DE-B
%5\0““ UE”OS_
FACULTAD 2

S
CIENCIAS EXACTAS
Y NATURALES

UNIVERSIDAD DE BUENOS AIRES
FAcuLTAD DE CIENCIAS EXACTAS Y NATURALES

DEPARTAMENTO DE COMPUTACION

Extending de Bruijn sequences
to larger alphabets

Tesis de Licenciatura en Ciencias de la Computacién

Lucas Cortés
lucascortes@me.com

Directora: Verdnica Becher

Buenos Aires, 28 de noviembre de 2018

EXTENSION DE SECUENCIAS DE BRULJN EN ALFABETOS MAS
GRANDES

Un secuencia circular de Bruijn de orden n en k colores es una secuencia en la que cada
palabra de longitud n ocurre exactamente una vez. En esta tesis demostramos que para
cada secuencia circular de Bruijn v de orden n en k colores hay otra secuencia circular
de Bruijn w de orden n pero en k + 1 colores tal que v es una subsecuencia de w y entre
cualesquiera dos ocurrencias sucesivas del nuevo simbolo en w hay a lo sumo n + 2k — 2
stmbolos consecutivos de v. Damos un algoritmo que recibe una tal secuencia v y produce
la secuencia w. Damos ademas un algoritmo mucho més rapido que recibe una tal secuencia
vy produce una secuencia w pero sin la garantia de que el nuevo simbolo esté balanceado.

Palabras claves: secuencias de Bruijn, ciclos Eulerianos.

EXTENDING DE BRUIJN SEQUENCES TO LARGER ALPHABETS

A circular de Bruijn sequence of order n in k colors is a sequence in which every possible
word of length n occurs exactly once. In this thesis we show that for any given circular
de Bruijn sequence v of order n in k colors there is another circular de Bruijn sequence w
of order n but in k£ + 1 colors such that v is a subsequence of w and such that in between
two successive occurrences of the new colored symbol in w there are at most n + 2k — 2
consecutive symbols of v. We provide an algorithm that given such an input sequence v
produces the output sequence w. And we give a much faster algorithm that also receives
as input such a sequence v and outputs a sequence w without the guarantee of the fair
distribution of the new colored symbol.

Keywords: de Bruijn sequences, Eulerian cycles.

ii

CONTENTS

. Introduction and statement of results

. de Bruijn graphs and trees of petals

. Proof of Theorem 2.

3.1 Extending a de Bruijn sequence to a larger alphabet

3.2 An Algorithm to prove Theorem 2

. Fair distribution of the new symbol .

. Proof of Theorem 1.

1. INTRODUCTION AND STATEMENT OF RESULTS

We start with the classical definitions. A word is a finite sequence of symbols in a given
alphabet. A rotation is the operation that moves the final symbol of a word to the first
position while shifting all other symbols to the next position, or it is the composition of
this operation with itself an arbitrary number of times. A circular word is the equivalence
class of a word under rotations. We write [abc] to denote the circular word formed by the
rotations of abc. In this work we use the terms word and sequence interchangeably.

We say that a subsequence of a sequence ajas ... a, is a sequence bibs . .. by defined by
bi = ap, for 1 < i < k, where n; < ng < ... < ng is an increasing sequence of indices.
The same applies to circular words, assuming any starting position. For example, [1,2, 3],
[2,4,6] and [5,6,1,2] are subsequences of [1,2,3,4, 5, 6].

A circular de Bruijn sequence of order n, also known as a circular de Bruijn word
of order n, on a size-k alphabet A is a circular word of size k" in which every possible
size-n word on A occurs exactly once as a contiguous subsequence [3, 6]. See [2] for a fine
presentation and history. To denote the set of circular de Bruijn words of order n in an
alphabet of & symbols we write B(k,n). For example, [0,0,1,1] is in B(2,2).

In this note we show that for any given circular de Bruijn sequence v of order n in an
alphabet of k£ symbols there is another circular de Bruijn sequence w of order n but in an
alphabet of k + 1 symbols such that v is a subsequence of w and such that in between two
successive occurrences of the new symbol in w there are at most n + 2k — 2 consecutive
symbols of v. We provide an algorithm that given such an input sequence v produces the
output sequence w. And we give a much faster algorithm that also receives as input such
a sequence v and outputs a sequence w without the guarantee of the fair distribution of
the new symbol. Thus, Theorems 1 and 2 stated below are the main results of this note:

Theorem 1. Given a circular de Bruijn sequence v in B(k,n) there is a circular de
Bruijn sequence w in B(k+1,n) such that v is a subsequence of w and for any 2k+n —1
consecutive symbols in w there is at least one occurrence of the new symbol s. Moreover,
there is an algorithm that given as input such a sequence v generates the sequence w after
performing O(k*"~2) mathematical operations and it uses O((k +1)") space.

For example, given the B(2,3) sequence
v=[1,1,0,0,0,1,0,1]
the following B(3, 3) sequence
w=11,2,2,2,1,2,1,1,1,0,0,2,2,0,2,0,0,0,1,2,0,1,0,2,1,0, 1]

satisfies the conditions of the theorem for £ = 2 and n = 3 in the alphabet A = {0,1}
where the new symbol s is the symbol 2. Observe that the symbol 2 occurs (k+1)""! =9
times in w and given any n + 2k — 1 = 6 consecutive symbols in w there is at least one
occurrence of the symbol 2.

It is not hard to see that given a sequence v in B(k,n) there is a sequence w in
B(k + 1,n) such that v is a subsequence of w. But we aim to guarantee that the new
symbol s is fairly distributed along the extended de Bruijn sequence w. The first difficulty
is to mathematically define this condition. The second difficulty is to prove the existence
of such an extended sequence w and to provide an elegant and fast algorithm to construct
it.

In addition to classical elements from graph theory such as de Bruijn graphs, Eulerian
cycles and graph transformations, we use the Edmonds-Karp algorithm [4, 8]. Note that
the output sequence obtained by our algorithm has size (k+ 1)". Thus, Theorem 1 states
that the algorithm is practically cubic on the output size and this time complexity is
dominated by the Edmonds-Karp O(VzE) time complexity when operating on a graph
with V' vertices and F edges.

In case we ask for no guarantee on the distribution of the new symbol in the extended
sequence, we obtain a faster algorithm.

Theorem 2. There is an algorithm that given a circular de Bruijn sequence v in B(k,n)
generates a circular de Bruijn sequence sequence w in B(k 4+ 1,n) such that v is a subse-
quence of w, after performing at most O(n*(k + 1)) mathematical operations and it uses
O((k+1)") space.

Note that the sequence w generated by this second algoritm has size (k + 1)". Thus,
the time complexity of this second algorithm is just above the size of the input. Precisely,
for each symbol of the generated sequence w this second algorithm performs a number of
operations that is the square of the logarithm of the size of the output sequence.

The proof of Theorem 2 is elementary and this second algorithm formalizes the intuition
one may have about extending a de Bruijn sequence to a larger alphabet. We shall see
that the algorithm is greedy, making just some computations on each step.

It is worth to mention that recently Gabriel Thibeault in [7], proved that the lexico-
graphically greatest de Bruijn sequence v in B(k,n) is the suffix of the lexicographically
greatest sequence w in B(k 4+ 1,n). Thus, for the lexicographically greatest de Bruijn
sequence in B(k,n) there is a very simple solution to the problem stated in Theorem 2,
which is to construct the lexicographically greatest de Bruijn sequence in (k + 1,n), and
this can be done with a greedy algorithm.

The extension problem considered in [7] and also in this note was formulated first
by Ariel Zylber in 2017, and it is dual to the extension problem studied by Becher and
Heiber in [1], where they considered the problem of extending a sequence v in B(k,n) to
a sequence w in B(k,n + 1) such that v is a suffix of w.

The document is organized as follows. Chapter 2 presents the classic material related
to de Bruijn graphs and we fix the notation. Since Theorem 2 is simpler to prove than
Theorem 1 we start by proving Theorem 2 in Chapter 3. In Chapter 4 we elaborate the
definition of fair distribution of the new symbol in the extended sequence. We devote the
last chapter, Chapter 5, to the proof of Theorem 1.

2. DE BRUIJN GRAPHS AND TREES OF PETALS

Fix a finite alphabet A. Without loss of generality, when we consider an alphabet A of k
symbols we assume A = {0,1,...k—1}. As usual, we write A" to denote the set of words
of size n whose symbols belong to A.

A de Bruijn graph G(k,n) is a directed graph (V, E) where V is the set of words
of size n on a size-k alphabet A and whose set of edges E is the set of pairs (u,v) for
u=ayay...a, and v = ay...a,b with b € A. Thus, the graph has k" vertices and k"1
edges, it is strongly connected and every vertex has the same in-degree and out-degree.

Each circular de Bruijn word in B(k,n) can be constructed by taking a Hamiltonian
cycle on the G(k,n) graph given that each vertex of the graph has each possible word of
size k in an alphabet of k symbols. Moreover, since the line graph of G(k,n) is G(k,n+1)
then each circular de Bruijn word in B(k,n + 1) can be constructed as an Eulerian cycle
in G(k,n). For example, in the G(2,2) graph if one traverses the edge labelled 1 from 00,
one arrives at 01 thereby indicating the presence of the contiguous subsequence 001 in the
de Bruijn sequence.

Notice that G(k,n) is a subgraph of G(k+1,n). To see that, observe that the vertices
of the first graph are all the possible size-n words in a size-k alphabet and the vertices of
the second graph are those of the first one plus all the possible size-n words in an alphabet
of size k+ 1 with at least one occurrence of the new symbol. Also, the edges of the second
graph are the same as the ones from the first graph plus the ones representing words with
at least one occurrence of the new symbol. This means that we can add vertices and
edges to G(k,n) and obtain G(k + 1,n). This motivates the following definition of the
augmenting graph D(k + 1,n).

If w is a word on alphabet A and a is a symbol of A we write |w|, to denote the number
of occurrences of a in w. Similarly, if u is a word we write |w|, to denote the number of
occurrences of u in w.

Definition 3 (augmenting graph). Let A=AU {s} where A has k symbols and s is a
symbol not in A. We define the augmenting graph D(k + 1,n) = (V, E) where

V=A"
E={(v,w): ifv=ay...a then w=as...ayb where b € A and (Jv|s > 0 or |w|, > 0)}

To prove Theorems 1 and 2 we have to transform a given de Bruijn word in B(k,n)
into a de Bruijn word in B(k + 1,n) in such a way that the first one is a subsequence of
the second one. Thus, given an Eulerian cycle ¢ in G(k,n — 1) we need to construct an
Eulerian cycle in G(k+1,n —1) where we preserve the relative order of the edges in ¢. We
can observe that in the augmenting graph D(k+1,n—1) each of the vertices of G(k,n—1)
has exactly one incoming and outgoing edge. Also note that the outgoing edge is always
labelled with the new symbol. So, the only way to define the expected Eulerian cycle in
G(k+1,n—1) is by interleaving disjoint cycles of the augmenting graph D(k+1,n—1) on
each of the vertices of G(k,n —1). We will concentrate in some particular disjoint cycles

4

Fig. 2.1: The edges of the graph D(3,2) are shown in dashed lines.

-
jure
-

Fig. 2.2: Given a size-2 alphabet, there are 4 circular words of size 3: [000], [100], [110] and [111],
each one associated with a cycle in G(2,2).

in the augmenting graph D(k + 1,n — 1) that we call petals. In order to do that, we use
the following proposition.

Proposition 4. Fizx an integer k greater or equal to 2. The set of edges in G(k,n) can be
partitioned into a set of cycles identified by the circular words of size n + 1.

Proof. First note that we can unequivocally identify an edge of G(k,n) by concatenating
the outgoing vertex label with the label of that edge. Thus, each edge of G(k,n) is
identified with a word of size n 4+ 1. Also this word identifies a circular word of size n + 1,
which is the class of all the rotations of this word. Now notice that each circular word of
size n 4+ 1 corresponds to exactly one cycle in G(k,n). Thus the partition of the set of
words of size n+1 in the equivalence class given by the rotations of these words determines
a partition of the set of edges in G(k, n) into cycles. O

In the following proposition we write LI to denote the disjoint union of two sets. It states
that the augmenting graph D(k + 1,n) contains the set of cycles associated to circular

6 2. de Bruijn graphs and trees of petals

.
S2.
P
/”
R
Ot T
|—'"',“" ‘~~_
102 Fmmmmmmmmmm o S > 21

Fig. 2.3: Two examples of petals of a G(2,2) graph. The left figure has a petal for the vertex 01
that only contains one cycle, the one associated to the circular word [012]. The right
figure has a petal for the vertex 10 that contains three cycles associated to the circular
words [102], [022] and [222].

words of size n + 1 with at least one occurrence of the new symbol. It is immediate to
verify that the proposition holds.

Proposition 5. Let C be the set of cycles in G(k,n) associated to the circular words of
sizen+ 1 in an alphabet of k symbols. Let C be the set of cycles in G(k + 1, n) associated
to the circular words of size n + 1 in an alphabet of k + 1 symbols. Then C' = C U P,
where P is the set of cycles associated to the circular words of size n+ 1 with at least one
occurrence of the new symbol.

We are now ready to define a petal.

Definition 6 (petal). A petal of G(k,n) is a cycle of cycles in D(k + 1,n) associated to
circular words of size n + 1 that traverses only one vertex of G(k,n).

We aim to define the wanted Eulerian cycle in G(k + 1,n) as the given cycle ¢ in
G(k,n) interleaved with the petals of the augmenting graph D(k + 1,n). The difficulty
lies in determining how to define petals using every edge of D(k + 1,n) and also how to
interleave these petals in ¢ to make sure that the occurrences of the new symbol are fairly
distributed to satisfy the requirement of the theorem.

Definition 7 (Petals tree). Let A be an alphabet with cardinality & with £ > 3, r a
circular de Bruijn word in B(k — 1,n) and s € A such that s ¢ r. We define the Petals
tree t(k,n,s) as a rooted tree subgraph of the directed graph (V U {r}, F) where

V ={[w]:we A" and |w|s > 1}
E = {([v],[w]) : v,w e A", Ju € AL ||y > 0, |w|y >0, |w|s =|v|s +1} U
{(r,[v]) : [v]s = 1},

Notice that the vertices with distance 1 to the root have exactly one occurrence of the
symbol s, and each vertex of t(k, n, s) with distance d to the root has exactly d occurrences

of the new symbol.

Note that when two vertices are connected in ¢(k, n, s) they have a common contiguous
subsequence of size n — 1. We shall define a cycle that goes through several connected

[112]

Fig. 2.4: A possible t(3,3,2) tree. The root r determines four petals, one for each branch. The first
petal has the circular word [002], the second has [012], the third has [021], [022], [122]
and [222] and the fourth has [112].

[021] Tor o

Y S A

[022) 20]

Fig. 2.5: On the left we have the circular words [021] and [022] from the Petals tree and their
associated cycles on the right. Note that the first circular word has one occurrence of
the symbol 2 and the second one has two. Also note that their associated cycles have
the common vertex 02. Suppose we traverse the first cycle starting from the vertex 21.
We would go through the edges 0 and 2 until we get to the common vertex 02. At that
point, we start traversing the second cycle starting with the symbol 2 which guarantees a
circular word with two occurrences of the symbol 2. We traverse 2, 0 and 2. After that,
we finish the first cycle with the label 1.

cycles. In order to compose two cycles u and v we traverse the first circular word v until we
find a common vertex w such that the next edge in u is not labelled with the new symbol
s. Note that w has the same number of occurrences of s as u. Consequently, an edge
labelled with s that starts from w corresponds to a circular word with more occurrences
of the symbol s.

3. PROOF OF THEOREM 2

3.1 Extending a de Bruijn sequence to a larger alphabet

We give an algorithm that formalizes the intuition one may have about extending a de
Bruijn sequence to a larger alphabet. Consider the graph for de Bruijn sequences of
order n and alphabet in k£ 4+ 1 symbols. Notice that a de Bruijn sequence v in B(k,n) is
associated to an Eulerian cycle in G(k,n — 1) and a cycle in G(k + 1,n — 1). The idea
is to traverse this cycle and, greedily, at each vertex use the outgoing edge labelled with
the new symbol s to extend the cycle. We already introduced a tool to traverse the de
Bruijn graph G(k+1,n —1) using a Petals tree starting with a B(k,n) de Bruijn sequence
q that represents an Eulerian cycle in the de Bruijn graph G(k,n — 1). There can be
three different possibilities on each step. Consider the current vertex w and the edge s.
One possibility is that they have not been traversed. In this case, start traversing the
new cycle. Another possibility is that they are the current circular word. In this case we
keep traversing the same circular word. A last possibility is that they have already been
traversed. In this case we ignore this circular word.

In the following example we perform the first six steps of the algorithm just described.
Assume as input a B(2,3) de Bruijn sequence [00101110]. We begin the traversal in vertex
10 and immediately try to add a circular word with one occurrence of the symbol 2. The
circular word of the vertex 10 and label 2 is the [210]. We traverse the edge 2 to the vertex
02. Then again we try to find a new circular word by traversing another edge labelled 2.
The vertex 02 with the edge labelled 2 determines the circular word [202] and we traverse
the edge 2 to the vertex 22. Again, we search a new circular word. The vertex 22 with the
edge labelled 2 determines the circular word [222]. We traverse the edge 2 and get to the
same vertex. Now, the circular word [222] is already used, so we have to go to the next
edge of the current circular word. We traverse the edge labelled 0 to the vertex 20. Again,
the circular word [220] is already in use, so we continue. When we get to the vertex 21 we
again can start a new circular word, the [221].

3.2 An Algorithm to prove Theorem 2

Algorithm 1 takes a B(k,n) de Bruijn word v and returns a B(k + 1,n) de Bruijn word w
such that v is a subsequence of w where the new symbol s occurs (k4 1)""! times in w.

The main idea of the algorithm is to traverse an array with the original sequence adding
petals and cycles whenever possible. We first determine the alphabet size and the order of
the de Bruijn sequence. To find the alphabet size we just have to count how many different
symbols the sequence has. We can get the order of the sequence by solving k™ = #edges.
Then we make a copy of the original sequence that we will modify to get the extended
sequence. There are several variables to keep track of things. The variable pos keeps track
of the current position in the array and represents the edges that we already traversed.
The variable vertex indicates in which vertex are placed at each step. To make sure that

8

3.2. An Algorithm to prove Theorem 2 9

F2) [o) &)

[022] [122] [022] [122] [122]

[222] [222] [222]

Fig. 3.1: First steps of the algorithm with a B(2,3) de Bruijn sequence [00101110] as input. We
show the circular words added on the petals tree.

72 for2]

12l

Fig. 3.2: Next steps of the algorithm with a B(2,3) de Bruijn sequence [00101110] as input.

10 3. Proof of Theorem 2

we do not traverse any cycle more than once we have to keep track of every edge of a
traversed cycle. We can reduce space by just keeping track of the vertices such that their
outgoing edge labelled with the new symbol belongs to a traversed cycle. We keep track
of them in the array visitedVertices. In this way we can unequivocally decide whether or
not we should add a cycle at each vertex.

Algorithm 1

1: function EXTENDDEBRUIJN(ORIGINALSEQUENCE: [INT])
2 let alphabetSize = getSize(originalSequence)

3 let newAlphabetSize = alphabetSize + 1

4 let order = getOrder(originalSequence)

5: let newSymbol = alphabetSize
6

7

8

9

var sequence = originalSequence

var pos = 0

var vertex = originalSequence.last(order - 1)
var visited Vertices = [false, ...]

10: while pos < sequence.count do

11: vertex = vertex.last(vertex.count - 1) + [edgeValue]

12: pos +=1

13: if lvisitedVertices[vertex] then

14: let edge = vertex + [newSymbol]

15: var cycle = ||

16: for for i in 0..<edge.count do

17: let newEdge = edge.last(edge.count - i) 4+ edge.first(i)

18: if if i > 0 && edge == newEdge then

19: break

20: end if

21: let newVertex = newEdge.first(order-1)

22: cycle += newEdge.last(1)

23: if newEdge.last == newSymbol then

24: visited Vertices[newVertex| = true

25: end if

26: end for

27: sequence = sequence.first(pos) + cycle + sequence.last(sequence.count -
pos)

28: end if

29: end while

30: return sequence

31: end function

The main loop of Algorithm 1 iterates through every edge of the original sequence
adding cycles. On each vertex v in position pos of the array we have two possibilities. If
we already added the circular word determined by the concatenation of v and the new
symbol s we ignore that circular word, increment pos and go to the next vertex in the
sequence. If we did not already added that circular word, we have to add it. To do that,
we traverse each edge of the cycle, add them to the sequence on the current position, and
for those labelled with s we mark their outgoing vertex as visited.

3.2. An Algorithm to prove Theorem 2 11

11000101

11000101

12111000101

A

12111000101

A

12212111000101

A

12212111000101

A

122212111000101

A

Fig. 3.3: The first steps of the algorithm for the B(2,3) sequence 11000101.

Extra care is taken in writing the edges of the cycles. Note that not always the cycle
associated to a word of size n has n edges. There are as many edges as equivalence
classes of the word. The algorithm starts adding each edge of the cycle until it reaches
the original vertex. Once the cycle is formed we place it in the current position and keep
moving forward. This process continues until we reach the last position of the array.

Lemma 8. The previous algorithm has time complezity O(n?*(k+1)") and space complezity
O((k + 1)") where k is the size of the alphabet and n is the order of the input de Bruijn
sequence.

Proof. To calculate the space complexity observe that there are two big arrays. The
visitedV ertices array has size (k+1)""! since it has a slot for each vertex of the (k41)-sized
alphabet. But the actual output, the B(k + 1,n) sequence, will grow up to size (k + 1)".
To calculate the time complexity of the main cycle observe that we iterate (k+1)" times,
which is the number of edges for the increased alphabet and also the final size of the
sequence array. Then, for each vertex there can be a cycle to add. Adding a cycle has
time complexity O(n?). This is because we iterate through the edges of the cycle (up to
n edges) and for each of those edges we check for the equality of words of size n. Then
the main cycle has time complexity O(n?(k + 1)"). O

4. FAIR DISTRIBUTION OF THE NEW SYMBOL

We have shown a mechanism that given an Eulerian cycle ¢ in the G(k,n) graph creates
an Eulerian cycle ¢ in the graph G(k + 1,n) with the property that ¢’ preserves the order
of the edges in c. This is achieved by placing petals of the augmenting graph D(k + 1,n)
on each vertex of G(k,n). Remember that each vertex in G(k,n) has k incoming and k
outgoing edges. That means that we have k + 1 options to place a petal for each vertex
in the Eulerian cycle. Note that only petals have edges labelled with the new symbol s
and no edge in G(k,n) is labelled with s. So in order to have a fair distribution of the
symbol s we need to interleave each petal in the an appropriate part of the cycle. This
motivates the following definition.

Definition 9 (section of a cycle). Given an Eulerian cycle ¢ = e; — e3 — -+ — €, in
G(k,n), the section j of ¢ is a list of vertices of ¢ composed by the head of each edge e; of
¢ such that |i/k] = j.

Note that a G(k,n) de Bruijn graph g has k™ vertices and k"™ edges, so a cycle in
g has k" sections with k vertices each section. Given that there are the same number
of sections and vertices, we would like to choose one vertex from each section to place
the petal in a way that every vertex is used exactly once. Notice that each section has &
vertices and each vertex in g belongs to k sections, not necessarily different.

Definition 10 (Petals Distribution graph). Given an Eulerian cycle ¢ in a G(k,n) de
Bruijn graph g, the Petals Distribution graph PD(k,n) is a k-regular bipartite graph in
which the vertices of g and the sections of ¢ are the two vertex classes and the edges of
PD(k,n) are the set of (v, j) such that the vertex v belongs to the section j.

Given a graph G, a matching M in G is a set of edges such that no two edges share
a common vertex. A vertex is matched if it is an endpoint of one of the edges in the
matching. A perfect matching is a matching which matches all vertices of the graph.

Lemma 11. For every Petals Distribution graph there is a perfect matching.

Proof. Let G be a finite bipartite graph with bipartite sets X and Y. For a set W of vertices
in X, let NG(W) denote the neighborhood of W in G, that is, the set of all vertices in YV’
adjacent to some element of W. Hall’s marriage theorem [5] states that there is a matching
that entirely covers X if and only if for every subset W of X, |W| < |[ING(W)|. Let X be
the set of vertices of the original graph and Y the set of vertices for the sections. Observe
that for any W such that |WW| = r, the sum of the degrees of the r vertices is rk. Given
that the degree for any vertex in Y is k, we have that [ING(W)| > r. Then there is a
matching that entirely covers X. Furthermore, as | X| = |Y|, the matching is perfect. O

In order to compute the perfect match in a Petals Distribution graph we can use any
method for computing the maximum flow in a network. We introduce two vertices s and ¢
for the source and sink and add an edge from s to each vertex of X and an edge from each

12

13

Fig. 4.1: Given the de Bruijn sequence [11000101] there are four sections: the section 0 has the
vertex 11 twice, the section 1 has the vertices 10 and 00, the section 2 has the vertices 00
and 01, and the section 3 has the vertices 10 and 01.

Fig. 4.2: The Petals Distribution graph for the de Bruijn sequence [11000101]. The left figure
shows the possible sections for each vertex. The right figure shows a possible assignment
of those vertices and sections.

14 4. Fair distribution of the new symbol

Fig. 4.3: Flow network for PD(2,2) where each edge has capacity 1.

vertex of Y to t. We assign capacity 1 to each of the edges of the flow network. We can
see that the maximum flow of the network is | X|, so this flow has the edges of a perfect
match.

Lemma 12. Given a de Bruijn word v in B(k,n), for any 2k +mn — 1 consecutive symbols
in the new sequence w there is at least one occurrence of s.

Proof. First note that each section v has k vertices. Two petals can be at most 2k — 1
edges away, which corresponds to placing one petal on the first vertex of one section and
another in the last vertex of the next section. Also remember that for any given vertex
v=ajay...an—1 of G(k,n —1) in D(k+ 1,n — 1) the outgoing edge is labelled with the
new symbol s and that determines a cycle associated with the circular word ajas ... a,—1s.
In consequence, the tail vertex of the last edge in that cycle is saias ... a,_9. This means
that there is an edge labelled s exactly n edges before the end of the petal. In consequence,
between the last occurrence of s in a petal and the first occurrence of s in the next petal
there can be at most 2k + n — 2 edges.

Also note that the vertices of the petals have at least one symbol s, therefore we are
guaranteed that given any n—1 consecutive edges of a petal there is at least one occurrence
of s. 0

5. PROOF OF THEOREM 1

Algorithm 2 takes a B(k,n) de Bruijn word v and returns a B(k + 1,n) de Bruijn word
w such that v is a subsequence of w, the new symbol s occurs (k4 1)"~! times in w and
given any 2k + n — 1 consecutive symbols in w there is at least one occurrence of s. This
algorithm is similar to the Algorithm 1, but balances the occurrences of the new symbol s.
For this purpose, we have to find a maximum flow for the Petals Distribution graph. We
use the Edmonds-Karp algorithm as described before to determine a vertex from each
section to start a petal. Then we store that in the vertex ForSection array.

In addition to the steps of Algorithm 1, we now keep track of the position in the
original sequence, that means, how many edges of the original sequence we have already
traversed. That is used to determine which is the actual section and therefore what petal
should be placed next.

In the main loop of Algorithm 2 we iterate through every edge of the original sequence
adding cycles. On each vertex we check if we can add a cycle. But in this case, if the
current vertex belongs to the original graph then adding a cycle implies starting a petal.
For that reason, in those cases we have to check if the current vertex can start a petal for
the current section, otherwise we do not add the cycle. If the vertex does not belong to
the original graph then to add a cycle we just have to check that such cycle has not been
already used, because we are not starting a petal. The rest of the algorithm works the
same way as the Algorithm 1.

Lemma 13. For an input B(k,n) circular de Bruijn word the Algorithm 2 produces a
B(k + 1,n) circular de Bruijn word performing at most O(k3”_2) operations and using
O((k+1)") space.

Proof. Note that the space complexity of Algorithm 2 is the same as the one for Algorithm
1 given that the only addition in space is the vertex ForSection array that has size k"1,
which is smaller than visitedVertices. Regarding time complexity note that the search of
the maximum flow is the most expensive operation of the algorithm. To see this remember
that Edmonds-Karp algorithm has running time O(V?E), see [4, 8]. In our case, the
vertices of the flow graph are the vertices of the original de Bruijn graph and the section
vertices, so V = 2k" 1. Also note that there are k + 2 edges in the flow graph associated
to each vertex of the original de Bruijn graph. So E = (k + 2) * k"~ ! and then the
Edmonds-Karp time complexity is

O((2kn—1)2 * (ki + 2) ” kn—l) — O(k3n—2)'
This is higher than the main cycle time complexity
O(n2(l<: +1)").

This completes the proof. O

15

16 5. Proof of Theorem 1

Algorithm 2

1: function EXTENDDEBRUIIN(ORIGINALSEQUENCE: [INT])
2 let alphabetSize = getSize(originalSequence)

3 let newAlphabetSize = alphabetSize + 1

4 let order = getOrder(originalSequence)

5: let newSymbol = alphabetSize

6 let vertexForSection = EdmondsKarp(originalSequence)
7 var sequence = originalSequence

8 var originalSequencePos = 0

9 var pos = 0

10: var vertex = originalSequence.last(order - 1)

11: var visited Vertices = [false, ...]

12: while pos < sequence.count do

13: let edgeValue = sequence[pos]

14: originalSequencePos += (vertex + [edgeValue]).contains(newSymbol) ? 0 : 1

15: vertex = vertex.last(vertex.count - 1) + [edgeValue]

16: pos +=1

17: let section = floor(originalSequencePos/alphabetSize)

18: let shouldStartPetal = lvertex.contains(newSymbol) && vertex == vertex-
ForSection[section] && !visited Vertices[vertex]

19: let shouldAddcycle = vertex.contains(newSymbol) && lvisited Vertices[vertex]

20: if shouldStartPetal || shouldAddcycle then

21: let edge = vertex 4+ [newSymbol]

22: var cycle = ||

23: for for i in 0..<edge.count do

24: let newEdge = edge.last(edge.count - i) 4 edge.first(i)

25: if i > 0 && edge == newEdge then

26: break

27: end if

28: let newVertex = newEdge.first(order-1)

29: cycle += newEdge.last(1)

30: if newEdge.last == newSymbol then

31: visited Vertices[newVertex| = true

32: end if

33: end for

34: sequence = sequence.first(pos) + cycle + sequence.last(sequence.count -
pos)

35: end if

36: end while

37: return sequence

38: end function

BIBLIOGRAPHY

Verénica Becher and Pablo Ariel Heiber. On extending de Bruijn sequences.
Information Processing Letters, 111(18):930-932, 2011.

Jean Berstel and Dominique Perrin. The origins of combinatorics on words. Furopean
J. Combin., 28(3):996-1022, 2007.

Nicolaas G. de Bruijn. A combinatorial problem. Nederl. Akad. Wetensch., Proc.,
49:758-764 = Indagationes Math. 8, 461-467 (1946), 1946.

Jack Edmonds and Richard M. Karp. Theoretical improvements in algorithmic
efficiency for network flow problems. Journal of the ACM, 19(2):248-264, 1972.

Philip Hall. On representatives of subsets. Lond. Math. Society, 10, 1935.
Camille Flye Sainte-Marie. Question 48. L’interm. des math., 1:107-110, 1894.

Gabriel Thibeault. Greatest de bruijn sequences in many colors. Tesis de Licenciatura
en Ciencias de la Computacion, Facultad de Ciencias Exactas y Naturales, Universidad
de Buenos Aires. Direccién: Verdnica Becher, ongoing, 2018.

Ronald L. Rivest Thomas H. Cormen, Charles E. Leiserson and Clifford Stein.
Introduction to Algorithms. MIT Press, 2009.

17

	Portada
	Resumen
	Abstract
	Contents
	1. Introduction and statement of results
	2. De Bruijn graphs and trees of petals
	3. Proof of theorem 2
	4. Fair Distribution of the new symbol
	5. Proof of theorem 1
	Bibliography

