
Universidad de Buenos Aires

Facultad de Ciencias Exactas y Naturales

Departamento de Computación

Tesis de Licenciatura

Learning Classifier Systems for

optimisation problems: a case

study on Fractal Travelling

Salesman Problem

by

Maximiliano Tabacman

Supervisors: Natalio Krasnogor & Irene Loiseau

Buenos Aires, 2008





Abstract

The Traveling Salesman Problem implies finding a Hamiltonian cycle of minimum
cost in a fully connected graph with costs associated to its edges. Although
mathematically simple to describe, the TSP belongs to the group of NP-Hard
computational problems. This means that exact solutions are costly in time and
resources, and real world problems associated with it would be greatly benefited
by faster and better approaches to solving it.

In this thesis, we propose the use of a Learning Classifier System. Since
an LCS requires information presented in the form of valued attributes and a
corresponding class, we present a way of converting instances of TSP to such
valued attributes, taking advantage of the group of TSP instances known as
Fractal TSP.

After dealing with varied conversion and experimentation models, it can be
seen that with the right parameters and structure, this Machine Learning tech-
nique not only obtains highly accurate results but also delivers a human under-
standable explanation of the rules discovered. Apart from being able to classify
with no chance of error the posible inputs, we present a system that uses the
results obtained, serving as a proof of concept that shows a way to solve Optimi-
sation Problems using Learning Classifier Systems.
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Resumen

El Problema del Viajante de Comercio (en inglés Travelling Salesman Problem ó
TSP)[21] implica encontrar un circuito Hamiltoniano de costo mı́nimo en un grafo
completo Kn. Aunque su descripción a nivel matemático es simple, resolverlo es
extremadamente costoso, ya que es uno de los problemas que se conocen como
NP-Hard. Esto nos lleva a la necesidad de buscar mejores maneras de encararlo,
para reducir los tiempos de procesamiento y asegurar mejores resultados.

En esta tesis se propone el uso de sistemas de clasificación (en inglés Learning
Classifier Systems ó LCS )[13]. Como un LCS recibe información en forma de
atributos y una clase asociada, presentamos una manera de convertir instancias de
TSP en dichos atributos, aprovechando un conjunto particular de TSP conocido
como TSP Fractales.

Luego de analizar diversos modelos de conversión y experimentación, pode-
mos concluir que a partir de los parámetros y estructura adecuada, esta técnica
de Machine Learning no sólo obtiene resultados precisos sino también de fácil
lectura, en la forma de conjuntos de reglas. Además de conseguir clasificar todas
las entradas analizadas con total certeza, presentamos un sistema que aprovecha
los resultados obtenidos, y constituye una prueba de concepto que muestra una
manera de resolver problemas de optimización a través de sistemas de clasifi-
cación.
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Resumen Extendido

El Problema del Viajante de Comercio (en inglés Travelling Salesman Problem ó
TSP)[21] implica encontrar un circuito Hamiltoniano de costo mı́nimo en un grafo
completo Kn. Aunque su descripción a nivel matemático es simple, resolverlo es
extremadamente costoso, ya que es uno de los problemas que se conocen como
NP-Hard. Esto nos lleva a la necesidad de buscar mejores maneras de encararlo,
para reducir los tiempos de procesamiento y asegurar mejores resultados.

Esta tesis propone un enfoque distinto para resolver este tipo de problemas: el
uso de sistemas de clasificación (en inglés Learning Classifier Systems ó LCS )[13].
Un LCS recibe información en forma de caracteŕısticas que describen un objeto, y
un grupo de clases posibles a las cuales se podŕıan asignar dichos objetos. A partir
de un conjunto de elementos ya clasificados y sus caracteŕısticas, la capacidad de
estos sistemas radica en poder aprender a generalizar reglas que permitan luego
reconocer la categoŕıa a la que corresponde cualquier objeto similar.

El uso de LCS puede ser encarado para solucionar TSP usando un subcon-
junto particular de este problema, los TSP Fractales[22, 19, 23, 20]. Dichos
casos pueden ser generados a partir de fórmulas basadas en gramáticas[27, 26]
y, gracias a sus particulares propiedades, la solución óptima viene dada desde su
construcción misma, ya que la gramática no sólo nos da los datos del problema,
sino que los entrega en el orden correcto para solucionarlo.

En este trabajo analizamos 4 familias particulares de TSP Fractales: Koch,
David, MPeano y MNPeano. Las últimas 2 presentan una gran similitud en su
construcción y forma, lo cual servirá para entender mejor la efectividad de las
soluciones propuestas. Por otra parte, algunas de estas familias pueden ser re-
sueltas de manera óptima usando heuŕısticas conocidas[22] En particular tanto
Nearest Neighbour como Multiple Fragment resuelven instancias de MPeano, Mul-
tiple Fragment resuelve las de MNPeano y Furthest Addition From Minimal Con-
vex Hull puede resolver Koch.

El LCS elegido es GAssist [1], un sistema de aprendizaje basado en el enfoque
Pittsburgh, lo cual implica que su funcionamiento básico está dado por un Algo-
ritmo Genético. Además de tener importantes optimizaciones que lo convierten
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en uno de los sistemas más completos y confiables, su mayor ventaja es la de
presentar los conjuntos de reglas resultantes en un formato que es compacto y
fácil de leer y comprender para una persona.

El primer objetivo de este trabajo es encontrar modelos para representar
instancias de los TSP Fractales con atributos que puedan servir como datos de
entrada para GAssist, aśı como también definir los conjuntos de clasificación
posibles.

Una vez obtenidos dichos modelos, procedemos a combinarlos de manera de
obtener un programa que nos permite a partir de un conjunto de coordenadas en
el espacio eucĺıdeo (las cuales representan el problema a resolver): (a) obtener
una clasificación que nos indique la familia de TSP Fractales a la que más se
asemeja, y (b) un orden en el cual recorrer las coordenadas (la solución para el
problema).

En particular, comenzamos por describir el modelo Triplets. Éste implica
tomar un TSP Fractal con su solución conocida, y expresarlo como los distintos
caminos de tamaño 2 (es decir, 3 coordenadas / 2 ejes contiguos). Con esta
información construimos un listado de todos los pares de ejes que forman parte
de la solución, y los clasificamos como “Inclúıdos en la solución óptima”. Para
completar la carga de datos, buscamos otro conjunto del mismo tamaño de pares
de ejes que no sean parte de la solución y los clasificamos como “No inclúıdos en
la solución óptima”. Al correr GAssist con este esquema, obtenemos un conjunto
de reglas que nos indican (para cada tipo particular de TSP Fractal estudiado) si
un par de ejes debeŕıan ser conectados de manera contigua al armar la solución.
Dicho conjunto de reglas nos es de utilidad luego, al construir el programa final.

A continuación describimos el modelo Global Statistics. En este caso nos in-
teresa obtener las caracteŕısticas que diferencian a las distintas familias de TSP
Fractales, ya que identificar a un problema de esta manera permitiŕıa aplicar
la técnica más adecuada para resolverlo en cada caso. El modelo convierte las
coordenadas recibidas en un conjunto de atributos, entre los que se incluye el
tamaño del conjunto, el promedio de vecinos más próximos, los valores máximos
en los ejes X e Y luego de normalizar los datos, y una medida de la distribución
de los valores para cada eje. Las posibles clasificaciones son las familias de TSP
Fractales (Koch, David, MPeano, MNPeano). Los resultados de este modelo de-
muestran que las caracteŕısticas elegidas permiten distinguir entre las familias,
pero hay una gran indecisión cuando debe clasificar entre MPeano y MNPeano.
Ya que esto parece estar relacionado con que ambas familias tienen instancias casi
idénticas, nuestros experimentos incluyen también el análisis luego de consider-
arlas por separado (es decir, Koch,David y MPeano por un lado, y Koch, David
y MNPeano por el otro). Los experimentos con 3 familias consiguen resultados
que en muchos casos llegan al 100% de efectividad en la tarea de clasificación.

Luego se detallan modelos adicionales que buscan analizar la robustez de los



atributos usados en el modelo anterior.
Primero se describe el Partition Statistics, que utiliza partes continuas de la

solución en vez de la instancia de TSP completa. Este modelo muestra que es
posible identificar a que familia pertenece una parte del problema, lo cual es in-
teresante para ser usado en caso de que se quiera subdividir un problema TSP
y resolver cada sección con el modelo que sea más conveniente. Los resulta-
dos demuestran, para el análisis con 3 familias, y cuando las particiones tienen
una distribución equivalente de coordenadas, que la efectividad al clasificar se
mantiene arriba del 90% con bajo número de particiones, llegando en corridas
individuales a obtener un 100%.

El modelo que sigue es Sample Statistics, el cual mantiene la idea del ante-
rior, pero implica partir el problema en conjuntos de puntos tomados de distintas
regiones del espacio eucĺıdeo, de manera de poder identificar la familia de TSP
Fractal aún cuando no estén todos los puntos presentes. En este caso la efec-
tividad observada es menor, si bien supera el 80% cuando se utilizan hasta 5
conjuntos.

El último modelo basado en Global Statistics es el Scrambled Statistics. Su
objetivo es analizar cómo baja la efectividad de Partition Statistics para casos
que hab́ıan obtenido un 100% originalmente, al modificar levemente la posición
de los datos de prueba. Esto se logra mediante la aplicación de ruido blanco
utilizando una distribución normal. Los resultados muestran que, partiendo las
instancias en 4 subconjuntos, la efectividad cae progresivamente a medida que
aumenta el ruido. A pesar de ello, es posible obtener arriba de 80% de éxito
en la clasificación si el ruido se mantiene por debajo del 4%. Debemos destacar
que una modificación excesiva de la ubicación de los puntos dejaŕıa de implicar
simplemente ruido, ya que es posible que la solución óptima cambie, por lo que
consideramos que estos resultados son suficientes para demostrar la robustez de
los atributos con los que hemos decidido representar las instancias.

Terminada la presentación de los modelos y sus correspondientes experimen-
tos, presentamos la estructura para un sistema como el que nos hab́ıamos prop-
uesto. El mismo sirve como prueba de concepto para demostrar la posibilidad de
resolver problemas de optimización utilizando sistemas de aprendizaje. Por un
lado utilizamos las reglas resultantes de Global Statistics y clasificamos con 100%
de efectividad todas las instancias de TSP Fractal consideradas. Este resultado
de por śı es suficiente para aplicar la heuŕıstica más conveniente de acuerdo a los
trabajos previos existentes en este area. Pero luego agregamos un paso adicional,
que implica tomar las coordenadas y la clasificación calculada, para intentar
sugerir una solución al TSP recibido como entrada. Para lograrlo, recorremos
los distintos ejes existentes en el grafo completo descripto por las coordenadas
recibidas, y utilizamos las reglas del modelo Triplets para decidir cúales deben
ser consideradas para una solución al problema. Si bien los resultados distan



de los que obtendŕıan los mejores algoritmos para la solución de TSP, nuestro
enfoque consigue, utilizando simplemente un conjunto de reglas, proponer en un
corto tiempo una solución muy superior a la que se obtiene si la decisión de los
ejes a agregar se realiza con una técnica aleatoria.

Finalmente presentamos las conclusiones de nuestro trabajo. Uno de los pun-
tos más destacables a mencionar es que el sistema propuesto permite demostrar
que es factible utilizar sistemas de clasificación para la resolución de problemas
de optimización como TSP. Por otra parte, destacamos la capacidad del sistema
para solucionar distintos tipos de familias de problemas, gracias a que utiliza
técnicas de decisión que le permiten ajustar internamente el algoritmo a utilizar
para la resolución de cada caso.

El trabajo se completa con una revisión de los puntos de cada modelo que
pueden ser optimizados o extendidos, en trabajos futuros.
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Chapter 1

Introduction

1.1 Motivation

An optimisation problem is one where we want to find a solution that minimizes
some cost associated with it, or maximizes some measure of gain. This is referred
to as the optimal or best solution.

A lot of the most studied problems still require complex techniques to be
solved in reasonable time. Such is the case of the Travelling Salesman Problem,
which is the one dealt with throughout this work.

In order to solve optimisation problems, exact algorithms can be used, which
are costly in time and resources. A common alternative is to use heuristics, which
obtain approximate solutions in polinomial time.

The main objective of this work is to present a proof of concept on how to
solve an optimisation problem by means of a Learning Classifier System. These
programs take as input: (a) information on a subject in the form of valued
attributes, and (b) knowledge on some classification for such data. The output
produced is a number of rules that allow to classify, from then on and in reasonable
time, related information of the same domain into the specified classes.

Although optimisation problems and LCS do not seem to share a common
objetive, we believe that a link is possible between them. That is why this thesis
is aimed at finding and taking advantage of such a connection, to aid in the search
for optimal solutions to optimisation problems.

To the extent of our knowledge, there is no similar work to compare it to in
terms of algorithms and the modeling of the problem. Despite that, some of the
ideas presented are based on existing research in different fields.

In the area of TSP, we are interested in one special family, known as Fractal
TSP (FTSP)[22, 19, 23, 20]. Since for these cases the optimum solution is known
by construction, we can build any number of instances for the problem and focus
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2 CHAPTER 1. INTRODUCTION

on the analysis of the model with ease.
The FTSPs are built by means of a context-free generative grammar called

L-Systems[27][26]. They allow us to express an FTSP in a coded format which is
useful when implementing the algorithms needed for our proposal.

As for LCS, we choose to use GAssist[1]. This system can receive the features
from the input data in a number of ways (integer, real valued, nominal) and
produce human understandable rules that allow a good classification. It also
has some additional properties of interest, such as optimizations to improve its
efficiency and response time, and automatic discretization of real valued features.

In order to reach our objective, several intermediate models are revised,
which map the coordinates that make up an instance of the FTSPs into attributes
that can be used as input for GAssist.

We aim at building a system equipped to adjust itself internally to produce
the best possible results for the problem received as input, instead of pretending
to contain a general solution for any input.

In order to do that, one of the main ideas presented is a way of determining,
from a group of already existing heuristics used to solve TSP, which to apply for
a given problem.

Also, we build an algorithm that, although not optimally, should provide an
interesting method to obtain quick solutions for an instance of the FTSP studied.
Since we intend to present a proof of concept, we are not interested in comparing
the quality of the solution generated but rather in assessing whether (1) learning
took place and (2) if it did, how much it improves over a randomly built solution.

1.2 Document Structure

Next is a more in depth detail of the contents of this thesis, chapter by chapter:
Chapter 2 describes the traveling salesman problem, that is, the search

for a Hamiltonian cycle of minimum cost in a fully connected graph with costs
associated to its edges. After the introduction and historical review, several vari-
ations of the TSP are presented. In particular we focus on a special class of TSP
instances, namely, Fractal TSPs. These instances are particularly appealing for
benchmarking optimization and machine learning algorithms for the TSP because
(a) they are non-trivial instances, (b) are well characterized in terms of which
of the studied heuristics can/cannot solve them exacly, (c) can be made of an
arbitrary large size, remarkably, (d) by construction the optimal tour through the
set of cities in these instances is known and (e) being fractal they possess clear
“patterns” that can be exploited by a learning mechanism to improve its own
search process. That is, these instances allow us to reliably test the scalability of
optimization and machine learning methods.

Chapter 3 revises the main concepts of Learning Classifier Systems. These



1.2. DOCUMENT STRUCTURE 3

machine learning techniques can improve their performance at a task after being
provided with training and testing data and can present conclusions in the form of
rules. We delve deeper into the LCS used in this work, GAssist, chosen because
of its human understable outputs. This allow us to grasp the full potential of
applying machine learning to optimisation problems.

The first use of GAssist to solve TSP is presented in Chapter 4. Here we
introduce the Triplets model. With it we intend to train GAssist to recognize
when a set of edges is part of the optimum solution to a TSP. Although the
experiments presented take advantage of the studied Fractal TSPs, we intend to
help create the knowledge to solve any instance of TSP. After the description and
experimental results of the model, we mention some future work associated with
it.

In Chapter 5 we move on to the Global Statistics model. Here we present
some novel ideas about how to extract features from a TSP instance, by taking
into consideration the spatial relation of the coordinates in it, that could be
used to classify unseen instances or parts-of instances. By being able to classify a
given instance into one of the various fractal TSP families it is possible to a priori
decide which, among several available, heuristic must be applied. According to
the no free lunch theorems[35][34], no single heuristic performs better than
the rest for all problems/instances, hence being able to predict which one to use
is a key milestone towards a more robust and scalable optimization. Just like
in the previous chapter, we explain some details of implementation, review the
experiments prepared and their results, to conclude with some observations and
a few topics for future research.

Mantaining the structure and attributes of the Global Statistics model, Chap-
ter 6 presents some variations to it. First we explain the Partition Statistics
model, which implies partitioning the coordinates of an instance and training
GAssist to recognize now not the entire graph but these subparts instead. Then
the Sample Statistics model is presented, where the subgraphs considered are
built in a random order instead of keeping the original relation between the co-
ordinates. We then present the Scrambled Statistics model, which implies an
analysis of the Partition Statistics model when the testing data is affected by
white gaussian noise. For every model mentioned we detail its structure, experi-
ments and results.

In Chapter 7 all of the previous ideas are merged to analyze the possibility of
suggesting a solution to the TSP based on the knowledge aquired by GAssist using
the models proposed. With a simple program, composed of two sub-algorithms,
we aim to carry on this task. The first part of the chapter shows how to use the
rule sets from the Triplets model to build a Hamiltonian Path. The second part
details how to identify which of the TSP instances mentioned a graph belongs
to. Finally, the third part of the chapter unifies both algorithms, producing
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interesting results for several TSP instances generated from the studied cases.
Chapter 8 presents conclusions for the different models, as well as a general

comment on the findings of this thesis. We close with a list of different topics for
future research.



Chapter 2

Traveling Salesman Problem

2.1 Chapter Overview

This chapter begins the theoretical background of this thesis. The traveling
salesman problem is first introduced, along with historical details and its formal
definition. Then a group of commonly used techniques for its solving are pre-
sented, followed by some well known variations to the original problem. After this
basis is established, the reader will be presented with related and also important
concepts: Fractal TSPs and L-Systems. The chapter ends with a summary of its
contents.

2.2 Introduction

Although it was probably first referred to in a scientific paper in 1932[21], the
Traveling Salesman Problem presents a situation that is still today of interest
to researchers worldwide. It has become one of the most investigated graph
optimization problems, for despite its definition is simple, its solution is clearly
not.

The most common references to TSP imply the definition of the symmetric
traveling salesman problem.

Definition 1. Symmetric Traveling Salesman Problem (STSP): Given a
fully connected graph Kn with costs associated to its edges, find the Hamiltonian
cycle of minimum cost.

It can also be expressed in terms of a digraph, in which case it is referred to
as asymmetrical traveling salesman problem.

5
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Definition 2. Asymmetric Traveling Salesman Problem (STSP): Given a
fully connected digraph

↔
Kn with costs associated to its arcs, find the Hamiltonian

cycle of minimum cost.

The TSP belongs to the NP-hard class of problems[28].

2.3 Solving Techniques

As with any NP-hard optimization problem, investigations regarding TSP have
lead to the development of both exact and approximate algorithms to solve it.
Research achieved so far has been limited to algorithms that find the exact so-
lutions for many graphs. Although every day new and bigger ones are solved,
many more still remain unsolved. For these cases the attention is turned to the
use of heuristics.

2.3.1 Exact Methods

Most exact methods, such as Branch and Cut algorithms, use the Dantzig-
Fulkerson-Jhonson[9] integer programming model for ATSP. The objective func-
tion to minimize is

∑n
i=1

∑n
j=1 dijxij where dij represents the established weight

from i to j, and xij indicates whether that arc is to be used in the proposed
solution. Apart from the mentioned equation, the following constraints must
hold:

1. Each vertex has exactly one incoming and one outgoing arc.

2. To avoid non-hamiltonian cycles, no proper subtour of vertices S can have
a length of |S| arcs.

2.3.2 Heuristics

Heuristics for the TSP can be divided into those that build up a tour trying to
obtain a good solution (constructive), and those that chose an initial tour and
try to improve on it (improvement).

Constructive heuristics encompass techniques that range from the simple yet
inefficient greedy algorithm (start from a random vertex and move to the unvis-
ited vertex with minimum cost) to the vertex insertion heuristic (start with a
determined path in the graph and replace an arc (x, y) with (x, z), (z, y) so that
weight(x, y) > weight((x, z) + weight((z, y)).

Metaheuristics applied to the TSP are varied. Some of the most used are:
genetic algorithms, tabu search and ant colony optimization.
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2.4 Variations

2.4.1 Euclidean TSP

Instances of TSP where the Triangle Inequality holds are known as Euclidean
TSPs. This means that the vertices can be mapped to coordinates in the euclidean
plane and the weight of the edges(arcs) is define euclidean distances between
them. An euclidean TSP is by definition a STSP. Although this simplification
can reduce computation times and adds useful properties, it remains an NP-hard
problem[24]. Existing heuristics take advantage of this case and its properties, in
order to reduce computing times, and obtain approximate solutions.

2.4.2 Generalized TSP

The name of generalized TSP applies to the case where the tour to be found
requires not to visit all vertices but at least one (or only one depending on the
variation) from each of n clusters of vertices. In [10] a sample conversion al-
gorithm from generalized TSP to TSP is presented. Although exact algorithms
and heuristics exist for both AGTSP and SGTSP, it is also common practice to
transform this cases to ATSP and STSP, in order to allow the application of the
algorithms presented in previous sections.

2.4.3 Graphical TSP

The graphical variation of the TSP implies a relaxation of the constraints that
allows the resulting tour to visit vertices and edges(arcs) more than once. This
is related to a more general problem referred to as Steiner TSP. For more infor-
mation on both topics the reader is encouraged to refer to [5].

For more on the history and variations of the traveling salesman problem,
http://www.tsp.gatech.edu/index.html provides a rich amount of informa-
tion.

2.5 Fractal TSP

2.5.1 Definition

Despite the difficulties in finding an exact solution for the TSP in general, as was
previously presented some variations exist that help deal with situations where
the optimal path is easier to find. This thesis focuses on one of such variations,
known as Fractal TSP (FTSP) and well studied in [22, 19, 23, 20].

A Fractal TSP is built by using context-free generative grammars called L-
Systems [27, 26] (described next in section 2.5.2). It is expressed as a sequence of
coordinates, which as in any TSP can be interpreted as the positioning of cities in

http://www.tsp.gatech.edu/index.html
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the euclidean plane. But also, the sequence itself describes the optimal solution
to the instance of the problem. This means that a Fractal TSP is at the same
time the description of the problem (a set of coordinates) and an ordered list that
explains how to solve it. To further clarify we quote from [22]:

“We turn the curves into TSP instances by inserting cities during
the construction process. Often we will simply place one city at each
corner of the curve. This gives us a simple mechanism for defining
TSP instances of infinite size”.

“In particular we are interested in fractal TSPs of which the curve
corresponds to the unique shortest tour through its set of cities”.

2.5.2 L-Systems

Before proceeding forward, L-Systems need to be introduced in order to present
a way in which to formally define fractal instances of the TSP.

Definition 3. An L-System is a context-free generative grammar. This means
it contains the instructions to build a string, starting from an initial value and
expanding by using rules. Its attributes are:

1. An alphabet of possible symbols

2. A starting symbol composed of items in the alphabet

3. A group of constants, which once present in a string remain and will not
be further affected by applying rules

4. A set of production rules, which indicate how to replace a symbol with a
collection of constant and non-constant symbols

Definition 4. The order of an L-System is the amount of times that the trans-
formation rules are to be applied. The starting string represents order 0, the
results after the first application are referred to as the first order, and so on.

To provide further detail on how a particular L-System is coded, Algorithm
2.1 is presented. The pseudocode shows how to produce a string of order n + 1
when the string representing order n is received as input�
input : S t r ing
output← an empty s t r i n g
FOR ( each charac t e r c in input)

expansion← product ion r u l e f o r c i f i t e x i s t s , or c

i t s e l f in case i t i s a constant
output← output + expansion
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RETURN output
� �
Algorithm 2.1: L-System Pseudocode

As an example of an L-System, the attributes in Algorithm 2.2 are proposed.�
Begin : A
Replacement Rules :
A → AA
� �

Algorithm 2.2: L-System Example

This means that the alphabet to be used is {A}, the starting symbol is A and
there are no constants, since A has replacement rules defined. The first order of
this system is AA, the second AAAA, etc.
For a more complex example, we present a way of generating fibonacci numbers
in Algorithm 2.3.�
Begin : A
Replacement Rules :
A → B
B → AB
� �

Algorithm 2.3: Fibonacci length strings L-System

In this case the alphabet is comprised of {A, B} and again there are no constant
values. If this system is expanded, we have the results shown in Table 2.1:

Order Result String Length
0 A 1
1 B 1
2 AB 2
3 BAB 3
4 ABBAB 5
5 BABABBAB 8
6 ABBABBABABBAB 13
7 BABABBABABBABBABABBAB 21
8 ABBABBABABBABBABABBABABBABBABABBAB 34

Table 2.1: Fibonacci length strings L-System. Orders 0 to 8

As will be seen next, the resulting string of the L-System has to be interpreted
by a “drawer” or “coordinate builder”. Commands like Forward and Rotate
±X degrees are common, as well as other more complex instructions.

2.5.3 The instances

Because of the importance of the different fractal curves referred to in the pre-
vious section to the development of this thesis, we will review them one by one,
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including a detail of its structure and its building rules. Because of a limit in
time and processing power, only the first six orders of the curves will be analyzed
in this work.

Koch Tour

Starting with an equilateral triangle M, each order replaces the lines in the pre-
vious one with a ∧ giving a pointed shape that reproduces this shape in each
of its points, which then is reproduced on each of its points, and so on.

The L-System required to building the Koch Tour is:�
Begin : F − − F − − F
Replacement Rules :
F → F + F − − F + F
� �

Algorithm 2.4: Koch Tour L-System

where F implies drawing a line forward, + implies increasing the angle by 1
6

of a turn (360/6 degrees), and - implies decreasing it by the same amount.
Figure 2.1 shows the distribution of the coordinates for Koch Tour at orders

0 to 5. It presents all of the coordinates obtained as positions in the euclidean
space. Figure 2.2 shows the path connecting the coordinates according to the
sequential order in which they are obtained. This means that it describes the
exact solution, as obtained from the application of the L-System while building
the FTSP.

David Tour

A David Tour is constructed with an iterative process described in detail in
[22, 25]. This FTSP must not be confused with the Star of David fractal described
in http://library.thinkquest.org/26242/full/types/ch7.html.

Following is a detail of the L-System needed to build David Tour instances:�
Begin : FX−XFX−XFX−XFX−XFX−XF
Replacement Rules :
F → !F!−F−!F !
X → !X
� �

Algorithm 2.5: David Tour L-System

where F and - keep the previously defined behavior, X is ignored for drawing
purposes, and ! indicates that the angle considered is to be negated. The ! symbol
implies that the drawer is constantly switching between 60 and −60 degrees,
allowing us to obtain the rotating triangles needed for the figure.

In figure 2.3 the distribution of the coordinates for David Tour at orders 0 to
5 can be observed. Figure 2.4 presents, as in the previous case, the exact solution.

http://library.thinkquest.org/26242/full/types/ch7.html
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MPeano

The MPeano tour can be summarized as a combination of 2 MPeano/2 curves,
which are in turn built based on lines inside imaginary triangles. Although this
quick description may seem confusing, figures 2.5 and 2.6 provide a glance at
the true complexity of this curve. In order to understand the inner calculations
required for the figures and some reasoning behind them, the interested reader is
referred to [22].

As with previous curves, MPeano can be described by means of an L-System,
which is shown next:�
Begin : X F F − − A F F − − X F F − − A F F
Replacement Rules :
X → +!X!FF−B@Q2F@IQ2−!X!FF+
F → <empty s t r i ng >

Y → FFY
A → B@Q2F@IQ2
B → AFF
� �

Algorithm 2.6: MPeano L-System

Just as before, each new curve presented includes more complex drawing rules.
First it must be noted that MPeano uses an angle of 1

8 of a turn, that is, 360/8
degrees. As for the rules, we will first clarify that F’s are removed when reading a
string and building the next order, as can be inferred from the second rule. When
@ is encountered, it indicates the drawer that the line segment (the distance to
advance before placing a city when F is encountered) must be multiplied by the
value following. If a number follows, multiplication is carried out normally. If
Q is encountered, the square root of the value following Q is considered. If I
is encountered, the value following is inverted. Some examples are in order to
clarifiy this operators:

• @3 multiplies by 3

• @I3 multiplies by 1
3 (divides by 3)

• @Q3 multiplies by
√

3

• @IQ3 multiplies by 1√
3

(divides by
√

3)

• @QI3 multiplies by
√

1
3

MNPeano

MNPeano presents a striking similarity to MNPeano (as can be guessed from
the similarity in their names). The position of the coordinates is so similar, in
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fact, that with a high enough order, one can be mistaken for the other, as the
only difference is that MNPeano lacks some of the cities of MPeano. As for its
construction, MNPeano uses almost the same rules, but is omits a city every now
and then (in a pattern detailed in [22]).

The L-System for MNPeano is explained below:�
Begin : X F F − − A F F − − X F F − − A F F
Replacement Rules :
X → +!X!@2F@.5−B@Q2F@IQ2−!X!FF+
F → <empty s t r i ng >

Y → FFY
A → B@Q2F@IQ2
B → AFF
� �

Algorithm 2.7: MNPeano L-System

Figure 2.7 presents the coordinates included in MNPeano tours of order 0 to
5, while figure 2.8 adds the lines that connect them, forming an exact solution
to the TSP. These solutions use the same lines that the MPeano tours shown
previously.

2.5.4 Properties

Following we present a list of interesting properties that hold for all orders of the
FTSPs that will be used throughout this work:

1. By construction, the optimal path (that is, the exact solution to the TSP) is
known. The fact that this property is true even for instances with millions
of cities makes them specially interesting for research.

2. As higher orders provide increasing number of cities, the limit on the size
of the instance is only determined by the needs of the researcher, and the
computing resources available. Even this is not so much because of the
complexity of the building algorithm, but because of the limited capacity
of computers languages to handle efficiently collections of such sizes.

3. It has been proved that some well known heuristics can solve (that is,
provide an exact solution to) some of the FTSPs considered in this thesis,
but none of those analyzed can solve all of them [22]. In the cited paper it
is stated:

“We have seen that while some constructive heuristics reliably
solve one such instance they may fail on another instance. Thus,
we can view heuristics as set of indices which characterise an
instance and our instances as indices which characterise heuris-
tics”.
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The specific heuristics mentioned are: Nearest Neighbour and Multiple Frag-
ment both solve MPeano instances, Multiple Fragment solves MNPeano and
Furthest Addition From Minimal Convex Hull solves Koch Tour.

4. These instances have both global and local features that make them well
suited for the exploratory investigations that are the objective of this thesis.

Figure 2.1: Koch Tour Coordinates - Orders 0 to 5
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Figure 2.2: Koch Tour Exact Solutions - Orders 0 to 5
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Figure 2.3: David Tour Coordinates - Orders 0 to 5
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Figure 2.4: David Tour Exact Solutions - Orders 0 to 5
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Figure 2.5: MPeano Coordinates - Orders 0 to 5
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Figure 2.6: MPeano Exact Solutions - Orders 0 to 5
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Figure 2.7: MNPeano Coordinates - Orders 0 to 5
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Figure 2.8: MNPeano Exact Solutions - Orders 0 to 5



Chapter 3

Learning Classifier Systems

3.1 Chapter Overview

In this chapter the basics of the Learning Classifier Systems are explored, with a
description of the most commonly used implementations. Then a more detailed
definition is given for the system chosen for our experiments. This chapter con-
cludes with a listing of data mining terminology and motivations that are to be
known before the novel ideas in this thesis can be detailed.

3.2 Definition

Since Learning Classifier System (LCS) are a means to solving a Classification
Problem, we begin by exploring its definition.

Definition 5. A Classification Problem implies the need to separate a group
of objects into differentiated classes, based on defining qualities that set them
apart, and that make up the essence of each group. Situations ranging from a
child’s game of recognizing object patterns (squares, circles) to cellular analysis
(when discerning between damaged and healthy cells) can be regarded as classi-
fication problems. Many mathematicians and computer scientists try to analyze
situations that fit this criteria to model the problem into a clear set of functions
and algorithms, to allow for a better chance of finding solutions that are more
accurate and easier to obtain.

Learning Classifier Systems were first mentioned around 1978, being [13] the
most cited source of its definition. Today they are established as a good option
when trying to solve a wide range of problems ([12],[31],[2],[3],[30]). First of all,
an LCS is a machine learning technique. This means that the system can, if

21
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presented with a task, increase its initial performance at the task as it gains
experience. Considerations that arise here are:

1. The task has to be measurable, so that the system’s efficiency can be eval-
uated

2. Experience has to be defined, and be measurable as well. This can imply
registering time, number of attempts at the task, space of inputs already
known to the system, etc.

3. The environment associated with performing the task needs to be modeled,
so that environmental information can be used as input by the system.

In the particular case of LCS, the task is to classify a set of input data, normally
defined as an array of properties (for example classify animals by means of their
height and weight).

Since they were presented, many systems have been designed that fall into this
category. The learning procedure is traditionally achieved by considering rules of
the form IF condition THEN action, where the condition is evaluated against
an instance of the input data, and the action implies classifying the current input
with the value stated in the rule.

In the case of the animal classification example stated above, we could have
rules like (IF height < 1m and weight = 3kg THEN cat) and (IF height < 0.5m

and weight > 4kg THEN iguana).
The trick while developing these systems is to find an efficient way of evolving

rules like these and reach a set of rules that together classify with high accuracy
the whole input space (environment).

What remains to be said about them is that since its beginnings these systems
have taken advantage of many techniques from the artificial intelligence area. The
specific case of LCS we have chosen follows the Pittsburgh approach, which means
a Genetic Algorithm (GA) is used as a heuristic to guide the classification
process.

Genetic Algorithms are an idea central to Evolutionary Computation
(EC). The field of EC brings ideas from the biological sciences such as DNA cod-
ing, survival of the fittest and trait inheritance. These ideas can be employed by
themselves to solve complex problems ([7],[8],[6],[16],[17],[18],[29],[11]). A genetic
algorithm is composed of the following elements:

1. An initial population of individuals, with each representing a possible solu-
tion to the problem

2. Generations: the iteration step that identifies one group of individuals from
the next (offspring), usually fitter than the parents. In a GA, the “result”
is the last generation spawned when the stopping criteria is reached.
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3. A criteria for generating offspring from one or more individuals to give rise
to the next generation.

4. A criteria for generating small mutations, so as to ensure diversity from one
generation of individuals into the next.

5. A fitness criteria, that will ideally be higher in average among individuals
from one generation with regards to the previous one.

6. A stopping criteria

These ideas are applied in the case of LCS to the rules described before. Next
is a detail of the definition of GA parameters for an LCS:

1. The population to evolve is a collection of rule sets as those defined before.
It is common to represent the rulesets as binary strings, with different
sections representing different rules. For example for a rule predicating
over 2 properties A and B with a possible value between 0 and 3, 2 bits can
be used for each, meaning that 1100 is a ruleset expressing “A = 3&B = 0”.

2. A generation is composed of the current collection of rule sets. It stands
that every rule set has at least one rule matching each possible class, so
that each individual (rule set) can always classify (even if incorrectly) all
of the input data. Some optimizations (described later) ignore one of the
classes and consider it a Default Class, allowing for smaller rule sets.

3. In the rules used as example above, the offspring criteria could be as simple
as taking some rules from two different rule sets and join them to create
a new complete rule set, or as complicated as creating new rules with the
conditions from one rule set and the actions from another, mixing them
with a probability function. Special care must be taken when mixing this
rules, since the result must be a valid ruleset.

4. The mutation procedure usually implies a slight change in numerical values,
or, if the rules are represented by a byte string, some 0’s are changed into
1’s or vice versa. As above, the validity of the resulting ruleset must be
checked.

5. A fitness formula indicates the ability of the rule set to classify the input
data correctly, helping to discard those rule sets that classify incorrectly or
are unnecessarily more complex than others already present, allowing the
system to evolve more compact and accurate rule sets.

6. Learning Classifier Systems stopping criteria depends on the implementa-
tion considered. The model used for this thesis takes a parameter indicating
the number of iterations to run, but others could well stop when a certain
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classification accuracy is reached, or the rule sets presents a certain prop-
erty.

Aside from the EC component, Learning Classifier Systems require Machine
Learning ideas to evaluate and correct the accuracy of the rules. The studied
case employs Reinforcement Learning, which means that the input data already
contains the expected classification (requiring the data to be supervised when
gathered) and the system tries to predict the class based on the rules, to check
then against the supplied classification, adjusting its internal values accordingly
(depending on whether it was right or not). The specifics of such procedures
vary greatly from one LCS to another, and so are discussed more in depth when
analyzing the particular system used in this work.

3.3 Variations

Although the previous sections detailed the basics of LCS, they only hint the
wide range of variations implemented as of today. Since this thesis is based on
the results of a Pittsburgh LCS, we note next other state of the art approaches
before delving deeper in the specifics of our chosen system. For a more detailed
introduction to these variations, please refer to [4, 1].

3.3.1 Michigan approach

The Michigan Approach was developed before 1990. Around that time, the im-
plementation known as Zeroth Level Classifier System (ZCS) was the most repre-
sentative. Nowadays the most commonly seen LCS is its successor XCS, a newer
model that uses a different approach to fitness computation, presenting a more
robust framework that improves overall accuracy.

The most important difference between the Michigan and the Pittsburgh ap-
proach is the part rules play in the evolution of the system. While the Pittsburgh
approach considers rule sets as individuals in a GA context, as was described
above, the Michigan approach considers rules as individuals, which constantly
try to classify instances presented to the system. This difference can be seen a
change in the philosophy behind the program structure. In the Pittsburgh ap-
proach, rule sets battle against each other to attain the capacity to represent the
whole of the input space, while being also as compact as possible. The Genetic
Algorithm employed takes care of the evolutionary process. On the other hand,
the Michigan approach implies a coordination between the rules to emerge with
a complete rule set, and here the Genetic Algorithm plays a lesser role.

Wilson’s implementation of ZCS [33] implies the constant evaluation of such
classifications, where the different rules are awarded “points” when they cor-
rectly classify an instance. Similar rules are grouped and their points distributed
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equally. Points are also lost when a rule is not used. At certain intervals, a GA
is used to create offspring from the most promising rules, which replace those
with lower classification scores. It can be seen from this that the role of the GA
in the system is quite different from the highlight it occupies in the Pittsburgh
approach.

XCS improves over ZCS in the fitness computation of the rules. Apart from
predicting a class, each individual (rule) has a number of attributes associated
to it that take part in each cycle of the system. The system also includes some
global values regarding learning rates, deletion thresholds and the activation of
the GA.

One interesting aspect of this approach is that when the set of rules is pre-
sented with an instance not covered by any of the rules, a process called covering
takes place, creating new rules to take the instance in consideration. As many
rules as needed are added, so as to ensure that every class has at least one rule
vouching for it, though obviously other factors such as the fitness of the rules will
determine the final prediction.

3.3.2 Iterative Rule Learning approach

The Iterative Rule Learning approach implies a number of runs of a GA, where
each run ensures that a part of the input space will be covered by newly generated
rules, so that after N runs a complete rule set is obtained.

An important issue with this approach is that since each run will provide one
rule, measures have to be taken to avoid over specification. Also, the system has
to provide a consistent balance between the coverage increased at each iteration
and the accuracy of the rules produced.

3.4 GAssist

The evaluation of the proposed models will be tested by using GAssist, a Pitts-
burgh like learning classifier system, introduced in [1]. Although GAssist contains
a full fledged LCS, most of its basic architecture is based on a simpler (and ear-
lier) system known as GABIL. Since both implementations share a common core
of functionality and behavior, we will first detail the basics of GABIL, and then
proceed to detail the optimizations and further classification considerations that
GAssist properly introduces.

3.4.1 GABIL

GABIL is described in detail in [14]. The interested reader is referenced to this
paper for its implementation. However, we will mention the features of GABIL
that are used in GAssist:
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1. Fitness function (squared accuracy): the fitness of an individual (RuleSet)
is computed as (#instances correctly classified

total #instances )2.

2. Nominal Dataset representation: in the case of classification based on at-
tribute A1 with 4 possible values (X1,X2,X3,X4) and A2 with 2 possible
values (Y1,Y2), the rule represented by the binary string 1101 01 implies
the predicate “(A1 is X1 or X2 or X4) and (A2 is Y2)”.

3. Semantically correct crossover operator: different cut points can be chosen
in the parent rules, as long as they are placed in the same position inside
the offspring rule.

4. Bit flipping mutation for the nominal representation

3.4.2 Additional Framework Considerations

Apart from the details mentioned previously, GAssist presents the following fea-
tures that are to be taken into consideration:

1. Instances will be classified according to the first rule that make them true.

2. Missing values in datasets are substituted considering instances belonging
to the same class, with the most frequent value for nominal attributes, and
the average value for real valued attributes.

3.4.3 Contributions

GAssist improves the state of the art for Pittsburgh Learning Classifier Systems
by integrating into GABIL the following features:

1. Explicit and static default rule: the best default rule in terms of accuracy
and reduction of search space is selected and transparently used throughout
the system.

2. Adaptive discretization intervals (ADI): this technique implies an evolving
discretization of real-valued attributes, that can vary for each rule and
attribute, and which can also split and merge as the system does its job.

3. Incremental learning by alternating strata (ILAS): a windowing technique
for generalization and run-time reduction.

4. Bloat control and generalization pressure methods: GAssist presents a rule
deletion operator, and a fitness function that considers the content of the
individuals in guiding the exploration process.
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3.5 Data Mining

As a fundamental part of this work intends to gain a better understanding of
the qualities that help define TSPs in terms of their likeness to other well known
graph structures, we will review and remember from time to time the data mining
concept of features.

A feature is a measurable property of an object. While described in that gen-
eral way it seems to emcompass almost anything, the objective when performing
Data Mining tasks is to identify the features of the subject of study that allow it
to be distinguished from other objects that are to be treated differently. Features
can be represented by numbers (real or integer valued), unrestricted string (i.e.
names) or discrete partitions of a set, to name a few possibilities.

The choice of the right features for a Data Mining / Pattern Recognition /
Classification problem is essential to the success of the solution proposed.





Chapter 4

LCS for classifying TSP optimal

edges

4.1 Chapter overview

This chapter begins the novel proposals which provide the main objective for this
thesis. To put it shortly, we will look into a different way of solving instances of
TSP.

In this and the following chapters, several models are revised, which map
the coordinates that make up an instance of the FTSPs into attributes that can
be used as input for GAssist. Their objective is to help in determining, from a
group of already existing algorithms, which to use for a given problem.

Each model presented will use specifically generated instances of FTSPs, and
will identify properties from the collection of coordinates, which will then be used
to provide answers that can help us find the solution to the instance. This, of
course, is only the beginning, since from the results of this work, we intend to
help create the knowledge to solve any instance of TSP, and not only the sample
Fractal ones presented here. This generalization will take place in the following
chapters.

The remainder of the present chapter is structured as follows. First the simple
Triplets model will be presented, as a way of helping the reader grasp the possi-
bilities of using GAssist as an indicator of how to solve the Traveling Salesman
Problem. After presenting its structure, the experimentation proposed will be
explained, followed by the results of such experiments. Then some research ideas
will be listed, as future work derived from the model is possible.

29
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4.2 Triplets

4.2.1 Description

The first model proposed is the one called Triplets. Its creation and structure
are kept simple, since this representation allows for the beginning of our research
into the feasibility of applying learning classifier systems to a combinatorial op-
timization problem such as TSP.

The objective of this model is for GAssist to learn, from a group of edges,
which are to be part of a solution to a TSP and which are to be excluded from
it. Since by creating one of the FTSPs presented we know the edges in the exact
solution, we can easily create a training set mixing these edges with random edges
not included in the solution, thus obtaining an important group of samples to
train a system such as GAssist.

As was mentioned while describing GAssist in 3.4, any model proposed would
need to be explained in terms of GAssist instances, with each having a number
of attributes with their corresponding values and a classification.

In the case of the Triplets model, each instance represents a part of a path
between the nodes of a TSP. Because this model was developed for learning
purposes only, it was decided that instances would contain a path of size 2, that
is, two edges. Also, in order to keep the ideas presented as simple as possible,
we will purposefully omit any normalization process of the coordinates. So, if
for example our TSP had 3 cities in coordinates (1,1),(1,2) and (2,1), a possible
solution would be: (1, 1)→ (1, 2)→ (2, 1)→ (1, 1). This means that the GAssist
attributes described would have the following values (Table 4.1)

Instance # Edge 1 Edge 2
1 (1, 1)→ (1, 2) (1, 2)→ (2, 1)
2 (1, 2)→ (2, 1) (2, 1)→ (1, 1)

Table 4.1: Attributes for an instance of the Triples model

Also, the tour can be seen backwards, which means that the attributes pre-
sented in Table 4.2 are valid paths of size 2 of an optimal solution as well.

Instance # Edge 1 Edge 2
3 (1, 1)→ (2, 1) (2, 1)→ (1, 2)
4 (2, 1)→ (1, 2) (1, 2)→ (1, 1)

Table 4.2: Attributes for an instance of the Triples model - Reverse

To complete the possible attributes of the model, we must consider what
happens when the initial vertex changes, leading us to add the cases listed in
Table 4.3.
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Instance # Edge 1 Edge 2
5 (2, 1)→ (1, 1) (1, 1)→ (1, 2)
6 (1, 2)→ (1, 1) (1, 1)→ (2, 1)

Table 4.3: Attributes for an instance of the Triples model - Permutations

These six attribute sets complete all valid permutations of paths of size 2 in
the tour (1, 1)→ (1, 2)→ (2, 1)→ (1, 1) used as example.

This of course means that redundancy will exist between instances, but as
will be seen later this is part of the motivation behind the proposed structure.

The objective now is to generate a group of instances large enough to be used
as training and testing sets in GAssist. First we select a FTSP and its order.
Then the associated instances are built using the edges for the attributes and
indicating “Included” (in an optimum tour) as their class. An equal number of
instances are generated considering edges that do not belong to the TSP, with
class “Not Included” (in any optimum tour).

As an example of the proposed experiment, we will consider the first order of
Koch Tour. By using a coordinates generator, we obtain the edges presented in
Table 4.4. These edges are then presented in Figure 4.1, which confirm that such
edges form a Koch Tour of first order (for more details about its construction,
refer to section 2.5.3).

Instance # Edge 1 Edge 2
1 (−15, 9)→ (−10, 0) (−10, 0)→ (−15,−9)
2 (−10, 0)→ (−15,−9) (−15,−9)→ (−5,−9)
3 (−15,−9)→ (−5,−9) (−5,−9)→ (0,−18)
4 (−5,−9)→ (0,−18) (0,−18)→ (5,−9)
5 (0,−18)→ (5,−9) (5,−9)→ (15,−9)
6 (5,−9)→ (15,−9) (15,−9)→ (10, 0)
7 (15,−9)→ (10, 0) (10, 0)→ (15, 9)
8 (10, 0)→ (15, 9) (15, 9)→ (5, 9)
9 (15, 9)→ (5, 9) (5, 9)→ (0, 18)
10 (5, 9)→ (0, 18) (0, 18)→ (−5, 9)
11 (0, 18)→ (−5, 9) (−5, 9)→ (−15, 9)
12 (−5, 9)→ (−15, 9) (−15, 9)→ (−10, 0)

Table 4.4: Triplets model Attributes - Koch Tour - Order 1

To transform the vertices into GAssist instances, we apply the following pro-
cedure. Taking the first pair of edges in Table 4.4 (−15, 9) → (−10, 0) and
(−10, 0) → (−15,−9), we observe that the destination vertex of the first edge
and the origin vertex of the second edge are the same. To reduce the size of the
instance we intend to present GAssist with the three different vertices in the right
order: (−15, 9), (−10, 0), (−15,−9). The NUMERIC type of GAssist is used for
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Figure 4.1: Koch Tour - Order 1

six attributes: Previous X, Previous Y, Current X, Current Y, Next X
and Next Y. The example gives us the values: −15, 9,−10, 0,−15,−9 respec-
tively. The class for this instance is “Included”. Repeating this procedure for all
the 12 vertices, Table 4.5 is built.

# Prev. X Prev. Y Cur. X Cur. Y Next X Next Y Class
1 -15 9 -10 0 -15 -9 Included
2 -10 0 -15 -9 -5 -9 Included
3 -15 -9 -5 -9 0 -18 Included
4 -5 -9 0 -18 5 -9 Included
5 0 -18 5 -9 15 -9 Included
6 5 -9 15 -9 10 0 Included
7 15 -9 10 0 15 9 Included
8 10 0 15 9 5 9 Included
9 15 9 5 9 0 18 Included
10 5 9 0 18 -5 9 Included
11 0 18 -5 9 -15 9 Included
12 -5 9 -15 9 -10 0 Included

Table 4.5: Triplets model Instances - Koch Tour - Order 1

Recalling the number of permutations presented in the example of the model,
12 instances are missing, which belong to the reverse tour. These are also to be
considered and can be seen in Table 4.6.

Since the GAssist instances presented are by definition all of the instances
belonging to class “Included”, we can easily generate instances for the “Not in-
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# Prev. X Prev. Y Cur. X Cur. Y Next X Next Y Class
13 -15 -9 -10 0 -15 9 Included
14 -5 -9 -15 -9 -10 0 Included
15 0 -18 -5 -9 -15 -9 Included
16 5 -9 0 -18 -5 -9 Included
17 15 -9 5 -9 0 -18 Included
18 10 0 15 -9 5 -9 Included
19 15 9 10 0 15 -9 Included
20 5 9 15 9 10 0 Included
21 0 18 5 9 15 9 Included
22 -5 9 0 18 5 9 Included
23 -15 9 -5 9 0 18 Included
24 -10 0 -15 9 -5 9 Included

Table 4.6: Triplets model Instances - Koch Tour - Order 1 - Reverse

cluded” class. We do so by randomly choosing vertices and combining them so
as to generate different instances. Twenty-four such instances are presented in
table 4.7. Since the Koch Tour coordinates were generated with a method that
ensured an optimal path, we can assure that the randomly generated instances
do not conform to a cycle with lesser cost. Also, since each instance is randomly
generated without connecting it to the previous ones, the set is not even required
to form a Hamiltonian cycle. In order to build a more interesting set, an ad-
ditional condition is imposed on these randomly generated instances: the three
coordinates informed must not be repeated in the same instance, thus avoiding
the creation of samples that would clearly be discarded with a simple optimization
of any program intending to attain the same objective of the Triplets model.

Definition 6. K-fold cross validation is an experimentation method used
for the testing of algorithms. It consists of dividing the sample inputs in K
independent sets and then consider in turn each set as the testing data, while the
remaining K− 1 are used as training data. After K such repetitions, an average
for the accuracy of the algorithm can be expressed.

In order to evaluate the model, we focus now on building groups of instances
to perform a cross validation experiment. Table 4.8 shows a partition of the 24
instances presented so far into 4 groups.

This ensures that every group has 6 instances with class “Included” and 6 with
class “Not included”. With these groups we perform a 4-fold cross validation.
Each group was used as testing set while the rest were used as training set, and
the experiment was repeated 10 times.
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# Prev. X Prev. Y Cur. X Cur. Y Next X Next Y Class
25 5 9 10 0 0 -18 Not inc.
26 -5 9 5 -9 10 0 Not inc.
27 15 -9 -5 9 -10 0 Not inc.
28 -5 -9 10 0 0 18 Not inc.
29 5 9 -10 0 -15 -9 Not inc.
30 15 9 5 9 -5 -9 Not inc.
31 10 0 0 18 -10 0 Not inc.
32 0 -18 5 -9 5 9 Not inc.
33 -15 -9 5 -9 -15 9 Not inc.
34 -15 9 0 18 -10 0 Not inc.
35 -15 -9 5 -9 -10 0 Not inc.
36 15 -9 0 18 -15 -9 Not inc.
37 15 9 15 -9 -5 9 Not inc.
38 0 -18 -15 9 -10 0 Not inc.
39 0 -18 -5 -9 15 -9 Not inc.
40 -10 0 15 9 -15 9 Not inc.
41 5 -9 -15 9 10 0 Not inc.
42 -5 -9 0 18 -15 9 Not inc.
43 -15 9 0 -18 -5 9 Not inc.
44 -15 -9 5 9 15 9 Not inc.
45 5 -9 -10 0 10 0 Not inc.
46 5 -9 -15 9 -5 -9 Not inc.
47 0 -18 15 -9 -15 9 Not inc.
48 0 18 5 9 5 -9 Not inc.

Table 4.7: Randomly generated instances not present in Koch Tour order 1

Group Instances included
1 14,2,22,10,18,6,25,26,27,28,29,30
2 13,1,21,9,17,5,31,32,33,34,35,36
3 24,12,20,8,16,4,37,38,39,40,41,42
4 23,11,19,7,15,3,43,44,45,46,47,48

Table 4.8: Triplets model Groups - Koch Tour - Order 1

4.2.2 Experimental Results

Table 4.9 shows the results obtained for the experiment detailed in the previous
section. Each value presented details the average of the testing accuracy for the
10 runs for each fold built.

The same idea was then repeated for all four curves for orders 1 to 6, with
results shown in Figure 4.2. Each point is computed with a value equivalent to the
final averaged value of the previous table. This means that the testing accuracy
averaged over 10 runs of GAssist for a fold (which belong to a particular order
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Group Testing Accuracy (%)
1 54.16
2 38.33
3 55.83
4 56.66

Average 51.25

Table 4.9: Triplets model Testing Accuracy Results - Koch Tour - Order 1

of a particular curve), is then averaged for all 4 folds, giving a value that is then
used to build the mentioned figure. Additionally, it must be pointed out that
the implementation of GAssist informs the best accuracies obtained during its
internal iterations for a given run; this must be taken into consideration when
analyzing the meaning of the values obtained and presented.

An important feature to be remembered in future chapters is that each curve
presents a different starting point in the chart. Eventually, as it can be seen,
all curves improve their accuracy as the order increases, althought an asymptote
seems to exist at 90% accuracy, impending a more satisfactory result. Despite
that, GAssist has, with the approach presented in this model to represent the
information, surpassed by far the 50% that a lazy classifier would have obtained
(since half of the instances presented are included in the optimal tour, while half
are not).

A human classifier, put to the test to do the same task, would probably obtain
similar results, as no information from one instance used can determine the class
of another. This is the main idea that will guide the analysis and constructions
of the next model: the search for features that allow the identification of a curve
with its class.

4.2.3 Learning space

We are interested now, after analyzing the results of the experiments proposed,
to better understand the meaning of the accuracies obtained.

Given a TSP instance with n coordinates, the complete graph K(n) for it
would contain n(n−1)

2 different edges. Of this edges, only n are part of the optimal
tour. This means that in a positive cases over total cases we have: n

n(n−1)
2

=
2n

n(n−1) = 2
n−1 . Giving a 2

n−1 chance of finding an edge included in the optimal
tour when picking randomly from all of the edges of a complete graph. This is
obviously only of interest for n ≥ 3 since for lower values there is no possible
solution.

This implies that if a program where to decide blindly how to form a solution
to the TSP, an initial probability would be ( 2

n−1)n if it didn’t even have the
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intelligence to avoid repetitions, and it would drop to (
n(n−1)

2
)!

n!((
n(n−1)

2
)−n)!

for the case

of a combination without repetitions allowed. The previous formula does not just
seem shocking, it also implies, for the first order of MPeano, a probability of 1 in
4922879481520 to find the optimum path. Once a program is developed with the
ability to allow only valid Hamiltonian cycles, the choice is reduced even more,
to only (n−1)!

2 . In the example of MPeano order 1, this means 1 in 19958400.
These values must be kept in mind when considering the complexity of the

problem, and the importance of using the results of this work to approach as
best as possible to the optimum path. Chapter 7 provides a means to apply the
theoretical ideas developed in order to reach out for this ambitious goal.

4.2.4 Conclusion

Some conclusions can be obtained from the results. It can be guessed that since
the number of coordinates in the curves increases exponentially with each order,
GAssist has more information from where to create the rules that are then used
for testing purposes.

There remains, however, interest in understanding how the lack of data im-
pacts the rules. Figure 4.3 shows some of the rules obtained by GAssist, where a
failing of the model can be observed: the absolute positioning of the coordinates
is used directly to decide. The reader can observe that the values presented in the
rules are distant to the coordinate values presented in the examples. This repo-
sitioning, caused by using different starting drawing points in the experiments
than in the examples, confirms that applying the rules in a different scenario will
cancel all chances of succeeding at the classifying task in a generalized manner,
as is the objetive in this and any other classification problem.

4.2.5 Future Work

With a solid efficiency in training, this model can be used to deduce how to “fill
in” a curve with missing connections. Some modifications can be done to it as
well:

• Normalization of Coordinates

• Expression of triplets as relative distance from a Coordinate to its previous
and next one, thus reducing the size of the instance and improving the
results achieved.

• Improvement of the “Not Included” Instances, obtained from Hamiltonian
Tours instead of random edges.



4.2. TRIPLETS 37

F
ig

ur
e

4.
2:

T
ri

pl
et

s
M

od
el

-
T

es
ti

ng
A

cc
ur

ac
y



38 CHAPTER 4. LCS FOR CLASSIFYING TSP OPTIMAL EDGES

0:Att previousX is [>520.7142857142856]|
Att nextX is [<520.7142857142856]|
Not Included

1:Att currentX is [<-729.0]|
Att nextX is [>-729.0]|
Not Included

2:Att previousX is [<0.0]|
Att currentX is [>0.0]|
Not Included

3:Att previousY is [<1458.0]|
Att currentY is [>1640.25]|
Not Included

4:Att currentY is [<-1458.0]|
Att nextY is [>-1345.846153846153]|
Not Included

5:Default rule -> Included

Figure 4.3: GAssist rules for the 5th run of Koch Tour Order 6 on group 1



Chapter 5

TSP features for instance

classification

5.1 Chapter overview

Here we continue with the search for a model that can grasp interesting qualities
in a TSP, so that they can be used to classify the different classes. This chapter
details the Global Statistics model, which includes the most important proposals
of this work, since is from the structure and attributes here shown that all of
the next models will be based. As with the Triplets model, we present first a
detail of its implementation, then suggested experiments and results obtained, to
conclude finally with ideas yet to be considered.

5.2 Global Statistics

5.2.1 Description

With the understanding of how GAssist can help our research, and the objective of
finding a model that describes graphs without resorting to absolute references to
its coordinates, we will explore a new model, to which we will refer to as Global
Statistics. This model aims at describing curves by means of their features,
that is, values obtained from the analysis of the graphs, that summarize them
and allow for a comparison between them. Our final goal is to, for example,
consider all of the coordinates of a second order Koch Tour, and deduce from
them that they describe a Koch Tour graph. This is of course easy from our
point of view, since we already know where those coordinates came from and so
the question is trivial. But, if from that information, GAssist could deduce rules
that associate the coordinates with the class of curve, we could know, given some

39
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coordinates from an unknown source, if they described a Koch Tour. This means
that we would know immediately how to present the exact solution to the graph,
since as proved in [22], there is a known algorithm to solve the TSP when the
graph is known to describe a Koch Tour.

The difficulty lies, of course, in deciding how to present those coordinates to
GAssist in a way that those “features”, as they are referred to in data mining, can
be compared between classes, between different orders of the same class, and also
be compatible with any type of graph, so that our model can then be expanded
to face more challenging tasks.

Taking into consideration the ideas above, we present now a way to express
our classes (MPeano, MNPeano, David Tour, Koch Tour), in terms of GAssist
attributes, so as to ensure a good classification. Note that we want to identify
a curve by the value of its attributes, despite which order it represents. This
means that we are to understand and take advantage of, for example, the simi-
larities between the first and third orders of Koch Tour, and their differences in
comparison with the fifth order of MPeano. As we are considering 4 classes, and
each class can be computed within reasonable time only up to its sixth order, a
total of just 24 GAssist instances are available for this model. Improved models
in forthcoming sections will address this issue.

Attributes Proposed

We propose the following GAssist NUMERIC attributes:

• Number of Cities

• Maximum X Component

• Maximum Y Component

• Average Spread from X Axis Center

• Average Spread from Y Axis Center

• Average of Nearest Neighbors

Number of Cities

This is a straightforward value obtained by counting the amount of coordinates
in the curve.

Maximum X/Y Component

Since this model aims at avoiding absolute references to the position of the coor-
dinates in the graph, they must first undergo a normalization process. The curve
is considered as if meant to fit a 1x1 square, fixed to its lower left border; this
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means that the lowest x and y value are 0, but the highest values need not be
exactly 1 (ie. when the figure described by the curve is not symmetrical from its
center). These values are computed as follows:

MaximumXComponent =
Xmax −Xmin

max(Xmax −Xmin, Ymax − Ymin)

MaximumY Component =
Ymax − Ymin

max(Xmax −Xmin, Ymax − Ymin)

Average Spread from X/Y Axis Center

These values intend to express a general idea of the shape of the curve in a
2-dimensional space. The Spread of a coordinate c from a given axis center
computes “how far” the corresponding component is. The following formula
details the idea:

Spread from X axis center(c) = 1− |cx − centerx|
|Xmax − centerx|

Spread from Y axis center(c) = 1− |cy − centery|
|Ymax − centery|

The resulting value lies between 0 (when the component is on a border) and 1
(when the component is in the center).

As a practical example we will consider a curve with the following coordinates:
(1,1),(2,3),(5,4). Table 5.1 presents the maximum, minimum and center values:

Xmin Xmax Ymin Ymax centerx centery

1 5 1 4 3 2.5

Table 5.1: Global Statistics Centered Coordinates Example

This means that our coordinates have the following spread values (Table 5.2):

Coordinate Spreadx Spready

(1,1) 0 0
(2,3) 0.5 0.66
(5,4) 0 0

Average 0.16 0.22

Table 5.2: Global Statistics Spread Example

Average of Nearest Neighbors

This is the averaged value amongst all the coordinates in the curve of the nearest
neighbors. The nearest neighbors of a coordinate is a number indicating the
amount of coordinates in the curve that are at minimum distance.
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Figure 5.1: Koch Tour Order 1 Nearest Neighbors

Figure 5.1 shows the first order of Koch Tour with some highlighted cities.
Note that the city at (-10,0) has 4 other cities ((-15,9), (-5,9), (-15,-9) and (-5,-9))
at the same distance, all of them nearer than the rest. This means that (-10,0)
has 4 nearest neighbors. In the case of the city at (0,18). the number of nearest
neighbors is 2: (-5,9) and (5,9).

Instance Example

In order to summarize the previous definitions, the transformation of a FTSP
into a GAssist instance is reviewed next.

We will consider the Koch Tour used in this section, since some of its nearest
neighbours have already been reviewed.

Number of Cities is 12 since this is the number of points in the graph.
In Figure 4.1, as well as in 5.1, it can be seen that the difference between the
maximum and minimum X component is 30, while the difference in Y is 36. This
means that after normalization of the coordinates in a 1x1 square, the Maximum
X Component is 0, 8333 (that is, 30

36), while the Maximum Y Component is
1.
Given the even distribution of the points in this and most FTSP, it is clear that
the spread values should be near 0.5. In this case, Average Spread from X
Axis Center is 0.4444 and Average Spread from Y Axis Center is 0.5.
The Average of Nearest Neighbors was computed as explained previously,
giving a final value of 1.8333.
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Folding

Now that the attributes have been presented, we continue to detail a way to
experiment with the model and discover its potential. First, as we intend to con-
tinue applying K-Fold Cross Validation, we need to group the available instances.
As was previously explained, this means 24 curves have to be taken into consid-
eration, with 6 belonging to each class. The solution proposed is to perform a
“leave one out” cross validation, so that each fold contains one instance. Each of
the 24 curves is transformed into a GAssist instance by computing the described
attributes and indicating the class they belongs to.

5.2.2 Experimental Results

Before presenting the results, it must be remarked that since we are measuring
testing accuracy over one instance in each run, the result of a run can only be a
0% or a 100% accuracy, that is, whether GAssist was correct or not at trying to
deduce the class of an instance based on the knowledge of the other 23 instances
built.

We present the average of 10 runs for each instance, grouped by class.
The results obtained for this model (Table 5.3) provide an excellent accuracy

for Koch Tour and David Tour with increasing orders. This can be understood
as the fractal graphs are smaller on the first orders, and that means a greater
proximity between the opposite sides of the figure obtained. As regards MPeano
and MNPeano, results show a much lower accuracy. This, however, does not
come as unexpected, since both curves share almost all cities, and even a human
observer can not do much to differentiate between them.

In order to prove that the cause of such low values during testing is the one
proposed, the experiment was rerun twice, first without considering MPeano, and
then without considering MNPeano, so as to avoid confusing GAssist.

Tables 5.4 and 5.5 confirm the hypothesis, while also maintaining the high
accuracy for Koch Tour and David Tour.

Figure 5.2 shows the rules generated by GAssist during one run with all four
classes included. It can be seen that the conditions for each classification are
more complicated than the ones in figures 5.3 and 5.4, where either MPeano or
MNPeano where absent from the data sets. This two figures show that in these
cases the classification requires less conditions. Also, we can appreciate that the
structure of the rules in both cases is almost identical, again confirming that
the MPeano and MNPeano share the same shape even to the perception of the
proposed model.

These results are indeed encouraging, as they provide proof that the attribute
representation detailed is useful in classifying curves by their class with the use
of GAssist.
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Class Order Testing Accuracy
(% Averaged over 10 runs)

MPeano 1 70
MPeano 2 50
MPeano 3 40
MPeano 4 70
MPeano 5 0
MPeano 6 20

MNPeano 1 80
MNPeano 2 0
MNPeano 3 60
MNPeano 4 0
MNPeano 5 50
MNPeano 6 90
Koch Tour 1 70
Koch Tour 2 100
Koch Tour 3 100
Koch Tour 4 100
Koch Tour 5 100
Koch Tour 6 100
David Tour 1 10
David Tour 2 40
David Tour 3 100
David Tour 4 90
David Tour 5 100
David Tour 6 100

Table 5.3: Global Statistics Testing Accuracy

5.2.3 Future Work

Although the next sections will be based on this model, some items are listed to
be considered in other projects:

• Addition of new TSP classes: both similar and different to the existing
ones. Classes with different structures would help determine the maximum
amount of different classes this model can withstand before losing accuracy.
On the other hand, the addition of classes similar to Koch Tour and David
Tour could help understand if the confusion while classifying MPeano and
MNPeano extends to other structures.

• Reduction of attributes: although the selected attributes have shown to be
relevant while classifying the curves, some of them might be more important
than others, and a reduction of attributes can help improve running times.

• MPeano differentiation from MNPeano: some additional attribute could be
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Class Order Testing Accuracy
(% Averaged over 10 runs)

MNPeano 1 100
MNPeano 2 60
MNPeano 3 100
MNPeano 4 100
MNPeano 5 100
MNPeano 6 100
Koch Tour 1 30
Koch Tour 2 100
Koch Tour 3 100
Koch Tour 4 100
Koch Tour 5 100
Koch Tour 6 100
David Tour 1 0
David Tour 2 80
David Tour 3 90
David Tour 4 90
David Tour 5 100
David Tour 6 100

Table 5.4: Global Statistics Without MPeano Testing Accuracy

devised to help break ties when GAssist has to decide which of these two
curves an instance belongs to.
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Class Order Testing Accuracy
(% Averaged over 10 runs)

MPeano 1 90
MPeano 2 100
MPeano 3 90
MPeano 4 100
MPeano 5 100
MPeano 6 90

Koch Tour 1 40
Koch Tour 2 100
Koch Tour 3 100
Koch Tour 4 100
Koch Tour 5 100
Koch Tour 6 100
David Tour 1 10
David Tour 2 70
David Tour 3 100
David Tour 4 90
David Tour 5 100
David Tour 6 90

Table 5.5: Global Statistics Without MNPeano Testing Accuracy

0:Att maximumXcomponent is [<0.8645833333333333]|
Att xAxisCenterAveragedSpread is [<0.4448987538940812]|
KochTour
1:Att yAxisCenterAveragedSpread is [<0.6037949589351459]|
Att averageNearestNeighbours is [<1.904661148313493]|
MPeano
2:Att maximumXcomponent is [<0.9285714285714287]|
Att averageNearestNeighbours is [>1.9284551711309523]|
DavidTour
3:Att xAxisCenterAveragedSpread is [>0.51183800623053]|
MPeano
4:Default rule -> MNPeano

Figure 5.2: GAssist rules for the Global Statistics Model (With MPeano and
MNPeano)
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0:Att maximumXcomponent is [>0.979166666666667]|
MNPeano
1:Att maximumXcomponent is [>0.8484848484848485]|
DavidTour
2:Att xAxisCenterAveragedSpread is [>0.44453463203463217]|
DavidTour
3:Default rule -> KochTour

Figure 5.3: GAssist rules for the Global Statistics Model (Without MPeano)

0:Att maximumXcomponent is [>0.9848484848484848]|
MPeano
1:Att maximumXcomponent is [>0.8571428571428572]|
DavidTour
2:Att xAxisCenterAveragedSpread is [>0.4523364485981311]|
DavidTour
3:Default rule -> KochTour

Figure 5.4: GAssist rules for the Global Statistics Model (Without MNPeano)





Chapter 6

Robustness analysis

6.1 Chapter overview

As the results in the previous chapter provide a solid base to identify the curve
to which a graph belongs (as long as MPeano and MNPeano are not presented
simultaneously), our research advocates now to the practical uses of these find-
ings.

This chapter presents a series of models, building up from the Global Statistics
model, that redefine mainly the way in which to prepare the data, so as to take
advantage of the characteristics of the attributes proposed.

By means of partitioning the coordinates in a graph, first in ordered groups
and then in random order, and ultimately adding noise to the information avail-
able, we will reach a solid model that surpasses the boundaries of our studied
curves, and allows for a novel way of finding solutions to the Traveling Salesman
Problem.

The rest of the chapter presents the different models, maintaining the struc-
ture of description, experimentation proposal, and experimental results.

6.2 Partition Statistics

6.2.1 Description

The Global Statistics model succeeded at classifying a curve by obtaining the
attributes computed from the coordinates of the corresponding graph. With
the objective of confirming the robustness of such attributes, we look now into
the case when not all of the coordinates from a curve are present, but only a
continuous section of it. Since the ideas presented so far lack a way to deal with
said situation, the concept of Partitions was devised. We will call Partition a

49
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continuous subset of the coordinates from one of the curves.
The Partition Statistics model implies partitioning the FTSP’s and using

said partitions to create GAssist instances with the attributes used so far. Previ-
ous to the construction details, we must mention that the attribute for Number
of Cities is omitted from this model onwards, since the partitioning of the curves
in the way described implies that not even the partitions for the same order of
the same curve share this value.

Partition Construction

Depending on the amount of coordinates we put in each partition, the number
of partitions for each curve will vary. Likewise, if we are to establish a fixed
amount of partitions to be obtained from each curve, a way has to be devised to
determine the amount of coordinates in each partition.

When the number of coordinates in a curve is not divisible by the number of
partitions we intend to have, Algorithm 6.1 is applied to our model.�
partitionsLeft : I n t e g e r
partitions← an empty c o l l e c t i o n
CoordinatesLeft← curve . c oo rd ina t e s . s i z e
from← 1
to← 0
WHILE (partitionsLeft > 0)

c o o r d i n a t e s I n P a r t i t i o n ← Round( CoordinatesLeft
partitionsLeft )

to ← min ( to +
c o o r d i n a t e s I n P a r t i t i o n , curve . c oo rd ina t e s . s i z e )

p a r t i t i o n C o o r d i n a t e s ← curve . c oo rd ina t e s . copy (
from , to )

p a r t i t i o n s . add ( p a r t i t i o n C o o r d i n a t e s )
from ← to + 1
p a r t i t i o n s L e f t ← p a r t i t i o n s L e f t − 1

RETURN p a r t i t i o n s
� �
Algorithm 6.1: Instance Partitioning

As an example we will consider the first order of Koch Tour and David Tour.
Coordinates are presented in table 6.1.

For this example we will consider 5 partitions per curve. Tables 6.2 and 6.3
show the result of applying the algorithm presented.

Each partition can now be considered as an independent graph, which means
each can be converted into a GAssist instance as described for the Global Statis-
tics model.
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Koch Tour
# X Y
1 -15 -9
2 -10 0
3 -15 9
4 -5 9
5 0 18
6 5 9
7 15 9
8 10 0
9 15 -9
10 5 -9
11 0 -18
12 -5 -9

David Tour
# X Y # X Y
1 -10 18 13 -10 -18
2 -5 27 14 -20 -18
3 5 27 15 -25 -9
4 10 18 16 -20 0
5 20 18 17 -25 9
6 25 9 18 -20 18
7 20 0
8 25 -9
9 20 -18
10 10 -18
11 5 -27
12 -5 -27

Table 6.1: Koch Tour and David Tour - Order 1 Coordinates

Partition Included Coordinates
1 (0,0), (5,9)
2 (0,18), (10,18), (15,27)
3 (20,18), (30,18)
4 (25,9), (30,0), (20,0)
5 (15,-9), (10,0)

Table 6.2: Partitions for the first order of Koch Tour considering 5 partitions

Partition Included Coordinates
1 (0,0), (5,9), (15,9), (20,0)
2 (30,0), (35,-9), (30,-18), (35,-27)
3 (30,-36), (20,-36), (15,-45)
4 (5,-45), (0,-36), (-10,-36), (-15,-27)
5 (-10,-18), (-15,-9), (-10,0)

Table 6.3: Partitions for the first order of David Tour considering 5 partitions
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Folding

With 5 partitions for each of the 6 orders from the 4 curves, we have a total of
120 partitions. Our objective is to perform a 10-fold cross-validation with these
instances, requiring a distribution of said instances into ten groups, ensuring an
even distribution of the possible classes amongst the folds. To accomplish the
distribution, we propose the use of Algorithm 6.2.�
1) a ) Star t with an empty c o l l e c t i o n C

b) f o r order = 1 . . . 6
add a l l the p a r t i t i o n s from David Tour at order to C

c ) f o r order = 1 . . . 6
add a l l the p a r t i t i o n s from Koch Tour at order to C

d) f o r order = 1 . . . 6
add a l l the p a r t i t i o n s from MPeano at order to C

e ) f o r order = 1 . . . 6
add a l l the p a r t i t i o n s from MNPeano at order to C

2) a ) f o r each p a r t i t i o n p in C
Let f be ( number o f p a r t i t i o n s cons ide r ed ) modulo

( number o f f o l d i n g s )
add p to f o l d f
� �

Algorithm 6.2: Partition Folding

This procedure ensures an even distribution of the partitions, avoiding as best
as possible the presence of more than 1 partition for each order of each curve.
Table 6.4 shows the result of applying our algorithm considering 5 partitions.
Elements in the table are indicated as Cop where C is the code for the curve
(David Tour, Kock Tour, MPeano, MNPeano), o is the order, and p is the
partition number. Each of these 10 folds present 12 instances, 3 from each curve.

Fold Partitions
1 D11 D31 D51 K11 K31 K51 M11 M31 M51 N11 N31 N51
2 D12 D32 D52 K12 K32 K52 M12 M32 M52 N12 N32 N52
3 D13 D33 D53 K13 K33 K53 M13 M33 M53 N13 N33 N53
4 D14 D34 D54 K14 K34 K54 M14 M34 M54 N14 N34 N54
5 D15 D35 D55 K15 K35 K55 M15 M35 M55 N15 N35 N55
6 D21 D41 D61 K21 K41 K61 M21 M41 M61 N21 N41 N61
7 D22 D42 D62 K22 K42 K62 M22 M42 M62 N22 N42 N62
8 D23 D43 D63 K23 K43 K63 M23 M43 M63 N23 N43 N63
9 D24 D44 D64 K24 K44 K64 M24 M44 M64 N24 N44 N64
10 D25 D45 D65 K25 K45 K65 M25 M45 M65 N25 N45 N65

Table 6.4: Partitions Statistics 10-Fold - 5 Partitions

6.2.2 Experimental Results

In order to analyze the usefulness of the presented model in classifying partitions
of the curves, the algorithms presented were used to generate data for 2 to 10
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partitions, considering all 4 curves from order 1 to 6. Although considering
1 partition would have been interesting since it would represent the previous
model, it was not part of the mentioned experiments since only 24 instances
would have been available, making it impossible to prepare the 10 folds with at
least 1 instance of each curve. No more that 10 partitions were considered since
the first order of the curves has so a small number of coordinates that it would
have meant reducing the curve beyond sense. Figure 6.1 presents the results
obtained.

Figure 6.1: Partitions Model Accuracy (4 Curves, 6 Orders)

Based on the idea that the higher orders provide a more distinct shape of the
curves, the same experiment was rerun but omitting the first order of the curves,
thus reducing the amount of available instances on one side, but allowing for a
higher level of partitioning on the other, which allowed the tests to go as far as
20 partitions, leading to the possibility of a more significant analysis. Figure 6.2
shows a similar tendency in the results, although with a higher average.

Since it was mentioned that an even distribution of the curves amongst the
folds is important, figures 6.3 and 6.4 show the individualization of the results
from figure 6.2, considering in the first case the accuracies for the contexts where
there was an equal number of instances for each curve in each fold, and in the
second the rest of the contexts.

Before drawing conclusions from these results, the previous experiments were
rerun, this time considering only 3 curves: David Tour, Koch Tour and MPeano.
The deletion of MNPeano from the data has a simple objective: prove that the
low accuracy obtained in the previous experiments is due to the similarities be-
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Figure 6.2: Partitions Model Accuracy (4 Curves, 5 Orders)

Figure 6.3: Partitions Model Accuracy (4 Curves, 5 Orders, Exact Distribution)
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Figure 6.4: Partitions Model Accuracy (4 Curves, 5 Orders, Inexact Distribution)

tween MPeano and MNPeano, which is thought to confuse GAssist. Results are
presented in Figures 6.5, 6.6, 6.7 and 6.8

6.2.3 Conclusions

The last figures show that the Partition Statistics model behaves quite well once
the indecision caused by MNPeano is removed. Also, we can conclude that an
increase in the number of partitions, and consequently a reduction in the number
of coordinates in each, reduces the accuracy of our model. In order to be of use,
we understand that a compromise is to be reached between the partitioning of the
curves to obtain a larger number of instances for the data sets, and the objective
accuracy intented for the model. All of the figures presented so far share the same
boundaries in the values shown, so as to allow for a better comparison between
them. It is thanks to this presentation that it can be easily seen that the theory
about the importance of the exact distribution of the instances holds true.

One of the great benefits of using GAssist as our learning classifier system
is that the rules it uses to classify are clear to a human reader. This quality
will be of help now, since we can compare the rules obtained when running the
experiments with and without MNPeano, to increase our understanding of the
differences in accuracy. Figure 6.9 contains the rules for the 8th run of Fold 2, in
the experiment with all curves, from orders 2 to 6, considering 4 partitions; this
run got a 100% testing accuracy. The ruleset shows an intricated behaviour when
trying to distinguish between MPeano and MNPeano, whereas the rules for David
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Figure 6.5: Partitions Model Accuracy (3 Curves, 6 Orders)

Figure 6.6: Partitions Model Accuracy (3 Curves, 5 Orders)
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Figure 6.7: Partitions Model Accuracy (3 Curves, 5 Orders, Exact Distribution)

Figure 6.8: Partitions Model Accuracy (3 Curves, 5 Orders, Inexact Distribution)



58 CHAPTER 6. ROBUSTNESS ANALYSIS

Tour and Koch Tour are quite simpler. On the other hand, figure 6.10 shows the
ruleset for the experiment without MNPeano, more specifically the 10th run for
Fold 1, but in this case considering 8 partitions. Apart from the importance
of the average accuracy of the category this experiment belongs to, it must be
remarked that the 100% testing accuracy obtained by this run has greater value
than the one presented previously for all curves, because since it worked with
8 partitions it means that lesser coordinates in a partition were required, which
means that the ruleset provided in figure 6.10 would be more useful in classyfing
part of a graph with unknown class.

0:Att yAxisCenterAveragedSpread is
[>0.5195120368075227]|
DavidTour

1:Att averageNearestNeighbours is
[<1.7036313657407407]
[1.8884548611111105,1.9254195601851845]|
MNPeano

2:Att maximumXcomponent is
[>0.8634920634920635]|

Att maximumYcomponent is
[>0.8284149484536083]|

Att yAxisCenterAveragedSpread is
[>0.41679714297922293]|

Att averageNearestNeighbours is
[<1.8953857421875009]
[1.957763671875001,1.9785563151041679]|
MNPeano

3:Att maximumXcomponent is
[>0.5904761904761905]|

Att maximumYcomponent is
[>0.5729438717067583]|
MPeano

4:Att xAxisCenterAveragedSpread is
[>0.5304640714476779]|
DavidTour

5:Default rule -> KochTour

Figure 6.9: Partition Statistics GAssist Rules - 4 curves

6.2.4 Future Work

Encouraged by the results obtained in the previous section, we intend, as a fol-
low up work from this thesis, to collect the rules with the best accuracies and
experiment on their capacity to classify all of the partitions built during the ex-
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0:Att maximumXcomponent is
[0.45578231292516996,0.9659863945578235]|
DavidTour

1:Att maximumYcomponent is
[<0.45578231292516996]
[>0.9659863945578235]|

Att yAxisCenterAveragedSpread is
[<0.45872076641307336]
[>0.5351742274819189]|
MPeano

2:Att xAxisCenterAveragedSpread is
[>0.4792978195336551]|

Att averageNearestNeighbours is
[<1.9353298611111092]
[>1.9670138888888868]|
DavidTour

3:Att xAxisCenterAveragedSpread is
[>0.4929920429489024]|
MPeano

4:Att maximumYcomponent is
[0.5714285714285714,0.7142857142857142]|

Att averageNearestNeighbours is
[>1.8878038194444449]|
DavidTour

5:Default rule -> KochTour

Figure 6.10: Partition Statistics GAssist Rules - 3 curves

periments. The objective of this idea is to prove that these winning rule sets are
general enough to succeed at the classification task of the FTSP’s.

6.3 Sample Statistics

6.3.1 Description

The curves used so far respected the construction rules, and partitions where
built with coordinates that belonged to the same region of a curve as a result of
its construction. But, if we intend to put the results of this work to good use,
we need to obtain a model that is robust enough to recognize a Koch Tour like
graph when it sees one, even if some coordinates are missing or if half of them
are some distance away from where they should be (as long as that noise doesn’t
impact on the optimum path that should be answered).

This is why we now present a model called Sample Statistics. It is much like
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the Partitions Statistics model, except that the curves are split into groups where
the coordinates are not necessarily from a continuous part of the graph. Aiming at
proving the robustness of the GAssist attributes proposed, we collect samples
from the curves, calling Sample to a non-continuous subset of the coordinates
from one of the curves, obtained from random positions of the coordinates list.

As an example of sampling a curve, we present in table 6.5 the results of
applying our random sampler to the first order of David Tour.

Sample Included Coordinates
1 (-10,-18),(15,-45),(30,-18),(20,0)
2 (30,-36),(-15,-9),(15,9),(35,-9)
3 (-15,-27),(5,9),(0,0)
4 (-10,-36),(35,-27),(0,-36),(-10,0)
5 (20,-36),(5,-45),(30,0)

Table 6.5: Samples for the first order of David Tour considering 5 samples

Note that, as explained, the size of the samples matches the size of the parti-
tions (refer to Table 6.3). Now that the size and the rest of the structure needed
for the objective of comparing this model to the previous one are clear, we proceed
to detailing the result of running the same set of experiments as before.

6.3.2 Experimental Results

Maintaining the order used for the Partitions Statistics model, we present first
in figure 6.11 the results when considering all 4 curves, from orders 1 to 6. Then,
figures 6.12, 6.13 and 6.14 show the results when omitting order 1, considering 2
to 20 samples, and then discriminating between the cases with an equal number
of instances per sample from the ones with a different number.

Also, we repeat in figures 6.15, 6.16, 6.17 and 6.18 the idea from the previous
model of analyzing the impact of removing MNPeano from the set of curves, to
allow for a more clear interpretation of GAssist learning capabilities.

6.3.3 Conclusions

Although results for this model do not maintain the accuracy levels of the previous
one, we can see that when omitting MNPeano and the first order of the curves, an
accuracy above 80% is achieved when the number of samples is low. This proves
that at some point the Sample Statistics model still has the chance of providing
good rules. The structure considered, then, only needs some sample coordinates
to deduce the underlying curve they belong to. This shows that the utility of the
statistics proposed for the instances is a novel finding in itself.

It is now that the focus of this work shows promising possibilities in the use of
GAssist as proposed to find optimum tours for TSP. Since these curves provide
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Figure 6.11: Samples Model Accuracy (4 Curves, 6 Orders)

Figure 6.12: Samples Model Accuracy (4 Curves, 5 Orders)
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Figure 6.13: Samples Model Accuracy (4 Curves, 5 Orders, Exact Distribution)

Figure 6.14: Samples Model Accuracy (4 Curves, 5 Orders, Inexact Distribution)
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Figure 6.15: Samples Model Accuracy (3 Curves, 6 Orders)

Figure 6.16: Samples Model Accuracy (3 Curves, 5 Orders)
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Figure 6.17: Samples Model Accuracy (3 Curves, 5 Orders, Exact Distribution)

Figure 6.18: Samples Model Accuracy (3 Curves, 5 Orders, Inexact Distribution)
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by construction a method to find their optimum path, we could take samples
from any TSP and use GAssist to determine which of these curves it resembles
most, to apply then the corresponding method. But before doing so, we need
to test the tolerance of this ideas to a subtle movement of the coordinates from
their expected place, something the next model will deal with.

6.4 Scrambled Statistics

6.4.1 Description

While the previous chapter proposed the features for the representation of TSP
instances, this chapter has focused so far in working with the data available
for the experiments, in order to analyze the robustness of the ideas presented.
The Scrambled Statistics model continues this path, since its objective is to
distort the position of the coordinates, and check how much noise our GAssist
experiments can withstand before losing the high accuracies obtained so far.

We aim then at proposing a way to add noise to the position of the coordinates,
and then proceed to suggest a way in which to experiment with the amount of
noise present and understand its effect on the features of the model.

Figure 6.19 shows the shape of the first order of David Tour, with the coordi-
nates that make up the graph clearly shown. By computing the variance of the
coordinates position in both axis, we can obtain a gaussian distribution based on
it, with a mean of 0, and apply a white noise to the coordinates position using
Algorithm 6.3.�
scramblingRatio : F loat
coordinate← o r i g i n a l coo rd inate from the graph
varianceX ← var iance in the o r i g i n a l graph f o r the x a x i s
varianceY ← var iance in the o r i g i n a l graph f o r the y a x i s
normalGaussianX ← random gauss ian (mean 0 , standard

dev i a t i on 1)
normalGaussianY ← another random gauss ian
adjustedGaussianX ← 0 + squareRoot ( varianceX ) ∗

normalGaussianX
adjustedGaussianY ← 0 + squareRoot ( varianceY ) ∗

normalGaussianY
adjustmentX ← adjustedGaussianX ∗ scrambl ingRat io
adjustmentY ← adjustedGaussianY ∗ scrambl ingRat io
scrambledCoordinate← ( coo rd inate . x + adjustmentX ,

coord inate . y + adjustmentY )
RETURN scrambledCoordinate
� �

Algorithm 6.3: Coordinate Scrambling
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Figure 6.19: David Tour - Order 1 - No Scrambling

The matter lies then in choosing a scrambling ratio and observing what hap-
pens to the shape of the curve. If scrambling ratio is set to 0, figure 6.19 is
obtained once again. But if we raise it to 5% (0.05), we obtain figure 6.20 in-
stead. Increasing this value to 10% and 20% gives us figures 6.21 and 6.22.

Figure 6.20: David Tour - Order 1 - 5% Scrambling
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Figure 6.21: David Tour - Order 1 - 10% Scrambling

Figure 6.22: David Tour - Order 1 - 20% Scrambling
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As can be seen from the figures presented, at 20% scrambling the graph is
distorted enough to lose almost all resemblance to its original shape, and it is
this reason that leads us to considering 20% an upper limit in our expectations
for the possibilities of GAssist capacity to learn.

Considering that the Sample Statistics model gave lower accuracies than the
Partition Statistics model before it, we will stick with the latter for our next
experiments since we need to start with a known good value and see how well its
stands the scrambling of the coordinates. It must be noted that since the idea
of this model is to represent the real world problems that our proposals might
find, we scramble only the testing sets, since we can ensure by construction the
correct positioning of our FTSP coordinates.

Experiments will analyze scrambling from 0% to 20% for two well behaving
experiments from the Partition Statistics model: 8 and 4 partitions, without
MNPeano, considering orders 2 to 6.

6.4.2 Experimental Results

Figure 6.23: Scrambling Statistics Accuracy Results - 8 Partitions

In figures 6.23 and 6.24, we can see the real impact of scrambling the testing
data in the partitions model. At 0%, the values lie where they were for the original
model. As scrambling increases, accuracy drops steadily until it reaches values
where no information is obtained (remember that because of the low number of
classes, even a naive classifier would obtain a 33% accuracy).
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Figure 6.24: Scrambling Statistics Accuracy Results - 4 Partitions

6.4.3 Conclusions

Results show a promising sustaining of the high accuracies for scrambling below
5%. This confirms that the features proposed do not cause enough confusion to
GAssist until they get significantly displaced from their original positions, proving
the usefulness of the features presented in this thesis.





Chapter 7

From instance/edge classification

to TSP optimisation: a proof of

concept

7.1 Chapter overview

Up to now, we have analyzed the posibilities of using an LCS to learn in different
scenarios information related to our TSP instances. This chapter wraps all of
the previous research by presenting a simple program, composed of two sub-
algorithms, that contains the knowledge gathered so far, and uses it to suggest a
possible solution to a TSP instance.

This chapter is structured as follows. First we will review a way to take any
of the rule sets obtained with the triplets model and use it to build a Hamiltonian
Path in a graph. Then another program will be shown, which identifies to which
of the TSP instances mentioned a graph belongs to. Finally we will bridge both
ideas in a single system that will receive a group of coordinates from any order
of any of the TSP instances and produce an interesting solution to the TSP.

7.2 Solving TSP with the rules obtained for the Triplets

model

7.2.1 Objetive

Our first objective will be to build, from a group of coordinates and a ruleset,
a Hamiltonian cycle in the graph described by such coordinates. If the ruleset
correctly allows to distingish between good and bad edges (or triplets as in our

71
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OPTIMISATION: A PROOF OF CONCEPT

case) it can allow a program using it to iterate over all of the possible options
and keep only those that make up the Hamiltonian cycle of minimum cost, which
is to say, the solution to the TSP.

As the rule sets obtaind in Chapter 4 work only for a given order of a given
TSP instance, the system will need to be fed with the right rule set in order
to produce interesting results. As a first step in obtaining a TSP solution, this
section only aims at obtaining the solution knowing beforehand the best rule set
for the task. We will call it, the Good Enough Solution Finder.

Algorithm description

The Good Enough Solution Finder is mainly based on iterating over all of the
edges of the complete graph described by the coordinates it receives, and keeping
only the ones allowed by the rule set. It ideally ends up with a Hamiltonian cycle
described by the triplets presented in Chapter 4.

Algorithm 7.1 shows the pseudocode for the Good Enough Solution Finder.�
C : a s e t o f c oo rd ina t e s
R : a r u l e s e t that i n d i c a t e s whether a g iven t r i p l e t i s

inc luded or not in the s o l u t i o n to a TSP in s t ance
S← ∅ \\This s e t o f t r i p l e t s can be i n t e r p r e t e d as the edges

that make up the s o l u t i o n to the TSP.
FOR (c ∈ C)

IF (gradeS(c) < 2)
IF (gradeS(c) = 1)

e1 ← The edge ∈ S connect ing c
ELSE

e1 ← A randomly chosen edge between c and another
coord inate c′ with gradeS(c′) < 2 , such that i t does not
imply a non Hamiltonian c y c l e

e2 ← A randomly chosen edge 6= e1 , between c and another
coord inate c′′ with gradeS(c′′) < 2 , such that i t does not
imply a non Hamiltonian c y c l e

IF (R c l a s s i f i e s the t r i p l e t de f ined by (e1, e2 ) as inc luded )
S← S ∪ {(e1, e2)}

RETURN S
� �
Algorithm 7.1: Pseudocode for the Good Enough Solution Finder

Algorithm complexity

To ensure the usefulness of the proposed algorithm, we analyze next its computing
time.

1. Let n be the number of coordinates received and r the number of rules in
the ruleset obtained by GAssist.



7.3. IDENTIFYING THE CURVES WITH THE RULES OBTAINED FOR THE
GLOBAL STATISTICS MODEL 73

2. The outermost cycle iterates all of the coordinates → O(n)

3. Obtaining the current grade of a coordinate can be done in the worst case
by iterating over a list of connections for each of the coordinates → O(n)

4. Deciding whether an edge implies a non Hamiltonian cycle means verifying
if its addition would cause a cycle in the current solution. The worst case
again would lead to a full iteration of n steps. This means that assigning a
value to e1 can be achieved in O(n)

5. For the same reason, the value for e2 is computed in O(n)

6. Computing the Triplets model features for a pair of edges to apply the rules
is done in O(r).

7. The previous analysis shows that the worst time presented by Algorithm
7.1 will be bound by O(n× (n + n + n + r)) ≡ O(n(3n + r)) ≡ O(n(n + r)).
Considering that r < 10 for all the rulesets considered, we can express the
complexity as O(n(n + 10)) ≡ O(n(n)) ≡ O(n2)

7.2.2 Limitations

Although this algorithm does not ensure optimality, it provides an interesting
method to obtain quick solutions for an instance of the TSP that belongs to the
class of instances upon which GAssist was trained. As this work represents a proof
of concept on how to link Genetic Based Machile Learning to optimisation, we are
not interested in comparing the quality of the solution generated by Algorithm
7.1 but rather in assessing whether (1) learning took place and (2) if it did, how
it biases random tour construction.

In order to do this, however, we must first find a way to choose the right rule
set. This topic is covered in the next section.

7.3 Identifying the curves with the rules obtained for the

Global Statistics model

7.3.1 Objetive

Just as the rules from Chapter 4 provided us with rule sets to be used in Algorithm
7.1, we will make use now of the rule sets obtained in Chapter 5.

As these rule sets classify a TSP instance into the different classes, we will
present an Instance Classifier algorithm to take advantage of this and tell us
to which TSP instance (MPeano/MNPeano, Koch Tour, David Tour) a set of
coordinates belongs to, regardless of the order of such instance.
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7.3.2 Algorithm description

Algorithm 7.2 describes the Instance Classifier.�
C : a s e t o f c oo rd ina t e s
R : a r u l e s e t that c l a s s i f i e s a s e t o f Global S t a t i s t i c s

f e a t u r e s in to one o f the TSP i n s t a n c e s
F← Global S t a t i s t i c s f e a t u r e s as de s c r ibed in Chapter 5

computed from C
I← The c l a s s i f i c a t i o n returned by R when app l i ed to F
RETURN I
� �

Algorithm 7.2: Pseudocode for the Instance Classifier

Algorithm complexity

Once the rule sets are obtained, the computation of the features can be done
in O(n) (iterating the coordinates) and the application of the ruleset is done in
constant time O(1), meaning Algorithm 7.2 has a final complexity of O(n).

7.4 A system to solve TSP

Just by using the ideas proposed in Section 7.3 we can go from a set of coordinates
to the name of the TSP instance. By means of the results presented in [23] and
[22], this alone means that we can apply the optimum algorithm to solve MPeano,
MNPeano and Koch Tour. Considering that some of the rule sets obtained in
the experiments detailed in Chapter 5 reached a 100% accuracy, this means that
if presented with a set of coordinates belonging to any of the analyzed orders
of MPeano, MNPeano or Koch Tour, we could provide the best solution to the
TSP with complete certainty and in linear time. This is thanks to the fact that
Algorithm 7.2 has a complexity of O(n).

Despite these meaningful possibilities , the algorithms presented and the rule
sets obtained allow us to reach even further in our ambition of solving the TSP,
and so we present next a system that:

1. Takes a set of coordinates from any order of any TSP instance

2. Determines by means of Algorithm 7.2 the class of TSP instance

3. Uses a pre-built table to deduce from the number of coordinates the order
of the TSP instance

4. Applies Algorithm 7.1 to provide the edges that belong to a Hamiltonian
Cycle, as an approximation of the optimum solution to the TSP for the
presented coordinates
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The computing time is bound by the complexity of Algorithm 7.2, the cost
of looking up the value in the pre-built table, and finally the application of Al-
gorithm 7.1. This can be expressed as: O(n) + O(1) + O(n2) ≡ O(n2).

A system as described is then equipped to adjust itself internally to produce
the best possible results for the problem received as input, instead of pretending
to contain a general solution for any input. Given that the “No Free Lunch
Theorems” [34][35] warn us not to try to obtain a general solution, we believe that
a system with the structure proposed is guided towards avoiding the restriction
stated by these theorems, as it wraps a group of subsystems each designed for a
specific subset of the input space.

7.4.1 Experiment Configuration

The basics of the system implemented are those described above. In order to
analyze the effectiveness of our proposal, the following experiments were prepared:

• Input: David Tour, Koch Tour and MPeano, from orders 1 to 4. Total
inputs: 12.

• Instance Classification Rule Set: The rule set shown in Figure 7.1 was
applied, since it was one of the many which got a 100% testing accuracy
when it was created for Chapter 5.

• Coordinates to order table: Based on the instances considered, Table
7.1 was built into the system.

• Triplet Classifying Rule Set: In order to test the learning achieved by
the rules created in Chapter 4, three different classification schemes were
considered:

1. Random Coin: Instead of applying a rule set, we classify a Triplet
as “Included” or “Not Included” with a 50% random probability.

2. Highest Accuracy Rule Set: We choose, from the rule sets created
in Chapter 4, that with the highest testing accuracy for the instance
considered.

3. Ensemble of High Accuracy Rule Sets: Considering the five rule
sets with the highest testing accuracy, we perform a mayority voting
to decide whether a Triplet should be considered or not for the solu-
tion proposed. Note that this includes the rule set from the previous
scheme.

In case that some coordinates were left unconnected because of a massive
classification of the Triplets as “Not included”, the system completes the solution
by joining any such coordinates with connections to the nearest unconnected
neighbour.
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0:Att yAxisCenterAveragedSpread is [>0.5936526479750781]|
MPeano

1:Att xAxisCenterAveragedSpread is
[0.3928348909657322,0.4523364485981311]|

KochTour
2:Att maximumXcomponent is [>0.9848484848484848]|
MPeano

3:Default rule -> DavidTour

Figure 7.1: GAssist rule set used to classify the instances

Instance # of Coordinates Order
David Tour 18 1
David Tour 54 2
David Tour 162 3
David Tour 486 4
Koch Tour 12 1
Koch Tour 48 2
Koch Tour 192 3
Koch Tour 768 4

MPeano 12 1
MPeano 28 2
MPeano 52 3
MPeano 108 4

Table 7.1: Instance order based on number of coordinates

7.4.2 Experimental Results

Figures 7.2, 7.3 and 7.4 present the result of executing the system proposed with
the configuration previously detailed. Below every image, a value representing
the length of the solution is indicated.

7.4.3 Conclusions

The first thing to mention about the previous results is that the rule set applied
(Figure 7.1) classified all inputs correctly. This means that every set of coordi-
nates was correctly identified with its instance, allowing every one of them to be
solved with the intented rule set from those selected.

The most remarkable detail of the results is that the difference between the
tour length from the random coin classification and the rule sets increases as the
number of coordinates grow. This means that as the problem to solve becomes
more complex, the proposed system improves its performance over a random
solution. Considering the simple structure of the algorithms used and the basic
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strategies applied to obtain the rule sets, the ideas presented in this chapter
provide proof that a more complex algorithm coupled with better features for
GAssist can guide the creation of high performing solutions for the TSP.

7.4.4 Future Work

Some improvements to the ideas presented in this chapter are:

• Use of Constructive Heuristics: instead of using the rule sets as the only
guiding element for the solution, and completing the graph with nearest
neighbour computations, some parts of the presented system can be used
as the initial graph from where a Constructive Heuristic could build up its
solution.

• Normalization of coordinates in the Triplets and addition of topological and
geometrical features for the coordinates in the Triplet. Some of these can
be:

– Nearest Neighbour

– Next Nearest Neighbour

– Delaunay Tessellation Neighbour

– Gabriel Graph Neighbour

– Relative Neighbourhood Graph Neighbour

– Minimum Spanning Tree Neighbour

• Application of topological and geometrical features already used in simmilar
tasks. See for example [32], [15].



78
CHAPTER 7. FROM INSTANCE/EDGE CLASSIFICATION TO TSP

OPTIMISATION: A PROOF OF CONCEPT

F
ig

ur
e

7.
2:

D
av

id
T

ou
r

re
su

lt
s

w
it

h
th

e
T

SP
So

lv
in

g
Sy

st
em

fo
r

di
ffe

re
nt

ru
le

se
ts



7.4. A SYSTEM TO SOLVE TSP 79

F
ig

ur
e

7.
3:

K
oc

h
T

ou
r

re
su

lt
s

w
it

h
th

e
T

SP
So

lv
in

g
Sy

st
em

fo
r

di
ffe

re
nt

ru
le

se
ts



80
CHAPTER 7. FROM INSTANCE/EDGE CLASSIFICATION TO TSP

OPTIMISATION: A PROOF OF CONCEPT

F
ig

ur
e

7.
4:

M
P

ea
no

re
su

lt
s

w
it

h
th

e
T

SP
So

lv
in

g
Sy

st
em

fo
r

di
ffe

re
nt

ru
le

se
ts



Chapter 8

Final Conclussions

8.1 Summary of what has been done

The objective of this thesis was to analyze the posibility of applying Learning
Classifier Systems to Optimisation Problems. Throughout chapters 2 and 3,
we summed up both the concept of LCS and that of the Travelling Salesman
Problem, our optimization task of choice. Then chapters 4, 5 and 6 provided a
set of ideas to face the task of solving TSP as a learning/classification challenge.
Finally in Chapter 7 we went back to the initial objective of solving TSP by
making use of the results previously obtained.

The findings and conclussions of this work are many. First we proved that even
with simple features, a robust LCS like GAssist can provide meaningful results
to interpret the structure of a graph problem like TSP. This encourages us to try
to broaden our expectations on this topic, and look to other graph problems that
may benefit from an approach similar to the one presented here. Also, we suggest
graph features that have shown to discriminate between the instances chosen as
test subjects, leaving room for the study of aditional features when required to
learn from a wider range of instances. With the final system proposed, we have
presented a new way of solving TSP by adapting to different subsets of the input
space, and obtaining an accuracy above average even without any optimization or
in-depth analysis of the graph structures, but just by identifying that topological
differences between the instances exist, and coding them into the features fed to
the system.

Even different parts of the results obtained and the ideas presented can be
combined with different already existing strategies to solving TSP, improving the
overall value of the present work.

The features presented, apart from allowing the learning of rules that have a
100% accuracy when classfying, have shown to withstand low levels of scrambling,
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and these results hold for special conditions when partitioning the graphs or
presenting only samples of the total set of coordinates.

Additionally, the algorithms and formulas presented try to keep in line with
the simplicity and clarity that is the basis for GAssist, allowing a better under-
standing of the processes and avoiding the confussion caused by complex layers
of optimizations required for most state of the art solutions to NP problems. It is
our belief that with this in mind, and by combining subsystems that give better
results for different instances of a problem, a solid problem solver can be built,
be it for TSP as in the case studied, or for any difficult task where the No Free
Lunch Theorems present a theoretical limit when applying a straightforward and
single method for any input.

8.2 Summary of what comes next

After analyzing the impact of the contents of this thesis up the point where
they were developed, we conclude this final chapter by reminding the reader the
different aspects of the models and algorithms presented that can be further
improved by researchers in the area:

8.2.1 Triplets

The Triplets model for finding parts of the TSP solution are based on the idea
that there is more information in considering a path formed by 2 edges than just
by taking a single edge. This concept can be further explored by considering
longer paths. On the other hand, the opposite can be done, by considering only
one edge, giving simpler features and algorithms, though this would require an
analysis on the difference in performance achieved by such changes.

Also, as mentioned in Chapter 4, the coordinates could be normalized before
used as input data, and additional information regarding the path and its com-
ponets could be added. And as regards the training information, we suggest an
improvement in the Triplets considered, as an increase in the number of “Not
Included” elements would imply a closer representation of the ratio between the
number of edges that are part of the optimum solution and the total number of
possible edges in the graph.

8.2.2 Statistics Features

All of the results obtained in Chapters 5 and 6 are indeed interesting. Despite
that, the robustness analysis proposed in Chapter 6 with respect to the features
used shows that when the partitioning, size of sampling and scrambling becomes
significant, the overall accuracy of GAssist to classify the instances drops at
a steady rate. It would be interesting to find additional features that better
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withstand these modifications to the input data, to allow for a more robust system
that solves TSP.

With regards to the instances considered, additional instances would allow for
a better understanding of the efficiency of the features selected. Also, the study
of the differentiation between similar instances (such as MPeano and MNPeano
in our case) constitutes an interesting area of research.

8.2.3 TSP Solving System

The system presented for solving TSP has a number of possible improvements
that would allow it to be tested against the state of the art solutions present
nowadays. As was mentioned during its description, we do not intend in this work
to compare the results obtained with those achievable by a system specifically
built for the task, but rather to understand the feasibility of our approach. It
is now that its learning capabilities have been proved that improving it becomes
a future area of work. We intend to follow on this path to add new topological
features and combine the algorithms in the system with the ideas existing in state
of the art algorithms.
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