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Resumen

La construccién de sistemas de tiempo real libres de fallas es un objetivo perseguido por muchas actividades
industriales debido al alto costo monetario y en vidas humanas que pueden provocar los desperfectos en
los sistemas que éstas utilizan. Si bien existen numerosas herramientas para modelizacién de sistemas y
verificacién automadtica de propiedades sobre los mismos, la transferencia al 4mbito industrial es lenta. Una
de las razones fundamentales para este fenémeno es la poca usabilidad de los lenguajes de especificacién
existentes, basados en formalismos 16gicos dificiles de entender y de usar por disenadores no familiarizados
con ese tipo de herramientas. Nuestra propuesta consiste en brindar una notacién grafica y de alto nivel
para especificar requerimientos de sistemas concurrentes y de tiempo real, de forma tal de abstraer a los
disenadores y desarrolladores de los formalismos mateméticos subyacentes y aun asi brindarles el poder de
las herramientas de verificacién formal automadtica.

Este trabajo sienta las bases para un lenguaje grafico de especificacién de propiedades basado en patrones
de eventos, que permiten describir de forma simple y abstracta ciertos aspectos de las ejecuciones de un
sistema. Por ejemplo, el orden en que deben ocurrir los eventos, la separacién en el tiempo entre dos
eventos, el conjunto de eventos que no deben ocurrir entre dos puntos de la ejecucidn, etc. El lenguaje de
nuestros patrones estd basado en érdenes parciales de eventos y su seméantica estd inspirada en el concepto
de pattern matching.

patrones de mal comportamiento, es decir, en la descripcién de comportamientos que invalidarian requeri-
mientos criticos del sistema. Demostramos que contando con un modelo del sistema expresado con autématas
temporizados, el problema de “model-checking” de patrones de mal comportamiento puede ser reducido al
problema clésico de verificacién de autématas temporizados. Dado que este tiltimo problema se sabe decidi-
ble, concluimos que el chequeo de patrones de mal comportamiento también lo es. Por otro lado, utilizamos
esta reduccién para construir un algoritmo de verificacién automética de patrones de eventos basada en
las herramientas existentes para model-checking de autématas temporizados. Este algoritmo constituye el
corazén de un prototipo de verificador de patrones de eventos que desarrollamos en Java.



Agradecimientos

Quiero agradecer a la Universidad y especialmente a la gente que mediante su trabajo hizo posible que
nos formaramos varias generaciones de licenciados. Espero poder realizar mi aporte con mi trabajo como
docente.

A mis directores, Victor y Alfredo, por todo el apoyo y la paciencia que tuvieron a lo largo de los muchos
meses que duré el desarrollo de este trabajo.

Al jurado por haber aceptado el compromiso de revisar y corregir este trabajo.

A Daniel, mi amor y cempaiiero de vida, por su ayuda tan valiosa durante todos estos meses y por todo su
aguante especialmente en las ultimas semanas.

A Sergio, Rula, Agustin, Hernén, Analia, Andran, Nacho, Manu y Tobe, gente genial con la cual tuve la
suerte de compartir toda la carrera y a quienes en gran parte debo el haber llegado hasta este punto.

A mi familia por la confianza que tenian en que iba a poder terminar este ciclo.

A Nicolds, Diego, a todos mis compatieros de trabajo y a la cdtedra de Paradigmas que me bancaron y
apoyaron durante este 1ltimo tiempo.

Gracias. . . totales!



Indice General

1 Introduccién -

1.1 Métodos formales y verificacién algoritmica . . . . . . .. .. ... ... ...
1.1.1 Métodos deductivos o Theorem proving . . . . . . . . . . . .. i
1.1.2  Verificacién algoritmica o Model-checking . . . . . . . . . . ... ... ... ...,
1.1.3 Transferencia de tecnologia hacia la industria . . . . . . .. ... ... .. .. .....

1.2 Caracteristicas de los formalismos de especificacién . . . . . ... ... ... ... .......

1.3 Patrones:de@Ventos . ¢ : = n s 5 o 5 5 5 v s 5 W@ s B E S s N om B s m E E S w3 E m w s
1.3.1 Model-checking de patrones de mal comportamiento . . . . . . . . . .. ... ... ..

1.4 Estructura del trabajo . . . . . . . .. L

2 Definiciones preliminares

2.1 Secuencias Y EJeCUCIONES : i = v ¢ o & 52 =5 © 4 ¢ 5% 5 s B 8 s 5 ¥ A s s E S s 6 F EE T
2.2 Automatas temporiZAAOS - = < « = s 5 5 = =5 = 55 5 5 5 oW EE P E s E e B SR S e s
2.2.1 Definiciones preliminares . . . . . . . . ...
2.2.2  Autématas temporizados . . . . ... e e e e e e e
2.2.3 Lenguaje de un autémata temporizado . . . . . . . ... ...
2.2.4 Composicién de Autématas Temporizados . . . . . . . . . . ... ... ... ... ...
2.3 Autématas de Blichi temporizadod « « : « w 5is s 6 55 55 55 26 S5 55 B A4 s s @ E s s
24 Logica TOTL: = ¢ « wom s = mms 2 % % 3 5 55 4 % @ 5w Ba bR E S EE BB F R s E e b
3 Patrones de eventos
3.1 Patrones basicos . . . . . . ..
3.1.1 Simtaxis formal . . . . ...
302 SemADNLICH = w5 5 5w 5 5 5 5 5 5 5 5 9 % R w3 RS S E e B s e e e R b e R R E R R
32 ExtensSiOn: CiemPo &« = : = x = 2 < 5 5 55 5w @5k s A 2 W e S 3R E B e s @ s
3.2.1 Sintaxis formal . . . . . ... e
322 Semdntica . . . . . . ... e
3.3 Extension: principio y final . . . . . ...
3.3.1 Sintaxdsformal . : oo i 5wtk s e e e e e e e e e e e e e e e e e e e e s
3.3.2 SemAntica « o w ¢ v o5 omoz s wh b s e S E E s SR R E L s § G E W s AR

4 Model-checking de patrones de mal comportamiento

4.1 Autématas reconocedores . . . . . ... i oo
4.1.1 Autdémata reconocedor para patrones basicos . . . .. ... ... ... ... ...
4.1.2 Autdémata reconocedor para patrones bésicos temporizados . . . . ... ... ... ..
4.1.3 Autdémata reconocedor para patrones de eventos . . . . . . . . . . ... ... .. ...

4.2 Model-checking de patrones de mal comportamiento . . . . . ... ... ... .. .......

5 Casos de estudio

5.1 Sistema Mine Drainage Controller . . . . . . . . . .. . . ... . ... ...
5.1.1 Descripcién del Sistema . . . . . . ...
5.1.2 Requerimientos . . . . . . . . . ...

52 Piotocolo CSMA/CD s v =« o5 s+ v s s 55 o5 5w s &5 % 0 8 5w ma omms s ns i

il

11
11
14
15
16
20
21
23
25

28
28
32
33
35
37
38
40
42
44

46
47
50
33
59
65



INDICE GENERAL

5.2.1 Descripcién delisistema : : 5 : cw s s 630 55 s s B m e swm s s w5 B w1
522 Requerimientos : : w s : swws s 8 9 s 3 5@ 5 2@ @3 25 @ E Ew v 5% w g §w e T s
5.3 Analizador de variables ambientales . . . . . . ... ..o
5.3.1 Descripcién del sistema . . . . . . . ... Lo
5.3.2 Requerimientos . . . . . . . . . . ..

6 Implementacion
6.1 Verificacién de patrones de mal comportamiento . . . . . . . . ... ... ...
6.1.1 Algoritmo para construccién de autématas reconocedores . . . . . . ... ... .. ..

7 Conclusiones, trabajo relacionado y trabajo futuro
7.1 ConcluSiones . . . . . . .t i e e e e e e e e
7.2 Trabajos relacionados . . . . . . . . . e
73 Trabajo fUtlife . . o v o v v o v o o ome romm ¥ s i B S w P HE R SR E R W B A s @ W

A Demostraciones
A.1 Propiedades de la composicién paralela de autématas temporizados . . . . . . . .. .. .. ..
A.2 Propiedades del producto de autématas de Biichi temporizados . . . . . . .. ... ... ...
A.3 Propiedades de la satisfaccién de patrones bdsicos. . . . . . .. .. ... L
A.4 Propiedades de la satisfaccién de patrones temporizados . . . . . . .. ... ...
A.5 Propiedades de la satisfaccién de patrones de eventos . . . . . . . . .. ...
A.6 Propiedades de autématas reconocedores de patrones bdsicos . . . . . ... .. ... ... ..
A.7 Propiedades de autématas reconocedores de patrones temporizados . . . . . ... .. ... ..
A.8 Propiedades de autématas reconocedores de patrones de eventos . . . . . . .. ... ... ..

B Implementacién en Java
Bl Casodeestudio . . . o v s 55 a s s s ds s a5 s 665 5 smuii iF G R E ST A B MY EEE s
B.2 DTD del documento para definicién de patrones de mal comportamiento . . . . . . . . .. ..



Capitulo 1

Introduccion

El objetivo de las técnicas de verificacién es mostrar que un determinado sistema de software o de hardware
se adecia a su especificacién, es decir, que no puede comportarse en forma contraria a su especificacién
conduciendo a situaciones inesperadas, indeseadas o riesgosas.

Actualmente las técnicas mds difundidas de verificacién se basan en simulacién y testing. Sin embargo,
ambos enfoques sélo pueden analizar un conjunto relativamente pequefio de comportamientos de un sistema
y tienden a ser inadecuados cuando el nimero de estados posibles del sistema es muy grande. Muchos sistemas
son por naturaleza concurrentes y el comportamiento no deterministico introducido por la concurrencia puede
conducir en distintos momentos a distintos comportamientos frente al mismo estimulo. En estos casos es
especialmente inadecuado el uso de testing como método de verificacién. En el caso de los sistemas de
tiempo real, la correctitud del sistema no depende sélo del resultado légico del computo sino también del
cumplimiento de ciertos requerimientos temporales. Por ejemplo, en el desarrollo de aplicaciones criticas
como control de trafico aéreo o monitoreo de pacientes, es importante verificar que los sistemas realicen los
calculos adecuados, en el momento adecuado.

Para solucionar las falencias de las técnicas “empiricas” (basadas en simulacién y testing), los métodos de
verificaciéon formal intentan “demostrar” formalmente que los comportamientos indeseados son imposibles
en el sistema. Una de las principales caracteristicas de las técnicas formales de verificacién es que trabajan
sobre un modelo del sistema, posiblemente abstrayendo los detalles no relevantes desde el punto de vista de
las propiedades a verificar. Esto hace posible, por ejemplo, que se verifique el disefio de un circuito antes
de que éste sea construido (es decir, en una etapa temprana de desarrollo), permitiendo ahorrar el enorme
costo que implica descubrir un fallo 16gico en el circuito una vez que estd construido. A pesar de que los
métodos formales de verificacién ofrecen a los desarrolladores y disefiadores de sistemas numerosas ventajas
con respecto a los métodos empiricos, todavia no han sido adoptados en forma masiva fuera del ambito
académico?.

1.1 Meétodos formales y verificacién algoritmica

Existen bésicamente dos enfoques distintos en cuanto a verificacién formal. Uno estd basado en métodos
deductivos mientras que el otro estd basado en métodos algoritmicos. Por razones histdricas, a los métodos
deductivos se los conoce habitualmente con el nombre de “theorem-proving” mientras que a los métodos del
segundo grupo se los denomina en forma genérica “model-checking” .

El problema de la verificacién formal puede ser expresado de la siguiente manera: dado un sistema S, un
requerimiento R y una relacidén de satisfaccién F, jvale que S E R? Lo que diferencia a las distintas técnicas
entre si es la forma en que interpretan S, Ry F.

1Sin embargo, existen varias experiencias exitosas en la aplicacién de técnicas formales a la industria del hardware y del
software. Ver por ejemplo los casos mencionados en [CK96, CWA *96]
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Figura 1.1: Esquema general del problema de verificacién algoritmica

1.1.1 Meétodos deductivos o Theorem proving

Theorem proving caracteriza al conjunto de técnicas donde tanto S como R estdn expresados cémo férmulas
de una cierta l6gica. Esta ldgica estd dada por una teoria que define un conjunto de axiomas y de reglas de
inferencia. Theorem proving consiste en demostrar formalmente que R se desprende como teorema de S en
dicha teorfa. Las principales desventajas de estas técnicas son que hasta el momento no existen herramientas
totalmente automatizadas de verificacién y que para cada sistema a analizar es necesario desarrollar una
nueva teoria logica.

1.1.2 Verificacién algoritmica o Model-checking

Las técnicas que maés interés despertaron entre los investigadores durante las dos ultimas décadas son las
pertenecientes al segundo grupo, es decir, las técnicas basadas en “model-checking” o verificacién algoritmica.
La principal diferencia con el grupo anterior es que, como su nombre lo indica, éstas técnicas proveen un
algoritmo para decidir en forma automatizada el problema S F R. M4s atin, la mayoria de estas técnicas
devuelven, en el caso en que el sistema® no satisfaga el requerimiento, un “contraejemplo” (generalmente
la descripcién de un comportamiento o conjunto de comportamientos) que muestra por qué el sistema no
verifica la propiedad. La Figura 1.1 muestra en forma esquemaética el problema de la verificacién algoritmica.

Dentro de las técnicas denominadas “model-checking” existen numerosas clases de problemas de verificacién
y todas se distinguen por los formalismos que utilizan para expresar S y R y por el algoritmo que utilizan
para decidir S E R. Por ejemplo, el enfoque que dio el nombre a todo este grupo de técnicas [EC81] consiste
en modelar al sistema S como una estructura de Kripke donde los nodos representaban los estados posibles
del sistema y los ejes las transiciones o posibles cambios de estado. En ese contexto, R se expresa como
una férmula de la légica temporal CTL y la relacién de satisfacciéon se interpreta como “es modelo de”
(Figura 1.2 (a)). Otras técnicas de verificacién algoritmica se basan en la teorfa de autématas finitos. En
estos enfoques una ejecucidon del sistema se modela como una secuencia (generalmente infinita) de eventos
o de estados y el lenguaje del sistema L(S) estd dado por el conjunto de ejecuciones del mismo. A su vez,
los requerimientos son interpretados sobre ejecuciones individuales y el lenguaje del requerimiento L£(R) es
el conjunto de ejecuciones que lo satisfacen. Finalmente, S E R se traduce en £(S) C L(R) (Figura 1.2 (b)

y ()

2Cuando no se preste a confusién, no haremos distincién entre el “modelo de sistema” y el “sistema” en si.
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Figura 1.2: Model-checking, técnicas automata-theoretic y mixtas.

(a) model-checking puro (ejemplo:

[EC81]); (b),(c) técnicas automata-theoretic (ejemplo: [AD94]); (d),(e) técnicas mixtas (ejemplo: [VW86])
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Figura 1.3: Verificacién basada en autématas temporizados. (a) enfoque de Kronos [DOTY95]; (b) enfoque
usado en [Bra00]

En [VW86], Vardi y Wolper mostraron que estos dos enfoques pueden combinarse planteando el problema de
model-checking de una férmula LTL en funcién de un problema de inclusién de lenguajes (Figura 1.2 (d)).
Los w-autématas son autématas finitos con una condicién de aceptacién particular para reconocer palabras
infinitas. Una de las condiciones de aceptacién més usada es la de Biichi. Informalmente, la condicién de
aceptacién de Biichi pide que se visiten infinitas veces ciertas locaciones distinguidas del autémata (en el
préximo capitulo daremos una definicién formal de la versién temporizada de los autématas de Biichi). Otros
enfoques parten de un sistema modelado con un w-autémata y un requerimiento expresado en alguna légica
temporal (Figura 1.2 (e)) y reducen el problema a verificar que la interseccién del lenguaje del sistema y
del complemento del lenguaje del requerimiento sea vacia. En el caso de los w-autématas no temporizados,
este problema es equivalente al de verificar que la inclusién de £(S) en £L(R). Sin embargo, los w-autématas
temporizados no son cerrados con respecto a la operacién de complementacién [AD94] y por lo tanto se debe
proveer directamente un autémata que reconozca la negacién del requerimiento.

Verificacién basada en autématas temporizados

La Figura 1.3 muestra dos variantes de la técnica de verificacién basada en autématas temporizados ([AD94,
Yov96, DOTY95], entre otros). Existen numerosas herramientas que implementan la verificacién basada en
autématas temporizados ([DOTY95, BLL*96, TC96, HHWT95], etc) y constituye la técnica més usada para
modelizacién y verificacién formal de sistemas concurrentes de tiempo real.

La verificacién basada en autématas temporizados permite modelar restricciones temporales explicitas: no
sélo cuestiones temporales cualitativas como liveness, fairness y no determinismo sino aspectos cuantitati-
vos como periodicidad, bounded response, delays, deadlines, etc. En este contexto, el problema basico de
verificacién se plantea en los siguientes términos: el sistema est4 modelado por un autémata temporizado®y
los requerimientos se expresan en la légica temporizada TCTL%. La semantica del autémata se expresa en
funcién de un Sistema de transiciones etiquetadas (STE), que consiste en un grafo decorado donde los nodos
son los estados del sistema (potencialmente no enumerables) y los ejes corresponden a la ocurrencia de un
evento o al paso de una determinada cantidad de tiempo. Sobre este grafo se interpretan las férmulas TCTL
para decidir si el sistema cumple o no el requerimiento.

En la préctica, una variante posible es el uso de autématas observadores para describir los requerimientos
del sistema. En este contexto, se utilizan autématas que capturen la negacién del requerimiento (es decir,

3En general, resultado de la composicién paralela de autématas de menor tamafio llamados componentes o mddulos. La
composicién paralela de autématas temporizados se define formalmente en la seccién 2.2.4.
4Seccioén 2.4 en el préximo capitulo
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todos los comportamientos que violan el requerimiento) y una férmula TCTL (en general, mucho mds simple
que las usadas en el enfoque clasico), que expresa la alcanzabiliad de un conjunto de estados considerados
erréneos. El problema de verificacién se traduce, entonces, en un problema de alcanzabilidad sobre el STE
generado por la composicién del modelo del sistema y el autémata observador. Esta variante, utilizada por
ejemplo en [Bra00], constituye la base tedrica para este trabajo.

1.1.3 Transferencia de tecnologia hacia la industria

A pesar del entusiasmo que han despertado estas técnicas de verificacién formal entre los investigadores
durante las iltimas dos décadas, ese entusiasmo no ha podido ser transmitido atin a la industria del desarrollo
de sistemas.

Nuestra visién, compartida por otros grupos de investigacién ([DKM*94, DAC98, AY99], etc), es que para
que ocurra la transferencia de tecnologia hacia la industria es necesario dar a los desarrolladores la posibilidad
de escribir sus especificaciones de la forma m4s natural posible y brindarles herramientas de alto nivel para
generar, analizar y verificar sus especificaciones. En particular, ninguna de las técnicas mencionadas arriba
cumple en forma satisfactoria con el primer requisito. Todas se basan en formalismos matematicos dificiles
de escribir y entender, aun por personas muy entrenadas. Las légicas temporales usadas por muchas de estas
técnicas se tornan inadecuadas a medida que la complejidad de los sistemas crece. El siguiente ejemplo,
tomado de [DAC98], ilustra esta situacién. Dado el siguiente requerimiento para un ascensor:

“Entre el momento en que el ascensor es llamado desde un piso hasta el momento en que el ascensor abre
sus puertas en dicho piso, el ascensor puede pasar por ese piso como mdzimo dos veces”

se escribe en LTL con la siguiente férmula:

O((call A $open) —
((=at floor A —open) U
(open V ((at floor A —open) U
(open V ((—at floor A —open) U
(open V ((at floor A —open) U
(open V (—at floor U open))))))))))

Si bien los autématas finitos permiten en general describir lenguajes en forma méas o menos simple, las
variedades maés expresivas de autématas (w-autématas (temporizados), autématas temporizados) usadas
para verificacién formal, agregan poder expresivo a cambio de un incremento en la complejidad y dificultad de
escritura. Por ejemplo, no es una tarea trivial garantizar que un autémata temporizado de complejidad media
o grande esté correctamente temporizado (en el sentido de no permitir situaciones en las cuales el sistema
se “bloquearia”). La complejidad y susceptibilidad a errores de estos formalismos los hacen particularmente
inadecuados para ser utilizados por desarrolladores y disehadores fuera del &mbito académico.

Por otro lado, en muchos de estos formalismos los requerimientos se expresan como una propiedad que deben
cumplir todas las ejecuciones del sistema. Muchas veces, sin embargo, los requerimientos expresan una
propiedad safety (“nada malo pasa”) y, en estos casos, resulta més facil y més natural expresar formalmente
qué es lo que no se quiere que ocurra antes que hacerlo en forma indirecta describiendo todos los casos en
los que no se produce la condicién errénea.

Nuestra propuesta

Nuestra propuesta consiste en brindar una notacién grafica y de alto nivel para especificar requerimientos
de sistemas concurrentes y de tiempo real, de forma tal de abstraer a los disefiadores y desarrolladores de
los formalismos matema4ticos subyacentes y aun asi brindarles el poder de las herramientas de verificacién
formal. Nuestro trabajo sienta las bases para un lenguaje grafico de especificacién basado en patrones de
eventos. Los patrones de eventos permiten describir de forma simple y abstracta ciertos aspectos de una
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Figura 1.4: Enfoque basado en patrones de eventos

ejecucioén del sistema. Por ejemplo, el orden en que deben ocurrir los eventos, la separacién en el tiempo
entre dos eventos, el conjunto de eventos que no deben ocurrir entre dos puntos de la ejecucién, etc.

Como veremos més adelante, los patrones de eventos podrian ser aplicados en varios contextos y ofrecen
muchas posibilidades de extensiones futuras. En este trabajo aplicaremos los patrones de eventos a la
descripcion de comportamientos no deseados de un sistema y traduciremos el problema de “model-checking”
de patrones de eventos al problema clésico de verificacién basada en autématas temporizados. Como muestra
la Figura 1.4, usaremos los patrones de eventos como una forma abstracta de describir un comportamiento
no deseado en el sistema (es decir, un caso en el que se violaria un requerimiento del sistema), y a partir de
esos patrones construiremos, en forma automaética y transparente para el disefiador, autématas temporizados
que capturen dichos comportamientos y que serdn usados como observadores al estilo de la Figura 1.3 (b).
Llegado este punto, tendremos a nuestra disposicién todas las herramientas cldsicas para verificacién basada
en autématas temporizados.

Volviendo al ejemplo del ascensor mencionado anteriormente, parte de la complejidad de la férmula residia
en que describia todas las posibles combinaciones de sucesos en los cuales se cumplia el requerimiento. Sin
embargo, alcanza con encontrar un caso en el cual se viole este requerimiento para concluir que el ascensor no
cumple con su especificacién. Quiere decir que si el ascensor admite un comportamiento en el cual el ascensor
llegue (al menos) tres veces al piso donde lo llamaron antes de abrir sus puertas, podremos concluir que el
ascensor no es correcto con respecto a su especificacién. El Patrén 1.1 muestra a modo de ejemplo cémo se
describiria este comportamiento no deseado para el ascensor usando patrones de eventos. El punto de més
a la izquierda corresponde al llamado del ascensor desde el piso n y los tres puntos restantes corresponden
a tres momentos distintos en los cuales el ascensor llegd a ese piso. Las flechas describen el orden en que
ocurrieron los eventos y la decoracién de las flechas indica el conjunto de eventos que no ocurrieron entre los

open n open n open n
> © » o
Ll » >
calln arrive-at-floor n

arrive-at-floor n arrive-at-floor n

Patrén 1.1: Violacidn del requerimiento para el ascensor expresada como patrén de eventos
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dos correspondientes a los extremos de la flecha. En este caso particular, se pide que en ningin momento se
hayan abierto las puertas en el piso n.

1.2 Caracteristicas de los formalismos de especificacion

La mayoria de los lenguajes formales de especificacién comparten ciertas caracteristicas comunes. Sin em-
bargo, existen varias diferencias en cuanto a la forma en que modelan ciertos elementos comunes a todos
los sistemas, el poder expresivo, la facilidad para describir ciertos aspectos particulares de un sistema, etc.
Dado que gran parte de este trabajo estaré dedicado a la definicién de un nuevo formalismo, debemos definir
los elementos que utilizaremos para caracterizar y comparar este nuevo lenguaje con los existentes.

El primer elemento cqmun a todos los formalismos de especificacién es el concepto de comportamiento
de un sistema. Debido a que la operatoria de un sistema puede variar en funcién de la entrada y/o del
contexto en el cual estd corriendo, el sistema se puede comportar de muchas maneras distintas. En el
contexto de la verificacién formal, a cada una de estas “formas” distintas en las que se puede comportar
el sistema se la denomina un comportamiento del sistema. En general, el modelo construido a partir del
sistema captura todas estas posibilidades, de forma tal que cualquier comportamiento observado en el sistema
pueda ser representado como una ejecucién del modelo. Segiin el propésito para el cual fue concebido cada
formalismo, varfa la forma en que se representa una ejecucién. Las ejecuciones pueden estar representadas
como secuencias, arboles, etc... finitos o infinitos; pueden hablar tinicamente de los estados por los que pasa
el sistema, de las transiciones®o de los eventos que ocurren en el sistema o de todos a la vez. Pueden hacer
referencia explicita o no al momento en el tiempo en que ocurrié cada evento, etc.

El segundo aspecto est4 relacionado con el poder expresivo que tienen los distintos formalismos para especi-
ficar cuestiones relacionadas con la precedencia o relacién de causalidad y con el paralelismo o concurrencia
entre los eventos o estados de un sistema. Algunos formalismos fueron disenados explicitamente para expre-
sar este tipo de propiedades y dan soporte tanto a nivel sintdctico como seméntico o sélo a nivel sintactico.
La mayorfa de los formalismos pensados para modelar sistemas secuenciales no brindan soporte a ningtin
nivel para este tipo de propiedades.

Cuando el soporte es a nivel sintactico, el formalismo incluye una notacién para decir que dos eventos /
estados pueden ocurrir en paralelo (o secuencialmente pero en cualquier orden) o que deben ocurrir en un
orden determinado. Cuando el soporte es también a nivel semdntico, las ejecuciones estdn representadas
como érdenes parciales entre eventos / estados del sistema, donde el orden refleja las dependencias de
causalidad entre ellos. A este tipo de semdnticas se las conoce con el nombre de partial-order semantics.
Sin embargo, las seménticas mas utilizadas son las denominadas interleaving semantics, en las cuales las
ejecuciones son palabras finitas o infinitas de eventos / estados. En estos modelos, un comportamiento de un
sistema concurrente puede corresponderse con varias ejecuciones que representen todas las formas posibles
de reordenar los eventos / estados que no tienen dependencias de causalidad entre si.

Otro elemento importante de los formalismos de especificacién es la forma en que representan el tiempo. Los
formalismos no temporizados no permiten hacer referencia al tiempo en forma explicita. En estos formalismos
sélo se pueden expresar nociones de orden relativo entre eventos. Algunos formalismos utilizan un modelo
de tiempo discreto en donde se asume que todos los eventos ocurren sincrénicamente cuando se produce un
tick del reloj del sistema. Finalmente, el modelo de tiempo denso o continuo, utilizado por los autématas
temporizados, permite expresar restricciones temporales explicitas como deadlines, duracién de una accién,
méxima y minima separacién en el tiempo entre dos eventos, etc... lo cual lo hace especialmente adecuado
para especificacién de sistemas de tiempo real. Los autématas temporizados incluyen la nocién de relojes
y de restricciones temporales sobre los estados (invariantes) y las transiciones del sistema (guardas). Las
redes de Petri®, las légicas como LTL, CTL ([EC81]) y GIL ([DKM*94]) son ejemplos de formalismos no
temporizados.

SEn forma general, llamaremos transiciones a los cambios de estado de un sistema.
SEn su versién basica, dado que existe una extensién temporizada de las mismas
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1.3 Patrones de eventos

En este trabajo definimos y presentamos el formalismo basado en patrones de eventos. Este formalismo
permite expresar en forma simple y abstracta las dependencias de causalidad entre los eventos del sistema y
la ausencia de ellas. Ademds, permiten expresar restricciones temporales explicitas.

La semantica de los patrones de eventos estard dada por un modelo de ‘interleaving de eventos junto con un
modelo de tiempo denso. Los patrones serdn interpretados sobre ejecuciones temporizadas. Una ejecucién
temporizada estara formada por una secuencia infinita de eventos, cada uno de ellos apareado con un real
no negativo o timestamp que representa el momento de ocurrencia.

Bésicamente, un patrén de eventos es un grafo dirigido y aciclico donde los nodos o puntos representan la
ocurrencia de un evento en un sistema (puntos llenos) o instantes en el tiempo (puntos huecos) y los ejes
representan dependencias de causalidad entre los puntos. Los puntos llenos deben estar etiquetados por uno o
mas simbolos de un alfabeto ¥ que representan los eventos posibles en el sistema. Los puntos huecos no estdn
etiquetados. La ausencia de restricciones de causalidad entre dos puntos permite modelar no determinismo
(entre eventos de un mismo proceso) y concurrencia (entre eventos de procesos distintos).

a c d
[

<5
° e,c )

Patrén 1.2: Ejemplo de patréon de eventos

Ejemplo. Patrén de eventos.
El Patrén 1.2 se refiere a una ocurrencia de cada uno de los eventos a, b, ¢ y d en una ejecucién. Cualesquiera
sean esas ocurrencias, se debe cumplir que:

e la ocurrencia de a debe ser anterior a la de ¢ (indicado por la flecha entre a y c)
e la ocurrencia de b debe ser anterior a la de ¢ (indicado por la flecha entre b y ¢)
e la ocurrencia de ¢ debe ser anterior a la de d (indicado por la flecha entre ¢ y d)

e a y b pueden ocurrir en forma concurrente o bien en forma secuencial sin importar el orden (indicado
por la ausencia de un camino de flechas entre a y b)

e entre la ocurrencia de a y la de ¢ no puede haber otra a, quiere decir que la ocurrencia de a es la ultima
antes de la de ¢ (indicado por la ‘a’ sobre la flecha entre a y ¢)

e andlogamente, entre la ocurrencia de b y ¢ no debe haber otra c ni una e, quiere decir que la ocurrencia
de c es la prézima después de la de b (indicado por la lista ‘e, ¢’ sobre la flecha entre b y ¢)

¢ finalmente, el tiempo transcurrido entre la ocurrencia de ¢ y la de d no debe superar las 5 u.t.

Si existe al menos una forma de identificar las ocurrencias de los cuatro eventos sobre una ejecucién verificando
todas las restricciones enunciadas arriba, entonces la ejecucion satisface el patrén. En otro caso, la ejecucién
no satisface el patrén.
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Traductor
Pl @ |Ap ®
@ P -AS”A'P
As Verificador Paccept
de Kronos
patrones
“si/no SI/ NO
disenador ® @

Figura 1.5: Verificacién de patrones

1.3.1 Model-checking de patrones de mal comportamiento

Como mencionamos anteriormente, en este trabajo usaremos los patrones de eventos para expresar compor-
tamientos no deseados de un sistema (es decir, la negacion o el complemento de un requerimiento). En ese
contexto, nos referiremos a los patrones de eventos como patrones de mal comportamiento.

En general, los requerimientos de un sistema representan una propiedad que deben cumplir todas las ejecu-
ciones de dicho sistema. Quiere decir que alcanza con encontrar una ejecucién que no cumpla esa propiedad
para concluir que el sistema viola el requerimiento. Dado que usaremos los patrones de eventos para describir
los casos en los que se viola un requerimiento, alcanza con que una sola de las ejecuciones del sistema satisfaga
el patrén para concluir que el sistema es incorrecto (con respecto a ese requerimiento). Quiere decir que dado
un sistema S y un patrén de mal comportamiento P, diremos que S E P si y sélo si existe una ejecucién
de S que satisface P. Entonces, S &£ R si y sélo si S ¥ P_r. Podemos pensar al conjunto de ejecuciones
que satisfacen P-pg como el lenguaje L(P-g) de P-g. Mas adelante veremos que el w-autémata (Ap_,, F),
donde F es una condicién de aceptacién de Biichi, reconoce el lenguaje £(P-g). Veremos también que dada
la morfologia de los autématas reconocedores, la condicién de aceptacién puede ser expresada como una
férmula TCTL @gccept ¥ €n consecuencia S F P si y solo si Ag||Ap_, E Qaccept- Dado que éste tltimo pro-
blema puede ser decidido por herramientas como Kronos, el problema de la verificacién de patrones resulta
ser decidible.

Dado un sistema S, Ag serd un modelo de S expresado como autémata temporizado. Dado un requerimiento
R sobre S, el disenador deberd construir un patrén de eventos P-g que represente los comportamientos que
violan R”. Este patrén y el modelo del sistema serén el input para el Verificador de patrones. La Figura 1.5
muestra esquematicamente el proceso de verificacién.

A partir del patrén P, la herramienta genera un autémata temporizado Ap que acepta exactamente las
ejecuciones que satisfacen el patrén, usando para esto un Traductor. El autémata Ap cumple el rol de
componente observadora de Ag. El verificador utiliza la herramienta Kronos para decidir si As||Ap E @accept,
donde @qccept €s la codificacién en TCTL de la condicién de aceptacién mencionada mds arriba. Kronos
responde OK si vale @gccept €0 Ag||Ap 0 un contraejemplo en caso contrario. Finalmente, esta informacién
es transmitida por el verificador al usuario.

"La idea es que estos patrones sean generados directa o indirectamente, utilizando para esto una herramienta grafica.
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1.4 Estructura del trabajo

El Capitulo 2 presenta los conceptos y definiciones bésicas necesarios para el resto del trabajo. En ese
capitulo se incluye la sintaxis y semdntica de los autématas temporizados y de los autématas de Biichi
temporizados. También se incluye la sintaxis y seméantica de la 16gica temporizada TCTL.

El Capitulo 3 define la sintaxis y la semdntica de los patrones de eventos. La presentacién se realiza en
tres etapas: se introduce primero una versién bésica de los patrones en la cual no se incluye la parte
temporal, luego se presenta una versién temporizada de estos patrones y en una ultima etapa se extienden
los patrones para soportar los conceptos de principio y final de una ejecucién. Este esquema de presentacion
incremental tiene el objetivo de facilitar la introduccién de los distintos conceptos asi como también facilitar
las demostraciones posteriores. De todas formas, debe quedar claro que excepto en el contexto de los capitulos
2 y 3, cuando nos refiramos a patrones de eventos nos estaremos refiriendo a la versién més expresiva de los
mismos.

En el Capitulo 4 definimos el concepto de autdmata reconocedor de un patrén de eventos y la construccién
de dicho autémata sigue el esquema del capitulo 3: primero se realiza la construccién para los patrones
bésicos no temporizados, después se agrega la parte temporal y finalmente se agregan los conceptos de
principio y final de ejecucién. En ese mismo capitulo se demuestra que dado un patrén P, su autémata
reconocedor Ap aumentado con una condicién de aceptacién de Biichi acepta exactamente las ejecuciones
que satisfacen P. Dada la morfologia particular de los autématas reconocedores, la condicién de aceptacién
puede ser expresada como una férmula TCTL y se demuestra que un sistema S satisface P si y sélo si
As||Ap E init = 3O (30accept) y por lo tanto el problema de la verificacién de patrones es decidible. La
férmula init = 3 (30 accept), cuyo significado analizaremos més adelante, corresponde a ¢ gccept mencionada
en la Figura 1.5.

En el Capitulo 5 mostramos varios ejemplos aplicados a casos de estudio presentados en la bibliografia.

En el Capitulo 6 se incluye el pseudocédigo de los algoritmos para la generacién de autématas reconocedores
a partir de patrones.

El Capitulo 7 presenta las conclusiones y el trabajo futuro relacionado con este trabajo. En ese capitulo se
enumeran también los trabajos relacionados con el nuestro, resaltando las principales similitudes y diferencias
entre ellos.

Finalmente, en el Apéndice A se incluyen las demostraciones de todas las propiedades enunciadas a lo largo
de la tesis y en el Apéndice B se comentan los detalles de la implementacién del Verificador de patrones
(Figura 1.5) realizada en Java y se incluyen varios listados relacionados con su aplicacién a uno de los casos
de estudio.



Capitulo 2

Definiciones preliminares

En este capitulo presentaremos los conceptos y definiciones bésicas que utilizaremos a lo largo de todo el
trabajo. Empezaremos por formalizar las nociones de secuencias, ejecuciones y ejecuciones temporizadas
que ya introdujimos informalmente en el capitulo anterior.

A continuacién, formalizaremos los conceptos bésicos de la Teoria de Sistemas Temporizados, también men-
cionados en la Introduccién: sintaxis y seméntica de los autématas temporizados, los autématas de Biichi
temporizados y de la l6gica temporizada TCTL. En los préximos capitulos usaremos la teoria de autématas
temporizados con dos propésitos: por un lado, para demostrar desde el punto de vista teérico la decidibilidad
de la verificacién de patrones de mal comportamiento y por el otro, desde el punto de vista practico, para
construir un verificador de patrones basado en herramientas existentes para la verificacién de autématas.

2.1 Secuencias y Ejecuciones

Secuencias

Empezaremos por introducir la notacién basica que utilizaremos para trabajar con secuencias.

Dado un conjunto C, una secuencia sobre C es una secuencia de elementos de C. Dada una secuencia s, |s|

. 5 3 i & 5 s def
sera la longitud de la secuencia. Cuando s sea una secuencia infinita, diremos que |s|] = oo. Llamaremos

d . . . , . -
11, -2 {1 € N | 0 <i<|s|} al subconjunto de los niimeros naturales correspondientes a las posiciones de

la secuencia s.

Para 1,5 € II;, s; denotara al i-ésimo elemento de la secuencia s, s;) serd el prefijo de s que termina con
el i-ésimo elemento inclusive, s(; serd el sufijo de s que empieza desde el i-ésimo elemento inclusive y sj; 5
la subsecuencia que empieza en el i-ésimo elemento y termina en el j-ésimo inclusive (si i > j, s[i,;) serd la

secuencia vacia). En cualquier caso, usar ‘(" o ‘)’ en lugar de ‘[’ o ‘]’ indicard que la subsecuencia no incluye
s % 5 3 s 3 def p
el borde en cuestién. Llamaremos prim(s) al primer elemento de s, es decir, prim(s) = so. Anilogamente,

si s fuera finita, llamaremos ult(s) al ltimo elemento de s, es decir, ult(s) = 8|s|—1-

La concatenacién de dos secuencias s y s’, donde la primera es finita, serd denotada por ss’. Las secuencias
con un unico elemento serdn identificadas por ese elemento.

Dado un conjunto F y una secuencia s sobre E, elems(s) denotar4 al conjunto de los elementos que componen

s. Para simplificar la notacién en las definiciones de los préximos capitulos, sobrecargaremos el operador N
de forma tal que dado un subconjunto X de F, s N X serd equivalente a elems(s) N X.

11
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Definicién 2.1.1. Secuencias temporales.
Una secuencia temporal es una secuencia débilmente creciente de timestamps, es decir, de numeros reales no
negativos.

Dada una secuencia temporal 7, definimos la funcién A que determina el tiempo transcurrido para esa
secuencia como: '

0 si|r] <1
A(1) = < ult(r) — prim(r) sil<|r| <o
lim;—,coTi —prim(7) en otro caso

Definimos desplazamiento de una secuencia temporal 7 por un real € (notado 7 + €) de forma tal que
Viell,, (t+e€);=7+e

Definimos también la operacién < entre secuencias temporales como sigue. Dada una secuencia temporal finita

T y otra secuencia temporal 7/, 7<7’ = 7(7" +ult(r)). Por ejemplo: (02 35.5)<(15.3)=(0235.56.510.8)

Ejecuciones

Usaremos el concepto de ejecucién para representar formalmente el comportamiento de un sistema. Como
vimos en el capitulo anterior, usaremos un modelo orientado a eventos, con lo cual nuestras ejecuciones
modelarén la sucesién de eventos ocurridos en una corrida del sistema. Utilizaremos dos tipos de ejecuciones:
temporizadas y no temporizadas.

Definicién 2.1.2. Ejecucién (no temporizada).

Dado un conjunto de eventos ¥, una ejecucidn (no temporizada) sobre ¥ es una secuencia finita o infinita
sobre X U {\}.

Ejemplo. Dado el conjunto de eventos ¥ = {read, write}, los siguientes son ejemplos de ejecuciones:

read write read write read write read write ...
read read read read

read A read A A read read A A X A\ ...

La primera muestra una ejecucién infinita formada por infinitos read’s seguidos de su respectivos write’s.
La segunda muestra un ejemplo de ejecucién finita formada por tinicamente cuatro read’s. Finalmente, la
tercera muestra un ejemplo de ejecucién donde aparece el simbolo distinguido A. Usaremos ese simbolo para
indicar explicitamente que no ha ocurrido ningin evento nuevo en el sistema. En ese sentido, la segunda
y la tercera ejecuciones representan formas sintacticamente distintas de describir el mismo comportamiento
del sistema. Definimos el concepto de equivalencia entre ejecuciones para capturar esta relacién entre las
distintas formas de representar un mismo comportamiento abstracto.

Definicién 2.1.3. Equivalencia de ejecuciones.
Dado un conjunto de eventos ¥, dos ejecuciones ¢ y ¢’ sobre X son equivalentes, notado ¢ = ¢, si al eliminar
todas las apariciones de A en ¢ y ¢’ las secuencias resultantes son iguales.

Es decir, ¢ = ¢’ si y sélo si tienen los mismos eventos, en el mismo orden.

Ejemplo. Como vimos antes, read read read read = read X read A\ A read read A A A X ...

Deberia resultar mds o menos evidente que para toda ejecucién ¢ finita, se puede construir una ejecucién ¢’
infinita y equivalente a ¢ son solo agregar infinitos A’s al final de . Esto resultara importante mds adelante
cuando hablemos de lenguaje de un autémata temporizado.
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Definicién 2.1.4. Ejecucién filtrada por un conjunto de eventos.
Dada una ejecucién ¢ = aga; ... a; ... sobre X y un conjunto de eventos S, definimos ¢[s como la secuencia
que se obtiene de reemplazar en ¢ todas los eventos que no pertenezcan a S por A. Formalmente:

r ’
S| Y AP PR

donde:

1
a; =

a; sia; €S8
A en otro caso

Ejemplo. Dado el conjunto de eventos ¥ = {a, b, c} y el conjunto S = {a, b}

-

(abcacchb)ls = ablaAbd

En general, S serd un subconjunto de ¥ y usaremos la operacién [s para abstraernos de ciertos eventos
que no resulten importantes en un determinado contexto. Por ejemplo, en un sistema formado por varios
componentes independientes, una ejecucién del sistema incluird eventos de todos los componentes. Sin
embargo, si quisiéramos analizar el comportamiento de un componente individualmente (analizando para ello
una ejecucién del sistema), podriamos filtrar todos los eventos que no sean relevantes para ese componente
(es decir, todos los eventos “internos” de los demds componentes).

Definicién 2.1.5. Ejecuciones temporizadas.
Dado un conjunto de eventos ¥, una ejecucidon temporizada sobre ¥ es un par o = (g, 7), donde ¢ es una
secuencia finita o infinita sobre ¥ U {A} y 7 es una secuencia temporal de la misma longitud.

Extendemos las operaciones de secuencias a las ejecuciones temporizadas de la siguiente manera: dada una
L : d o ; .
ejecucion temporizada o = (s, 7), |o] e |s] = |rl, las posiciones de o seran las mismas que para ¢ y
. def def def def
T, para todo ¢,j € Il,, o; = ($5,73) 058 = (qi],'ri]>, Ol = <§[,»,T[i> Y Ofij) = <§[,-,j],r[,»'j]>. En este caso
también, usar ‘(" 0 ‘)’ en lugar de ‘[’ o ‘|’ para delimitar subsecuencias indicard que no se incluye el borde en
cuestién. Llamaremos prim(c) al par (prim(s), prim(7)) v, si o fuera finita, ult(c) al par (ult(s), ult(r)).

. . > de
Finalmente, dada ¢’ = (¢’, 7’) finita, la concatenacién de ¢ con ¢’ se define como oo’ f (s¢’,Tat’).

Ejemplo. El siguiente es un ejemplo de ejecucién temporizada:

read write A read A\ write
05 11 12 5 5 86

donde el primer read ocurrié a las 0.5 u.t. desde que comenzé la corrida, el primer write ocurrié a las 1.1 u.t.,
etc.. Como en el caso de las ejecuciones no temporizadas, los A indican que no ocurrié ningin evento. Dado
que la secuencia temporal que acompafia a la secuencia de eventos debe ser creciente aunque en forma no
estricta, los A’s pueden estar acompafniados de un timestamp igual al del evento anterior, igual al del evento
siguiente o con un valor intermedio (modelo de tiempo denso). En este caso como en el anterior, definimos
la nocién de equivalencia entre ejecuciones temporizadas que representan el mismo comportamiento del
sistema.

Definicién 2.1.6. Equivalencia de ejecuciones temporizadas.
Dado un conjunto de eventos ¥, dos ejecuciones temporizadas o = (s, 7) y o’ = (¢, 7’) sobre ¥ son equiva-
lentes, notado o = ¢/, si y sélo si ¢ = ¢’ y todos los eventos tienen el mismo timestamp asociado en o y en

o'

Es decir, ¢ = ¢’ si y sélo si tienen los mismos eventos, en el mismo orden y cada evento tiene el mismo
timestamp asociado en las dos ejecuciones.
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Ejemplo.
a)\bcd:abcd:/\/\ab/\cd/\/\/\n_
11526348/ — \126348/  \0508 12633485 75 8.1

En este caso, como en caso de las ejecuciones no temporizadas, siempre sera posible construir una ejecucién
temporizada infinita equivalente a una finita dada. La diferencia es que en este caso existen infinitas formas
de extender la ejecucién original: tantas como sucesiones débilmente crecientes de niimeros reales.

En general, nos interesardn las ejecuciones infinitas dado que permiten representar el comportamiento de
sistemas reactivos cuyas corridas podrian no terminar nunca (por ejemplo: sistemas operativos, microproce-
sadores, etc). En los casos en que un sistema admita corridas finitas, usaremos el mecanismo explicado en el
parrafo anterior para censtruir una representacién infinita de la misma corrida (conceptualmente estariamos
modelando el hecho de que el sistema deja pasar el tiempo permaneciendo en el estado final alcanzado
después de la corrida).

A su vez, dentro de las ejecuciones infinitas, preferiremos las ejecuciones divergentes, es decir, aquellas en
las cuales la secuencia temporal es divergente. Esto nos permite modelar el progreso del tiempo més alld de
cualquier constante real. Por otro lado, la decisién de usar secuencias temporales débilmente crecientes nos
permite modelar la ocurrencia simultanea de eventos.

Definicién 2.1.7. Ejecucién divergente.
Diremos que una ejecucién infinita o = (s, 7) es divergente sii:

Iim 7, =00
i—0o0

Los filtros sobre ejecuciones temporizadas son una extensién natural de los filtros sobre ejecuciones no
temporizadas:

Definicién 2.1.8. Ejecucién temporizada filtrada por un conjunto de eventos.

: ‘s : ; . d
Dada una ejecucién temporizada o = (¢, 7) y un conjunto de eventos S, definimos o[s 24 (sls,T)-

Ejemplo. Dado § ={a, b, e}:
a A b ¢ d s = a X b A A
11526348/'° 7 \11526 3 438

2.2 Autématas temporizados

Los autématas temporizados constituyen uno de los formalismos mas usados para modelizacién y verificacion
de sistemas concurrentes de tiempo real. La verificacién basada en autématas temporizados estd soportada
por varias herramientas ([DOTY95, BLLT96, TC96, HHWT95], etc) que han sido aplicadas con éxito al
chequeo de protocolos de comunicacién y circuitos, y han sido usadas por varios grupos de investigacién,
tanto en el ambito académico como en la industria.

Los autématas temporizados son basicamente autématas finitos en los cuales el tiempo se incorpora mediante
el uso de relojes. Como los autématas finitos, los autématas temporizados estan compuestos por un conjunto
finito de nodos (llamados locaciones en la bibliografia) y un conjunto de aristas etiquetadas. Debido a que
se asume que las corridas del sistema son infinitas, no existe el concepto de estado final. Las aristas modelan
la ocurrencia de eventos. Todos los relojes avanzan al mismo ritmo y tienen un comportamiento similar al
de un cronémetro: miden el tiempo transcurrido desde que fueron iniciados (o reiniciados). La ocurrencia de
un evento puede provocar que ciertos relojes se reinicien. Esto se modela asociando a cada arista el conjunto
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de relojes que se reinician. Cada arista tiene asociada, ademds, una guarda o condicién de habilitacién.
Dicha guarda impone restricciones sobre los valores que deben tener los relojes al momento de producirse el
evento. Las aristas se atraviesan en forma instantdnea y el tiempo transcurre en las locaciones del autémata.
Ademas, cada locacién tiene asociada una restriccién temporal o invariante que determina las combinaciones
de valores de los relojes que son validas en esa locacién. Estos invariantes pueden ser usados para indicar, por

ejemplo, que el control del sistema no puede permanecer méas de cierta cantidad de tiempo en una locacién
(deadline).

2.2.1 Definiciones preliminares
o X = {z1,zs,...,T,} es un conjunto de relojes (variables reales no negativas)
e Dado un conjunto de relojes X, una valuacidn es una funcién total v : X o, R+ donde v(z;) es el
valor asociado al reloj ;.

Llamaremos Vx al conjunto de todas las valuaciones sobre X. Es decir, Vx es el conjunto de todas las
funciones totales [X 2% R+F].

Sea p € X y v una valuacién sobre los relojes de X. Definimos Reset,(v) como:

] 0 siz € p,
Resety(n) (o) = { v(z) en caso contrario.

e Dado un conjunto de relojes X, una valuacién v € Vx y un real t € R*, la valuacién v + ¢ asigna a
cada reloj z € X el valor v(z) +t.

e Dado un conjunto de relojes X y un real t € %, llamamos t a la valuacién que asigna a cada reloj
z € X el valor t.

e Dado el conjunto de relojes X, definimos el conjunto de restricciones sobre relojes W x segun la siguiente
gramatica:

Yu=T|z~c|lz—3 ~c|YvAy |0

donde z,2' € X, ~ € {<, <} yce N.

Definimos inductivamente la relacién F incluida en Vx x ¥x como:

vET siempre
vEz~cC sii w(z) ~c
vEz—z' ~c sii v(z)—v()~c
vEYAY sii vEYyvEY
vE Y sii vEY

Diremos que una valuacién v € Vx satisface una restriccién ¥ € W x si y sélo si v F 1.

Llamaremos [¢] al conjunto de las valuaciones que satisfacen ¥, o sea:

W] ={veVx |vEy}
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2.2.2 Autématas temporizados

Definicién 2.2.1. Autémata temporizado. Un autémata temporizado es una tupla A = (S, X, 3, A T, so)
donde:

e S es un conjunto finito de locaciones
e X es un conjunto finito de relojes
e ¥ es un conjunto finito de eventos

e A es un conjunto finito de aristas. Cada arista en A es una tupla (s, a, ¥, p, s’) donde:

- s € S es la locacion de origen

- ' € S es la locacidn de destino

- a € ZU{A} es la etiqueta de la arista

- ¥ € Ux es la restriccion o guarda de la arista

- p € X determina el conjunto de relojes que se resetean al atravesar la arista.

tot 5 . - . .
e 7:85 -5 Uy es una funcién total que asocia a cada locacién una restriccién sobre los relojes. Dada
una locacién s € S, diremos que Z(s) es el invariante de la locacion s.

e 35 € S es la locacidn inicial.

Como los autématas finitos, los autématas temporizados admiten una representacién grafica. El siguiente
ejemplo muestra un autémata sencillo que modela el funcionamiento de una méquina expendedora de café.

Ejemplo. Mdquina ezpendedora de café.

La Figura 2.1 muestra un autémata temporizado que modela el funcionamiento de una expendedora de
café. Los nodos corresponden a los estados discretos de la maquina: libre, esperando opcién, sirviendo
bebida. Los ejes corresponden a los eventos que afectan el funcionamiento de la maquina: introducir una
moneda en la médquina, elegir una bebida, etc. La mdquina comienza estando libre y puede permanecer asi
indefinidamente, por esta razén el invariante de la locacién es T y para simplificar el grafico puede omitirse.
Estando en esa locacién, en cualquier momento un usuario puede introducir una moneda. Quiere decir que
la arista moneda tiene como guarda T. Como en el caso de los invariantes, cuando una guarda es T puede
omitirse en el grafico. Al pasar a la locacién eleccion, donde la maquina aguardard la opcién del usuario, se
resetea el reloj z. Este reloj medird el tiempo transcurrido desde que se introdujo la moneda. La méquina
aguardard a lo sumo 10 u.t. en eleccion (invariante z < 10) y si no se produce una eleccién antes de ese
momento, devolvera el dinero recibido y volverd a quedar libre. Si, en cambio, el usuario realiza su eleccién
antes de las 10 u.t., la méquina procedera a servir la bebida correspondiente. Las distintas elecciones posibles
estdn modeladas con dos aristas salientes desde eleccion. Dado que la méquina requiere 5 u.t. para servir
la bebida, se resetea nuevamente z cuando el usuario realiza su eleccién y se fuerza a que la mdquina deje la
locacién sirviendo recién al cumplirse las 5 u.t. Aunque simple, el ejemplo muestra dos posibles usos de los
invariantes: para establecer deadlines, como en el caso de eleccion o para modelar duracién de una accidn,
como en el caso de sirviendo.

Semantica

La semaéntica de los autématas temporizados estd dada en funcién de un sistema de transiciones etiquetadas
(STE) formado por un conjunto, generalmente no numerable, de estados y una relacién — de transicidn.
Cada estado se compone de una locacién del autémata y una valuacién sobre los relojes. Estando en cualquier
estado, A puede evolucionar atravesando una de las aristas en A (transicidn discreta) o dejando que el tiempo
transcurra en la locacién actual (transicién temporal).
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eleccion
z < 10,

devolucion

café
z < 10

{=}
bebida

Figura 2.1: Expendedora de café

Estado de un autémata temporizado. Un estado g de un autémata A = (S, X,%, A,7, 50) es un par
q = (s,v) € S x Vx tal que v = Z(s) . El estado inicial de A serd gin;; = (S0, 0).

Llamamos Q 4 (o simplemente @ si queda claro por contexto) al conjunto de todos los estados del autémata

A.
Notacién. Dado ¢ = (s,v) € @ definimos:

o g+t (s,u+1)
° q© défs

Evolucién de un autémata temporizado. Sea A = (S, X, %, A, 7, s¢) un autémata temporizado y (s, v)
y (8',v") estados de A.

e Transiciones discretas. Sea a € ¥ U {\}. Existe una transicidn discreta desde el estado (s,v) hacia
el estado (s',v’) por a, notado (s,v) —% (s',v'), si para alguna arista (s, a, ¥, p,s’) € A:
-vEY
- v’ = Reset,(v)
o bien, a = Ay (s,v) = (s',0).
e Transiciones temporales. Sea t € R*. Existe una transicidn temporal desde el estado (s,v) hacia

el estado (s,v +t) por t, notado (s,v) —* (s,v +t), si:

- para todo t' < t, v+t EZ(s)

Dado que estamos pidiendo que las transiciones sean unicamente entre estados validos del autémata, en todo
momento el autémata debe respetar los invariantes de las locaciones por las que pasa.

Las transiciones discretas corresponden a un cambio de locacién (aunque una arista puede ser un loop sobre
la misma locacién y la locacién de destino serfa igual a la de partida). Estas transiciones ocurren en forma
instantdnea, provocan que se reinicien los relojes correspondientes, y sélo pueden suceder si el valor de los
relojes satisface la guarda de la arista. Generalmente, las transiciones discretas representan la ocurrencia de
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un evento en el sistema (caso a € ¥), pero también pueden darse transiciones discretas en forma “esponténea”
(caso a = )). Finalmente, estando en cualquier estado, el autémata puede realizar una transicién discreta
trivial por A permaneciendo en el mismo estado. '

Las transiciones temporales corresponden al paso del tiempo. Estas transiciones no modifican la parte
discreta de los estados (es decir, la locacién del estado). Estando en cualquier estado el autémata puede
realizar una transicién temporal trivial por 0 permaneciendo en el mismo estado. Los autématas utilizan un
modelo de tiempo denso con lo cual, si existe la transicién (s,v) —¢ (s,v+1t) y t = t1 + t2, entonces existen
las transiciones (s,v) =% (s,v +t1) y (s,v+t1) = (s,v + ).

Definicién 2.2.2. Sistema de transiciones etiquetadas (STE).
Dado un autémata temnporizado A, el grafo (@, —), con -C Q x (RT UX U {A}) x Q denotara el sistema
de transiciones etiquetadas generado por A.

La representacion clésica de las corridas de los autématas temporizados se define en funcién de secuencias
infinitas de estados y transiciones de la forma: gy —% ¢ —% ...q; =% ..., donde Vi € N, ¢; € Q, a; €
RTUZU{\} llamadas runs ([Yov96, HNSY92, ACD93, Bra00]). En este trabajo representaremos las corridas
de un autémata usando evoluciones.

Evolucién en un paso. Diremos que un autémata temporizado A = (S, X, %, A,Z, s¢) puede evolucionar
en un paso desde el estado ¢ hacia el estado ¢’ por a € T U {A} y t € R, notado ¢ =¢ ¢/, sii:

q—'q+t y qg+t—-°(

Una evolucién en un paso corresponde a dejar pasar cierto tiempo en una locacién y luego realizar una
transicién discreta. Se puede ver que toda corrida de un autémata puede ser representada como una sucesién
de estas evoluciones en un paso.

Definicién 2.2.3. Evolucién.
Dado un autémata temporizado A = (S, X,Y%, A,Z,sy) una evolucién r es una secuencia (posiblemente
infinita) de evoluciones en un paso de la forma:

T=qo =i 1= G
donde Vi e N, ¢; € Q, a; e U {)\} y t; € RT.
Dado un estado g de A, llamaremos R,(A) al conjunto de todas las evoluciones de A que comiencen en el

estado ¢g. Llamaremos R(A) al conjunto R, ., (A), es decir, al conjunto de todas las evoluciones de A que
comiencen en el estado inicial g;ni;.

Qinit

Dada una secuencia finita ¢ sobre ¥ U {\} y una secuencia temporal 7 de la misma longitud, definimos la
relacién ¢ =5 ¢’ (que se lee “es posible evolucionar desde g hacia ¢’ por (¢,7)”) de la siguiente manera:
q =% ¢ sii

3q”, q=>§l, "y ¢"=tq sic=dayr=1"qat

{q=q' sifg] =] =0

Diremos también que un autémata puede evolucionar desde el estado g hacia el estado ¢’ (notado ¢ = ¢')

si existe un par de secuencias (s, 7) tales que ¢ =% ¢'.
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Observacién. Todo run de un autémata es también una evolucidn. Por otro lado, toda evolucién tiene
un run equivalente que se obtiene reemplazando las evoluciones en un paso por el par de transiciones que
representan.

Por ejemplo, el run:

b 15 3.14
G —="q =" q@ =" =" g

puede ser visto como la evolucién:
a b A A
do =9 @1 =0 92 =1.5 43 =3.14 94

Por otro lado, la evolucién:
b X
go =45 Q1 =3 92 =15 43 =5 G4

puede ser transformader en run “desdoblando” las evoluciones en un paso:
70 —*° (@+45) =g =’ (@1 +3) =" 2 =" (2 +15) > g3 =% s = @

Como se puede ver, la diferencia entre runs y evoluciones es muy sutil y ésta es la justificacién para apartarnos
de la semaéntica clésica en favor de la seméantica basada en evoluciones.

Notacién. Dado un autémata A, un par de estados ¢, ¢’ en Q 4 y un par de locaciones s, s’ en S, definimos
el siguiente conjunto de abreviaturas:

g=>%s | e Vx, qg=% (s,v)

g=%s | 3r,q=>%s

qg=s I, g=°s

s=5q | v e Vx, (s,v) =5 g

s=Sq | 3Ir,s=%¢q

s=q =

s=5 8" | v, € Vx, (s,v) =5 (¢,0)
g§=Ss" | 35, 854

s=>s |3, s=4

Tiempo transcurrido en una evolucién. Dada una evolucién r = go =30 q1 =¢! g2 =77 -+ de A, el
tiempo transcurrido en r hasta la iésima evolucién en un paso, denominado 7,(z), se define como:

E) =)
k=0

Las evoluciones de los autématas temporizados siguen un modelo similar al de las ejecuciones temporizadas
mencionadas en la seccién anterior: las corridas de un autémata estardn dadas por evoluciones infinitas y
divergentes, con un progreso del tiempo débilmente monétono para permitir eventos simultdneos.

Evolucién divergente. Dado un autémata temporizado A, diremos que una evolucién (infinita) r es
divergente sii:

lim 7,.(i) = o0
1—0oC

Dado un autémata temporizado A y un estado g de A, llamaremos R3°(A) al conjunto de todas las evolu-
ciones divergentes de A que comiencen en el estado q.

Dado un autémata temporizado A, llamaremos R*°(.A) al conjunto R _ (A), es decir, al conjunto de todas

Qinit

las evoluciones divergentes de A que comiencen en el estado inicial giniz-
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Diremos que un autémata A es non-zeno si toda evolucién finita que comience en g;n;; es prefijo de alguna
evolucién en R°(A). En general, pediremos que un autémata que modele el comportamiento de un sistema
tenga la propiedad de ser non-zeno. Esta propiedad garantiza que cualquier secuencia finita de transiciones,
que parta desde el estado inicial, forma parte de por lo menos una evolucién infinita y divergente. Si esto
no fuera asi, el autémata estaria permitiendo operaciones donde llegado un punto no se podria dejar que el
tiempo diverja, cosa que no es posible en el “mundo real” que se estd modelando (donde el tiempo avanza
inexorablemente).

Extenderemos la notacién presentada para secuencias a evoluciones. Dada una evolucién r € R0°°(A), una
posicién de r es un par (i,t) € N x % tal que ¢ < ¢;. Llamaremos II, al conjunto de todas las posiciones
de r. Dada una posicién (i,t) € I, el estado en dicha posicién se define como:

- T = ¢ +1

y el tiempo transcurrido hasta dicha posicién se define como:

7(3,t) = 7,.(8) + t

Definimos el orden total < sobre las posiciones de una evolucién de la siguiente manera:

(i,t) < (5,¢) sii i<j o i=jyt<t
Dadas dos posiciones p,p’ € II, 7, serd la porcién de r que comienza desde el estado 7, ;) serd la porciéon
de 7 desde el comienzo hasta el estado 7, y 7, /| serd la porcién de r desde , hasta r. Como en los casos

anteriores, usar ’(’ o ’)’ en lugar de '’ y ’]’ significard que los bordes correspondientes no estdn incluidos en
la subevolucién.

2.2.3 Lenguaje de un autémata temporizado

Como vimos, clésicamente se utiliza un modelo basado en estados y transiciones para representar el com-
portamiento de los autématas temporizados. Sin embargo, es posible representar el comportamiento de
un autémata temporizado utilizando las ejecuciones temporizadas y no temporizadas que definimos en la
seccién 2.1. Dado que la semdntica de nuestros patrones de eventos estard dada en base a estas ejecuciones,
resulta conveniente poder definir cudndo un autémata temporizado acepta una ejecucién y cuando no.

Definicién 2.2.4. Ejecucién expuesta por una evolucién.
Dada una evolucién
— ao ay a;
T =Qo =>to qQ1 =>t1 o' G =>t“

donde Vi € N, ¢; € Q, a; € ZU{A\} y t; € RT, llamaremos T a la ejecucién temporizada (s, 7), donde:
® C=0apQ;...Q5...
o T=1y<dt;<Q---dt; Q-

T es la ejecucién temporizada obtenida de abstraer los estados intermedios de r.

Ejemplo. Dada la evolucién:
T=qo=4s5q =50 =159 =5 ¢

la ejecucién expuesta por r sera:
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Definicién 2.2.5. Aceptacién de ejecuciones temporizadas.
Dado un autémata temporizado A, diremos que A acepta una ejecucién temporizada o = (s, 7) sii existe
una evolucién r en R>*(A), tal que o =T7.

Diremos que A acepta una ejecucién (no temporizada) ¢ sii A acepta alguna ejecucién temporizada de la
forma (g, 7).

Definicién 2.2.6. Lenguaje de autématas temporizados.
Dado un autémata A, el lenguaje de A estarda dado por las ejecuciones aceptadas por A.

Formalmente, definiremos lenguaje de un autdmata temporizado A (notado L(A)), de la siguiente manera:
L(A) ={o | o es aceptada por A} = {c | Ir € R¥(A), T=0}

Anélogamente, definiremos lenguaje no temporizado de un autémata temporizado A (notado L£*(A4)), de la
siguiente manera:

L*(A) = {s | s es aceptada por A} = {c | 3Ir € R™®(A), 37, 7= (5, 7)}

2.2.4 Composicién de Autématas Temporizados

El formalismo de autématas temporizados permite modelar individualmente los distintos componentes de
un sistema. La integracién de esos componentes dentro del sistema esta dada por la composicion paralela de
los mismos.

Dado un par de autématas temporizados .A; y Az con conjuntos disjuntos de relojes, la composicién paralela
de ambos (A;||A2) se construye a partir del producto cartesiano de sus locaciones, la unién de los relojes
y la sincronizacién de las aristas con eventos en comin. El invariante de una locacién compuesta serd la
conjuncién de los invariantes de sus componentes. Para una arista de sincronizacién, la guarda serd la
conjuncién de las guardas originales y el conjunto de relojes que se reinician serd la unién de los conjuntos
locales. Formalmente:

Definicién 2.2.7. Composicién paralela.

Dados dos autématas temporizados A; = (S1, X1,X1,41,71,801), ¥ A2 = (S2, X5, %2, A, T5, s0o) don-
de X; N X, = @, y £; N X, constituye el conjunto de eventos de sincronizacién, llamaremos A;||A2; =
(S1 % S2, X1 UX5, 51 UXs, A, Z, (s01,802)) @ la composicién paralela de A; con A, donde!:

o ((s1,82),1,9,p,(s1,53)) € Asii
— (s1,L,0,p,81) € A1, L ¢ Za y s2 = &
— (s2,L,,p,85) € Ag, L € 21y 81
= (s1,0,%1,p1,51) € A1, (52,A,92,p2,83) € A2, L ¢ B, b =1 Ahay p=p1Up2
— (s2,1,%2,p2,55) € Az, (51, A, %1,p1,81) €A IEE, v =1 AYayp=p1Up2
= (85,1, %3, pi,87) € Ajycon i =1,2, 1 €X NEp, =1 A2y p=p1Upy

Il

s1

En los primeros dos casos, decimos que sélo una de las componentes participa de la arista, por el
contrario, en los ultimos tres casos decimos que ambas componentes participan.

® I((s1,52)) = Z(s1) A I(s2)

1En realidad, alcanza con tomar la componente conexa que contenga al par (so1, s02)
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Figura 2.2: Cruce ferroviario

Notacién. Sea un autémata temporizado A construido como la composicién paralela de A;||A;. Dada una
locacién s de A, para i = 1,2 definimos 7;(s) = s; como la locacién correspondiente a la iésima componente.
Dada la transicién (s, 1,1, p, s’) en A, escribimos m;(1) = 1;, la condicién de la arista correspondiente a la
iésima componente. Por definicidn, si la componente i no participa en la transicién diremos que m;()) = T.
Llamaremos 7;(p) = p; al conjunto de relojes reseteados en la arista correspondiente a la iésima componente.
Si la componente i no participa en la relacién diremos que 7;(p) = @. Finalmente, dado un estado q de A,
diremos que 7;(q) es el estado local de A;.

La nocién de composicién paralela puede ser generalizada naturalmente n componentes Ay, ..., A, y decimos
que A;||---||A, es el resultado de asociar los términos de izquierda a derecha: (--- ((A;1][A2)||A3) -+ )||An-

Ejemplo. Cruce de ferrocarril.

La Figura 2.2 muestra un ejemplo de sistema modelado con dos componentes. El ejemplo constituye un
caso de estudio cldsico mencionado en la bibliografia. Consiste en un cruce de ferrocarril modelado con una
componente que representa la barrera y otra componente que representa el tren. Los eventos que sincronizan
el funcionamiento de la barrera y el tren son aproz y fuera. Cuando el tren se acerca al cruce ferroviario,
envia una senal aproz a la barrera y entra al cruce al menos 2 u.t. después. El tren se aleja del cruce,
enviando una senal fuera a la barrera, dentro de las 5 u.t. desde que senalizé que se estaba aproximando.
La barrera requiere entre 1 y 2 u.t. para bajar completamente y a lo sumo 1 u.t para subir completamente.
La Figura 2.2 también muestra la composicién paralela de ambas componentes.
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Observaciones sobre la semantica de la composicién paralela

Dado A = A, || Az, se puede ver que existird una transicién discreta ¢ —' ¢’ en A si y sélo si para i = 1,2:
mi(g) = m(d) sileX,
m;(q) = m;(¢') en otro caso

También se puede ver que existird una transicién temporal ¢ —* ¢’ en A si y sélo si para ¢ = 1,2:

mi(q) = mi(q')

Proposicién 2.1. Dados dos autématas temporizados A; = (S;, Xi, Xi, Ai, Zi, S0;) coni=1,2 y una ejecu-
cion o sobre 31 U Xg, ™

o€ L(A]|A2) sit olx, € ﬁ(Al) yols, € L(Az)

Demostracion. La demostracién de esta proposicién es més o menos directa a partir de la seméntica de las
transiciones de un autémata compuesto. La demostracién completa se encuentra en el Apéndice A, pagina
92. O

2.3 Autématas de Biichi temporizados

Los autématas de Biichi son un tipo particular de w-autématas. A su vez, los w-autématas son extensiones
de los autématas finitos que incluyen una condicién de aceptacion para palabras infinitas (denominadas
w-palabras). Una de las condiciones de aceptacién para w-palabras mas usada es la condicién de aceptacion
de Blichi, que justamente caracteriza a los autématas de Biichi. Informalmente, la condicién de aceptacion
de Biichi pide que se visiten infinitas veces ciertas locaciones distinguidas del autémata.

Los autématas de Biichi temporizados son autématas temporizados a los cuales se les agrega una condicién
de aceptacién de Biichi.

Definicién 2.3.1. Autémata de Biichi temporizado.
Un autdmata de Biichi temporizado es una tupla B = (A, F) donde A = (S, X,%, A, 7, s0) es un autémata
temporizado y F C S es el conjunto de locaciones de aceptacion.

Semaéntica
Dado un autémata de Biichi temporizado B = (A, F) y una evolucién r = go =¢° q1 ={! ...q; =i, ... de

A, llamaremos inf(r) al conjunto de locaciones s € S tales que s = ¢ para una cantidad infinita de 1.

Definicién 2.3.2. Aceptacién de evoluciones.
Dado un autémata de Biichi temporizado B = (A, F), diremos que B acepta una evolucién r € R™(A) siy
sélo siinf(r)NF # @.

Llamaremos R>°(B) a las evoluciones divergentes aceptadas por B.

Informalmente podemos decir que un autémata de Biichi temporizado aceptard una evolucion si algunas de
las locaciones en F son visitadas un nimero infinito de veces en el transcurso de dicha evolucién.

Es facil ver que si F = S, la condicién de aceptacién se vuelve trivialmente verdadera y B aceptara todas
las evoluciones de A. En cambio, si 7 = &, la condicién de aceptacién serd siempre falsa y B no aceptard
ninguna evolucién.
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>4 T\ {alta} =

¥ = {aproz, dentro, fuera, baja, alta}

Figura 2.3: Ejemplo de autémata de Biichi

Definicién 2.3.3. Aceptacién de ejecuciones temporizadas. Dado un autémata de Biichi temporizado
B = (A, F), diremos que B acepta una ejecucién temporizada o sii existe una evolucién r en R*°(B), tal que
g=T.

Diremos que B acepta una ejecucién (no temporizada) ¢ sii B acepta alguna ejecucién temporizada de la
forma (g, 7).

Definicién 2.3.4. Lenguaje de autématas de Biichi temporizados.
Dado un autémata de Biichi temporizado B, el lenguaje de B (notado L£L(B)) estard dado por las ejecuciones
aceptadas por B.

Formalmente:
L(B) = {o | o es aceptada por B} = {o | Ir € R™(B), T =0}

Anélogamente, definiremos lenguaje no temporizado de B (notado £*(B)), de la siguiente manera:

L*(B) = {s | s es aceptada por B} = {s | 3r e R*®(B), 37, 7= (5, 7)}

Ejemplo. La Figura 2.3 muestra un ejemplo de autémata de Biichi. La representacién gréfica es similar a
la de los autématas temporizados y las locaciones de aceptacién se marcan con un doble borde. El autémata
del ejemplo acepta todas las ejecuciones del Cruce ferroviario en las cuales la barrera tarda mds de 5 u.t. en
subir completamente. Esta es una propiedad no deseada para el cruce ferroviario.

Estado en la locacién inicial sg, ante la ocurrencia del evento baja (es decir, “la barrera terminé de bajar”) se
puede decidir entre permanecer en sg o atravesar la arista hacia la locacién s;. Al atravesar la arista se estd
tomando la decisién de medir el tiempo desde que la barrera bajé hasta que la barrera vuelva a estar alta.
Si el siguiente evento alta (es decir, “la barrera termind de subir”) ocurre a lo sumo 5 u.t. después, entonces
la arista que va de s; a s no estard habilitada y sélo se podréd tomar la arista hacia s3. La locacién s3 no
tiene ninguna arista saliente, solo stutters? por todos los eventos. A este tipo de locaciones se las denomina
trampa. Si, por el contrario, estando en s; el siguiente evento alta ocurre después de las 5 u.t., se podrd
decidir entre pasar a s 0 a s3. La locacién de aceptacién s, también es una locacién trampa. Quiere decir
que una vez que una evolucién (infinita) del autémata alcanzé s, pasara infinitas veces por esa locacién,
cumpliendo de esa forma la condicién de aceptacién de Biichi.

Dado que un autémata de Biichi acepta una ejecucién si es la abstraccién de al menos una evolucién que
satisface la condicién de aceptacién, alcanza con que exista una forma de evolucionar sobre el autémata desde
el estado inicial, siguiendo la ejecucién y visitando infinitas veces alguna de las locaciones de aceptacién para

2 Aristas cuyo origen y destino son la misma locacién.
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que el autémata la acepte. Quiere decir que si en una ejecucién existe una ocurrencia de baja separada de
la siguiente ocurrencia de alta por mis de 5 u.t., habrd muchas formas de evolucionar sobre el autémata
siguiendo la ejecucién y sin llegar a so, pero lo importante es que existird al menos una manera de hacerlo
llegando a esa locacién.

Producto entre autématas temporizados y autématas de Biichi temporizados

Definimos la operacién producto entre un autémata temporizado A y un autémata de Biichi temporizado
B. Este producto estard basado en la composicién paralela de autématas temporizados pero tendra la
particularidad de ser en si mismo un autémata de Biichi.

La operacién ® entre un autémata temporizado A; y un autémata de Biichi temporizado B = (A2, F) dara
como resultado un nuevo autémata de Biichi donde la estructura subyacente estard dada por la composicién
paralela de A; y A y la condicién de aceptacién estard dada por las locaciones compuestas que contengan
locaciones de F.

Cabe aclarar que es posible definir una nocién més general de “composicién” (o “interseccién”) de autématas
de Biichi temporizados (dada por ejemplo en [AD94]). Sin embargo, la construccién de la interseccién de
autématas de Biichi es poco natural cuando se utiliza un tinico conjunto de locaciones de aceptacién, como se
hizo en la definicién 2.3.1 (que sigue la linea de [AD94], [Bra00]). Para definir la composicién de autématas
de Biichi es mds conveniente utilizar la versién generalizada de los mismos, que incluye un conjunto de
condiciones de aceptacién. En esta versién, F C 25 es un conjunto de conjuntos de locaciones y la condicién
de aceptacién estd dada por visitar infinitas veces locaciones que pertenezcan a cada uno de estos conjuntos.
Dado que se ha demostrado que la versién generalizada de los autématas de Biichi tiene el mismo poder
expresivo que la versién presentada en la seccién anterior (por ejemplo, [CGP99]), usaremos esta iltima por
conveniencia en cuanto al uso que le daremos en este trabajo.

Definicién 2.3.5. Producto entre autématas temporizados y autématas de Biichi temporizados. Dado un
autémata temporizado A; y un autémata de Biichi temporizado B = (A, F), el producto entre A; y B
(notado A; ® B) serd un autémata de Biichi temporizado B’ = (A’, F') tal que:

o A= A||A,
e F'l=8 xF

Proposicién 2.2. Dados dos autématas temporizados A; = (S;, Xi, Xi, Ai, Li, So;), coni = 1,2, un autdmata
de Biichi temporizado B = (A, F), con F C Sa y una ejecucion o sobre ¥y U Xa,

o€ E(.A] ® B) sit olg, € [,(Al) yolg, € [:(B)

Demostracion. La demostracién es bastante directa usando la Proposicién 2.1. La demostracién completa
se puede ver en el Apéndice A, pagina 93. O

2.4 Légica TCTL

TCTL (Timed Computational Tree Logic, presentada en [ACD93]), es una extensién de la 1égica CTL intro-
ducida por [EC81] que permite expresar propiedades temporales cuantitativas.
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Sintaxis

Definicién 2.4.1. Intervalos.
Llamaremos Jn al conjunto de todos los intervalos 6 delimitados por naturales construidos de la siguiente
manera:

6 = (ab) | (@b ][0 ] [a,b] | [6,0) | (a,00)
donde a,b € N.

Dado un conjunto finito de proposiciones booleanas PROPS, un férmula TCTL se define segin las siguientes
reglas sintdcticas:

pu=T|p| 0| NG| U0 | VU
Donde p € PROPS y 0 € In.

Abreviaturas

Para facilitar la escritura de férmulas TCTL se definen las siguientes abreviaturas de uso comun:

I =iin
1V 2 | ~(=h1 A —62)
1= ¢2 | 791V P2
$13FUP2 | 13U 00) P2
01 VUP2 | $1YU[0,00) P2

IOed | TUso
VOop | TVUs
300 306,000 0
VOP | V0,00)9
VOp | 230—¢
J0¢ | -VO-d

Semantica de TCTL

Las férmulas TCTL se interpretan sobre el sistema de transiciones etiquetadas (Q4,—), generado por
un autémata temporizado A = (S, X,%, A,Z,sq), y una funcién P : PROPS — 25, que asocia a cada
proposicién un conjunto de locaciones de .A. Diremos que un modelo TCTL es una tupla (Q 4, —, P).

Intuitivamente, las proposiciones se usan para nombrar conjuntos de locaciones del autémata (por ejemplo:
el conjunto de las locaciones donde “el sistema esta inestable”).

El operador ¢ indica posibilidad, es decir, estando en un estado ¢, 3{ ¢ significa que hay alguna evolucién (que
parte desde q) en la que eventualmente vale ¢, V{¢ significa que para toda evolucién desde g, inevitablemente
vale ¢. Al agregar a la férmula un intervalo 6 se expresa posibilidad acotada: es posible pero ademas dentro
de cierto intervalo.

El operador [J indica necesidad, es decir, estando en un estado ¢, 30¢ dice que hay alguna evolucién que
parte de g en que siempre vale ¢, V(J¢ dice que en todas las evoluciones que parten de g, siempre vale ¢.

La férmula ¢ 3¢, dice que existe una evolucién tal que en alglin momento vale ¢, y, hasta ese momento, vale
siempre ¢;. Analogamente, ¢;Vl¢s dice que para toda evolucién vale la propiedad anterior. Nuevamente,
al agregar un intervalo 6 a la férmula se restringe el momento en el tiempo en el cual puede valer ¢2. Por
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ejemplo, ¢13Uy¢ indica que para alguna evolucién, existe un prefijo finito cuya duracién respeta 0, tal que
al final del mismo vale ¢2 y ¢; vale en todos los estados intermedios. A continuacién definimos formalmente
la seméantica de TCTL.

Dado un modelo M = (Q 4, —,P), una férmula TCTL ¢, y un estado q € Q 4, definimos inductivamente la
relacién g x4 ¢ de la siguiente manera: '

g Epm T siempre

¢ Fm D si ¢® € P(p)

g Fm ¢ sigFm @

g Fm O1AP2 SigFm b1y qFMm @2

g Fm d13Uspo  siexiste r € Ry(A) tal que

= Ekenry TkhM ¢2yTr(k)69y
Vk' € IL,., kK < k, T Eapq 071 0 (Tkl Em 2y T,-(kl) € 0)
q Fm $01VlUpgpe sipara todo r € Re°(A),
Jkell,, reFm o2y (k) €by
Vk' € j | K < k, T Epmq 01 O (’I‘k/ Em by T,-(k’) € 0)

Diremos que un estado ¢ satisface una férmula TCTL ¢ (con respecto a un modelo M) si y sélo si g Fq ¢.
Usaremos directamente la notacién ¢ £ ¢ cuando quede claro por contexto a qué modelo nos estamos
refiriendo.

Dada una férmula TCTL ¢ y un modelo M, llamaremos [|¢|| s al conjunto caracteristico de ¢, es decir, al
conjunto de estados del modelo que satisfacen ¢. Diremos que un autémata temporizado A satisface una
férmula ¢ cuando todos sus estados lo hacen y lo notaremos A E 4 ¢. Nuevamente, usaremos las versiones
abreviadas [|¢|] y A F ¢ cuando quede claro por contexto a qué modelo nos estamos refiriendo.



Capitulo 3

Patrones de eventos

En este capitulo presentamos los patrones de eventos. Empezaremos por describir informalmente la notacién
gréfica de los patrones y después formalizaremos la sintaxis y seméntica de los mismos.

La presentacion estard dividida en tres partes: primero introduciremos los conceptos bdsicos referentes a
patrones de eventos y definiremos formalmente los patrones de eventos no temporizados. En segundo lugar,
presentaremos una versién temporizada de los patrones béasicos. Finalmente, extenderemos los patrones
temporizados para soportar los conceptos de principio y final de ejecucién de los cuales hablaremos més
adelante. Esta presentacién incremental tiene por objetivo la simplificacién de las definiciones y demostra-
ciones. Sin embargo, en los préximos capitulos cuando nos refiramos a “patrones de eventos” nos estaremos
refiriendo a la versién que incluye los conceptos bésicos y todas las extensiones.

3.1 Patrones bdsicos

Los patrones bésicos de eventos son grafos dirigidos y aciclicos de puntos. Los puntos representan la ocurren-
cia de algin evento y deben estar etiquetados por uno o méas simbolos de un alfabeto X que representa a los
eventos posibles en el sistema. Las flechas que unen los puntos representan las restricciones de causalidad
entre los puntos (en el sentido de “debe ocurrir antes que”).

Por ejemplo:

c d
!

representa una ocurrencia del evento d, precedida por una ocurrencia del evento ¢ y ésta tltima a su vez
precedida por las ocurrencias de a y b. Dado que a y b no estdn unidos por ninguna flecha, dichos eventos
pueden ocurrir en forma concurrente o secuencial pero sin importar el orden.

Cuando un punto estéd etiquetado por mds de un evento, el punto puede representar la ocurrencia de cual-
quiera de esos eventos. Dos puntos etiquetados con el mismo evento corresponden a dos ocurrencias distintas
del mismo evento. Por ejemplo:

b

b,c

. .
® > o > ®

corresponde a dos ocurrencias del evento a en la misma ejecucién, seguidas por una ocurrencia de b o de c.
Las flechas simples, como las usadas hasta el momento, permiten expresar que alguna ocurrencia de un
determinado evento debe estar seguida de alguna ocurrencia de otro evento. El patrén:

28
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a b
e— ———peo

representa alguna ocurrencia de a seguida de alguna ocurrencia de b. Si se quiere forzar a que la ocurrencia
de b sea la primera después de alguna ocurrencia de a, entonces se puede agregar una marca de primera
ocurrencia en el extremo mas préximo a la cabeza de la flecha. El patrén:

a b

[

representa alguna ocurrencia de a seguida por la primera ocurrencia de b. Si se quiere restringir ain mds
el patrén forzando a que la ocurrencia de a que precede a b sea la iltima, entonces se puede agregar una
marca de ultima ocurrencia en el extremo més préximo a la cola de la flecha. El patrén:

- a b

o6 —¢—>—PH o

representa alguna ocurrencia de a seguida por la primera ocurrencia de b, de forma tal que entre ambos
momentos de la ejecucién no haya ninguna otra ocurrencia de a. Llamaremos marcas de consecutividad a las
marcas de primera ocurrencia y ultima ocurrencia. Cuando sea necesario identificar univocamente a alguno
de los puntos de un patrén, se les podra asociar un nombre o identificador usando el operador a:

e

o> e R
o> e o

identifica al punto de la izquierda con el nombre ‘p’ y al punto de la derecha con el nombre ‘q’.

Los patrones se interpretan sobre una ejecucién asociando cada punto del patrén con una posicion de la
ejecucién. En el caso de los patrones bésicos, las ejecuciones estardn modeladas como secuencias de eventos.
Cuando asociemos un punto a una posicién de la ejecucién diremos que estamos marcando dicha posicién.
Los puntos sélo puede ser asociados con posiciones que contengan uno de los eventos que los etiquetan. Al
marcar los puntos sobre la ejecucién se deberd respetar la precedencia de los puntos, asi como también las
restricciones asociadas a los distintos pares de puntos del patrén. Diremos que una ejecucién satisface un
patrén si existe al menos una manera de marcar todos los puntos del patrén sobre la secuencia. En general,
cuando una ejecucién satisfaga un patrén, existirdn muchas formas distintas de marcar los puntos sobre la
ejecucién. A cada una de estas formas la llamaremos matching.

Por ejemplo, dada la ejecucién:

o: a a ¢c a b b

existen 6 matchings distintos entre Patrén 3.1 y o:

p q
! l
[a] a ¢c a b [b]

p q
l l
[a] a ¢ a [b] b
p q
! !
a [a] ¢ a b [b]
p q
! !
a [a] c a [b] b



CAPITULO 3. PATRONES DE EVENTOS

o> e 9
o> e o

Patron 3.1: Evento a seguido por el evento b

o> e
o e o

Patrén 3.2: Evento a seguido por el primer evento b

o> e
ap e o

Patrén 3.3: Ultimo evento a antes del primer evento b

o> o
ar e !

Patrén 3.4: Evento b seguido por el evento a

p—q: ef

Patrén 3.5: Ejemplos de las distintas formas de escribir restricciones
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p q
l !

- [a] a ¢ a [b] b
p q
! !

a [a] c a [b] b
P q
14

a a c [a] [b] b

Y para el Patrén 3.4 no existe ninguno.

Los patrones de eventos permiten asociar restricciones a cada par de puntos del patrén. Al marcar un par
de puntos de un patrén sobre una ejecucién, queda determinado univocamente un segmento de ejecucién o
subejecucion. Es sobre dicho segmento sobre el cual se interpretan las restricciones asociadas al par. Los
patrones bésicos admiten un tnico tipo de restricciones: las restricciones de eventos. Estas restricciones
limitan los eventos que pueden ocurrir en el tramo de ejecucién correspondiente. Las restricciones pueden
anotarse directamente sobre los ejes del patrén o pueden documentarse usando los identificadores de puntos.
Si el diagrama no resulta muy confuso, es posible anotar una restriccién entre eventos no relacionados
causalmente uniéndolos con una linea punteada y asociando a esa linea la restriccién. Por ejemplo, el
Patrén 3.5 muestra las tres formas de escribir las restricciones de eventos. Entre a y ¢ se prohibe el evento
e; entre a y b se prohiben otras ocurrencias de a y b y entre ¢ y d se prohiben los eventos e y f, tal como
indica la restriccién documentada debajo del patrén.

Los patrones 3.2 y 3.3 muestran casos particulares de restricciones de eventos donde los eventos prohibidos
en la subejecucién son los asociados a los extremos de las flechas. Es decir, las marcas de consecutividad son
abreviaturas de restricciones de eventos. La Figura 3.1 muestra la relacién entre las marcas de consecutividad
y la versién equivalente escrita usando restricciones de eventos.
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a b a b
b

PR ———— . [pm————

a b a b
a

L I e e ——————H o

a b a b
a,b

e —¢—— > 3o e—  — —_»e

Figura 3.1: Relacién entre las marcas de consecutividad (columna izquierda) y las restricciones de eventos
(columna derecha)

3.1.1 Sintaxis formal

Definicién 3.1.1. Patrones de eventos bésicos.
Un patrén de eventos bdsico P es una tupla P = (X, P, ¢, —,~) donde:

e 3 es un conjunto finito de eventos

e P = E I es un conjunto finito de puntos, particionado en un conjunto E = {ej,ez,...,€,} y un
conjunto I = @'

e {: E — 2% es una funcién que etiqueta los puntos de E asignandoles un conjunto no vacio de eventos.

e — es una relacién de causalidad incluida en P x P.

La clausura transitiva de — debe definir una relacién de orden parcial <p entre los elementos de P.
Es decir,

Dados dos puntos x,y € P, diremos que x y y estan causalmente relacionados (con respecto a un patrén
de eventos P) si x <p y.

Cuando quede claro por contexto a qué patrén nos estamos refiriendo, usaremos < en lugar de <p.

e 7 es una funcién:
vy:PxP—2%

tal que para todo par X, y, v(x,y) = ¥(y, x), que asocia a cada par de puntos una restriccién de eventos.

El conjunto P representa el conjunto de puntos de un patrén bésico. Segun la definicién, este conjunto
esta particionado en E e I. Los puntos que mostramos en la representacién grafica de los patrones bésicos
pertenecen exclusivamente a la clase E y decimos que representan ocurrencias de eventos. Los puntos de la
clase I no tienen representacion grafica para los patrones basicos y de hecho tampoco les asignaremos ningin
significado: este tipo de puntos tendrdn sentido cuando presentemos los patrones temporizados y se incluyen
en la sintaxis formal de los patrones béasicos sélo para facilitar las definiciones y demostraciones posteriores.
Dado que no tienen representacién gréafica ni semantica para los patrones basicos, asumiremos que para todo
patrén baésico, I = &.

LVer aclaracién a continuacién.
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Ejemplo. El Patrén 3.5 corresponde a la siguiente tupla:
P=(X,EUI ¢ —,~), donde:

Y ={a,b,c,d,e, f}

E = {p,q,r,s}

I=92

¢={p {c},qa— {d},r— {a},s— {b}}

—={p—q,r —p,s — p}

(p,p)— @ (p,a) = {e,f} (pr)—{e} (p,s)— @

_J @p)—{ef} (a9~ o (a,r)— @ (a,5) — @
(rnp)—{e} (rna)—o (n—o (r,s) — {a,b}
(s,p)— 2 (s,9) —» @ (s,r) = {a,b} (s,5)— @

Se puede ver que p y q conservan el nombre explicitamente mencionado en el patrén. Por otro lado, aunque
no es necesario identificar todos los puntos en la versién grafica de los patrones, si lo es en la versién textual.
Como dijimos antes, todos los puntos de la representacién gréafica del patrén corresponden a puntos en E
e I es vacio. Cuando no se explicite una restriccién de eventos entre un par de puntos se asumird que no
existe tal y por lo tanto el conjunto de eventos “prohibidos” es vacio.

3.1.2 Semdntica

Como vimos anteriormente, la seméantica de los patrones basicos se define sobre una ejecucién y utilizando
el concepto de matching. Intuitivamente, un matching representa una forma de asociar los puntos de un
patrén a posiciones de una ejecucién de forma tal de respetar el orden parcial entre los puntos, la funcién de
etiquetacién y las restricciones de eventos. Ademds, cada punto debe ser asociado a una posicién distinta
de la ejecucién.

Definicién 3.1.2. Matching bésico.
Dado un patrén béasico P = (X, P, £, —, ), una ejecucién ¢ sobre £ y un mapeo? °: P Il , decimos que *
es un matching bdsico entre ¢ y P sii verifica las siguientes condiciones de validez:

M1 VxeE, ¢E€{x)
M2 Vx,y€P, x<py = x<y (* mondtono creciente)
M3 Vx,ye P, X<y = x5 Nv(xy) =92

La condicién M1 exige que los puntos sean marcados respetando la funcién de etiquetacién £. Como dijimos
antes, los puntos de E corresponden a ocurrencias de eventos. La condicién M2 pide que se respete el orden
de causalidad o de precedencia de los puntos, que en caso de los patrones basicos corresponden tnicamente
a ocurrencias de eventos. Dado que la condicién estd expresada como una implicacién, si dos puntos no
estan causalmente relacionados, entonces no habra ninguna restriccién en cuanto al orden en que deben ser
marcados. Finalmente, la condicién M3 pide que se cumplan las restricciones de eventos asociadas a todos
los pares de puntos del patrén. Notar que la condicién M3 no incluye el caso de un punto x con si mismo.
Esto es porque sélo tienen sentido las restriccién de eventos definidas entre puntos distintos. Por otro lado,
dado que la funcién v debe ser simétrica (y(x,y) = 7(y,X)) y * es una funcién inyectiva, la condicién M3
alcanza para garantizar que se cumplan todas las restricciones de eventos.

Definicién 3.1.3. Satisfaccién de patrones bésicos.
Dado un patrén basico P = (X, P, ¢, —,~), una ejecucion ¢ sobre ¥ verifica o satisface P (notado s E P) sii
existe al menos un matching bésico entre ¢ y P.

Como ya vimos anteriormente, si una ejecucién satisface un patrén, en general hay mds de un matching
entre los puntos del patron y la ejecucién.

2Diremos que una funcién f: A — B es un mapeo si es una funcién total e inyectiva.
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Lenguaje de un patrén bésico

Definicién 3.1.4. Lenguaje de un patrén bésico
Dado un patrén bésico P, llamaremos lenguaje de P al conjunto

LP)={s|sEP y [s] =00}

Como adelantamos cuando introdujimos las ejecuciones, preferiremos las ejecuciones infinitas dado que per-
miten modelar sistemas cuyas corridas nunca terminan (sistemas reactivos) y permiten simular el comporta-
miento de sistemas cuyas corridas si terminan, extendiendo las ejecuciones con infinitos \’s al final. Si una
ejecucion satisface un patrén, esa ejecucién o alguna equivalente pertenecerd al lenguaje del patrén.

Muchas veces, un patrén de eventos hara referencia explicita a un nimero relativamente pequefio de eventos
de un sistema. Es decin el alfabeto de eventos del patrén podria ser un subconjunto propio del alfabeto de
eventos del sistema. Sin embargo, desde el punto de vista formal, para decidir si una ejecucién satisface un
patrén, ambos deben estar definidos sobre el mismo alfabeto. Ahora bien, resulta mas o menos claro que si
un patrén no menciona a un determinado evento (es decir, no figura como etiqueta de ninglin punto ni como
restriccién de eventos entre ningin par de puntos), entonces ese evento no es relevante para el patrén. Da
lo mismo que haya ocurrido o que no lo haya hecho. Quiere decir que podriamos filtrar todos los eventos
“desconocidos” para el patrén reemplazdndolos por A’s y eso no afectaria la satisfaccién del patrén. Usando
esta estrategia definimos el concepto de lenguaje ampliado de un patrén de eventos que permite trabajar con
un alfabeto mds rico que el del patrén.

Definicién 3.1.5. Lenguaje ampliado.
Dado un patrén bésico P = (%, P, ¢, —,7), y un conjunto ¥’ tal que ¥ C ¥, definimos:

Ls/(P)={csobre &' | s[sEP}

Propiedades de la satisfaccién de patrones béasicos

A continuacién enunciamos dos propiedades de la satisfaccién de patrones que resultardn de suma importancia
para la generacién de autématas temporizados que acepten el lenguaje de un patrén bésico.

La primera propiedad dice que si una ejecucién finita satisface un patrén bésico, entonces cualquier extensién
de la misma, sea finita o infinita, también lo hace. Esto quiere decir que si un prefijo finito de una ejecucién
satisface un patrén bésico, es condicién suficiente para generalizar el resultado a toda la ejecucién.

La segunda propiedad es, de alguna manera, complementaria con la anterior. Esta propiedad dice que si una
ejecucién (finita o infinita) satisface un patrén, entonces existe un prefijo finito de la misma que también lo
hace. Es decir, que un prefijo finito de una ejecucién satisfaga un patrén bésico es condicién necesaria para
que la ejecucién completa lo haga.

En ambos casos, las demostraciones se basan en el hecho de que los patrones predican sobre finitos puntos
de una ejecucién y sobre los segmentos de ejecucién entre estos. Quiere decir que siempre va a existir un
“iltimo” punto (es decir, un punto que estd marcado en una posicién mayor a las de todo el resto) y los
eventos mas alld de ese punto no seran relevantes para el patrén. Es por eso que la decisién de la satisfaccién
de un patrén bésico siempre se basa en prefijos finitos de la ejecucién. Las demostraciones completas estdn
en el Apéndice A, pigina 93. '

Propiedad 3.1. Clausura por extensiones. Dado un patrén bdsico P = (X, P, £, —,v) y una ejecucion finita
¢ sobre X, si ¢ =P entonces para cualquier ejecucién ¢’ sobre T, <’ E P.

Propiedad 3.2. Satisfaccion finita. Dado un patron bdsico P = (£, P,£,—,~) y una ejecucion g sobre X,
si. s F P entonces existe una posicion i € Il¢ tal que ;) F P.
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3.2 Extension: tiempo

La primera extensién sobre los patrones bédsicos que presentaremos agrega el concepto de tiempo a los patrones
y a las ejecuciones. Los patrones temporizados nos permitirdn definir restricciones temporales explicitas entre
puntos de un patrén y no sélo relaciones implicitas dadas por el orden en que deben ocurrir los eventos.
Para poder delimitar intervalos de tiempo arbitrarios, extenderemos el conjunto de puntos para agregar a
los puntos que representan eventos otros puntos que representen instantes en el tiempo.

Béasicamente, un patrén temporizado tiene dos tipos de puntos: los puntos “llenos” que representan la
ocurrencia de un evento (corresponden a los puntos de los patrones bésicos) y los puntos “huecos” que
representan instantes en el tiempo entre dos eventos. Ademads de las restricciones de eventos que permitian los
patrones basicos, los patrones temporizados permiten otro tipo de restricciones: las restricciones temporales.
Estas restricciones se definen asociando un intervalo de niimeros reales no negativos con extremos enteros
(ej: [0,6), (8,00), [7,9]) o como el complemento de uno de estos intervalos (ej: —[0,6), —(8, ), =[7,9]) a un
par de puntos. Intuitivamente, la separacién en el tiempo entre los dos puntos (al ser marcados sobre una
ejecucién temporizada) debe pertenecer al intervalo especificado. En los casos donde sélo se quiere expresar
una cota superior o inferior, se pueden usar las abreviaturas > n y < m, respectivamente. Como en el caso
de las restricciones de eventos, las restricciones temporales pueden ser anotadas directamente sobre el patrén
o documentadas usando los identificadores de puntos.

Los patrones temporizados se interpretan sobre ejecuciones temporizadas (definicién 2.1.5) y se extiende el
concepto de matching bdsico para incluir a los puntos huecos y a las restricciones temporales. Los puntos
llenos se marcan sobre la ejecucién de la misma manera que los puntos de un patrén bésico. Los puntos
huecos sélo pueden ser mapeados sobre posiciones que no representen ocurrencias de eventos, es decir, sobre
posiciones de la ejecucién que contefigan \. La duracién de las subejecuciones determinadas por todo par
de puntos deben pertenecer al intervalo asociado como restriccién a ese par. Si no hay ningin intervalo
asociado, se asume [0, cc), es decir, cualquier duracién.

Dada la ejecucién temporizada:

15 3 36 41 45 58
El Patrén 3.6 determina los siguientes matchings:

P q
i 1
a a ¢ a b b
1.5 [3] 3.6 4.1 [4.5] 5.8
p q
2 1
a a (] a b b
1.5 3 3.6 4.1 4.5 [5 8:!
p q
1 !
a a c a [ b :| b“
1.5 3 3.6 4.1 4.5 5.8

debido a que son los tnicos en las cuales la ocurrencia de a asociada p y’urrencia de b asociada q estan
separadas por menos de 2 unidades de tiempo.
Por otro lado, para el Patrén 3.7 no existe ningin matching sobre esa ejecucién dado que la médxima sepa-
racién entre ocurrencias de a y b es de 4.3 u.t.

Como en el caso de las restricciones de los patrones bésicos, es posible asociar restricciones temporales entre
puntos no relacionados causalmente. Las restricciones se aplican sobre el segmento de ejecucion correspon-
diente, sin importar en qué orden se marquen los puntos sobre la ejecucién. Para asociar restricciones a
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Patrén 3.6: Evento a separado del evento b por menos de 2u.t.

[5,8)

Patrén 3.7: Evento a separado del evento b por mas de 5u.t. y por menos de 8u.t.

eventos no relacionados, se puede dibujar una linea punteada entre ambos y decorar esa linea con las res-
tricciones. Por ejemplo, el Patrén 3.8 indica que la ocurrencia de a y de ¢ (sin importar cual ocurra primero
y cual después) no deben estar separadas por més de 1 unidad de tiempo. Este patrén, interpretado sobre
nuestra ejecucién ejemplo admite los siguientes matchings:

P g
1 1
s

a c
@~ @
N <1 A
P q

Patrén 3.8: Ejemplo de restricciones temporales entre puntos no relacionados causalmente
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3.2.1 Sintaxis formal

Una restriccion temporal es una férmula ¢ con la siguiente forma:

pu=6|-0
donde § € JIN es un intervalo de nimeros reales positivos con extremos enteros (definicién 2.4.1). Son
ejemplos de restricciones temporales: [0,6), (8, 00), [7,9], =[0,6), (8, cc), —[7,9].

Llamamos @ al conjunto de todas las restricciones temporales construidas de esta forma.

Dado t € R" y una restriccién temporal, definimos inductivamente la relacién = como:
tEo sii teb
tE-0 sii tE0

donde 6 € Jn. Diremos que t satisface una restriccién temporal ¢ sii ¢ £ ¢. Por ejemplo: dado el intervalo
0=1[7,9;45E0,7TE0,9.1¥ 0,y 3= -0 y 100 F —6.

Definicién 3.2.1. Patrones de eventos temporizados.

Un patrdn de eventos temporizado es una tupla P = (X, P, £, —,~, ) donde:
e ¥ es un conjunto finito de eventos
e P es un conjunto finito de puntos particionado en los conjuntos E = {e1,ea,...,en} e I = {i1,iz,...,im}
o /: E — 2% es una funcién que etiqueta los puntos de E asignandoles un conjunto no vacio de eventos.

e — es una relacién de causalidad incluida en P x P.

La clausura transitiva de — debe definir una relacién de orden parcial <p entre los elementos de P.
Es decir,

=<p=(—=)*

e 7 es una funcién:
v:PxP—2%

tal que para todo par x, y, 7(x,y) = ¥(y,x), que asocia a cada par de puntos una restriccién de eventos.

0 es una funcién que a cada par de puntos le asocia una restriccién temporal.
Formalmente, § es una funcién 6 : P x P — &, donde para todo x, y, §(x,y) = d(y,X).

Como podemos ver, las diferencia entre patrones basicos y temporizados son que el conjunto I es no vacio y
el agregado de la funcién §. Esta tltima asocia a pares de puntos una restriccién temporal. El conjunto de
puntos E corresponde a los puntos “llenos” y el conjunto I corresponde a los puntos “huecos”.

Ejemplo. El Patrén 3.9 corresponde a la siguiente tupla: P = (X, EU I, ¢, —,~,d), donde:

Y ={a,b,ce f}
E= {p,l’,S}
I'={q}

t={p— {c},r— {a},s— {b}}

—={p—q,r—p,s—p}

(p,p)— @ (p,q) = {e f} - {6} (p,s) =
s (a,p) = {e, f} (a,9) (q,) (QS)HZ
(r,p) = {e} (na)— @ (r,r (r,;s) — {a b}
(s,p) = (s,q) — @ (s, r)'—*{a b} (S
(p,p) = [0 o) (p, Q) (5,00) (p,r) = [0,00) (p,s oo)
s=J (@ p) (5,00) (g,q) = [0,00) (a,r) > [0,00) (q,S) [0 o)
(r,p) = [0,00) (r, Q) [0,00) (r,r) = [0,00) (r,s)+ —(2,5]
[ (5,p) = [0,00) (s5,0) = [0,00) (s,r) = ~(2,5] (s,5)+ [0,00)
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\

f c

-(2,5]} ° ——_—pe'{ o
: A >5 A
Y/ P q
°

Patrén 3.9: Ejemplo de patrén temporizado

Como mencionamos antes, los patrones basicos son un caso particular de patrones temporizados. Todo
patrén bésico de la forma P = (X, P,¢,—,7), es equivalente al patrén temporizado P’ = (X, P,¢, —,v,9),
donde §(x,y) = [0,00) para todo par de puntos x,y € P.

3.2.2 Semantica

La semaéntica de los patrones temporizados se define en funcién de ejecuciones temporizadas. Las condiciones
para que un mapeo sea un matching en el caso temporizado incluyen a las de los patrones bésicos més dos
nuevas.

Definicién 3.2.2. Matching temporizado.

Dado un patrén de eventos temporizado P = (X, P, ¢, —,~,d), una ejecucién temporizada o = (5,7) y un
mapeo - : P II,, decimos que ° es un matching temporizado entre o y P sii verifica las condiciones M1-M3
ademas:

MT1 VWxel, G =A
MT2 Wx,y€ P, x<y = A7) Fo(x,y)

La condicién MT1 indica que los puntos huecos sélo pueden mapearse en posiciones de la ejecucién que
correspondan a instantes en el tiempo: es decir, a posiciones que contengan A. La condicion MT2 exige que
se cumplan todas las restricciones temporales entre todo par de puntos del patrén. Como era de esperarse,
no tiene ningun significado una restriccién temporal definida entre un punto x y si mismo. Ademas, dado
que J es simétrica (d(x,y) = d(y,x)) y * es inyectiva, la condicién MT2 alcanza para garantizar que valen
todas las restricciones entre todos los pares de puntos.

Definicién 3.2.3. Satisfaccién de patrones de eventos temporizados.
Una ejecucién temporizada o satisface un patrén de eventos temporizado P (notado como o F P), sii existe
un matching temporizado entre o y P.

Como antes, si una ejecucién temporizada satisface un patrén, en general existirda mas de un matching
temporizado entre el patrén y la ejecucién.

En este caso, a diferencia de lo que ocurria con las ejecuciones de los patrones bésicos, dos ejecuciones
temporizadas equivalentes podrian diferir en cuanto a la satisfaccién de un patrén temporizado. Observemos
el siguiente ejemplo.
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a

a
e—  — o
A TR A
P q

Patrén 3.10: Ejemplo de patréon temporizado con instantes

Ejemplo. Sea P el Patrén 3.10, que pide que desde alguna ocurrencia de a haya intervalo de por lo menos
1 u.t. y a lo sumo 2 u.t. de duracién sin mas ocurrencias de a. Dadas las ejecuciones:

. a a c a b b
= 01 = (15 3 36 41 45 58
o . A adXa ¢ XA a b A b A
2 = 0.2 2 3 3 3.6 4 4.1 4.5 5.7 5.8 6.099

claramente o; = 0y dado que tienen los mismo eventos, ocurridos en el mismo instante de tiempo. Sin
embargo o ¥ P porque el punto q no puede ser asociado con ninguna posicién de la ejecucién y P admite
al menos 4 matchings sobre os:

5

A a A
02 2 3

a
] 3 36 4 41 45 57 58 6.099
p

4.1 45 3.7 58 6.099
A a A a c A a b A b A
0.2 2 3 3 36 4 4.1 4.5 5.7 5.8 6.099

A a A a c A a b A b A
02 2 3 3 36 4 4.1 45 57 58 6.099

Es facil ver que si un comportamiento del sistema cumple una propiedad expresada por un patrén de eventos,
entonces existe una forma de intercalar A en cualquier ejecucién temporizada que lo represente de forma tal
de que exista al menos un matching entre el patrén y la ejecucién. Quiere decir que si necesitdramos decidir
para un comportamiento puntual si verifica o no una propiedad dada por un patrén temporizado, deberiamos
analizar las infinitas ejecuciones equivalentes que representan a dicho comportamiento. Sin embargo, en el
contexto de este trabajo sélo nos interesara resolver problemas expresados como “vacuidad” de lenguajes, y
por lo tanto nos resulta suficiente la nocién de satisfaccién a nivel ejecuciones.

Lenguaje de un patrén temporizado

En el caso de los patrones bésicos, exigimos que las ejecuciones que formaran parte del lenguaje del patrén
fueran infinitas. En el caso de los patrones temporizados vamos a pedir, adem4s, que sean ejecuciones diver-
gentes (definicién 2.1.7). Esto nos permite modelar el progreso del tiempo m4s alld de cualquier constante
real.



CAPITULO 3. PATRONES DE EVENTOS 40

Definicién 3.2.4. Lenguaje de un patrén temporizado
Dado un patrén temporizado P, llamaremos lenguaje de P al conjunto

L(P)={c|cEP y o esdivergente}
Adaptamos de forma natural el concepto de lenguaje ampliado, presentado para patrones bésicos, a patrones

temporizados:

Definicién 3.2.5. Lenguaje ampliado.
Dado un patrén temporizado P = (X, P, ¢4, —,~,6), y un conjunto ¥’ tal que ¥ C ¥, definimos:

Ls/(P)={osobre X | olgEP}

Propiedades de la satisfaccién de patrones temporizados

Las propiedades de la satisfaccién de patrones basicos también valen para los patrones temporizados. Quiere
decir que siempre alcanza con analizar los prefijos finitos de una ejecucién temporizada para decidir si la
misma satisface o no un patrén temporizado.

Propiedad 3.3. Clausura por eztensiones. Dado un patrén P = (X, P,£,—,~,8) y una ejecucion finita o
sobre X, si 0 &= P entonces para cualquier ejecucion o’ sobre ¥, oo’ E P.

Propiedad 3.4. Satisfaccion finita. Dado un patrén temporizado P = (X, P,¢,—,v,8) y una ejecucion
temporizada o sobre X, si o E P entonces existe una posicion i € I1, tal que o) FP.

3.3 Extension: principio y final

La segunda y tltima extensién que presentaremos consiste en permitir mencionar en forma explicita el
comienzo y el final de una ejecucién. Sin esta extensién no seria posible expresar propiedades de la forma:

“Desde el comienzo de la ejecucion y hasta la ocurrencia del evento a no ocurre el evento b’
Se puede hacer referencia explicita al comienzo de la ejecucién utilizando el punto distinguido:

Por otro lado, se puede hacer referencia explicita al final de la ejecucién utilizando el punto distinguido:

®

Tanto el punto inicial como el punto final no son considerados puntos propios de una ejecucién. Es decir,
el punto inicial representa el “momento anterior” a que comience la ejecucién y el punto final representa
el “momento después” de que termine la ejecucién. Dado que trabajaremos mayormente con ejecuciones
infinitas, en esos casos el punto final debe ser interpretado como una especie de limite. Todos los puntos
tienen una relacién de precedencia implicita con respecto al punto inicial y al punto final.

Con el agregado del punto inicial y el punto final se pueden expresar cuatro de los scopes mas comunes segin
[DAC98]: global, before, after y between. La Figura 3.2 muestra una descripcién de cada uno de estos
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Global F — En toda la ejecucion
) a ) Desde el principio de la ejecucidn
Before a i ! 1 hasta la primera ocurrencia de a
a | Desde la primera ocurrencia de a
L
After a F 1 1 hasta el final de la ejecucién
- a b
Between a and b ; { 4 - Entre los eventos a y b

Figura 3.2: Scopes mas comunes

global:

® - O] .

before a:
a a [~ a
O——— = > »e ) —> e >0
after a:
a & a c
o e NO — i
between a and b:
a b a b c b
[] —c—)—-} ° °

Figura 3.3: Patrones de eventos representando la ausencia (columna de la izquierda) o la ocurrencia (columna
de la derecha) de un evento ¢ en cada uno de los distintos scopes.
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scopes y la Figura 3.3 muestra ocho patrones que expresan la ausencia y la ocurrencia de un evento c en
cada uno de los distintos scopes.

Estos nuevos patrones permiten asociar restricciones entre el punto de comienzo y el resto de los puntos
y entre cualquier punto y el punto de final. El tinico caso que no estd permitido es definir restricciones
temporales entre un punto y el punto final. Esto es asi porque en general trabajaremos con ejecuciones
temporizadas infinitas y divergentes y en esos casos no tendria sentido acotar la duracién de un sufijo de la
ejecucion.

Se pueden componer todos los conceptos presentados hasta el momento para expresar patrones mas complejos
como por ejemplo:
a
b
- —  b»oe
. [1,2)

indica que debe ocurrir a después de transcurrida 1 unidad de tiempo y antes de que transcurran 2u.t. desde
el comienzo de la ejecucién y, ademds, no debe haber ninguna ocurrencia de b antes de dicha a.

a

b,c
. ®

indica que a partir de la iltima ocurrencia de a en la ejecucién, no debe haber ninguna ocurrencia de b ni
de c.

Como en el caso de los patrones temporizados, la semédntica de estos patrones se definird sobre ejecuciones
temporizadas usando una extensién apropiada del concepto de matching.

Con esta ultima extensién completamos la presentacién de los patrones de eventos y en adelante usaremos
ese nombre para referirnos a los patrones bésicos temporizados con punto inicial y punto final.

3.3.1 Sintaxis formal

Definicién 3.3.1. Patrones de eventos.
Un patrén de eventos es una tupla P = (X, P, £,—,~, 4,0, 00) donde:

e 3 es un conjunto finito de eventos

e P = EWI es un conjunto finito de puntos, particionado en un conjunto E = {ej,es,...,e,} y un
conjunto I = {iy,i2,...,im}-

e 0 es un punto distinguido que representa el comienzo de una ejecucién
e 00 es un punto distinguido que representa el final de una ejecucién

e /: E — 2% es una funcién que etiqueta los puntos de E asignindoles un conjunto no vacio de eventos
incluido en X

e — es una relacién de causalidad incluida en PU{0,cc} x PU{0,cc}. Como en el caso de los patrones
temporizados, definimos:

~<p debe ser un orden parcial sobre los elementos de P U {0,c0} y ademds, 0 debe ser el infimo de la
relacién, es decir:
VxeP, 0<px

y oo debe ser el supremo de la relacién, es decir:

VxeP x<o©
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Patrén 3.11: Ejemplo de patrén de eventos

e 7 es una funcién:
v:PU{0,00} x PU{0,0c} — 2%

donde para todo x,y € P U {0,000}, 7(x,y) = 7(y,x), que asocia a cada par de puntos una restriccién
de eventos.

e J es una funcién que a cada par de puntos le asocia una restriccién temporal.

Formalmente, § es una funcién 6§ : PU {0} x P U {0} — @, donde para todo x,y € P U {0},
50, y) = 6(y,%).

Como se puede ver, los puntos de comienzo y fin de ejecucién se representan formalmente con los puntos
distinguidos 0 y oo, respectivamente. La relacién de causalidad y las restricciones de eventos se extienden de
forma tal de incluir a estos dos nuevos puntos. Como dijimos antes, no se permiten restricciones temporales
entre los puntos comunes y el co y ademds todos los puntos estdn relacionados causalmente con 0 y oo,
aunque no se explicite graficamente.

Ejemplo. El Patrén 3.11 corresponde a la siguiente tupla: P = (X, EU I, £, —,7,6,0,00), donde:

¥ ={a,b,ce}
E={p,q,r}
I=9

t={pw {a},q— {b},r— {c}}
—-={0—p,0—>q,p—r,q—r,r— 00}
(pp)—2  (pa)— 2  (pr)—{e} ( (p 00)*—*Q
(@p)—2 (a—2 (@nN—a (9,00) =
y=4¢ (p)—{e} (ra)»o (nN—o (n0)—a  (n 00)'—>{c}
(0,p) — {a} (0,9 —o@ (0,r)— 3 ( (0,00) — @
| (c0,p) =@ (00,9) =& (00,r) = {c} ( (00,00) > @
(p,p) = [0,00) (p,q)— [0,00) (p,r) = [0,00) (p,0)+ [0,00)
s={ (@p) = [0,00) (q, ) [0, 00) (q, r) 0,7  (g,0) ~ [0,00)
(r,p) — [0,00) (r,q) — [0,7] (r,r) — [0, oo) (r,0) — [0,00)
[ (0,p) = [0,00) (0,q) — [0,00) (o, r) — [0,00) (0,0) — [0, 00)
Es importante notar que la relacién de causalidad debe incluir suficientes pares de la forma 0 — x y x — oo

como para garantizar que O sea el elemento infimo de la relacién de orden parcial < y co sea el elemento
supremo de dicha relacién. Siempre es posible garantizar esto incluyendo todos los pares de esa forma.

Tal como buscdbamos, los patrones de eventos son una generalizacién de los patrones bésicos temporizados.
Todo patrén bésico temporizado de la forma P = (X, P,¢,—,v,0), es equivalente al patrén de eventos
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PI = <Z7 P7 ev —’1,7/,5',0, 00), donde:

—' = - U{0—x|x€ePtU{x— o |xe P}
g = TN SAYEP

%] en otro caso
5 = d(x,y) six,y€P

[0,00) en otro caso

3.3.2 Semantica

Una vez més, adaptamos el concepto de matching a los patrones de eventos.

Definicién 3.3.2. Matching.

Dado un patrén de eventos P = (X, P,{,—,~,6,0,00), una ejecucién ¢ = (5, 7) sobre ¥ y un mapeo
“: P+ II,, decimos que * es un matching entre o y P sii verifica las condiciones M1-M3 + MT1-MT2 y
ademas:

MI Wx€P, o3Ny(0,x)=92
MS WeP, oxNy(x,00)=02
MTI Vxe P, A(ry)F4(0,%)

Dado que los patrones de eventos son una extensién de los patrones bésicos temporizados que, a su vez, son
una extensién de los patrones bésicos, las condiciones que debe cumplir un mapeo para ser un matching entre
un patrén de eventos y una ejecucién temporizada incluyen a todas las dadas anteriormente més tres nuevas.
La primera y la segunda de las condiciones nuevas exigen que se respeten las restricciones de eventos entre
todos los puntos comunes y 0 y occ. De la misma manera que la condicién M3 predica sobre un segmento de
ejecucién delimitado por dos puntos, las condiciones MI y MS predican sobre segmentos de ejecucién que
constituyen prefijos o sufijos (respectivamente) de la ejecucién. Como era de esperarse, la dltima condicién
exige que se cumplan las restricciones temporales especificadas para los distintos prefijos de ejecucién.

Definicién 3.3.3. Satisfaccién de patrones de eventos.
Una ejecucién temporizada o satisface un patrén de eventos P (notado como o E P) si y sélo si existe algin
matching entre o y P.

Lenguaje de un patrén de eventos

Definicién 3.3.4. Lenguaje de un patrén de eventos
Dado un patrén de eventos P, llamaremos lenguaje de P al conjunto

L(P)={c|cEP y o esdivergente}

Definicién 3.3.5. Lenguaje ampliado.
Dado un patrén de eventos P = (%, P, £, —,+,4,0,00), y un conjunto ¥’ tal que ¥ C ¥’, definimos:

Ls:(P) = { o sobre O olsEP}
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Propiedades de la satisfaccién de patrones de eventos

Los patrones de eventos no son cerrados para extensiones como los patrones basicos y los patrones tempo-
rizados. Quiere decir que no es suficiente con que un prefijo finito de una ejecucién satisfaga un patrén de
eventos para concluir que toda la ejecucién lo hace. Observemos por ejemplo el siguiente caso:

. " @

Dada una ejecucién temporizada o, supongamos que existe un prefijo de o en el cual hay alguna ocurrencia
de a y ninguna de b. Dicho prefijo satisface el patrén de arriba. Sin embargo, el patrén exige que no haya
ninguna ocurrencia de b después de a en toda la duracién de la ejecucién. Es decir, no alcanza con analizar
ningin prefijo finito de la ejecucién. Si tuviéramos mas informacién sobre o y supiéramos que el prefijo
hasta cierta posicién satisface el patrén y en el segmento restante de ejecucién no hay ninguna ocurrencia de
b entonces podriamos concluir que toda la ejecucién satisface el patrén. Bésicamente, todas las condiciones
que debe cumplir un matching excepto MS predican sobre posiciones que pueden ser abarcadas por algin
prefijo finito de la ejecucién. Y dado que no se puede decidir si vale MS mirando ningiin prefijo finito, es
necesario contar con més informacién para poder hacerlo.

Dado un patrén de eventos P = (I, P, 4, —,7, 6,0, 00), llamaremos Lp al conjunto:

Lp = U 7¥(x, o)

xEP

Es decir, Lp representa el conjunto de eventos involucrados en restricciones de eventos que deben valer hasta
el final de la ejecucién. En particular, es necesario que ninguno de los eventos de ese conjunto ocurra en la
ejecucién mds alld del ltimo punto marcado para que la ejecucién satisfaga el patrén. Usando este conjunto,
enunciamos una versién mas débil de la propiedad de clausura por extensiones:

Propiedad 3.5. Clausura débil por extensiones. Dado un patrén de eventos P = (%, P, £, -—,v,6,0,00) y
una ejecucion temporizada finita o sobre X, si o F P entonces para cualquier ejecucion o’ = (s, 7) tal que
sNLp =9, oo’ EP.

Por otro lado, si supiéramos que una ejecucién temporizada satisface un patrén de eventos, es mas o menos
evidente que existird un prefijo finito de la misma que también satisface el patrén. El razonamiento es
similar al usado para los patrones bdsicos y los patrones temporizados. Sin embargo, sabiendo que la
ejecucién satisface el patrén es posible afirmar algo atin més fuerte: el complemento de dicho prefijo seguro
no contiene ningun evento del conjunto Lp.

Propiedad 3.6. Satisfaccion finita. Dado un patrén P = (X, E, £,—,,5,0,00) y una ejecucién temporizada
o sobre X, si o E P entonces eziste una posicion i € I, tal que o3 F P y, ademds, o; NLp = 2.

Como en los casos anteriores, las demostraciones completas de ambas propiedades se encuentran en el
Apéndice A.



Capitulo 4

Model-checking de patrones de mal
comportamiento

Habiendo presentado los patrones de eventos, vamos a enfocarnos ahora hacia el problema de verificacién de
propiedades en un sistema de tiempo real. Dado un sistema S modelado con un autémata temporizado Ag,
nuestro enfoque consistird en expresar casos en los que se viole un determinado requerimiento R utilizando
para ello patrones de eventos. Dado un requerimiento R, llamaremos P-g al patrén de eventos que captura
los comportamientos que violan R. Cuando usemos patrones de eventos exclusivamente para expresar com-
portamientos no deseados en el sistema, nos referiremos a ellos como patrones de mal comportamiento. Por
otro lado, cuando usemos el termino patrones de eventos nos estaremos refiriendo al formalismo en general,
sin denotar ningtin uso particular para los mismos.

En general, los requerimientos de un sistema representan una propiedad que deben cumplir todas las ejecu-
ciones de dicho sistema. Quiere decir que alcanza con encontrar una ejecucién que no cumpla esa propiedad
para concluir que el sistema viola el requerimiento. Dado que usaremos los patrones de eventos para descri-
bir los casos en los que se viola un requerimiento, alcanza con que una sola de las ejecuciones del sistema
satisfaga el patrén para concluir que el sistema es incorrecto (con respecto a ese requerimiento). Dado un
sistema S y un patrén de mal comportamiento P, diremos que S E P si y sélo si algin comportamiento de
S verifica el patrén. Dado que el sistema estars representado por Ag y los comportamientos del sistema por
ejecuciones temporizadas divergentes, diremos que S E P si y sélo si Ag F P, y a su vez, diremos que Ag E P
si existe una ejecucién en el lenguaje de Ag que pertenece al lenguaje de P. Llamaremos model-checking
de patrones de mal comportamiento al problema de determinar si dado un autémata temporizado A y un
patrén de mal comportamiento P, A E P.

En este capitulo demostraremos que el problema de model-checking de patrones de mal comportamiento es
decidible. Para esto, mostraremos que puede ser reducido a model-checking de autématas temporizados, que
se sabe decidible [HNSY92].

En primer lugar, expresaremos el problema de model-checking de patrones de mal comportamiento en funcién
de la vacuidad del lenguaje de un autémata de Biichi temporizado. Definiremos el concepto de autdmatas
reconocedores para cada uno de los tres tipos de patrones que introdujimos en el capitulo anterior. Los
autématas reconocedores seran, bésicamente, autématas temporizados que capturen el lenguaje de un patrén
de eventos. Dado un patrén de eventos P, su autémata reconocedor .Ap mds una condicién de aceptacién
de Biichi particular seran un tableau 7p para el patrén de mal comportamiento. Mostraremos que dado un
autémata temporizado Ag, que modela un sistema S, y un patrén de mal comportamiento P, decidir si vale
As E P se reduce a decidir si L(As ® Tp) # 2.

En una segunda etapa, mostraremos que decidir si £L(As ® 7p) # @ se puede reducir a verificar si el
autémata compuesto Ag||Ap satisface la férmula TCTL pgecept = tnit = 3O(30accept). Dado que este
ultimo problema es decidible, la verificacién de patrones de mal comportamiento también lo es.

46
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Para simplificar la presentacién, repetiremos el esquema incremental del capitulo anterior para presentar los
autématas reconocedores y demostrar la correccién y completitud de la construccién de los distintos tableaux.
Sin embargo, pasado ese punto trataremos unicamente la decidibilidad de model-checking de patrones de
mal comportamiento en su versién mds expresiva (es decir: patrones bésicos + tiempo + punto inicial y
final). Dado que los patrones basicos y los patrones basicos temporizados son casos particulares de patrones
de eventos, los resultados presentados en este capitulo serdn igualmente aplicables a esos casos.

Mas adelante veremos que los autématas reconocedores son mas que una construccién tedrica y que tienen
ademds una utilidad préctica. Presentaremos el pseudocédigo y la implementacién en Java de un algoritmo
para la construccién de autématas reconocedores para patrones de eventos. Este algoritmo serd la pieza
clave para la construccién del verificador de patrones diagramado en la Figura 1.5 del capitulo 1.

4.1 Autématas reconocedores

Empezaremos por definir el concepto de autématas reconocedores para cada uno de los tres tipos de patrones
presentados en el capitulo anterior. La construccién de los autématas reconocedores se basa fuertemente en
las propiedades de clausura por extensiones y de satisfaccién finita de los patrones de eventos.

Informalmente, la idea detrss de la construccién de los autématas reconocedores consiste en representar todas
las posibles formas de construir un matching para un patrén de eventos. Dada una ejecucién, el autémata
comienza a consumirla y para cada posicién, si pudiera ser matcheada con algiin punto del patrén?', decide
en forma no deterministica si lo hace o si saltea la posicién. El no determinismo de la decisién permite
capturar tanto el caso en que el autémata marca la posicidén y como el caso en que no lo hace y dado que esto
es asi para todas las posiciones de la ejecucidn, el autémata capturard todas las posibles formas de marcar
los puntos de un patrén. Si en algin momento el autémata descubre que no se puede completar el matching
(porque no puede ser marcado ningin otro punto més del patrén sin violar alguna restriccién), entonces se
aborta el proceso.

Las locaciones del autémata representardn cuantos (y cuales) de los puntos del patrén fueron marcados hasta
el momento. La condicién minima que debe darse para poder pasar de una locacién a otra es que la segunda
corresponda a marcar exactamente un punto mds que la primera. Es més o menos evidente que los puntos
deben ser marcados en algtin orden que respete el orden parcial determinado por el patrén. Si habiendo
consumido un prefijo finito de la ejecucién se viola esta propiedad, no habra forma de continuar marcando
puntos del patrén y que el mapeo obtenido pueda ser considerado un matching (recordemos que M2 exige
que los puntos sean marcados en un orden consistente con <). Para que un punto pueda ser marcado, deben
haber sido marcados con anterioridad todos sus predecesores. Utilizaremos el concepto de configuracién para
representar los puntos que han sido marcados hasta un cierto momento.

Dado un patrén de eventos (de cualquier tipo), la relacién de precedencia — del patrén determina (por
definicién) un orden parcial entre los puntos del patrén. Dado un punto x, diremos que otro punto y es
sucesor directo del primero si x — y. Andlogamente, diremos que y es predecesor directo de x si 'y — x.
Llamaremos suc(x) al conjunto de todos los sucesores directos de x y pred(x) al conjunto de todos los
predecesores directos de x.

Definicién 4.1.1. Configuracién. Dado un patrén de eventos basico P = (I, P, ¢, —,7), una configuracién
es un conjunto de puntos © € P cerrado a izquierda bajo <p. Es decir, © es una configuracién sii Vx &
O, pred(x) C ©. Llamaremos ©p al conjunto de todas las configuraciones de puntos de P.

Cada locacién del autémata tendrd asociada una configuracién y los puntos de la configuracién serén los que
fueron marcados hasta el momento. La locacién inicial del autémata correspondera a la configuracién @,
es decir, a no haber marcado ningin punto. Por otro lado, la locacién asociada a P corresponderd a haber
marcado todos los puntos del patrén. Dada una configuracién actual, marcar un nuevo punto del patrén
corresponderd a extender la configuracién.

'M4s adelante veremos en qué casos pueden ser matcheados un punto y una posicién.
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Patrén 4.1: Patrén basico

Definicién 4.1.2. Extensién de configuraciones.

Diremos que una configuracién © puede ser eztendida por x si © ¥ {x} es una configuracién. En ese caso
diremos, también, que © W {x} es una extension de ©.

Diremos que una configuracién puede ser ertendida si existe un x tal que dicha configuracién pueda ser
extendida por x.

Es fécil ver que sélo se puede extender una configuracién con un punto x si todos los predecesores de x ya
estaban en la configuracién.

Dada una cierta configuracién actual y habiéndose consumido un cierto prefijo finito de una ejecucidn,
icuando puede ser marcado un punto sobre la posicién actual de la ejecucién? En principio, deben cumplirse
las reglas que determinan con que tipo de posiciones puede mapearse un punto. Por ejemplo, los puntos
llenos de un patrén sélo pueden ser mapeados en posiciones que contengan alguno de los eventos que tienen
asociados (condicién M1) y los puntos huecos sélo pueden ser mapeados en posiciones que contengan A
(condicién MT1). El problema es cémo garantizar que al ir construyendo un matching de a un punto por
vez se respeten todas las restricciones. Analicemos el caso de las restricciones de eventos. Supongamos que
estamos trabajando con el Patrén 4.1 y que estamos analizando la ejecucién ¢ = a a ¢ a b b. El autémata
comienza en el estado:

configuracién: @&
queda por consumir: aacabb

El el primer paso, el autémata debe decidir si marca p sobre la primera posicién de la ejecucién o no.
Supongamos que elige marcarla. El autémata pasa al siguiente estado:

configuracién: {p}
queda por consumir: aca b b

Claramente, q no puede ser marcado sobre la segunda posicién porque q esté etiquetado con el evento b en
el patrén y la segunda posicién corresponde a evento a. Con lo cual, el autémata simplémente avanza esa
posicién de la ejecucién y pasa al estado:

configuracién: {p}
queda por consumir: ca b b

Nuevamente, q no puede ser marcado sobre la posicién actual. Mas atn, podemos afirmar que q no podra
ser marcado nunca porque entre p y q ya sabemos que al menos hubo una ocurrencia del evento prohibido
c. Quiere decir que el autémata debe abortar la construccién actual e intentar otra forma de marcar p.
Para saber si en un determinado momento es seguro saltear una posicién o no (con respecto al cumplimiento
de todas las restricciones de eventos), alcanza con que el autémata tenga en cuenta las restricciones que
existan entre puntos marcados y puntos que todavia no han sido marcados. Las restricciones entre puntos
ya marcados no son relevantes al analizar la préxima posicién de la ejecuciéon. Lo mismo ocurre con las
restricciones entre puntos que todavia no han sido marcados. Informalmente, diremos que una restriccién
se activa cuando uno de los puntos involucrados es marcado y se desactiva cuando se marca el segundo
punto. Si hubiéramos enriquecido el estado de nuestra “méquina generadora de matchings” con los eventos
correspondientes a restricciones activas, hubiéramos llegado al punto anterior en el siguiente estado:
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configuracién: {p}
restricciones activas: {c}
queda por consumir: ca b b
y como el préximo evento en la ejecucién es uno de los del conjunto de restricciones activas, hubiéramos

concluido que no habia forma de extender el matching. Después de varios reintentos, eventualmente la
maquina hubiera llegado al estado:

configuracién: @
restricciones activas: @
queda por consumir: a b b

y hubiera decidido marcar p sobre la posicién actual, pasando al estado:

configuracién: {p}
restricciones activas: {c}
queda por consumir: b b

y en este punto hubiera sido seguro marcar q sobre la siguiente posicién y hubiera dejado de haber restricciones
activas:

configuracién: {p,q}
restricciones activas: &
queda por consumir: b

(También hubiera sido posible que el autémata salteard la primera b y marcara q sobre la segunda. Estas
dos posibilidades constituyen los tinicos matchings posibles entre el patrén y la ejecucién).

Dada una configuracién ©, llamaremos I'(©) al conjunto de eventos correspondientes a restricciones activas
de los puntos de ©. Formalmente:

Definicién 4.1.3. Funcién I'.
Dado un patrén de eventos P (de cualquier tipo), donde « es la funcién que determina las restricciones de
eventos entre los puntos del patrén, definimos la funcién I" sobre configuraciones de puntos de la siguiente

manera:
r®e)=Jvxy)
x€EB
y¢O

Como dijimos antes, I'(©) es la unién de las restricciones de eventos para las cuales uno de los puntos ha
sido marcado (es decir, pertenece a ©) y el otro todavia no.

Supongamos que ademés de estar prohibido c entre p y q, q tenfa que ser la primera ocurrencia de b después
de p. Al marcar p sobre la cuarta posicién de la ejecucién, el autémata hubiera quedado en el siguiente
estado:

configuracién: {p}
restricciones activas: {b,c}
queda por consumir: b b
y hubiera llegado a la conclusién incorrecta de que q no podia ser marcado. Sin embargo, hubiera sido

correcto que se marcara q sobre la siguiente posicién. Por otro lado, no hubiera sido correcto que se salteara
la primera b y se marcara q sobre la segunda. Quiere decir que es distinto el conjunto de restricciones
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que hay que analizar para decidir si es seguro saltear un evento que para decidir si es seguro marcarlo.
Fundamentalmente, es necesario tener una nocién de a quién corresponden las restricciones que estan activas.
Dada una configuracién ©, definimos el conjunto I'y,(©) como el conjunto de eventos correspondientes a
restricciones activas, excepto las correspondientes al punto p. Formalmente:

Vp € P, T1p(©) = | 7(xy)
x€BQ

Y¢0
y#p

Una vez més, podriamos enriquecer el estado de nuestro autémata aclarando qué puntos son los que deter-
minan que cierto evento esté prohibido. En el ejemplo que venimos analizando, el autémata eventualmente
llegaria al estado:

configuracién: {p}
restricciones activas: {b:{q}, c: {q}}
queda por consumir: b b

Donde se ve claramente que b esta prohibido inicamente por q y por lo tanto puede ser marcado, aunque no
salteado. En este ejemplo, I'({p}) = {b,c} vy Toq({p}) = @.

4.1.1 Autdémata reconocedor para patrones basicos

Un autémata reconocedor para un patrén bésico tendrd una locacién por cada configuracién del patrén
més una locacién trampa distinta de las demds. Dada una configuracién ©, [©] representara a la locacién
asociada a ©. Estando en cualquier configuracién, el autémata puede decidir marcar un punto sobre el
siguiente evento de la ejecucién y cambiar de configuracién, saltear el siguiente evento y permanecer en la
misma configuracién o abortar la construccién del matching y pasar a la locacién trampa. Estando en la
locacién trampa, el autémata solo puede ciclar sobre esa misma locacién. Estas cuatro posibilidades seran
representadas con cuatro conjuntos de aristas disjuntos dos a dos: Mark, Skip, Fail y Trap, respectivamente.
El autémata no tendré ningin reloj dado que no hay restricciones temporales que chequear. Por otro lado,
los invariantes de todas las locaciones serdn trivialmente T. La locacién inicial serd [&], es decir la locacién
asociada a la configuracién vacia.

Definicién 4.1.4. Autémata reconocedor para patrones basicos.
Dado un patrén bésico P =(X,P,¢,—,v), Ap es un autémata temporizado de la forma
Ap = (5,X,%,A,Z, so) donde:

® (Locaciones) S = {[0] | © € ©p} U {Strap}, donde si,4p €s una locacién distinta de todas las demas.

Notacién. Llamaremos Sgccept = [P)]-

(Relojes) X = @

(Eventos) L4, = Zp

(Aristas) A = Mark U Skip U Fail U Trap, donde:

Mark = { (©],1,T,2,[04{e}]) | l€f(e) y | ¢Tse(©) }
Skip = { ([6e],., T,2,[8]) | 1eX y 1¢T(©) }
Fail = { (L, T,9, Strap) | 1eT(©) }
Trap = { (Strap:!, 7,9, Strap) | LEZ }

(Invariantes) Vs € S, I(s) =T

o (Locacién inicial) so = (2]
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Figura 4.1: Patrén bésico (a) y su autémata reconocedor (b)

Como vimos antes, para poder marcar un punto, el evento que ocupa la siguiente posicién de la ejecucién
debe ser uno de los que etiqueta al punto en el patrén. Ademds, para que sea seguro marcar el punto es
necesario que el préximo evento no corresponda a ninguna restriccién activa, més alld de las referidas al
punto que se quiere marcar. Por otro lado, siempre serd seguro saltear un evento que no viole ninguna
restriccién activa y siempre serd seguro abortar la construccién del matching al encontrar un evento que
viole alguna restriccién activa. Es claro que el autémata asi construido no es deterministico.

Ejemplo. Autémata reconocedor para un patrén bdsico.

La Figura 4.1 muestra un patrén bésico y su autémata reconocedor. La locacion sgccept se indica con un
doble borde. La arista que va de [q] a [p,q] por a es un ejemplo de arista Mark. La arista que va de [p,q] a
Strap POT € es un ejemplo de arista Fail. Los loops sobre [p] por todos los eventos menos e son ejemplos de
aristas Skip. Finalmente, los loops sobre s¢-, son ejemplos de aristas Trap.

Propiedades de los autématas reconocedores para patrones basicos
Analizaremos las propiedades de los autématas reconocedores para patrones basicos.

Observacién. En todo autémata reconocedor para un patrén bésico los conjuntos de aristas Mark, Skip,
Fail y Trap son disjuntos dos a dos.

Las aristas de cada uno de estos tipos se diferencian entre si con solo mirar sus extremos: las aristas
Mark van de una configuracién a otra que es una extensién de la primera, las aristas Skip son loops sobre
configuraciones, las aristas Flail van de una configuracién a la locacién trampa y las aristas Trap son loops
sobre la locacién trampa.

Propiedad 4.1. Dado un patrén bdsico P = (X, P,{,—,~) y su autémata reconocedor Ap = (S, X, X, A, Z, so),
sean © y ©' configuraciones de P. Si [0] = [0'], entonces toda evolucidn entre O] y [©'] tiene la forma:

(o], v0) =5 (O], v1) =5} . ([O:],ws) =7 ... =77 ([€nl,vn)

donde ©9 =0, ©, =©' ypara todo i, 0 <i<n,v; € Vx, a; ETU{A}, t; € R y ©;41 es igual a ©; o
es una extensiéon de ©;.
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La demostracién completa de esta propiedad se encuentra en el Apéndice A. Intuitivamente, esta propiedad
dice que las configuraciones no decrecen a lo largo de una evolucién sobre el autémata. Esto quiere decir
que o bien se marca un punto sobre la ejecucién extendiendo la configuracién actual o se saltea el siguiente
evento y se permanece en la misma configuracién. Nunca se “desmarca” un punto marcado. Las distintas
posibilidades que existen para marcar los puntos de un patrén sobre una ejecucién se capturan a través del
no determinismo del autémata reconocedor y no mediante un mecanismo de backtracking.

Como dijimos antes, el autémata reconocedor intenta construir un matching a medida que consume una
ejecucién. En todo momento el conjunto de puntos ya marcados esta dado por la configuracién asociada a la
locacién actual. El mapeo entre los puntos de la configuracién y la porcién de ejecucién ya consumida es una
especie de “matching a medio construir”. Formalizaremos este concepto definiendo la nocién de matching
bdsico parcial.

-

Definicién 4.1.5. Matching bésico parcial.

Dado un patrén bédsico P = (X, P,4,—,7), un conjunto de puntos C C P, una ejecucién ¢ sobre £ y un
mapeo * : C — II., decimos que * es un matching bdsico parcial entre ¢ y P restringido a C sii verifica las
siguientes condiciones:

MP1 VYxe ENC, & € £(x)
MP2 Vx,yeC, X<y = X<y
MP3 Vx,y € C, X<y = g NYXY) =2

MP4 VxeC,ye P\C, sxNvy(xy) =2

Como era de esperarse, las condiciones MP1-MP3 piden que el mapeo * verifique las condiciones de validez
restringidas al conjunto de puntos ya marcados. Esto es fundamental para que * pueda ser extendido
eventualmente hasta ser un matching béasico. La condicién MP4 pide, ademés que ninguna posicién de las
consumidas viole una restriccién activa. A partir del concepto de matching bésico parcial podemos definir
satisfaccion parcial.

Definicién 4.1.6. Satisfaccién parcial de patrones bésicos.

Dado un patrén bdsico P = (X, P,¢4,—,v) y un conjunto de puntos C C P, una ejecucién ¢ verifica o
satisface parcialmente P restringido a C (notado ¢ F¢ P) sii existe un matching bésico parcial entre ¢ y P
restringido a C.

Notar que cuando C = P, las condiciones MP1 - MP3 son idénticas a M1 - M3 y, ademas, la condicién
MP4 es trivialmente verdadera, con lo cual para cualquier patrén bédsico P y cualquier ejecucién g, ¢ E P
sii¢cEp P.

Si nuestro autémata reconocedor estuviera correctamente construido, quisiéramos que en todo momento la
porcién de ejecucion consumida satisfaga parcialmente el patrén, restringido a los puntos de la configuracién
actual. Si esto fuera asi, al marcar el dltimo punto del patrén podriamos garantizar que hemos construido
un matching. Llamaremos a esta propiedad Correccion del autémata reconocedor.

Propiedad 4.2. Correccion del automata reconocedor para patrones bdsicos.
Dado un patrén bdsico P = (X, P, 4, —,v) y su autdmata reconocedor Ap = (S,X,%, A, T, s0), para toda
configuracién © € Op y toda ejecucion finita ¢ sobre X,

St Qinit =° [O] entonces ¢ Eg P
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La demostracién de esta propiedad se basa en que para alcanzar la configuracién [©], el autémata tuvo que
atravesar un cierto camino desde g;n;; hasta dicha locacién. Dicho camino estard formado por aristas Skip
o Mark y es posible construir un matching parcial “imitando” la forma en que el autémata fue marcando
los puntos (es decir, las posiciones para las cuales atravesé una arista Mark). La demostracién detallada se
encuentra en el Apéndice A.

Por otro lado, nos gustaria poder garantizar que el autémata es capaz de construir todo posible matching.
Quiere decir que para una porcién finita de una ejecucién y una determinada configuracién de puntos, si existe
algin matching parcial entre el patrén y la ejecucién restringido a esa configuracién, entonces el autémata
tiene que poder reproducirlo. Es decir, el autémata tiene que poder consumir esa porcién de ejecucién
quedando en esa configuracién. Llamaremos a esta propiedad Completitud del autémata reconocedor.

Propiedad 4.3. Completitud del autdmata reconocedor para patrones bdsicos.
Dado un patrén bdsico P = (T, P,{,—,v) y su autémata reconocedor Ap = (S, X,%,A,Z,s0), para toda
configuracion © € Op y toda ejecucion finita ¢ sobre X,

si ¢ Fg P entonces qinit =° (O]

La demostracién de esta propiedad utiliza la estrategia inversa a la usada para el la propiedad de Correccién:
a partir de un matching parcial construiremos un camino sobre el autémata entre gin;z ¥ [©] que consuma <.
Como en el caso anterior, los momentos en los cuales el autémata atravesara una arista Mark corresponderan
con una posicién marcada segiin el matching parcial. El resto de las aristas seran Skip. La demostracién
completa se encuentra en el Apéndice A.

Sabiendo que valen estas dos propiedades, podemos garantizar que el autémata es capaz de construir todos
los matchings posibles para un patrén y una ejecucién y, ademaés, sélo alcanza la locacion Sqccep: Si fue capaz
de construir un matching para la porcién de ejecucién que consumid.

Tableau para patrones basicos

Dado un autémata reconocedor para un patrén bésico, nos interesa quedarnos sélo con las ejecuciones que se
estabilizan en la locacin sgccept?, s decir, aquellas para las cuales pudo ser construido al menos un matching
bésico. Quiere decir que Syccept, cOmo su nombre lo sugiere, es una locacién de aceptacidn para nosotros.
Veremos a continuacién que el autémata reconocedor més la condicién de aceptacién de Biichi dada por el
conjunto unitario {Sgccept} acepta exactamente el mismo lenguaje que el patrén.

Teorema 4.4. Tableau para patrones bdsicos. Dado un patrén bdsico P = (X, P,¢,—,7) y su autdémata
reconocedor Ap = (S, X, %, A,Z,s0), el autémata de Biichi temporizado Tp = (Ap, {Saccept}) TECONOCE €l
lenguaje L(P).

La demostracién de este teorema esta dividida en dos partes: se demuestra primero que L*(7p) C L(P)y
luego que L(P) C L*(Tp). La demostracién completa se encuentra en el Apéndice A.

4.1.2 Autémata reconocedor para patrones basicos temporizados

Hasta este punto, hemos mostrado como construir un autémata temporizado que construya matchings para
un patrén bésico y hemos mostrado que usando las funciones I' y ', se puede garantizar que se cumplan
las restricciones de eventos.

En esta seccién veremos ademds como garantizar que se cumplan las restricciones temporales de los pa-
trones temporizados. Naturalmente, usaremos los relojes del autémata reconocedor para medir el tiempo

2Diremos que una ejecucién se estabiliza en una locacién si la alcanza y ademas permanece indefinidamente en ella
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(1,2)

o> e f
ap e o

Patrén 4.2: Patrén temporizado

transcurrido desde que se marc6 un punto (sea un punto lleno o un punto hueco). Dado que definimos el
concepto de configuracién para cualquier tipo de punto, esto también se aplica a los puntos huecos. Lo
mismo ocurre con las funciones I' y I',,. Como pasaba con las restricciones de eventos, diremos que las
restricciones temporales se activan cuando se marca uno de los puntos involucrados y se desactivan cuando
se marca el segundo. Para que sea seguro marcar el segundo punto, es necesario garantizar que el tiempo
transcurrido desde que se marcé verifica la restriccién temporal asociada a estos puntos. Para determinar si
eso es cierto, utilizaremos un reloj por cada punto y cada reloj sera reseteado inicamente cuando se marque el
punto correspondiente. Conceptualmente estamos extendiendo el estado de nuestra “maquina generadora de
matchings” para que mantenga el tiempo transcurrido desde que se marcé cada punto. Veamos el siguiente
ejemplo. Supongamos que estamos trabajando con el Patrén 4.2 y queremos encontrar los markings entre
dicho patrén y la ejecucién temporizada
aa ¢ b
<2 3 3.6 5.5 >

configuracién: @

El autémata comenzara en el estado:

tiempo ocurrencia: @

restricciones activas: &

aa c¢c b

queda por consumir: 2 3 36 55

Supongamos que ahora el autémata decide marcar p sobre la primera posicién y pasa al estado:

configuracién: {p}
tiempo ocurrencia: {p : 2}

restricciones activas: {a: {q}}
b

1r: a c ..
queda por consumir: 3 %

En este momento, la siguiente posicién de la ejecucién no puede ser salteada dado que contiene un evento a
que estd en conflicto con las restricciones activas referentes a q. Quiere decir que el autémata debe abortar la
construccién del matching e intentar otra forma de marcar p. Supongamos que el autémata hubiera decidido
marcar p sobre la segunda a:

configuracién: {p}
tiempo ocurrencia: {p : 3}
restricciones activas: {a: {q}}

ir: c b ...
queda por consumir: ,% s

Es seguro saltear ¢ y nuestra méquina pasa al estado:

configuracién: {p}
tiempo ocurrencia: {p : 3}

restricciones activas: {a: {q}}

b

queda por consumir: . ---
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Ahora, el autémata debe decidir si marca q sobre la siguiente posicién. Sin embargo, el tiempo transcurrido

desde que se marcé p es 2.5 y 2.5 ¥ [1,2). Con lo cual, lo uinico que puede hacer el autémata es abortar la
construccion.

En definitiva, la estrategia para verificar que se cumplan las restricciones temporales serd la siguiente: a
cada punto p se le asociard un reloj z, que serd reseteado en la arista que marque dicho punto. A su vez,
para poder marcar un punto q, se debera garantizar por medio de una guarda que el tiempo transcurrido
desde el resto de los puntos ya marcados hasta el instante actual verifique las correspondientes restricciones
temporales.

Dada una restriccién temporal ¢, 1. () serd una restriccién sobre relojes que verifique ¢ sobre el valor del
reloj z. Formalmente, definimos ¥, () de la siguiente manera:

Yz((a,b)) = a<zAz<b
Yz ((a,b])) = a<zAz<b
Yz([a,b)) = a<zAz<b
¥z([a, b]) = G<TANLTZD
¥z((a,00)) = a<z
Yz([a,0)) = a<z
111:("9) = -‘1[11(9)

Naturalmente, queremos que una restriccién 1, (¢) sea verdadera cuando v(z) =t si y sélo si t = .

Proposicién 4.5. (Preservacion de verdad) Dada una restriccion temporal @, para todo real no negativo t,
Yz (@)[z|t] es verdadero sii t E ¢

La demostracién de esta propiedad es bastante directa y puede encontrarse en el Apéndice A. Por otro lado,

dado que las restriccién sobre relojes construidas con la definicién anterior siempre involucran un tnico reloj,

es facil ver que para determinar si una valuacién satisface una restriccién ¥, (), alcanza con ver si el valor
del reloj z segiin dicha valuacién satisface .

Proposicién 4.6. Dada una restriccion temporal ¢ y un reloj z,

vE Y (p) sitv(z) Ee

Nuevamente, la demostracién es muy directa y puede encontrarse en el Apéndice A. Teniendo la representa-
cién de cada restriccién temporal asociada a un punto escrita como restriccién de relojes, se puede construir
la guarda de la arista que marcan dicho punto como una conjuncién de estas férmulas atémicas:

Definicién 4.1.7. Dado un patrén temporizado P = (X, P, £, —,~, §), el conjunto de relojes X = {z« | x € P}
y un conjunto de puntos © C P, para cada punto p € P definimos:

w8 N v..(5(x,p))

xEOQ

Tomemos por ejemplo el Patrén 4.3. Estando en la configuracién © = {p,q}, la guarda para poder marcar
r, es decir g es igual a:

V2, ([0,5]) A ((2,00)) = 2, <5A2>2
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Patrén 4.3: Patrén temporizado complejo

-

Quiere decir, en el momento de marcar r, deben haber pasado 5 u.t. o menos desde que se marcé p y mds
de 2 u.t. desde que se marcé q.
Por otro lado, estando en la configuracién ©’ = {p,q,r}, la guarda para la arista que marque s sera:

wlp([ov OO)) A ¢2q([07oo)) A 1/"2,(_‘(3, 4)) = 12, <3Vz >4

Dado que no hay ninguna restriccién temporal no trivial entre p, q y s, las restricciones asociadas son
equivalentes a T (¢, ([0,00)) =z > 0 Az < 00, lo cual es trivialmente verdadero para cualquier reloj, y por
eso las omitimos.

Un autémata reconocedor para un patrén temporizado tendrd la misma estructura bésica de los autématas
reconocedores para patrones bésicos: una locacién por configuracién més una locacién trampa distinta de
las demds y cuatro conjuntos disjuntos dos a dos de aristas Mark, Skip, Fail y Trap. Ademds, tendrdn
un conjunto adicional de aristas llamado Instant que corresponderan a marcar puntos huecos. El autémata
tendra un reloj por cada punto del patrén y las aristas Mark e Instant estardn protegidas por guardas como
las descritas anteriormente que garanticen el cumplimiento de las restricciones temporales. Finalmente, los
invariantes de todas las locaciones seguiran siendo T y la locacién inicial serd [@].

Definicién 4.1.8. Autémata reconocedor para patrones temporizados
Dado un patrén temporizado P = (X, P = EUI,{,—,v,d), Ap es un autémata temporizado de la forma
Ap =(S,X,%,A,Z,s0) donde:

o (Locaciones) S ={[0] | © € Op} U {Strap}, donde s4q; s una locacién distinta de todas las demds.

Notacién. Llamaremos sgccept = [P)-

(Relojes) X = {2 | x€ P}

(Bventos) Z 4, = Tp

(Aristas) A= Mark U Instant U Skip U Fail U Trap, donde:

Mark = { (©),Lug {=},106{e}}) | ecF lete) y 1¢Tou(®) }
Instant = { {[O) A b, (ah [0 | ieT )
Skip = { (6,1, T,2,[0]) | leX y I¢T(O) }
Fa’Zl = { <[@]1l7 Ta @, StTGP> ] l € F(@) }
Trap = { (Straps by 155 Sirap) | lex }

(Invariantes) Vs € S, I(s) =T

o (Locacidn inicial) so = [&]
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;
{zs}

z<3Vz >4

Figura 4.2: Patrén temporizado (a) y su autémata reconocedor (b)

Las aristas Mark y las aristas Instant son estructuralmente muy similares. La tnica diferencia es que
las primeras siempre estan etiquetadas con un evento y corresponden a marcar un punto de la clase E y
las segundas siempre estan etiquetadas con A y corresponden a marcar un punto de la clase I. En ambos
casos serd seguro marcar un punto (desde el punto de vista de las restricciones temporales) si vale la guarda
correspondiente a la configuracién actual y a ese punto. Como vimos antes, esta guarda contiene una
representacion de todas las restricciones temporales sobre ese punto en funcién de inecuaciones sobre relojes
del autémata. Cuando se marca un punto, se resetea el reloj asociado a ese punto para comenzar a medir el
tiempo transcurrido desde ese instante.

Es importante notar que en la practica no siempre se necesitan tantos relojes como puntos tenga el patrén.
En principio, sélo se necesitan relojes para aquellos puntos que estén involucrados en restricciones temporales
no triviales (es decir, distintas de [0,00)). Ademds, podria darse el caso de que el mismo reloj pudiera ser
usado para medir el tiempo de ocurrencia de dos puntos distintos (porque, por ejemplo, nunca se da que
restricciones temporales de esos puntos estén activas a la vez). Esta observacién resulta de importancia dado
que la complejidad de los algoritmos de model-checking de autématas que usaremos m4s adelante depende del
nimero de relojes del autémata. Preferimos mantener la construccién formal de los autématas reconocedores
tan simple como fuera posible y por eso no hicimos ningin intento por reducir en esta presentacién la
cantidad de relojes del autémata. Sin embargo, cuando presentemos el algoritmo que construye autématas
reconocedores a partir de patrones de eventos descartaremos los relojes correspondientes a puntos que sélo
estédn involucrados en restricciones triviales. Si fuera necesario una optimizacién mayor del conjunto de
relojes, podria aplicarse alguna herramienta de minimizacién de relojes (ej: [DY96]).

Ejemplo. Autémata reconocedor para un patrén temporizado.

La Figura 4.2 muestra un patrén temporizado y su autémata reconocedor. La arista que va de [p,q,r] a
[p,q,r,s] por X es un ejemplo de arista Instant. Todas las aristas Mark e Instant resetean el reloj asociado
al punto que est4n marcando. La arista que va de [p,q] a [p, q, r] muestra un ejemplo de guarda no trivial
sobre una arista Mark y la que va de [p,q,r] a [p,q,r,s| muestra lo mismo para una arista Instant. En el
ejemplo resulta claro que zs nunca se utiliza en ninguna restriccién y que, por lo tanto podria eliminarse.



CAPITULO 4. MODEL-CHECKING DE PATRONES DE MAL COMPORTAMIENTO 58

Propiedades de los autématas reconocedores para patrones temporizados

Analizaremos las propiedades de los autématas reconocedores de patrones temporizados. La primera obser-
vacién que haremos estd relacionada con los tipos de aristas del autémata:

Observacién. En todo autémata reconocedor para un patrén temporizado los conjuntos de aristas Mark,
Instant, Skip, Fail y Trap son disjuntos dos a dos.

Ya sabemos que Skip, Fail y Trap pueden distinguirse entre ellos y con respecto a Mark e Instant analizando
s6lo los extremos de las aristas. Pero ademds, como Mark sélo admite aristas etiquetadas con eventos e
Instant sélo admite aristas etiquetadas con A, queda claro que esos conjuntos también son disjuntos entre
si.

Finalmente, también vale que en todas las evoluciones del autémata la configuracién actual va extendiéndose
o permanece igual, pero nunca decrece.

Propiedad 4.7. Dado un patrén temporizado P = (%,P,¢,—,v,8) y su autémata reconocedor
Ap = (S, X,%, A, Z,s0), sean © y © configuraciones de P. Si [O] = [0], entonces toda evolucidn en-
tre [©] y [©'] tiene la forma:

([©0],v0) =2 ([©1],v1) =} ... ([8:],v:) =5 ... =77 ([On],vn)

donde ©g =©, ©, =0’ y para todo i, 0 <i<n,v; € Vx, a; € CU{A}, t; € RT y ©,41 es igual a ©; o
es una extension de ©;.

La demostracién de esta propiedad para el caso temporizado se encuentra en el Apéndice A.

Como en el caso de los autématas reconocedores para patrones bésicos, definimos el concepto de matching
temporizado parcial para caracterizar el estado interno de nuestra “maquina generadora de matchings”:

Definicién 4.1.9. Matching temporizado parcial.

Dado un patrén temporizado P = (X, P, £, —,~, ), un conjunto de puntos C' C P, una ejecucién temporizada
o = (¢, 7) sobre ¥ y un mapeo - : C — II,, decimos que * es un matching temporizado parcial entre o y P
restringido a C sii verifica las condiciones MP1-MP4 y ademds verifica que:

MPT1 V¥xeInC, =2\
MPT2 Vx,yeC, %<y = A(rgg)Fixy)

Quiere decir que en todo momento, los puntos ya marcados sobre la porcién de ejecucién consumida respetan
todas las restricciones de eventos (MP1-MP3) y temporales (MPT1 - MPT2) y, ademds, los eventos
consumidos hasta el momento no violan ninguna restriccién de eventos activa (MP4).

Adaptamos la nocién de satisfaccién parcial a los patrones temporizados.

Definicién 4.1.10. Satisfaccién parcial de patrones temporizados.

Dado un patrén temporizado P = (X, P,£,—,~,d) y un conjunto de puntos C C P, una ejecucién tempori-
zada o sobre ¥ verifica o satisface parcialmente P restringido a C (notado o F¢ P) sii existe un matching
temporizado parcial entre o y P restringido a C.

Nuevamente, para cualquier patrén temporizado P y cualquier ejecucién temporizada o, o & P si y sélo si
ok P P.

Para terminar de caracterizar el comportamiento de los autématas reconocedores de patrones temporizados,
adaptaremos las propiedades de Completitud y Correccién de los autématas reconocedores de patrones
basicos al caso temporizado.
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Propiedad 4.8. Correccién del autémata reconocedor para patrones temporizados.
Dado un patrén temporizado P = (X, P,£,—,v,8) y su autémata reconocedor Ap = (S, X, 2, A, 7, so), para
toda configuracién © € ©p y toda ejecucion finita o = (g, T) sobre &, '

St Qinit =5 [©] entonces o Fg P

Como antes, esta propiedad garantiza que toda porcién de ejecucién consumida por el autémata satisface
parcialmente el patrén restringido a los puntos de la configuracién actual. La demostracion repite la estrategia
del caso no temporizado: construir un matching temporizado parcial emulando una evolucién del autémata
desde g;ni; hasta [0]. De esta forma, las posiciones consumidas por aristas Mark o Instant seran marcadas
con el punto correspondiente. La demostracién completa puede encontrarse en el Apéndice A

Propiedad 4.9. Completitud del autémata reconocedor para patrones temporizados.
Dado un patrén temporizado P = (£, P, £,—,7,6) y su autémata reconocedor Ap = (S, X, %, A,Z, s0), para
toda configuracidon © € Op y toda ejecucion finita o sobre X,

si o Eg P entonces ginit =° [O)]

La propiedad de Completitud garantiza que si existe algin matching temporizado parcial entre un prefijo de
una ejecucién y el patrén (restringido a alguna configuracién ©), el autémata serd capaz de generarlo. Dado
que esto vale también para la configuracién P y que los patrones temporizados tienen la propiedad de satis-
faccién finita, podremos garantizar que el autémata serd capaz de generar todos los matchings temporizados
que existan entre una ejecucién y un patrén. La demostracién de que los autématas reconocedores para el
caso temporizado cumplen esta propiedad se basa en mostrar que se puede construir una evolucién sobre el
autdémata a partir de un matching parcial para un prefijo de ejecucién y una determinada configuracién. La
demostracién completa estd incluida en el Apéndice A.

Tableau para patrones temporizados

Como en el caso no temporizado, un autémata reconocedor para un cierto patrén temporizado aumentado
con la condicién de aceptacién de Biichi {s,ccept} acepta exactamente el lenguaje de dicho patrén.

Teorema 4.10. Tableau para patrones temporizados. Dado un patrén temporizado P = (X, P,4,—,7,0) y
su autémata reconocedor Ap = (S, X, X, A,Z,s0), el autémata de Biichi temporizado Tp = (Ap,{Saccept})
reconoce el lenguaje L(P).

La demostracién de este teorema se puede encontrar en el Apéndice A y estd basada en demostrar la doble
inclusién entre los lenguajes.

4.1.3 Autémata reconocedor para patrones de eventos

El autémata reconocedor para un patrén de eventos debe garantizar que ademas de cumplirse las restriccio-
nes de eventos y las restricciones temporales entre los puntos comunes del patrén también se cumplen las
restricciones que hacen referencia al punto inicial y al punto final.

Para contemplar las restricciones de eventos con respecto al punto inicial alcanza con notar que estas restric-
ciones comienzan estando activas y recién son desactivadas cuando se marca el otro punto en cuestién. Por
el otro lado, las restricciones en las que estd involucrado el punto final se activan cuando se marca el otro
punto en cuestién y no se desactivan nunca mas. De alguna manera, esto es consistente con el sentido que
le damos a los puntos inicial y final: en el primer caso, el punto inicial se considera ya “marcado” cuando
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Patrén 4.4: Restricciones activas para un patrén de eventos

comienza la ejecucién y el segundo se considera que el punto final serd “marcado” recién después de finalizada
la ejecucién.

Para capturar esta extensién de las restricciones de eventos activas en una determinada configuracién defi-
nimos las funciones I'™* y I},

Definicién 4.1.11. Funcién I'*.
Dado un patrén de eventos P, definimos la funcién I'* sobre configuraciones de puntos de la siguiente manera:

*(©) =T(©) U | J7(0,x) u | 7(x,0)

x¢0 xE0
Vp € P, T3,(8) =Twp(®) U | 7(0,%) U | 7(x, o0)
xie xEB
XF#p

De alguna manera, I'* es una extensién de I'. Para toda configuracién ©, I'*(0) contiene todas las restric-
ciones activas comunes (es decir, I'(6)) y ademas las restricciones referentes al punto inicial que todavia no
han sido desactivadas y todas las restricciones referentes al punto final que ya han sido activadas.
Anélogamente, I}, contiene todas las restricciones activas comunes que no serian desactivadas por p, més las
restricciones referentes al punto inicial que todavia no fueron desactivadas (excepto las que serian desactivadas
por p) y todas las restricciones activas referentes al punto final.

Ejemplo. Restricciones activas para un patrén de eventos.

Dado el Patrén 4.4, estando en la configuracién @, I'*(@) = {a}, T},(®) = @ y [},(2) = {a}. Por otro
lado, estando en la configuracién {p,q,r}, I'*({p,q,r}) = {c}. En este ejemplo se puede ver que cuando la
configuracién es igual al conjunto de puntos del patrén, I'* serd igual al conjunto L del patrén.

Usaremos I'* y T}, de la misma forma que antes usdbamos I' y I, para determinar si es seguro saltear un
punto un punto o si es seguro marcarlo, respectivamente.

El otro tema que nos queda por resolver es garantizar que se cumplan las restricciones temporales entre
los puntos comunes del patrén (como haciamos para los patrones temporizados) y también las restricciones
entre el punto inicial y otros puntos del patrén. Nuevamente, adaptaremos la estrategia que usamos en los
patrones temporizados contemplando este ultimo caso. Usaremos los relojes del autémata para medir el
tiempo transcurrido desde que se marcé un punto y también para medir el tiempo transcurrido desde que
comenzdé la ejecucién. Una vez mds, es como si estuviéramos midiendo el tiempo desde que se “marcé” el
punto inicial del patrén. Para cada punto comun p del patrén usaremos el reloj z, para medir el tiempo
desde que fue marcado. Usaremos el reloj zg para medir el tiempo desde el comienzo de la ejecucion.
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Para decidir si es seguro marcar un punto desde el punto de vista de las restricciones temporales que se
apliquen a ese punto, usaremos unas guardas similares a las del caso temporizado. La tnica diferencia sera
que agregaremos un término mds a cada una que corresponderd a la restriccion entre ese punto y el punto
inicial:

Definicién 4.1.12. Dado un patrén de eventos P = (X, P,¢,—,v,6,0,00), el conjunto de relojes
X = {z« | x € P} y un conjunto de puntos © C P, para cada punto p € P definimos:

v Z N v.66p)

x€0U{0}

-

Un autémata reconocedor para patrones de eventos tendrd exactamente la misma estructura que uno para
patrones temporizados, excepto que las condiciones para poder marcar un punto serdn ampliadas para
contemplar las restricciones referentes al comienzo y al final de la ejecucién. Por otro lado, las condiciones
para poder saltear un punto también serén ampliadas en forma conveniente. El autémata tendra una locacién
[©] por cada configuracién © del patrén mas una locacién trampa. Estando en cualquier locacién el autémata
podré saltear el siguiente evento (arista Skip), marcar un punto sobre el siguiente evento (arista Mark),
marcar un punto sobre el siguiente instante (arista Instant) o abortar la construccién del matching (arista
Fail). Estando en la locacién trampa, sélo se podra ciclar sobre dicha locacién (aristas Trap). El autémata
tendra un reloj por cada punto del patrén que seran reseteados cuando se marque dicho punto, més un reloj
distinguido que medir4 el tiempo total transcurrido desde el comienzo de la ejecucién y que no sera reseteado
en ningin momento. Los invariantes de todas las locaciones seguiran siendo T y la locacién inicial serd [2].

Definicién 4.1.13. Autémata reconocedor para patrones de eventos.
Dado un patrén de eventos P = (X, P,¢,—,7,0,0,00), Ap es un autémata temporizado de la forma
Ap = (S5,X,%,A,Z,so) donde:

o (Locaciones) S ={[0] | © € ©p} U {strap}, donde s¢rqp €s una locacién distinta de todas las demds.

Notacién. Llamaremos Sgceept = [P).
o (Relojes) X = {2, | x€ P}U{z0}

o (Eventos) T4, = Xp

(Aristas) A = Mark U Instant U Skip U Fail U Trap, donde:

Mark = { (O),Lg,{z}[0W{el) | e€F lete) y 1¢T5(0) }
Instant = { ([O),\v8,{z},[06{i}]) | iel }
Skip = { (e, T,o,[0]) | leZ y 1¢I*(©) }
Fail = { <[e}v ,,T,o, stTup) I le F*(e) }
Trap = | (Strap, 4, T, D, Strap) | leX }

(Invariantes) Vs € S, Z(s) =T

o (Locacién inicial) so = [9]

Si bien esta definicién parece exactamente igual a la Definicién 4.1.8 excepto por el agregado del reloj zo y
que se reemplazé T, Iy, y 9§ por T'*, TZ v Yg , respectivamente, existen mas diferencias que estas entre
ambos autdmatas reconocedores. En particular, el cambio de I' por I'* tiene un impacto bastante grande en
la estructura del autémata. Sabemos que I'(P) es siempre vacio y esto implicaba en los casos anteriores que
la locacion sqecep: nO tenfa aristas salientes. En este caso, I'*(P) no seréd vacio siempre que exista alguna
restriccién de eventos entre algin punto del patrén y el punto final. Esto resulta bastante l6gico porque
sabemos que esos eventos estaran prohibidos “para siempre”, atin después de haber marcado el ltimo punto.
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Z\ {e, f}

[p.a,r] 2
{2} - {2}
2, <5Nzg> 2 <3Vz >4

e
z

(b)

Figura 4.3: Patrén de eventos (a) y su autémata reconocedor (b)

Conceptualmente, que I'*(P) no sea vacio significa que ya no es suficiente con marcar todos los puntos del
patrén para garantizar que se ha construido un matching (recordemos que la satisfaccién de patrones de
eventos no es cerrada por extensiones) y no alcanza con mirar ningtn prefijo finito de la ejecucién para
hacerlo.

Ejemplo. Autdmata reconocedor para un patrén de eventos.

La Figura 4.3 muestra un patrén de eventos y su autémata reconocedor. Se puede ver que en este caso la
locacién s,ccept DO €s una trampa. La arista que va de [p,q,r,s| a S¢rqp €s un ejemplo de arista Fail saliente
de Sgccept- La arista que va de (D] a Sirqp POT @ es un ejemplo de arista Fail originada por una restriccién
de eventos entre el punto inicial y p. La guarda de la arista que va de [q] a [p,q] es un ejemplo de guarda
originada por una restriccién temporal entre el punto inicial y el punto p. Nuevamente, el reloj zs no se
utiliza en ninguna restriccién y por lo tanto podria ser eliminado.

Propiedades de los autématas reconocedores para patrones de eventos

En el caso de los autématas reconocedores para patrones de eventos, en general la locacién sgecept N0 serd
una trampa. Sin embargo esto no siempre es asi: basta con recordar que los patrones bésicos y los patrones
temporizados son casos particulares de patrones de eventos. Dado un patrén de eventos P y su autémata
reconocedor Ap, la locacién Saccept 1O serd una trampa precisamente cuando el conjunto I'*(P) sea no vacio.
Ahora bien, por definicién,
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r*(P) =T(P)u [ J 70,9 U | 7(x c0)
x¢ P x€P
Sabemos que I'(P) es vacio y necesariamente Uxgp 7(0,x) debe ser vacio porque no quedan puntos por
marcar. Quiere decir que:

I*(P) = | J 7(x,00) =Lp (4.1)
xeP
Es decir, los eventos que pueden provocar que el autémata abandone la locacién de aceptacién son exacta-
mente los que estdn prohibidos hasta el final de la ejecucién.

En el caso de los autématas reconocedores que acabamos de presentar, también vale que los cinco conjuntos
en los que estdn divididas las aristas son disjuntos dos a dos dado que la estructura de las mismas es similar
a la del caso temporizado.

Observacién. En todo autémata reconocedor para un patrén de eventos los conjuntos de aristas Mark,
Instant, Skip, Fail y Trap son disjuntos dos a dos.

Y también se mantiene una de las propiedades més importantes de los autématas reconocedores: que las
evoluciones del autémata siempre van extendiendo la configuracién actual o a lo sumo la mantienen igual,
pero nunca la reducen.

Propiedad 4.11. Dado un patrén de eventos P = (%, P,{,—,~,5,0,00) y su autdmata reconocedor
Ap = (S5,X,%,A,Z,s0), sean © y ©' configuraciones de P. Si [©] = [©’], entonces toda evolucion en-
tre [©] y [©'] tiene la forma:

([B0],v0) =2 ([©1],01) =5 - ([0:],v:) =5 ... ="} ([On],vn)

th—1
donde ©g =0, ©, =0 ypara todoi, 0 <i<mn,v; € Vx, a; € XU{\}, t; € RT y O;,; es igual a ©; o
es una extension de ©;.

Extendemos los conceptos de matching bdsico parcial y matching temporizado parcial al caso de los patrones
de eventos.

Definicién 4.1.14. Matching parcial.

Dado un patrén de eventos P = (X, P,{,—,~,d,0,00), un conjunto de puntos C C P, una ejecucién tem-
porizada ¢ = (5,7) sobre ¥ y un mapeo * : C — II,, decimos que ° es un matching parcial entre o y P
restringido a C sii verifica las condiciones MP1-MP4 + MPT1-MPT2 y ademds se verifica que:

MPI VxeC, o3)Nv(0,x)=02
MPS WxeC, ozNy(x,00) =2
MPTI VYxeC, A(ry)FE6(0,x)

Un matching parcial caracteriza la forma en que queremos que funcione nuestro autémata: a medida que
va marcando puntos, debe cumplir con todas las condiciones que sean necesarias para que el mapeo sea
finalmente un matching. M3 4+ MPI garantizan que los puntos marcados no violen ninguna restriccién de
eventos que existiera entre ellos (incluyendo al punto inicial que siempre estd “marcado”). MPT + MPTI
garantizan lo mismo pero para las restricciones temporales y, finalmente, MP4 + MPS garantizan que
ninguna posicién consumida de la ejecucién violara una restriccién de eventos activa. La diferencia entre
MP4 y MPS es que la primera se refiere a restricciones de eventos que eventualmente serdn desactivadas
mientras que la segunda hace referencia a restricciones que siempre permaneceran activas, es decir, a eventos
en el conjunto Lp.

Una vez més, a partir de matching parcial podemos definir una nueva nocién de satisfaccién parcial:
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Definicién 4.1.15. Satisfaccién parcial de patrones de eventos.

Dado un patrén de eventos P = (X, P,¢,—,v,6,0,00) y un conjunto de puntos C C P, una ejecucién
temporizada o sobre ¥ verifica o satisface parcialmente P restringido a C (notado ¢ F¢ P) sii existe un
matching parcial entre o y P restringido a C.

En este caso, como en los anteriores, para cualquier patrén de eventos P y cualquier ejecucién temporizada
o, 0 EPsiysdlosiocEpP.

Planteamos y demostramos una vez mas las propiedades de Completitud y Correccién del autémata recono-
cedor, en este caso, para patrones de eventos.

Propiedad 4.12. Correccién del autémata reconocedor para patrones de eventos.
Dado un patrén de eventos P = (X, P,£,—,v,8,0,00) y su autémata reconocedor Ap = (S, X, %, A, T, so),
para toda configuracion © € Op y toda ejecucion finita o = (5, T) sobre ¥,

$i Ginit =< (O] entonces o0 Fg P

Intuitivamente, se puede ver que esta propiedad debe valer en el caso de los patrones de eventos tanto como
valia para el caso temporizado. Dado que podemos asimilar las restricciones referentes al punto inicial con
el resto de las restricciones entre puntos comunes asumiendo que el punto inicial esta siempre “marcado” y
ademés podemos asimilar las restricciones referentes al punto final con el resto de las restricciones asumiendo
que el punto final nunca serd “marcado”, el funcionamiento de este autémata es muy similar al del caso
temporizado, al menos en lo que se refiere a consumir prefijos finitos de una ejecucién. La demostracién

completa se encuentra en el Apéndice A.

Propiedad 4.13. Completitud del autémata reconocedor para patrones de eventos.
Dado un patrén de eventos P = (X, P,¢,—,v,8,0,00) y su autémata reconocedor Ap = (S, X, %, A,Z, so),
para toda configuracion © € ©p y toda ejecucion finita o sobre X,

si 0 Fg P entonces qiniz =° [0)]

Nuevamente, si tratamos a las restricciones con respecto al punto inicial simplemente como restricciones que
empiezan estando activas y eventualmente serdn desactivadas y tratamos a las restricciones con respecto al
punto final como restricciones que empiezan estando desactivadas y eventualmente serdn activadas, es facil
ver que el funcionamiento de estos autématas reconocedores es muy similar al de los autématas del caso
temporizado. La demostracién sigue la misma linea que en los dos casos anteriores: muestra como construir
una evolucién sobre Ap que consuma la ejecucién y que llegue hasta [©] a partir de un matching parcial.
La demostracién completa se encuentra en el Apéndice A.

Dado que sabemos que el autémata reconocedor verifica las propiedades de Completitud y Correccién,
podemos garantizar que el autémata captura todas las formas posibles de marcar los puntos del patrén de
eventos asociado sobre un prefijo finito de una ejecucién. En el caso de los patrones bésicos o de los patrones
temporizados, esto equivalia a garantizar que capturaba todos los matchings. En el caso de los patrones
de eventos, como no son cerrados por extensiones, esta conclusién no es tan directa. Sin embargo, veremos
a continuacién que agregando la condicién de aceptacién de Biichi {sgccept} al autémata reconocedor, el
w-autémata resultante captura exactamente el lenguaje del patrén.



CAPITULO 4. MODEL-CHECKING DE PATRONES DE MAL COMPORTAMIENTO 65

Tableau para patrones de eventos

Teorema 4.14. Tableau para patrones de eventos. Dado un patrén de eventos P = (Z, P, £,—,7,0,0,00),
el autémata de Biichi temporizado Tp = (Ap, {Saccept}) Teconoce el lenguaje L(P).

.La condicién de aceptacién de Biichi {saccept } €Xige que se visite un nimero infinito de veces Sqccept- Sabemos

que los autématas reconocedores para patrones de eventos no tienen ciclos mas alla de los loops sobre una
misma locacién. Esto quiere decir que el autémata estard obligado a permanecer para siempre en Sgccept
para cumplir con la condicién de aceptacién. En particular, no podr4 fallar por ningin evento (es decir,
consumir un evento prohibido) porque eso le impediria volver a Saccept-

En el Apéndice A se demuestra la doble inclusién entre £(7p) y L(P).

4.2 Model-checking de patrones de mal comportamiento

Ya hemos mostrado como construir un autémata reconocedor y a partir de éste un tableau para cada uno
de los tres tipos de patrones de eventos. En particular, la construccién hecha para los patrones bésicos y los
temporizados son casos particulares de la construccién para patrones de eventos.

Dado un sistema S modelado con un autémata temporizado As y dado un requerimiento R del sistema,
donde el patrén de mal comportamiento P- captura los comportamientos que no cumplen R, el problema
de model-checking de patrones de mal comportamiento consiste en decidir si Ag F P_g. Dado que el patrén
captura comportamientos no deseados en el sistema, alcanza con que alguna de las ejecuciones del lenguaje
L(Ag) satisfaga el patrén para concluir que el sistema viola el requerimiento R. Formalmente, definimos la
relacién F entre un autémata temporizado y un patrén de mal comportamiento cémo:

Definicién 4.2.1. Satisfaccién de patrones de mal comportamiento.
Dado un autémata temporizado A= (S,X,%',A,Z,s0) y el patrén de mal comportamiento
P =(%,P¢ —,7,5,0,00), con & C ¥,

AEP  sii LA)NLs(P)#@

El alfabeto de un patrén de mal comportamiento (en este caso ¥) podria ser mas reducido que el alfabeto
del sistema (en este caso ¥’). Esto podria darse porque el patrén podria hacer referencia a un numero
relativamente pequefio de eventos en el sistema. Si éste es el caso, alcanza con considerar el lenguaje
ampliado de P segiin el alfabeto ¥’ (Definicién 3.3.5). Recordemos que los eventos que no son explicitamente
mencionados por un patrén pueden ser ignorados a la hora de decidir satisfaccién.

Nuestro algoritmo de model-checking no est4 basado en la definicién anterior. Reescribiremos el problema de
la interseccién de lenguajes de alguna forma que nos resulte mis conveniente para realizar el chequeo. En la
seccién anterior mostramos que dado un patrén de mal comportamiento el tableau 7p captura exactamente
el lenguaje del patrén. Veremos ahora que, ademés, al componer el autémata A con el tableau del patrén
P, el lenguaje del autémata (de Biichi) obtenido es distinto de vacio sélo cuando A = P. De alguna manera,
el tableau del patrén puede pensarse como un Biichi Observer al estilo de los presentados en [Bra00]. Dado
que 7p tiene aristas por todos los eventos y todos los invariantes de sus locaciones son T, podemos decir que
Tp “acompana” a A. Es decir, 7p no restringird ninguna de las evoluciones posibles en A. Simplemente,
en paralelo con cada una de esas evoluciones el observador intentard construir un matching para ejecucién
expuesta por la evolucién. Si el observador logra alcanzar Sgccept ¥ permanecer indefinidamente en dicha
locacién significard que ha logrado construir un matching para alguna ejecucién aceptada por A y, por lo
tanto, A verificaba el patrén P.
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Teorema 4.15. Dado un autémata temporizado A = (S, X, %', A, T, so) y un patrén de mal comportamiento
P = (2;P)[7_’)7>510,00), con X g 2/,

AEP  sii LARTp) #@

Demostracion. Por la definicién de satisfaccién de patrones de eventos, sabemos que A E P si y sélo si
L(A) N Lx/(P) # @, es decir, si y sélo si existe una ejecucién o sobre ¥’ tal que 0 € L(A) y als € L(P).
Por el Teorema Tableau 4.14, sabemos que o[x € L(P) siy sblo si o[g € L(Tp).
Quiere decir que A = P si y sélo si existe alguna ejecucién o sobre ¥/ en £(A ® Tp) (Observacién 2.2), es
decir, si y sélo si L(AQ Tp) # @.

O

Como dijimos antes, el ‘observador acompainia las evoluciones del autémata A y sabremos que ha encontrado
una ejecucién de A que satisface el patrdn si logra alcanzar locaciones compuestas con Sqccept ¥, ademas, logra
permanecer indefinidamente en dichas locaciones (recordemos que en Ap no se puede Volver a Sgccept UNa Vez
dejada esa locacién). Supongamos que asociamos a todas las locaciones compuestas con Sgccept 1a proposicion
accept. La férmula TCTL 3 accept dice que accept es alcanzable por al menos una evolucién. Si evaluamos
esa férmula en el estado inicial del autémata compuesto, la férmula serd verdadera si y sélo si el observador
logra marcar todos los puntos del patrén sobre alguna ejecucién del autémata. Sabemos que esto es una
condicién necesaria para que la ejecucién satisfaga el patrén, pero no suficiente (propiedad de Clausura débil
por extensiones). Tenemos que garantizar, ademds, que el observador pueda permanecer indefinidamente en
locaciones donde valga accept. Esto también puede expresarse en TCTL como 30accept, es decir, existe al
menos una evolucién en la cual siempre vale accept. Quiere decir que si la férmula 3O (30accept) valiera
evaluada en el estado inicial del autémata compuesto, indicaria que necesariamente alguna de las ejecuciones
de A satisface el patrén de mal comportamiento. Por lo tanto, obtenemos el siguiente corolario a partir del
teorema anterior:

Corolario 4.16. (Model-checking de patrones de mal comportamiento)
Dado un autémata temporizado A= (S,X,% A, T,s0) y wun patrén de mal comportamiento
P = (E) P,e7 —-')77 5’ 0) w)’ con 2 g EII

AEP s11 A||Ap E init = 3O (30accept)
donde P(accept) = S X {Saccept} ¥ P(init) = {(s0.4,50.4,)}-

Quiere decir que hemos reducido nuestro problema de model-checking de patrones de mal comportamien-
to a un problema de model-checking de autématas temporizados, que se sabe decidible (ver por ejemplo
[HNSY92]). Con lo cual como segundo corolario tenemos que:

Corolario 4.17. (Decidibilidad de model-checking de patrones de mal comportamiento)
Dado wun autémata temporizado A= (S,X,¥' AT ,so) y wun patrén de mal comportamiento
P =(%,P,¢, —,v,6,0,00), con & C ¥, el problema de determinar si AE P es decidible.

Maés adelante veremos que la reduccién del chequeo de patrones a model-checking de autématas temporizados
sirve ademéas como un método practico para construir un algoritmo de verificacién de patrones. El esquema
general de ese algoritmo de verificacién fue esbozado en la Figura 1.5.



Capitulo 5

Casos de estudio

-

5.1 Sistema Mine Drainage Controller

El primer caso de estudio que analizaremos corresponde a un ejemplo bien conocido basado en un caso real:
el disefio de un controlador para un sistema de extraccién de agua de una mina. Este ejemplo es cominmente
referenciado en la literatura (por ejemplo en [M.J96, BW96]) e ilustra muchas de las caracteristicas que poseen
los sistemas de tiempo real embebidos. La versién sobre la cual trabajamos es una extensién presentada en
[Bra00).

5.1.1 Descripcién del Sistema

El sistema es utilizado para bombear el agua que se colecta en la base de una mina y llevarla a la superficie.
Para evitar el peligro de explosién, la bomba no debe ser operada cuando el nivel de gas metano en la mina
alcanza cierto valor critico.

Los valores del ambiente (flujo de aire, monéxido de carbono, flujo de agua) son leidos periédicamente. El
nivel del agua (alto / bajo) es comunicado a través de interrupciones.

El objeto protegido Motor provee los servicios para operar la bomba y observar el status del motor. El
objeto protegido CH4Status conserva el valor de la tltima lectura del gas metano.

Cuando hay una situacién de riesgo (el nivel de gas o el flujo de aire se vuelven criticos, el nivel del flujo
de agua leido no coincide con el status del motor, etc) se informa una alarma al objeto protegido Operator
Console, para ser eventualmente senalizada a una consola remota en donde esté el operador. Las operaciones
y lecturas son registradas en el objeto Log. Existe una tarea esporddica Command utilizada para atender las
solicitudes del operador remoto. Estas solicitudes son: inspeccionar el status del motor, prender o apagar la
bomba.

Los sensores de CO y CH4 usan la técnica “desplazamiento periédico” para realizar las lecturas: solicitan
una lectura que deberfa estar disponible en el siguiente perfodo (si no se produciria una alarma).

Se adiciona al sistema otro mecanismo de deteccién de fallas que consiste en una tarea watchdog que chequea
periédicamente la disponibilidad del sensor de nivel de agua. Primero envia una solicitud y después extrae
los acknowledges recibidos y encolados por una tarea esporddica en los ciclos anteriores. Si el watchdog
encuentra la cola de ACKs vacia, lo informa como una situacién errénea.

La Figura 5.1 muestra el disefio del sistema usando una notacién similar a la utilizada en [BW95].

5.1.2 Requerimientos

Nos interesa verificar que el disefio anteriormente descripto cumple con una serie de requerimientos que deta-
llamos a continuacién. Estos requerimientos estdn extraidos de [Bra00]. Para cada uno de ellos, mostramos
un patrén de mal comportamiento que captura los escenarios en los que no se cumple el requerimiento.

Requerimiento 5.1. (Separacidn) Dos lecturas consecutivas del Water-flow Sensor deben estar separadas
entre 960 u.t. y 1040 u.t.
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Figura 5.1: Disefio del sistema de Mine Drainage
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El Patrén 5.1 describe las ejecuciones en las cuales la separacién en el tiempo entre una lectura del Water-flow
Sensor (punto p) y la lectura inmediatamente anterior (punto q) estd fuera del rango [960, 1040], violando
el Requerimiento 5.1.

Requerimiento 5.2. (Frescura) La antigiedad de las mediciones de CO debe ser como mdzimo de 100 u.t.
cuando se toma una decision en la tarea del sensor correspondiente.

El Patrén 5.2 representa aquellos escenarios en los cuales se produce una lectura del nivel de CO (evento
co-read) y la ltima medicién anterior a la lectura (evento co-set) se habia producido més de 100 u.t. antes.

Requerimiento 5.3. (Correlacion) La diferencia de antigiiedad entre las mediciones de CHj y CO que se
registran de a pares en el log no puede ser mayor a 100 u.t..

El Patrén 5.3 captura las ejecuciones que violan este requerimiento. En dicho patrén se identifica un
determinado momento en que se registra en el log una medicién de CH4 (punto l;) y otro momento en
que se registra una medicién de CO (punto l,). Las marcas de consecutividad entre l; y I, indican que se
trata de dos registraciones que coexisten en el log en cierto momento (no hubo otra registracién por parte
del sensor de CH4 entre ambos puntos, asi como tampoco ocurrié otra registracién del sensor de CO entre
dichos puntos). El punto s; corresponde entonces a la 1ltima medicién realizada por el sensor de CH4 antes
de l;. De la misma manera, el punto s; corresponde a la dltima medicién realizada por el sensor de CO antes
de l. Quiere decir que las mediciones realizadas en s; y s, son las posteriormente registradas en |; y I, y
por lo tanto coexisten en el log hasta la siguiente registracién. Ahora bien, el patrén también dice que s; y
s> estdn separados en el tiempo por mas de 100 u.t., violando el requerimiento de Correlacién.

El ejemplo anterior evidencia la capacidad de abstraccién que brindan los patrones de eventos para expresar
relaciones de causalidad complejas entre eventos. El hecho de no haber tenido que precisar el orden de
ocurrencia entre s; y s o entre |l; y |, permite una representacién compacta y elegante de la propiedad
de correlacién. A modo de comparacién, el autémata observador para el Requerimiento 5.3 presentado en
[Bra00] contaba con 11 locaciones y 24 aristas.
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5.2 Protocolo CSMA/CD

El segundo caso de estudio que analizaremos estd basado en el protocolo de comunicacién CSMA/CD [Tan96,
IEE85], usado para controlar el uso de un bus compartido en una red broadcast. La descripcién del sistema
que utilizamos sigue la linea de [XJS92].

5.2.1 Descripcidon del sistema

El protocolo CSMA/CD (Carrier Sense, Multiple Access with Collision Detection) es muy utilizado en LANs
en la capa MAC (control de acceso al medio fisico). Resuelve el problema de compartir un dnico canal en
una red broadcast (canal multi-access). Cuando una estacién tiene datos para enviar, primero escucha el
canal para determinar si estd siendo usado por otra estacién. Si el bus parece no estar siendo utilizado, la
estacién comienza a enviar el mensaje. Si el bus estd ocupado, la estacién espera una cantidad de tiempo
aleatoria y repite el proceso. Cuando ocurre una colisién, la transmisién se aborta en forma simultdnea por
todas las estaciones que estuvieran transmitiendo en ese momento y todas esperan una cantidad aleatoria
de tiempo antes de reintentar el envio.

Las estaciones comparten un tnico canal. Asumimos que el canal es un bus Ethernet de 10Mbps, con tiempo
de propagacién de o = 26 us en el peor caso. Los mensajes tienen un tamano fijo de 1024 bytes y el tiempo
para enviar un mensaje completo, incluyendo el tiempo de propagacién es, entonces, de 808 us. El bus es
libre de errores, no se realiza buffering de mensajes entrantes. La sefial de colisién tarda a lo sumo o para
llegar a todos los emisores.

La Figura 5.2 muestra la estructura del sistema para el protocolo CSMA/CD. Cada caja representa un
componente del sistema. Las lineas representan la sincronizacién entre los componentes. Cada uno de los
senders y el bus se sincronizan mediante los siguientes eventos:

o begin; — El sender; comienza a enviar un mensaje (el bus no estaba ocupado)
e busy; — El sender; encuentra el bus ocupado
e end; — El sender; completa la transmisién del mensaje

cd; — El sender; detecta una colisién

5.2.2 Requerimientos

Requerimiento 5.4. Siuno de los senders comienza a transmitir mientras el otro estd transmitiendo, ambos
deben recibir la notificacidn de colisidn antes de que alguno de los dos finalice con ézito la transmision.
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Patrén 5.4: patrén de mal comportamiento para el Requerimiento 5.4

El Requerimiento 5.4 resume una de las propiedades més importantes del protocolo CSMA/CD: en ningiin
momento una colisién puede pasar inadvertida para alguno de los senders de forma tal de que crea que ha
finalizado con éxito la transmisién de su mensaje. El Patrén 5.4 representa los escenarios en los que se viola
esta propiedad. El punto r corresponde a alguno de los dos senders finalizando (aparentemente con éxito) la
transmisién de su mensaje. “Retrocediendo” en la ejecucién encontramos que en el punto p el sender; habia
comenzado a transmitir un mensaje. Dado que entre p y r que dicho sender no detecté ninguna colisién ni
terminé de enviar su mensaje (no hubo ningin evento cd; ni end;), quiere decir que el sender; continué
enviando su mensaje al menos hasta r. Por el otro lado, en el punto q, el sender, también comenzé a
enviar un mensaje. Dado que entre q y r el senders tampoco dejo de transmitir, el segundo sender también
se encontraba transmitiendo al menos hasta el punto r. Quiere decir que los dos senders transmitieron,
al menos por un periodo de tiempo, simultdneamente y alguno de los dos terminé la transmisién con la
conclusién errénea de que habia sido exitosa.

Una vez mads, la posibilidad de no tener que fijar arbitrariamente el orden de ocurrencia de todos los eventos
(es decir, la posibilidad de especificar un orden parcial entre los mismos) nos permitié escribir en forma
compacta el Patrén 5.4. Este patrén captura todas las combinaciones posibles sobre cual de los senders
comienza a transmitir primero y, ademas, cual de los senders termina de transmitir primero.

Requerimiento 5.5. Si uno de los senders comienza a transmitir mientras el otro estaba transmitiendo,
ambos deben recibir la notificacion de colision dentro de los primeros 52 yus de transmision.

Este requerimiento es otra de las propiedades fuertes del protocolo CSMA /CD. Dado que estamos asumiendo
que el tiempo de propagacién es en el peor caso de o = 26 us, desde que un sender comienza a transmitir
hasta que el otro sender percibe que el bus esta ocupado podrian pasar como méximo 26 us. Si este fuera el
caso, querria decir que el primer sender notaria la colisién aproximadamente 26 us mas tarde, es decir, a lo
sumo 52 us después de que comenzara a transmitir. Pasados los 26 s iniciales el otro sender directamente
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Patrén 5.5: patrén de mal comportamiento para el Requerimiento 5.5

no podria comenzar a transmitir porque notaria que el bus estaba siendo utilizado. Quiere decir que cuando
un sender comienza a transmitir, o bien recibe una sefial de colisién dentro de los primero 52 us o puede
estar seguro de que terminard de transmitir exitosamente (recordemos que estamos asumiendo que el canal
estd libre de errores).

El Patrén 5.5 muestra los casos en los cuales el Requerimiento 5.5 seria violado. EI punto r representa
un instante dentro de la ejecucién con la siguiente propiedad: tanto el sender; como el senders se en-
cuentran transmitiendo y ademaés el sender; estuvo transmitiendo sin percibir la colisién por méas de 52 ps.
Implicitamente, el patrén asume que el sender; fue el que comenzé primero la transmisién. Para cubrir
todos los casos tendriamos que verificar también otro patrén simétrico a éste en el cual sender; fuera el que
comenzé primero. Sin embargo, dado que el sistema es simétrico con respecto a los senders (ninguno tiene
propiedades distintas del otro), si se da el comportamiento no deseado asumiendo que comienza siempre el
sendery, necesariamente debe también se violara el requerimiento asumiendo que comienza el senders. Y
también es cierta la propiedad reciproca: si se demuestra que que el sistema es correcto con respecto al
Requerimiento 5.5 asumiendo que comienza el sender;, también serd correcto si asumiéramos que el senders
es el que comienza.

Mis alld de esta simetria entre los senders en el modelo del protocolo CSMA /CD, acabamos de identificar una
limitacién del lenguaje basado en patrones de eventos. Para solucionar este problema, seria interesante que
el lenguaje permitiera hablar de “el dltimo de los eventos ocurridos” o el “primero de los eventos ocurridos”
en un cierto conjunto. Por ejemplo en este caso quisiéramos decir que sin importar si begin; ocurre antes
que begins o viceversa, el tiempo transcurrido entre el que haya ocurrido primero y el punto r sea mayor
a 52 us. Entendemos que la incorporacién de estos elementos al lenguaje aumentard el poder expresivo del
mismo y por eso mismo estd incluida como una de las extensiones que forman parte de nuestra propuesta
de trabajo futuro.

5.3 Analizador de variables ambientales

Este 1ltimo caso de estudio que analizaremos esta basado en un hipotético sistema de tiempo real distribuido.
Si bien no representa un caso real, comparte las caracteristicas de muchos sistemas de este tipo y nos permitird
mostrar el poder expresivo de los patrones de mal comportamiento para expresar propiedades de concurrencia
y causalidad.

5.3.1 Descripcion del sistema

El sistema que analizaremos constituye un sistema de tiempo real distribuido, compuesto por un nodo central
de monitoreo y dos nodos dedicados al muestreo y preprocesamiento de variables ambientales. Los nodos de
muestreo tienen una tarea periddica que lee los datos del sensor, los procesa y escribe el resultado en una
variable protegida. Otra tarea esporddica se dedica a recibir pedidos del exterior, empaquetar y enviar los
ultimos datos procesados y guardarlos en la variable compartida.
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Figura 5.3: Estructura del Analizador de variables ambientales

La Figura 5.3 muestra la estructura del sistema. El nodo central, en caso de que se le haga un requerimiento
comienza su tarea de recoleccién de datos muestreados enviando el pedido a ambas estaciones. Luego, espera
ambas respuestas y aparea los datos para finalizar su tarea. Todas estas acciones forman parte de una ronda
de muestreo. Se sabe que los pedidos y sus respuestas no son almacenados en un buffer.

5.3.2 Requerimientos

Requerimiento 5.6. (Correlacion) La antigiedad de los datos apareados no difiere en mds de di ms.

El sistema toma decisiones en base a los valores medidos por el sensor A y el sensor B. Es importante por lo
tanto que las mediciones no difieran mucho en antigiiedad para que la decisién tomada por el sistema pueda
ser considerada vélida. El Patrén 5.6 describe las ejecuciones que violarian este requerimiento. El patrén
identifica los puntos p y e que corresponden al inicio y al final de una misma ronda de muestreo. A partir
del momento en que termina dicha ronda (punto e), podemos “retroceder” en la ejecucién identificando los
momentos en que se recibié el valor sampleado por A (evento receiveA), dicho valor fue enviado por el sensor
A (evento sendA), el valor fue leido desde la variable compartida (evento readA) y finalmente el momento
en que se recibi6 el request desde el colector (evento receive — pingA). De la misma manera, se pueden
identificar los eventos correspondientes al sensor B, desde que se recibe el ping del colector hasta que este
ultimo recibe el dato. Se identifican todos estos puntos empezando desde la finalizacién de la ronda (punto
e) y contextualizandolos con el inicio de la misma (punto p) para garantizar que corresponden todos a la
misma ronda y que no hay posibilidad de tomar eventos de rondas anteriores. De esta forma sabemos que los
puntos ra y rg corresponden a las lecturas de las mediciones de los sensores A y B, respectivamente, usados
por el procesador al final de la ronda. A partir de ra y rg podemos identificar la 1ltima escritura anterior
a sendas lecturas (puntos wa y wg, respectivamente). A su vez, a partir de wa y wg se puede identificar el
momento en que fueron sampleados los valores que luego fueron escritos (tltimas ocurrencias de sampleA y
sampleB antes de las escrituras). Quiere decir que los valores sampleados en sa y sg son los que finalmente
fueron apareados al finalizar la ronda. El patrén describe, por lo tanto, todos aquellos casos donde sa y sg
ocurrieron con mas de d; ms de separacién y por lo tanto no se cumple el requerimiento de correlacién.
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Patrén 5.6: patrén de mal comportamiento para el Requerimiento 5.6 - Correlacién

Para facilitar la comprensién del Patrén 5.6, se organizaron los eventos en andariveles! segin la tarea a la

cual pertenecian. Las tareas Sampler A y Sampler B corresponden a las tareas periédicas de recoleccién de
los datos medidos por sendos sensores. Las tareas Atencidn Interrupciones A 'y Atencion Interrupciones B
corresponden a las tareas esporddicas que atienden los pedidos generados por el Colector.

En este ejemplo se ve claramente el uso del orden parcial entre eventos para indicar paralelismo y sincro-
nizacién entre los eventos de procesos distintos. Si bien el Patrén 5.6 es sin lugar a dudas el patrén mas
complejo que analizamos en este trabajo, su complejidad est4 intrinsecamente relacionada con la compleji-
dad de la propiedad que queriamos expresar. Aunque hayamos enunciado la propiedad en castellano en una
s6la linea, para expresarla de forma tal de que pueda ser verificada en forma automdtica es necesario ser
precisos con respecto a la correspondencia entre eventos (por ejemplo para no permitir que se compare la
lectura de un dato ocurrida en una ronda con otra lectura ocurrida en una ronda anterior). Lo que termina
siendo un patrén de mal comportamiento mediano hubiera sido practicamente imposible de escribir (desde
el punto de vista de un ingeniero) usando un lenguaje basado en interleaving de eventos como los autématas
temporizados.

Requerimiento 5.7. (Frescura) En el momento de ser recolectados y apareados, los datos no deben tener
mas de dy ms de antigiliedad.

El Patrén 5.7 captura los comportamientos que violan este requerimiento con respecto al sensor A. Dado que
los sensores A y B son indistinguibles para nosotros no es necesario verificar aparte el caso para el sensor B.
Como en el caso anterior, se identifican los puntos de comienzo (punto p) y finalizacién (punto e) de una
ronda correspondiente a una cierta actuacién del procesador (punto a). Es decir, los datos usados en a

LEl uso de andariveles es un recurso puramente grafico y no forma parte del lenguaje de patrones de eventos.
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Patrén 5.7: patron de mal comportamiento para el Requerimiento 5.7 - Frescura

fueron recolectados en la ronda demarcada por p y e. Una vez més, usamos la estrategia de “retroceder”
en la ejecucién buscando los momentos en que se realiza la recepcién de datos del sensor (evento receiveA),
el sensor envian esos datos (evento sendA)?y finalmente el momento en que se lee la variable compartida
escrita por el sampler (evento readA). Sabemos que este readA fue adems4s el primero en ser realizado desde
que se recibié el ping del colector (evento receive — pingA) y por lo tanto podemos estar seguros que ra
corresponde a la lectura de los valores que fueron posteriormente utilizados en a. Desde ra podemos localizar
la dltima escritura realizada sobre la variable compartida (punto wa) y a su vez el tltimo muestreo antes
de esa escritura (punto s,). Quiere decir que en sa se realiza la medicién que posteriormente fuera utilizada
en a. El patrén describe aquellos escenarios en los cuales la medicién ocurrié méas de do ms antes de su
utilizacién y por lo tanto los datos utilizados no eran suficientemente frescos.

Requerimiento 5.8. (Respuesta acotada) El tiempo de respuesta entre el pedido de apareo y el apareo en
s7 mismo no supera los ds ms. '

El Patrén 5.8 identifica el comienzo (punto p) y la finalizacién (punto e) de una ronda de muestreo. El
pedido de apareo (evento request) correspondiente a dicha ronda es el dltimo antes de p y est4 representado
por el punto r. La actuacién correspondiente a la ronda (en donde se aparean de los datos) es la primera
después de e y estd representada por el punto a. El patrén describe aquellas ejecuciones en las cuales entre
ry a transcurren més de ds ms y por lo tanto se viola el requerimiento de respuesta acotada.

2Como sabemos que no se utilizan buffers en el sistema, aparear la recepcion de un mensaje con su envio es muy simple y
consiste en encontrar el Gltimo envio anterior a la recepcién.
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Capitulo 6

Implementacion

En los capitulos anteriores vimos que el problema de model-checking de patrones de mal comportamiento
es decidible y lo demostramos reduciéndolo a un problema de verificacién de autématas temporizados. El
enfoque basado en autdmatas reconocedores que utilizamos en el capitulo 4 servird también como base para
la implementacién de un verificador de patrones de mal comportamiento.

Dado un sistema S modelado con un autémata temporizado Ags y dado un requerimiento R sobre S, el
disenador debera construir un patrén de eventos P_g que represente los comportamientos que violan R.
Este patrén y el modelo del sistema serén el input para el Verificador de patrones. La Figura 1.5 muestra
esquemadticamente la estructura de nuestro verificador.

6.1 Verificaciéon de patrones de mal comportamiento

En esta seccién presentamos el algoritmo bdsico implementado por nuestra herramienta de verificacién de
patrones de mal comportamiento. Dado un autémata temporizado .As que modela el comportamiento de
un sistema S y un patrén de mal comportamiento P, nuestra herramienta decide si Ag F P, es decir, si el
sistema S admite algiin comportamiento no deseado descrito por P.

El algoritmo de verificacién de patrones utiliza los conceptos presentados en el capitulo 4 en cuanto a
reduccién a un problema de verificacién de autématas temporizados y se basa en la herramienta Kronos
como motor de decisién.

Dado un autémata temporizado Ag y un patrén de mal comportamiento P, nuestro algoritmo de verificacién
realiza los siguientes pasos:

1. Construye un autémata reconocedor Ap a partir del patrén de mal comportamiento utilizando un
algoritmo basado en la definicién 4.1.13 que describiremos més adelante

2. Utiliza la herramienta Kronos para decidir si Ag||Ap E @accept, donde @oecept €s la férmula TCTL
presentada en el Corolario 4.16

3. El algoritmo contesta OK si y sélo si Kronos contesté OK

La préxima seccién describe el algoritmo de construccién de autématas reconocedores. En el Apéndice B
se mencionan las principales caracteristicas de la implementacién de la herramienta de verificacién en el
lenguaje Java y se muestra la aplicacién del Verificador de patrones a los requerimientos para el protocolo
CSMA/CD presentados en el capitulo 5.

7



CAPITULO 6. IMPLEMENTACION 78

v

wb> O

& e,f c ‘
/'; —(3,4) " @
> 2 .

Patrén 6.1: Patrén de mal comportamiento

6.1.1 Algoritmo para construccién de autématas reconocedores

El algoritmo que utilizaremos para la construccién de autématas reconocedores para patrones de mal com-
portamiento estd basado en la definicién 4.1.13, aunque no es una implementacién directa del mismo. Para
construir el autémata, comenzaremos analizando la locacién inicial del mismo (correspondiente a la confi-
guracién vacia) y evaluaremos todas las posibles formas de extender dicha configuracién. Para cada una de
las extensiones generadas, repetiremos este procedimiento en forma recursiva hasta saturar el conjunto de
locaciones del autémata, es decir, hasta que no haya forma de agregar més locaciones. Informalmente, a
partir de un patrén P el algoritmo realizaré los siguientes pasos:

1. Crear el conjunto de locaciones con sélo las locaciones {[&], Strap}
2. Mientras se puedan seguir agregando locaciones:

(a) Para cada locacién del conjunto, generar todas las aristas salientes de dicha locacién. Si el destino
de alguna de estas aristas no pertenece al conjunto de locaciones, agregarlo.

Generar todas las aristas Trap
Poner T a todos los invariantes de todas las locaciones

Construir X, el conjunto de relojes del autémata

IS A

Poner [&] como locacién inicial

Claramente, nuestro algoritmo no generara configuraciones que no sean alcanzables desde la configuracién
inicial. La forma naive de generar todas las posibles aristas salientes desde una locacién consiste en probar
uno a uno con todos los puntos y todos los eventos y verificar si se cumple con las condiciones que establece la
definicién 4.1.13. Sin embargo, esta estrategia puede ser mejorada ficilmente. Veamos, en primera instancia,
qué estrategia se puede utilizar para generar todas las aristas Mark e Instant.

La primera condicién para que exista una arista saliente Mark o Instant desde una locacién es que exista
alguna forma de exztender la configuracién asociada (definicién 4.1.2). Nuevamente, existe una forma muy
ingenua de generar todas las posibles extensiones de una configuracién que consiste en tomar uno a uno
todos los puntos que no pertenezcan a la configuracién y verificar si todos los predecesores de dicho punto
pertenecen a la configuracién. Sin embargo, se puede restringir la bisqueda de extensiones a un conjunto
més acotado de candidatos. '

Por ejemplo, ningtin punto que tenga al menos un predecesor podra servir para extender la configuracién
vacia. Quiere decir que los unicos candidatos a extension de la configuracién vacia son los elementos infimos
del orden parcial <p. Por otro lado, un candidato para extender una configuracién serd también candidato de
todas las extensiones de dicha configuracién que no lo contengan. Conociendo €l conjunto de candidatos para
una configuracién se puede calcular el conjunto de candidatos de cualquiera de sus extensiones simplemente
eliminando el punto que ha sido agregado y agregando los sucesores directos del punto en cuestién. Tomemos,
por ejemplo el Patrén 6.1. Estando en la configuracién @, los candidatos para extensiones son {p,q}.
Supongamos que decidimos extender a @ por p, el conjunto de candidatos para la nueva configuracién sera
{a,r}. Claramente, s no puede ser de ninguna manera una extensién posible para esa configuracién. El hecho
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de que un punto sea candidato para extensién con respecto a una determinada configuracién no significa que
en efecto sirva como extensién. Por ejemplo, en el caso anterior, r es un candidato a extensién con respecto
a la configuracién {p} pero no sirve como extensién porque q, el otro predecesor de r, no ha sido incorporado
todavia a la configuracién.

Formalmente, definimos inductivamente la funcién Cand : ©p — 2F que asocia a cada configuracién un
conjunto de candidatos para extension de la siguiente manera:
Para todo © € ©p, x € P:

Cand(2) = infimos(<p)
Cand(® W {x}) = Cand(0©) \ {x} U suc(x)

infimos<p es el conjunto de puntos del patrén que no tienen predecesores y suc(x) es el conjunto de
sucesores directos de x. Para calcular el conjunto de infimos no tenemos en cuenta al elemento O.

Dada una configuracién © y un punto x en Cand(©), debemos ver si todos los predecesores (directos) de x
estdn incluidos en la configuracién. Para poder chequear esto en forma eficiente utilizaremos un contador
de predecesores #pred asociado a cada configuracién y cada punto. Dada una configuracién © y un punto
x, el contador determinara cuantos predecesores directos de x no pertenecen a ©. Claramente, x podré ser
una extensién de © sélo si #pred(0)(x) = 0. Formalmente, decimos que #pred : ©p — (P — N) es una
funcién definida como:

Para todo © € ©p, x,y € P:

#pred(2)(x) = #(pred(x))

_ [#ered©)y) ~1 siy—x
#pred(O W {y})(x) = {#p’red(@)(y) en otro caso

donde #(pred(x)) es el cardinal del conjunto de predecesores directos de x. Contando con C'y con #pred
podemos decidir en forma eficiente cuales son todas las formas posible de extender una configuracién.

Proposicién 6.1. Dado un patrén de eventos P = (X, P, £,—,,8,0,00), una configuracion © € ©p y un
punto x € P,

oy {x} € ©p st x€Cand(©) y #pred(®)(x) =0

Una vez que encontramos alguna forma de extender la configuracién asociada a una locacién, si la extensién
corresponde a un punto de la clase I, entonces siempre se podréd generar una arista Instant que marque ese
punto. Sin embargo, si la extensién corresponde a un punto de la clase E, hay que determinar para cuales
de los eventos que tiene asociados se puede construir una arista Mark. Nuevamente, esto se puede realizar
en forma naive calculando en forma explicita el valor de I'}, (©) y calculando cuales de los eventos asociados
a x no pertenecen a dicho conjunto. En lugar de hacer esto, utilizaremos el concepto de restricciones activas
que introdujimos en el capitulo 4. Diremos que una restriccién de eventos se activa cuando se marca el
primero de los puntos involucrados y se desactiva cuando se marca el otro. En los ejemplos presentados en la
introduccién del capitulo 4 vimos que contar con el conjunto de eventos “prohibidos” en cada configuracién
alcanzaba para decidir si era seguro saltear un determinado evento pero que no era suficiente para decidir
si era seguro marcar un determinado punto sobre el siguiente evento. Mostramos a través de ejemplos que
necesitdbamos saber qué puntos determinan que un evento esté prohibido para poder decidir si era seguro
marcar un punto sobre ese evento. Dado un punto x y un evento e, lo primero que nos interesard saber es
si e figura como restriccién entre algin punto y x y si es asi, cudles son esos puntos. Definimos la funcién
RestActivadasPor : PU {0} — (X — 2PY{}) de la siguiente manera:

Paratodox € P,ec X:
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Tabla 6.1: Valores de RestActivadasPor para el Patrén 6.1
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Tabla 6.2: Valores de RestActivasPorEvento para el Patrén 6.1

RestActivadasPor(x)(e) = {y € PU{x} | e € v(x,¥)}

Para el Patrén 6.1, la Tabla 6.1 muestra cual seria el valor de RestActivadasPor para cada punto y cada
evento.

Definimos también la funcién RestActivasPor Evento que a cada evento le asocia los puntos que determinan
que dicho evento esté prohibido en la configuracién actual:
Rest ActivasPorEvento : ©p — (X — 2PY{}) donde para todo © € ©p y para todo evento e € X:

RestActivasPor Evento(2)(e) = RestActivadasPor(0)(e)
RestActivasPor Evento(© W {x})(e) = (RestActivasPor Evento(8)(e) U RestActivadasPor(x)(e)) \ (B U {x})

Claramente, los puntos que determinan que un cierto evento e esté prohibido en la configuracién inicial
son aquellos que tienen a e como restriccién de eventos con respecto al comienzo de la ejecucién. Tenien-
do las restricciones activas en una configuracién ©, las restricciones activas de una extensién de © serdn
las que estaban activas en © mds las que activa x, sin contar todas las referencias a puntos ya marca-
dos (es decir, pertenecientes a la nueva configuracién). Dado que 7 es una funcién simétrica, al marcar
x, RestActivadasPor(x,e) puede hacer referencia tanto a puntos ya marcados como a puntos todavia sin
marcar. Si se da el primer caso, los puntos ya marcados no deben figurar como restricciones activas de la
configuracién porque justamente han sido desactivadas al marcar x. Es por eso que a la unién entre las res-
tricciones activas hasta la configuracién anterior y las restricciones activadas por x es necesario sacarle todos
los puntos ya marcados. La Tabla 6.2 muestra el valor de RestActivasPorEvento para cada configuracién
y cada evento del Patrén 6.1.

Proposicién 6.2. Dado un patrén de eventos P = (X, P,¢,—,~,8,0,c0), una configuracién © € Op y un
evento e € X,

eeI'(©) sii  RestActivasPorEvento(©)(e) # @
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Tabla 6.3: Valores de RestTemp para el Patrén 6.1

Proposicién 6.3. Dado un patrén de eventos P = (X, P,¢,—,~,4,0,00), una configuracion © € ©p, un
punto x € P y un evento e € X,

e € I'x(O) sit  RestActivasPorEvento(9)(e) \ {x} # @

Contando con la funcién RestActivasPorEvento, para decidir si se puede agregar una arista Mark sa-
liente desde una configuracién © por un evento e hacia una extensién © W {x} alcanza con verificar que
RestActivasPor Evento(©)(e) \ {x} = @. Es decir, que no haya ningin punto no marcado distinto de x que
prohiba la ocurrencia del evento e. La misma funcién RestActivasPor Evento nos permite generar las aristas
Skip y Fail simplemente verificando si RestActivasPor Evento(©)(e) es vacio o no lo es, respectivamente.

Para generar las guardas de las aristas Mark e Instant usaremos una funcién que dado un par de puntos
devuelve la restriccién sobre los relojes que representa a la restriccién temporal correspondiente. Es decir,
RestTemp : PU {0} x P — ¥ x es una funcién tal que para todo par de puntos x € PU {0}, y € P:

RestTemp(x,y) = ¥.,(3(x,y))
La Tabla 6.3 muestra el valor de RestTemp para todo par de puntos del Patrén 6.1.

Se puede ver que si bien § es una funcién simétrica, RestTemp no lo es. Esto es asi porque RestTemp(x,y)
da la restriccién sobre los relojes que representa a d(x,y) pero asumiendo que x fue marcado antes que y.
Estando en una configuracién ©, la guarda de una arista Mark o Instant que marque al punto x estarad
dada por la funcién Guarda : ©p x P — ¥ x donde para todo © € ©p y x € P:

Guarda(©,x) = /\ RestTemp(y,x)
yeeu{o}

La Tabla 6.4 muestra el valor de Guarda para cada configuracién y cada punto, aplicada al Patrén 6.1.

Proposicién 6.4. Dado un patrén de eventos P = (X, P,£,—,+,68,0,00), una configuracion © € Op y un
punto x € P,

¥§ = Guarda(©,x)

donde la igualdad debe ser interpretada como equivalencia ldgica.

A la hora de generar las guardas y de generar el conjunto de relojes del autémata reconocedor, diferenciaremos
las restricciones temporales triviales de las no triviales. Diremos que una restriccién temporal es trivial
cuando se refiere al intervalo [0,00). Andlogamente, diremos que una restriccién sobre relojes es trivial
cuando es légicamente equivalente a T. Cuando las tnicas restricciones sobre relojes que se apliquen sobre
un determinado reloj sean triviales, ese reloj no sera agregado al conjunto de relojes. De la misma manera,
eliminaremos los términos triviales de la conjuncién definida por Guarda.
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Tabla 6.4: Valores de Guarda para el Patrén 6.1

Estructuras de datos

Aprovechando el hecho de que la cantidad de puntos y de eventos es finita y que por el uso que se les
dara a los patrones es de esperarse que ademas no sea demasiado grande! usaremos bitsets para representar
conjuntos de puntos y de eventos. Para esto asumiremos que los puntos y los eventos pueden ser mapeados
en forma univoca en el rango [0,np) y [0,nx), respectivamente, donde np es el cardinal del conjunto de
puntos y ny es el cardinal del alfabeto de eventos.

La funcién Cand no serd materializada en ningiin momento. El conjunto de candidatos para una configu-
racién sera calculado en funcién de los candidatos de la configuracién anterior, aprovechando la definicién
recursiva de Cand.

De la misma manera, #pred no serd calculada explicitamente para todas las configuraciones sino que serd
calculada incrementalmente para cada configuracién. Para cada configuracién ©, #pred(©) estara represen-
tado por un array de enteros de tamano np, donde la iésima celda determina el valor de #pred(©) para el
iésimo punto.

La funcién RestActivadasPor ser4d materializada en una tabla de np por ng, donde cada celda contiene
un conjunto de puntos. En cambio, RestActivasPor Evento no sera calculada explicitamente sino que sera
calculada usando su definicién recursiva. Para cada configuracién ©, RestActivasPorEvento(©) estard
representada por un array de ny, donde cada celda contiene un conjunto de puntos.

Finalmente, RestTemp sera representada por una tabla de np por np, donde cada celda contendrd una
restriccién sobre relojes. Por otro lado, Guarda seré calculada on-the-fly por una funcién auxiliar.

Llamaremos contezto de la configuracién (o simplemente conterto) a la tupla tupla (©,C, R, #P) donde
para cada © € Op:

e C = Cand(O)
® R = RestActivasPor Evento(©)
o #P = #pred(©)

A continuacién, mostramos el pseudocédigo de la funcién de construccién del autémata reconocedor para
un patrén de eventos.
Pseudocdédigo

La funcién principal Generar AutomataReconocedor, mostrada en el Cuadro 1, toma como entrada un patrén
de eventos y devuelve un autémata temporizado segiin la definicién 4.1.13.

1Es de esperarse que tengan no mias de 10 puntos y 20 eventos dado que pasado ese punto la complejidad del patrén §e.r1'a
demasiado grande como para ser generado graficamente por un disefiador. De todas formas, el anélisis que realizamos es vilido
atln suponiendo que hubiera 1000 puntos y 1000 eventos
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function GenerarAutomataReconocedor(P = (%, P, ¢, —,~,4,0,00)) returns A = (5, X, X, A, T, s¢)
X—o
A— 2

so — (2]
S — {Strap} U {so}

Explorar(P, PrimerContextoDeConfiguracion(P), S, A)

for all s € S do
I(s)«—T
end for
for alll € ¥ do
AgregarAristaTrap(A4, 1)
end for
end

Cuadro 1: Funcién principal para la generacién de autématas reconocedores.

Ezxplorar, mostrada en el Cuadro 2, es una funcién recursiva que para cada configuracién genera todas las
aristas salientes desde la locacién correspondiente. Si el destino de alguna de las aristas salientes es una
locacién todavia no “explorada” (es decir, que todavia no fue agregada al conjunto S), entonces repite el
proceso en forma recursiva para esa locacién.

Lo primero que hace Ezplorar es analizar el conjunto C' de candidatos a extensién para la configuracién
actual. Para cada uno de los puntos de ese conjunto, verifica si es una extensién vélida (en el sentido de que
todos los predecesores del punto estén incluidos en la configuracién actual y ademads exista al menos una forma
de marcar en forma segura alguno de los eventos asociados al punto). Si ese es el caso, verifica si la locacién
correspondiente a la configuracién extendida ya fue generada. Si se trata de una locacién no vista hasta el
momento, repite recursivamente el proceso para esa locacién, calculando antes el contexto correspondiente a
la nueva configuracién (funcién Eztender). Cuando termina de generar todas las locaciones alcanzables desde
la configuracién actual, genera las aristas Mark o Instant salientes que correspondan, segin x pertenezca
a ] o a E. Solo se generaran aristas Mark para eventos que no pertenezcan al conjunto I'y«(0). La funcién
EventosH abilitados calcula el conjunto de eventos para el cual hay que generar una arista Mark o Instant.
Finalmente, Ezplorar genera las aristas Skip y Fail salientes desde la configuracién actual. Para cada evento
e, o bien estd prohibido por algin punto pendiente de ser marcado (R(e) # &) y por lo tanto e € I'(6) o no
esté prohibido y e ¢ I'(O).

La funcién auxiliar PrimerContextoDeCon figuracion (Cuadro 3) construye el contexto para la configura-
cién inicial, es decir @.

El Cuadro 4 muestra el pseudocédigo de la funcién EztensionValida y todas las funciones auxiliares que ésta
utiliza. La funcién EztensionValida determina si todos los predecesores de un cierto punto x pertenecen
a una configuracién © vy, si es asi, si existe alguna posibilidad de generar al menos una arista entre [0] y
[© W {x}]. Para que esta iiltima condicién valga, x debe pertenecer a I o alguno de los eventos asociados a
dicho punto debe estar habilitado. Diremos que un evento e asociado a un punto x € E en una configuracién
© estd habilitado si e ¢ T'; (©). La funcién EventoNoRestringido es la responsable de determinar si un
evento esta habilitado. Si un evento e no estd restringido por ningin punto (caso R(e) = &), entonces es
claro que el evento est4 habilitado. Si el tinico punto que prohibe a e es x (caso x € R(e) y #(R(e)) =1),
entonces el evento también estd habilitado. En todos los demés casos, el evento esta prohibido por otro
punto aparte de x y por lo tanto no estd habilitado.

Notemos que si x € I, FventosHabilitados devuelve un conjunto cuyo tnico elemento es A. Esto permite
tratar uniformemente a los puntos de ambas clases. Si el punto pertenece a E, entonces hay que analizar
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function Explorar(P, (6,C, R,#P), S, A, X) returns
for all x € C do
if ExtensionValida(P,(0, C, R,#P) x) then
if [©@U{x}] ¢ S then
S — Su{[eu{x}]}
Explorar(P, Extender((©,C, R, #P), x), S, A4, X)
end if
guarda «—.Guarda(0, x)
reset «— Reset(P, O, x, X)
for all e € EventosHabilitados(P,(6, C, R, #P),x) do
AgregarAristaMarkolnstant(A4,[©], e, guarda, reset,[© U {x}])
end for
end if
end for

for alle € ¥ do
if R(e) # @ then
AgregarAristaFail(4, [6)], €)
else
AgregarAristaSkip(A4, [0)], €)
end if
end for
AgregarAristaFail(A4, [©], \)
AgregarAristaSkip(4, [6], A)
end

Cuadro 2: Funcién recursiva para la generacién de todas las locaciones alcanzables desde la inicial.

function PrimerContextoDeConfiguracion(P = (£, P, ¢, —,~,4,0,c0)) returns (6, C, R, #P)
0— o
C «—— infimos(—)
R «—— RestActivadasPor(0)
for all xe P do
#P(x) — #(pred(x))
end for
end

Cuadro 3: Contexto para la configuracién inicial
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cuales de los eventos asociados al punto estdn habilitados para decidir qué aristas Mark hay que generar.
Si, en cambio, el punto pertenece a I siempre hay que generar una arista Instant por A.

function ExtensionValida(P,(©, C, R, #P), x) returns res : true|false
res «— PredecesoresIncluidos((0, C, R, #P), x) y EventosHabilitados(P,(©,C, R, #P) x) # &
end

function PredecesoresIncluidos((©, C, R, #P), x) returns res: true|false
res «— #P(x) =0
end

function EventosHabilitados(P,(6, C, R, #P), x) returns L C 25V{}}
if x€ E then
L—o
for all ec{(x) do
if EventoNoRestringido((©, C, R, #P), x, €) then
L — Lu{e}
end if
end for
else
L — {)\}
end if
end

function EventoNoRestringido((©, C, R, #P), x, €) returns res: true|false
T «— R(e)
res — (r=@ o (xery #(r)=1))

end

Cuadro 4: Extensiones validas de una configuracién

La funcién Eztender (Cuadro 5) genera un nuevo contexto para la extensién de © por x. Como dijimos
antes, el conjunto C' de candidatos, la funcién R de restricciones y la funcién #P que cuenta predecesores
todavia no marcados se calculan para la nueva configuracién a partir de las correspondientes a ©, utilizando
la definicién recursiva de cada una de ellas.

La funcién Guarda (Cuadro 6) calcula on-the-fly el valor de ¥%. La funcién Reset verifica si tiene sentido
agregar un reloj para medir el tiempo transcurrido desde que se marcé al punto x. Tendra sentido medir ese
tiempo si x tiene alguna restriccién temporal no trivial con algin punto no marcado todavia. Si este dltimo
fuera el caso, se agregars el reloj z, al conjunto X de relojes y se lo reseteara en la arista que marca x. Como
mencionamos antes, una restriccién temporal serd considerada trivial si siempre es verdadera.

Finalmente, el Cuadro 7 muestra las funciones auxiliares que agregan aristas de los distintos tipos al conjunto
A.
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function Extender((©, C, R, #P), x) returns (6’,C’, R', #P’)
O — OuU{x}
C" «— C\ {x} Usuc(x)
for all e€ X do
R'(e) «— (R(e) U RestActivadasPor(x)(e)) \ (O U {x})
end for
for ally € P do
if x>y then
#P'(y) — #P(y)— 1
else
#P'(y) «— #P(y)
end if
end for
end

Cuadro 5: Extensién de una configuracién

function Guarda(©, x) returns ¥

Y — /\yeeu{o} Ay, x)
end

function Reset(P, ©, x, X) returns reset C 2%
if TieneRestriccionesNoTriviales(E, ©, x) then
X — XU{z}
reset «— {z}
else
reset «— &
end if
end

function TieneRestriccionesNoTriviales(E, ©, x) returns res: true|false
res «—— false
for ally e P\ © do
res «— res o no Trivial(A(x,y))
end for
end

Cuadro 6: Generacién de guardas y relojes.
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function AgregarAristaMarkolnstant(A4, s, I, g, r, s’)
A — A U {(sal797r7 S’)}
end

function AgregarAristaSkip(4, s, {)
A— AU{(s,1,T,2,s)}
end

function AgregarAristaFail(4, s, 1)
A— AU{(s,], T, D, 5trap)}
end

function AgregarAristaTrap(A, [)
A — A U {(strap: l, Ty Z» strap)}
end

Cuadro 7: Generacién de aristas




Capitulo 7

Conclusiones, trabajo relacionado y
trabajo futuro

7.1 Conclusiones

Las técnicas de verificacién formales han despertado el interés de muchos grupos de investigacién durante
las ultimas dos décadas. Habiéndose superado los obstaculos relacionados con la construccién de algoritmos
de verificacién automdtica que puedan ser aplicados en forma efectiva a casos reales, la atencién comienza a
orientarse hacia la transferencia tecnolégica de estas herramientas. Vimos que el principal punto pendiente
es brindar soporte a los disefiadores y desarrolladores en las tareas de especificacién formal de sistemas.
La mayoria de los formalismos de especificacién existentes estdn basados en formalismos matematicos con
los que resulta dificil trabajar, especialmente en sistemas de complejidad media o grande como los que se
encuentran habitualmente en la industria.

Nuestro trabajo tenia como objetivo definir las bases para un lenguaje de alto nivel para expresar requeri-
mientos de sistemas concurrentes y de tiempo real. A lo largo de este trabajo presentamos un formalismo
para expresar comportamientos no deseados de un sistema basado en drdenes parciales de eventos y mos-
tramos como puede ser aplicado a la verificacién formal de sistemas. Consideramos que este formalismo, al
cual llamamos patrones de eventos, tiene las siguientes ventajas:

e Admite una notacién grifica.

e Permite expresar en forma compacta propiedades de concurrencia o causalidad entre eventos, lo cual
lo hace especialmente adecuado para ser aplicado en la verificacién de sistemas concurrentes.

Permite expresar restricciones temporales cuantitativas, lo cual lo hace especialmente adecuado para
verificacién de sistemas de tiempo real.

e Posee una seméntica simple, basada en el concepto de pattern matching.

Mostramos cémo pueden ser utilizados estos patrones de eventos en la especificacién de patrones de mal
comportamiento, es decir, en la descripcién de comportamientos no deseados en el sistema. Vimos que en
general resulta mds simple y directo definir cuales son los comportamientos “erréneos” de un sistema que
describir en forma general los casos en los cuales no se produce ningin error. Comprobamos mediante
ejemplos concretos que el soporte a las propiedades de concurrencia y causalidad de los patrones de eventos
hace posible escribir propiedades que serfa impracticable escribir en una légica temporizada o incluso con
autématas temporizados.

En este trabajo también demostramos formalmente que la verificacién de patrones de mal comportamiento
es decidible y construimos ademés un prototipo de verificador basado en autématas temporizados.

88
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Entendemos el que este trabajo sienta una base sélida para la construccién de un framework de especificacién
formal que pueda ser utilizado por disefiadores y desarrolladores de sistemas fuera del &mbito académico,
aunque queden todavia varios puntos sobre los cuales profundizar.

7.2 Trabajos relacionados

Como mencionamos anteriormente, existe un interés creciente en este area de investigacién y se han reali-
zado varios trabajos orientados a proveer herramientas y notaciones de especificacién de propiedades mas
amigables.

En [DAC98] se analizaron cientos de ejemplos de especificaciones formales generadas por distintos grupos
de investigacién y expresadas usando distintos formalismos. Una de las conclusiones mds interesantes de
ese trabajo es que a pesar del enorme poder expresivo que tienen la mayor parte de los formalismos de
especificacién existentes, el 80% de las especificaciones que analizaron corresponden a patrones simples como
response!, universality?y absence?.
El trabajo presenta un catélogo de patterns de especificacién siguiendo el espiritu de los design patterns de
[GHJV95]. El catdlogo indica como adaptar cada uno los patterns de especificacién a algunos formalismos
muy difundidos, incluyendo tanto formalismos basados en eventos como basados en estados. Un componente
importante de estos patterns es el concepto de contexto (scope en inglés) que indica sobre que porcién de la
ejecucién debe valer una propiedad. Ejemplos de contextos son: global, debe valer durante toda la ejecucion;
before, debe valer antes de cierto evento / estado y between, debe valer entre cierto estado / evento Q y
cierto estado / evento R.

Aungque el uso de estos patterns de especificacién facilita la tarea de especificacién de propiedades, el catdlogo
se limita (intencionalmente) a un conjunto acotado y pequeno de patterns e incluye soporte para un niimero
relativamente pequefio de formalismos. Por otro lado, los patterns soportados por este catdlogo asumen un
modelo no temporizado y por lo tanto no son adecuados para sistemas de tiempo real. La principal diferencia
con nuestro enfoque es que el objetivo de ese trabajo no era desarrollar un nuevo lenguaje sino dar soporte
al uso de los ya existentes.

En [UKMO02] se introdujo un lenguaje para describir escenarios negativos basado en MSCs con el fin de cap-
turar requerimientos. Algo similar, aunque con un propésito distinto, son los LSCs presentados en [DH99].
Aunque nuestro enfoque comparte la idea de trabajar con érdenes parciales para describir escenarios prohi-
bidos, nuestro enfoque se diferencia de estos otros dos en varios aspectos. En primer lugar, usamos nuestro
lenguaje como medio para expresar propiedades que serdn verificadas contra un modelo o implementacion
bajo andlisis. En segundo lugar, no estamos limitados a describir intercambio de mensajes ni tampoco ins-
tancias que generan eventos. M4s atn, la visibilidad de los eventos es tratada en forma bastante distinta
en nuestro trabajo. La consecutividad entre eventos no es una caracteristica primitiva (es decir, dos eventos
consecutivos en un patrén de eventos no necesariamente deben matchear ocurrencias consecutivas de dichos
eventos en una ejecucién). Por otro lado, en nuestro enfoque no es necesario recurrir a la notacién after/until
o utilizar triggering conditions para expresar cuando un matching es vélido. En tercer lugar, nuestro lenguaje
permite expresar restricciones temporales explicitas. A diferencia de LSCs, la seméntica de nuestro patrones
estd dada en forma declarativa y el procedimiento de construccién del tableau muestra la existencia de una
solucién algoritmica al problema de verificacién. Finalmente, nuestros patrones permiten expresar ciertos
requerimientos de liveness como por ejemplo que un estimulo nunca sea respondido.

En [DKM194] se propone un lenguaje grafico llamado GIL ( Graphical Interval Logic). El corazén del lenguaje
son los intervalos en los que se evalian distintas férmulas légicas. M4s alld de este soporte incorporado para
hablar de intervalos en una ejecucién y de la estructuracién grafica de las férmulas, el lenguaje hereda
la mayor parte de la complejidad de las 18gicas temporizadas y de intervalos. GIL utiliza un modelo no
temporizado y asume un orden total entre los eventos del sistema, con lo cual no resulta adecuado para
sistemas concurrentes y/o de tiempo real.

3Cierto estado / evento P debe estar siempre seguido del estado / evento Q
3Cierto estado / evento ocurre durante toda la duracién de determinado contexto
3Cierto estado / evento no ocurre en determinado contexto
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La herramienta TimeEdit[TIMO01] desarrollada por Bell Labs tiene una filosoffa similar a la de este trabajo
desde el punto de vista de que busca simplificar la tarea de escribir escenarios que nunca deberian ocurrir,
en este caso para las herramientas de verificacién Spin[Hol97] y FeaVer. Sin embargo TimeEdit tampoco
soporta restricciones temporales ni ordenamiento parcial de eventos.

Finalmente, en [AEY00, AY99] se usan Message Sequence Charts (MSCs) para especificar formalmente el
comportamiento de los sistemas. Sin embargo, el enfoque de estos trabajos es distinto al nuestro: utilizan los
MSCs (es decir, un formalismo grafico de alto nivel) para modelar el sistema y utilizan formalismos existentes
(en este caso autématas) para expresar propiedades a verificar. En nuestro enfoque, el énfasis esta puesto
en facilitar la tarea de especificar y verificar formalmente propiedades del sistema. Los MSCs asumen un
orden parcial entre los eventos del sistema, permitiendo una representacién més abstracta y compacta de
la concurrencia y de las dependencias de causalidad, caracteristica que comparten con nuestros patrones de
eventos. Nuevamente, én estos trabajos se usa un modelo no temporizado con lo cual tampoco se brinda un
soporte fuerte a la verificacién de sistemas de tiempo real.

7.3 Trabajo futuro

Como resultado de este trabajo hemos establecido una base sélida sobre la que se abren numerosas posibili-
dades de investigacién futura.

Uno de los puntos tedricos que quedan pendientes es la caracterizacién del poder expresivo de los patrones
de eventos y la determinacién de una cota precisa de la complejidad de la verificacién de patrones de mal
comportamiento.

Teniendo en cuenta el objetivo de la transferencia de tecnologia hacia la industria de desarrollo de sistemas,
creemos que es fundamental construir una herramienta de edicién gréfica para los patrones de eventos. La
notacién grafica presentada en este trabajo tiene cardcter de prototipo y creemos que es necesario trabajar
sobre una notacién que resulte visualmente atractiva y cuya semdntica resulte también intuitiva. Otro
punto interesante para explorar es la utilizacién de asistentes (wizards) para orientar a los disefiadores en
la construccién de patrones complejos (esta idea fue aplicada en [SACO02] a la construccién de autématas
temporizados).

Entendemos que una parte del trabajo futuro estd relacionada con el anélisis de extensiones para los patrones
de eventos y otra parte esté relacionada con la exploracién de otras aplicaciones para los mismos.

Una de las posibles extensiones consiste en permitir predicar sobre el primer o el wltimo evento ocurrido
entre un conjunto de eventos no relacionados causalmente entre si. Esta extensién agregaria poder expresivo
a los patrones. Otras posibles extensiones serian la incorporacién de proposiciones a los patrones de eventos,
la modularizacién de patrones y la posibilidad de definir patrones paramétricos.

Este trabajo estuvo orientado a la utilizacién de patrones de eventos para verificar formalmente la ausencia
de comportamientos no deseados en un sistema. Creemos interesante investigar la aplicacién de patrones de
eventos en el monitoreo de sistemas en ejecucién. En ese contexto, podrian utilizarse los patrones de eventos
como ordculos, contrastdndolos con los logs que genera el sistema para ver si se alcanza alguna situacién no
deseada (similar al enfoque de [BOBO3)).

Otra 4rea en la que creemos que podria resultar 1til la aplicacién de patrones de eventos es en la restriccién
de modelos de un sistema. Los patrones de eventos podrian ser utilizados para restringir el conjunto de
ejecuciones generadas por una modelizacién del sistema. En ese sentido, usariamos patrones de eventos para
expresar cosas tales como: “las ejecuciones que verifican el patrén P no se corresponden con la realidad”.

Por otro lado, este trabajo se orienta a la verificacién de sistemas con seménticas de interleaving, concre-
tamente a sistemas modelados usando autématas temporizados. Quiere decir que si bien los patrones de
eventos brindan un soporte sintéctico a la especificacién de propiedades de concurrencia y causalidad, este
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soporte se pierde a nivel semdantico y en el algoritmo de verificacién. Resulta interesante explorar otras
semanticas posibles para los patrones de eventos que permitan conservar la representacién compacta de la
concurrencia y que permitan, ademds, aplicar los patrones en la verificacién de modelos con estructura de
orden parcial (por ejemplo, sistemas modelados con MSCs Graphs).

Finalmente, en este trabajo mostramos un método de verificacién de patfones de mal comportamiento basado
en la construccién de un autémata reconocedor. En este punto se abren dos caminos posibles igualmente
interesantes: por un lado, explorar otros métodos de verificacién especificamente disefiados para los patrones
de eventos que permitan utilizar eficientemente las caracteristicas propias de los patrones (por ejemplo,
para obtener algoritmos mds eficientes en tiempo y espacio) y por otro lado, revisar la construccién de los
autématas reconocedores teniendo en cuenta las herramientas existentes para optimizacién de autématas
temporizados por reduccién del nimero de relojes o del nimero de locaciones (por ejemplo [BGO02, DY96]).



Apéndice A

Demostraciones

A.1 Propiedades de la composicién paralela de autématas tempo-
rizados
Proposicién 2.1. Dados dos autématas temporizados A; = (S;, X;, %, A;,Z;,80;) con @ = 1,2 y una
ejecucién o sobre ¥; U X,
(S L(.A]”.A2) sii 0’[21 (S [,(.Al) y 0'[22 € C(.Az)

Demostracion. Queremos ver que existe una forma de evolucionar siguiendo o en A;||.A; si y sélo si existe
una forma de evolucionar en .A; siguiendo o[yx, y en A; siguiendo o[x,. Quiere decir que para una ejecucién
0 =1(5061---Gi...,tg<t; <...<t; 4...) deben existir las sucesiones infinitas de estados {g,} en A;||A2, {ql}
en A; y {¢2} tales que:

% =4, G (A1)
sii
G =>tan Y ¢ (A2)
donde

A en otro caso

{Q‘,’ si G € 22
bi =

{c,- sig €%
a; =

A en otro caso

Ahora bien, por definicién de ||, habrd una evolucién en un paso ¢ =¢ ¢’ en A;||A2 si y sélo si existen las
evoluciones en un paso:

m1(q) =¢ m(¢) siae X,

A ’ en Al
m1(q) =7 m1(¢’) en otro caso
T2(q) =>§ m2(q') sia € Xy el
m2(g) =3 m2(q’) en otro caso

Quiere decir que si existe una sucesién de estados {g,} en A; || A2 que verifique (A.1), entonces las sucesiones
{an} v {q?2} tales que ¢} = m(g;) ¥y ¢? = m2(g;) para todo i, verifican (A.2). Por otro lado, si existen por
separado {g.} y {¢2} en A; y Aq, respectivamente, que verifique (A.2) entonces la sucesién {g,} tal que
¢ = (g}, q?) para todo i verifica (A.1).

O

92
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A.2 Propiedades del producto de autématas de Biichi temporiza-
dos

Proposicién 2.2. Dados dos autématas temporizados A; = (S;, X;, i, Ai,Z;, S0:), con @ = 1,2, un
autémata de Biichi temporizado B = (Aj, F), con F C S, y una ejecucién o sobre ¥; U Xo,

o€ LA ®B) sii ols, € L(A1) yolg, € L(B)

Demostracion. A; ® B es el autémata de Biichi (A;]|A2, 51 x F). Quiere decir que o serd aceptada por
A1 ® B si y sélo si pertenece al lenguaje £(A;]|42) y ademés existe una forma de evolucionar siguiendo o
en A;||A; de forma tal de visitar un niimero infinito de veces locaciones en S; x F. Por la Observacién 2.1,
sabemos que o estard en el lenguaje £(A;||Az) si y sélo si o]y, pertenece a L(A;) y olz, pertenece a L(Ay).
Por otro lado, que exista una forma de evolucionar siguiendo en o en A;||A2 que verifique la condicién de
aceptacién de A; ® B es equivalente a pedir que haya una forma de evolucionar en Aj siguiendo o[y, de
forma tal de visitar un niimero infinito de veces locaciones en F (porque implicitamente, todas las locaciones
de A; son locaciones de aceptacion). Finalmente, que ols, € L(A2) y que sea posible evolucionar en A

siguiendo oy, y verificando la condicién de aceptacién de B equivale a decir que o[x, € L(B).
O

A.3 Propiedades de la satisfaccién de patrones basicos

Propiedad 3.1. Clausura por extensiones.
Dado un patrén bésico P = (X, P, ¢, —,~) y una ejecucién finita ¢ sobre X, si ¢ P entonces para cualquier
ejecucién ¢’ sobre X, ¢’ E P.

Demostracidn. Supongamos que s E P. Eso quiere decir que existe al menos un matching bésico * entre P
v <, es decir, un mapeo que verifica las condiciones M1-M3. Dado que estas tres condiciones sélo predican
sobre posiciones de ¢, es facil ver que * con el codominio ampliado a Il¢ serd también un matching bésico
entre ¢’ y P, sin importar cual sea ¢’. O

Propiedad 3.2. Satisfaccidn finita.
Dado un patrén bésico P = (I, P, £, —,v) y una ejecucién ¢ sobre X, si ¢ £ P entonces existe una posicién
1 € 1. tal que S FP.

Demostracion. Supongamos que ¢ F P. Eso quiere decir que existe al menos un matching bésico * entre P
v . Sea n = max,cp X, 0 sea, el méximo de la imagen de °.

Por la forma en que elegimos a n, todas las posiciones a las cuales - mapea puntos del patrén estdn incluidas
en el prefijo ¢,). Esto significa que * verifica trivialmente las condiciones M1 - M3 aplicadas a ¢, y a P,
dado que en ninguna de esas condiciones se hace referencia a posiciones de la ejecucién que estén mads alld
de la tltima posicién resaltada. Quiere decir que * es un matching bésico entre s, y Py, por lo tanto,
§n] = P O

A.4 Propiedades de la satisfaccién de patrones temporizados

Propiedad 3.3. Clausura por eztensiones.
Dado un patrén P = (I, P,{,—,7,6) y una ejecucién finita o sobre X, si o F P entonces para cualquier
ejecucioén ¢’ sobre ¥, oo’ E P.

Demostracidn. La demostracién de esta propiedad es similar a la demostracién de la Propiedad 3.1 para el
caso no temporizado.
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Como en ese caso, decir que una ejecucién o F P significa que existe al menos un matching temporizado *
entre P y o y esto, a su vez, significa que existe un mapeo * que verifica las condiciones M1-M3 + MT2.
Nuevamente, estas condiciones aplicadas a * sélo predican sobre posiciones de o, con lo cual el mismo mapeo
pero con el codominio ampliado a I1,, serd un matching temporizado entre oo’ y P, sin importar cual sea o”.

O

Propiedad 3.4. Satisfaccidén finita.
Dado un patrén temporizado P = (X, P, £, —,~,§) y una ejecucién temporizada o sobre X, si o P entonces
existe una posicién i € I1, tal que o3 F P.

Demostracidn. Siguiendo el razonamiento que hicimos en la pagina 93, en la demostracién de la Propiedad
3.2 para el caso no temporizado, supongamos que o E P,y * : P+ II, es uno de los matchings temporizados
entre o y P.

Es fécil ver que * verifica trivialmente las condiciones M1-M3 + MT2 aplicadas a 0,,) y P, donde n =
maxkep X, O sea, el méximo de la imagen de *. Como o, es un prefijo finito de o, queda demostrada la
propiedad. 0O

A.5 Propiedades de la satisfaccién de patrones de eventos

Propiedad 3.5.Clausura débil por extensiones.
Dado un patrén de eventos P = (Z, P, £, —, 7, 6,0, 00) y una ejecucién temporizada finita o sobre £, si o E P
entonces para cualquier ejecucién ¢’ = (5, 7) tal que cNLp = &, oo’ F P.

Demostracion. Para demostrar esta propiedad vamos a seguir la idea usada en las demostraciones de la
propiedad clausura por extensiones para el caso sin temporizar (Propiedad 3.1) y el caso temporizado (Pro-
piedad 3.3). Como hicimos en esos casos, vamos a suponer que o E P y que * es un matching entre P y o
y vamos a mostrar la forma de construir un matching * entre oo’ y P (suponiendo que ¢’ cumple con las
hipétesis de la propiedad).

Sea o’ = (¢’,7’) una ejecucién sobre ¥ tal que ¢’ NLp = @. Sea ~ el mapeo ° pero con el codominio ampliado
a Hao’ o

Es facil ver que ~ verifica M1-M3+MT2+MI+MTI por las mismas razones expuestas en los casos ante-
riores. Sin embargo, no es tan directo ver que * verifica MS.

Sabemos que para todo punto x € P, (ss’)x = §xs’. También sabemos que:

Vi, X <1< |ol|, & & v(x,00) (A.3)
porque ° verifica MIS y por hipétesis:

Vi, 0<i<|o'|, s/ ¢Lp pa
¥, en particular, ¢ ¢ y(x, o).

Quiere decir que para todo punto x € P, giz¢’ N~y(x,00) = @ y por lo tanto * también verifica MS.

Dado que mostramos que - es un matching entre oo’ y P, oo’ & P.

Propiedad 3.6.Satisfaccién finita.
Dado un patrén P = (X, E, ¢, —,7,6,0,00) y una ejecucién temporizada o sobre ¥, si o E P entonces existe
una posicion 1 € II, tal que o, F Py, ademds, o; NLp = @.
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Demostracién. Siguiendo el razonamiento usado para demostrar la propiedad de Satisfaccién finita para los
casos no temporizado y temporizado, supongamos que o E P,y *: P+ II, es uno de los matchings entre o
y P.

Es fécil ver que * verifica trivialmente las condiciones M1-M3 + MT2 + MI + MTI aplicadas a o, y P,
donde n = max,cp X, 0 sea, el méximo de la imagen de *. Es también bastante directo ver que lo mismo
ocurre con MS. Dado que sabemos que para todo punto x € P, gz Ny(x,00) = &, en particular debe valer
que gz n) NY(x,00) = @.

Para ver que, ademds, ¢(,NLp = &, podemos observar que dado que * verifica MS, para todo x, §;zM(x, 0c) =
2. Pero también debe pasar que para todo X, 5, N7(x,00) = &, y por lo tanto, 5, NLp = .
O

-

A.6 Propiedades de autématas reconocedores de patrones basicos

Propiedad 4.1. Dado un patrén bdsico P = (X,P{,—,7) y su autémata reconocedor
Ap = (S8, X,%,A,Z,s0), sean © y ©' configuraciones de P. Si [0] = [0’], entonces toda evolucién en-
tre [©] y [©’] tiene la forma:

([Bo],v0) =2 ([€1],v1) =5 ... ([B],wi) =57 ... =77 ([On)],vn)

donde ©p =0, 0, = O ypara todo i, 0 <i<n,v; € Vx,a; € LU{A}, t; ERT y B;41 es igual a ©; o
es una extensién de ©;.

Demostracidn. Si existiera una evolucién entre [©] y [©'], tendria la forma:

([Oo],v0) =55 ([B1],v1) =4} ... (8], v3) =4 .. =177 ((Bnl,vn)

donde ©g =0, ©,, = ©' y para todo i, 0 <i < n, v; € Vx, a; € U {A}, t; € RT. Esto debe ser asi porque
Strap N0 puede formar parte de ninguna evolucién entre [©] y [©’] por ser sirqp una locacién trampa distinta
de [6] y [©].

Queremos ver que ©;; debe ser igual a ©; o debe ser una extensién de ©;.

Tomemos un i arbitrario, 0 < i < n. Sabemos que ([©;],v;) =7/ ([©it1],vi+1). Quiere decir que o bien
existe una arista ([©;],a;, ¥, p, [©i+1]) en Ap 0 a = Ay [0;] = [©;41]. El segundo caso es trivial, veamos el
primero. La arista entre [©;] y [©;4+1] sélo puede ser Mark o Skip. Si pertenece a Skip entonces es un loop
y por lo tanto ©; = ©;,1. Si, en cambio, pertenece a Mark, entonces necesariamente 0;41 debe ser una
extensién de ©;. O

Propiedad 4.2.Correccion del autémata reconocedor para patrones bdsicos
Dado un patrén bésico P = (X, P,¢,—,v) y su autémata reconocedor Ap = (S, X,X, A,Z, so), para toda
configuracién © € ©p y toda ejecucién finita ¢ sobre X,

sl ginit =° [O)] entonces ¢ Fg P

Demostracién. Sea © una configuracién de P. Sea ¢ una ejecucién finita. Supongamos que g;niz =° [6)].
Queremos ver que esto es una condicién suficiente para que < satisfaga parcialmente P, restringido a ©. Para
ver que ésto es cierto, alcanza con demostrar que existe un matching bésico parcial entre ¢ y P restringido
a ©. Construiremos un mapeo a partir de una evolucién entre g;,;; y [©] y mostraremos que cumple las
condiciones MP1-MP4.

Sea n = [¢|. Por la Propiedad 4.1, una evoluci6n entre ginit ¥ Saccept €tiquetada por ¢ debe ser de la forma:

Ginit = (B0, v0) = ((01],v1) =3} ... ([8:],v:) =5 ... =17 (Bl vn)

donde [©g] = [@] = so, vo =0, [0,] = [0] y para todo i, 0 < i < n, v; € Vx, t; € R y ©;41 esigual a ©; 0
es una extensién de ©;. En particular, sabemos que:
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[@1] =55 [6i+1] 0<i<n (A5)

Sea * el mapeo construido segin la siguiente regla:

% = max i para x € © : (A.6)
0<i<n
x¢0;
Es decir, para un punto x € ©, % determina la 1ltima locacién de la evolucién que no contiene a x y [Oz41]
es la primera locacién que si lo contiene.
Probemos ahora que * cumple las condiciones de validez MP1 - MP4, es decir:

MP1) Queremos ver que para todo punto e € © N E, ¢z € £(e).

Sea e un punto cualquira en ©. Por (A.6), [Og] es la tltima locacién de la evolucién que no contiene a e y
[©a41] es la primera locacién que si lo contiene. Dado que por (A.5) sabemos que [©:] = [©a41] y también
sabemos que [O] # [@a11] v € € E, debe existir una arista Mark de la forma ([©:], %, ¥, p, [Oe41]). Por la
forma en que fue construido Mark, debe pasar que g € £(e).

MP2) Queremos ver que para todo par de puntos x,y € O, si x < y entonces X < .

Sea x un punto cualquiera en ©. Supongamos que existe un punto y € © tal que y < x. Por (A.6), [Oz41]
es la primera locacién que contiene a x y [©y41] es la primera locacién que contiene a y. Dado que las
locaciones contienen configuraciones (por la forma en que se construyé S), es necesario que [©y41] aparezca
en la evolucién antes que [©z41] (si no, [©z4+1] contendrfa a x y no a y y no serfa una configuracién). Por lo
tanto, necesariamente y + 1 < X+ 1, lo que es equivalente a y < X.

MP3) Queremos ver que para todo par de puntos x,y € ©, si X < y entonces gz ) NY(x,y) = 2.

Sean x,y dos puntos cualesquiera en ©. Supongamos que X < y. Queremos ver que para toda posicién 1,
X<1<Y, 6 ¢y(xy).

Sea ¢ una posicién cualquiera entre X y y. Dado que ¢ > X, por (A.6), x € ©;. Andlogamente, dado que i < ¥,
Por otro lado, por (A.5) sabemos que [©;] = [0;41]. Esto quiere decir que o bien ¢; = A, con lo cual
trivialmente no pertenece a y(x,y), o ¢; € & y debe existir en A una arista de la forma ([6;],;, ¥, p, [©i41])-
Es facil ver que si ese es el caso, dicha arista sélo puede ser Skip o Mark.

Supongamos que ([©;], i, ¥, p, [O:i+1]) es una arista Skip. Esto implica, entre otras cosas, que ¢; ¢ I'(6;) v,
por definicién de T, esto quiere decir que dado que x € ©; e y ¢ ©;, ¢; no puede aparecer en (X, y).
Supongamos, ahora, que ([6;],¢i,%,p, [©it1]) es una arista Mark. Esto implica, entre otras cosas, que
©i+1 = O; ¥ {e}, para algiin punto e € E y que s; ¢ [',e(6;). Entonces, dado que i1 +1 <y, y ¢ ©;41, con
lo cual e #y. Dado que x € ©;, y ¢ ©; y que y # e, necesariamente ¢; ¢ (X, y).

En los tres casos llegamos a que ; € v(x,y).

MP4) Por ultimo, queremos ver que para todo par de puntos x,y € P, six € ©, y € P\ ©, entonces
sxNY(xy) = 2.

Sea x un punto cualquiera en ©. Sea y otro punto cualquiera en P\ ©. Queremos ver que para toda posicién
iv Xx<i< n, G ¢ ’Y(X’Y)

Sea 7 una posicién cualquiera entre X y n. Dado que i > %, por (A.6), x € ©;. Por otro lado, dado que todas
las configuraciones del camino estdn incluidas en © y y est4 en el complemento de ©, necesariamente y ¢ ©;.
Siguiendo el mismo razonamiento que en el caso anterior, sabemos que o bien ¢; = A, con lo cual claramente
no pertenece a y(x,y) o debe existir una arista de la forma ([©;],;, %, p, [©:i+1]), que sélo podré ser Skip o
Mark.

Supongamos que existe una arista ([©;],¢i, %, p,[©i+1]) en Skip. Como dijimos antes, esto implica que
¢ ¢ T'(©;), y como vimos que x € ©; y y ¢ ©;, entonces necesariamente ¢; ¢ y(x,y).

Supongamos, por otro lado, que existe una arista ([0;], <, %, p,[©:+1]) en Mark. Nuevamente, esto quiere
decir que ©;41 = ©; ¥ {e}, para algiin punto e € E y que ¢; & ['e(0;). Dado que e € ©;4; C ©, y no puede
ser igual a e. Comox € ©;,y ¢ ©; ey # ¢, por def. de I',. necesariamente s; ¢ y(x,y)-

En los tres casos, llegamos a que s; € v(x,y).
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Con esto queda demostrado que * es un matching bésico parcial entre ¢ y P restringido a © y en consecuencia
skFe P.
O

Propiedad 4.3.Completitud del autdmata reconocedor para patrones bdsicos.
Dado un patrén basico P = (I, P, ¢, —,v) y su autémata reconocedor Ap = (S, X, %, A,Z, so), para toda
configuracién © € Op y toda ejecucién finita ¢ sobre %,

si ¢ Fe P entonces giniz =° (O]

Demostracion. Sea © una configuracién de P y ¢ una ejecucién finita sobre . Supongamos que ¢ Fg P.
Eso quiere decir que existe un matching bésico parcial * entre ¢ y P restringido a ©. Para demostrar que se
puede evolucionar desdeé g;,;; hacia [©] consumiendo ¢, vamos a dar una forma de construir una evolucién
entre dichas locaciones a partir de °.

Sea n = [¢|. Consideremos la siguiente secuencia de conjuntos de puntos:

64,01,.+.,9,
donde:
0;={x€O|x<i},para0<i<n (A7)
Podemos observar que:
e Oy =g,
porque ningin punto puede ser mapeado a una posicién menor que 0.
o en = 6’
porque - mapea puntos en posiciones de ¢, es decir, entre 0 y n — 1 y por lo tanto, para todo punto
XE B, x<n.

e Para todo i, 0 < i < n, ©; es una configuracién.
Para ver que esto es cierto tenemos que ver que para cualquier punto y € ©;, todo predecesor de y

también pertenece a ©;. Dado x <y, por MP2 sabemos que X < y. Quiere decir que X < ¥ < ¢ y por
lo tanto x € ©;.

e Para todo i, 0 <7 < n, [O;] es una locacién de Ap.

Porque vimos que los ©; son configuraciones.

e Cada ©;,1, con 0 <1i < n es igual a ©; o es una extensién de ;.

Por la forma en que construimos los ©;, cada conjunto puede diferir del siguiente en a lo sumo aquellos
puntos x para los cuales X = 7. Pero como sabemos que ° es inyectiva eso quiere decir que o bien
no existe ninguin x tal que X = ¢, con lo cual ©;;; = ©;, o existe exactamente uno, llamémoslo p, y

©i+1 =06, ¥ {p}.

e Para todo 7, 0 < i <, si¢; # A entonces existe una arista de la forma ([6;],5;, %, p, [@i+1])-
Dado un i cualquiera, 0 <i < n, supg; € X.
Si ©i41 = ©;, por MP3 y MP4 sabemos que s; ¢ I'(6;). Si este no fuera el caso, existirian x € ©;
ey ¢ ©O; = ©,4 tales que g; € y(x,y). Con lo cual, siy € © (es decir, X < ¢ < y), * violaria MP3
ysiy € P\ ©, como x < i, * violarfa MP4. Por lo tanto, debe existir una arista Skip de la forma
((8i], 51,9, p, [64])
Si ©i41 = O©; W {p}, por MP3 y MP4 sabemos que s; & I',,(0;). Si este no fuera el caso, existirian
x€EO;ey¢ O;talesquey#pys €v(xy). Conlocual, siy e O (es decir, X < 7= p < ¥), * violaria
MP3ysiy e P\, * violaria MP4. Por otro lado, por MP1 sabemos que p € E y que g; = 3 € £(p).
Quiere decir debe existir una arista Mark de la forma ([6;], <, v, p, [0: ¥ {p}]).
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e Para todo i, 0 <7 < n, si ; = A entonces [0;] = [O;41].
Dado un i cualquiera, 0 < i < n, sup s; = A. Si ©;41 = ©; ¥ {p}, querria decir que p = i. Pero entonces
* violaria MP1 porque A = ¢; ¢ £(p).

e Para todo i, 0 < i < n, ([0;],0) =§ ([©i+1],0). »
Dado un i cualquiera, 0 < i < n, sabemos que existen la transicién temporal ([©;],0) —° ([_61'],5)

y la transicién discreta ([0;],0) — ([©:+1],0) y, por lo tanto, la evolucién en un paso ([6;],0) =g
([8i41],0).

Con estas observaciones en mente, podemos concluir que:

([©0],0) =¢ ([1],0) =" ... =5 ([64],0)
lo cual implica que ginit = ([2],0) = ([B0],0) =° [Oa] = [6].

Teorema 4.4. Tableau para patrones bdsicos.
Dado un patrén bésico P = (X, P,¢,—,~) y su autémata reconocedor Ap = (S, X, X, A,Z, so), el autémata
de Biichi temporizado Tp = (Ap, {Saccept}) reconoce el lenguaje L(P).

Demostracion. La demostracién del teorema estéd dividida en dos lemas. El Lema A.1 prueba que L£*(7p) C

L(P) vy, por el otro lado, el Lema A.2 prueba que L(P) C L*(7p).
O

Lema A.1. (Correccidn del tableau)
Dado un patrén bdsico P y su autémata reconocedor Ap y sea el autdmata de Bichi temporizado

Tp = (A’P, {Saccept}>7

L*(Tp) C L(P)

Demostracion. Queremos ver que L*(7p) C L(P), es decir, que todas las ejecuciones aceptadas por 7p
corresponden sélo a ejecuciones aceptadas por P.

Sea ¢ una ejecucién en £*(7p). Por la definicién de lenguaje de un autémata de Biichi temporizado, sabemos
que existen r € R®(Ap) y 7 tales que 7 = (,7) ¥ Saccept € inf(r).

Que 7 visite un ndmero infinito de veces la locacidn S,ccept implica, entre otras cosas, que en un nimero
finito de pasos r alcanza Sgccept- Quiere decir que existe un ¢ € N tal que:

Ginit =>§:,]] Saccept
Por la propiedad de Correccién del autémata reconocedor para patrones bésicos 4.2 sabemos que ¢; Fp P,
y por lo tanto, ¢; F P. Como los patrones basicos son cerrados por extensiones (Propiedad 3.1) podemos

extender este resultado a todo ¢, es decir, ¢ F P.

Finalmente, como r es divergente y por lo tanto infinita, ¢ también debe serlo y debe pasar que ¢ € £L(P). O

Lema A.2. (Completitud del tableau)
Dado un patrén bdsico Py su autémata reconocedor Ap y sea el autémata de Biichi temporizado

T‘p = <.A1>, {Saccept}>;

L(P) € L*(Tp)
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Demostracion. Queremos ver que L(P) C L*(7p), es decir, que todas las ejecuciones infinitas aceptadas por
P son también aceptadas por 7p. Para ésto, tenemos que mostrar que para cualquier ejecucién infinita ¢
aceptada por P existe una forma de evolucionar en Ap consumiendo dicha ejecucién de forma tal de pasar
un numero infinito de veces por la locacién sgccept-

Veamos que es posible construir a partir de ¢ una evolucién finita que permita llegar desde ginit hasta saccept
y una evolucion infinita y divergente que permita quedarse para siempre en Sqccept, Verificando la condicién
de aceptacién de 7p. Sea ¢ una ejecucién tal que ¢ € £(P). Por definicién, sabemos que ¢ = P y que || = oo.
Por la propiedad de satisfaccion finita de patrones bésicos (Propiedad 3.2), sabemos que existe una posicion i
de ¢ tal que ¢; F P. Sabemos que también vale que ;) Fp P. Por la propiedad de Completitud del autémata
reconocedor para patrones basicos 4.3, existe una evolucién entre g;n;; y [P] de la forma g;n;; = [P]. Pero
como [P] = Sqccept:

<
Ginit = ! Saccept

Esto quiere decir que existen vy,...,v; € Vx ¥y to,...,t; € R tales que:

71 = (S0, 0) =>§3 (s1,v1) =>§i o+ =4 (Saccept Vi)

Por otro lado, sabiendo que en syccept €xisten transiciones Skip para todos los eventos y que el invariante es
T, existe la evolucién infinita y divergente:
v i Si+1 Si+2 Si+j - Sit+j+l |
g = (sacceph Ui) :1‘ (Saccepty v; + 1) =>1‘ c =>1l ’ (saccepty Vs +]) =1

Llamemos 7 a la secuencia temporal finita de la forma 7 =ty <---<t; y 7' a la secuencia temporal infinita
de la forma 7/ =1<41<---. Se puede ver que 7173 = (5, 747'), r172 € R®(Ap) y ademds 7173 Visita Sgccept
infinitas veces. Con esto hemos demostrado que ¢ € L*(7p). O

A.7 Propiedades de autématas reconocedores de patrones tempo-
rizados
Proposicién 4.5. Preservacion de verdad. Dada una restriccién temporal ¢, para todo real no negativo t,
¥z (p)[z|t] es verdadero sii t E ¢

Demostracion. (Por induccién en la complejidad de la restriccién)
Si ¢ € IN, entonces ¢ serd de la forma:

¢ ={a,pB} (A.8)

dondeae NypBeNofB=ocoy{=(]|[, } =) |]- Quiere decir que ¥;(y) serd una restriccién sobre z de
la forma:

a~zAz~f3 (A.9)
donde ~ € {<, <}. Por lo tanto, ¥ (¢)[z|t] tendrd la forma:

a~tAt~f (A.10)

con lo cual ¥ (¢)[z|t] serd verdadero si y sélo si t € {a, 3}, es decir, si y sélo si t F ¢.
Si ¢ = =6, con 0 € In, entonces Y. (p)[z|t] = —(¥z(0))[z|t] = —(¢-(0)[z|t]). Por hipétesis inductiva,
1z(0)[z|t] es verdadero si y sdlo si t E 8, quiere decir que —(vz(6)[z|t]) sii ¢ ¥ 0, es decir, sii t F .

O

Proposicién 4.6. Dada una restriccién temporal ¢ y un reloj z,

v Pz (p) sii v(z) F ¢
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Demostracion. Dado que z es el tinico reloj que aparece en ¥-(¢), sélo interesa v(z) para determinar si v
satisface o no ¥z (y).
Es decir, v F 92 (¢) sii 92 ()[z|v(z)] es verdadero, y por la Proposicién 4.5, ésto dltimo pasa sii v(z) £ ¢. O

Propiedad 4.7. Dado un patrén temporizado P = (X, P,¢,—,7,8) y su autémata reconocedor
Ap = (S,X,%,A,Z,s0), sean © y ©' configuraciones de P. Si [©] = [©’], entonces toda evolucién en-
tre [©] y [©’] tiene la forma:

([Ool,v0) =55 ([O1], 1) =5} ... ([O:],v:) =5} ... =77} ([On],vn)

donde ©g = ©, ©,, =0 y paratodo i, 0 <i<n,v; €Vx,a;, € LU{A}, t; € RT y 6,41 es igual a ©; o
es una extensién de_ei.

Demostracién. Como vimos para el caso no temporizado, si existiera una evolucién entre [0] y [©'], tendria
la forma:

([Bol,v0) =2 ([©1),v1) =5 ... ([6:],w:) =5 ... =27} ([Bn),vn)

donde ©g =0, ©,, = O’ y para todo i, 0 < i < n, v; € Vx, a; € ZU{\}, t; € RT. Queremos ver que O;4;
debe ser igual a ©; o debe ser una extensién de ©;.

Dado un 4 arbitrario, 0 < ¢ < n, sabemos que ([0;],v;) =¢/ ([€i+1],vi+1) ¥, por lo tanto, debe existir una
arista de la forma ([©;],a;, ¥, p,[©;+1]) o bien a; = A y [©;] = [©:1+1]. Ademds, en el primer caso la arista
s6lo puede ser Mark, Instant o Skip. En todos los caso, o bien ©; = ©;,; o ©;;1 debe ser una extensién
de 6i. O

Propiedad 4.8.Correccién del autémata reconocedor para patrones temporizados.
Dado un patrén temporizado P = (X, P, £, —,~,8) y su autémata reconocedor Ap = (S, X, %, A, 7, so), para
toda configuracién © € ©p y toda ejecucién finita o = (g, 7) sobre T,

sl ginit = [©] entonces o Fg P

Demostracién. Sea © una configuracién de P, sea o una ejecucién finita y supongamos que ginit =% [O].
Siguiendo el mismo razonamiento que usamos en la demostracién de la propiedad de Correccién para el caso
no temporizado (pagina 95), mostraremos que existe un matching temporal parcial entre o y P restringido
a ©. Construiremos un mapeo a partir de una evolucién entre gini; y [©] y mostraremos que cumple las
condiciones MP1-MP4 + MPT1-MPT2.

Sea n = |o|. Sean to,...,tn,—1 € R tales que T se pueda escribir como 7 = tg <t <4--- <4t,_1. Dado que o
etiqueta alguna evolucién entre gini; y [©], por la Propiedad 4.7, dicha evolucién debe ser de la forma:

Qinit = ([90],1)0) =>§g ([61],’01) =>§: e ([91],1;,-) #:: s, =>:::i ([Gn],vn) (All)

donde [Og] = [@] = s0, vo = 0, [O,] = [O] y para todo i, 0 < i < n, v; € Vx ¥y Ois1 es igual a ©; 0 es una
extensién de ©;.
Como en el caso no temporizado, elijamos - de la siguiente manera:

X = max 1 parax € © (A.12)
0<i<n
x¢8,-
Es facil ver que ° verifica MP1-MP4 usando un razonamiento analogo al presentado en la pagina 95. Veamos
que, ademds,  verifica MPT1 y MPT2.

MPT1) Queremos ver que para todo punto x € I, X = A. » ) .
Sea i un punto cualquiera en ©N 1. Por (A.12), [6;] es la tltima locacién de la evolucién que no contiene a i
¥ [©;,,] es la primera locacién que si lo contiene. Sabemos también que [6;] =% [6;,,] y también sabemos
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que [©;] # [©;_,], debe existir una arista Instant de la forma ([6],<, ¥, p, [01,,]). Por la forma en que fue
definido el conjunto Instant, debe pasar que ¢; = A.

MPT2) Queremos ver que para todo par de puntos x,y € ©, x <y = A(7jg)) F (x,y)-

Sean x,y dos puntos cualesquiera en ©. Supongamos que X < y. Por (A.12) sabemos que y ¢ Oy pero
y € ©541, con lo cual debe pasar que ©y.41 = ©;W{y}. Por (A.11) sabemos que ([6y],vy) =>Z ([By+1], vy41) =
([©3 W {y}],v54+1), por lo tanto, debe existir una transicién discreta entre [Oy] y [©y ¢ {y}] correspondiente a
una arista de la forma ([©;],;, %, p, [©y W {y}]). Es facil ver que dicha arista s6lo puede pertenecer a Mark
o a Instant, con lo cual ¥ = 1/1"69 = /\966; Y, (0(p,y)) y vy + 5 F 1Z1y99-

En particular, vy + t; E 9, (6(x,y)). Usando la Proposicién 4.6, sabemos que vy + ty E 1, (d(x,y)) equivale
a que:

(v5 +15) (%) E 6(x,Y)

Anédlogamente, sabemos que ©3+1 = O3 W {x} y que existe una arista Mark o Instant de la forma
([9;(], S W,P'» [ei Y {X}]> Con lo cual, pl = {zx}

Por la forma en que se construyeron las aristas de Ap, las tinicas aristas que resetean relojes son las aristas
Mark e Instant. Adem4s, un reloj z, correspondiente al punto x, sélo se resetea cuando se marca x. Esto
quiere decir que en cualquier evolucién como la presentada en (A.11) un reloj se resetea a lo suma una vez.
Quiere decir que z se resetea en la transicién entre [O;] y [Oz+1] ¥ no se vuelve a resetear después de la
posicién x + 1. Por lo tanto:

vip1(2) = 0

vir2(z) =t

Vi+3(2x) = tr41 +lae2
v(z) = Gttt

Por tltimo, observemos que A(7xg)) = 7y — Tx = tgq1 + - +t5. Quiere decir que A(7yy) = vy(2) +t; =
(vy +1t5)(2) ¥, por lo que acabamos de demostrar, A(7jz ) F 8(x,y).
Con esto queda demostrado que ° es un matching temporal parcial entre o y P restringido a © y en conse-
cuencia o Fg P.

O

Propiedad 4.9.Completitud del autémata reconocedor para patrones temporizados.
Dado un patrén temporizado P = (X, P, ¢, —,~,d) y su autémata reconocedor Ap = (S, X, %, A, Z, so), para
toda configuracién © € ©p y toda ejecucién finita o sobre ¥,

si 0 Fg P entonces ¢niz = [O)]

Demostracion. Sea © una configuracién de Py o = (s, 7) una ejecucién finita sobre . Supongamos, ademads
que o Fg P. Como en el caso anterior, seguiremos el razonamiento usado en la demostracién de la propiedad
de Completitud para el caso no temporizado (pagina 97).

Dado que o g P, sabemos que existe un matching temporal parcial * entre o y P restringido a ©. Para
demostrar que se puede evolucionar desde gini¢ hacia [©] por o, vamos a dar una forma de construir una
evolucién entre dichas locaciones a partir de *.

Sea n = |o|. Consideremos la secuencia de conjuntos de eventos presentada en la pagina 97:

e()’el’"'ye‘n
donde:

0, ={x€0|x<i},paral0<i<n (A.13)

Podemos observar que en este caso también vale que:
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e Q=0

e 0,=06

e Para todo 7, 0 <7 < n, ©; es una configuracién

e Para todo i, 0 < i < n, [©;] es una locacién de Ap

e Cada ©;,1, con 0 <1i < n esigual a ©; o0 es una extensién de ©;

e Para todo 7, 0 < i < n, si ¢; # \ entonces existe una arista de la forma ([0;],;, ¥, p, [©:i+1])-

e Para todo 7, 0 < 7 < n, sig = ) entonces [©i] = [©it1] o existe una arista de la forma
([ei]7A7¢1p7 [ei+1]>-
Sig = Ay ©;41 = ©; vale trivialmente esta propiedad. Veamos ahora que pasa si ¢; = Ay

Oi41 =6, {p}.
Si se diera este caso, por MPT1 sabemos que p ¢ E, porque los eventos no pueden ser mapeados
en posiciones A. Por lo tanto, p € I y por definicién de Instant, debe existir una arista de la forma

([ei]’ )‘7 ¢, P [e‘l Y {P}])

Sea tg,...,t,_1 lasucesién de niimeros reales no negativos tal que 7 se pueda escribir como 7 = to<t1<- - *<t,_1
y sea vy, ..., v, la secuencia de valuaciones dada por:
Vo = 6
v; +t; si ©;41 = 6; . A.14
Vit1 ] 1 . i+1 i 0 S i<n ( )
Resetzx(vi + t,‘) sl 9,-+1 =6;4 {X}

Veamos que también vale que para todo i, 0 < i < n, ([©:],v:) = ([Oit1], vit1)-

Dado un i cualquiera, 0 < i < n, sabemos que existe la transicién temporal ([0;],v;) =% ([©;],v; +t;) dado
que el invariante de todas las locaciones del autémata es T. Por otro lado, sabemos que o bien existe una
arista de la forma ([0;],<, ¥, p, [©i+1]) 0 ©; = ©;11 y & = A. Si este tltimo fuera el caso, trivialmente
existirfa la transicién discreta ([0;],v; +t;) —* ([6;],v; + t;), con lo cual existirfa la evolucién en un paso
([©i],v:) =§ ([Oi41],vi41). Supongamos, entonces, que se da el primer caso.

Si ©;41 = ©;, la arista sélo puede ser Skip y por lo tanto la guarda debe ser T y p debe ser vacio, con lo
cual existe la transicién discreta ([0;],v; + ¢;) = ([©;],v; +¢;) y también en este caso existe la evolucién
en un paso ([6;],v;) = ([©it1],vit1)-

Si, en cambio, ©;,; = ©; W {p} para algin punto p, entonces debe existir una arista Mark e Instant. Por
la forman en que fueron construidas esas aristas sabemos que ¥ = ’ﬁ& y p={zp} y por (A.14) sabemos que
vi+1 = Reset, (v; +t;) = Reset,(v; +t;). Quiere decir que para demostrar que existe la transicién discreta
([©i],vi +t;) =5 ([6:],vis1), s6lo faltaria ver que v; + t; F B, -

Supongamos que v; + t; ¥ 1 . Dado que por definicién Y8, = Neco, Y= (8(x,p)), debe existir algin x € ©;
tal que v; +¢; ¥ ¢, (6(x,p)) ¥, por la Propiedad 4.6, (v; + t:)(2x) = (vp + t5)(2x) ¥ 6(x, p)-

Por (A.13), ©341 = ©349{x}, con lo cual (A.14) nos dice que vz = Reset, (vx+tz). Adem4s, por la forma en
que fue definida la secuencia vy, . . ., vn, cada reloj zy es reseteado una tnica vez en la secuencia (coincidiendo
con el punto en donde se agrega x en la secuencia de configuraciones que definimos al principio):

viy1(zx) = 0

vrp2(2x) =tz

vr43(2x) = tay1 +iag2
‘U(,(Zx) = tgp1+--+ta

Con lo cual, vs(2x) +1tp = (vp+1p)(2x) = T —Tx = A(7},5)). Quiere decir que A(7 ) ¥ d(x, p) ¥ esto violaria
la hipétesis de que ° era un matching temporal parcial.
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Por lo tanto, debe ser el caso que v + t; F 1g y debe existir la evolucién en un paso ([0i],vi) =3,
([Bi1], visr)-

Con estas observaciones en mente, podemos concluir que:

(0], vo) =35 ([©1],v1) =3} .. =427 ([On],vn)

lo cual implica que gini: = ([Go),v0) =< [On] = [O).

Teorema 4.10. Tableau para patrones temporizados.
Dado un patrén temporizado P = (%, P,¢,—,v,6) y su autémata reconocedor Ap = (S, X, ¥, 4,7, so), el
autémata de Biichi temporizado Tp = (Ap, {Sqccept }) reconoce el lenguaje L(P).

Demostracién. Como en el caso anterior, la demostracién del teorema esta dividida en dos lemas. El lema
A.3 prueba que L(7p) C L(P) v, por el otro lado, el lema A.4 prueba que L(P) C L(Tp).
a

Lema A.3. (Correccion del tableau)
Dado un patrén temporizado P = (X, P, £, —,,0) y su autémata reconocedor Ap y sea el autémata de Biichi
temporizado Tp = (Ap, {Saccept }),

L(Tp) € L(P)

Demostracion. Queremos ver que L(7p) C L(P), es decir, que todas las ejecuciones aceptadas por 7p
corresponden sélo a ejecuciones aceptadas por P.

Sea o = (¢, 7) una ejecucién en L£(7p). Como en el caso no temporizado, la definicién de lenguaje de un
autémata de Biichi temporizado implica que existe una forma de evolucionar desde g;,it, consumiendo o,
de forma tal de visitar Sqccept un nimero infinito de veces. Quiere decir que, en particular, debe existir una
forma de evolucionar desde gini; hasta Sgccept consumiendo un prefijo finito de o:

Si)
Qinit ¢‘r‘-] Saccept

para algin ¢ € N. Pero a su vez, esto implica por la propiedad de Correccién del autémata reconocedor
para patrones temporizados 4.8 que 0 Fp P, y por lo tanto, o;) = P. Dado que la satisfaccién de patrones
temporizados es cerradas por extensiones (Propiedad 3.3) podemos concluir que o F P.

Como r es divergente, o debe serlo también, y con ésto hemos demostrado que o € L(P). O

Lema A.4. (Completitud del tableau)
Dado un patrdn temporizado P = (X, P,£,—,~,8) y su autémata reconocedor Ap y sea el autémata de Biichi
temporizado Tp = (Ap, {Saccept }),

L(P) € L(Tp)
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Demostracion. Queremos ver que por cada ejecucién divergente aceptada por P, existe una forma de evolu-
cionar en Ap consumiendo dicha ejecucién, de forma tal de pasar un nimero infinito de veces por sgccept-

Sea 0 = (¢, 7) una ejecucién tal que o € L(P). Por definicién de £, sabemos que o E P y que o es divergente.

Por la propiedad de satisfaccién finita de los patrones temporizados (Propiedad 3.4), sabemos que existe un
prefijo finito de o que satisface P. Sea ¢ una posicién tal que ;) F P. Sabemos que entonces también vale
que ;) Fp P. Por la propiedad de Completitud del autémata reconocedor para patrones temporizados 4.9
sabemos que esto ltimo significa que:

o
Qinit = R Saccept

es decir, existe al menos.una evolucién, llamémosla r1, que partiendo desde gini; alcance $4ccept, consumiendo
las primeras 7 posiciones de o.

Siguiendo el mismo razonamiento que para el caso no temporizado, sabemos que existe al menos una evolucién
divergente 5 que partiendo desde el ltimo estado de 71, permanezca para siempre en Syccept (cumpliendo de

esa forma la condicién de aceptacién de 7p) y ademss 7173 = o. Con esto queda demostrado que o € L(7p).
O

A.8 Propiedades de autématas reconocedores de patrones de even-
tos

Propiedad 4.12.Correccidn del autémata reconocedor para patrones de eventos.
Dado un patrén de eventos P = (X, P, 4, —,,48,0,00) y su autémata reconocedor Ap = (S, X, £, A,Z, s0),
para toda configuracién © € Op y toda ejecucién finita o = (g, 7) sobre %,

si ginit =5 [O] entonces o Fg P

Demostracion. Sea © una configuracién de P, sea ¢ una ejecucién finita y supongamos que g;ni¢ =+ e
Siguiendo el mismo razonamiento que usamos en la demostracién de la propiedad de Correccién para los ca-
sos temporizado y no temporizado (paginas 59 y 95, respectivamente), mostraremos que existe un matching
parcial entre o y P restringido a ©. Para ésto, construiremos un mapeo a partir de una evolucién entre ginit
y [6] y mostraremos que cumple las condiciones MP1-MP4 + MPT1-MPT2 + MPI + MPS + MPTL

Sea n = |o|. Sean to,...,tn_1 € R* tales que T se pueda escribir como 7 =ty <ty <+ 94t,_1. Dado que o
etiqueta alguna evolucién entre gini; y [©], por la Propiedad 4.11, dicha evolucién debe ser de la forma:

Ginit = ([Q0],v0) =2 ([61],v1) =5 ... ([6:],v:) =5 ... =771 ([Bnl, vn) (A.15)

donde [©¢] = [@] = so, vo = 0, [O,] = [O] y para todo i, 0 < i < n, v; € Vx ¥ Oi41 es igual a ©; 0 es una
extensién de ©;. En particular, sabemos que:

(6] =% [6i41] 0<i<n (A.16)
Como en los casos anteriores, elijamos - de la siguiente manera:

X = max ¢ para x € © (A17)
0<i<n
x¢0;

Es facil ver que * verifica MP1-MP4 + MPT1-MPT2 usando un razonamiento anélogo al presentado en
las paginas 95 y 59. Veamos que, ademds, * verifica MPI + MPS + MPTL
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MPI) Queremos ver que para todo punto x € O, ¢ N~(0,x) = @.

Sea x € ©. Queremos ver que para todo ¢, 0 <@ < X, §; € 7(0,x). Sea i cualquiera en el rango mencionado.
Sabemos que x ¢ ©;;; porque 7 + 1 < X. Ademads, por (A.16) sabemos que o bien existe una arista de la
forma ([0;],6i,%,p,[0i+1]) 00: =01 y G = A

Si ¢; = ), listo, porque A ¢ 7(0,x) C X. Si, en cambio, ¢; € T y existe una arista {[0;], <, ¥, p, [Oi+1]) en el
autémata, entonces sélo puede pasar que dicha arista sea Skip o Mark.

Si la arista es Skip entonces necesariamente ¢; ¢ I'*(0;) y dado que x ¢ ©; y ; ¢ I'*(©;), sélo puede pasar
que <; & 7(0,x).

Si la arista es Mark efftonces ©;,1 = ©; ¥ {y}, para algin evento y y necesariamente ¢; ¢ I';, (©;). Dado
quey =1 <X y#x x¢0;y¢ ¢TI (6;), entonces sélo puede pasar que g; ¢ v(0,x).

En todos los casos llegamos a que ¢; ¢ (0, x).

MPS) Queremos ver que para todo punto x € ©, gz N7y(x,0) = &.

Sea x € ©. Queremos ver que para todo i, X < i < n, ¢; ¢ y(x,00). Sea i cualquiera en ese rango. Sabe-
mos que x € ©;. Por (A.16) también sabemos o bien existe una arista de la forma ([©;],<;, %, p, [©i+1]) 0

©;i=0i1ya=A\

Si ; = A, listo, porque A ¢ y(x,00) C X. Si; € X, entonces sélo puede pasar que exista una arista Skip o
Mark de la forma ([©;],, v, p, [Bit+1])-

Si la arista es Skip, entonces ; ¢ v(x,00) (porque ¢; ¢ I'*(8;) y z € 6;).

Si la arista es Mark entonces ©;4; = © W {y}, para algtin punto y. Con lo cual tenemos que x € 6; y
Gi ¢ T5,(6:), luego sélo puede pasar que ; ¢ (x,0).

En todos los casos tenemos que §; ¢ y(x,00).

MPTI) Queremos ver que para todo punto x € ©, A(7y) E §(0,x).

Sea x € ©. Sabemos que ©3+1 = Oz W {x} y que ([6s],vz) =§ ([Ox+1],v2+1).- Ademds, la transicién
discreta s6lo puede corresponder a una arista Mark o Instant, con lo cual vz + £z E ¥, ¥, por lo tanto,
vz + tx E 9, (8(0,x)).

Observemos que los z, s6lo se resetean en las aristas Mark o Instant que reconocen o marcan el punto X,

y ésto sélo pasa una vez a lo largo de toda la evolucién. Ademsds, zg no se resetea nunca. Quiere decir que
podemos observar el valor del reloj zg a lo largo de toda la evolucién:

’Ug(Zo) = 6(20) =0
. Ul(ZO) = t()
1)2(20) = to+1t
'U)“((ZO) = to+---+izg1

Sabemos que vx + t5 F ¢, (8(0,x)). Por la Proposicién 4.6, (vx + tz)(z0) E 6(0,x).

Pero (vz +t5)(20) = vs(20) +tz = to + -+ - + tg = A(7y). Y quiere decir que A(7y) E 6(0,x).
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Con esto queda demostrado que * es un matching parcial entre ¢ y P restringido a © y, como consecuencia
directa, o Eg P.
£l

Propiedad 4.13.Completitud del autémata reconocedor para patrones de eventos.
Dado un patrén de eventos P = (I, P, £, —,7,6,0,00) y su autémata reconocedor Ap = (S, X, 3, A,Z, sp),
para toda configuracién © € ©p y toda ejecucién finita o sobre X,

si o0 Fg P entonces gini: =7 [6)]

Demostracion. Sea © una configuracién de P y o = (s, 7) una ejecucién finita sobre ¥. Supongamos, ademds
que o Fg Py, por lo tanto, que existe al menos un matching parcial * entre o y P restringido a 6. Como en
los casos anteriores, para demostrar que se puede evolucionar desde ¢;ni: hacia [©] por o, vamos a dar una
forma de construir una evolucién entre dichas locaciones a partir de °.

Consideremos una vez ma4s la secuencia de conjuntos de eventos presentada en la pagina 97:

9())617"-7911
donde n = |o| y para todo ¢, 0 < i < m:
0,={x€0|x<1} (A.18)
Se puede ver que también en este caso vale que:
° 60 =g
° en = e

e Para todo 7, 0 <7 < n, ©; es una configuracién

Para todo i, 0 < ¢ < n, [©;] es una locacién de Ap

Cada ©;41, con 0 < i < n es igual a ©; o es una extensién de ©;

Para todo 7, 0 < 7 < n, existe una arista de la forma ([6;],,%,0,[0i+1]) 00; =6;11 y 6 = A

El razonamiento es el mismo que usamos en la pagina 97. La tinica diferencia es que en esa oportunidad
probamos que ¢; no violaba ninguna restriccién de eventos mostrando que no pertenecia a I'(6;) o a
I'ox(©;), segin el caso. En el caso de los patrones de eventos faltaria probar que esto también vale
cuando usamos I'* y I'Z.

En la pégina 97, vimos que si ¢; € £ y ©;+1 = ©;, necesariamente ¢; ¢ I'(6;). Por MPS y MPI,
sabemos que ademds ¢; ¢ I'*(©;). Si este no fuera el caso, existirfa un punto x € ©; (y X < ) tal que
Si € 7(x,00), con lo cual * violaria MPS, o existiria un puntoy ¢ ©; = 6,1 (e < y) talque5; € ¥(0,y),
con lo cual * violaria MPI. Por lo tanto, existe una arista Skip de la forma ([0;],s, T, 2, [0;]).

Por otro lado, si¢; € Xy ©;11 = ©; W {p}, para algiin punto p, entonces como en el caso temporizado
i ¢ I'sp(8;). Nuevamente, MPI y MPS no aseguran que ¢; ¢ I';,(0;). Si este no fuera el caso,
existirfa un punto x € ©; tal que g; € y(x,00), con lo cual * violaria MPS, o existirfa un punto y ¢ ©;
tal quey # py & € v(0,y), con lo cual * violaria MPI. Finalmente, por MP1 sabemos que p € E
¥ Si =3 € £(p). Quiere decir que existe una arista en Mark de la forma ([6;],;, Yo {2z}, [0: ¥ {p}])-

Si ¢; = A el razonamiento es similar al del caso temporizado.
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Como en el caso de los patrones temporizados, consideremos la sucesién de nimeros reales no negativos

to,...,tn—1 tal que 7 se pueda escribir como 7 =ty <t; <---<t,_; y la secuencia de valuaciones vy, ..., v,
dada por: V
Vo = 6
i+t si©;y1 =6; . Al
Vit1 uh D ' 0<i<nm (3.19)
Reset, (v +t;) si0;41 =6;4{x}

Veamos que también vale que para todo i, 0 < i < n, ([6:],v;) = ([Qit1], vis1)-

Dado un 7 cualquiera, 0 < i < n, sabemos que existe la transicién temporal ([0;],v;) —=* ([©:],v; +t;) dado
que el invariante en todas las locaciones del autémata es T. Vimos también en la padgina 102 quesi ©;4; = 6;
entonces siempre existe-la transicién discreta ([©;],v; + ;) —% ([©:41],vit1) ¥ que si ©;41 = ©; & {p}, pa-
ra algiin punto p, entonces existe una arista Mark o Instant de la forma ([6i],,%g,, {2}, [6: ¥ {p}]) ¥
para demostrar que existe la transicién discretea ([0;],v; + t;) — ([©it1],vi+1) alcanza con probar que
v, +t4GE ’([)g: :

Supongamos que se da este 1iltimo caso, es decir ©;,1 = ©; ¥ {p}. Vimos en el caso de los patrones tempo-
rizados que v; +t; F 1g . Dado que ¥g = 9§ A 1.,(8(0,p)), faltaria probar que (v; + t;)(20) F 6(0, p).-

Supongamos que (v; + t;)(20) ¥ 6(0,p). Se puede ver en (A.19) que zp no se resetea nunca (excepto al
principio de la evolucién). Por lo tanto:

vo(20) = 0(20) =0

V1 (Zo) = o

va(20) = to+t

v5(20) = to+---+itp1

Con lo cual, (v; +t;)(2z0) = v3(20) +1p = to+---+1t5 = 7 = A(73)). Quiere decir que A(7y)) ¥ 6(0,p) y esto
violaria la hipdtesis de que * verificaba MPTI.

Quiere decir que en todos los caso existe la evolucién en un paso ([0;],v;) = ([©i41], vis1)-
Una vez més, podemos concluir que:

(0], vo) =35 ([©1],01) =3} .. =477} ([©n],vn)

1

lo cual implica que gini: = ([©0],v0) =7 [O,] = [6].

Teorema 4.14. Tableau para patrones de eventos.
Dado un patrén de eventos P = (X, P, £, —,7, 6, 0, 00), el autémata de Biichi temporizado 7p = (Ap, {Saccept })
reconoce el lenguaje L(P).

Demostracion. Como en los dos casos anteriores, la demostracién del teorema estd dividida en dos lemas.
El lema A.5 prueba que L(7p) C L(P) vy, por el otro lado, el lema A.6 prueba que L(P) C L(7»).
O

Lema A.5. (Correccion del tableau)
Dado un patrén de eventos P = (X, P,£,—,,8,0,00) y su autémata reconocedor Ap y sea el autémata de
Biichi temporizado Tp = (Ap, {Saccept}),

L(Tp) € L(P)
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Demostracién. Queremos ver que L(7p) C L(P), es decir, que todas las ejecuciones aceptadas por 7p
corresponden sélo a ejecuciones aceptadas por P.

Sea 0 = (¢, 7) una ejecucién en L(7p). La condicién de aceptacién de Biichi implica que existe una forma
de evolucionar desde ginit, siguiendo o, pasando infinitas veces por Sqccept- Quiere decir que, en particular,
debe existir una forma de evolucionar desde gini; hasta sqccept consumiendo un prefijo finito de o:

ois
Qinit =71 Saccept

para algin ¢ € N y, ademds, se puede consumir el resto de la ejecucién atravesando inicamente aristas
Skip sobre sqccept- Por la propiedad de Correccién del autémata reconocedor para patrones de eventos 4.12,
o) Fp P, y por lo tanto, o;) F P. Sin embargo, a diferencia de los casos anteriores, saber que un prefijo
finito de o satisface el patrén P no nos alcanza para asegurar que la ejecucién completa lo haga.

Para poder concluir que o satisface el patrén, debemos mostrar que o(; no contiene ningtin evento “prohibi-
dos” hasta el final de la ejecucién. Estos eventos estan dados por el conjunto Lp = [ J ¢ p 7(x, 0)-

Por otro lado, sabemos que Lp = I'*(P) y que para todos los eventos més alld de la posicién ¢ es posible
atravesar una arista Skip, con lo cual necesariamente ninguno de esos eventos pertenece a I'*(P). Quiere
decir podemos afirmar que 5;NLp = @. Ahora si, la propiedad de Clausura débil por extensiones (Propiedad
3.5) nos permite concluir que o F P.

Como r es divergente, o debe serlo también, y con ésto hemos demostrado que o € L(P). |

Lema A.6. (Completitud del tableau)
Dado un patrén de eventos P = (X, P, £,—,,8,0,00) y su autémata reconocedor Ap y sea el autémata de
Biichi temporizado Tp = (Ap, {Saccept }),

L(P) € L(Tp)

Demostracién. Queremos ver que por cada ejecucién divergente aceptada por P, existe una forma de evolu-
cionar en Ap consumiendo dicha ejecucién, de forma tal de pasar un nimero infinito de veces por Saccept-
Sea o0 = (s, 7) una ejecucién tal que o € L(P). Por definicién de L, sabemos que o E P y que o es divergente.
Por la propiedad de Satisfaccién finita de los patrones de eventos (Propiedad 3.6), sabemos que existe una
posicién ¢ de o tal que:

oy P (A.20)

Sabiendo que vale (A.20), la propiedad de Completitud del autémata reconocedor de patrones de eventos 4.13
nos permite afirmar que ;) Fip) P y, por lo tanto:

o
Qinit =77 Saccept

es decir, existe al menos una evolucién que comienza en g;,i; y alcanza Sgccept, consumiendo las primeras
i posiciones de . Llamemos 71 a dicha evolucién. Vamos a probar que es posible consumir el resto de la
ejecucién atravesando unicamente aristas Skip sobre sgccept-

Por definicién, existe una arista Skip en Sgccept para cada evento que no pertenezca al conjunto I'*(P). Pero
también sabemos por (4.1) que I'*(E) = Lp y por (A.21) podemos afirmar que g; ¢ I'*(P), para todo j > 1.
Quiere decir que existe al menos una evolucién divergente r; que partiendo desde el estado final de 7y,
permanezca para siempre en Sgccept (y POr lo tanto verifique la condicién de aceptacién de Tp), y que

ademds 773 = 0. Y esto alcanza para demostrar que o € L(7p).
a



Apéndice B
Implementacion en Java

La implementacién del verificador de patrones fue realizada en Java utilizando el JSDK versién 1.4.1. Dado
que se trata de una versién prototipo, el verificador brinda Unicamente una interfaz por linea de comando.

El verificador recibe dos archivos como input. Uno de los archivos corresponde al autémata temporizado
que modela el sistema y el otro al patrén de mal comportamiento que se quiere verificar. El verificador
contestard “Si” si y sélo si el sistema satisface el patrén y “No” en otro caso. El archivo con la definicién del
autémata temporizado que representa al sistema debe tener el formato aceptado por la herramienta Kronos
[Yov]. La definicién del patrén de mal comportamiento a verificar se debe dar a través de un documento
XML que cumpla con la estructura especificada por el DTD incluido en la seccién B.2.

B.1 Caso de estudio

Veremos a continuacién un ejemplo de uso del componente traductor del Verificador de Patrones. Usaremos
como caso de estudio el protocolo CSMA/CD presentado en la seccién 5.2.

El primer listado muestra el documento XML con la definicién del Patrén 5.4, correspondiente al Requeri-
miento 5.4.

<7 xml version="1.0" 7>
<! DOCTYPE pattern SYSTEM “pattern.dtd” >

<pattern id="“csma-cd-q" >
<alphabet>
<event>BEGIN1</event>
<event>BEGIN2</event>
<event>END1</event>
<event>END2</event>
<event>CD1</event>
<event>CD2</event>
</alphabet>
<eventsets>
<eventset name="END">
<event>END1</event>
<event>END2</event>
</eventset>
</eventsets>
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<points>
<e-point id="p">
<event>BEGIN1</event>
</e-point>
<e-point id="q">
<event>BEGIN2</event>
</e-point>
<e-point id="r">
<eventset-ref name="END" />
</e-point>
</points>
<precedence>
<precedes>"
<point-ref id="p" />
<point-ref id="r" />
<event>BEGIN1</event>
<event>END1</event>
<event>CD1</event>
</precedes>
<precedes>
<point-ref id="q" />
<point-ref id="r" />
<event>BEGIN2</event>
<event>END2</event>
<event>CD2</event>
</precedes>
</precedence>
</pattern>

XML para el Patrén 5.4

El comando:
traductor patternl.xml patternl.tg

permite obtener en el archivo patternl.tg el autométa reconocedor para el Patrén 5.4. El siguiente listado
muestra este autémata reconocedor en el formato definido por Kronos [Yov].

/* Automata Temporizado generado automaticamente (do not remove this line) */

/* Generales */
#£states 6
#trans 42
#clocks 0

/* Locaciones y transiciones */

/* Location: { } [INIT] */
state: 0
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prop: INIT

invar: TRUE

trans:
TRUE => CD2 ; RESET{ } ; goto 0
TRUE => BEGIN1 ; RESET{ } ; goto 0
TRUE => BEGIN2 ; RESET{ } ; goto 0
TRUE => BEGIN2 ; RESET{ } ; goto 5
TRUE => END1 ; RESET{ } ; goto 0
TRUE => END2 ; RESET{ } ; goto 0
TRUE => CD1 ; RESET{ } ; goto 0
TRUE => BEGIN1 ; RESET{ } ; goto 2

/* Location: Trap [TRAP] */

state: 1

prop: TRAP

invar: TRUE

trans:
TRUE => END2 ; RESET{ } ; goto 1
TRUE => CD2 ; RESET{ } ; goto 1
TRUE => CD1 ; RESET{ } ; goto 1
TRUE => BEGIN1 ; RESET{ } ; goto 1
TRUE => BEGIN2 ; RESET{ } ; goto 1
TRUE => END1 ; RESET{ } ; goto 1

/* Location: { p } */

state: 2

invar: TRUE

trans:
TRUE => END1 ; RESET{ } ; goto 1
TRUE => BEGIN2 ; RESET{ } ; goto 3
TRUE => BEGIN2 ; RESET{ } ; goto 2
TRUE => END2 ; RESET{ } ; goto 2
TRUE => CD2 ; RESET{ } ; goto 2
TRUE => BEGIN1 ; RESET{ } ; goto 1
TRUE => CD1 ; RESET{ } ; goto 1

/* Location: { p, q } */

state: 3

invar: TRUE

trans:
TRUE => BEGIN2 ; RESET{ } ; goto 1
TRUE => END1 ; RESET{ } ; goto 4
TRUE => BEGIN1 ; RESET{ } ; goto 1
TRUE => END2 ; RESET{ } ; goto 4
TRUE => END2 ; RESET{ } ; goto 1
TRUE => END1 ; RESET{ } ; goto 1
TRUE => CD1 ; RESET{ } ; goto 1
TRUE => CD2 ; RESET{ } ; goto 1

/* Location: { p, q, r } [ACCEPT] */
state: 4

prop: ACCEPT

invar: TRUE

trans:
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TRUE => END2 ; RESET{ } ; goto 4
TRUE => CD1 ; RESET{ } ; goto 4
TRUE => BEGIN2 ; RESET{ } ; goto 4
TRUE => END1 ; RESET{ } ; goto 4
TRUE => BEGIN1 ; RESET{ } ; goto 4
TRUE => CD2 ; RESET{ } ; goto 4

/* Location: { q } */

state: 5

invar: TRUE

trans:
TRUE => END2 ; RESET{ } ; goto 1
TRUE => CD2 ; RESET{ } ; goto 1
TRUE => END1 ; RESET{ } ; goto 5
TRUE => CD1 ; RESET{ } ; goto 5
TRUE => BEGIN1 ; RESET{ } ; goto 3
TRUE => BEGIN2 ; RESET{ } ; goto 1
TRUE => BEGIN1 ; RESET{ } ; goto 5
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Autdémata reconocedor para el Patrén 5.4 generado automadticamente

Por otro lado, el listado muestra el documento XML con la definicién del Patrén 5.5, correspondiente al

Requerimiento 5.5.

<? xml version="1.0" 7>

<! DOCTYPE pattern SYSTEM “pattern.dtd” >

<pattern id="csma/cd-2">
<alphabet>
<event>BEGIN1</event>
<event>BEGIN2</event>
<event>END1</event>
<event>END2</event>
<event>CD1</event>
<event>CD2</event>
</alphabet>
<points>
<e-point id="p"> _
<event>BEGIN1</event>
</e-point>
<e-point id="q">
<event>BEGIN2</event>
</e-point>
<instant id="r" />
</points>
<precedence>
<precedes>
<point-ref id="p" />
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<point-ref id="r" />
<event>BEGIN1</event>
<event>END1</event>
<event>CD1</event>
<interval>
<lower-bound value="52" included="false” />

</interval>

</precedes>

<precedes>
<point-ref id="q" />
<point-ref id="r" />
<event>BEGIN2</event>
<event>END2</event>
<event>CD2</event>

</precedes>

</precedence>
</pattern>
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XML para el Patrén 5.5

Nuevamente, el comando:

traductor pattern2.xml pattern2.tg

Nos permite obtener el autémata reconocedor para el Patrén 5.5, mostrado en el siguiente listado:

/* Automata Temporizado generado automaticamente (do not remove this line) */

/* Generales */
F£states 6
#trans 41
#clocks 2

X.p X_r

/* Locaciones y transiciones */

/* Location: { } [INIT] */

state: 0

prop: INIT

invar: TRUE

trans:
TRUE => END2 ; RESET{ } ; goto 0
TRUE => BEGIN1 ; RESETX_p ; goto 2
TRUE => CD2 ; RESET{ } ; goto 0
TRUE => CD1 ; RESET{ } ; goto 0
TRUE => BEGIN2 ; RESET{ } ; goto 5
TRUE => BEGIN1 ; RESET{ } ; goto 0
TRUE => BEGIN2 ; RESET{ } ; goto 0
TRUE => END1 ; RESET{ } ; goto 0
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/* Location: Trap [TRAP] */

state: 1

prop: TRAP

invar: TRUE

trans:
TRUE => BEGIN2 ; RESET{ } ; goto 1
TRUE => END2 ; RESET{ } ; goto 1
TRUE => CD1 ; RESET{ } ; goto 1
TRUE => END1 ; RESET{ } ; goto 1
TRUE => CD2 ; RESET{ } ; goto 1
TRUE => BEGIN1 ; RESET{ } ; goto 1

/* Location: { p } */

state: 2

invar: TRUE

trans:
TRUE => CD2 ; RESET{ } ; goto 2
TRUE => CD1 ; RESET{ } ; goto 1
TRUE => BEGIN2 ; RESET{ } ; goto 3
TRUE => END1 ; RESET{ } ; goto 1
TRUE => BEGIN2 ; RESET{ } ; goto 2
TRUE => END2 ; RESET{ } ; goto 2
TRUE => BEGIN1 ; RESET{ } ; goto 1

/* Location: { p, q } */

state: 3

invar: TRUE

trans:
X_p > 52=>; RESET{X_r} ; goto 4
TRUE => BEGIN2 ; RESET{ } ; goto 1
TRUE => CD2 ; RESET{ } ; goto 1
TRUE => CD1 ; RESET{ } ; goto 1
TRUE => BEGINI ; RESET{ } ; goto 1
TRUE => END1 ; RESET{ } ; goto 1
TRUE => END2 ; RESET{ } ; goto 1

/* Location: { p, q, r } [ACCEPT] */

state: 4

prop: ACCEPT

invar: TRUE

trans:
TRUE => BEGIN2 ; RESET{ } ; goto 4
TRUE => END1 ; RESET{ } ; goto 4
TRUE => BEGIN1 ; RESET{ } ; goto 4
TRUE => CD1 ; RESET{ } ; goto 4
TRUE => END2 ; RESET{ } ; goto 4
TRUE => CD2 ; RESET{ } ; goto 4

/* Location: { q } */
state: 5

invar: TRUE

trans:

TRUE => END1 ; RESET{ } ; goto 5
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TRUE => CD1; RESET{ } ; goto 5
TRUE => BEGIN2 ; RESET{ } ; goto 1
TRUE => BEGINL ; RESET{ } ; goto 5
TRUE => END2 ; RESET{ } ; goto 1
TRUE => BEGIN1 ; RESET{X_p} ; goto 3
TRUE => CD2 ; RESET{ } ; goto 1

Autémata reconocedor para el Patron 5.5 generado automaticamente

B.2 DTD del documento para definicién de patrones de mal com-
portamiento

<? xml encoding="US-ASCI"” 7>

<!-- Patron de eventos. Un patron de eventos estd definido por un alfabeto (conjunto de eventos), una serie
de conjuntos de eventos con algin nombre descriptivo (usado para agrupar eventos con propiedades similares),
un conjunto de puntos, una relacién de precedencia entre los puntos y un conjunto de restricciones entre
pares de puntos. La definicion de un relacion de precedencia es opcional. Si no se define ninguna, se asume
que ningun punto estd causalmente relacionado con ningin otro. Las restricciones entre puntos causalmente
relacionados pueden ser definidas cuando se define la precedencia entre dichos puntos o utilizando la seccion
de “restrictions”. Las restricciones entre puntos no relacionados sélo puede definirse en esa ultima seccion.
Si no se define ninguna restriccidn, se asume que no hay eventos prohibidos entre ningin par de puntos y
que el delay permitido es [0, infinito) en todos los casos. ==>

<!ELEMENT pattern (alphabet,labelsets?,points,precedence? restrictions?) >

<!ATTLIST pattern id ID #REQUIRED>

<1-- Alfabeto de un patrén de eventos. Define el conjunto de eventos del patrén. Todos los eventos asociados
a puntos del patrén asi como los eventos mencionados en restricciones o en conjuntos de eventos deben estar
declarados en esta seccion. De no ser asi, se lo considerard un error. El alfabeto puede ser vacio.

usado en: pattern —->
<!ELEMENT alphabet (event*) >

<!-- Define un unico evento. El nombre del evento no necesita ser inico, pero no es recomendable repetir
eventos en el mismo alfabeto.

usado en: alphabet, eventset, e-point, forbidden —->
<!ELEMENT event (#PCDATA) >

<!-- Agrupaciones de eventos. Definen conjuntos de eventos a los cuales asocia un nombre representativo
para ser referenciado en otras secciones del documento. Todos los eventos deben haber sido declarados en
el alfabeto del patrén. No es obligatorio declarar eventsets, pero si la seccion estd presente, entonces debe
wncluir al menos un conjunto de eventos.

usado en: pattern —->
<!ELEMENT eventsets (eventset+) >

<!-- Congunto de eventos. Define un conjunto de eventos al cual se le asocia un nombre inico. Este conjunto
podrd ser referenciado en otras secciones del documento usando "eventset-ref”. El conjunto no puede ser
vacio.
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usado en: eventsets ——>
<!ELEMENT eventset (event+) >
<IATTLIST eventset name ID #REQUIRED>

<!-- Referencia a un conjunto de eventos. Permite hacer referencia a un conjunto de eventos desde distintas
secciones del documento. El conjunto debe haber sido definido en la seccion "eventsets”.

usado en: e-point, forbidden -->
<!ELEMENT eventset-ref EMPTY>
<!ATTLIST eventset-ref name IDREF #IMPLIED>

<!-- Congunto de puntos del patrén. Define el conjunto de puntos que integran el patrén. Los puntos deben
ser diferenciados en e-points e i-points. Los e-points deben tener 1 o mds eventos asociadas, mientras que los
i-points no tienen evenfos asociadas. Los puntos declarados en esta seccién (tanto e-points como i-points)
pueden ser referenciados en otras partes del documento usando point-ref. La referencia se hace usando el id
del punto.

usado en: pattern ——>
<!ELEMENT points (e-point*,i-point*) >

<!-=- Uno de los e-points del patrén. Debe tener asociado uno o mds eventos y/o uno o mds conjuntos de
eventos. Desde el punto de vista del patrdn, se considera la unién de todos los eventos mencionadas en esta
seccion, sea directamente o a través de un conjunto de eventos. Se puede hacer referencia a un e-point en
otras partes del documento usando "point-ref”.

usado en: points ——>
<!ELEMENT e-point ((event—eventset-ref)+) >
<IATTLIST e-point id ID #REQUIRED>

<!== Uno de los i-points del patron. Los i-points no tienen eventos asociadas. Se puede hacer referencia a
un i-point en otras partes del documento usando "point-ref”.

usado en: points —=>
<!ELEMENT i-point EMPTY>
<!ATTLIST i-point id ID #REQUIRED>

<!-- Hace referencia a un e-point o i-point definido en “points”.

usado en: precedes, forbidden, delay ——>
<!ELEMENT point-ref EMPTY>
<!ATTLIST point-ref id IDREF #IMPLIED>

<!-- Punto especial que representa el comienzo de la ejecucién

usado en: precedes, forbidden, delay ——>
<!ELEMENT before-start EMPTY>

<!-- Punto especial que representa el final de la ejecucion

usado en: precedes, forbidden, delay -->
<!ELEMENT after-end EMPTY>

<!-- Relacion de precedencia entre los puntos del patrén. Define uno o mds pares de puntos relacionados.
No es obligatorio definir una relacion de precedencia para el patrdn, pero si se incluye esta seccion, no puede
estar vacta.

usado en: pattern ——>
<!ELEMENT precedence (precedes+) >

<!-- Precedencia entre dos puntos del patrén. Compuesta por dos puntos, cero o mds restricciones de
eventos y cero o mds restricciones temporales. El orden de los puntos estd dado por el orden en que se
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escriben en el documento. Un punto puede ser definido por una referencia a un e-point o a un i-point o
por los puntos especiales “before-start” y “after-end”. Esos puntos corresponden al comienzo y al final de
la ejecucidn, respectivamente. Las restricciones entre puntos relacionados pueden definirse en esta seccion
y/o en “restrictions”. De todas formas, para el patrén se considera para cada par de puntos la unién de las
restricciones definidas en esta seccion y en “restrictions”.

usado en: precedence —=>
<!ELEMENT precedes ((point-ref—before-start—after-end),(point-ref—before-start—after-end),
(event—eventset-ref)*,interval?)>

<!-- Restricciones entre los puntos del patrén. Define las restricciones de eventos y temporales entre los
pares de puntos del patrén. Si no se define ninguna restriccion de eventos para un par de puntos dado, se
asume que todos los eventos estdn permitidos. Si no se define ninguna restriccién temporal para un par de
puntos determinado, se asume que el delay permitido es [0, infinito). Para el patrén se considera para cada
par de puntos la unién de las restricciones definidas en esta seccién y en “precedes”.

usado en: pattern -->
<!ELEMENT restrictions (forbidden*, delay*) >

<!-- Restriccion de eventos entre un par de puntos del patrén. Los puntos se definen como en "precedes”.
En este caso no importa el orden en que aparezcan los puntos. Para cada par de puntos se puede definir
una Unica restriccion. Si esto no fuera asi, se lo considerard un error. Los eventos se pueden mencionar en
forma directa o a través de conjuntos de etiquetas definidos en ”eventsets”.

usado en: restrictions —=>
<IELEMENT forbidden ((point-ref—before-start—after-end),(point-ref—before-start—after-end),
(event—eventset-ref)+) >

<!-- Restriccion de temporal entre un par de puntos del patrén. Los puntos se definen como en “precedes”.
En este caso no importa el orden en que aparezcan los puntos. Para cada par de puntos se puede definir una
unica restriccion. Si esto no fuera asi, se lo considerard un error.

usado en: restrictions —==>
<IELEMENT delay ((point-ref| before-start|after-end),(point-ref| before-start | after-end),interval) >

<!-- Intervalos de nimeros reales no negativos. Un intervalo consiste en un limite inferior y un limite
superior. Si el limite inferior no se indica, se asume [0 Si el limite superior no se indica, se asume infinito)
-=>

<!ELEMENT interval (lower-bound?, upper-bound?) >

<!ELEMENT lower-bound EMPTY>

<!ATTLIST lower-bound value CDATA #REQUIRED included (true|false) #REQUIRED>
<!ELEMENT upper-bound EMPTY>

<!ATTLIST upper-bound value CDATA #REQUIRED included (truel|false) #REQUIRED>
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