v =

{
0 if pv < τ

1 if pv ≥ τ

Figure 5.2: A Bayesian Graphical Model representing an interesting alternative
approach to the problem, using a Binomial Distribution instead of a Beta Distribution.
If this model was applied with a program such as Jags, the results would be the same.

∗κ is a variant of the Greek letter κ, which represents a Category
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Evaluating Performance of Bayesian Prediction Algorithm

In this chapter, we test the Prediction Algorithm presented in Chapter 5 with the

data present on the graph.

6.1 Experimental Environment

All the tests are being performed in a single Linux 3.16 server with 16 Intel Xeon

D-1540 cores with 2GHz of power, and 128GByte of RAM.

The programming environment consists of Python 2.7.9, which along with the li-

braries numpy 1.12.1, scipy 0.18.1, pandas 0.19.2, and scikit-learn 0.18[PVG+11]

were used for creating both the Bayesian Algorithm, all the Machine Learning methods

described in Chapter 7, and the many programs created for feature engineering.

The experimentation was achieved using the previous libraries, using the amazing

Jupyter 5.1.0 notebooks as an environment and matplotlib 1.5.2 and seaborn

0.7.1 to create the graphs used in this thesis.

6.2 Data Partitioning

6.2.1 Train Test Split

As with many other classification problems, the Bayesian Algorithm is prone to

overfitting [Mit97]. In this particular case, since the information presented in Section 5.1

shows that users tend to communicated with users of the same socioeconomic level,

by running the algorithm in the complete data and using the same users as part of

the features and of the labels, we would erroneously be having more data per user

than we would have when modelling the problem.

Since the input data used in this experiment comes from B, the banking information

of the users in the telco, we can avoid most of the effects of overfitting separating the

52
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data into a Training Set and a Testing Set, where the data in B is separated into two

disjoint groups as shown in Equation (6.2.1).

Btrain ⊆ B |Btrain| = 0.8 · |B|

Btest ⊆ B |Btest| = 0.2 · |B|

Btrain ∩Btest = ∅

(6.2.1)

6.2.2 Erasing Uninformative Data

The Social Graph G = 〈V,E〉, which contains information about the communication

networks of the users in this dataset is extremely sparse. Because of the property

and that |B| � |V |, the vast majority of users don’t have any kind of contact with

users of the bank. For this reason it is useless to evaluate the performance of the

algorithm using all the nodes, and therefore the Testing Set used in this thesis will

instead focus on the bank users that have at least one contact with another bank user.

This approach is formalized in Equation (6.2.2).

Ê = {e ∈ E | eo ∈ Btrain ∨ ed ∈ Btrain}

B̂test = Btest ∩
(
Êo ∪ Êd

) (6.2.2)

The accuracy of this approach depends of the value of $, which is one of calls,

time, sms, or contacts and defines which property of the users that’s used as a feature

for the classification. If $ = contacts, then this approach works perfectly. However,

it is possible that for other values of $ there won’t be any information available in

B̂test in the case of users who either didn’t receive any call from a bank user or didn’t

receive any message.

Equations (6.2.3) and (6.2.4) formalize new variables to use for informative data

in those cases.

Êcalls = {e ∈ E | ec > 0 ∧ (eo ∈ Btrain ∨ ed ∈ Btrain)}

B̂calls
test = Btest ∩

(
Êcalls
o ∪ Êcalls

d

) (6.2.3)

Êsms = {e ∈ E | es > 0 ∧ (eo ∈ Btrain ∨ ed ∈ Btrain)}

B̂sms
test = Btest ∩

(
Êsms
o ∪ Êsms

d

) (6.2.4)
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6.2.3 Rebalancing Labels

Since the testing data Btest was a random subsample of a balanced set (see Sections 5.2.1

and 6.2.1), it was also balanced itself. However, since High Income users tend to

communicate more often than Low Income ones, B̂test is unbalanced and has a

significant bias for high-income users.

Since the income categories tend to be balanced in the real world, this isn’t wanted.

However, since it is not necessary to use the entire Testing Set for testing the algorithm,

a simple way would be to create a new, balanced, and final testing set, Υ ⊆ B̂test

containing all users from B̂test Low Income, along with a random sample of the same

size with High Income.

Υlow = B̂test ∩H1

Υhigh ⊆ B̂test ∩H2∣∣Υlow
∣∣ =

∣∣Υhigh
∣∣

Υ = Υlow ∪Υhigh

(6.2.5)

Υ will be the only Testing Set used from now on, while Btrain will be used as

training set.

Additionally, the sets Υcalls and Υsms refer to similar sets which are taken from users

from the Testing Set that had at least one call or sent at least one SMS, respectively,

to another user in the Training Set.

6.2.4 The Inner and Outer Graph

Most of the rest of the thesis will use the subgraphs Υ, later called the Inner Graph,

containing only users with at least one labeled neighbour, and Btest, the Outer Graph,

containing all users. For simplicity sake, from now on the Outer Graph Btest will be

referred to as Ω, and the unbalanced outer graph (which is not used after this section)

as Ω̂.

As shown in Section 6.2.3, the labels have roughly the same amount of high income

and low income users.

The Outer Graph Ω is not used in this section, as the Bayesian Algorithm requires

some information about the Socioeconomic Level of the neighbours of the users used
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Set Total Size High Income Low Income Ratio

B 5,402,959 2,702,628 2,700,331 —
Ω 1,080,592 540,526 540,066 —
Ω̂ 53,691 35,215 18,476 1.000
Υ 36,952 18,476 18,476 1.000
Υcalls 30,715 15,653 15,062 0.831
Υsms 11,909 6046 5863 0.322

Table 6.1: Amount of users in the Testing Set after trimming it several times to
prevent overfitting while keeping the labels balanced

in the prediction. However, it is used as one of the main inputs for generating features

in the later Chapter 7.

6.2.5 Set Magnitudes

While the new set Υ contains significantly less users than the original set B, it still

has a sufficient amount of people to make a prediction. Table 6.1 shows the number

of users that remain after every trim used in this Subsection, along with the ratio

of users which we would be able to assign an Income Category using these datasets

assuming the real data is equally distributed from the Test Data.

6.3 Optimizing Θ

In Section 5.2.5 we define the variable Θ, which is defined as the quantile used to

define the Posterior Probability pv of a user v being part of the higher income category.

Choosing a good value of Θ is an essential step in creating a correct algorithm since

it is the most important constant of Equation (5.2.11), one of the crucial parts for

finding the category of an user.

As explained in Section 5.2.5, it is convenient to use Jeffrey’s Prior as the prior

distribution for this variable. However, knowing how it will affect the prediction of

the category of each v for every $ ∈ {calls, time, sms, contacts} will allow us to get a

good posterior value.
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Figure 6.1: The Area Under the Curve for different Θ and every possible $. This is
the preliminary version of the analysis seen in Section 6.4

.

$ Optimal Θ AUC

contacts 0.394 0.746
calls 0.428 0.724
time 0.001 0.718
sms 0.428 0.715

Table 6.2: Optimal Θ for each $

The main hypotheses tested in this part of the theses were two assumptions.

1. The optimal value of Θ will be the same for any $.

2. Overlooking extreme values, the value of Θ won’t improve or deteriorate the

prediction.

As Table 6.2 and Figure 6.1 show, both hypotheses are false.

The Area Under the Curve is a good way to analyze the performance of the

algorithm with given hyperparameters since it provides a good equilibrium between

Precision and Recall. Additionally, in Section 5.2.6, value τ is defined to set the limit
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between the users categorized between High Income and Low Income. Since this value

is independent from the Area Under the Curve, it is not necessary to define it in this

part of the analysis.

In this analysis we can see that there are different optimal Θ for every $, contra-

dicting the first hypothesis although the best value seems to be the same for $ = calls

and $ = sms. The reason for this equality remains a mystery.

Additionally, there is a significant difference between the values of Θ on all input

types, contradicting the second one, except for $ = time. This is probably caused

because the calling time is a lot more varied than with the other statistics, as is shown

in Section 6.4.2.

6.4 Algorithm Performance on All Users

The Bayesian Algorithm will be ran for every $ ∈ {contacts, calls, time, sms}. For

every possible configuration, we present 3 plots for the optimal Θ.

• A histogram presenting the distribution of the pv values which result from

applying Equation (5.2.11) presented in Section 5.2.5 to each distinct Beta

Distribution.

– Some interesting pairs 〈α, β〉 which correspond to particularly high bars in

the histogram are marked.

• A Receiver Operating Characteristic Curve, showing the trade-off of False

Positive Rate to True Positive Rate when selecting every possible τ . The Area

Under the Curve is marked, as this is the metric that is being maximized when

selecting the correct $.

• An Accuracy Curve, which shows the Accuracy of the predictor by its False

Positive Rate.

We also use the Accuracy Curve to define the value of τ , the limit between the users

defined in the High Income and the Low Income categories, in order to to maximize

accuracy in this method.

Many metrics, previously described in Section 2.5 will be used to measure the

Bayesian Algorithm for different $. The results are later shown in Table 6.3.
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6.4.1 Inferring by Calls

Figure 6.2: Results of the Bayesian Algorithm for call data.

Figure 6.2 contains data about the predictor when $ = calls and the data is

analyzed using Υcalls as Testing Set. The Inverse Cumulative Distribution Function

contains a few peaks for users with a similar amount of calls.

After analyzing the data, we find that the Area Under the Curve using this method

is of 0.724, which is significantly higher than all the naïve and Machine Learning

methods that will be presented in the later Chapter 7.

Setting τ = 0.654 maximizes the accuracy at Accuracy = 0.687. Additionally, that

value of τ results in Precision = 0.653, Recall = 0.815, F1 = 0.725, and F4 = 0.804.
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6.4.2 Inferring by Time

Figure 6.3: Results of the Bayesian Algorithm for time data.

Figure 6.3 contains data about the predictor when $ = time and the data is

analyzed using Υcalls as Testing Set, there are two big clusters of data at the edges;

this is explained because the majority of users spend most of their time talking to

either High Income or Low Income users.

The Area Under the Curve of this inference mechanism is AUC = 0.718, which is

lower than the one for the calls in Section 6.4.1. The Accuracy Curve is unsurprisingly

similar to that one, and even the Accuracy at τ = 0.722 is the close. This is probably

a result of the fact that there is an obvious correlation between total talking time and

total calls.

This τ also results in a predictor where Accuracy = 0.682, Precision = 0.649,

Recall = 0.819, F1 = 0.724, and F4 = 0.807.
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6.4.3 Inferring by SMS

Figure 6.4: Results of the Bayesian Algorithm for SMS data.

Figure 6.4 shows the distributions when $ = sms. Since the total amount of

SMS is much lower than the amount of calls, the peaks of the result of the Inverse

Cumulative Functions of the Beta Distribution applied on Υsms that happen with

the majority of users that have few of both are located closer to the center than in

Sections 6.4.1 and 6.4.2. This makes some interesting cases if $ = sms is chosen, since

the distribution is different than in the other cases.

In particular, this gives an AUC = 0.715, which is lower than both in the case

of Calls and Time. Interestingly, the maximum Accuracy at τ = 0.299 is slightly

higher than both of the other cases; this is probably a side-effect of the fact that

|Υsms| <
∣∣Υcalls

∣∣.
Additionally, Precision = 0.696, Recall = 0.186, F1 = 0.293, and F4 = 0.194.
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6.4.4 Inferring by Contacts

Figure 6.5: Results of the Bayesian Algorithm for degree data.

Figure 6.5 shows the distributions when $ = contacts, where it is possible to get a

pattern similar to the one shown in Section 6.4.3 when $ = sms, where the majority of

users have relatively few contacts and the peaks in the histogram. Additionally, since

the total amount of contacts is exponentially distributed (as shown in Figure 4.2),

and people with High Income tend to have more contacts in general, there peaks are

clustered in areas with low pv (where the majority of calls are made to Low Income

users), near the middle (where the calls are mostly equally distributed), but not at

high pv; this last section would belong to the few users with many calls to High Income

users.

Using this method it is possible to find that AUC = 0.746, which is higher than all

the other methods presented in Section 6.4. Additionally, when selecting τ = 0.514,

Accuracy = 0.694 which is higher than the maximum Accuracy in all other methods.
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$ Θ τ Acc. Prec. Rec. AUC F1 F4

calls 0.428 0.654 0.686 0.654 0.816 0.724 0.726 0.804
time 0.001 0.722 0.681 0.652 0.806 0.718 0.721 0.795
sms 0.428 0.299 0.688 0.648 0.789 0.715 0.712 0.779
contacts 0.394 0.514 0.693 0.665 0.792 0.746 0.723 0.783

Table 6.3: Metrics for the Bayesian algorithm using every user in Υ

These metrics, combined with the fact that Υ contains every user in the Testing Set,

result in the fact that $ = contacts is unambiguously the best way to classify the

data for the algorithm. Additionally, Precision = 0.556, Recall = 0.792, F1 = 0.723,

and F4 = 0.783.

6.4.5 Final Results

Table 6.3 presents every metric discussed in Section 2.5 for the optimal Θ and τ for

every $.

In particular, the results show that using Contacts as the predictor for the Bayesian

Algorithm results in a significantly higher Area Under the Curve and a higher Accuracy.

6.5 Algorithm Performance of Users with at least 3 Contacts

The algorithm tends to be a better predictor of the Socioeconomic Level for users with

high amount of information on the graph G, namely that the amount of users in their

neighborhood that also belong to B is big.

In this section, we run the Bayesian Algorithm for the subset of the users presented

in Equation (6.5.1), which restrict the users in the Testing Set to only those who have

at least 3 contacts. This would allow us to have better metrics in the dataset, at the

expense of a much smaller Universe of users for which the algorithm could be applied.

Additionally, Table 6.4 shows the sizes of the Testing Sets used in a manner similar to

Table 6.1.

I =
{
υ ∈ Υ | contactshighυ + contactslowυ > 3

}
Icalls = Υcalls ∩ I

(6.5.1)
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Set Total Size High Income Low Income Ratio

I 7932 4637 3295 0.258
Icalls 7910 4627 3283 0.214

Table 6.4: Amount of users in the Testing Set after trimming it several to only have
users with at least 3 contacts.

6.5.1 Inferring by Calls on Users with at least 3 Contacts

Figure 6.6: Results of the Bayesian Algorithm for call data by only counting users
with at least 3 contacts.

Figure 6.6 uses Icalls ⊆ Υcalls and $ = calls to create a predictor where both the

Area Under the Curve and the Accuracy are higher than in all predictors that use

every possible user. However, this data predicts less users and is strictly worse than

the one presented in the following section.
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6.5.2 Inferring by Degree on Users with at least 3 Contacts

Figure 6.7: Results of the Bayesian Algorithm for contacts data by only counting
users with at least 3 contacts.

The results in Figure 6.7 show the best possible predictor for a reasonable subset

of the users. Both the Area Under the Curve and the Accuracy are higher than for all

other predictors, with AUC = 0.829 and Accuracy = 0.766.

All of those values are considerably better than any other predictor in this page

at the cost of using only a small subset of the possible users. This is interesting as

it is exactly the same subset as the one used in [FBB+16], and it scores significantly

higher in all the metrics.
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Comparison with Other Inference Methods

In this chapter, we compare the results of the Bayesian method presented in Chapter 5

with common machine learning methods using several feature extraction methods

in the graph used for this study. Like in the previous chapter, the idea is to know

whether each user v belongs to a Low Category of income, H1, or to a High Category,

H2, by knowing the distribution of calls and text messages to his contacts.

These classifier creates a proper baseline for other comparisons. These will be

used in the Social Graph G = 〈V,E〉, that contains data about the communications

network for every user, along with the banking data B separated into training and

testing sets Btrain and Btest, and will be used to provide either information about the

users.

Unlike the method presented in the previous chapter, we can optionally forego the

necessity for having at least one neighbour with known socioeconomic index for each

user. For this reason, we experiment with these methods with two possible inputs,

both previously defined in Section 6.2.4.

• The Outer Graph Ω, with information about every node in the graph G.

• The Inner Graph Υ, which only contains information about the subset of nodes

which have at least one neighbour with known Socioeconomic Index

At the end of this chapter, in Section 7.6, we present a group of tables that compare

the results of these methods with the Bayesian Algorithm described in Chapter 5

along several metrics.

7.1 Random Selection

One of the simplest methods for solving many classification problems is using random

selection. This classifier simply chooses randomly to which strata each user belongs.

65
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P (v ∈ H1) = 0.5

P (v ∈ H2) = 0.5
(7.1.1)

This produces a good baseline for comparing other inference methods.

7.2 Majority Voting

The method of Majority Voting is a basic but powerful way of inferring which category

a user belongs to. It simply chooses the category of each user v ∈ V as the most

common category within its contacts.

In case of a tie (which happens often when using the Outer Graph, as many users

don’t have any neighbour with a known category), the category is chosen randomly.

This approach can be formalized as in Equation (7.2.1). Here, we use the values

contactslowv and contactshighv defined in Chapter 5: the amount of contacts user v has

of either low or high socioeconomic index, respectively.

P (v ∈ H1) =


0 if contactslowv < contactshighv

0.5 if contactslowv = contactshighv

1 if contactslowv > contactshighv

(7.2.1)

7.3 Methods Based in Machine Learning

The following methods use commonly used supervised Machine Learning algorithms,

described in Section 2.6, used with many similar Feature Extraction methods on the

Social Graph G.

The initial feature extraction method, referred to as User Data, is described in

Section 7.3.1 and marked as Nbr0, consists of accumulating the total information

about the links neighboring some user v ∈ V . Later, as shown in Section 7.3.3, it is

possible to accumulate links from more levels of the Ego Network to create feature

sets that be used to build a better prediction of the data, marked Nbrn for some level

n.

An extra method for feature extraction is presented in Section 7.3.2, which in

addition to doing the extraction of other methods it accumulates separately edges
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Cat0

Cat1

Cat2

Nbr0

Nbr1

Nbr2

Figure 7.1: Relationships between the Feature Extraction methods of Section 7.3.
blue edges represent an increase in Ego Network size, a process which is describe in
Section 7.3.3, while green edges represent adding label information, which is described
in Section 7.3.2

Level Features

Nbr0 8
Nbr1 16
Nbr2 24
Cat0 24
Cat1 48
Cat2 72

Table 7.1: Number of features used for testing each Machine Learning model on each
level

that go to High Income and Low Income users. These methodologies are marked with

Catn for some level n.

The features of each method are merged with the ones from the immediate

predecessor methods, as shown in the graph in Figure 7.1, while the amount of features

in each level is described in Table 7.1.

7.3.1 User Data — Level Nbr0

The features on the Social Graph G = 〈V,E〉, which contains communications data

between all the users, can be accumulated for all users in a manner similar to the one
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in Section 5.2.2, presented again in Equation (7.3.1).

callslowv =
∑
e∈E
ed=v
eo∈H1

ec +
∑
e∈E
eo=v
ed∈H1

ec callshighv =
∑
e∈E
ed=v
eo∈H2

ec +
∑
e∈E
eo=v
ed∈H2

ec

timelowv =
∑
e∈E
ed=v
eo∈H1

et +
∑
e∈E
eo=v
ed∈H1

et timehighv =
∑
e∈E
ed=v
eo∈H2

et +
∑
e∈E
eo=v
ed∈H2

et

smslowv =
∑
e∈E
ed=v
eo∈H1

es +
∑
e∈E
eo=v
ed∈H1

es smshighv =
∑
e∈E
ed=v
eo∈H2

es +
∑
e∈E
eo=v
ed∈H2

es

contactslowv = |{e ∈ E | eo = v ∧ ed ∈ H1} ∪ {e ∈ E | ed = v ∧ eo ∈ H1}|

contactshighv = |{e ∈ E | eo = v ∧ ed ∈ H2} ∪ {e ∈ E | ed = v ∧ eo ∈ H2}|

(7.3.1)

However, and unlike in the experiments in Chapter 5, this time we aren’t constrained

either by having only users which have contacts with other users with known Income

Category, nor with having to have only two features for each category which was

necessary since the solution used the Beta Distribution.

This way, it is possible to accumulate features for each user v ∈ V as in Equa-

tion (7.3.2).

incallsv =
∑
e∈E
ed=v

callse outcallsv =
∑
e∈E
eo=v

callse

outtimev =
∑
e∈E
ed=v

timee outtimev =
∑
e∈E
eo=v

timee

insmsv =
∑
e∈E
ed=v

smse insmsv =
∑
e∈E
eo=v

smse

incontactsv = |{e ∈ E | ed = v}|

outcontactsv = |{e ∈ E | eo = v}|

(7.3.2)

These features will be referred as the User Data of user v. There features contain

information about the Neighborhood of υ, also referred to as the Ego Network of

Distance 1. This definition is used later in this chapter, and the nodes belonging to

the Neighborhood of υ can be formally defined as in Equation (7.3.3).

Neigh (υ) = {eo | e ∈ E ∧ ed = υ} ∪ {ed | e ∈ E ∧ eo = υ} (7.3.3)
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7.3.2 Categorical User Data — Level Cat0

Given the Inner Graph Υ, containing the subset of users where at least one neighbour

has bank information, a possible feature set consists of separating the data of the

neighborhood of each user υ ∈ Υ into two disjoint groups, Lυ andKυ, which contain the

neighbors of υ in the Low Income and High Income categories of income respectively∗.

Lυ = H1 ∩ Neigh (υ)

Kυ = H2 ∩ Neigh (υ)
(7.3.4)

Having defined these groups it is possible to define a set of features similar to the

one in Section 7.3.1, where each feature is separated by the category of the neighbor.

Equation (7.3.5) represents an intuitive way to define the names of the new features.

{
in

out

}
×


calls

time

sms

contacts


×

{
low

high

}
(7.3.5)

Equations (7.3.6) and (7.3.7) contain the way to calculate those features. Since

the number of individual features is high and the formulas are similar and repetitive,

the variable ζ is defined for all the types of properties.

For ζ being any of {calls, time, sms},

inζlow
v

=
∑
e∈E
ed∈Lv
eo=v

ζe inζhigh
v

=
∑
e∈E
ed∈Kv
eo=v

ζe

outζlow
v

=
∑
e∈E
eo∈Lv
ed=v

ζe outζhigh
v

=
∑
e∈E
eo∈Kv
ed=v

ζe

(7.3.6)

incontactslowv = |{e ∈ E | ed = v ∧ eo ∈ Lv}|

incontactshighv = |{e ∈ E | ed = v ∧ eo ∈ Kv}|

outcontactslowv = |{e ∈ E | eo = v ∧ ed ∈ Lv}|

outcontactshighv = |{e ∈ E | eo = v ∧ ed ∈ Kv}|

(7.3.7)

∗Note that, since not all users have banking information, there may be nodes in the neighborhood

of υ which don’t belong to either Lυ or Kυ.
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Unlike the features in Section 7.3.1, and like the method presented in Chapter 5,

the features in this section will be be different when testing between the nodes of Ω

(the Outer Graph) and Υ (the Inner Graph).

7.3.3 Higher Order User Data — Level Nbrn>0

The features described in Section 7.3.1 correspond to the information about calls and

SMS from an user υ ∈ Υ towards all of its neighbors, which is described as the Ego

Network of Distance 1. However, there’s no reason why this information can’t be

extended to other nodes at a higher distance from υ.

If the distance between two nodes is defined using the intuitive definition presented

in Equation (7.3.8), it is possible to define the User Data of Order n for any number

n ∈ N as the accumulation of calls and SMS where one endpoint is on the border of

the Ego Network of Order n and the other one isn’t. The Ego Network of Order n or

a certain node υ is the sub-graph composed of the node υ and all the nodes which are

at at most distance n of υ.

d (a, b) =

0 if a = b

1 + minv∈Nbr(b) d (a, v) otherwise
(7.3.8)

This method creates a set of Higher Order Features similar to the ones in Equa-

tion (7.3.2), with the exception that the values of the edges summed for each node are

defined on the distance instead of on the definition of the E itself. Indeed, for the

Social Graph G = 〈V,E〉 we can define features with formulas similar to the ones in

Equation (7.3.9).

incallsnv =
∑

e∈E
d(eo,v)=n
d(ed,v)=n+1

callse outcallsnv =
∑

e∈E
d(ed,v)=n
d(eo,v)=n+1

callse
(7.3.9)

This definition can be seen more intuitively in the graph in Figure 7.2.

Every set Nbrn contains features from that level and all the previous ones as

presented formally in Equation (7.3.10). This implies that, if the prediction algorithms

are smart enough, the result of using the features from Nbrn+1 should be at least as

good as using the ones from Nbrn.
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v

Figure 7.2: Example of the edges present in the calculation of the Higher Order User
Data for a certain node v. Red edges represent edges whose features are accumulated
in the User Data of Order 0, blue edges represent those of Order 1, and green those
of Order 2.

(∀n ∈ N) Nbrn ⊂ Nbrn+1 (7.3.10)

In one of the initial experiments in this thesis we added more features related to

the {in, out} group to indicate how many “in” or “out” edges must be traversed from

υ. However, this added an exponentially large new amount of features without much

significant data, and thus was left out from the following experiments.

7.3.4 Higher Order Categorical User Data — Level Catn>0

It is possible to combine the ideas in Sections 7.3.2 and 7.3.3 to create a group of

sets of features containing the data from the border of the Ego Network or Order n,

separated by two disjoint groups depending in the category of the node outside the

ego network, as in Equation (7.3.11), with E defined as in Chapter 4 as the set of

edges where eo is the user that originated a call and ed the user in the destination.

incallslown
v =

∑
e∈E
ed∈H1

d(eo,v)=n
d(ed,v)=n+1

callse incallshighnv =
∑
e∈E
ed∈H2

d(eo,v)=n
d(ed,v)=n+1

callse

outcallslown
v =

∑
e∈E
eo∈H1

d(ed,v)=n
d(eo,v)=n+1

callse outcallshighnv =
∑
e∈E
eo∈H2

d(ed,v)=n
d(eo,v)=n+1

callse
(7.3.11)
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Using these features we can have a more complete understanding of the data

surrounding each node v. In Section 7.6, where we present the final results, we prove

that the best predictor between all the methods explored in this chapter is this same

method defining when using a Random Forest to predict the final labels, both when

using the inner graph (and using only the ego network when n = 1) and when using

the entire outer graph (and using the ego network with n = 2).

The amount of features grows exponentially in each step (see Table 7.1), and so

does the time spent in each computation. Since the best results are found with metrics

when looking at the Ego Network of level 1 of the inner graph (that is, the information

contained in the edges of the neighbours of the neighbours of each node), which can

be explained by the fact that the noise of the information about users far away from

the noise has more impact than the useful information, no tests were attempted in

cases where n ≥ 3.

7.4 Machine Learning Methods

All the feature sets described in the previous sections are individually going to be

used as the input objects of the Training Data and either the Outer Graph Ω or the

Inner Graph Υ will be used as the output with several Supervised Machine Learning

methods. The result of these methods will be measured using many metrics of the

results, previously described in Section 2.5, and compared against other methods

(including the Bayesian Algorithm of Chapter 5) in Section 7.6.

To prevent the problem of Overfitting the results are generated by using Cross-

Validated estimates of the data using K-Folds with K = 5. This way, each quintile of

the data is predicted using only data from the other four.

The two methods used in this thesis, Logistic Regression and Random Forest tend

to have different variance in the results [TMVS16], therefore different sources of errors

may end up decreasing the models accuracy differently. This is a good for our model,

since it means that a single source of errors has less probability of affecting either

predictor.

These Machine Learning methods used in this section contain many hyperparam-

eters which may affect the result, and calculating the optimal value for them isn’t

trivial. For this reason this experiment includes a Grid Search of the data against
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Data Level Log. Regression Random Forest
log10 (C) Criterion Features W/Replacement

Υ

Nbr0 −2 Entropy
√
f True

Nbr1 −2 Entropy f True
Nbr2 −2 Entropy f True
Cat0 −3 Entropy log2 f True
Cat1 0 Entropy f True
Cat2 −1 Entropy f True

Ω

Nbr0 0 Gini log2 f True
Nbr1 1 Entropy log2 f True
Nbr2 0 Entropy

√
f True

Cat0 −2 Entropy log2 f True
Cat1 2 Gini

√
f True

Cat2 2 Entropy log2 f True

Table 7.2: Best hyperparameters for each group of features in each model used for
predicting the result.

all possible hyperparameters. The resulting hyperparameters of the Grid Search are

presented in Table 7.2.

7.4.1 Logistic Regression

The method of Logistic Regression, which is described with more detail in Section 2.6.2,

consists of doing some regression analysis with the data after applying some Logistic

Function to normalize the data.

The most important hyperparameter of this data is the Regularization Factor C,

which specifies the regularization of the input. As shown in Equation (7.4.1), this

value is searched in exponential increments.

C ∈
{

10−3, 10−2, 10−1, 100, 101, 102, 103
}

(7.4.1)

Since the different data aren’t linearly distributed, the input is Regularized before

using this method so that, when running the model, each column has its mean in

µ = 0 and its variance σ2 = 1. This makes the model more robust [Mit97].
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7.4.2 Random Forest

The method of Random Forest, which is described with more detain in Section 2.6.4,

consists of constructing a multitude of Decision Trees and outputting the class that is

the mode of the classes.

There are several hyperparameters used in this method, namely the Criterion to

measure the quality of a split (gini uses Gini impurity, while entropy uses information

gain), the function used to calculate the Sample Size given the amount of features f ,

and whether the samples are taken with or without Replacement. This is formalized

in Equation (7.4.2).

Another possible hyperparameter would be the number of trees. However, as it is

been shown in [Bre01], Random Forests converge quickly for a high amount of trees.

Since the objective of this section isn’t to optimize by time, the value will be set to

the sufficiently high n_estimators = 50.

Criterion ∈ {Gini,Entropy}

Features ∈
{
f,
√
f, log2 f

}
Replacement ∈ {True,False}

(7.4.2)

7.5 Validation Metrics

There are several validation metrics used for each method.

Accuracy (Acc.) as described in Section 2.5.4, which measures the general perfor-

mance of this method.

Precision (Prec.) as described in Section 2.5.2, which measures the performance

regarding the positive instances found by this method.

Recall (Rec.) as described in Section 2.5.2, which measures the performance regarding

the positive instances in the dataset.

Area Under the Curve (AUC) as described in Section 2.5.6, which measures the

general performance disregarding which threshold is used.
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F1 Score (F1) as described in Section 2.5.7 which is generalized score balancing

Precision and Recall.

F4 Score (F4) as described in Section 2.5.7, which gives more weight to the Recall.

This is usually wanted since the ultimate practical objective of this study is to

find wealthier people, even if the result has low Precision.

Fit Time (tfit) is the time it takes to fit a model. It is particularly high in ensemble

methods such as Random Forest.

Predict Time (tpredict) can be used to break ties between similar models.

7.6 Results

7.6.1 Inner Graph

Table 7.3 shows various metrics which result from applying the methods described

in this section to the datasets presented in this thesis as the Inner Graph Υ, which

contains the subset of people where at least one neighbour contains socioeconomic

data.

By comparing only the methods based in Machine Learning, we can reach a

conclusion consistent with the one reached by Muchlinski et al. [MSHK16], where the

methods based in Random Forest tend to perform better in real-world scenarios than

the ones based in Logistic Regression.

The model based in Random Forest has better results in all metrics when comparing

the datasets of Nbr0 and Nbr1, that is, when making the Ego Network of users where

data is collected one degree bigger. Interestingly, not only these results aren’t repeated

when comparing the following two levels (Nbr1 and Nbr2), but most metrics, including

Area Under the Curve, show a slight decrease. While this means that an extra degree

of data adds no useful information instead of just noise, using this data it is possible

to see the fallibility of common Random Forest fitting methods, as this regression

shouldn’t be possible since Nbr2 ⊃ Nbr1 and the noise features could have been ignored

by the hypothetical perfectly-trained classifier.

The results are worse in all metrics of the Nbr datasets when predicting using a

Logistic Regression method. One possible cause of this is that the Random Forest
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Model Level Acc. Prec. Rec. AUC F1 F4 tfit tpred
Random 0.499 0.499 0.500 0.499 0.500 0.500 — 0.005 s
Majority 0.681 0.640 0.826 0.681 0.721 0.712 — 0.059 s

Bayesian 0.693 0.665 0.792 0.746 0.723 0.783 — 33.155 s

LR

Nbr0 0.536 0.531 0.625 0.536 0.574 0.619 0.145 s 0.002 s
Nbr1 0.535 0.525 0.730 0.535 0.611 0.714 0.141 s 0.011 s
Nbr2 0.568 0.578 0.525 0.569 0.550 0.528 0.119 s 0.003 s
Cat0 0.686 0.655 0.785 0.686 0.714 0.776 0.167 s 0.005 s
Cat1 0.693 0.665 0.780 0.693 0.718 0.772 1.588 s 0.011 s
Cat2 0.693 0.670 0.764 0.692 0.714 0.758 0.956 s 0.009 s

RF

Nbr0 0.548 0.548 0.550 0.548 0.549 0.550 5.986 s 0.588 s
Nbr1 0.582 0.583 0.577 0.582 0.580 0.577 56.548 s 0.483 s
Nbr2 0.576 0.577 0.580 0.576 0.579 0.580 50.197 s 0.253 s
Cat0 0.671 0.665 0.690 0.671 0.677 0.688 6.346 s 0.539 s
Cat1 0.714 0.713 0.716 0.714 0.714 0.716 96.005 s 0.460 s
Cat2 0.709 0.710 0.711 0.709 0.711 0.711 81.528 s 0.242 s

Table 7.3: Resulting metrics of different methods used in Chapters 6 and 7 tested on
the Inner Graph Υ, which contains only nodes which have at least one neighbour with
socioeconomic information. Bolded items represent the highest value for each metric.

classifier is more versatile to odd cases and non-linear data when compared to the

other classifier [Sac]. The fact that there is almost a null increase in the metrics when

going down the graph seems to ratify this decision.

By far, the greatest increase in results for the methods based in Machine Learning

presented in Chapter 7 is adding labels related to the accumulated features separated

by the neighbours’ socioeconomic index, as in the levels Cat0 to Cat2. This shows

that, in problems related to real data in graphs, there are better results when using

more informative features taken from the same subset of data than taking data from

a bigger Ego Network.

When using categorical methods, predicting with features extracted from the set

Cat1 resulted in better values for almost every metric than using features extracted

from the set Cat2. As in the previous point about comparing Nbr1 and Nbr2, getting

features about the links of users further away than 2 degrees adds more noise than

useful information to the dataset. Indeed, this is the reason why the experimentation

stopped at this degree instead of going one level further in the Ego Network.
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Model Level Acc. Prec. Rec. AUC F1 F4 tfit tpred
Random 0.499 0.499 0.500 0.499 0.500 0.500 — 0.005 s
Majority 0.565 0.747 0.197 0.565 0.312 0.206 — 0.204 s

LR

Nbr0 0.534 0.586 0.234 0.534 0.335 0.243 0.937 s 0.016 s
Nbr1 0.547 0.617 0.250 0.547 0.356 0.260 1.347 s 0.035 s
Nbr2 0.563 0.586 0.430 0.563 0.496 0.437 1.055 s 0.023 s
Cat0 0.565 0.746 0.198 0.565 0.313 0.207 1.871 s 0.041 s
Cat1 0.577 0.727 0.247 0.577 0.368 0.257 9.816 s 0.077 s
Cat2 0.589 0.636 0.415 0.589 0.503 0.424 9.456 s 0.065 s

RF

Nbr0 0.543 0.544 0.529 0.543 0.536 0.530 25.789 s 4.878 s
Nbr1 0.578 0.585 0.537 0.578 0.560 0.540 102.961 s 5.608 s
Nbr2 0.583 0.590 0.541 0.583 0.564 0.543 70.447 s 3.148 s
Cat0 0.568 0.573 0.536 0.568 0.554 0.538 32.981 s 5.371 s
Cat1 0.613 0.634 0.533 0.613 0.579 0.538 44.911 s 6.002 s
Cat2 0.614 0.635 0.534 0.614 0.580 0.539 50.589 s 3.484 s

Table 7.4: Resulting metrics of different methods used in Chapter 7 tested in the
Outer Graph Ω, which includes all nodes. Bolded items represent the highest value
for each metric.

The most remarkable part of these results is that, even in the best case scenario,

the results for any of the methods based in Machine Learning presented in

Chapter 7 are worse than the ones from the Bayesian Algorithm presented

in Chapter 5. This is remarkable since the latter method uses a much lower amount

of features per node (2 vs 48 in the case of Cat1) and takes a shorter amount of time

predicting data than the best of the former methods takes to train a classifier on it.

Further conclusions related to this last point are discussed in Chapter 8.

7.6.2 Outer Graph

Table 7.4 shows various metrics which result from applying the metrics described

in this section to the datasets presented in this thesis as the Outer Graph Ω, which

contains the entire Social Graph G, including the majority of nodes for which no

socioeconomic data is known about their neighbours. This makes it impossible to

run the Bayesian Algorithm presented in Chapter 5, as it uses this data directly as

features.

The relative results between different Machine Learning and feature extraction
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methods are similar to the ones presented for the Inner Graph presented in Section 7.6.1.

However, since there is a significant amount of new users without much significant

information the absolute results are considerably worse.

Like in Section 7.6.1, adding an single level to the size of the original Ego Network

improved the values of all metrics, since more useful data was used to generate the

features. This is truth both when using only general general features (which are

present for all users in Ω) as seen in the difference between Nbr0 and Nbr1, and when

using socioeconomic data in the features (where most users have all metrics equal to

0, as there is no information) as in between Cat0 and Cat1.

Interestingly, unlike the results in Table 7.3, all metrics keep improving when

making the Ego Network another level deeper (Nbr2 and Cat2). The reason for this

is a simple matter of biases between the Inner Graph and the Outer Graph: users

present in the latter graph (Ω \Υ) tend to have less contacts in general than the rest.

This makes the first few levels of the Ego Network contain less useful data to use

as Machine Learning features, while the relatively noisy features generated from the

latter levels actually improves these.

Like in the previous table, Machine Learning methods that use Random Forest

have a considerable advantage over all metrics compared to the ones using Logistic

Regression, using features related to the Socioeconomic Level of a users’ neighbour

improves the results. However, due to the amount of users without any significative

data about their neighbours, the difference is small compared to the one in Table 7.3.



Chapter 8

Conclusions

8.1 General Objectives

This thesis presented several methods of manipulating communication and socioeco-

nomic data to produce useful insights about its users. The combination of different

datasets present an unique opportunity to study group behaviour and to experiment

with gathering data that isn’t directly present as an input.

The first data source used in this study is the multiset of mobile phone Call Detail

Records P (for phone calls) and S (for SMS), which is presented in Section 4.1.1.

These datasets contain all the communication done by the users of a certain telco,

and having them allowed us to create a Social Graph which allows us to find many

insights about its members.

The second data source is the set with Bank Information about the users B, which

is presented in Section 4.2. While the values in this set aren’t perfectly correlated to

the socioeconomic index of the users, its data is a good enough proxy for the object of

this study. For this reason, separated the users into 2 distinct groups depending on

which side of the median of $6300∗ their monthly salary fell into.

• H1 the set of Low Income users, with an income less or equal to $6300∗ a month.

• H2 the set of High Income users, with income greater than $6300∗ a month.

Getting the intersection of both datasets it is possible to create the Social Graph

G, with the same users of the set of Call Detail Records, but where a subset of users

also contain banking information from the set B, as shown in Section 4.3. This set,

after being cleaned of outliers in Section 4.4, is the main input of the methods used in

the thesis.
∗As explained in Chapter 4, the symbol $ refers to a certain currency and is not necessarily the

American dollar.

79
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8.2 Similar Studies

This thesis is not the first socioeconomic study done in this dataset.

Section 3.1 presents a summary of the work done by Léo, Karsai, et al. to correlate

different consumption patterns with the socioeconomic level of these users. In it, the

authors present a model of Homophily of calls between users of the same socioeconomic

level, and proves that many different properties of the Social Graph follow these

correlations.

Section 3.2 does a study similar to the previous one, where the author finds a

correlation between users in the same socioeconomic level in social network patterns,

mainly in the diversity of users in their links. The study also presents several ways of

preventing bias in these comparisons.

8.3 The Bayesian Algorithm

Chapter 5, the most important part of this thesis, presented the general method

used for predicting the socioeconomic level of the users given information about

the neighbours. The model uses a Bayesian approach to deal with the uncertainty

that comes from not having complete information about the users in the dataset by

defining, for every user in the dataset, a Beta Distribution with parameters equal to

the accumulated information of the edges leaving to high and low income neighbours.

The testing for this method is done in Chapter 6, separating the data into two

distinct training and testing sets and ignoring some users in order to get an income

distribution that’s closer to the one in real life and not being subject to the bias that

wealthier users tend to have more contacts. We refer to this graph as the Inner Graph,

annotated with the Greek letter Υ.

We use two hyperparameters to define which model we use. The first one is $,

originally presented in Section 5.2.4, which shows which property of the users is being

accumulated and used as the parameters of the Beta Distribution.

$ ∈ {calls, time, sms, contacts} (8.3.1)

The second hyperparameter is Θ, presented in Section 5.2.5, which is used for

defining which quantile of the cumulative probability function is used to decide the
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Accuracy Precision Recall AUC F1 F4 time

0.693 0.665 0.792 0.746 0.723 0.783 33.155 s

Table 8.1: Resulting metrics of applying the Bayesian Algorithm to the Inner Graph

probability of each user to belong to a socioeconomic category. This value is important

since it defines the way in which the model’s uncertainty plays a role in the prediction.

Since each user has a certain Beta Distribution depending on the properties coming

from high and low income users, instead of a single value, the distribution for a user

with many neighbours with known socioeconomic index will different from one with

fewer, even if they have the same ratio of high to low income contacts.

Following experimentation in Sections 6.3 and 6.4, the values for these hyperpa-

rameters that maximized Area Under the Curve were found. There are presented in

Equation (8.3.2).

$ = contacts

Θ = 0.394
(8.3.2)

This method has a third hyperparameter, τ , whose value doesn’t affect the Area

Under the Curve but defines at which probability of being of high income a user is

inferred to be of that category. This hyperparameter was optimized to maximize

Accuracy, and in Section 6.4.4 the optimal value, shown in Equation (8.3.3) was found.

τ = 0.514 (8.3.3)

The resulting metrics for this approach are shown in Table 8.1.

As shown in Chapter 7, these metrics are extremely good, specially for a model

that only takes 2 parameters per user and is faster than several more conventional

ones.

8.4 Comparison with different algorithms

The result of applying this data to the Bayesian Algorithm was compared with different,

more conventional methods is presented in Chapter 7.

These additional methods can be grouped into 3 groups.
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1. Trivial Algorithms, used for having a base of comparison.

• Random Selection, which chooses a category randomly.

• Majority Voting, which chooses the category for which the majority of the

users’ neighbours belong.

2. Ego Network based algorithms, which use accumulated data about the edges

of a users’ Ego Network of a certain level.

• Nbr0,...,2, where the subscript denotes the size of the Ego Network used.

3. Categorical Ego Network based algorithms, which besides of using the total

values in the previous point it also does separate accumulations of each property

of the edges in the Ego Network depending on the socioeconomic group of the

node at the other end.

• Cat0,...,2, where the subscript denotes the size of the Ego Network used.

The algorithms based in the Ego Network use many more features per user than

the Bayesian Algorithm, as shown in Table 7.1 and compared to the 2 features user in

the latter. Later, these features are fed to a Machine Learning method, either Random

Forest or a Logistic Regression, doing an Grid Search with K-folds using K = 5.

The result of these experiments, and its comparison with the Bayesian Algorithm,

are shown in Table 7.3. There are several conclusions that can be found from these

results.

• In problems with highly nonlinear input data, like this thesis, methods based in

Random Forest perform better than methods based in Logistic Regression since

the feature space can be divided into more complex patterns.

• Socioeconomic data on the edges, like the amount of wealthy people someone

calls, is a much better predictor of socioeconomic level than more general metrics,

like the total amount of people called, even when there is less data present of

this kind.

• Adding more levels to the Ego Network of each user that’s being used for

engineering features adds useful features to the prediction and can make the

final metrics better.
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• However, the precious point also adds an amount of noise. By the time the fea-

tures contain data about the edges adjacent to the neighbours of the neighbours

of the user, the metrics decreased.

• While this doesn’t always follow, the Area Under the Curve is a good measure-

ment of the results of each algorithm, since it mostly raises at the same rate as

other metrics.

Additionally, a similar experimentation has been done in the Outer Graph Ω, whose

training and testing data contains all nodes in the graph, including those without any

neighbour with known socioeconomic data. Its results can be seem in Table 7.4.

These results are understandably worse than in the previous table. As an interesting

result, the lower levels of the Machine Learning algorithms now contain less useful

information and more noise. For this reason, the signal-to-noise ratio of the featuresets

from a bigger Ego Network is higher, and unlike in the previous case the Area Under

the Curve of both Cat2 and Nbr2 are higher than that value for Cat1 and Nbr1.

8.5 Comparison between the Bayesian Algorithm and the methods

based in Machine Learning

“Plurality is not to be posited

without necessity”

Occam’s Razor

The Bayesian Algorithm has a better performance than every single algorithm

based in common Machine Learning algorithms and novel feature extraction methods.

This is remarkable since it uses only 2 features per node, compared to the 48 used by

Cat1, the version with the highest resulting metrics, or the rest of the methods whose

amount of features are shown in Table 7.1.

A good way to explain this result is using Occam’s Razor that explains that, among

competing hypotheses, the one with the fewest assumptions should be selected.

In the Machine Learning methods we use the hypothesis that the features are

correlated with the results, and that all of them have a high signal-to-noise ratio.

While this is true in a general sense, as Section 5.1 and Figure 5.1 show, it is not a
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perfect correlation and not even using a highly nonlinear method like Random Forest

could improve on a model with less assumptions.

However, for the Bayesian Method, after setting the hyperparameters $, Θ, and τ ,

our only hypotheses is that the more calls, SMS, calling time, or contacts a user has

with high income, the higher is the Certainty that this user is of this category, and

vice-versa.

This is a good general hypothesis, and, as shown in this thesis, strong enough to

handle a very good socioeconomic level predictor.



Symbol Glossary

This thesis uses a large amount of symbols for different properties and data. To

simplify its comprehension, the following table contains information about some of

the most commonly used ones.

Symbol Definition Section

P Multiset of all voice calls in the graph. 4.1.1
S Multiset of all SMS in the graph. 4.1.1
V Set of users in the telco network. 4.1.1
E Set of edges between users in the telco network, along with their

communication properties.
4.1.1

G Social graph: a tuple containing both V and E. 4.1.1
B Set with banking data for all users. 4.2

H{1,2} Set of lower and upper income users, respectively. 5.2.1
$ Selected property of users for the Bayesian distribution. 5.2.4
Bv Beta distribution defined for a user v to predict its wealth. 5.2.5
Θ Quantile used to define the Posterior Probability of a user’s

category.
5.2.5

τ Limit for the Posterior Probability of high and low income users. 5.2.6

Btrain Training Set used for B. 6.2.1
Btest Testing Set used for B. 6.2.1
B̂test Contacts in the Testing Set with some contact with socioeco-

nomic data.
6.2.2

Υ The Inner Graph. Subset of B̂test with the same amount of low
and high income users.

6.2.3

Ω The Outer Graph. Same as Btest. 6.2.4

Nbrn Accumulated properties of the user in the Ego Network of Order
n of the users.

7.3

Catn Union of the properties of Nbrn with the same properties parti-
tioned by income group.

7.3
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