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La construcción de sistemas de tiempo real libres de fallas es un objetivo perseguido por muchas actividades
industriales debido al alto costo monetario y en vidas humanas que pueden provocar los desperfectos en
los sistemas que éstas utilizan. Si bien existen numerosas herramientas para modelización de sistemas y
verificación automática de propiedades sobre los mismos, la transferencia al ámbito industrial es lenta. Una
de las razones fundamentales para este fenómeno es la poca usabilidad de los lenguajes de especificación
existentes, basados en formalismos lógicos difíciles de entender y de usar por diseñadores no familiarizados
con ese tipo de herramientas. Nuestra propuesta consiste en brindar una notación gráfica y de alto nivel
para especificar requerimientos de sistemas concurrentes y de tiempo real, de forma tal de abstraer a los
diseñadores y desarrolladores de los formalismos matemáticos subyacentes y aun así brindarles el poder de
las herramientas de veráficación formal automática.
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( Este trabajo sienta las bases para un lenguaje gráfico de especificación de propiedades basado en patrones
de eventos, que permiten describir de forma simple y abstracta ciertos aspectos de las ejecuciones de un
sistema. Por ejemplo, el orden en que deben ocurrir los eventos, la separación en el tiempo entre dos
eventos, el conjunto de eventos que no deben ocurrir entre dos puntos de la ejecución, etc. El lenguaje de
nuestros patrones está basado en órdenes parciales de eventos y su semántica está inspirada en el concepto
de pattern matching.

patrones de mal comportamiento, es decir, en la descripción de comportamientos que invalidarÍan requeri-
mientos críticos del sistema. Demostramos que contando con un modelo del sistema expresado con autómatas
temporizados, el problema de "model-checking" de patrones de mal comportamiento puede ser reducido al
problema clásico de verificación de autómatas temporizados. Dado que este último problema se sabe decidi-
ble, concluimos que el chequeo de patrones de mal comportamiento también lo es. Por otro lado, utilizamos
esta reducción para construir un algoritmo de verificación automática de patrones de eventos basada en
las herramientas existentes para model-checking de autómatas temporizados. Este algoritmo constituye el
corazón de un prototipo de verificador de patrones de eventos que desarrollamos en Java.
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Capítulo 1

Introducción

El objetivo de las técnicas de verificación es mostrar que un determinado sistema de software o de hardware
se adecúa a su especificación, es decir, que no puede comportarse en forma contraria a su especificación
conduciendo a situaciones inesperadas, indeseadas o riesgosas.

Actualmente las técnicas más difundidas de verificación se basan en simulación y testing. Sin embargo,
ambos enfoques sólo pueden analizar un conjunto relativamente pequeño de comportamientos de un sistema
y tienden a ser inadecuados cuando el número de estados posibles del sistema es muy grande. Muchos sistemas
son por naturaleza concurrentes y el comportamiento no determinístico introducido por la concurrencia puede
conducir en distintos momentos a distintos comportamientos frente al mismo estímulo. En estos casos es
especialmente inadecuado el uso de testing como método de verificación. En el caso de los sistemas de
tiempo real, la correctitud del sistema no depende sólo del resultado lógico del cómputo sino también del
cumplimiento de ciertos requerimientos temporales. Por ejemplo, en el desarrollo de aplicaciones críticas
como control de tráfico aéreo o monitoreo de pacientes, es importante verificar que los sistemas realicen los
cálculos adecuados, en el momento adecuado.

Para solucionar las falencias de las técnicas "empíricas" (basadas en simulación y testing), los métodos de
verificación formal intentan "demostrar" formalmente que los comportamientos indeseados son imposibles
en el sistema. Una de las principales características de las técnicas formales de verificación es que trabajan
sobre un modelo del sistema, posiblemente abstrayendo los detalles no relevantes desde el punto de vista de
las propiedades a verificar. Esto hace posible, por ejemplo, que se verifique el diseño de un circuito antes
de que éste sea construido (es decir, en una etapa temprana de desarrollo), permitiendo ahorrar el enorme
costo que implica descubrir un fallo lógico en el circuito una vez que está construido. A pesar de que los
métodos formales de verificación ofrecen a los desarrolladores y diseñadores de sistemas numerosas ventajas
con respecto a los métodos empíricos, todavía no han sido adoptados en forma masiva fuera del ámbito
académico! .

1.1 Métodos formales y verificación algorítmica
Existen básicamente dos enfoques distintos en cuanto a verificación formal. Uno está basado en métodos
deductivos mientras que el otro está basado en métodos algoritmicos. Por razones históricas, a los métodos
deductivos se los conoce habitualmente con el nombre de "theorem-provinq" mientras que a los métodos del
segundo grupo se los denomina en forma genérica "model-checking".

El problema de la verificación formal puede ser expresado de la siguiente manera: dado un sistema S, un
requerimiento R y una relación de satisfacción 1=,¿vale que S 1=R? Lo que diferencia a las distintas técnicas
entre sí es la forma en que interpretan S, R y 1=.

lSin embargo, existen varias experiencias exitosas en la aplicación de técnicas formales a la industria del hardware y del
software. Ver por ejemplo los casos mencionados en [CK96, CWA +96]

1
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Figura l.1: Esquema general del problema de verificación algorítmica

1.1.1 Métodos deductivos O Theorem proving

Theorem proving caracteriza al conjunto de técnicas donde tanto 5 como R están expresados cómo fórmulas
de una cierta lógica. Esta lógica está dada por una teoría que define un conjunto de axiomas y de reglas de
inferencia. Theorem proving consiste en demostrar formalmente que R se desprende como teorema de 5 en
dicha teoría. Las principales desventajas de estas técnicas son que hasta el momento no existen herramientas
totalmente automatizadas de verificación y que para cada sistema a analizar es necesario desarrollar una
nueva teoría lógica.

1.1.2 Verificación algorítmica o Model-checking

Las técnicas que más interés despertaron entre los investigadores durante las dos últimas décadas son las
pertenecientes al segundo grupo, es decir, las técnicas basadas en "model-checking" o verificación algorítmica.
La principal diferencia con el grupo anterior es que, como su nombre lo indica, éstas técnicas proveen un
algoritmo para decidir en forma automatizada el problema 5 1=R. Más aún, la mayoría de estas técnicas
devuelven, en el caso en que el sistema/ no satisfaga el requerimiento, un "contraejemplo" (generalmente
la descripción de un comportamiento o conjunto de comportamientos) que muestra por qué el sistema no
verifica la propiedad. La Figura 1.1 muestra en forma esquemática el problema de la verificación algorítmica.

Dentro de las técnicas denominadas "model-checking" existen numerosas clases de problemas de verificación
y todas se distinguen por los formalismos que utilizan para expresar S y R y por el algoritmo que utilizan
para decidir 51= R. Por ejemplo, el enfoque que dio el nombre a todo este grupo de técnicas [ECS1]consiste
en modelar al sistema S como una estructura de Kripke donde los nodos representaban los estados posibles
del sistema y los ejes las transiciones o posibles cambios de estado. En ese contexto, R se expresa como
una fórmula de la lógica temporal CTL y la relación de satisfacción se interpreta como "es modelo de"
(Figura 1.2 (a)). Otras técnicas de verificación algorítmica se basan en la teoría de autómatas finitos. En
estos enfoques una ejecución del sistema se modela como una secuencia (generalmente infinita) de eventos
o de estados y el lenguaje del sistema 1:(5) está dado por el conjunto de ejecuciones del mismo. A su vez,
los requerimientos son interpretados sobre ejecuciones individuales y el lenguaje del requerimiento 1:(R) es
el conjunto de ejecuciones que lo satisfacen. Finalmente, 51= R se traduce en 1:(5) c:;; 1:(R) (Figura 1.2 (b)
y (c)).

2Cuando no se preste a confusión, no haremos distinción entre el "modelo de sistema" y el "sistema" en sí.
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Figura 1.2: Model-checking, técnicas automata-theoretic y mixtas. (a) model-checking puro (ejemplo:
[Ee81]); (b),(c) técnicas automata-theoretic (ejemplo: [AD94]); (d),(e) técnicas mixtas (ejemplo: [VW86])
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S 1=R sii MAs 1=t.pR S 1=R sii MAsllOR 1=t.pR

(a) (b)

Figura 1.3: Verificación basada en autómatas temporizados. (a) enfoque de Kronos [DOTY95]; (b) enfoque
usado en [BraOO]

En [VW86], Vardi y Wolper mostraron que estos dos enfoques pueden combinarse planteando el problema de
model-checking de una fórmula LTL en función de un problema de inclusión de lenguajes (Figura 1.2 (d)).
Los w-autómatas son autómatas finitos con una condición de aceptación particular para reconocer palabras
infinitas. Una de las condiciones de aceptación más usada es la de Büchi. Informalmente, la condición de
aceptación de Büchi pide que se visiten infinitas veces ciertas locaciones distinguidas del autómata (en el
próximo capítulo daremos una definición formal de la versión temporizada de los autómatas de Büchi). Otros
enfoques parten de un sistema modelado con un w-autómata y un requerimiento expresado en alguna lógica
temporal (Figura 1.2 (e)) y reducen el problema a verificar que la intersección del lenguaje del sistema y
del complemento del lenguaje del requerimiento sea vacía. En el caso de los w-autómatas no temporizados,
este problema es equivalente al de verificar que la inclusión de 12(S) en 12(R). Sin embargo, los w-autómatas
temporizados no son cerrados con respecto a la operación de complementación [AD94]y por lo tanto se debe
proveer directamente un autómata que reconozca la negación del requerimiento.

Verificación basada en autómatas temporizados

La Figura 1.3 muestra dos variantes de la técnica de verificación basada en autómatas temporizados ([AD94,
Yov96, DOTY95], entre otros). Existen numerosas herramientas que implementan la verificación basada en
autómatas temporizados ([DOTY95, BLL+96, TC96, HHWT95], etc) y constituye la técnica más usada para
modelización y verificación formal de sistemas concurrentes de tiempo real.

La verificación basada en autómatas temporizados permite modelar restricciones temporales explícitas: no
sólo cuestiones temporales cualitativas como liveness, fairness y no determinismo sino aspectos cuantitati-
vos como periodicidad, bounded response, delays, deadlines, etc. En este contexto, el problema básico de
verificación se plantea en los siguientes términos: el sistema está modelado por un autómata temporizado+y
los requerimientos se expresan en la lógica temporizada TCTL 4. La semántica del autómata se expresa en
función de un Sistema de transiciones etiquetadas (STE), que consiste en un grafo decorado donde los nodos
son los estados del sistema (potencialmente no enumerables) y los ejes corresponden a la ocurrencia de un
evento o al paso de una determinada cantidad de tiempo. Sobre este grafo se interpretan las fórmulas TCTL
para decidir si el sistema cumple o no el requerimiento.

En la práctica, una variante posible es el uso de autómatas observadores para describir los requerimientos
del sistema. En este contexto, se utilizan autómatas que capturen la negación del requerimiento (es decir,

3En general, resultado de la composición paralela de autómatas de menor tamaño llamados componentes o módulos. La
composición paralela de autómatas temporizados se define formalmente en la sección 2.2.4.

4Sección 2.4 en el próximo capítulo
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todos los comportamientos que violan el requerimiento) y una fórmula TCTL (en general, mucho más simple
que las usadas en el enfoque clásico), que expresa la alcanzabiliad de un conjunto de estados considerados
erróneos. El problema de verificación se traduce, entonces, en un problema de alcanzabilidad sobre el STE
generado por la composición del modelo del sistema y el autómata observador. Esta variante, utilizada por
ejemplo en [BraDD],constituye la base teórica para este trabajo.

1.1.3 Transferencia de tecnología hacia la industria

A pesar del entusiasmo que han despertado estas técnicas de verificación formal entre los investigadores
durante las últimas dos décadas, ese entusiasmo no ha podido ser transmitido aún a la industria del desarrollo
de sistemas.

Nuestra visión, compartida por otros grupos de investigación ([DKM+94, DAC98, AY99],etc), es que para
que ocurra la transferencia de tecnología hacia la industria es necesario dar a los desarrolladores la posibilidad
de escribir sus especificaciones de la forma más natural posible y brindar les herramientas de alto nivel para
generar, analizar y verificar sus especificaciones. En particular, ninguna de las técnicas mencionadas arriba
cumple en forma satisfactoria con el primer requisito. Todas se basan en formalismos matemáticos difíciles
de escribir y entender, aun por personas muy entrenadas. Las lógicas temporales usadas por muchas de estas
técnicas se tornan inadecuadas a medida que la complejidad de los sistemas crece. El siguiente ejemplo,
tomado de [DAC98], ilustra esta situación. Dado el siguiente requerimiento para un ascensor:

"Entre el momento en que el ascensor es llamado desde un piso hasta el momento en que el ascensor abre
sus puertas en dicho piso, el ascensor puede pasar por ese piso como máximo dos veces"

se escribe en LTL con la siguiente fórmula:

D((call/\ <>open) ->

((,atfloor /\ ,open)U
(open V ((atfloor /\ ,open)U

(open V (( ,at f loar /\ ,open) U
(open V ((atfloar /\ =opeti¡ U

(open V (,atfloar U open))))))))))

Si bien los autómatas finitos permiten en general describir lenguajes en forma más o menos simple, las
variedades más expresivas de autómatas (w-autómatas (temporizados), autómatas temporizados) usadas
para verificación formal, agregan poder expresivo a cambio de un incremento en la complejidad y dificultad de
escritura. Por ejemplo, no es una tarea trivial garantizar que un autómata temporizado de complejidad media
o grande esté correctamente temporizado (en el sentido de no permitir situaciones en las cuales el sistema
se "bloquearía"). La complejidad y susceptibilidad a errores de estos formalismos los hacen particularmente
inadecuados para ser utilizados por desarrolladores y diseñadores fuera del ámbito académico.

Por otro lado, en muchos de estos formalismos los requerimientos se expresan como una propiedad que deben
cumplir todas las ejecuciones del sistema. Muchas veces, sin embargo, los requerimientos expresan una
propiedad safety ("nada malo pasa") y, en estos casos, resulta más fácil y más natural expresar formalmente
qué es lo que no se quiere que ocurra antes que hacerlo en forma indirecta describiendo todos los casos en
los que no se produce la condición errónea.

Nuestra propuesta

Nuestra propuesta consiste en brindar una notación gráfica y de alto nivel para especificar requerimientos
de sistemas concurrentes y de tiempo real, de forma tal de abstraer a los diseñadores y desarrolladores de
los formalismos matemáticos subyacentes y aun así brindarles el poder de las herramientas de verificación
formal. Nuestro trabajo sienta las bases para un lenguaje gráfico de especificación basado en patrones de
eventos. Los patrones de eventos permiten describir de forma simple y abstracta ciertos aspectos de una
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Figura 1.4: Enfoque basado en patrones de eventos
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ejecución del sistema. Por ejemplo, el orden en que deben ocurrir los eventos, la separación en el tiempo
entre dos eventos, el conjunto de eventos que no deben ocurrir entre dos puntos de la ejecución, etc.

Como veremos más adelante, los patrones de eventos podrían ser aplicados en varios contextos y ofrecen
muchas posibilidades de extensiones futuras. En este trabajo aplicaremos los patrones de eventos a la
descripción de comportamientos no deseados de un sistema y traduciremos el problema de "model-checking"
de patrones de eventos al problema clásico de verificación basada en autómatas temporizados. Como muestra
la Figura 1.4, usaremos los patrones de eventos como una forma abstracta de describir un comportamiento
no deseado en el sistema (es decir, un caso en el que se violaría un requerimiento del sistema), y a partir de
esos patrones construiremos, en forma automática y transparente para el diseñador, autómatas temporizados
que capturen dichos comportamientos y que serán usados como observadores al estilo de la Figura 1.3 (b).
Llegado este punto, tendremos a nuestra disposición todas las herramientas clásicas para verificación basada
en autómatas temporizados.

Volviendo al ejemplo del ascensor mencionado anteriormente, parte de la complejidad de la fórmula residía
en que describía todas las posibles combinaciones de sucesos en los cuales se cumplía el requerimiento. Sin
embargo, alcanza con encontrar un caso en el cual se viole este requerimiento para concluir que el ascensor no
cumple con su especificación. Quiere decir que si el ascensor admite un comportamiento en el cual el ascensor
llegue (al menos) tres veces al piso donde lo llamaron antes de abrir sus puertas, podremos concluir que el
ascensor no es correcto con respecto a su especificación. El Patrón 1.1 muestra a modo de ejemplo cómo se
describiría este comportamiento no deseado para el ascensor usando patrones de eventos. El punto de más
a la izquierda corresponde al llamado del ascensor desde el piso n y los tres puntos restantes corresponden
a tres momentos distintos en los cuales el ascensor llegó a ese piso. Las flechas describen el orden en que
ocurrieron los eventos y la decoración de las flechas indica el conjunto de eventos que no ocurrieron entre los

open n open nopen n. ~. ~. ~.
call n arrive-at-floor n arrive-at-floor n arrive-at-floor n

Patrón 1.1: Violación del requerimiento para el ascensor expresada como patrón de eventos
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dos correspondientes a los extremos de la flecha. En este caso particular, se pide que en ningún momento se
hayan abierto las puertas en el piso n.

1.2 Características de los formalismos de especificación

La mayoría de los lenguajes formales de especificación comparten ciertas características comunes. Sin em-
bargo, existen varias diferencias en cuanto a la forma en que modelan ciertos elementos comunes a todos
los sistemas, el poder expresivo, la facilidad para describir ciertos aspectos particulares de un sistema, etc.
Dado que gran parte de este trabajo estará dedicado a la definición de un nuevo formalismo, debemos definir
los elementos que utilizaremos para caracterizar y comparar este nuevo lenguaje con los existentes.

El primer elemento común a todos los formalismos de especificación es el concepto de comportamiento
de un sistema. Debido a que la operatoria de un sistema puede variar en función de la entrada y/o del
contexto en el cual está corriendo, el sistema se puede comportar de muchas maneras distintas. En el
contexto de la verificación formal, a cada una de estas "formas" distintas en las que se puede comportar
el sistema se la denomina un comportamiento del sistema. En general, el modelo construido a partir del
sistema captura todas estas posibilidades, de forma tal que cualquier comportamiento observado en el sistema
pueda ser representado como una ejecución del modelo. Según el propósito para el cual fue concebido cada
formalismo, varía la forma en que se representa una ejecución. Las ejecuciones pueden estar representadas
como secuencias, árboles, etc... finitos o infinitos; pueden hablar únicamente de los estados por los que pasa
el sistema, de las transiciones+o de los eventos que ocurren en el sistema o de todos a la vez. Pueden hacer
referencia explícita o no al momento en el tiempo en que ocurrió cada evento, etc.

El segundo aspecto está relacionado con el poder expresivo que tienen los distintos formalismos para especi-
ficar cuestiones relacionadas con la precedencia o relación de causalidad y con el paralelismo o concurrencia
entre los eventos o estados de un sistema. Algunos formalismos fueron diseñados explícitamente para expre-
sar este tipo de propiedades y dan soporte tanto a nivel sintáctico como semántico o sólo a nivel sintáctico.
La mayoría de los formalismos pensados para modelar sistemas secuenciales no brindan soporte a ningún
nivel para este tipo de propiedades.
Cuando el soporte es a nivel sintáctico, el formalismo incluye una notación para decir que dos eventos /
estados pueden ocurrir en paralelo (o secuencialmente pero en cualquier orden) o que deben ocurrir en un
orden determinado. Cuando el soporte es también a nivel semántico, las ejecuciones están representadas
como órdenes parciales entre eventos / estados del sistema, donde el orden refleja las dependencias de
causalidad entre ellos. A este tipo de semánticas se las conoce con el nombre de pariial-order semantics.
Sin embargo, las semánticas más utilizadas son las denominadas interleaving semantics, en las cuales las
ejecuciones son palabras finitas o infinitas de eventos / estados. En estos modelos, un comportamiento de un
sistema concurrente puede corresponderse con varias ejecuciones que representen todas las formas posibles
de reordenar los eventos / estados que no tienen dependencias de causalidad entre sí.

Otro elemento importante de los formalismos de especificación es la forma en que representan el tiempo. Los
formalismos no temporizados no permiten hacer referencia al tiempo en forma explícita. En estos formalismos
sólo se pueden expresar nociones de orden relativo entre eventos. Algunos formalismos utilizan un modelo
de tiempo discreto en donde se asume que todos los eventos ocurren sincrónicamente cuando se produce un
tick del reloj del sistema. Finalmente, el modelo de tiempo denso o continuo, utilizado por los autómatas
temporizados, permite expresar restricciones temporales explícitas como deadlines, duración de una acción,
máxima y mínima separación en el tiempo entre dos eventos, etc... lo cual lo hace especialmente adecuado
para especificación de sistemas de tiempo real. Los autómatas temporizados incluyen la noción de relojes
y de restricciones temporales sobre los estados (invariantes) y las transiciones del sistema (guardas). Las
redes de Petri", las lógicas como LTL, CTL ([EC81J) y GIL ([DKM+94J) son ejemplos de formalismos no
temporizados.

5 En forma general, llamaremos transiciones a los cambios de estado de un sistema.
6En su versión básica, dado que existe una extensión temporizada de las mismas
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1.3 Patrones de eventos
En este trabajo definimos y presentamos el formalismo basado en patrones de eventos. Este formalismo
permite expresar en forma simple y abstracta las dependencias de causalidad entre los eventos del sistema y
la ausencia de ellas. Además, permiten expresar restricciones temporales explícitas.
La semántica de los patrones de eventos estará dada por un modelo deinterleaving de eventos junto con un
modelo de tiempo denso. Los patrones serán interpretados sobre ejecuciones temporizadas. Una ejecución
temporizada estará formada por una secuencia infinita de eventos, cada uno de ellos apareado con un real
no negativo o timestamp que representa el momento de ocurrencia.

Básicamente, un patrón de eventos es un grafo dirigido y acíclico donde los nodos o puntos representan la
ocurrencia de un evento en un sistema (puntos llenos) o instantes en el tiempo (puntos huecos) y los ejes
representan dependencias de causalidad entre los puntos. Los puntos llenos deben estar etiquetados por uno o
más símbolos de un alfabeto E que representan los eventos posibles en el sistema. Los puntos huecos no están
etiquetados. La ausencia de restricciones de causalidad entre dos puntos permite modelar no determinismo
(entre eventos de un mismo proceso) y concurrencia (entre eventos de procesos distintos).

a

Patrón 1.2: Ejemplo de patrón de eventos

Ejemplo. Patrón de eventos.
El Patrón 1.2 se refiere a una ocurrencia de cada uno de los eventos a, b, c y d en una ejecución. Cualesquiera
sean esas ocurrencias, se debe cumplir que:

• la ocurrencia de a debe ser anterior a la de c (indicado por la flecha entre a y c)

• la ocurrencia de b debe ser anterior a la de c (indicado por la flecha entre b y c)

• la ocurrencia de c debe ser anterior a la de d (indicado por la flecha entre c y d)

• a y b pueden ocurrir en forma concurrente o bien en forma secuencial sin importar el orden (indicado
por la ausencia de un camino de flechas entre a y b)

• entre la ocurrencia de a y la de c no puede haber otra a, quiere decir que la ocurrencia de a es la última
antes de la de e (indicado por la 'a' sobre la flecha entre a y e)

• análogamente, entre la ocurrencia de b y e no debe haber otra e ni una e, quiere decir que la ocurrencia
de e es la próxima después de la de b (indicado por la lista 'e, e' sobre la flecha entre b y e)

• finalmente, el tiempo transcurrido entre la ocurrencia de e y la de d no debe superar las 5 u.t.

Si existe al menos una forma de identificar las ocurrencias de los cuatro eventos sobre una ejecución verificando
todas las restricciones enunciadas arriba, entonces la ejecución satisface el patrón. En otro caso, la ejecución
no satisface el patrón.
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El
CD P AsIIAp. Verificador .

As i.paccept. de .
. patrones .

SI/NO SI/NO

11hductor I

pj ® lAp

diseñador ®

Figura 1.5: Verificación de patrones

1.3.1 Model-checking de patrones de mal comportamiento

Como mencionamos anteriormente, en este trabajo usaremos los patrones de eventos para expresar compor-
tamientos no deseados de un sistema (es decir, la negación o el complemento de un requerimiento). En ese
contexto, nos referiremos a los patrones de eventos como patrones de mal comportamiento.

En general, los requerimientos de un sistema representan una propiedad que deben cumplir todas las ejecu-
ciones de dicho sistema. Quiere decir que alcanza con encontrar una ejecución que no cumpla esa propiedad
para concluir que el sistema viola el requerimiento. Dado que usaremos los patrones de eventos para describir
los casos en los que se viola un requerimiento, alcanza con que una sola de las ejecuciones del sistema satisfaga
el patrón para concluir que el sistema es incorrecto (con respecto a ese requerimiento). Quiere decir que dado
un sistema S y un patrón de mal comportamiento P, diremos que S F P si y sólo si existe una ejecución
de S que satisface P. Entonces, S F R si y sólo si S ~ P~R. Podemos pensar al conjunto de ejecuciones
que satisfacen P~R como el lenguaje .c(P~R) de P~R. Más adelante veremos que el w-autómata (Ap~R' .1"),
donde F es una condición de aceptación de Büchi, reconoce el lenguaje .c(P~R). Veremos también que dada
la morfología de los autómatas reconocedores, la condición de aceptación puede ser expresada como una
fórmula TCTL i.paccept Y en consecuencia S F= P si y sólo si AsIIAp~R F i.paccept. Dado que éste último pro-
blema puede ser decidido por herramientas como Kronos, el problema de la verificación de patrones resulta
ser decidible.

Dado un sistema S, As será un modelo de S expresado como autómata temporizado. Dado un requerimiento
R sobre S, el diseñador deberá construir un patrón de eventos P~R que represente los comportamientos que
violan R7. Este patrón y el modelo del sistema serán el input para el Verificador de patrones. La Figura 1.5
muestra esquemáticamente el proceso de verificación.

A partir del patrón P, la herramienta genera un autómata temporizado Ap que acepta exactamente las
ejecuciones que satisfacen el patrón, usando para esto un Traductor. El autómata Ap cumple el rol de
componente observadora de As. El verificador utiliza la herramienta Kronos para decidir si AsIIAp F i.paccept,

donde i.paccept es la codificación en TCTL de la condición de aceptación mencionada más arriba. Kronos
responde OK si vale i.paccept en AsIIAp o un contraejemplo en caso contrario. Finalmente, esta información
es transmitida por el verificador al usuario.

7La idea es que estos patrones sean generados directa o indirectamente, utilizando para esto una herramienta gráfica.
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1.4 Estructura del trabajo
El Capítulo 2 presenta los conceptos y definiciones básicas necesarios para el resto del trabajo. En ese
capítulo se incluye la sintaxis y semántica de los autómatas temporizados y de los autómatas de Büchi
temporizados. También se incluye la sintaxis y semántica de la lógica temporizada TCTL.

El Capítulo 3 define la sintaxis y la semántica de los patrones de eventos. La presentación se realiza en
tres etapas: se introduce primero una versión básica de los patrones en la cual no se incluye la parte
temporal, luego se presenta una versión temporizada de estos patrones y en una última etapa se extienden
los patrones para soportar los conceptos de principio y final de una ejecución. Este esquema de presentación
incremental tiene el objetivo de facilitar la introducción de los distintos conceptos así como también facilitar
las demostraciones posteriores. De todas formas, debe quedar claro que excepto en el contexto de los capítulos
2 y 3, cuando nos refiramos a patrones de eventos nos estaremos refiriendo a la versión más expresiva de los
mismos.

En el Capítulo 4 definimos el concepto de autómata reconocedor de un patrón de eventos y la construcción
de dicho autómata sigue el esquema del capítulo 3: primero se realiza la construcción para los patrones
básicos no temporizados, después se agrega la parte temporal y finalmente se agregan los conceptos de
principio y final de ejecución. En ese mismo capítulo se demuestra que dado un patrón P, su autómata
reconocedor Ap aumentado con una condición de aceptación de Büchi acepta exactamente las ejecuciones
que satisfacen P. Dada la morfología particular de los autómatas reconocedores, la condición de aceptación
puede ser expresada como una fórmula TCTL y se demuestra que un sistema S satisface P si y sólo si
AsllAp 1=init :=;. :J<)(:JOaccept) y por lo tanto el problema de la verificación de patrones es decidible. La
fórmula init :=;. :J<)(:JOaccept), cuyo significado analizaremos más adelante, corresponde a 'Paccept mencionada
en la Figura 1.5.

En el Capítulo 5 mostramos varios ejemplos aplicados a casos de estudio presentados en la bibliografía.

En el Capítulo 6 se incluye el pseudocódigo de los algoritmos para la generación de autómatas reconocedores
a.partir de patrones.

El Capítulo 7 presenta las conclusiones y el trabajo futuro relacionado con este trabajo. En ese capítulo se
enumeran también los trabajos relacionados con el nuestro, resaltando las principales similitudes y diferencias
entre ellos.

Finalmente, en el Apéndice A se incluyen las demostraciones de todas las propiedades enunciadas a lo largo
de la tesis y en el Apéndice B se comentan los detalles de la implementación del Verificador de patrones
(Figura 1.5) realizada en Java y se incluyen varios listados relacionados con su aplicación a uno de los casos
de estudio.



Capítulo 2

Definiciones preliminares

En este capítulo presentaremos los conceptos y definiciones básicas que utilizaremos a lo largo de todo el
trabajo. Empezaremos por formalizar las nociones de secuencias, ejecuciones y ejecuciones temporizadas
que ya introdujimos informalmente en el capítulo anterior.

A continuación, formalizaremos los conceptos básicos de la Teoría de Sistemas Temporizados, también men-
cionados en la Introducción: sintaxis y semántica de los autómatas temporizados, los autómatas de Büchi
temporizados y de la lógica temporizada TCTL. En los próximos capítulos usaremos la teoría de autómatas
temporizados con dos propósitos: por un lado, para demostrar desde el punto de vista teórico la decidibilidad
de la verificación de patrones de mal comportamiento y por el otro, desde el punto de vista práctico, para
construir un verificador de patrones basado en herramientas existentes para la verificación de autómatas.

2.1 Secuencias y Ejecuciones

Secuencias

Empezaremos por introducir la notación básica que utilizaremos para trabajar con secuencias.

Dado un conjunto e, una secuencia sobre e es una secuencia de elementos de e. Dada una secuencia s, [s]
será la longitud de la secuencia. Cuando s sea una secuencia infinita, diremos que [s] d:;j oo. Llamaremos
II. d:;j {i E N I O::; i < [sl} al subconjunto de los números naturales correspondientes a las posiciones de
la secuencia s.

Para i,j E II., Si denotará al i-ésimo elemento de la secuencia s, Si] será el prefijo de s que termina con
el i-ésimo elemento inclusive, S[i será el sufijo de s que empieza desde el i-ésimo elemento inclusive y S[i,j]

la subsecuencia que empieza en el i-ésimo elemento y termina en el j-ésimo inclusive (si i > i, S[i,j] será la
secuencia vacía). En cualquier caso, usar '(' o ')' en lugar de r o r indicará que la subsecuencia no incluye
el borde en cuestión. Llamaremos prim(s) al primer elemento de s, es decir, prim(s) d:;j so. Análogamente,
si s fuera finita, llamaremos ult(s) al último elemento de s, es decir, ult(s) d:;j sl.I-1.

La concatenación de dos secuencias s y s', donde la primera es finita, será denotada por ss', Las secuencias
con un único elemento serán identificadas por ese elemento.

Dado un conjunto E y una secuencia s sobre E, elems(s) denotará al conjunto de los elementos que componen
s. Para simplificar la notación en las definiciones de los próximos capítulos, sobrecargaremos el operador n
de forma tal que dado un subconjunto X de E, s n X será equivalente a elems(s) n X.

11
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Definición 2.1.1. Secuencias temporales.
Una secuencia temporal es una secuencia débilmente creciente de timestamps, es decir, de números reales no
negativos.

Dada una secuencia temporal T, definimos la función 6. que determina el tiempo transcurrido para esa
secuencia como:

si ITI :::;1
si 1 < ITI < 00

en otro caso

Definimos desplazamiento de una secuencia temporal T por un real E (notado T + E) de forma tal que
Vi E IIT) (T + E)i = Ti + E.

Definimos también la operación <1entre secuencias temporales como sigue. Dada una secuencia temporal finita
T y otra secuencia temporal T', T<1T'd;j T(T' +ult(T)). Por ejemplo: (O2 3 5.5)<1(15.3) = (O2 3 5.5 6.510.8)

Ejecuciones

Usaremos el concepto de ejecución para representar formalmente el comportamiento de un sistema. Como
vimos en el capítulo anterior, usaremos un modelo orientado a eventos, con lo cual nuestras ejecuciones
modelarán la sucesión de eventos ocurridos en una corrida del sistema. Utilizaremos dos tipos de ejecuciones:
temporizadas y no temporizadas.

Definición 2.1.2. Ejecución (no temporizada).
Dado un conjunto de eventos ~, una ejecución (no temporizada) sobre ~ es una secuencia finita o infinita
sobre ~ U {A}.

Ejemplo. Dado el conjunto de eventos ~ = {read, write}, los siguientes son ejemplos de ejecuciones:

read write read write read write read write
read read read read
read A read A Aread read A A A A ...

La primera muestra una ejecución infinita formada por infinitos read's seguidos de su respectivos write's.
La segunda muestra un ejemplo de ejecución finita formada por únicamente cuatro read's. Finalmente, la
tercera muestra un ejemplo de ejecución donde aparece el símbolo distinguido A. Usaremos ese símbolo para
indicar explícitamente que no ha ocurrido ningún evento nuevo en el sistema. En ese sentido, la segunda
y la tercera ejecuciones representan formas sintácticamente distintas de describir el mismo comportamiento
del sistema. Definimos el concepto de equivalencia entre ejecuciones para capturar esta relación entre las
distintas formas de representar un mismo comportamiento abstracto.

Definición 2.1.3. Equivalencia de ejecuciones.
Dado un conjunto de eventos ~, dos ejecuciones < y ~' sobre ~ son equivalentes, notado ~ == «', si al eliminar
todas las apariciones de Aen ~ y ~' las secuencias resultantes son iguales.

Es decir, e == ~' si y sólo si tienen los mismos eventos, en el mismo orden.

Ejemplo. Como vimos antes, read read read read == read A read A Aread read A A A A ...

Debería resultar más o menos evidente que para toda ejecución ~ finita, se puede construir una ejecución ~'
infinita y equivalente a ~ son solo agregar infinitos X's al final de e, Esto resultará importante más adelante
cuando hablemos de lenguaje de un autómata temporizado.
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Definición 2.1.4. Ejecución filtrada por un conjunto de eventos.
Dada una ejecución < = aOal ... ai ... sobre ¿ y un conjunto de eventos 5, definimos .;-fs como la secuencia
que se obtiene de reemplazar en .;-todas los eventos que no pertenezcan a 5 por ),.. Formalmente:

.;-fs = a~a~ ... a; ...

donde:

, {ai
a· =, ),.

si a, E 5
en otro caso

Ejemplo. Dado el conjunto de eventos ¿ = {a, b, c} y el conjunto 5 = {a, b}

(a b c a c c bHs ab)..a),.)..b

En general, 5 será un subconjunto de ¿ y usaremos la operación rs para abstraemos de ciertos eventos
que no resulten importantes en un determinado contexto. Por ejemplo, en un sistema formado por varios
componentes independientes, una ejecución del sistema incluirá eventos de todos los componentes. Sin
embargo, si quisiéramos analizar el comportamiento de un componente individualmente (analizando para ello
una ejecución del sistema), podríamos filtrar todos los eventos que no sean relevantes para ese componente
(es decir, todos los eventos "internos" de los demás componentes).

Definición 2.1.5. Ejecuciones temporizadas.
Dado un conjunto de eventos ¿, una ejecución temporizada sobre ¿ es un par (7 = (e,T), donde .;-es una
secuencia finita o infinita sobre ¿ U {),.}y T es una secuencia temporal de la misma longitud.

Extendemos las operaciones de secuencias a las ejecuciones temporizadas de la siguiente manera: dada una
ejecución temporizada (7 = (e,T), Id d~ 1.;-1 = ITI, las posiciones de (7 serán las mismas que para .;-y

. . de! ( ) de! ( ) de! () de! ( )T, para todo t,] E TI"., a; = ';-i,Ti, (7i) = ';-i),Ti), (7[i = ';-[i,T[i Y (7[i,j) = ';-[i,j),T[i,j)' En este caso
también, usar '(' o ')' en lugar de '[' o ']' para delimitar subsecuencias indicará que no se incluye el borde en
cuestión. Llamaremos primio ¡ al par (prim(.;-),prim(T)) y, si (7 fuera finita, ult(7) al par (ult(.;-), ult(T)).
Finalmente, dada (7' = (.;-',T') finita, la concatenación de (7 con (7' se define como (7(7' d~ (.;-.;-',T <lT').

Ejemplo. El siguiente es un ejemplo de ejecución temporizada:

/ read write x recui X write ... )
\ 0.5 1.1 1.2 5 5 8.6

donde el primer read ocurrió a las 0.5 u.t. desde que comenzó la corrida, el primer write ocurrió a las 1.1 u.t.,
etc .. Como en el caso de las ejecuciones no temporizadas, los Xindican que no ocurrió ningún evento. Dado
que la secuencia temporal que acompaña a la secuencia de eventos debe ser creciente aunque en forma no
estricta, los A's pueden estar acompañados de un timestamp igual al del evento anterior, igual al del evento
siguiente o con un valor intermedio (modelo de tiempo denso). En este caso como en el anterior, definimos
la noción de equivalencia entre ejecuciones temporizadas que representan el mismo comportamiento del
sistema.

Definición 2.1.6. Equivalencia de ejecuciones temporizadas.
Dado un conjunto de eventos ¿, dos ejecuciones temporizadas (7 = (.;-,T) Y (7' = (.;-',T') sobre ¿ son equiva-
lentes, notado (7 == (7', si y sólo si .;-== .;-' y todos los eventos tienen el mismo timestamp asociado en (7 y en
(7' .

Es decir, (7 == (7' si y sólo si tienen los mismos eventos, en el mismo orden y cada evento tiene el mismo
timestamp asociado en las dos ejecuciones.
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Ejemplo.

A b c d)
1.5 2.6 3 4.8

la b c d)
\ 1 2.6 3 4.8

lA AabAcdAA A
\ 0.5 0.8 1 2.6 3 3 4.8 5 7.5 8.1

.. -)

En este caso, como en caso de las ejecuciones no temporizadas, siempre será posible construir una ejecución
temporizada infinita equivalente a una finita dada. La diferencia es que en este caso existen infinitas formas
de extender la ejecución original: tantas como sucesiones débilmente crecientes de números reales.
En general, nos interesarán las ejecuciones infinitas dado que permiten representar el comportamiento de
sistemas reactiuos cuyas corridas podrían no terminar nunca (por ejemplo: sistemas operativos, microproce-
sadores, etc). En los casos en que un sistema admita corridas finitas, usaremos el mecanismo explicado en el
párrafo anterior para construir una representación infinita de la misma corrida (conceptualmente estaríamos
modelando el hecho de que el sistema deja pasar el tiempo permaneciendo en el estado final alcanzado
después de la corrida).
A su vez, dentro de las ejecuciones infinitas, preferiremos las ejecuciones divergentes, es decir, aquellas en
las cuales la secuencia temporal es divergente. Esto nos permite modelar el progreso del tiempo más allá de
cualquier constante real. Por otro lado, la decisión de usar secuencias temporales débilmente crecientes nos
permite modelar la ocurrencia simultánea de eventos.

Definición 2.1. 7. Ejecución divergente.
Diremos que una ejecución infinita CT= (" T) es divergente sii:

lim Ti = 00
i-+oo

Los filtros sobre ejecuciones temporizadas son una extensión natural de los filtros sobre ejecuciones no
temporizadas:

Definición 2.1.8. Ejecución temporizada filtrada por un conjunto de eventos.
Dada una ejecución temporizada CT= (e T) Y un conjunto de eventos S, definimos CTrs d~ (,rs, T).

Ejemplo. Dado S = {a, b, e}:

(~ 1~5 2~6 ~ 4~8) ls
la A b A A)
\ 1 1.5 2.6 3 4.8

2.2 Autómatas temporizados

Los autómatas temporizados constituyen uno de los formalismos más usados para modelización y verificación
de sistemas concurrentes de tiempo real. La verificación basada en autómatas temporizados está soportada
por varias herramientas ([DOTY95, BLL+96, TC96, HHWT95], etc) que han sido aplicadas con éxito al
chequeo de protocolos de comunicación y circuitos, y han sido usadas por varios grupos de investigación,
tanto en el ámbito académico como en la industria.

Los autómatas temporizados son básicamente autómatas finitos en los cuales el tiempo se incorpora mediante
el uso de relojes. Como los autómatas finitos, los autómatas temporizados están compuestos por un conjunto
finito de nodos (llamados locaciones en la bibliografía) y un conjunto de aristas etiquetadas. Debido a que
se asume que las corridas del sistema son infinitas, no existe el concepto de estado final. Las aristas modelan
la ocurrencia de eventos. Todos los relojes avanzan al mismo ritmo y tienen un comportamiento similar al
de un cronómetro: miden el tiempo transcurrido desde que fueron iniciados (o reiniciados). La ocurrencia de
un evento puede provocar que ciertos relojes se reinicien. Esto se modela asociando a cada arista el conjunto
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de relojes que se reinician. Cada arista tiene asociada, además, una guarda o condición de habilitación.
Dicha guarda impone restricciones sobre los valores que deben tener los relojes al momento de producirse el
evento. Las aristas se atraviesan en forma instantánea y el tiempo transcurre en las locaciones del autómata.
Además, cada locación tiene asociada una restricción temporal o invariante que determina las combinaciones
de valores de los relojes que son válidas en esa locación. Estos invariantes pueden ser usados para indicar, por
ejemplo, que el control del sistema no puede permanecer más de cierta cantidad de tiempo en una locación
(deadline).

2.2.1 Definiciones preliminares

• X = {Xl,X2, ... ,xn} es un conjunto de relojes (variables reales no negativas)

• Dado un conjunto de relojes X, una valuación es una función total v: X ~ R+ donde V(Xi) es el
valor asociado al reloj Xi.

Llamaremos Vx al conjunto de todas las valuaciones sobre X. Es decir, Vx es el conjunto de todas las
funciones totales [X ~ R+ l.

Sea p s:;: X Y v una valuación sobre los relojes de X. Definimos Resetp(v) como:

Resetp(v)(x) = { ~(X)
si x E p,
en caso contrario.

• Dado un conjunto de relojes X, una valuación v E Vx y un real tE R+, la valuación v + t asigna a
cada reloj x E X el valor v(x) + t.

• Dado un conjunto de relojes X y un real t E R+, llamamos t a la valuación que asigna a cada reloj
x E X el valor t.

• Dado el conjunto de relojes X, definimos el conjunto de restricciones sobre relojes Wx según la siguiente
gramática:

'Ij; ::= T I x "-'c I x - x' "-'c I 'Ij; 1\ 'Ij; I ...,'Ij;

donde x,xl E X, "-' E {«, S;} Y c E N.

Definimos inductivamente la relación F incluida en Vx x Wx como:

v F T
VFX"-'C

v F x - x' "-'c sii
v F 'Ij; 1\ 'lj;1

V F ...,'Ij;

siempre
v(x) "-' e
v(x) - V(XI) "-' e

sii v F 'Ij; Yv F 'lj;1

sii v;¿ 'Ij;

sii

Diremos que una valuación v E Vx satisface una restricción 'Ij; E Wx si y sólo si v F 'Ij;.

Llamaremos ['Ij;l al conjunto de las valuaciones que satisfacen 'Ij;, o sea:

['Ij;l = {v E Vx I v 1= 'Ij;}
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2.2.2 Autómatas temporizados

Definición 2.2.1. Autómata temporizado. Un autómata temporizado es una tupla A = (5, X, 2:,A, I, so)
donde:

• 5 es un conjunto finito de locaciones

• X es un conjunto finito de relojes

• 2: es un conjunto finito de eventos

• A es un conjunto finito de aristas. Cada arista en A es una tupla (s, a, '!jJ, p, s') donde:

- s E 5 es la locación de origen

- s' E 5 es la locación de destino
- a E 2: U {>'} es la etiqueta de la arista
- '!jJ E 1Irx es la restricción o guarda de la arista

- p ~ X determina el conjunto de relojes que se reseiean al atravesar la arista.

• I :5 ~ 1Irx es una función total que asocia a cada locación una restricción sobre los relojes. Dada
una locación s E 5, diremos que I(s) es el invariante de la locación s.

• So E 5 es la locación inicial.

Como los autómatas finitos, los autómatas temporizados admiten una representación gráfica. El siguiente
ejemplo muestra un autómata sencillo que modela el funcionamiento de una máquina expendedora de café.

(

Ejemplo. Máquina expendedora de café.
La Figura 2.1 muestra un autómata temporizado que modela el funcionamiento de una expendedora de
café. Los nodos corresponden a los estados discretos de la máquina: libre, esperando opción, sirviendo
bebida. Los ejes corresponden a los eventos que afectan el funcionamiento de la máquina: introducir una
moneda en la máquina, elegir una bebida, etc. La máquina comienza estando libre y puede permanecer así
indefinidamente, por esta razón el invariante de la locación es T y para simplificar el gráfico puede omitirse.
Estando en esa locación, en cualquier momento un usuario puede introducir una moneda. Quiere decir que
la arista moneda tiene como guarda T. Como en el caso de los invariantes, cuando una guarda es T puede
omitirse en el gráfico. Al pasar a la locación eleccion, donde la máquina aguardará la opción del usuario, se
resetea el reloj x. Este reloj medirá el tiempo transcurrido desde que se introdujo la moneda. La máquina
aguardará a lo sumo 10 u.t. en eleccion (invariante x ::; 10) Y si no se produce una elección antes de ese
momento, devolverá el dinero recibido y volverá a quedar libre. Si, en cambio, el usuario realiza su elección
antes de las 10 u.t., la máquina procederá a servir la bebida correspondiente. Las distintas eleccionesposibles
están modeladas con dos aristas salientes desde eleccion. Dado que la máquina requiere 5 u.t. para servir
la bebida, se resetea nuevamente x cuando el usuario realiza su elección y se fuerza a que la máquina deje la
locación sirviendo recién al cumplirse las 5 u.t. Aunque simple, el ejemplo muestra dos posibles usos de los
invariantes: para establecer deadlines, como en el caso de eleccion o para modelar duración de una acción,
como en el caso de sirviendo.

Semántica

La semántica de los autómatas temporizados está dada en función de un sistema de transiciones etiquetadas
(STE) formado por un conjunto, generalmente no numerable, de estados y una relación -> de tmnsición.
Cada estado se compone de una locación del autómata y una valuación sobre los relojes. Estando en cualquier
estado, A puede evolucionar atravesando una de las aristas en A (transición discreta) o dejando que el tiempo
transcurra en la locación actual (transición temporal).
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bebida
x=5

Figura 2.1: Expendedora de café

Estado de un autómata temporizado. Un estado q de un autómata A = (S, X,~, A, I, so) es un par
q = (s, v) E S x Vx tal que v 1= I(s) . El estado inicial de A será qinit = (so, O).

Llamamos QA (o simplemente Q si queda claro por contexto) al conjunto de todos los estados del autómata
A.

Notación. Dado q = (s,v) E Q definimos:

de!
• q+t = (s,v+t)

@ de!
• q = S

Evolución de un autómata temporizado. Sea A = (S,X,~, A, I, so) un autómata temporizado y (s, v)
y (s', v') estados de A.

• Transiciones discretas. Sea a E ~ U {A}. Existe una transición discreta desde el estado (s, v) hacia
el estado (s',v') por a, notado (s,v) -;a (s',v'), si para alguna arista (s,a,1j;,p,s') E A:

-vl=1j;

- v' = Resetp(v)

o bien, a = A Y (s, v) = (s', v').

• Transiciones temporales. Sea tE R+. Existe una transición temporal desde el estado (s,v) hacia
el estado (s, v + t) por t, notado (s, v) -;t (s, V + t), si:

- para todo t' < t, v + t' 1= I(s)

Dado que estamos pidiendo que las transiciones sean únicamente entre estados válidos del autómata, en todo
momento el autómata debe respetar los invariantes de las locaciones por las que pasa.

Las transiciones discretas corresponden a un cambio de locación (aunque una arista puede ser un loop sobre
la misma locación y la locación de destino sería igual a la de partida). Estas transiciones ocurren en forma
instantánea, provocan que se reinicien los relojes correspondientes, y sólo pueden suceder si el valor de los
relojes satisface la guarda de la arista. Generalmente, las transiciones discretas representan la ocurrencia de
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un evento en el sistema (caso a E ~), pero también pueden darse transiciones discretas en forma "espontánea"
(caso a = A). Finalmente, estando en cualquier estado, el autómata puede realizar una transición discreta
trivial por A permaneciendo en el mismo estado.

Las transiciones temporales corresponden al paso del tiempo. Estas transiciones no modifican la parte
discreta de los estados (es decir, la locación del estado). Estando en cualquier estado el autómata puede
realizar una transición temporal trivial por a permaneciendo en el mismo estado. Los autómatas utilizan un
modelo de tiempo denso con lo cual, si existe la transición (s, v) -->t (s, V + t) y t = tI + ta, entonces existen
las transiciones (s,v) -->t1 (S,V+tl) y (S,V+tl) -->t2 (s,v+t).

Definición 2.2.2. Sistema de transiciones etiquetadas (STE).
Dado un autómata temporizado A, el grafo (Q, --> ), con --> ~ Q x (R+ U ~ U {A}) x Q denotará el sistema
de transiciones etiquetadas generado por A.

La representación clásica de las corridas de los autómatas temporizados se define en función de secuencias
infinitas de estados y transiciones de la forma: qo -->ao q: -->a1 ... qi -->ai ... , donde Vi E N, qi E Q, ai E
R+U~U{>.} llamadas runs ([Yov96,HNSY92, ACD93, Braaa]). En este trabajo representaremos las corridas
de un autómata usando evoluciones.

Evolución en un paso. Diremos que un autómata temporizado A = (5, X,~, A, I, so) puede evolucionar
en un paso desde el estado q hacia el estado q' por a E ~ U {A} Y t E R+, notado q =,;>f q', sii:

q -->t q + t Y q + t -->a q'

Una evolución en un paso corresponde a dejar pasar cierto tiempo en una locación y luego realizar una
transición discreta. Se puede ver que toda corrida de un autómata puede ser representada como una sucesión
de estas evoluciones en un paso.

Definición 2.2.3. Evolución.
Dado un autómata temporizado A = (5, X, ~,A, I, so) una evolución r es una secuencia (posiblemente
infinita) de evoluciones en un paso de la forma:

donde Vi E N, qi E Q, ai E ~ U {A} Y ti E R+.

Dado un estado q de A, llamaremos Rq(A) al conjunto de todas las evoluciones de A que comiencen en el
estado q. Llamaremos R(A) al conjunto Rqinit (A), es decir, al conjunto de todas las evoluciones de A que
comiencen en el estado inicial qinit.

Dada una secuencia finita < sobre ~ U {A} Y una secuencia temporal r de la misma longitud, definimos la
relación q =';>~ q' (que se lee "es posible evolucionar desde q hacia q' por (e, 1')") de la siguiente manera:
q =';>~ q' sii

{
q = q'
3q", q =';> ~', q" y q" =';> f q'

si 1<;1 = 11'1 = a
si < = <;' a y l' = 1" <l t

Diremos también que un autómata puede evolucionar desde el estado q hacia el estado q' (notado q =';> q')
si existe un par de secuencias (e,1') tales que q =';> ~ q'.
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Observación. Todo ron de un autómata es también una evolución. Por otro lado, toda evolución tiene
un ron equivalente que se obtiene reemplazando las evoluciones en un paso por el par de transiciones que
representan.
Por ejemplo, el ron:

puede ser visto como la evolución:

Por otro lado, la evolución:
qo =?~.5 ql =?~ q2 =?;5 q3 =?Oq4

puede ser transformada- en ron "desdoblando" las evoluciones en un paso:

Como se puede ver, la diferencia entre rons y evoluciones es muy sutil y ésta es la justificación para apartamos
de la semántica clásica en favor de la semántica basada en evoluciones.

Notación. Dado un autómata A, un par de estados q, q' en QA y un par de locaciones s, s' en 5, definimos
el siguiente conjunto de abreviaturas:

q =?~ S

q =?' s
q=?s
s =?~ q
s=?' q
s=?q
S =?~ s'
s =?' s'
s =? s'

3v E Vx, q =?~ (s,v)
37, q =?~ s
3" q =?' s
3v E Vx, (s,v) =?~ q
37, S =?~ q
3" s=?' q
3v,v' E Vx, (s,v) =?~ (s',v')
37, S =?~ s'
3" S =?' s'

Tiempo transcurrido en una evolución. Dada una evolución r = qo =t; ql =; q2 =: ...de A, el
tiempo transcurrido en r hasta la iésima evolución en un paso, denominado T,.(i), se define como:

Las evoluciones de los autómatas temporizados siguen un modelo similar al de las ejecuciones temporizadas
mencionadas en la sección anterior: las corridas de un autómata estarán dadas por evoluciones infinitas y
divergentes, con un progreso del tiempo débilmente monótono para permitir eventos simultáneos.

Evolución divergente. Dado un autómata temporizado A, diremos que una evolución (infinita) r es
divergente sii:

lim Tr (i) = 00
'-00

Dado un autómata temporizado A y un estado q de A, llamaremos R~(A) al conjunto de todas las evolu-
ciones divergentes de A que comiencen en el estado q.

Dado un autómata temporizado A, llamaremos ROO(A) al conjunto R~nit(A), es decir, al conjunto de todas
las evoluciones divergentes de A que comiencen en el estado inicial qinit.
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Diremos que un autómata A es non-zeno si toda evolución finita que comience en qinit es prefijo de alguna
evolución en nOO(A). En general, pediremos que un autómata que modele el comportamiento de un sistema
tenga la propiedad de ser non-zeno. Esta propiedad garantiza que cualquier secuencia finita de transiciones,
que parta desde el estado inicial, forma parte de por lo menos una evolución infinita y divergente. Si esto
no fuera así, el autómata estaría permitiendo operaciones donde llegado un punto no se podría dejar que el
tiempo diverja, cosa que no es posible en el "mundo real" que se está modelando (donde el tiempo avanza
inexorablemente) .

Extenderemos la notación presentada para secuencias a evoluciones. Dada una evolución r E R.~(A), una
posición de r es un par (i, t) E N X R+ tal que t :S ti. Llamaremos IlT al conjunto de todas las posiciones
de r. Dada una posición (i, t) E IlT, el estado en dicha posición se define como:

r(i,t) = qi + t

Y el tiempo transcurrido hasta dicha posición se define como:

Definimos el orden total « sobre las posiciones de una evolución de la siguiente manera:

(i,t)« (j,tl) sii i < j o i = j y t :S ti

Dadas dos posiciones p,pl E IlT, r[p será la porción de r que comienza desde el estado rp, rp] será la porción
de r desde el comienzo hasta el estado r p y r[p,p'] será la porción de r desde r p hasta r p' Como en los casos
anteriores, usar '(' o ')' en lugar de '[' y 'J' significará que los bordes correspondientes no están incluidos en
la subevolución.

2.2.3 Lenguaje de un autómata temporizado

Como vimos, clásicamente se utiliza un modelo basado en estados y transiciones para representar el com-
portamiento de los autómatas temporizados. Sin embargo, es posible representar el comportamiento de
un autómata temporizado utilizando las ejecuciones temporizadas y no temporizadas que definimos en la
sección 2.1. Dado que la semántica de nuestros patrones de eventos estará dada en base a estas ejecuciones,
resulta conveniente poder definir cuándo un autómata temporizado acepta una ejecución y cuándo no.

Definición 2.2.4. Ejecución expuesta por una evolución.
Dada una evolución

donde Vi E N, qi E Q, ai E I; U {A} Y ti E R+, llamaremos r a la ejecución temporizada (e, r), donde:

• c; = aoa¡ ... ai ...

• r = to <J t ¡ <J •.. <J ti <J •..

r es la ejecución temporizada obtenida de abstraer los estados intermedios de r.

Ejemplo. Dada la evolución:

la ejecución expuesta por r será:
_ / a
r = \ 4.5

b
7.5

x
9
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Definición 2.2.5. Aceptación de ejecuciones temporizadas.
Dado un autómata temporizado A, diremos que A acepta una ejecución temporizada O" = (e, T) sii existe
una evolución r en ROO(A), tal que O" = T.
Diremos que A acepta una ejecución (no temporizada) c;- sii A acepta alguna ejecución temporizada de la
forma (e, T) .

Definición 2.2.6. Lenguaje de autómatas temporizados,
Dado un autómata A, el lenguaje de A estará dado por las ejecuciones aceptadas por A.
Formalmente, definiremos lenguaje de un autómata temporizado A (notado .c(A», de la siguiente manera:

L(A) = {O" I O" es aceptada por A} = {O" I :Jr E RCC(A), T = O"}

Análogamente, definiremos lenguaje no temporizado de un autómata temporizado A (notado .c*(A», de la
siguiente manera:

.c*(A) = {c ] e es aceptada por A} = {c ] :Jr E ROO(A), :JT, T= (c;-,T)}

2.2.4 Composición de Autómatas Temporizados

El formalismo de autómatas temporizados permite modelar individualmente los distintos componentes de
un sistema. La integración de esos componentes dentro del sistema está dada por la composición paralela de
los mismos.

Dado un par de autómatas temporizados A¡ y A2 con conjuntos disjuntos de relojes, la composición paralela
de ambos (AtlIA2) se construye a partir del producto cartesiano de sus locaciones, la unión de los relojes
y la sincronización de las aristas con eventos en común. El invariante de una locación compuesta será la
conjunción de los invariantes de sus componentes. Para una arista de sincronización, la guarda será la
conjunción de las guardas originales y el conjunto de relojes que se reinician será la unión de los conjuntos
locales. Formalmente:

Definición 2.2.7. Composición paralela.
Dados dos autómatas temporizados A¡ = (S¡,X¡,:E¡,A¡,L¡,So¡), Y A2 = (S2,X2,:E2,A2,L2,S02) don-
de X¡ n X2 = 0, Y :El n:E2 constituye el conjunto de eventos de sincronización, llamaremos A¡IIA2
(S¡ x S2,XI U X2,:E¡ U :E2,A,L, (SO¡,S02) a la composición paralela de Al con A2 donde":

• ((s¡,s2),I,'I/I,p,(s~,sm E A sii

(s¡,I,'I/I,p,sD E A¡, 1 'I-:E2 Y S2 = s~
(s2,I,'I/I,p,s~) E A2, 1 'I-:EI Y s¡ = s~
(s¡, 1, 'I/I¡, p¡, sD E Al, (S2, A, '1/12,P2, s~) E A2, 1 '1- :E2, '1/1= 'I/I¡ /\ '1/12Y P = p¡ U P2

(s2,I,'I/I2,P2,s~) E A2, (s¡,A,'I/I¡,p¡,sD E A¡, 1 '1- :E¡, '1/1= 'I/I¡/\'I/I2 Y P = p¡ UP2
(si,l,'I/Ii,pi,sD E Ai, con i = 1,2, 1 E:E¡ n :E2, '1/1= 'I/I¡/\ '1/12Y P = p¡ UP2

En los primeros dos casos, decimos que sólo una de las componentes participa de la arista, por el
contrario, en los últimos tres casos decimos que ambas componentes participan.

1En realidad, alcanza con tomar la componente conexa que contenga al par (so 1, S02)
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alta

y ::; 1

Then Barrera

x::;5I\y<2

baja
1 ::; Y < 2

dentro
2::; x ::; 5

x::;S
x ~ 5

ThenllBarrera

Figura 2.2: Cruce ferroviario

Notación. Sea un autómata temporizado A construido como la composición paralela de AlIIA2. Dada una
locación s de A, para i = 1,2 definimos 1ri(s) = Si como la locación correspondiente a la iésima componente.
Dada la transición (s,l,'IjJ,p,s') en A, escribimos 1ri('IjJ) = 'ljJi, la condición de la arista correspondiente a la
iésima componente. Por definición, si la componente i no participa en la transición diremos que 1ri('IjJ) = T.
Llamaremos 1ri(p) = p, al conjunto de relojes reseteados en la arista correspondiente a la iésima componente.
Si la componente i no participa en la relación diremos que 1ri(P) = 0. Finalmente, dado un estado q de A,
diremos que 1ri (q) es el estado local de Ai·

La noción de composición paralela puede ser generalizada naturalmente n componentes Al, ... ,An y decimos
que Alll·· ·IIAn es el resultado de asociar los términos de izquierda a derecha: (... ((AIIIA2)IIA3)··· )IIAn.

Ejemplo. Cruce de ferrocarril.
La Figura 2.2 muestra un ejemplo de sistema modelado con dos componentes. El ejemplo constituye un
caso de estudio clásico mencionado en la bibliografía. Consiste en un cruce de ferrocarril modelado con una
componente que representa la barrera y otra componente que representa el tren. Los eventos que sincronizan
el funcionamiento de la barrera y el tren son aprox y fuera. Cuando el tren se acerca al cruce ferroviario,
envía una señal aprox a la barrera y entra al cruce al menos 2 u.t. después. El tren se aleja del cruce,
enviando una señal fuera a la barrera, dentro de las 5 u.t. desde que señalizó que se estaba aproximando.
La barrera requiere entre 1 y 2 u.t. para bajar completamente y a lo sumo 1 u.t para subir completamente.
La Figura 2.2 también muestra la composición paralela de ambas componentes.
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Observaciones sobre la semántica de la composición paralela

Dado A = A111A2, se puede ver que existirá una transición discreta q --4/ q' en A siy sólo si para i = 1,2:

{
11'i(q) --4/ 11'i(q')

11'i(q) --4
A 11'i(q')

si 1 E L:i
en otro caso

También se puede ver que existirá una transición temporal q --4
t q' en A si y sólo si para i = 1,2:

Proposición 2.1. Dados dos autómatas temporizados Ai = (Si, Xi, L:i, Ai, Ii, SOi) con i = 1,2 Y una ejecu-
ción (J' sobre L:1 U L:2, -

Demostración. La demostración de esta proposición es más o menos directa a partir de la semántica de las
transiciones de un autómata compuesto. La demostración completa se encuentra en el Apéndice A, página
~. O

2.3 Autómatas de Büchi temporizados
Los autómatas de Büchi son un tipo particular de w-autómatas. A su vez, los w-autómatas son extensiones
de los autómatas finitos que incluyen una condición de aceptación para palabras infinitas (denominadas
w-palabras). Una de las condiciones de aceptación para w-palabras más usada es la condición de aceptación
de Büchi, que justamente caracteriza a los autómatas de Büchi. Informalmente, la condición de aceptación
de Büchi pide que se visiten infinitas veces ciertas locaciones distinguidas del autómata.

Los autómatas de Büchi temporizados son autómatas temporizados a los cuales se les agrega una condición
de aceptación de Büchi.

Definición 2.3.1. Autómata de Büchi temporizado.
Un autómata de Büchi temporizado es una tupla B = (A, F) donde A = (S, X, L:, A, I, so) es un autómata
temporizado y F ~ S es el conjunto de locaciones de aceptación.

Semántica

Dado un autómata de Büchi temporizado B = (A, F) y una evolución r = qo =*f~ ql =*f,' ... q, =* f;; ... de
A, llamaremos inf(r) al conjunto de locaciones s E S tales que s = q<f para una cantidad infinita de i.

Definición 2.3.2. Aceptación de evoluciones.
Dado un autómata de Büchi temporizado B = (A,F), diremos que B acepta una evolución r e Roo(A) si y
sólo si inf(r) nF i' 0.

Llamaremos R 00 (B) a las evoluciones divergentes aceptadas por B.

Informalmente podemos decir que un autómata de Büchi temporizado aceptará una evolución si algunas de
las locaciones en F son visitadas un número infinito de veces en el transcurso de dicha evolución.

Es fácil ver que si F = S, la condición de aceptación se vuelve trivialmente verdadera y B aceptará todas
las evoluciones de A. En cambio, si F = 0, la condición de aceptación será siempre falsa y B no aceptará
ninguna evolución.
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E \ {alta}

E = {aprox, dentro, juera, baja, alta}

Figura 2.3: Ejemplo de autómata de Büchi

Definición 2.3.3. Aceptación de ejecuciones temporizadas. Dado un autómata de Büchi temporizado
8 = (A, .1'), diremos que 8 acepta una ejecución temporizada a sii existe una evolución r en R oo (8), tal que
a=r.

Diremos que 8 acepta una ejecución (no temporizada) < sii 8 acepta alguna ejecución temporizada de la
forma (e r).

Definición 2.3.4. Lenguaje de autómatas de Büchi temporizados.
Dado un autómata de Büchi temporizado 8, el lenguaje de 8 (notado 1:(8)) estará dado por las ejecuciones
aceptadas por B.

Formalmente:
1:(8) = {a I a es aceptada por 8} = {a I :3rE RCO(8), = = a}

Análogamente, definiremos lenguaje no temporizado de 8 (notado 1:*(8)), de la siguiente manera:

1:*(8) = {, I ~ es aceptada por 8} = {e I :3rE RCO(8), :3r, r= ("r)}

Ejemplo. La Figura 2.3 muestra un ejemplo de autómata de Büchi. La representación gráfica es similar a
la de los autómatas temporizados y las locaciones de aceptación se marcan con un doble borde. El autómata
del ejemplo acepta todas las ejecuciones del Cruce ferroviario en las cuales la barrera tarda más de 5 u.t. en
subir completamente. Esta es una propiedad no deseada para el cruce ferroviario.
Estado en la locación inicial so, ante la ocurrencia del evento baja (es decir, "la barrera terminó de bajar") se
puede decidir entre permanecer en So o atravesar la arista hacia la locación SI. Al atravesar la arista se está
tomando la decisión de medir el tiempo desde que la barrera bajó hasta que la barrera vuelva a estar alta.
Si el siguiente evento alta (es decir, "la barrera terminó de subir") ocurre a lo sumo 5 u.t. después, entonces
la arista que va de SI a S2 no estará habilitada y sólo se podrá tomar la arista hacia S3. La locación S3 no
tiene ninguna arista saliente, solo stuiters? por todos los eventos. A este tipo de locaciones se las denomina
trampa. Si, por el contrario, estando en SI el siguiente evento alta ocurre después de las 5 u.t., se podrá
decidir entre pasar a S2 o a S3. La locación de aceptación S2 también es una locación trampa. Quiere decir
que una vez que una evolución (infinita) del autómata alcanzó S2, pasará infinitas veces por esa locación,
cumpliendo de esa forma la condición de aceptación de Büchi.
Dado que un autómata de Büchi acepta una ejecución si es la abstracción de al menos una evolución que
satisface la condición de aceptación, alcanza con que exista una forma de evolucionar sobre el autómata desde
el estado inicial, siguiendo la ejecución y visitando infinitas veces alguna de las locaciones de aceptación para

2 Aristas cuyo origen y destino son la misma locación.
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que el autómata la acepte. Quiere decir que si en una ejecución existe una ocurrencia de baja separada de
la siguiente ocurrencia de alta por más de 5 u.t., habrá muchas formas de evolucionar sobre el autómata
siguiendo la ejecución y sin llegar a 82, pero lo importante es que existirá al menos Una manera de hacerlo
llegando a esa locación.

Producto entre autómatas temporizados y autómatas de Büchi temporizados

Definimos la operación producto entre un autómata temporizado A y un autómata de Büchi temporizado
8. Este producto estará basado en la composición paralela de autómatas temporizados pero tendrá la
particularidad de ser en sí mismo un autómata de Büchi.

La operación (9 entre un autómata temporizado Al y un autómata de Büchi temporizado 8 = (A2, F) dará
como resultado un nuevo autómata de Büchi donde la estructura subyacente estará dada por la composición
paralela de Al y A2 y la condición de aceptación estará dada por las locaciones compuestas que contengan
locaciones de F.

Cabe aclarar que es posible definir una noción más general de "composición" (o "intersección") de autómatas
de Büchi temporizados (dada por ejemplo en [AD94]). Sin embargo, la construcción de la intersección de
autómatas de Büchi es poco natural cuando se utiliza un único conjunto de locaciones de aceptación, como se
hizo en la definición 2.3.1 (que sigue la línea de [AD94], [BraOO]).Para definir la composición de autómatas
de Büchi es más conveniente utilizar la versión generalizada de los mismos, que incluye un conjunto de
condiciones de aceptación. En esta versión, F ~ 28 es un conjunto de conjuntos de locaciones y la condición
de aceptación está dada por visitar infinitas veces locaciones que pertenezcan a cada uno de estos conjuntos.
Dado que se ha demostrado que la versión generalizada de los autómatas de Büchi tiene el mismo poder
expresivo que la versión presentada en la sección anterior (por ejemplo, [CGP99]), usaremos esta última por
conveniencia en cuanto al uso que le daremos en este trabajo.

Definición 2.3.5. Producto entre autómatas temporizados y autómatas de Büchi temporizados. Dado un
autómata temporizado Al y un autómata de Büchi temporizado 8 = (A2,F), el producto entre Al y 8
(notado Al (98) será un autómata de Büchi temporizado 8' = (A',F') tal que:

• F' = SI X F

Proposición 2.2. Dados dos autómatas temporizados Ai = (Si, Xi, ¿;i, Ai,Ii, SOi), coni = 1,2, un autómata
de Büchi temporizado 8 = (A2, F), con F ~ S2 y una ejecución 17 sobre ¿; 1 U ¿;2,

17 E L(Al (98) sii 17rE1 E L(A¡) y 17rE2 E L(8)

Demostración. La demostración es bastante directa usando la Proposición 2.1. La demostración completa
se puede ver en el Apéndice A, página 93. O

2.4 Lógica TCTL
TCTL (Timed Computational Tree Logic, presentada en [ACD93]),es una extensión de la lógica CTL intro-
ducida por [EC81] que permite expresar propiedades temporales cuantitativas.
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Sintaxis
Definición 2.4.1. Intervalos.
Llamaremos JN al conjunto de todos los intervalos e delimitados por naturales construidos de la siguiente
manera:

e ..- (a, b) 1 (a, bll [a, b) 1 [a, bll [a, (0) 1 (a, (0)

donde a, s « N.

Dado un conjunto finito de proposiciones booleanas PROPS, un fórmula TCTL se define según las siguientes
reglas sintácticas:

<p ::= T 1 p 1 ,<p 1 <p 1\ <p 1 <P~e<P 1 <pVUe<P

Donde p E PROPS y e E JN.

Abreviaturas

Para facilitar la escritura de fórmulas TCTL se definen las siguientes abreviaturas de uso común:

.1 ,T
<Pl V <P2 ,( '<Pl 1\ '<P2)

<Pl => <P2 '<Pl V <P2
<Pl~<P2 <Pl ~[O,oo) <P2
<Pl VU<P2 <Pl VU[O,oo) <P2

3()e<p T3Ue<P
V()e<p TVUe<P
3()<p 3() [0,00) <P
V()<p V()[O,oo)<P
VD<p ,3(),<p
3D<p ,V(),<p

Semántica de TCTL
Las fórmulas TCTL se interpretan sobre el sistema de transiciones etiquetadas (Q A, -.. ), generado por
un autómata temporizado A = (S, X, ¿:, A, L, so), y una función P : PROPS ---> 2S, que asocia a cada
proposición un conjunto de locaciones de A. Diremos que un modelo TCTL es una tupla (QA, -.., P).

Intuitivamente, las proposiciones se usan para nombrar conjuntos de locaciones del autómata (por ejemplo:
el conjunto de las locaciones donde "el sistema está inestable").

El operador () indica posibilidad, es decir, estando en un estado q, 3()<p significa que hay alguna evolución (que
parte desde q) en la que eventualmente vale <P, V()<p significa que para toda evolución desde q, inevitablemente
vale <p. Al agregar a la fórmula un intervalo e se expresa posibilidad acotada: es posible pero además dentro
de cierto intervalo.

El operador O indica necesidad, es decir, estando en un estado q, 3D<p dice que hay alguna evolución que
parte de q en que siempre vale <p, VD<p dice que en todas las evoluciones que parten de q, siempre vale <p.

La fórmula <P13U<P2 dice que existe una evolución tal que en algún momento vale <P2 y, hasta ese momento, vale
siempre <Pl' Análogamente, <Pl VU<P2 dice que para toda evolución vale la propiedad anterior. Nuevamente,
al agregar un intervalo e a la fórmula se restringe el momento en el tiempo en el cual puede valer <P2. Por
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ejemplo, 4>1jU04>2 indica que para alguna evolución, existe un prefijo finito cuya duración respeta B, tal que
al final del mismo vale 4>2 y 4>1 vale en todos los estados intermedios. A continuación definimos formalmente
la semántica de TCTL.

Dado un modelo M = (QA, ->, P), una fórmula TCTL 4>, y un estado q E QA, definimos inductivamente la
relación q 1=M 4> de la siguiente manera:

siempre
si q@ E P(p)
si q;¿M 4>
si q 1=M 4>1 Y q 1=M 4>2
si existe T E Rq(A) tal que

3k E IIr, Tk 1=M 4>2 Y Tr(k) E B Y
Vk' E IIr, k'« k, Tk' I=M 4>10 (Tk' I=M 4>2 Y Tr(k') E B)

q 1=M 4>1VUe4>2 si para todo T E R~(A),
3k E IIn Tk I=M 4>2 y Tr(k) E B Y
Vk' E IIn k' « k, Tk' 1=M 4>1 o (Tk' 1=M 4>2 Y Tr(k') E B)

Diremos que un estado q satisface una fórmula TCTL 4> (con respecto a un modelo M) si y sólo si q 1=M 4>.
Usaremos directamente la notación q 1= 4> cuando quede claro por contexto a qué modelo nos estamos
refiriendo.

Dada una fórmula TCTL 4> y un modelo M, llamaremos [14>IlM al conjunto característico de 4>, es decir, al
conjunto de estados del modelo que satisfacen 4>. Diremos que un autómata temporizado A satisface una
fórmula 4> cuando todos sus estados lo hacen y lo notaremos A 1=M 4>. uevamente, usaremos las versiones
abreviadas [14>1] y A 1= 4> cuando quede claro por contexto a qué modelo nos estamos refiriendo.



Capítulo 3 

Patrones de eventos 

En este capít ulo presentamos los patrones de eventos. Empezaremos por describir informalmente la notación 
gráfica de los patrones y después formalizaremos la sintaxis y semántica de los mismos. 

La presentación estará dividida en tres partes: primero introduciremos los conceptos básicos referentes a 
patrones de eventos y definiremos formalmente los patrones de eventos no temporizados. En segundo lugar , 
presentaremos una versión temporizada de los patrones básicos. Finalmente, extenderemos los patrones 
temporizados para soportar los conceptos de principio y final de ejecución de los cuales hablaremos más 
adelante. Esta presentación incremental tiene por objetivo la simplificación de las definiciones y demostra­
ciones. Sin embargo, en los próximos capítulos cuando nos refiramos a "patro nes de eventos" nos estaremos 
refiriendo a la versión que incluye los conceptos básicos y todas las .extensiones. 

3.1 Patrones básicos 

Los patrones básicos de eventos son graf9s ' dirigidos y acíclicos de puntos. Los puntos representan la ocurren­
cia de algún evento y deben estar etiquetados por uno o más símbolos de un alfabeto :E que representa a los 
eventos posibles en el sistema. Las flechas que unen los puntos representan las restricciones de causalidad 
entre los puntos (en el sentido de "debe ocurrir antes que"). 

Por ejemplo: 

a 

representa una ocurrencia del evento d, precedida por una ocurrencia del evento c y ésta última a su vez 
precedida por las ocurrencias de a y b._ Dado que a y b no están unidos por ninguna flecha, dichos eventos 
pueden ocurrir en forma concurrente o secuencial pero sin importar el orden. 
Cuando un punto está etiquetado por más de -un evento, el punto puede representar la ocurrencia de· cual­
quiera de esos eventos. Dos puntos etiquetados con el mismo evento corresponden a dos ocurrencias distintas 
del mismo evento. Por ejemplo: 

a a b,c . ----·. ----·. 
corresponde a dos ocurrencias del evento a en la misma ejecución, seguidas por una ocurrencia de b o de c. 
Las flechas simples, como las usadas hasta el momento, permiten expresar que alguna ocurrencia de un 
determinado evento debe estar seguida de alguna ocurrencia de otro evento. El patrón : 

28 
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a·-------.~.
representa alguna ocurrencia de a seguida de alguna ocurrencia de b. Si se quiere forzar a que la ocurrencia
de b sea la primera después de alguna ocurrencia de a, entonces se puede agregar una marca de primera
ocurrencia en el extremo más próximo a la cabeza de la flecha. El patrón:

a b

• ) ~.
representa alguna ocurrencia de a seguida por la primera ocurrencia de b. Si se quiere restringir aún más
el patrón forzando a que la ocurrencia de a que precede a b sea la última, entonces se puede agregar una
marca de última ocurrencia en el extremo más próximo a la cola de la flecha. El patrón:

a b

• ) ~.
representa alguna ocurrencia de a seguida por la primera ocurrencia de b, de forma tal que entre ambos
momentos de la ejecución no haya ninguna otra ocurrencia de a. Llamaremos marcas de consecutividad a las
marcas de primera ocurrencia y última ocurrencia. Cuando sea necesario identificar univocamente a alguno
de los puntos de un patrón, se les podrá asociar un nombre o identificador usando el operador 6:

a

•
6
P

a
) ~.

6
q

identifica al punto de la izquierda con el nombre 'p' y al punto de la derecha con el nombre 'q'.

Los patrones se interpretan sobre una ejecución asociando cada punto del patrón con una posición de la
ejecución. En el caso de los patrones básicos, las ejecuciones estarán modeladas como secuencias de eventos.
Cuando asociemos un punto a una posición de la ejecución diremos que estamos marcando dicha posición.
Los puntos sólo puede ser asociados con posiciones que contengan uno de los eventos que los etiquetan. Al
marcar los puntos sobre la ejecución se deberá respetar la precedencia de los puntos, así como también las
restricciones asociadas a los distintos pares de puntos del patrón. Diremos que una ejecución satisface un
patrón si existe al menos una manera de marcar todos los puntos del patrón sobre la secuencia. En general,
cuando una ejecución satisfaga un patrón, existirán muchas formas distintas de marcar los puntos sobre la
ejecución. A cada una de estas formas la llamaremos matching.

Por ejemplo, dada la ejecución:

(7: a a c a b b
existen 6 matchings distintos entre Patrón 3.1 y (7:

p q
1 1

[a] a c a b [b]
p q
1 1

[a] a c a [b] b
p q
1 1

a [a] c a b [b]
p q
1 1

a [a] e a [b] b
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a·--------.~ .
ó ó
p q

Patrón 3.1: Evento a seguido por el evento b

a

•
ó
p

) ~.
ó
q

Patrón 3.2: Evento a seguido por el primer evento b

a

•
ó
p

) ~.
ó
q

Patrón 3.3: Último evento a antes del primer evento b

a·--------.~.
ó ó
p q

Patrón 3.4: Evento b seguido por el evento a

a

p - q: e.]

Patrón 3.5: Ejemplos de las distintas formas de escribir restricciones
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p
1

a a c [a]
p
1

a a c [a]

q
1

b [b]
q
1

[b] b

Por otro lado, para el Patrón 3.2, más restrictivo que el anterior, sólo existen 3 matchings:

p q
1 1

[a] a c a [b] b

p q
1 1

a [a] c a [b] b

p q
1 1

a a c [a] [b] b

Para el Patrón 3.3 sólo existe un matching:

p q
1 1

a a c [a] [b] b

Y para el Patrón 3.4 no existe ninguno.

Los patrones de eventos permiten asociar restricciones a cada par de puntos del patrón. Al marcar un par
de puntos de un patrón sobre una ejecución, queda determinado unÍvocamente un segmento de ejecución o
subejecución. Es sobre dicho segmento sobre el cual se interpretan las restricciones asociadas al par. Los
patrones básicos admiten un único tipo de restricciones: las restricciones de eventos. Estas restricciones
limitan los eventos que pueden ocurrir en el tramo de ejecución correspondiente. Las restricciones pueden
anotarse directamente sobre los ejes del patrón o pueden documentarse usando los identificadores de puntos.
Si el diagrama no resulta muy confuso, es posible anotar una restricción entre eventos no relacionados
causalmente uniéndolos con una línea punteada y asociando a esa línea la restricción. Por ejemplo, el
Patrón 3.5 muestra las tres formas de escribir las restricciones de eventos. Entre a y c se prohibe el evento
e; entre a y b se prohiben otras ocurrencias de a y b y entre c y d se prohiben los eventos e y I, tal como
indica la restricción documentada debajo del patrón.

Los patrones 3.2 y 3.3 muestran casos particulares de restricciones de eventos donde los eventos prohibidos
en la subejecución son los asociados a los extremos de las flechas. Es decir, las marcas de consecutividad son
abreviaturas de restricciones de eventos. La Figura 3.1 muestra la relación entre las marcas de consecutividad
y la versión equivalente escrita usando restricciones de eventos.
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a a

• ) ~. • ~.
a a

• ~. a ~.•

a a
a,b• ) ~. • ~.

Figura 3.1: Relación entre las marcas de consecutividad (columna izquierda) y las restricciones de eventos
(columna derecha)

3.1.1 Sintaxis formal

Definición 3.1.1. Patrones de eventos básicos.
Un patrón de eventos básico P es una tupla P = (~, P, f, .....•,"() donde:

• ~ es un conjunto finito de eventos

• P = E't:!11 es un conjunto finito de puntos, particionado en un conjunto E = {e1,e2, ... ,en} Y un
conjunto 1 = 01

• f: E --t 2E es una función que etiqueta los puntos de E asignándoles un conjunto no vacío de eventos.

• .....•es una relación de causalidad incluida en P x P.
La clausura transitiva de .....•debe definir una relación de orden parcial <-p entre los elementos de P.
Es decir,

Dados dos puntos x, y E P, diremos que x y y están causalmente relacionados (con respecto a un patrón
de eventos P) si x -<p y.

Cuando quede claro por contexto a qué patrón nos estamos refiriendo, usaremos -< en lugar de -c-p .

• "( es una función:
"( : P x P ---> 2E

tal que para todo par x, y, "((x, y) = "((y, x), que asocia a cada par de puntos una restricción de eventos.

El conjunto P representa el conjunto de puntos de un patrón básico. Según la definición, este conjunto
está particionado en E e l. Los puntos que mostramos en la representación gráfica de los patrones básicos
pertenecen exclusivamente a la clase E y decimos que representan ocurrencias de eventos. Los puntos de la
clase 1 no tienen representación gráfica para los patrones básicos y de hecho tampoco les asignaremos ningún
significado: este tipo de puntos tendrán sentido cuando presentemos los patrones temporizados y se incluyen
en la sintaxis formal de los patrones básicos sólo para facilitar las definiciones y demostraciones posteriores.
Dado que no tienen representación gráfica ni semántica para los patrones básicos, asumiremos que para todo
patrón básico, 1= 0.

1Ver aclaración a continuación.
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Ejemplo. El Patrón 3.5 corresponde a la siguiente tupla:
P = (E, E U I, e, -+, 7), donde:

E = {a, b, e, d, e, J}
E={p,q,r,s}
I= 0
e = {p >-+{e}, q >-+{d}, r >-+{a}, s >-+{b}}
-+= [p -+ q,r -+ p,s -+ p}

{

(p,p)>-+0 (p,q)>-+{e,J} (p.r) >-+{e} (p,s)>-+0 }
(q,p)>-+{e,J} (q,q)>-+0 (q,r)>-+0 (q,s)>-+0

7= (r,p)>-+{e} (r,q)>-+0 (r,r)>-+0 (r,s)>-+{a,b}
(s,p)>-+0 (s,q)>-+0 (s,r)>-+{a,b} (s,s)>-+0

Se puede ver que p y q'conservan el nombre explícitamente mencionado en el patrón. Por otro lado, aunque
no es necesario identificar todos los puntos en la versión gráfica de los patrones, sí lo es en la versión textual.
Como dijimos antes, todos los puntos de la representación gráfica del patrón corresponden a puntos en E
e I es vacío. Cuando no se explicite una restricción de eventos entre un par de puntos se asumirá que no
existe tal y por lo tanto el conjunto de eventos "prohibidos" es vacío.

3.1.2 Semántica

Como vimos anteriormente, la semántica de los patrones básicos se define sobre una ejecución y utilizando
el concepto de matching. Intuitivamente, un matching representa una forma de asociar los puntos de un
patrón a posiciones de una ejecución de forma tal de respetar el orden parcial entre los puntos, la función de
etiquetación y las restricciones de eventos. Además, cada punto debe ser asociado a una posición distinta
de la ejecución.

Definición 3.1.2. Matching básico.
Dado un patrón básico P = (E, P, e, -+,7), una ejecución <; sobre E y un mapeo'' ~: P >-+II~, decimos que ~
es un matching básico entre <; y P sii verifica las siguientes condiciones de validez:

MI Vx E E,
M2 Vx,y E P,
M3 Vx,y E P,

<;x E e(x)
x -<p y => x < y
x < y => <;(x,y) n 7(X, y) = 0

e monótono creciente)

La condición MI exige que los puntos sean marcados respetando la función de etiquetación e. Como dijimos
antes, los puntos de E corresponden a ocurrencias de eventos. La condición M2 pide que se respete el orden
de causalidad o de precedencia de los puntos, que en caso de los patrones básicos corresponden únicamente
a ocurrencias de eventos. Dado que la condición está expresada como una implicación, si dos puntos no
están causalmente relacionados, entonces no habrá ninguna restricción en cuanto al orden en que deben ser
marcados. Finalmente, la condición M3 pide que se cumplan las restricciones de eventos asociadas a todos
los pares de puntos del patrón. Notar que la condición M3 no incluye el caso de un punto x con sí mismo.
Esto es porque sólo tienen sentido las restricción de eventos definidas entre puntos distintos. Por otro lado,
dado que la función 7 debe ser simétrica (-y(x, y) = 7(Y,x)) y ~es una función inyectiva, la condición M3
alcanza para garantizar que se cumplan todas las restricciones de eventos.

Definición 3.1.3. Satisfacción de patrones básicos.
Dado un patrón básico P = (E, P, e, -+,7), una ejecución <; sobre E verifica o satisface P (notado <; 1=P) sii
existe al menos un matching básico entre e y P.

Como ya vimos anteriormente, si una ejecución satisface un patrón, en general hay más de un matching
entre los puntos del patron y la ejecución.

2 Diremos que una función f : A •...•B es un mapeo si es una función total e inyectiva.
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Lenguaje de un patrón básico 

Definición 3.1.4. Lenguaje de un patrón básico 
Dado un patrón básico P, llamaremos lenguaje de P al conjunto 

.C(P) = { <;- 1 d= P y J<;-J = oo} 

Como adelantamos cuando introdujimos las ejecuciones, preferiremos las ejecuciones infinitas dado que per­
miten modelar sistemas cuyas corridas nunca terminan (sistemas reactivos) y permiten simular el comporta- · 
miento de sistemas cuyas corridas sí terminan, extendiendo las ejecuciones con infinitos ,\'s al final. Si una 
ejecución satisface un patrón , esa ejecución o alguna equivalente pertenecerá al lenguaje del patrón. 

Muchas veces, un patrón de eventos hará referencia explícita a un número relativamente pequeño de eventos 
de un sistema. Es decii; el alfabeto de eventos del patrón podría ser un subconjunto propio del alfabeto de 
eventos del sistema. Sin embargo, desde el punto de vista formal, para decidir si una ejecución satisface un 
patrón , ambos deben estar definidos sobre el mismo alfabeto. Ahora bien, resulta más o menos claro que si 
un patrón no menciona a un determinado evento (es decir, no figura como etiqueta de ningún punto ni como 
restricc ión de eventos entre ningún par de puntos), entonces ese evento no es relevante para el patrón. Da 
lo mismo que haya ocurrido o que no lo haya hecho . Quiere decir que podríamos filtrar todos los eventos 
"desconocidos" para el patrón reemplazándolos por ,\'s y eso no afectaría la satisfacción del patrón. Usando 
esta estrategia definimos el concepto de lenguaje ampliado de un patrón de eventos que permite trabajar con 
un alfabeto más rico que el del patrón. 

Definición 3.1.5. Lenguaje ampliado. 
Dado un patrón básico P = (L,,P,P,-+,¡), y un conjunto L,' tal que L, s;:: L,', definimos: 

.Cr:;(P) = {<;-sobre L,' 1 dI: F= P} 

Propiedades de la satisfacción de _patrones básicos 

A continuación enunciamos dos propiedades de la satisfacción de patrones que resultarán de suma importancia 
para la generación de autómatas temporizados que acepten el lenguaje de un patrón básico. 

La primera propiedad dice que si una ejecución finita satisface un patrón básico, entonces cualquier extensión 
de la misma , sea finita o infinita , también lo hace. Esto quiere decir que si un prefijo finito de una ejecución 
satisface un patrón básico , es condición suficiente para generalizar el resultado a toda la ejecución. 

La segunda propiedad es, de alguna manera, complementaria con la anterior. Esta propiedad dice que si una 
(finita o infinita) satisface un patrón, entonces existe un prefijo finito de la misma que también lo 

hace. Es decir, que un prefijo finito de una ejecución satisfaga un patrón básico es condidón necesaria para 
que la ejecución completa lo haga. 

En ambos casos, las demostraciones se basan en el hecho de que los patrones predican sobre finitos puntos 
de una ejecución y sobre los segmentos de ejecución entre estos. Quiere decir que siempre va a existir un 
"último" punto (es decir, un punto que está marcado en una posición mayor a las de todo el resto) y los 
eventos más allá de ese punto no serán relevantes para el patrón. Es por eso que la decisión de la satisfacción 
de un patrón básico siempre se basa en prefijos finitos de la ejecución. Las demostraciones completas están 
en el Apéndice A, página 93. 

Propiedad 3.1. Clausura por extensiones. Dado un patrón básico P = (L,, P, P, -+ , ¡) y una ejecución finita 
<;- sobre L,, si<;- F= P entonces para cualquier ejecución <;-1 sobre L,, <;-<;-1 F= P . 

Propiedad 3.2. Satisfaccú5n finita. Dado un patrón básico P = (L,, P, P, -+, ¡) y una ejecución<;-sobre L,, 

si <;- F= P entonces existe una posición i E II, tal que \i) F= P . 
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3.2 Extensión: tiempo
La primera extensión sobre los patrones básicos que presentaremos agrega el concepto de tiempo a los patrones
y a las ejecuciones. Los patrones temporizados nos permitirán definir restricciones temporales explícitas entre
puntos de un patrón y no sólo relaciones implícitas dadas por el orden en que deben ocurrir los eventos.
Para poder delimitar intervalos de tiempo arbitrarios, extenderemos el conjunto de puntos para agregar a
los puntos que representan eventos otros puntos que representen instantes en el tiempo.

Básicamente, un patrón temporizado tiene dos tipos de puntos: los puntos "llenos" que representan la
ocurrencia de un evento (corresponden a los puntos de los patrones básicos) y los puntos "huecos" que
representan instantes en el tiempo entre dos eventos. Además de las restricciones de eventos que permitían los
patrones básicos, los patrones temporizados permiten otro tipo de restricciones: las restricciones temporales.
Estas restricciones se definen asociando un intervalo de números reales no negativos con extremos enteros
(ej: [0,6), (8, (0), [7,9]) o como el complemento de uno de estos intervalos (ej: -.[0,6), -.(8, (0), -.[7,9]) a un
par de puntos. Intuitivamente, la separación en el tiempo entre los dos puntos (al ser marcados sobre una
ejecución temporizada) debe pertenecer al intervalo especificado. En los casos donde sólo se quiere expresar
una cota superior o inferior, se pueden usar las abreviaturas ~ n y :::;m, respectivamente. Como en el caso
de las restricciones de eventos, las restricciones temporales pueden ser anotadas directamente sobre el patrón
o documentadas usando los identificadores de puntos.

Los patrones temporizados se interpretan sobre ejecuciones temporizadas (definición 2.1.5) y se extiende el
concepto de matching básico para incluir a los puntos huecos y a las restricciones temporales. Los puntos
llenos se marcan sobre la ejecución de la misma manera que los puntos de un patrón básico. Los puntos
huecos sólo pueden ser mapeados sobre posiciones que no representen ocurrencias de eventos, es decir, sobre
posiciones de la ejecución que conte n A. La duración de las subejecuciones determinadas por todo par
de puntos deben pertenecer al intervalo asociado como restricción a ese par. Si no hay ningún intervalo
asociado, se asume [0,(0), es decir, cualquier duración.

Dada la ejecución temporizada:

0-=( e a b b )1.5 3 3.6 4.1 4.5 5.8

El Patrón 3.6 determina los siguientes matchings:

p q
I 1.¡.

a [~] e a
[ 4b5 ]

b
1.5 3.6 4.1 5.8

P q
1 1

a a e
[4~1 ]

b
[5b8 ]1.5 3 3.6 4.5

P q
1 1

a a e
[4~1 ] [4bS]

b
1.5 3 3.6 5.8

debido a que son los únicos en las cuales la ocurrencia de a asociada p y rencia de b asociada q están
separadas por menos de 2 unidades de tiempo.
Por otro lado, para el Patrón 3.7 no existe ningún matching sobre esa ejecución dado que la máxima sepa-
ración entre ocurrencias de a y b es de 4.3 u.t.

Como en el caso de las restricciones de los patrones básicos, es posible asociar restricciones temporales entre
puntos no relacionados causalmente. Las restricciones se aplican sobre el segmento de ejecución correspon-
diente, sin importar en qué orden se marquen los puntos sobre la ejecución. Para asociar restricciones a
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a·--------.~ .
'" :$2 '"P q

Patrón 3.6: Evento a separado del evento b por menos de 2U.t.

a·------,-----.~.
[5,8)

Patrón 3.7: Evento a separado del evento b por mas de 5u.t. y por menos de 8 u.t.

eventos no relacionados, se puede dibujar una línea punteada entre ambos y decorar esa línea con las res-
tricciones. Por ejemplo, el Patrón 3.8 indica que la ocurrencia de a y de e (sin importar cual ocurra primero
y cual después) no deben estar separadas por más de 1 unidad de tiempo. Este patrón, interpretado sobre
nuestra ejecución ejemplo admite los siguientes matchings:

p q
1 1

a [~] [3c6 ] a b b
1.5 4.1 4.5 5.8

q P
1 1

a a [3c6 ] [4\]
b b

1.5 3 4.5 5.8

a·.........................•

'" < 1 '"p - q

Patrón 3.8: Ejemplo de restricciones temporales entre puntos no relacionados causalmente
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3.2.1 Sintaxis formal

Una restricción temporal es una fórmula cp con la siguiente forma:

ip ::= e I .()

donde () E JN es un intervalo de números reales positivos con extremos enteros (definición 2.4.1). Son
ejemplos de restricciones temporales: [0,6), (8,00), [7,9], .[0,6), .(8,00), .[7,9].

Llamamos <Pal conjunto de todas las restricciones temporales construidas de esta forma.

Dado t E R+ y una restricción temporal, definimos inductivamente la relación 1=como:

t 1=() sii t E ()
t I=.() sii t jt ()

donde () E JN. Diremos que t satisface una restricción temporal ip sii t 1=sp, Por ejemplo: dado el intervalo
()= [7,9]; 4.51= (), 71= (), 9.1 jt (),y 3 1=.() Y 1001= .().

Definición 3.2.1. Patrones de eventos temporizados.
Un patrón de eventos temporizado es una tupla P = (L:,P,e, ->, " o) donde:

• L: es un conjunto finito de eventos

• P es un conjunto finito de puntos particionado en los conjuntos E = {el, e2, ... , en}e 1 = {il, i2,... , im}

• e: E --> 2E es una función que etiqueta los puntos de E asignándoles un conjunto no vacío de eventos.

• -> es una relación de causalidad incluida en P x P.
La clausura transitiva de -> debe definir una relación de orden parcial -<'1' entre los elementos de P.
Es decir,

• , es una función:
,: P x P --> 2E

tal que para todo par x, y, ,(x, y) = ,(y, x), que asocia a cada par de puntos una restricción de eventos.

• O es una función que a cada par de puntos le asocia una restricción temporal.
Formalmente, O es una función o: P x P --> <P,donde para todo x, y, o(x,y) = o(y,x).

Como podemos ver, las diferencia entre patrones básicos y temporizados son que el conjunto 1es no vacío y
el agregado de la función o. Esta última asocia a pares de puntos una restricción temporal. El conjunto de
puntos E corresponde a los puntos "llenos" y el conjunto 1 corresponde a los puntos "huecos".

Ejemplo. El Patrón 3.9 corresponde a la siguiente tupla: P = (¿:, E U 1, f, ->, "t o), donde:

L: = {a, b, c, e, J}
E={p,r,s}
1= {q}
e = {p >-->{c}, r >-->{a},s >-->{b}}
->= {p -> q, r -> p,s -> p}

(p, p) >-->0 (p, q) >-->{e, J}
(q,p)>-->{e,J} (q,q)>-->0
(r,p) >-->{e} (r,q) >-->0
(s, p) >-->0 (s, q) >-->0
(p, p) >-->[0,(0) (p, q) >-->(5,00)
(q, p) >-->(5, (0) (q, q) >-->[O, (0)
(r, p) >-->[O, (0) (r, q) >-->[O, (0)
(s, p) >-->[O, (0) (s, q) >-->[O, (0)

0=

(p,r)>--> {e} (p;s) >-->0 }
(q,r)>-->0 (q,S)>-->0
(r,r) >-->0 (r,s) >-->{a,b}
(s,r)>--> {a,b} (s,s)>-->0
(p, r) >-->[0,(0) (p, s) >-->[0,(0) }
(q, r) >-->[O, (0) (q, s) >-->[O, (0)
(r, r) >-->[O, (0) (r, s) >-->.(2,5]
(s, r) >-->.(2,5] (s, s) >-->[O,(0)

,=
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a

i~e
~ ~ e e.]

~{2, 51 : • ----.~ O
: /6 >5 6

~ ~ p q

•

Patrón 3.9: Ejemplo de patrón temporizado

Como mencionamos antes, los patrones básicos son un caso particular de patrones temporizados. Todo
patrón básico de la forma P = (E, P,I'.,-+,,), es equivalente al patrón temporizado P' = (E, P,I'.,-+", ó),
donde ó(x,y) = [0,(0) para todo par de puntos x,y E P.

3.2.2 Semántica

La semántica de los patrones temporizados se define en función de ejecuciones temporizadas. Las condiciones
para que un mapeo sea un matching en el caso temporizado incluyen a las de los patrones básicos más dos
nuevas.

Definición 3.2.2. Matching temporizado.
Dado un patrón de eventos temporizado P = (E, P,I'., -+", ó), una ejecución temporizada a = (c;, r) y un
rnapeo " : P 1--> Da, decimos que: es un matching temporizado entre o y P sii verifica las condiciones MI-M3
además:

MTl
MT2

't/x El,
't/x,y E P,

C;x = A
x<y ~ 6.(r[x,YI) FÓ(X,y)

La condición MTl indica que los puntos huecos sólo pueden mapearse en posiciones de la ejecución que
correspondan a instantes en el tiempo: es decir, a posiciones que contengan A. La condición MT2 exige que
se cumplan todas las restricciones temporales entre todo par de puntos del patrón. Como era de esperarse,
no tiene ningún significado una restricción temporal definida entre un punto x y sí mismo. Además, dado
que ó es simétrica (ó(x, y) = ó(y, x)) y : es inyectiva, la condición MT2 alcanza para garantizar que valen
todas las restricciones entre todos los pares de puntos.

Definición 3.2.3. Satisfacción de patrones de eventos temporizados.
Una ejecución temporizada o satisface un patrón de eventos temporizado P (notado como a F P), sii existe
un matching temporizado entre a y P.

Como antes, si una ejecución temporizada satisface un patrón, en general existirá más de un matching
temporizado entre el patrón y la ejecución.
En este caso, a diferencia de lo que ocurría con las ejecuciones de los patrones básicos, dos ejecuciones
temporizadas equivalentes podrían diferir en cuanto a la satisfacción de un patrón temporizado. Observemos
el siguiente ejemplo.



CAPÍTULO 3. PATRONES DE EVENTOS 39

a

•
ó
p

a
• O

Ó
q

Patrón 3.10: Ejemplo de patrón temporizado con instantes

Ejemplo. Sea P el Patrón 3.10, que pide que desde alguna ocurrencia de a haya intervalo de por lo menos
1 u.t. ya lo sumo 2 u.t. de duración sin más ocurrencias de a. Dadas las ejecuciones:

j>.a>.ac>.a b>' b >.)
(72 \ 0.2 2 3 3 3.6 4 4.1 4.5 5.7 5.8 6.099

claramente (71 == (72 dado que tienen los mismo eventos, ocurridos en el mismo instante de tiempo. Sin
embargo (71 ¡¿ P porque el punto q no puede ser asociado con ninguna posición de la ejecución y P admite
al menos 4 matchings sobre (72:

p q
1 1

>. [~][;] a e x a b x b >.
0.2 3 3.6 4 4.1 4.5 5.7 5.8 6.099

P q
1 1

>. a x [~] e [¿] a b >. b x
0.2 2 3 3.6 4.1 4.5 5.7 5.8 6.099

P q
1 1

x a >. a e >.
[4a1 ] b [s\] b >.

0.2 2 3 3 3.6 4 4.5 5.8 6.099

P q
1 1

x a x a e x
[4~1 ]

b x b
[6.;99]0.2 2 3 3 3.6 4 4.5 5.7 5.8

Es fácil ver que si un comportamiento del sistema cumple una propiedad expresada por un patrón de eventos,
entonces existe una forma de intercalar .Aen cualquier ejecución temporizada que lo represente de forma tal
de que exista al menos un matching entre el patrón y la ejecución. Quiere decir que si necesitáramos decidir
para un comportamiento puntual si verifica o no una propiedad dada por un patrón temporizado, deberíamos
analizar las infinitas ejecuciones equivalentes que representan a dicho comportamiento. Sin embargo, en el
contexto de este trabajo sólo nos interesará resolver problemas expresados como ''vacuidad'' de lenguajes, y
por lo tanto nos resulta suficiente la noción de satisfacción a nivel ejecuciones.

Lenguaje de un patrón temporizado

En el caso de los patrones básicos, exigimos que las ejecuciones que formaran parte del lenguaje del patrón
fueran infinitas. En el caso de los patrones temporizados vamos a pedir, además, que sean ejecuciones diver-
gentes (definición 2.1.7). Esto nos permite modelar el progreso del tiempo más allá de cualquier constante
real.
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Definición 3.2.4. Lenguaje de un patrón temporizado
Dado un patrón temporizado P, llamaremos lenguaje de P al conjunto

.c(P) = {CT I CT 1=P Y CT es divergente}

Adaptamos de forma natural el concepto de lenguaje ampliado, presentado para patrones básicos, a patrones
temporizados:

Definición 3.2.5. Lenguaje ampliado.
Dado un patrón temporizado P = ('L-,p,e,-t,"(,ó), y un conjunto 'L-'tal que 'L-~ 'L-',definimos:

DI:; (P) = { CT sobre 'L-' I CT r1: F P }

Propiedades de la satisfacción de patrones temporizados

Las propiedades de la satisfacción de patrones básicos también valen para los patrones temporizados. Quiere
decir que siempre alcanza con analizar los prefijos finitos de una ejecución temporizada para decidir si la
misma satisface o no un patrón temporizado.

Propiedad 3.3. Clausura por extensiones. Dado un patrón P = ('L-,P, e, -t, "(,ó) y una ejecución finita CT

sobre 'L-,si CT 1=P entonces para cualquier ejecución CT' sobre 'L-,CTCT' 1=P.

Propiedad 3.4. Satisfacción finita. Dado un patrón temporizado P = ('L-,P, e, -t, "(,ó) y una ejecución
temporizada CT sobre 'L-,si CT 1=P entonces existe una posición i E IIO' tal que CTi] 1=P.

3.3 Extensión: principio y final
La segunda y última extensión que presentaremos consiste en permitir mencionar en forma explícita el
comienzo y el final de una ejecución. Sin esta extensión no sería posible expresar propiedades de la forma:

"Desde el comienzo de la ejecución y hasta la ocurrencia del evento a no ocurre el evento b"

Se puede hacer referencia explícita al comienzo de la ejecución utilizando el punto distinguido:

•
Por otro lado, se puede hacer referencia explícita al final de la ejecución utilizando el punto distinguido:

Tanto el punto inicial como el punto final no son considerados puntos propios de una ejecución. Es decir,
el punto inicial representa el "momento anterior" a que comience la ejecución y el punto final representa
el "momento después" de que termine la ejecución. Dado que trabajaremos mayormente con ejecuciones
infinitas, en esos casos el punto final debe ser interpretado como una especie de límite. Todos los puntos
tienen una relación de precedencia implícita con respecto al punto inicial y al punto final.

Con el agregado del punto inicial y el punto final se pueden expresar cuatro de los scopes más comunes según
[DAC98]: global, before, after y between. La Figura 3.2 muestra una descripción de cada uno de estos
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Global En toda la ejecución

Be/ore a
a

I----l------------j
Desde el principio de la ejecución
hasta la primera ocurrencia de a

After a
a~------------------~ Desde la primera ocurrencia de a

hasta el final de la ejecución

Between aand b ~a--------_Ilb---___l Entre los eventos a y b

Figura 3.2: Scopes mas comunes

global:

• e ~@ •

before a:
a a• e ~. • a ~. ~.

after a:
a

~@
a e• ~. e • ~.

between a and b:
a b a

b
e b

• e ~. ~. ~.•

Figura 3.3: Patrones de eventos representando la ausencia (columna de la izquierda) o la ocurrencia (columna
de la derecha) de un evento e en cada uno de los distintos scopes.
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scopes y la Figura 3.3 muestra ocho patrones que expresan la ausencia y la ocurrencia de un evento e en
cada uno de los distintos scopes.

Estos nuevos patrones permiten asociar restricciones entre el punto de comienzo y el resto de los puntos
y entre cualquier punto y el punto de final. El único caso que no está permitido es definir restricciones
temporales entre un punto y el punto final. Esto es así porque en general trabajaremos con ejecuciones
temporizadas infinitas y divergentes y en esos casos no tendría sentido acotar la duración de un sufijo de la
ejecución.

Se pueden componer todos los conceptos presentados hasta el momento para expresar patrones más complejos
como por ejemplo:

a
• b=-- __ ..•••

[1,2)

indica que debe ocurrir a después de transcurrida 1unidad de tiempo y antes de que transcurran 2u.t. desde
el comienzo de la ejecución y, además, no debe haber ninguna ocurrencia de b antes de dicha a.

a
• _+- __b_,c__ -+.@

indica que a partir de la última ocurrencia de a en la ejecución, no debe haber ninguna ocurrencia de b ni
de c.

Como en el caso de los patrones temporizados, la semántica de estos patrones se definirá sobre ejecuciones
temporizadas usando una extensión apropiada del concepto de matching.

Con esta última extensión completamos la presentación de los patrones de eventos y en adelante usaremos
ese nombre para referirnos a los patrones básicos temporizados con punto inicial y punto final.

3.3.1 Sintaxis formal
Definición 3.3.1. Patrones de eventos.
Un patrón de eventos es una tupla P = (~,P, f., --+, {' b,O, 00) donde:

• ~ es un conjunto finito de eventos

• P = E WI es un conjunto finito de puntos, particionado en un conjunto E
conjunto I = {il, i2, ... , im}.

• O es un punto distinguido que representa el comienzo de una ejecución

• 00 es un punto distinguido que representa el final de una ejecución

• f.: E --+ 2E es una función que etiqueta los puntos de E asignándoles un conjunto no vacío de eventos
incluido en ~

• --+ es una relación de causalidad incluida en Pu {O,oo} x Pu {O,oc}. Como en el caso de los patrones
temporizados, definimos:

-<'1'= (--+)+

-<'1' debe ser un orden parcial sobre los elementos de P U {O,oo} y además, O debe ser el ínfimo de la
relación, es decir:

v x E P, O -<'1' X

Y 00 debe ser el supremo de la relación, es decir:

VxEP, x-x co
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a

Patrón 3.11: Ejemplo de patrón de eventos

• , es una función:

,: PU {O,oo} x Pu {O,cx::}~ 2E

donde para todo x, y E P U {O,OO}, ,(x, y) = ,(y, x), que asocia a cada par de puntos una restricción
de eventos.

• 8 es una función que a cada par de puntos le asocia una restricción temporal.

Formalmente, 8 es una función 8 : P U {O} x P U {O} ~ <1>,donde para todo x,y E P U {O},
8(x,y) = 8(y,x).

Como se puede ver, los puntos de comienzo y fin de ejecución se representan formalmente con los puntos
distinguidos Oy 00, respectivamente. La relación de causalidad y las restricciones de eventos se extienden de
forma tal de incluir a estos dos nuevos puntos. Como dijimos antes, no se permiten restricciones temporales
entre los puntos comunes y el 00 y además todos los puntos están relacionados causalmente con O y 00,
aunque no se explicite gráficamente.

Ejemplo. El Patrón 3.11 corresponde a la siguiente tupla: P = (~,E U1, e, ->",8, O,00), donde:

,=

~ = {a, b, c, e}
E = [p.q,r}
1=0
e = [p 1->{a}, q 1->{b}, r 1->{c}}
->= {O -> p,O -> q,p -> r,q -> r,r -> oo}

(p,p)1->0 (p,q)1->0 (p,r) 1->{e} (p,O) 1->{a} (p,00)1->0 }
(q, p) 1->0 (q, q) 1->0 (q, r) 1->0 (q, O) 1->0 (q,oo) 1->0
(r,p) 1->{e} (r,q)1->0 (r,r) 1->0 (r,O) 1->0 (r,oo) 1->{e}
(O,p) 1->{a} (O,q) 1->0 (O,r) 1->0 (0,0) 1->0 (0,00) 1->0
(oo,p) 1->0 (oo,q) 1->0 (oo,r) 1->{e} (00,0) 1->0 (00,00) 1->0
(p, p) 1->[0,00) (p, q) 1->[0,00) (p, r) 1->[0,00) (p, O) 1->[O, 00) }
(q, p) 1->[0,00) (q, q) 1->[0,00) (q, r) 1->[0,7] (q, O) 1->[0,00)
(r, p) 1->[0,00) (r, q) 1->[0,7] (r, r) 1->[0,00) (r, O) 1->[O, (0)
(O, p) 1->[0,00) (O,q) 1->[0,00) (O, r) 1->[0,00) (O,O) 1->[0,00)

8=

Es importante notar que la relación de causalidad debe incluir suficientes pares de la forma O -> x y X -> 00
como para garantizar que O sea el elemento ínfimo de la relación de orden parcial -< y 00 sea el elemento
supremo de dicha relación. Siempre es posible garantizar esto incluyendo todos los pares de esa forma.

Tal como buscábamos, los patrones de eventos son una generalización de los patrones básicos temporizados.
Todo patrón básico temporizado de la forma P = ("L" P, e, ->, " 8), es equivalente al patrón de eventos
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P' = ('E"P,f.,->',{',ó',O,oo), donde:

-";, -> U {O -> x I x E P} U {x -"; 00 I x E P}

{

{(X'Y) si x,Y E P
o en otro caso
ó(x,y) si x,y E P

[0,00) en otro caso

{'

ó'

3.3.2 Semántica

Una vez más, adaptamos el concepto de matching a los patrones de eventos.

Definición 3.3.2. Matching.
Dado un patrón de eventos P = ('E"P,f.,->,{,ó,O,oo), una ejecución a = (,,7) sobre 'E, y un mapeo
~: P 1--> TI", decimos que ~es un matching entre a y P sii verifica las condiciones MI-M3 + MTI-MT2 Y
además:

MI
MS
MTI

\:Ix E P,
\:Ix E P,
\:Ix E P,

ax) n{(O,x) = 0
a(x n{(x, 00) = 0
6.(7x)) F ó(O,x)

Dado que los patrones de eventos son una extensión de los patrones básicos temporizados que, a su vez, son
una extensión de los patrones básicos, las condiciones que debe cumplir un mapeo para ser un matching entre
un patrón de eventos y una ejecución temporizada incluyen a todas las dadas anteriormente más tres nuevas.
La primera y la segunda de las condiciones nuevas exigen que se respeten las restricciones de eventos entre
todos los puntos comunes y ° y oo. De la misma manera que la condición M3 predica sobre un segmento de
ejecución delimitado por dos puntos, las condiciones MI y MS predican sobre segmentos de ejecución que
constituyen prefijos o sufijos (respectivamente) de la ejecución. Como era de esperarse, la última condición
exige que se cumplan las restricciones temporales especificadas para los distintos prefijos de ejecución.

Definición 3.3.3. Satisfacción de patrones de eventos.
Una ejecución temporizada a satisface un patrón de eventos P (notado como a F P) si y sólo si existe algún
matching entre a y P.

Lenguaje de un patrón de eventos

Definición 3.3.4. Lenguaje de un patrón de eventos
Dado un patrón de eventos P, llamaremos lenguaje de P al conjunto

L(P) = {a I a F P y a es divergente}

Definición 3.3.5. Lenguaje ampliado.
Dado un patrón de eventos P = ('E"P,f.,->,{,ó,O,oo), y un conjunto 'E,'tal que 'E,~ 'E,',definimos:

LE' (P) = { a sobre 'E,' lar E F P }
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Propiedades de la satisfacción de patrones de eventos

Los patrones de eventos no son cerrados para extensiones como los patrones básicos y los patrones tempo-
rizados. Quiere decir que no es suficiente con que un prefijo finito de una ejecución satisfaga un patrón de
eventos para concluir que toda la ejecución lo hace. Observemos por ejemplo el siguiente caso:

a

Dada una ejecución temporizada a, supongamos que existe un prefijo de a en el cual hay alguna ocurrencia
de a y ninguna de b. Dicho prefijo satisface el patrón de arriba. Sin embargo, el patrón exige que no haya
ninguna ocurrencia de b después de a en toda la duración de la ejecución. Es decir, no alcanza con analizar
ningún prefijo finito de la ejecución. Si tuviéramos mas información sobre a y supiéramos que el prefijo
hasta cierta posición satisface el patrón y en el segmento restante de ejecución no hay ninguna ocurrencia de
b entonces podríamos concluir que toda la ejecución satisface el patrón. Básicamente, todas las condiciones
que debe cumplir un matching excepto MS predican sobre posiciones que pueden ser abarcadas por algún
prefijo finito de la ejecución. Y dado que no se puede decidir si vale MS mirando ningún prefijo finito, es
necesario contar con más información para poder hacerlo.

Dado un patrón de eventos P = (¿;, P, e, ->, "(,5,O, (0), llamaremos lLpal conjunto:

lLp= U "((x, (0)
xEP

Es decir, lLp representa el conjunto de eventos involucrados en restricciones de eventos que deben valer hasta
el final de la ejecución. En particular, es necesario que ninguno de los eventos de ese conjunto ocurra en la
ejecución más allá del último punto marcado para que la ejecución satisfaga el patrón. Usando este conjunto,
enunciamos una versión más débil de la propiedad de clausura por extensiones:

Propiedad 3.5. Clausura débil por extensiones. Dado un patrón de eventos P = (¿;, P, e, ->, "(,5, O,(0) y
una ejecución temporizada finita a sobre ¿;, si a 1= P entonces para cualquier ejecución a' = (.;-,T) tal que
.;-n lLp = 0, o a' 1= P.

Por otro lado, si supiéramos que una ejecución temporizada satisface un patrón de eventos, es más o menos
evidente que existirá un prefijo finito de la misma que también satisface el patrón. El razonamiento es
similar al usado para los patrones básicos y los patrones temporizados. Sin embargo, sabiendo que la
ejecución satisface el patrón es posible afirmar algo aún más fuerte: el complemento de dicho prefijo seguro
no contiene ningún evento del conjunto lLp.

Propiedad 3.6. Satisfacción finita. Dado un patrón P = (¿;, E, e, ->, "(, 5, O,(0) Y una ejecución temporizada
a sobre ¿;, si a 1= P entonces existe una posición i E TIO" tal que aiJ 1= P y, además, a(i n lLp = 0.

Como en los casos anteriores, las demostraciones completas de ambas propiedades se encuentran en el
Apéndice A.



Capítulo 4

Model-checking de patrones de mal
comportamiento

Habiendo presentado los patrones de eventos, vamos a enfocarnos ahora hacia el problema de verificación de
propiedades en un sistema de tiempo real. Dado un sistema S modelado con un autómata temporizado As,
nuestro enfoque consistirá en expresar casos en los que se viole un determinado requerimiento R utilizando
para ello patrones de eventos. Dado un requerimiento R, llamaremos P~R al patrón de eventos que captura
los comportamientos que violan R. Cuando usemos patrones de eventos exclusivamente para expresar com-
portamientos no deseados en el sistema, nos referiremos a ellos como patrones de mal comportamiento. Por
otro lado, cuando usemos el termino patrones de eventos nos estaremos refiriendo al formalismo en general,
sin denotar ningún uso particular para los mismos.

En general, los requerimientos de un sistema representan una propiedad que deben cumplir todas las ejecu-
ciones de dicho sistema. Quiere decir que alcanza con encontrar una ejecución que no cumpla esa propiedad
para concluir que el sistema viola el requerimiento. Dado que usaremos los patrones de eventos para descri-
bir los casos en los que se viola un requerimiento, alcanza con que una sola de las ejecuciones del sistema
satisfaga el patrón para concluir que el sistema es incorrecto (con respecto a ese requerimiento). Dado un
sistema S y un patrón de mal comportamiento P, diremos que S 1=P si y sólo si algún comportamiento de
S verifica el patrón. Dado que el sistema estará representado por As y los comportamientos del sistema por
ejecuciones temporizadas divergentes, diremos que S 1=P si y sólo si As 1=P, ya su vez, diremos que As 1=P
si existe una ejecución en el lenguaje de As que pertenece al lenguaje de P. Llamaremos model-checking
de patrones de mal comportamiento al problema de determinar si dado un autómata temporizado A y un
patrón de mal comportamiento P, A 1=P.

En este capítulo demostraremos que el problema de model-checking de patrones de mal comportamiento es
decidible. Para esto, mostraremos que puede ser reducido a model-checking de autómatas temporizados, que
se sabe decidible [HNSY92].

En primer lugar, expresaremos el problema de model-checking de patrones de mal comportamiento en función
de la vacuidad del lenguaje de un autómata de Büchi temporizado. Definiremos el concepto de autómatas
reconocedores para cada uno de los tres tipos de patrones que introdujimos en el capítulo anterior. Los
autómatas reconocedores serán, básicamente, autómatas temporizados que capturen el lenguaje de un patrón
de eventos. Dado un patrón de eventos P, su autómata reconocedor Ap más una condición de aceptación
de Büchi particular serán un tableau Tp para el patrón de mal comportamiento. Mostraremos que dado un
autómata temporizado As, que modela un sistema S, y un patrón de mal comportamiento P, decidir si vale
As 1=P se reduce a decidir si .c(As Q9Tp) i= 0.

En una segunda etapa, mostraremos que decidir si E (As Q9Tp) i= 0 se puede reducir a verificar si el
autómata compuesto AsIIAp satisface la fórmula TCTL 'Paccept = init ::::}j<>(jOaccept). Dado que este
último problema es decidible, la verificación de patrones de mal comportamiento también lo es.

46
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Para simplificar la presentación, repetiremos el esquema incremental del capítulo anterior para presentar los
autómatas reconocedores y demostrar la corrección y completitud de la construcción de los distintos tableaux.
Sin embargo, pasado ese punto trataremos únicamente la decidibilidad de rnodel-checking de patrones de
mal comportamiento en su versión más expresiva (es decir: patrones básicos + tiempo + punto inicial y
final). Dado que los patrones básicos y los patrones básicos temporizados son casos particulares de patrones
de eventos, los resultados presentados en este capítulo serán igualmente aplicables a esos casos.

Más adelante veremos que los autómatas reconocedores son más que una construcción teórica y que tienen
además una utilidad práctica. Presentaremos el pseudocódigo y la implementación en Java de un algoritmo
para la construcción de autómatas reconocedores para patrones de eventos. Este algoritmo será la pieza
clave para la construcción del verificador de patrones diagramado en la Figura 1.5 del capítulo 1.

4.1 Autómatas reconocedores
Empezaremos por definir el concepto de autómatas reconocedores para cada uno de los tres tipos de patrones
presentados en el capítulo anterior. La construcción de los autómatas reconocedores se basa fuertemente en
las propiedades de clausura por extensiones y de satisfacción finita de los patrones de eventos.

Informalmente, la idea detrás de la construcción de los autómatas reconocedores consiste en representar todas
las posibles formas de construir un matching para un patrón de eventos. Dada una ejecución, el autómata
comienza a consumirla y para cada posición, si pudiera ser matcheada con algún punto del patrón 1, decide
en forma no determinística si lo hace o si saltea la posición. El no determinismo de la decisión permite
capturar tanto el caso en que el autómata marca la posición y como el caso en que no lo hace y dado que esto
es así para todas las posiciones de la ejecución, el autómata capturará todas las posibles formas de marcar
los puntos de un patrón. Si en algún momento el autómata descubre que no se puede completar el matching
(porque no puede ser marcado ningún otro punto más del patrón sin violar alguna restricción), entonces se
aborta el proceso.

Las locaciones del autómata representarán cuantos (y cuales) de los puntos del patrón fueron marcados hasta
el momento. La condición mínima que debe darse para poder pasar de una locación a otra es que la segunda
corresponda a marcar exactamente un punto más que la primera. Es más o menos evidente que los puntos
deben ser marcados en algún orden que respete el orden parcial determinado por el patrón. Si habiendo
consumido un prefijo finito de la ejecución se viola esta propiedad, no habrá forma de continuar marcando
puntos del patrón y que el mapeo obtenido pueda ser considerado un matching (recordemos que M2 exige
que los puntos sean marcados en un orden consistente con -<). Para que un punto pueda ser marcado, deben
haber sido marcados con anterioridad todos sus predecesores. Utilizaremos el concepto de configumción para
representar los puntos que han sido marcados hasta un cierto momento.

Dado un patrón de eventos (de cualquier tipo), la relación de precedencia -> del patrón determina (por
definición) un orden parcial entre los puntos del patrón. Dado un punto x, diremos que otro punto y es
sucesor directo del primero si x -> y. Análogamente, diremos que y es predecesor directo de x si y -> x.
Llamaremos suc(x) al conjunto de todos los sucesores directos de x y pred(x) al conjunto de todos los
predecesores directos de x.

Definición 4.1.1. Configuración. Dado un patrón de eventos básico P = ("L.,P,f.,->,,), una configumción
es un conjunto de puntos e E P cerrado a izquierda bajo -c-p . Es decir, 8 es una configuración sii Yx E
e, pred(x) e e. Llamaremos 8p al conjunto de todas las configuraciones de puntos de P.

Cada locación del autómata tendrá asociada una configuración y los puntos de la configuración serán los que
fueron marcados hasta el momento. La locación inicial del autómata corresponderá a la configuración 0,
es decir, a no haber marcado ningún punto. Por otro lado, la locación asociada a P corresponderá a haber
marcado todos los puntos del patrón. Dada una configuración actual, marcar un nuevo punto del patrón
corresponderá a extender la configuración.

IMás adelante veremos en qué casos pueden ser matcheados un punto y una posición.
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a 
e ·-------· 

p q 

Patrón 4.1: Patrón básico 

Definición 4.1.2. Extensión de configuraciones. 
Diremos que una configuración e puede ser extendida por X si e 1±! {X} es una configuración. En ese caso 
diremo s, t ambién, que e l±J {x} es una extensión de e. 
Diremo s que una configuración puede ser extendida si existe un x tal que dicha configuración pueda ser 
extendid a por x. 

Es fácil ver que sólo se puede extender una configuración con un punto x si todos los predecesores de x ya 
estaban en la configuración . 

Dada una cierta configuración actual y habiéndose consumido un cierto prefijo finito de una ejecuc1on, 
¿cuándo puede ser marcado un punto sobre la posición actual de la ejecución? En principio, deben cumplirse 
las reglas que determinan con que tipo de posiciones puede mapearse un punto. Por ejemplo, los puntos 
llenos de un patrón sólo pueden ser mapeados en posiciones que contengan alguno de los eventos que tienen 
asociados (condición Ml) y los puntos huecos sólo pueden ser mapeados en posiciones que contengan >­
(condición MTl). El problema es cómo garantizar que al ir construyendo un matching de a un punto por 
vez se respeten todas las restricciones. Analicemos el caso de las restricciones de eventos. Supongamos que 
estamo s trabajando con el Patrón 4.1 y que estamos analizando la ejecución i;- = a a e a b b. El autómata 
comienza en el estado: 

{
configuración: 0 

queda por consumir: a a c a b b 

El el primer paso, el autómata debe decidir si marca p sobre la primera posición de la ejecución o no. 
Supongamos que elige marcarla. El autómata pasa al siguiente estado: 

{
configuración: {p} 

queda por consumir: a c a b b 

Claramente, q no puede ser marcado sobre la segunda posición porque q está etiquetado con el evento b en 
el pat rón y la segunda posición corresponde a evento a. Con lo cual , el autómata simplemente avanza esa 
posición de la ejecución y pasa al estado: 

{
configuración : { p} 

queda por consumir: c a b b 

Nuevamente, q no puede ser marcado sobre la posición actual. Más aún , podemos afirmar que q no podrá 
ser marcado nunca porque entre p y q ya sabemos que al menos hubo una ocurrencia del evento prohibido 
c. Quiere decir que el autómata debe aborta r la construcción actua l e intentar otra forma de marcar p. 
Para saber si en un determinado momento es seguro saltear una posición o no (con respecto al cumplimiento 
de todas las restricciones de eventos) , alcanza con que el autómata tenga en cuenta las restricciones que 
existan ent re puntos marcados y puntos que todavía no han sido marcados. Las restricc iones entre puntos 
ya marcados no son relevantes al analizar la próxima posición de la ejecución. Lo mismo ocurre con las 
restricciones entre puntos que todavía no han sido marcados . Informalmente, diremos que una restricción 
se activa cuando uno de los puntos involucrados es marcado y se desactiva cuando se marca el segundo 
punto. Si hubiéramos enriquecido el estado de nuestra "máquin a generadora de matchings" con los eventos 
correspondientes a restriccion es activas, hubiéramos llegado al punto anterior en el siguiente estado: 
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{

configuración: {p}
restricciones activas: {c}
queda por consumir: e a b b

Y como el próximo evento en la ejecución es uno de los del conjunto de restricciones activas, hubiéramos
concluido que no había forma de extender el matching. Después de varios reintentos, eventualmente la
máquina hubiera llegado al estado:

{

configuración: 0
restricciones activas: 0
queda por consumir: a b b

Y hubiera decidido marcar p sobre la posición actual, pasando al estado:

{

configuración: {p}
restricciones activas: {e}
queda por consumir: b b

Yen este punto hubiera sido seguro marcar q sobre la siguiente posición y hubiera dejado de haber restricciones
activas:

{

configuración: [p, q}
restricciones activas: 0

queda por consumir: b

(También hubiera sido posible que el autómata salteará la primera b y marcara q sobre la segunda. Estas
dos posibilidades constituyen los únicos matchings posibles entre el patrón y la ejecución).

Dada una configuración e, llamaremos r(e) al conjunto de eventos correspondientes a restricciones activas
de los puntos de e. Formalmente:

Definición 4.1.3. Función r.
Dado un patrón de eventos P (de cualquier tipo), donde 1es la función que determina las restricciones de
eventos entre los puntos del patrón, definimos la función r sobre configuraciones de puntos de la siguiente
manera:

ne) = U ,(x,y)
xEe
y~e

Como dijimos antes, ne) es la unión de las restricciones de eventos para las cuales uno de los puntos ha
sido marcado (es decir, pertenece a e) y el otro todavía no.

Supongamos que además de estar prohibido e entre p y q, q tenía que ser la primera ocurrencia de b después
de p. Al marcar p sobre la cuarta posición de la ejecución, el autómata hubiera quedado en el siguiente
estado:

{

configuración: {p}
restricciones activas: {b, e}
queda por consumir: b b

y hubiera llegado a la conclusión incorrecta de que q no podía ser marcado. Sin embargo, hubiera sido
correcto que se marcara q sobre la siguiente posición. Por otro lado, no hubiera sido correcto que se salteara
la primera b y se marcara q sobre la segunda. Quiere decir que es distinto el conjunto de restricciones
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que hay que analizar para decidir si es seguro saltear un evento que para decidir si es seguro marcarlo.
Fundamentalmente, es necesario tener una noción de a quién corresponden las restricciones que están activas.
Dada una configuración e, definimos el conjunto r [>p(e) como el conjunto de eventos correspondientes a
restricciones activas, excepto las correspondientes al punto p. Formalmente:

'v'pEP, r[>p(e)= U,(x,y)
xE9
yif-9
y¡ip

Una vez más, podríamos enriquecer el estado de nuestro autómata aclarando qué puntos son los que deter-
minan que cierto evento esté prohibido. En el ejemplo que venimos analizando, el autómata eventualmente
llegaría al estado:

{

configuración: {p}
restricciones activas: {b: [q}, c: {q] }
queda por consumir: b b

Donde se ve claramente que b está prohibido únicamente por q y por lo tanto puede ser marcado, aunque no
salteado. En este ejemplo, I'( {p}) = {b, c} y r[>q( {p] ) = o.

4.1.1 Autómata reconocedor para patrones básicos
Un autómata reconocedor para un patrón básico tendrá una locación por cada configuración del patrón
más una locación trampa distinta de las demás. Dada una configuración e, [e] representará a la locación
asociada a e. Estando en cualquier configuración, el autómata puede decidir marcar un punto sobre el
siguiente evento de la ejecución y cambiar de configuración, saltear el siguiente evento y permanecer en la
misma configuración o abortar la construcción del matching y pasar a la locación trampa. Estando en la
locación trampa, el autómata solo puede ciclar sobre esa misma locación. Estas cuatro posibilidades serán
representadas con cuatro conjuntos de aristas disjuntos dos a dos: Mark ; Skip, Fail y Trap, respectivamente.
El autómata no tendrá ningún reloj dado que no hay restricciones temporales que chequear. Por otro lado,
los invariantes de todas las locaciones serán trivialmente T. La locación inicial será [O], es decir la locación
asociada a la configuración vacía.

Definición 4.1.4. Autómata reconocedor para patrones básicos.
Dado un patrón básico P = (I:, P, e, -->, ,), Ap es un autómata temporizado de la forma
Ap = (S,X, I:, A, 1:, so) donde:

• (Locaciones) S = {[e] I e E ep} u {Strap}, donde Strap es una locación distinta de todas las demás.

Notación. Llamaremos saccept = [P].

• (Relojes) X = °
• (Eventos) I:A." = I:p
• (Aristas) A=MarkUSkipUFailUTrap, donde:

Mark
Skip
Fail

Trap

{ ([e],l,T,0,[elti{e}])
{ ([e], l, T, 0, [e])
{ ([e], l,T, 0, Strap)

{ (Strap, l, T, 0, Strap)

lEe(e) y l~r[>e(e) }
l E I: y 1 ~ qe) }
LE r(e) }
i e I: }

• (Invariantes) 'v's E S, 1:(S) = T

• (Locación inicial) So = [O]
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(a)

a

g~c e.] d.---'---'..
b~~ ~
•
ó
q

Figura 4.1: Patrón básico (a) y su autómata reconocedor (b)

Como vimos antes, para poder marcar un punto, el evento que ocupa la siguiente posición de la ejecución
debe ser uno de los que etiqueta al punto en el patrón. Además, para que sea seguro marcar el punto es
necesario que el próximo evento no corresponda a ninguna restricción activa, más allá de las referidas al
punto que se quiere marcar. Por otro lado, siempre será seguro saltear un evento que no viole ninguna
restricción activa y siempre será seguro abortar la construcción del matching al encontrar un evento que
viole alguna restricción activa. Es claro que el autómata así construido no es determinístico.

Ejemplo. Autómata reconocedor para un patrón básico.
La Figura 4.1 muestra un patrón básico y su autómata reconocedor. La locación saccept se indica con un
doble borde. La arista que va de [q]a [p, q] por a es un ejemplo de arista M ark, La arista que va de [p,q] a
Strap por e es un ejemplo de arista Fail. Los loops sobre [p]por todos los eventos menos e son ejemplos de
aristas Skip. Finalmente, los loops sobre Strap son ejemplos de aristas Trap.

Propiedades de los autómatas reconocedores para patrones básicos

Analizaremos las propiedades de los autómatas reconocedores para patrones básicos.

Observación. En todo autómata reconocedor para un patrón básico los conjuntos de aristas Mark, Skip,
Fail y Trap son disjuntos dos a dos.

Las aristas de cada uno de estos tipos se diferencian entre sí con solo mirar sus extremos: las aristas
M ark van de una configuración a otra que es una extensión de la primera, las aristas Skip son loops sobre
configuraciones, las aristas Fail van de una configuración a la locación trampa y las aristas Trap son loops
sobre la locación trampa.

Propiedad 4.1. Dado un patrón básico P = (1:, P, t, ,,) y su autómata reconocedor Ap = (S, X, 1:, A,I, so),
sean e ye' configuraciones de P. Si [e] =? [e'], entonces toda evolución entre [e] y [e'] tiene la forma:

([eo], vo) =: ([el], VI) =: ...([ei],Vi) =t: ... =?~:~,' ([en], vn)

donde eo = e, en = e' y para todo i, O :S i < n, Vi E Vx, ai E 1: U{A}, ti E R+ yei+l es igual a ei o
es una extensión de ei.
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La demostración completa de esta propiedad se encuentra en el Apéndice A. Intuitivamente, esta propiedad
dice que las configuraciones no decrecen a lo largo de una evolución sobre el autómata. Esto quiere decir
que o bien se marca un punto sobre la ejecución extendiendo la configuración actual o se saltea el siguiente
evento y se permanece en la misma configuración. Nunca se "desmarca'' un punto marcado. Las distintas
posibilidades que existen para marcar los puntos de un patrón sobre una ejecución se capturan a través del
no determinismo del autómata reconocedor y no mediante un mecanismo de backtracking.

Como dijimos antes, el autómata reconocedor intenta construir un matching a medida que consume una
ejecución. En todo momento el conjunto de puntos ya marcados está dado por la configuración asociada a la
locación actuaL El mapeo entre los puntos de la configuración y la porción de ejecución ya consumida es una
especie de "matching a medio construir". Formalizaremos este concepto definiendo la noción de matching
básico parcial.

Definición 4.1.5. Matching básico parciaL
Dado un patrón básico P = ("E"P, e, -t, ,",/),un conjunto de puntos C <;;: P, una ejecución <; sobre "E, y un
mapeo : : C f-> TI" decimos que: es un matching básico parcial entre e y P restringido a C sii verifica las
siguientes condiciones:

MPI \/x E EnC,
MP2 \/x, y E C,
MP3 \/x, y E C,
MP4 \/x E C, y E P \ c,

<;x E e(x)
x-<y =? x<9
x < 9 =? <;(x,yl n,(x,y) = 0
<;(x n ,(x, y) = 0

Como era de esperarse, las condiciones MPI-MP3 piden que el mapeo : verifique las condiciones de validez
restringidas al conjunto de puntos ya marcados. Esto es fundamental para que : pueda ser extendido
eventualmente hasta ser un matching básico. La condición MP4 pide, además que ninguna posición de las
consumidas viole una restricción activa. A partir del concepto de matching básico parcial podemos definir
satisfacción parcial.

Definición 4.1.6. Satisfacción parcial de patrones básicos.
Dad~ un patrón básico P = ("E"P, e, -t, '"'/)y un conjunto de puntos C <;;: P, una ejecución < verifica o
satisface parcialmente P restringido a C (notado <; Fe P) sii existe un matching básico parcial entre <; y P
restringido a C.

Notar que cuando C = P, las condiciones MPI - MP3 son idénticas a MI - M3 y, además, la condición
MP4 es trivialmente verdadera, con lo cual para cualquier patrón básico P y cualquier ejecución e, <; F P
sii <; Fp P.

Si nuestro autómata reconocedor estuviera correctamente construido, quisiéramos que en todo momento la
porción de ejecución consumida satisfaga parcialmente el patrón, restringido a los puntos de la configuración
actuaL Si esto fuera así, al marcar el último punto del patrón podríamos garantizar que hemos construido
un matching. Llamaremos a esta propiedad Corrección del autómata reconocedor.

Propiedad 4.2. Corrección del autómata reconocedor para patrones básicos.
Dado un patrón básico P = ("E"P, e, -t, '"'/)Y su autómata reconocedor A1' (S, X,"E" A, I, so), para toda
configuración e E e1' y toda ejecución finita <; sobre "E"

si qinit =?' [e] entonces <; Fe P
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La demostración de esta propiedad se basa en que para alcanzar la configuración [e], el autómata tuvo que
atravesar un cierto camino desde qinit hasta dicha locación. Dicho camino estará formado por aristas Skip
o M ark y es posible construir un matching parcial "imitando" la forma en que el autómata fue marcando
los puntos (es decir, las posiciones para las cuales atravesó una arista lvlark). La demostración detallada se
encuentra en el Apéndice A.

Por otro lado, nos gustaría poder garantizar que el autómata es capaz de construir todo posible matching.
Quiere decir que para una porción finita de una ejecución y una determinada configuración de puntos, si existe
algún matching parcial entre el patrón y la ejecución restringido a esa configuración, entonces el autómata
tiene que poder reproducirlo. Es decir, el autómata tiene que poder consumir esa porción de ejecución
quedando en esa configuración. Llamaremos a esta propiedad Completitud del autómata reconocedor.

Propiedad 4.3. Completitud del autómata reconocedor para patrones básicos.
Dado un patrón básico P = (L., P,e, ->, 1) Y su autómata reconocedor Ap (S, X, L., A, I, so), para toda
configuración e E ep y toda ejecución finita c;- sobre L.,

si c;-I=e P entonces qinit =?' [e]

La demostración de esta propiedad utiliza la estrategia inversa a la usada para el la propiedad de Corrección:
a partir de un matching parcial construiremos un camino sobre el autómata entre qinit Y [e] que consuma e.
Como en el caso anterior, los momentos en los cuales el autómata atravesará una arista Mar k corresponderán
con una posición marcada según el matching parciaL El resto de las aristas serán Skip. La demostración
completa se encuentra en el Apéndice A.

Sabiendo que valen estas dos propiedades, podemos garantizar que el autómata es capaz de construir todos
los matchings posibles para un patrón y una ejecución y, además, sólo alcanza la locación saccept si fue capaz
de construir un matching para la porción de ejecución que consumió.

Tableau para patrones básicos

Dado un autómata reconocedor para un patrón básico, nos interesa quedamos sólo con las ejecuciones que se
estabilizan en la locación Saccept2, es decir, aquellas para las cuales pudo ser construido al menos un matching
básico. Quiere decir que saccept, como su nombre lo sugiere, es una locación de aceptación para nosotros.
Veremos a continuación que el autómata reconocedor más la condición de aceptación de Büchi dada por el
conjunto unitario {saccepd acepta exactamente el mismo lenguaje que el patrón.

Teorema 4.4. Tableau para patrones básicos. Dado un patrón básico P = (L.,P,e, ->, 1) Y su autómata
reconocedor Ap = (S, X, L., A,I, so), el autómata de Büchi temporizado Tp = (Ap, {saccepd) reconoce el
lenguaje .c(P).

La demostración de este teorema está dividida en dos partes: se demuestra primero que .c*(Tp) ~ .c(P) y
luego que .c(P) ~ C(Tp). La demostración completa se encuentra en el Apéndice A.

4.1.2 Autómata reconocedor para patrones básicos temporizados

Hasta este punto, hemos mostrado como construir un autómata temporizado que construya matchings para
un patrón básico y hemos mostrado que usando las funciones r y Te-x se puede garantizar que se cumplan
las restricciones de eventos.

En esta sección veremos además como garantizar que se cumplan las restricciones temporales de los pa-
trones temporizados. Naturalmente, usaremos los relojes del autómata reconocedor para medir el tiempo

2Diremos que una ejecución se estabiliza en una locación si la alcanza y además permanece indefinidamente en ella
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Patrón 4.2: Patrón temporizado

transcurrido desde que se marcó un punto (sea un punto lleno o un punto hueco). Dado que definimos el
concepto de configuración para cualquier tipo de punto, esto también se aplica a los puntos huecos. Lo
mismo ocurre con las funciones r y r e-x- Como pasaba con las restricciones de eventos, diremos que las
restricciones temporales se activan cuando se marca uno de los puntos involucrados y se desactivan cuando
se marca el segundo. Para que sea seguro marcar el segundo punto, es necesario garantizar que el tiempo
transcurrido desde que se marcó verifica la restricción temporal asociada a estos puntos. Para determinar si
eso es cierto, utilizaremos un reloj por cada punto y cada reloj será reseteado únicamente cuando se marque el
punto correspondiente. Conceptualmente estamos extendiendo el estado de nuestra "maquina generadora de
matchings" para que mantenga el tiempo transcurrido desde que se marcó cada punto. Veamos el siguiente
ejemplo. Supongamos que estamos trabajando con el Patrón 4.2 y queremos encontrar los markings entre
dicho patrón y la ejecución temporizada

El autómata comenzará en el estado:

{

configuración: 0

tiempo ocurrencia: 0

restricciones activas: 0

queda por consumir: ; ~ 3~6 5
b
S

Supongamos que ahora el autómata decide marcar p sobre la primera posición y pasa al estado:

{

configuración: {p}
tiempo ocurrencia: {p: 2}
restricciones activas: {a: {q}}

d . a e bque a por consumir: 3 3.6 5.5 ...

En este momento, la siguiente posición de la ejecución no puede ser salteada dado que contiene un evento a
que está en conflicto con las restricciones activas referentes a q. Quiere decir que el autómata debe abortar la
construcción del matching e intentar otra forma de marcar p. Supongamos que el autómata hubiera decidido
marcar p sobre la segunda a:

{

configuración: {p}
tiempo ocurrencia: {p: 3}
restricciones activas: {a: {q}}

d . e bque a por consumir: 3.6 5.5 ...

Es seguro saltear e y nuestra máquina pasa al estado:

{

configuración: {p}
tiempo ocurrencia: {p: 3}
restricciones activas: {a: {q}}
queda por consumir: 5

b
5 •..
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Ahora, el autómata debe decidir si marca q sobre la siguiente posición. Sin embargo, el tiempo transcurrido
desde que se marcó p es 2.5 y 2.5 P: [1,2). Con lo cual, lo único que puede hacer el autómata es abortar la
construcción.

En definitiva, la estrategia para verificar que se cumplan las restricciones temporales será la siguiente: a
cada punto p se le asociará un reloj zp que será reseteado en la arista que marque dicho punto. A su vez,
para poder marcar un punto q, se deberá garantizar por medio de una guarda que el tiempo transcurrido
desde el resto de los puntos ya marcados hasta el instante actual verifique las correspondientes restricciones
temporales.

Dada una restricción temporal ip; '1f;x(<p) será una restricción sobre relojes que verifique <psobre el valor del
reloj z. Formalmente, definimos '1f;x(<p)de la siguiente manera:

'1f;x((a, b))
'1f;x((a, b])
'1f;x([a, b))
'1f;x([a, b])
'1f;x((a,oo))
'1f;x([a,oo))
'1f;x(-,0)

a<x/\x<b
a<x/\x:;'b
a:;'x/\x<b
a:;'x/\x:;'b
a<x
a:;.x
-,'lj;x (O)

Naturalmente, queremos que una restricción 'lj;x(<p) sea verdadera cuando v(x) = t si y sólo si t F <p.

Proposición 4.5. (Preservación de verdad) Dada una restricción temporal ip, paro todo real no negativo t,

'1f;x(<p)[xlt] es verdadero sii t 1= sp

La demostración de esta propiedad es bastante directa y puede encontrarse en el Apéndice A. Por otro lado,
dado que las restricción sobre relojes construidas con la definición anterior siempre involucran un único reloj,
es fácil ver que para determinar si una valuación satisface una restricción '1f;x(<p),alcanza con ver si el valor
del reloj x según dicha valuación satisface <p.

Proposición 4.6. Dada una restricción temporal ip y un reloj x,

v F 'lj;x(<p) sii v(x) 1= <p

Nuevamente, la demostración es muy directa y puede encontrarse en el Apéndice A. Teniendo la representa-
ción de cada restricción temporal asociada a un punto escrita como restricción de relojes, se puede construir
la guarda de la arista que marcan dicho punto como una conjunción de estas fórmulas atómicas:

Definición 4.1. 7. Dado un patrón temporizado P = (L.,P, e, -->, 7, ó), el conjunto de relojes X = {z, I x E P}
Yun conjunto de puntos e <;;; P, para cada punto p E P definimos:

'1f;~d~ 1\ 'lj;z'(Ó(x, p))
xE8

Tomemos por ejemplo el Patrón 4.3. Estando en la configuración e = {p,q}, la guarda para poder marcar
r, es decir '1f;é es igual a:

1j¡Zp ([O, 5]) ¡\ 1j¡Zq ( (2, 00 ) ) zp ~ 5 ¡\ Zq > 2
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Patrón 4.3: Patrón temporizado complejo

Quiere decir, en el momento de marcar r, deben haber pasado 5 u.t. o menos desde que se marcó p y más
de 2 u.t. desde que se marcó q.
Por otro lado, estando en la configuración e' = [p, q, r}, la guarda para la arista que marque s será:

z, < 3 V z, > 4

Dado que no hay ninguna restricción temporal no trivial entre p, q y s, las restricciones asociadas son
equivalentes a T ('!/>Zq ([O, (0)) = x 2: O !\ x < 00, lo cual es trivialmente verdadero para cualquier reloj, y por
eso las omitimos.

Un autómata reconocedor para un patrón temporizado tendrá la misma estructura básica de los autómatas
reconocedores para patrones básicos: una locación por configuración más una locación trampa distinta de
las demás y cuatro conjuntos disjuntos dos a dos de aristas Mark, Skip, Fail y Trap. Además, tendrán
un conjunto adicional de aristas llamado 1nstant que corresponderán a marcar puntos huecos. El autómata
tendrá un reloj por cada punto del patrón y las aristas Mark e Instant estarán protegidas por guardas como
las descritas anteriormente que garanticen el cumplimiento de las restricciones temporales. Finalmente, los
invariantes de todas las locaciones seguirán siendo T y la locación inicial será [0].

Definición 4.1.8. Autómata reconocedor para patrones temporizados
Dado un patrón temporizado P = (¿, P = E U 1,e, --." " ó), Ap es un autómata temporizado de la forma
Ap = (5, X, ¿, A,I, so) donde:

• (Locaciones) 5 = {[e] I e E ep} U {Strap}, donde Strap es una locación distinta de todas las demás.

Notación. Llamaremos Soccept = [P].

• (Relojes) X = {z; I x E P}

• (Eventos) ¿A'P = ¿p

• (Aristas) A = Mark U Instant U Skip U Fail UTrap, donde:

Mark { ([e], l, 'l/;é, {ze}, [e l±J {e}]) eE E, t e e(e) y l rJ. fl>e(e) }
Instant { ([e], A, 'l/;~,{z¡}, [e l±J {i}]) i E 1 }

5kip { ([e], l, T, 0, [e]) l E ¿ Y l rJ. f(8) }
Fail { ([e], l, T, 0, Strap) t e f(8) }

Trap { (Strap, l, T, 0, Strap) t e ¿ }

• (Invariantes) Vs E S, I(s) = T

• (Locación inicial) So = [0]
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Figura 4.2: Patrón temporizado (a) y su autómata reconocedor (b)

Las aristas Mar k y las aristas l nstant son estructuralmente muy similares. La única diferencia es que
las primeras siempre están etiquetadas con un evento y corresponden a marcar un punto de la clase E y
las segundas siempre están etiquetadas con ,\ y corresponden a marcar un punto de la clase l. En ambos
casos será seguro marcar un punto (desde el punto de vista de las restricciones temporales) si vale la guarda
correspondiente a la configuración actual y a ese punto. Como vimos antes, esta guarda contiene una
representación de todas las restricciones temporales sobre ese punto en función de inecuaciones sobre relojes
del autómata. Cuando se marca un punto, se resetea el reloj asociado a ese punto para comenzar a medir el
tiempo transcurrido desde ese instante.

Es importante notar que en la práctica no siempre se necesitan tantos relojes como puntos tenga el patrón.
En principio, sólo se necesitan relojes para aquellos puntos que estén involucrados en restricciones temporales
no triviales (es decir, distintas de [0,00)). Además, podría darse el caso de que el mismo reloj pudiera ser
usado para medir el tiempo de ocurrencia de dos puntos distintos (porque, por ejemplo, nunca se da que
restricciones temporales de esos puntos estén activas a la vez). Esta observación resulta de importancia dado
que la complejidad de los algoritmos de rnodel-checking de autómatas que usaremos más adelante depende del
número de relojes del autómata. Preferimos mantener la construcción formal de los autómatas reconocedores
tan simple como fuera posible y por eso no hicimos ningún intento por reducir en esta presentación la
cantidad de relojes del autómata. Sin embargo, cuando presentemos el algoritmo que construye autómatas
reconocedores a partir de patrones de eventos descartaremos los relojes correspondientes a puntos que sólo
están involucrados en restricciones triviales. Si fuera necesario una optimización mayor del conjunto de
relojes, podría aplicarse alguna herramienta de minimización de relojes (ej: [DY96]).

Ejemplo. Autómata reconocedor para un patrón temporizado.
La Figura 4.2 muestra un patrón temporizado y su autómata reconocedor. La arista que va de [p,q, r] a
[p,q, r, 5] por ,\ es un ejemplo de arista lnstant. Todas las aristas M ark e Instant resetean el reloj asociado
al punto que están marcando. La arista que va de [p,q] a [p,q, r] muestra un ejemplo de guarda no trivial
sobre una arista Mark y la que va de [p,q, r] a [p,q, r, 5] muestra lo mismo para una arista Instant. En el
ejemplo resulta claro que Zs nunca se utiliza en ninguna restricción y que, por lo tanto podría eliminarse.
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Propiedades de los autómatas reconocedores para patrones temporizados

Analizaremos las propiedades de los autómatas reconocedores de patrones temporizados. La primera obser-
vación que haremos está relacionada con los tipos de aristas del autómata:

Observación. En todo autómata reconocedor para un patrón temporizado los conjuntos de aristas M ark,
Instant, Skip, Fail y Trap son disjuntos dos a dos.

Ya sabemos que Skip, Fail y Trap pueden distinguirse entre ellosy con respecto a Mark e Instant analizando
sólo los extremos de las aristas. Pero además, como M ark sólo admite aristas etiquetadas con eventos e
I nstant sólo admite aristas etiquetadas con A, queda claro que esos conjuntos también son disjuntos entre
sí.

Finalmente, también va1eque en todas las evoluciones del autómata la configuración actual va extendiéndose
o permanece igual, pero nunca decrece.

Propiedad 4.7. Dado un patrón temporizado P = ('i'., P, E, --->",5) y su autómata reconocedor
Ap = (S, X, 'i'., A,I, so), sean 8 y 8' configuraciones de P. Si [8] => [8'], entonces toda evolución en-
tre [8] y [8'] tiene la forma:

([80], vo) =t: ([81], VI) =t: ... ([8i], Vi) =>~: ... =>~:~,' ([8n], vn)

donde 80 = 8, 8n = 8' y para todo i, O::; i < n, Vi E Vx, ai E 'i'.U {A}, ti E R+ y 8i+l es igual a 8i o
es una extensión de 8i.

La demostración de esta propiedad para el caso temporizado se encuentra en el Apéndice A.

Como en el caso de los autómatas reconocedores para patrones básicos, definimos el concepto de matching
temporizado parcial para caracterizar el estado interno de nuestra "máquina generadora de matchings":

Definición 4.1.9. Matching temporizado parcial.
Dado un patrón temporizado P = ('i'., P, E, --->",8), un conjunto de puntos C ~ P, una ejecución temporizada
17 = (c;, T) sobre 'i'. y un mapeo : : C f-> Da, decimos que: es un matching temporizado parcial entre 17 y P
restringido a C sii verifica las condiciones MP1-MP4 y además verifica que:

MPT1 VxE In C,
MPT2 Vx,y E C,

c;;¡ = A
x<y => b..(T[;¡,YJ)~8(x,y)

Quiere decir que en todo momento, los puntos ya marcados sobre la porción de ejecución consumida respetan
todas las restricciones de eventos (MP1-MP3) y temporales (MPT1 - MPT2) y, además, los eventos
consumidos hasta el momento no violan ninguna restricción de eventos activa (MP4).
Adaptamos la noción de satisfacción parcial a los patrones temporizados.

Definición 4.1.10. Satisfacción parcial de patrones temporizados.
Dado un patrón temporizado P = ('i'., P, E, -r+, ,,8) y un conjunto de puntos C ~ P, una ejecución tempori-
zada 17 sobre 'i'. verifica o satisface parciolmenie P restringido a C (notado 17 ~c P) sii existe un matching
temporizado parcial entre 17 y P restringido a C.

Nuevamente, para cualquier patrón temporizado P y cualquier ejecución temporizada 17, 17 ~ P si y sólo si
17 ~p P.

Para terminar de caracterizar el comportamiento de los autómatas reconocedores de patrones temporizados,
adaptaremos las propiedades de Completitud y Corrección de los autómatas reconocedores de patrones
básicos al caso temporizado.
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Propiedad 4.8. Corrección del autómata reconocedor para patrones temporizados.
Dado un patrón temporizado P = (L., P, f, -r+, "f, Ó) y su autómata reconocedor A'P = (S, X, L., A, T, so), para
toda configuración 8 E 81' y toda ejecución finita (5 = (,,7) sobre L.,

si qinit =>~ [e] entonces (5 Fe P

Como antes, esta propiedad garantiza que toda porción de ejecución consumida por el autómata satisface
parcialmente el patrón restringido a los puntos de la configuración actual. La demostración repite la estrategia
del caso no temporizado: construir un matching temporizado parcial emulando una evolución del autómata
desde qinit hasta [e]. De esta forma, las posiciones consumidas por aristas Mark o Instant serán marcadas
con el punto correspondiente. La demostración completa puede encontrarse en el Apéndice A

Propiedad 4.9. Completitud del autómata reconocedor para patrones temporizados.
Dado un patr·ón temporizado P = (L., P, f, ->, "f, Ó) y su autómata reconocedor A'P = (S, X, L., A, T, so), para
toda configuración e E e'P y toda ejecución finita (5 sobre L.,

si (5 Fe P entonces qinit =>" [e]

La propiedad de Completitud garantiza que si existe algún matching temporizado parcial entre un prefijo de
una ejecución y el patrón (restringido a alguna configuración e), el autómata será capaz de generarlo. Dado
que esto vale también para la configuración P y que los patrones temporizados tienen la propiedad de satis-
facción finita, podremos garantizar que el autómata será capaz de generar todos los matchings temporizados
que existan entre una ejecución y un patrón. La demostración de que los autómatas reconocedores para el
caso temporizado cumplen esta propiedad se basa en mostrar que se puede construir una evolución sobre el
autómata a partir de un matching parcial para un prefijo de ejecución y una determinada configuración. La
demostración completa está incluida en el Apéndice A.

Tableau para patrones temporizados

Como en el caso no temporizado, un autómata reconocedor para un cierto patrón temporizado aumentado
con la condición de aceptación de Büchi {saccepd acepta exactamente el lenguaje de dicho patrón.

Teorema 4.10. Tableau para patrones temporizados. Dado un patrón temporizado P = (L.,P, f, -r+, "t, Ó) y
su autómata reconocedorA'P = (S,X,L.,A,T,so), el autómata de Büchi temporizado 71' = (A'P,{saccep¡})
reconoce el lenguaje L(P).

La demostración de este teorema se puede encontrar en el Apéndice A y está basada en demostrar la doble
inclusión entre los lenguajes.

4.1.3 Autómata reconocedor para patrones de eventos

El autómata reconocedor para un patrón de eventos debe garantizar que además de cumplirse las restriccio-
nes de eventos y las restricciones temporales entre los puntos comunes del patrón también se cumplen las
restricciones que hacen referencia al punto inicial y al punto final.

Para contemplar las restricciones de eventos con respecto al punto inicial alcanza con notar que estas restric-
ciones comienzan estando activas y recién son desactivadas cuando se marca el otro punto en cuestión. Por
el otro lado, las restricciones en las que está involucrado el punto final se activan cuando se marca el otro
punto en cuestión y no se desactivan nunca más. De alguna manera, esto es consistente con el sentido que
le damos a los puntos inicial y final: en el primer caso, el punto inicial se considera ya "marcado" cuando
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Patrón 4.4: Restricciones activas para un patrón de eventos

comienza la ejecución y el segundo se considera que el punto final será "marcado" recién después de finalizada
la ejecución.

Para capturar esta extensión de las restricciones de eventos activas en una determinada configuración defi-
nimos las funciones r- y r;p.

Definición 4.1.11. FUnción T".
Dado un patrón de eventos P, definimos la función T" sobre configuraciones de puntos de la siguiente manera:

r*(8) = r(8) U U ,(O,x) U U ,(x, 00)
x'lce xEe

Vp E P, r;p(8) = rl>p(8)U U ,(O,x) U U ,(x, 00)
x'lce xEe
x¡ofp

De alguna manera, T" es una extensión de r. Para toda configuración e, r*(e) contiene todas las restric-
ciones activas comunes (es decir, r(8)) y además las restricciones referentes al punto inicial que todavía no
han sido desactivadas y todas las restricciones referentes al punto final que ya han sido activadas.
Análogamente, r;p contiene todas las restricciones activas comunes que no serían desactivadas por p, más las
restricciones referentes al punto inicial que todavía no fueron desactivadas (excepto las que serían desactivadas
por p) y todas las restricciones activas referentes al punto final.

Ejemplo. Restricciones activas para un patrón de eventos.
Dado el Patrón 4.4, estando en la configuración 0, r*(0) = {a}, r;p(0) = 0 y r;q(0) = {a}. Por otro
lado, estando en la configuración {p.q,r}, r*({p,q,r}) = {c}. En este ejemplo se puede ver que cuando la
configuración es igual al conjunto de puntos del patrón, r* será igual al conjunto lL del patrón.

Usaremos I" y r;p de la misma forma que antes usábamos r y r I>ppara determinar si es seguro saltear un
punto un punto o si es seguro marcar lo, respectivamente.

El otro tema que nos queda por resolver es garantizar que se cumplan las restricciones temporales entre
los puntos comunes del patrón (como hacíamos para los patrones temporizados) y también las restricciones
entre el punto inicial y otros puntos del patrón. Nuevamente, adaptaremos la estrategia que usamos en los
patrones temporizados contemplando este último caso. Usaremos los relojes del autómata para medir el
tiempo transcurrido desde que se marcó un punto y también para medir el tiempo transcurrido desde que
comenzó la ejecución. Una vez más, es como si estuviéramos midiendo el tiempo desde que se "marcó" el
punto inicial del patrón. Para cada punto común p del patrón usaremos el reloj zp para medir el tiempo
desde que fue marcado. Usaremos el reloj Zo para medir el tiempo desde el comienzo de la ejecución.
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Para decidir si es seguro marcar un punto desde el punto de vista de las restricciones temporales que se
apliquen a ese punto, usaremos unas guardas similares a las del caso temporizado. La única diferencia será
que agregaremos un término más a cada una que corresponderá a la restricción entre"ese punto y el punto
inicial:

Definición 4.1.12. Dado un patrón de eventos P = (I:,P, t, ->", ó, 0, 00), el conjunto de relojes
X = [z, I x E P} Y un conjunto de puntos 8 <:;; P, para cada punto p E P definimos:

1f;;t d;j A 1f;zx(ó(x, p))
xEeU{O}

Un autómata reconocedor para patrones de eventos tendrá exactamente la misma estructura que uno para
patrones temporizados, excepto que las condiciones para poder marcar un punto serán ampliadas para
contemplar las restricciones referentes al comienzo y al final de la ejecución. Por otro lado, las condiciones
para poder saltear un punto también serán ampliadas en forma conveniente. El autómata tendrá una locación
[e] por cada configuración e del patrón más una locación trampa. Estando en cualquier locación el autómata
podrá saltear el siguiente evento (arista Skip) , marcar un punto sobre el siguiente evento (arista Mark),
marcar un punto sobre el siguiente instante (arista Instant) o abortar la construcción del matching (arista
Failí: Estando en la locación trampa, sólo se podrá ciclar sobre dicha locación (aristas Trap). El autómata
tendrá un reloj por cada punto del patrón que serán reseteados cuando se marque dicho punto, más un reloj
distinguido que medirá el tiempo total transcurrido desde el comienzo de la ejecución y que no será reseteado
en ningún momento. Los invariantes de todas las locaciones seguirán siendo T y la locación inicial será [O].

Definición 4.1.13. Autómata reconocedor para patrones de eventos.
Dado un patrón de eventos P = (I:, P, t, ->", ó, 0, 00), A-p es un autómata temporizado de la forma
A-p = (S, X, I:, A, T, so) donde:

• (Locaciones) S = {[e] I e E 8-p} U {Strap}, donde Strap es una locación distinta de todas las demás.

Notación. Llamaremos saccept = [P].

• (Relojes) X = {zx I x E P} U {zo}

• (Eventos) I:A"p = I:-p

• (Aristas) A = M ark U Instant U Skip U Fail UTrap, donde:

Mark { ([8], l, 1f;ee,{ze}, [e W {e}]) eE E, lE t(e) y l f- r;e(e) }
Instant { ([e], A, 1f;~, {z.}, [e W {i}]) i E 1 }

Skip { ([e], l, T, 0, [e]) l E I: Y l f- r- (e ) }
Fail { ([e], 1, T, 0, Strap) 1 E r*(e) }

Trap { (strap,l, T,0,strap) l E I: }

• (Invariantes) Vs E S, T(s) = T

• (Locación inicial) So = [0J

Si bien esta definición parece exactamente igual a la Definición 4.1.8 excepto por el agregado del reloj Zo y
que se reemplazó I', r t>py 1f;~por I'", r;p y 1f;;t, respectivamente, existen más diferencias que estas entre
ambos autómatas reconocedores. En particular, el cambio de r por r* tiene un impacto bastante grande en
la estructura del autómata. Sabemos que r(p) es siempre vacío y esto implicaba en los casos anteriores que
la locación saccept no tenía aristas salientes. En este caso, r*(p) no será vacío siempre que exista alguna
restricción de eventos entre algún punto del patrón y el punto final. Esto resulta bastante lógico porque
sabemos que esos eventos estarán prohibidos "para siempre" , aún después de haber marcado el último punto.
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Figura 4.3: Patrón de eventos (a) y su autómata reconocedor (b)

Conceptualmente, que r*(p) no sea vacío significa que ya no es suficiente con marcar todos los puntos del
patrón para garantizar que se ha construido un matching (recordemos que la satisfacción de patrones de
eventos no es cerrada por extensiones) y no alcanza con mirar ningún prefijo finito de la ejecución para
hacerlo.

Ejemplo. Autómata reconocedor para un patrón de eventos.
La Figura 4.3 muestra un patrón de eventos y su autómata reconocedor. Se puede ver que en este caso la
locación saccept no es una trampa. La arista que va de [p,q, r, s] a Strap es un ejemplo de arista Fail saliente
de saccept. La arista que va de [0] a Strap por a es un ejemplo de arista Fail originada por una restricción
de eventos entre el punto inicial y p. La guarda de la arista que va de [q] a [p, q] es un ejemplo de guarda
originada por una restricción temporal entre el punto inicial y el punto p. Nuevamente, el reloj Zs no se
utiliza en ninguna restricción y por lo tanto podría ser eliminado.

Propiedades de los autómatas reconocedores para patrones de eventos

En el caso de los autómatas reconocedores para patrones de eventos, en general la locación saccept no será
una trampa. Sin embargo esto no siempre es así: basta con recordar que los patrones básicos y los patrones
temporizados son casos particulares de patrones de eventos. Dado un patrón de eventos P y su autómata
reconocedor Ap, la locación saccept no será una trampa precisamente cuando el conjunto r*(p) sea no vacío.
Ahora bien, por definición,
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Sabemos que r(P) es vacío y necesariamente
marcar. Quiere decir que:

f* (P) = f(P) U U ,(O, x) U U ,(x, 00)
x~P xEP

Ux~P ,(O, x) debe ser vacío porque no quedan puntos por

f*(P) = U ,(x,oo) = lLp (4.1)
xEP

Es decir, los eventos que pueden provocar que el autómata abandone la locación de aceptación son exacta-
mente los que están prohibidos hasta el final de la ejecución.

En el caso de los autómatas reconocedores que acabamos de presentar, también vale que los cinco conjuntos
en los que están dividid~ las aristas son disjuntos dos a dos dado que la estructura de las mismas es similar
a la del caso temporizado.

Observación. En todo autómata reconocedor para un patrón de eventos los conjuntos de aristas Mark,
Instant, Skip, Fail y Trap son disjuntos dos a dos.

y también se mantiene una de las propiedades más importantes de los autómatas reconocedores: que las
evoluciones del autómata siempre van extendiendo la configuración actual o a lo sumo la mantienen igual,
pero nunca la reducen.

Propiedad 4.11. Dado un patrón de eventos P = (I:, P, e, -+", eS,0, 00) y su autómata reconocedor
Ap = (S, X, I:, A, I, so), sean e y e' configuraciones de P. Si [e] =? [8'], entonces toda evolución en-
tre [e] y [e'] tiene la forma:

([eo], vo) =?~~([ed, vi) =t: ... ([ei],Vi) =?~: ... =?~::~,'([8n], vn)

donde eo = e, en = e' y para todo i, O::; i < n, Vi E Vx, ai E I:U {.\}, ti E 3?+ y Si+l es igual a Si o
es una extensión de ei.

Extendemos los conceptos de matching básico parcial y matching temporizado parcial al caso de los patrones
de eventos.

Definición 4.1.14. Matching parcial.
Dado un patrón de eventos P = (I:,p,e,-+",eS,o,oo), un conjunto de puntos e ~P, una ejecución tem-
porizada O" = (~,T) sobre I: y un mapeo : : e 1-+ TI,,", decimos que: es un matching parcial entre O" y P
restringido a e sii verifica las condiciones MP1-MP4 + MPT1-MPT2 Yademás se verifica que:

MPI
MPS
MPTI

VxE e,
VXE e,
VxE e,

O"x) n ,(O,x) = 0
O"(x n ,(x, 00) = 0
6.(Tx)) 1=c5(O,x)

Un matching parcial caracteriza la forma en que queremos que funcione nuestro autómata: a medida que
va marcando puntos, debe cumplir con todas las condiciones que sean necesarias para que el mapeo sea
finalmente un matching. M3 + MPI garantizan que los puntos marcados no violen ninguna restricción de
eventos que existiera entre ellos (incluyendo al punto inicial que siempre está "marcado"). MPT + MPTI
garantizan lo mismo pero para las restricciones temporales y, finalmente, MP4 + MPS garantizan que
ninguna posición consumida de la ejecución violara una restricción de eventos activa. La diferencia entre
MP4 y MPS es que la primera se refiere a restricciones de eventos que eventualmente serán desactivadas
mientras que la segunda hace referencia a restricciones que siempre permanecerán activas, es decir, a eventos
en el conjunto lLp.

Una vez más, a partir de matching parcial podemos definir lila nueva noción de satisfacción parcial:
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Definición 4.1.15. Satisfacción parcial de patrones de eventos.
Dado un patrón de eventos P = (L:, P, 1:',-r+, [, 8,O,(0) Y un conjunto de puntos C ~ P, una ejecución
temporizada a sobre L: verifica o satisface parcialmente P restringido a C (notado a I=e P) sii existe un
matching parcial entre a y P restringido a C.

En este caso, como en los anteriores, para cualquier patrón de eventos P y cualquier ejecución temporizada
a , a 1= P si y sólo si a 1= e P.

Planteamos y demostramos una vez más las propiedades de Completitud y Corrección del autómata recono-
cedor, en este caso, para patrones de eventos.

Propiedad 4.12. Corrección del autómata reconocedor para patrones de eventos.
Dado un patrón de eventos P = (L:,P,1:',->,[,8, O, (0) y su autómata reconocedor Ap = (5,X, L:,A,I, so),
para toda configuración e E ep y toda ejecución finita a = (<;, T) sobre L:,

si qinit =>~ [e] entonces a I=e P

Intuitivamente, se puede ver que esta propiedad debe valer en el caso de los patrones de eventos tanto como
valía para el caso temporizado. Dado que podemos asimilar las restricciones referentes al punto inicial con
el resto de las restricciones entre puntos comunes asumiendo que el punto inicial esta siempre "marcado" y
además podemos asimilar las restricciones referentes al punto final con el resto de las restricciones asumiendo
que el punto final nunca será "marcado", el funcionamiento de este autómata es muy similar al del caso
temporizado, al menos en lo que se refiere a consumir prefijos finitos de una ejecución. La demostración
completa se encuentra en el Apéndice A.

Propiedad 4.13. Completitud del autómata reconocedor para patrones de eventos.
Dado un patrón de eventos P = (L:,P, 1:',->, [, 8, O, (0) Y su autómata reconocedor Ap = (5, X, L:, A,I, so),
para toda configuración e E ep y toda ejecución finita a sobre L:,

si a I=e P entonces qinit =>(7 [e]

Nuevamente, si tratamos a las restricciones con respecto al punto inicial simplemente como restricciones que
empiezan estando activas y eventualmente serán desactivadas y tratamos a las restricciones con respecto al
punto final como restricciones que empiezan estando desactivadas y eventualmente serán activadas, es fácil
ver que el funcionamiento de estos autómatas reconocedores es muy similar al de los autómatas del caso
temporizado. La demostración sigue la misma línea que en los dos casos anteriores: muestra como construir
una evolución sobre Ap que consuma la ejecución y que llegue hasta [e] a partir de un matching parcial.
La demostración completa se encuentra en el Apéndice A.

Dado que sabemos que el autómata reconocedor verifica las propiedades de Completitud y Corrección,
podemos garantizar que el autómata captura todas las formas posibles de marcar los puntos del patrón de
eventos asociado sobre un prefijo finito de una ejecución. En el caso de los patrones básicos o de los patrones
temporizados, esto equivalía a garantizar que capturaba todos los matchings. En el caso de los patrones
de eventos, como no son cerrados por extensiones, esta conclusión no es tan directa. Sin embargo, veremos
a continuación que agregando la condición de aceptación de Büchi {saccepd al autómata reconocedor, el
w-autómata resultante captura exactamente el lenguaje del patrón.
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Tableau para patrones de eventos

Teorema 4.14. Tableau para patrones de eventos. Dado un patrón de eventos P = (I::, P, e, ->, 7, <>,0, (0),
el autómata de Büchi temporizado Tp = (Ap, {saccept}) reconoce el lenguaje L(P) .

.La condición de aceptación de Büchi {saccep¡} exige que se visite un número infinito de veces saccept. Sabemos
que los autómatas reconocedores para patrones de eventos no tienen ciclos más allá de los loops sobre una
misma locación. Esto quiere decir que el autómata estará obligado a permanecer para siempre en saccept
para cumplir con la condición de aceptación. En particular, no podrá fallar por ningún evento (es decir,
consumir un evento prohibido) porque eso le impediría volver a saccept.

En el Apéndice A se demuestra la doble inclusión entre L(Tp) y L(P).

4.2 Model-checking de patrones de mal comportamiento
Ya hemos mostrado como construir un autómata reconocedor y a partir de éste un tableau para cada uno
de los tres tipos de patrones de eventos. En particular, la construcción hecha para los patrones básicos y los
temporizados son casos particulares de la construcción para patrones de eventos.

Dado un sistema S modelado con un autómata temporizado As y dado un requerimiento R del sistema,
donde el patrón de mal comportamiento P~R captura los comportamientos que no cumplen R, el problema
de model-checking de patrones de mal comportamiento consiste en decidir si As 1= P~R. Dado que el patrón
captura comportamientos no deseados en el sistema, alcanza con que alguna de las ejecuciones del lenguaje
L(As) satisfaga el patrón para concluir que el sistema viola el requerimiento R. Formalmente, definimos la
relación 1= entre un autómata temporizado y un patrón de mal comportamiento cómo:

Definición 4.2.1. Satisfacción de patrones de mal comportamiento.
Dado un autómata temporizado A = (8, X, I::', A,I, so) y el patrón de mal comportamiento
P = (I::,p,e, ->,7,<>,0,(0), con I:: <:;:; I::',

AI=P sii

El alfabeto de un patrón de mal comportamiento (en este caso I::) podría ser mas reducido que el alfabeto
del sistema (en este caso I::'). Esto podría darse porque el patrón podría hacer referencia a un numero
relativamente pequeño de eventos en el sistema. Si éste es el caso, alcanza con considerar el lenguaje
ampliado de P según el alfabeto I::' (Definición 3.3.5). Recordemos que los eventos que no son explícitamente
mencionados por un patrón pueden ser ignorados a la hora de decidir satisfacción.

Nuestro algoritmo de model-checking no está basado en la definición anterior. Reescribiremos el problema de
la intersección de lenguajes de alguna forma que nos resulte más conveniente para realizar el chequeo. En la
sección anterior mostramos que dado un patrón de mal comportamiento el tableau Tp captura exactamente
el lenguaje del patrón. Veremos ahora que, además, al componer el autómata A con el tableau del patrón
P, el lenguaje del autómata (de Büchi) obtenido es distinto de vacío sólo cuando A 1= P. De alguna manera,
el tableau del patrón puede pensarse como un Büchi Obseruer al estilo de los presentados en [BraDD].Dado
que Tp tiene aristas por todos los eventos y todos los invariantes de sus locaciones son T, podemos decir que
Tp "acompaña" a A. Es decir, Tp no restringirá ninguna de las evoluciones posibles en A. Simplemente,
en paralelo con cada una de esas evoluciones el observador intentará construir un matching para ejecución
expuesta por la evolución. Si el observador logra alcanzar saccept Y permanecer indefinidamente en dicha
locación significará que ha logrado construir un matching para alguna ejecución aceptada por A y, por lo
tanto, A verificaba el patrón P.
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Teorema 4.15. Dado un autómata temporizado A = (8, X, I;', A,I, so) y un patrón de mal comportamiento
P = (I;,p,e,- ...•",ó, 0,(0), con I; ~ I;',

AFP sii

Demostración. Por la definición de satisfacción de patrones de eventos, sabemos que A F P si y sólo si
.c(A) n .cE,(P) =1 0, es decir, si y sólo si existe una ejecución O' sobre I;' tal que O' E .c(A) y O'fE E .c(P).
Por el Teorema Tableau 4.14, sabemos que O'fE E .c(P) si y sólo si O'fE E .c(Tp).
Quiere decir que A F P si y sólo si existe alguna ejecución O' sobre I;' en .c(A 0 Tp) (Observación 2.2), es
decir, si y sólo si .c(A 0 Tp) =1 0.

o

Como dijimos antes, el observador acompaña las evoluciones del autómata A y sabremos que ha encontrado
una ejecución de A que satisface el patrón si logra alcanzar locaciones compuestas con saccepty, además, logra
permanecer indefinidamente en dichas locaciones (recordemos que en Ap no se puede volver a sacceptuna vez
dejada esa locación). Supongamos que asociamos a todas las locaciones compuestas con saccept la proposición
accept. La fórmula TCTL 30accept dice que accept es alcanzable por al menos una evolución. Si evaluamos
esa fórmula en el estado inicial del autómata compuesto, la fórmula será verdadera si y sólo si el observador
logra marcar todos los puntos del patrón sobre alguna ejecución del autómata. Sabemos que esto es una
condición necesaria para que la ejecución satisfaga el patrón, pero no suficiente (propiedad de Clausura débil
por extensiones). Tenemos que garantizar, además, que el observador pueda permanecer indefinidamente en
locaciones donde valga accept. Esto también puede expresarse en TCTL como 30accept, es decir, existe al
menos una evolución en la cual siempre vale accept. Quiere decir que si la fórmula 30(30accept) valiera
evaluada en el estado inicial del autómata compuesto, indicaría que necesariamente alguna de las ejecuciones
de A satisface el patrón de mal comportamiento. Por lo tanto, obtenemos el siguiente corolario a partir del
teorema anterior:

Corolario 4.16. (Model-checking de patrones de mal comportamiento)
Dado un autómata temporizado A = (8, X, I;', A, I, so) y un patrón de mal comportamiento
P = (I;,p,e, .....",ó, 0,(0), con I; ~ I;',

A F P sii AllAp F init => 30(30accept)

donde P(accept) = 8 x {saccep¡} y P(init) = {(SOA, SOA'P)}.

Quiere decir que hemos reducido nuestro problema de model-checking de patrones de mal comportamien-
to a un problema de model-checking de autómatas temporizados, que se sabe decidible (ver por ejemplo
[HNSY92]). Con lo cual como segundo corolario tenemos que:

Corolario 4.17. (Decidibilidad de model-checking de patrones de mal comportamiento)
Dado un autómata temporizado A = (8, X, I;', A,I, so) y un patrón de mal comportamiento
P = (I;, P, e, .....", ó, 0, (0), con I; ~ I;', el problema de determinar si A F P es decidible.

Más adelante veremos que la reducción del chequeo de patrones a model-checking de autómatas temporizados
sirve además como un método práctico para construir un algoritmo de verificación de patrones. El esquema
general de ese algoritmo de verificación fue esbozado en la Figura 1.5.



Capítulo 5 

Casos de estudio 

5.1 Sistema Mine Drainage Controller 

El primer caso de estudio que analizaremos corresponde a un ejemplo bien conocido basado en un caso real: 
el diseño de un controlador para un sistema de extracción de agua de una mina . Este ejemplo es comúnmente 
referenciado en la literatura (por ejemplo en [M.J96, BW96]) e ilustra muchas de las características que poseen 
los sistemas de tiempo real embebidos. La versión sobre la cual trabajamos es una extensión presentada en 
[BraOO]. 

5.1.1 Descripción del Sistema 

El sistema es utilizado para bombear el agua que se colecta en la base de una mina y llevarla a la superficie. 
Para evitar el peligro de explosión, la bomba no debe ser operada cuando el nivel de gas metano en la mina 
alcanza cierto valor crítico . 
Los valores del ambiente (flujo de aire, monóxido de carbono, flujo de agua) son leídos periódicamente. El 
nivel del agua (alto/ bajo) es comunicado a través de interrupciones . 
El objeto protegido Motor provee los servicios para operar la bomba y observar el status del motor. El 
objeto protegido CH4Status conserva el valor de la última lectura del gas metano. 
Cuando hay una situación de riesgo (el nivel de gas o el flujo de aire se vuelven críticos, el nivel del flujo 
de agua leído no coincide con el status del motor, etc) se informa una alarma al objeto protegido Operator 
Console, para ser eventualmente señalizada a una consola remota en donde está el operador. Las operaciones 
y lecturas son registradas en el objeto Lag. Existe una tarea esporádica Command utilizada para atender las 
solicitudes del operador remoto. Estas solicitudes son: inspeccionar el status del motor, prender o apagar la 
bomba. 
Los sensores de CO y CH4 usan la técnica "desplazamiento periódico" para realizar las lectÚras: solicitan 
una lectura que debería estar disponible en el siguiente período (si no se produciría una alarma). 
Se adiciona al sistema otro mecanismo de detección de fallas que consiste en una tarea watchdog que chequea 
periódicamente la disponibilidad del sensor de nivel de agua. Primero envía una solicitud y después extrae 
los acknowledges recibidos y encolados por una tarea esporádica en los ciclos anteriores. Si el watchdog 
encuentra la cola de ACKs vacía, lo informa como una situación errónea. 
La Figura 5.1 muestra el diseño del sistema usando una notación similar a la utilizada en [BW95]. 

5.1.2 Requerimientos 

Nos interesa verificar que el diseño anteriormente descripto cumple con una serie de requerimientos que deta­
llamos a continuación. Estos requerimientos están extraídos de [BraOO]. Para cada uno de ellos, mostramos 
un patrón de mal comportamiento que captura los escenarios en los que no se cumple el requerimiento. 

Requerimiento 5.1. {Separación) Dos lecturas consecutivas del Wat er-fiow Sensor deben estar separadas 
entre 960 u. t. y 1040 u. t. 
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Patrón 5.1: patrón de mal comportamiento para el Requerimiento 5.1 - Separación

eo-set • -+-->-:1C:0-:-0--.~ - co-r-ecd

Patrón 5.2: patrón de mal comportamiento para el Requerimiento 5.2 - Frescura

El Patrón 5.1 describe las ejecuciones en las cuales la separación en el tiempo entre una lectura del Water-fiow
Sensor (punto p) y la lectura inmediatamente anterior (punto q) está fuera del rango [960,1040], violando
el Requerimiento 5.1.

Requerimiento 5.2. (Frescura) La antigüedad de las mediciones de ca debe ser como máximo de 100 u.t.
cuando se toma una decisión en la tarea del sensor correspondiente.

El Patrón 5.2 representa aquellos escenarios en los cuales se produce una lectura del nivel de ca (evento
co-read) y la última medición anterior a la lectura (evento co-set) se había producido más de 100 u.t. antes.

Requerimiento 5.3. (Correlación) La diferencia de antigüedad entre las mediciones de CH4 y ca que se
registran de a pares en el log no puede ser mayor a 1DOu. t..

El Patrón 5.3 captura las ejecuciones que violan este requerimiento. En dicho patrón se identifica un
determinado momento en que se registra en el log una medición de CH4 (punto 11) y otro momento en
que se registra una medición de ca (punto 12). Las marcas de consecutividad entre 11 y 12 indican que se
trata de dos registraciones que coexisten en ellog en cierto momento (no hubo otra registración por parte
del sensor de CH4 entre ambos puntos, así como tampoco ocurrió otra registración del sensor de ca entre
dichos puntos). El punto 51 corresponde entonces a la última medición realizada por el sensor de CH4 antes
de 11. De la misma manera, el punto 52 corresponde a la última medición realizada por el sensor de ca antes
de 12. Quiere decir que las mediciones realizadas en 51 y 52 son las posteriormente registradas en 11 y 12, Y
por lo tanto coexisten en el log hasta la siguiente registración. Ahora bien, el patrón también dice que 51 y
52 están separados en el tiempo por mas de 100 u.t., violando el requerimiento de Correlación.

El ejemplo anterior evidencia la capacidad de abstracción que brindan los patrones de eventos para expresar
relaciones de causalidad complejas entre eventos. El hecho de no haber tenido que precisar el orden de
ocurrencia entre 51 y 52 o entre 11 y 12 permite una representación compacta y elegante de la propiedad
de correlación. A modo de comparación, el autómata observador para el Requerimiento 5.3 presentado en
[BraOO]contaba con 11 locaciones y 24 aristas.
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Patrón 5.3: patrón de mal comportamiento para el Requerimiento 5.3 - Correlación

5.2 Protocolo CSMA/CD
El segundo caso de estudio que analizaremos está basado en el protocolo de comunicación CSMA/CD [Tan96,
IEE85], usado para controlar el uso de un bus compartido en una red broadcast. La descripción del sistema
que utilizamos sigue la línea de [XJS92].

5.2.1 Descripción del sistema

El protocolo CSMA/CD (Carrier Sense, Multiple Access with Collision Detection) es muy utilizado en LANs
en la capa MAC (control de acceso al medio físico). Resuelve el problema de compartir un único canal en
una red broadcast (canal multi-access). Cuando una estación tiene datos para enviar, primero escucha el
canal para determinar si está siendo usado por otra estación. Si el bus parece no estar siendo utilizado, la
estación comienza a enviar el mensaje. Si el bus está ocupado, la estación espera una cantidad de tiempo
aleatoria y repite el proceso. Cuando ocurre una colisión, la transmisión se aborta en forma simultánea por
todas las estaciones que estuvieran transmitiendo en ese momento y todas esperan una cantidad aleatoria
de tiempo antes de reintentar el envío.

Las estaciones comparten un único canal. Asumimos que el canal es un bus Ethernet de lOMbps, con tiempo
de propagación de (J = 26¡.¿sen el peor caso. Los mensajes tienen un tamaño fijo de 1024 bytes y el tiempo
para enviar un mensaje completo, incluyendo el tiempo de propagación es, entonces, de 808ps. El bus es
libre de errores, no se realiza buffering de mensajes entrantes. La señal de colisión tarda a lo sumo (J para
llegar a todos los emisores.

La Figura 5.2 muestra la estructura del sistema para el protocolo CSMA/CD. Cada caja representa un
componente del sistema. Las líneas representan la sincronización entre los componentes. Cada uno de los
serulers y el bus se sincronizan mediante los siguientes eventos:

• beqin¿ - El setuler, comienza a enviar un mensaje (el bus no estaba ocupado)

• buSYi - El sender, encuentra el bus ocupado

• end; - El sender, completa la transmisión del mensaje

• cd; - El sender, detecta una colisión

5.2.2 Requerimientos
Requerimiento 5.4. Si uno de los setulers comienza a transmitir mientras el otro está transmitiendo, ambos
deben recibir la notificación de colisión antes de que alguno de los dos finalice con éxito la transmisión.



CAPÍTULO 5. CASOS DE ESTUDIO 71

~ beginl ~ begin2 ~

CJ---~-:-~_ll __L:J__bu_ec-:_~_:_-CJ

Fjgura 5.2: Estructura del sistema para el protocolo CSMAjCD

beginl begin2

• •

:~).~,
• end
l'.
r

end = {endl, end2}

Patrón 5.4: patrón de mal comportamiento para el Requerimiento 5.4

El Requerimiento 5.4 resume una de las propiedades más importantes del protocolo CSMAjCD: en ningún
momento una colisión puede pasar inadvertida para alguno de los senders de forma tal de que crea que ha
finalizado con éxito la transmisión de su mensaje. El Patrón 5.4 representa los escenarios en los que se viola
esta propiedad. El punto r corresponde a alguno de los dos senders finalizando (aparentemente con éxito) la
transmisión de su mensaje. "Retrocediendo" en la ejecución encontramos que en el punto p el sender , había
comenzado a transmitir un mensaje. Dado que entre p y r que dicho sender no detectó ninguna colisión ni
terminó de enviar su mensaje (no hubo ningún evento cd1 ni end1), quiere decir que el seruler , continuó
enviando su mensaje al menos hasta r. Por el otro lado, en el punto q, el sender2 también comenzó a
enviar un mensaje. Dado que entre q y r el sender-. tampoco dejo de transmitir, el segundo sender también
se encontraba transmitiendo al menos hasta el punto r. Quiere decir que los dos senders transmitieron,
al menos por un período de tiempo, simultáneamente y alguno de los dos terminó la transmisión con la
conclusión errónea de que había sido exitosa.

Una vez más, la posibilidad de no tener que fijar arbitrariamente el orden de ocurrencia de todos los eventos
(es decir, la posibilidad de especificar un orden parcial entre los mismos) nos permitió escribir en forma
compacta el Patrón 5.4. Este patrón captura todas las combinaciones posibles sobre cual de los senders
comienza a transmitir primero y, además, cual de los senders termina de transmitir primero.

Requerimiento 5.5. Si 'Uno de los senders comienza a transmitir mientras el otro estaba transmitiendo,
ambos deben recibir la notificación de colisión dentro de los primeros 52J.lS de transmisión.

Este requerimiento es otra de las propiedades fuertes del protocolo CSMAjCD. Dado que estamos asumiendo
que el tiempo de propagación es en el peor caso de a = 26 J.lS, desde que un sender comienza a transmitir
hasta que el otro sender percibe que el bus está ocupado podrían pasar como máximo 26us. Si este fuera el
caso, querría decir que el primer sender notaría la colisión aproximadamente 26us más tarde, es decir, a lo
sumo 52 J.Lsdespués de que comenzara a transmitir. Pasados los 26J.LSiniciales el otro sender directamente
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Patrón 5.5: patrón de mal comportamiento para el Requerimiento 5.5

no podría comenzar a transmitir porque notaría que el bus estaba siendo utilizado. Quiere decir que cuando
un sender comienza a transmitir, o bien recibe una señal de colisión dentro de los primero 52J-LSo puede
estar seguro de que terminará de transmitir exitosamente (recordemos que estamos asumiendo que el canal
está libre de errores).

El Patrón 5.5 muestra los casos en los cuales el Requerimiento 5.5 sería violado. El punto r representa
un instante dentro de la ejecución con la siguiente propiedad: tanto el sender , como el sender- se en-
cuentran transmitiendo y además el sender , estuvo transmitiendo sin percibir la colisión por más de 52J-Ls.
Implícitamente, el patrón asume que el sender ; fue el que comenzó primero la transmisión. Para cubrir
todos los casos tendríamos que verificar también otro patrón simétrico a éste .en el cual senders fuera el que
comenzó primero. Sin embargo, dado que el sistema es simétrico con respecto a los senders (ninguno tiene
propiedades distintas del otro), si se da el comportamiento no deseado asumiendo que comienza siempre el
sender-, necesariamente debe también se violará el requerimiento asumiendo que comienza el sender-: Y
también es cierta la propiedad recíproca: si se demuestra que que el sistema es correcto con respecto al
Requerimiento 5.5 asumiendo que comienza el senderi, también será correcto si asumiéramos que el senders
es el que comienza.

Más allá de esta simetría entre los senders en el modelo del protocolo CSMA/CD, acabamos de identificar una
limitación del lenguaje basado en patrones de eventos. Para solucionar este problema, sería interesante que
el lenguaje permitiera hablar de "el último de los eventos ocurridos" o el "primero de los eventos ocurridos"
en un cierto conjunto. Por ejemplo en este caso quisiéramos decir que sin importar si beginl ocurre antes
que begin2 o viceversa, el tiempo transcurrido entre el que haya ocurrido primero y el punto r sea mayor
a 52J-LS.Entendemos que la incorporación de estos elementos al lenguaje aumentará el poder expresivo del
mismo y por eso mismo está incluida como una de las extensiones que forman parte de nuestra propuesta
de trabajo futuro.

5.3 Analizador de variables ambientales
Este último caso de estudio que analizaremos está basado en un hipotético sistema de tiempo real distribuido.
Si bien no representa un caso real, comparte las características de muchos sistemas de este tipo y nos permitirá
mostrar el poder expresivo de los patrones de mal comportamiento para expresar propiedades de concurrencia
y causalidad.

5.3.1 Descripción del sistema

El sistema que analizaremos constituye un sistema de tiempo real distribuido, compuesto por un nodo central
de monitoreo y dos nodos dedicados al muestreo y preprocesamiento de variables ambientales. Los nodos de
muestreo tienen una tarea periódica que lee los datos del sensor, los procesa y escribe el resultado en una
variable protegida. Otra tarea esporádica se dedica a recibir pedidos del exterior, empaquetar y enviar los
últimos datos procesados y guardarlos en la variable compartida.
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Figura 5.3: Estructura del Analizador de variables ambientales

La Figura 5.3 muestra la estructura del sistema. El nodo central, en caso de que se le haga un requerimiento
comienza su tarea de recolección de datos muestreados enviando el pedido a ambas estaciones. Luego, espera
ambas respuestas y aparea los datos para finalizar su tarea. Todas estas acciones forman parte de una ronda
de muestreo. Se sabe que los pedidos y sus respuestas no son almacenados en un buffer.

5.3.2 Requerimientos

Requerimiento 5.6. (Correlación) La antigüedad de los datos apareados no difiere en más de dI ms.

El sistema toma decisiones en base a los valores medidos por el sensor A y el sensor B. Es importante por lo
tanto que las mediciones no difieran mucho en antigüedad para que la decisión tomada por el sistema pueda
ser considerada válida. El Patrón 5.6 describe las ejecuciones que violarían este requerimiento. El patrón
identifica los puntos p y e que corresponden al inicio y al final de una misma ronda de muestreo. A partir
del momento en que termina dicha ronda (punto e), podemos "retroceder" en la ejecución identificando los
momentos en que se recibió el valor sampleado por A (evento receiveA), dicho valor fue enviado por el sensor
A (evento sendA), el valor fue leído desde la variable compartida (evento readA) y finalmente el momento
en que se recibió el request desde el colector (evento receive - pingA). De la misma manera, se pueden
identificar los eventos correspondientes al sensor B, desde que se recibe el ping del colector hasta que este
último recibe el dato. Se identifican todos estos puntos empezando desde la finalización de la ronda (punto
e) y contextualizándolos con el inicio de la misma (punto p) para garantizar que corresponden todos a la
misma ronda y que no hay posibilidad de tomar eventos de rondas anteriores. De esta forma sabemos que los
puntos rA Y rs corresponden a las lecturas de las mediciones de los sensores A y B, respectivamente, usados
por el procesador al final de la ronda. A partir de rA y rs podemos identificar la última escritura anterior
a sendas lecturas (puntos WA Y WB, respectivamente). A su vez, a partir de WA Y WB se puede identificar el
momento en que fueron sampleados los valores que luego fueron escritos (últimas ocurrencias de sampleA y
sampleB antes de las escrituras). Quiere decir que los valores sampleados en 5A y 5B son los que finalmente
fueron apareados al finalizar la ronda. El patrón describe, por lo tanto, todos aquellos casos donde 5A y 5B

ocurrieron con más de dI ms de separación y por lo tanto no se cumple el requerimiento de correlación.
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Patrón 5.6: patrón de mal comportamiento para el Requerimiento 5.6 - Correlación

Para facilitar la comprensión del Patrón 5.6, se organizaron los eventos en andarivelesr según la tarea a la
cual pertenecían. Las tareas Sampler A y Sampler B corresponden a las tareas periódicas de recolección de
los datos medidos por sendos sensores. Las tareas Atención Interrupciones A y Atención Interrupciones B
corresponden a las tareas esporádicas que atienden los pedidos generados por el Colector.

En este ejemplo se ve claramente el uso del orden parcial entre eventos para indicar paralelismo y síncro-
nización entre los eventos de procesos distintos. Si bien el Patrón 5.6 es sin lugar a dudas el patrón mas
complejo que analizamos en este trabajo, su complejidad está intrínsecamente relacionada con la compleji-
dad de la propiedad que queríamos expresar. Aunque hayamos enunciado la propiedad en castellano en una
sóla línea, para expresarla de forma tal de que pueda ser verificada en forma automática es necesario ser
precisos con respecto a la correspondencia entre eventos (por ejemplo para no permitir que se compare la
lectura de un dato ocurrida en una ronda con otra lectura ocurrida en una ronda anterior). Lo que termina
siendo un patrón de mal comportamiento mediano hubiera sido prácticamente imposible de escribir (desde
el punto de vista de un ingeniero) usando un lenguaje basado en interleaving de eventos como los autómatas
temporizados.

Requerimiento 5.7. (Frescura) En el momento de ser recolectados y apareados, los datos no deben tener
más de d2 ms de antigüedad.

El Patrón 5.7 captura los comportamientos que violan este requerimiento con respecto al sensor A. Dado que
los sensores A y B son indistinguible s para nosotros no es necesario verificar aparte el caso para el sensor B.
Como en el caso anterior, se identifican los puntos de comienzo (punto p) y finalización (punto e) de una
ronda correspondiente a una cierta actuación del procesador (punto a). Es decir, los datos usados en a

1El uso de andariveles es un recurso puramente gráfico y no forma parte del lenguaje de patrones de eventos.
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Patrón 5.7: patrón de mal comportamiento para el Requerimiento 5.7 - Frescura

fueron recolectados en la ronda demarcada por p y e. Una vez más, usamos la estrategia de "retroceder"
en la ejecución buscando los momentos en que se realiza la recepción de datos del sensor (evento receiveA),
el sensor envían esos datos (evento sendA)2y finalmente el momento en que se lee la variable compartida
escrita por el sampler (evento readA). Sabemos que este readA fue además el primero en ser realizado desde
que se recibió el ping del colector (evento receive - pingA) y por lo tanto podemos estar seguros que rA
corresponde a la lectura de los valores que fueron posteriormente utilizados en a. Desde rA podemos localizar
la última escritura realizada sobre la variable compartida (punto W A) y a su vez el último muestreo antes
de esa escritura (punto sa). Quiere decir que en SA se realiza la medición que posteriormente fuera utilizada
en a. El patrón describe aquellos escenarios en los cuales la medición ocurrió más de d2 ms antes de su
utilización y por lo tanto los datos utilizados no eran suficientemente frescos.

Requerimiento 5.8. (Respuesta acotada) El tiempo de respuesta entre el pedido de apareo y el apareo en
sí mismo no supera los d3 ms.

El Patrón 5.8 identifica el comienzo (punto p) y la finalización (punto e) de una ronda de muestreo. El
pedido de apareo (evento request) correspondiente a dicha ronda es el último antes de p y está representado
por el punto r. La actuación correspondiente a la ronda (en donde se aparean de los datos) es la primera
después de e y está representada por el punto a. El patrón describe aquellas ejecuciones en las cuales entre
r y a transcurren más de d3 ms y por lo tanto se viola el requerimiento de respuesta acotada.

2Como sabemos que no se utilizan buffers en el sistema, aparear la recepción de un mensaje con su envío es muy simple y
consiste en encontrar el último envío anterior a la recepción.
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Patrón 5.8: patrón de mal comportamiento para el Requerimiento 5.8 - Respuesta acotada



Capítulo 6

Implementación

En los capítulos anteriores vimos que el problema de model-checking de patrones de mal comportamiento
es decidible y lo demostramos reduciéndolo a un problema de verificación de autómatas temporizados. El
enfoque basado en autómatas reconocedores que utilizamos en el capítulo 4 servirá también como base para
la implementación de un verificador de patrones de mal comportamiento.

Dado un sistema S modelado con un autómata temporizado As y dado un requerimiento R sobre S, el
diseñador deberá construir un patrón de eventos P ~R que represente los comportamientos que violan R.
Este patrón y el modelo del sistema serán el input para el Verificador de patrones. La Figura 1.5 muestra
esquemáticamente la estructura de nuestro verificador.

6.1 Verificación de patrones de mal comportamiento

En esta sección presentamos el algoritmo básico implementado por nuestra herramienta de verificación de
patrones de mal comportamiento. Dado un autómata temporizado As que modela el comportamiento de
un sistema S y un patrón de mal comportamiento P, nuestra herramienta decide si As F P, es decir, si el
sistema S admite algún comportamiento no deseado descrito por P.
El algoritmo de verificación de patrones utiliza los conceptos presentados en el capitulo 4 en cuanto a
reducción a un problema de verificación de autómatas temporizados y se basa en la herramienta Kronos
como motor de decisión.

Dado un autómata temporizado As y un patrón de mal comportamiento P, nuestro algoritmo de verificación
realiza los siguientes pasos:

1. Construye un autómata reconocedor Ap a partir del patrón de mal comportamiento utilizando un
algoritmo basado en la definición 4.1.13 que describiremos más adelante

2. Utiliza la herramienta Kronos para decidir si AslIAp F <Paccept, donde <Paceept es la fórmula TCTL
presentada en el Corolario 4.16

3. El algoritmo contesta OK si y sólo si Kronos contestó OK

La próxima sección describe el algoritmo de construcción de autómatas reconocedores. En el Apéndice B
se mencionan las principales características de la implementación de la herramienta de verificación en el
lenguaje Java y se muestra la aplicación del Verificador de patrones a los requerimientos para el protocolo
CSMAjCD presentados en el capítulo 5.

77
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Patrón 6.1: Patrón de mal comportamiento

6.1.1 Algoritmo _para construcción de autómatas reconocedores

El algoritmo que utilizaremos para la construcción de autómatas reconocedores para patrones de mal com-
portamiento está basado en la definición 4.1.13, aunque no es una implementación directa del mismo. Para
construir el autómata, comenzaremos analizando la locación inicial del mismo (correspondiente a la confi-
guración vacía) y evaluaremos todas las posibles formas de extender dicha configuración. Para cada una de
las extensiones generadas, repetiremos este procedimiento en forma recursiva hasta saturar el conjunto de
locaciones del autómata, es decir, hasta que no haya forma de agregar más locaciones. Informalmente, a
partir de un patrón P el algoritmo realizará los siguientes pasos:

1. Crear el conjunto de locaciones con sólo las locaciones {[0], Strap}

2. Mientras se puedan seguir agregando locaciones:

(a) Para cada locación del conjunto, generar todas las aristas salientes de dicha locación. Si el destino
de alguna de estas aristas no pertenece al conjunto de locaciones, agregarlo.

3. Generar todas las aristas Tr ap

4. Poner T a todos los invariantes de todas las locaciones

5. Construir X, el conjunto de relojes del autómata

6. Poner [0] como locación inicial

Claramente, nuestro algoritmo no generará configuraciones que no sean alcanzables desde la configuración
inicial. La forma naive de generar todas las posibles aristas salientes desde una locación consiste en probar
uno a uno con todos los puntos y todos los eventos y verificar si se cumple con las condiciones que establece la
definición 4.1.13. Sin embargo, esta estrategia puede ser mejorada fácilmente. Veamos, en primera instancia,
qué estrategia se puede utilizar para generar todas las aristas Mark e Instant.

La primera condición para que exista una arista saliente Mark o Instant desde una locación es que exista
alguna forma de extender la configuración asociada (definición 4.1.2). Nuevamente, existe una forma muy
ingenua de generar todas las posibles extensiones de una configuración que consiste en tomar uno a uno
todos los puntos que no pertenezcan a la configuración y verificar si todos los predecesores de dicho punto
pertenecen a la configuración. Sin embargo, se puede restringir la búsqueda de extensiones a un conjunto
más acotado de candidatos. .
Por ejemplo, ningún punto que tenga al menos un predecesor podrá servir para extender la configuración
vacía. Quiere decir que los únicos candidatos a extensión de la configuración vacía son los elementos ínfimos
del orden parcial-xe. Por otro lado, un candidato para extender una configuración será también candidato de
todas las extensiones de dicha configuración que no lo contengan. Conociendo el conjunto de candidatos para
una configuración se puede calcular el conjunto de candidatos de cualquiera de sus extensiones simplemente
eliminando el punto que ha sido agregado y agregando los sucesores directos del punto en cuestión. Tomemos,
por ejemplo el Patrón 6.1. Estando en la configuración 0, los candidatos para extensiones son [p, q}.
Supongamos que decidimos extender a 0 por p, el conjunto de candidatos para la nueva configuración será
[q, r}. Claramente, s no puede ser de ninguna manera una extensión posible para esa configuración. El hecho
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de que un punto sea candidato para extensión con respecto a una determinada configuración no significa que
en efecto sirva como extensión. Por ejemplo, en el caso anterior, r es un candidato a extensión con respecto
a la configuración [p] pero no sirve como extensión porque q, el otro predecesor de r, no ha sido incorporado
todavía a la configuración.

Formalmente, definimos inductivamente la función Cand : 8p ---+ 2P' que asocia a cada configuración un
conjunto de candidatos para extensión de la siguiente manera:
Para todo 8 E 8p, x E P:

Cand(0) = infimos( -<.p)
Cand(8 I±l {x}) = Cand(8) \ {x} U suc(x)

infimos-c-» es el conjunto de puntos del patrón que no tienen predecesores y suc(x) es el conjunto de
sucesores directos de x. Para calcular el conjunto de ínfimos no tenemos en cuenta al elemento O.

Dada una configuración 8 y un punto x en Cand(8), debemos ver si todos los predecesores (directos) de x
están incluidos en la configuración. Para poder chequear esto en forma eficiente utilizaremos un contador
de predecesores #pred asociado a cada configuración y cada punto. Dada una configuración 8 y un punto
x, el contador determinará cuantos predecesores directos de x no pertenecen a 8. Claramente, x podrá ser
una extensión de 8 sólo si #pred(8)(x) = O. Formalmente, decimos que #pred : 8p ---+ (P ---+ N) es una
función definida como:
Para todo 8 E 8p, x, y E P:

#pred(0)(x) = #(pred(x))

#pred(8 I±l {y})(x) = {#pred(8)(y)-1
#pred(8) (y)

si y --+ x
en otro caso

donde #(pred(x)) es el cardinal del conjunto de predecesores directos de x. Contando con C y con #pred
podemos decidir en forma eficiente cuales son todas las formas posible de extender una configuración.

Proposición 6.1. Dado un patrón de eventos P = (~, P, e, -', 1, 15, O, 00), una configuración 8 E 8p y un
punto x E P,

8 I±l {x} E 8p sii x E Cand(8) y #pred(8)(x) = O

Una vez que encontramos alguna forma de extender la configuración asociada a una locación, si la extensión
corresponde a un punto de la clase 1, entonces siempre se podrá generar una arista 1nstant que marque ese
punto. Sin embargo, si la extensión corresponde a un punto de la clase E, hay que determinar para cuales
de los eventos que tiene asociados se puede construir una arista Mark. Nuevamente, esto se puede realizar
en forma naive calculando en forma explícita el valor de r~x(e) y calculando cuales de los eventos asociados
a x no pertenecen a dicho conjunto. En lugar de hacer esto, utilizaremos el concepto de restricciones activas
que introdujimos en el capítulo 4. Diremos que una restricción de eventos se activa cuando se marca el
primero de los puntos involucrados y se desactiva cuando se marca el otro. En los ejemplos presentados en la
introducción del capítulo 4 vimos que contar con el conjunto de eventos "prohibidos" en cada configuración
alcanzaba para decidir si era seguro saltear un determinado evento pero que no era suficiente para decidir
si era seguro marcar un determinado punto sobre el siguiente evento. Mostramos a través de ejemplos que
necesitábamos saber qué puntos determinan que un evento esté prohibido para poder decidir si era seguro
marcar un punto sobre ese evento. Dado un punto x y un evento e, lo primero que nos interesará saber es
si e figura como restricción entre algún punto y x y si es así, cuáles son esos puntos. Definimos la función
RestActivadasPor: Pu {O}---+ (~---+ 2PU{oo}) de la siguiente manera:
Para todo x E P, e E I::
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a b e e f
O {p} 0 0 0 0
p 0 0 0 {r} 0
q 0 0 0 0 0

0 0 0 {p,s} {s}
s 0 0 {oo} {r} {r}

Tabla 6.1: Valores de RestActivadasPor para el Patrón 6.1

a b e e f
0 {p} 0 0 0 0
{p} 0 0 0 {r} 0
{q} 0 0 0 0 0
{p,q} 0 0 0 {r} 0
{p,q,r} 0 0 0 {s} {s}
{p,q,r,s} 0 0 {oo} 0 0

Tabla 6.2: Valores de RestActivasPorEvento para el Patrón 6.1

RestActivadasPor(x)(e) = {y E P U {oo} I e E ,(x, y)}

Para el Patrón 6.1, la Tabla 6.1 muestra cual sería el valor de RestActivadasPor para cada punto y cada
evento.

Definimos también la función RestActivasPor Evento que a cada evento le asocia los puntos que determinan
que dicho evento esté prohibido en la configuración actual:
RestActivasPor Evento: ep ---> (~ ---> 2PU{ oo}) donde para todo e E 8p Ypara todo evento e E ~:

RestActivasPorEvento(0)(e) = RestActivadasPor(O)(e)
RestActivasPorEvento(e i:±j {x})(e) = (RestActivasPorEvento(8) (e) U RestActivadasPor(x) (e)) \ (e U {x})

Claramente, los puntos que determinan que un cierto evento e esté prohibido en la configuración inicial
son aquellos que tienen a e como restricción de eventos con respecto al comienzo de la ejecución. Tenien-
do las restricciones activas en una configuración e, las restricciones activas de una extensión de e serán
las que estaban activas en e más las que activa x, sin contar todas las referencias a puntos ya marca-
dos (es decir, pertenecientes a la nueva configuración). Dado que, es una función simétrica, al marcar
x, RestActivadasPor(x, e) puede hacer referencia tanto a puntos ya marcados como a puntos todavía sin
marcar. Si se da el primer caso, los puntos ya marcados no deben figurar como restricciones activas de la
configuración porque justamente han sido desactivadas al marcar x. Es por eso que a la unión entre las res-
tricciones activas hasta la configuración anterior y las restricciones activadas por x es necesario sacarle todos
los puntos ya marcados. La Tabla 6.2 muestra el valor de RestActivasPorEvento para cada configuración
y cada evento del Patrón 6.1.

Proposición 6.2. Dado un patrón de eventos P = (~, P, P, -+, " Ó, O,00), una configumción e E ep y un
evento e E ~,

e E f(e) sii RestActivasPor Evento( e) (e) =1= 0



CAPÍTULO 6. IMPLEMENTACIÓN 81

p q s
O Zo S 1 T T T
p T T zp S 5 T
q T T Zq > 2 T

z; S 5 z, > 2 T z, S 3/\ z, ;:::4
s T T zsS3/\zs;:::4 T

Tabla 6.3: Valores de RestTemp para el Patrón 6.1

Proposición 6.3. Dado un patrón de eventos P = (~,p,e,-->,'Y,8,0,00), una configuración e E ep, un
punto x E P Y un evento e E L:,

e E rl>x(e) sn RestActivasPorEvento(e)(e) \ {x} # 0

Contando con la función RestActivasPor Evento, para decidir si se puede agregar una arista M ark sa-
liente desde una configuración e por un evento e hacia una extensión 8 l±I {x} alcanza con verificar que
RestActivasPorEvento(e)(e) \ {x} = 0. Es decir, que no haya ningún punto no marcado distinto de x que
prohíba la ocurrencia del evento e. La misma función RestActivasPorEvento nos permite generar las aristas
Skip y Fail simplemente verificando si RestActivasPorEvento(e)(e) es vacío o no lo es, respectivamente.

Para generar las guardas de las aristas M ark e Instant usaremos una función que dado un par de puntos
devuelve la restricción sobre los relojes que representa a la restricción temporal correspondiente. Es decir,
RestTemp: P U {O}x P ---> '*' x es una función tal que para todo par de puntos x E P U {O},YE P:

RestTemp(x, y) = '1j;z.(8(x,y))

La Tabla 6.3 muestra el valor de RestTemp para todo par de puntos del Patrón 6.1.

Se puede ver que si bien 8 es una función simétrica, RestTemp no lo es. Esto es así porque RestTemp(x, y)
da la restricción sobre los relojes que representa a 8(x, y) pero asumiendo que x fue marcado antes que y.
Estando en una configuración e, la guarda de una arista Mark o Instant que marque al punto x estará
dada por la función Guarda: ep x P ---> '*' x donde para todo e E 8p y x E P:

Guarda(e,x) = A. RestTemp(y,x)
yE9U{O}

La Tabla 6.4 muestra el valor de Guarda para cada configuración y cada punto, aplicada al Patrón 6.1.

Proposición 6.4. Dado un patrón de eventos P = (~, P, e, -->, 'Y, 8, O,00), una configuración e E ep y un
punto x E P,

'1j;é = Guarda(e,x)

donde la igualdad debe ser interpretada como equivalencia lógica.

A la hora de generar las guardas y de generar el conjunto de relojes del autómata reconocedor, diferenciaremos
las restricciones temporales triviales de las no triviales. Diremos que una restricción temporal es trivial
cuando se refiere al intervalo [0,00). Análogamente, diremos que una restricción sobre relojes es trivial
cuando es lógicamente equivalente a T. Cuando las únicas restricciones sobre relojes que se apliquen sobre
un determinado reloj sean triviales, ese reloj no será agregado al conjunto de relojes. De la misma manera,
eliminaremos los términos triviales de la conjunción definida por Guarda.
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o
{p}
{q}
[p, q]
{p.q.r}
{p,q,r,s}

Zo :S 1
T
T
T
T
T

T T
T zp :S 5
T Zq > 2
T zp:S 5 A Zq > 2
T T
T T

T
T
T
T

z, :S 3 A z, ~ 4
T

p q s

Tabla 6.4: Valores de Guarda para el Patrón 6.1

Estructuras de datos

Aprovechando el hecho de que la cantidad de puntos y de eventos es finita y que por el uso que se les
dará a los patrones es de esperarse que además no sea demasiado grande! usaremos bitsets para representar
conjuntos de puntos y de eventos. Para esto asumiremos que los puntos y los eventos pueden ser mapeados
en forma unívoca en el rango [O,np) y [O,nE), respectivamente, donde np es el cardinal del conjunto de
puntos y nE es el cardinal del alfabeto de eventos.

La función Cand no será materializada en ningún momento. El conjunto de candidatos para una configu-
ración será calculado en función de los candidatos de la configuración anterior, aprovechando la definición
recursiva de Cand.

De la misma manera, #pred no será calculada explícitamente para todas las configuraciones sino que será
calculada incrementalrnente para cada configuración. Para cada configuración e, #pred(e) estará represen-
tado por un array de enteros de tamaño rt p , donde la iésima celda determina el valor de #pred(e) para el
iésimo punto.

La función RestActivadasPor será materializada en una tabla de np por nE, donde cada celda contiene
un conjunto de puntos. En cambio, RestActivasPor Evento no será calculada explícitamente sino que será
calculada usando su definición recursiva. Para cada configuración e, RestActivasPorEvento(e) estará
representada por un array de nE, donde cada celda contiene un conjunto de puntos.

Finalmente, RestTemp será representada por una tabla de np por ti p , donde cada celda contendrá una
restricción sobre relojes. Por otro lado, Guarda será calculada on-the-fty por una función auxiliar.

Llamaremos contexto de la configuración (o simplemente contexto) a la tupla tupla (e, C, R, #P) donde
para cada e E e1':

• C = Cand(e)

• R = RestActivasPorEvento(e)

• #P = #pred(e)

A continuación, mostramos el pseudocódigo de la función de construcción del autómata reconocedor para
un patrón de eventos.

Pseudocódigo

La función principal Generar Automato.Reconocedor, mostrada en el Cuadro 1, toma como entrada un patrón
de eventos y devuelve un autómata temporizado según la definición 4.1.13.

1Es de esperarse que tengan no más de 10 puntos y 20 eventos dado que pasado ese punto la complejidad del patrón sería
demasiado grande como para ser generado gráficamente por un diseñador. De todas formas, el análisis que realizamos es válido
aún suponiendo que hubiera 1000 puntos y 1000 eventos
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function GenerarAutomataReconocedor(P = (E, P, e, -+, "f, 15, 0, (0)) returns A = (S,X, E, A,I, so)
X<--0
A<--0

So <-- [0]
s <-- {Strap} U {so}

Explorar(P, PrimerContextoDeConfiguracion(P), S, A)

for all s E S do
I(s) <-- T

end for

for all 1 E E do
AgregarAristaTrap(A, 1)

end for
end

Cuadro 1: FUnción principal para la generación de autómatas reconocedores.

Explorar, mostrada en el Cuadro 2, es una función recursiva que para cada configuración genera todas las
aristas salientes desde la locación correspondiente. Si el destino de alguna de las aristas salientes es una
locación todavía no "explorada" (es decir, que todavia no fue agregada al conjunto S), entonces repite el
proceso en forma recursiva para esa locación.

Lo primero que hace Explorar es analizar el conjunto C de candidatos a extensión para la configuración
actual. Para cada uno de los puntos de ese conjunto, verifica si es una extensión válida (en el sentido de que
todos los predecesores del punto estén incluidos en la configuración actual y además exista al menos una forma
de marcar en forma segura alguno de los eventos asociados al punto). Si ese es el caso, verifica si la locación
correspondiente a la configuración extendida ya fue generada. Si se trata de una locación no vista hasta el
momento, repite recursivamente el proceso para esa locación, calculando antes el contexto correspondiente a
la nueva configuración (función Extender). Cuando termina de generar todas las locaciones alcanzables desde
la configuración actual, genera las aristas Mar k o 1nstant salientes que correspondan, según x pertenezca
a loa E. Sólo se generarán aristas M ark para eventos que no pertenezcan al conjunto r~x(e). La función
EventosH abiliiados calcula el conjunto de eventos para el cual hay que generar una arista M ark o 1nstant.
Finalmente, Explorar genera las aristas S kip y Fail salientes desde la configuración actual. Para cada evento
e, o bien está prohibido por algún punto pendiente de ser marcado (R(e) .¡. 0) y por lo tanto e E I'{B) o no
está prohibido y e ~ I'{G).

La función auxiliar PrimerContextoDeConfiguracion (Cuadro 3) construye el contexto para la configura-
ción inicial, es decir 0.

El Cuadro 4 muestra el pseudocódigo de la función Extension Valida y todas las funciones auxiliares que ésta
utiliza. La función Extension Valida determina si todos los predecesores de un cierto punto x pertenecen
a una configuración 8 y, si es así, si existe alguna posibilidad de generar al menos una arista entre [e] y
[8 I±I {x}]. Para que esta última condición valga, x debe pertenecer a 1o alguno de los eventos asociados a
dicho punto debe estar habilitado. Diremos que un evento e asociado a un punto x E E en una configuración
8 está habilitado si e ~ r;x (e). La función EventoN oRestringido es la responsable de determinar si un
evento está habilitado. Si un evento e no está restringido por ningún punto (caso R(e) = 0), entonces es
claro que el evento está habilitado. Si el único punto que prohíbe a e es x (caso x E R(e) y #(R(e)) = 1),
entonces el evento también está habilitado. En todos los demás casos, el evento está prohibido por otro
punto aparte de x y por lo tanto no está habilitado.
Notemos que si x E 1, EventosH abilitados devuelve un conjunto cuyo único elemento es A. Esto permite
tratar uniformemente a los puntos de ambas clases. Si el punto pertenece a E, entonces hay que analizar
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function Explorar(P, (8, C, R, #P), S, A, X) returns
for all x E C do

if ExtensionValida(P, (e, C, R,#P),x) then
if [8 U {x}] rt S then

S ~ SU{[eu{x}]}
Explorar(P, Extender((e,C,R,#P), x), S, A, X)

end if
guarda ~_Guarda(e, x)
reset ~ Reset(P, e, x, X)
for all e E EventosHabilitados(P,(8, C, R, #P),x) do

AgregarAristaMarkoInstant(A,[8], e, guarda, reset,[8 U {x}])
end for

end if
end for

for all e E L:do
if R(e) =1 0 then

AgregarAristaFail(A, [8], e)
else

AgregarAristaSkip(A, [8], e)
end if

end for
AgregarAristaFail(A, [e], A)
AgregarAristaSkip(A, [8], >.)

end
Cuadro 2: Función recursiva para la generación de todas las locaciones alcanzables desde la inicial.

function PrimerContextoDeConfiguracion(P = (L:,P, e, ->, "f, eS, O,00)) returns (8, C, R, #P)
8 +----0

e -- ínfimos(-> )

R +---- RestActívadasPor(O)
for all x E P do

#P(x) -- #(pred(x))
end for

end
Cuadro 3: Contexto para la configuración inicial



CAPÍTULO 6. IMPLEMENTACIÓN

cuales de los eventos asociados al punto están habilitados para decidir qué aristas M ark hay que generar.
Si, en cambio, el punto pertenece a 1 siempre hay que generar una arista Instant por A.

functíon ExtensionValida(P,(e, C, R, #P), x) returns res: irues jalse
res t-- Predecesores Incluidos ((e, C, R, #P), x) y EventosHabiIltados(P,(e, C, R, #P),x) =1= 0

end

functian PredecesoresIncluidos( (e, C, R, #P), x) returns res: truelf alse
res t-- #P(x) = O

end

function EventosHabilitados(P,(e,C,R,#P), x) returns L ~ 2EU{.>.}

if x E E then
Lt--0
for all e E f(x) da

if EventoNoRestringido((e,C,R,#P), x, e) then
L t-- LU{e}

end if
end for

else
L t-- {A}

end if
end

functian EventoNoRestringido( (e, C, R, #P), x, e) returns res: truelfalse
r t-- R(e)
res t-- (r = 0 o (x E r y #(r) = 1))

end
Cuadra 4: Extensiones válidas de una configuración

La función Extender (Cuadro 5) genera un nuevo contexto para la extensión de e por x. Como dijimos
antes, el conjunto C de candidatos, la función R de restricciones y la función #P que cuenta predecesores
todavía no marcados se calculan para la nueva configuración a partir de las correspondientes a e, utilizando
la definición recursiva de cada una de ellas.

La función Guarda (Cuadro 6) calcula on-the-fiy el valor de 'f/Jé. La función Reset verifica si tiene sentido
agregar un reloj para medir el tiempo transcurrido desde que se marcó al punto x. Tendrá sentido medir ese
tiempo si x tiene alguna restricción temporal no trivial con algún punto no marcado todavía. Si este último
fuera el caso, se agregará el reloj Zx al conjunto X de relojes y se lo reseteará en la arista que marca x. Como
mencionamos antes, una restricción temporal será considerada trivial si siempre es verdadera.

Finalmente, el Cuadro 7 muestra las funciones auxiliares que agregan aristas de los distintos tipos al conjunto
A.
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function Extender ((e, G,R, #P), x) returns (el, G/,RI, #P/)
el <- eu {x}
GI

<-- G \ {x} u suc(x)
for all e E ~ do

RI(e) <- (R(e) U RestActivadasPor(x) (e)) \ (e U {x})
end for
for all y E P do

if x -+ y th~
#PI(y) <- #P(y) - 1

else
#PI(y) <- #P(y)

end if
end for

end
Cuadro 5: Extensión de una configuración

function Guarda(e, x) returns 'lj;

'lj; <-- !\YE9U{O} .6.(y,x)
end

function Reset(P, e, x, X) returns reset ~ 2x
if TieneRestriccionesNoTriviales(E, e, x) then

X<-XU{Zx}
reset <-- {Zx}

else
reset <-- 0

end if
end

function TieneRestriccionesNoTriviales(E, e, x) returns res: truelfalse
res <-- false
for all y E P \ e do

res <- res o no Trivial(.6.(x,y))
end for

end
Cuadro 6: Generación de guardas y relojes.
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function AgregarAristaMarkolnstant(A, s, l, g, r, s')
A <-- AU{(s,l,g,r,s')}

end

function AgregarAristaSkip(A, s, l)
A <-- AU{(s,l,T,0,s)}

end

function AgregarAristaFail(A, s, l)
A <-- A U {(s, l, T, 0, Strap)}

end

function AgregarAristaTrap(A, l)
A <-- A U {(Strap, l, T, o, Strap)}

end
Cuadro 7: Generación de aristas



Capítulo 7

Conclusiones, trabajo relacionado :y
trabajo futuro

7.1 Conclusiones

Las técnicas de verificación formales han despertado el interés de muchos grupos de investigación durante
las últimas dos décadas. Habiéndose superado los obstáculos relacionados con la construcción de algoritmos
de verificación automática que puedan ser aplicados en forma efectiva a casos reales, la atención comienza a
orientarse hacia la transferencia tecnológica de estas herramientas. Vimos que el principal punto pendiente
es brindar soporte a los diseñadores y desarrolladores en las tareas de especificación formal de sistemas.
La mayoría de los formalismos de especificación existentes están basados en formalismos matemáticos con
los que resulta difícil trabajar, especialmente en sistemas de complejidad media o grande como los que se
encuentran habitualmente en la industria.

Nuestro trabajo tenía como objetivo definir las bases para un lenguaje de alto nivel para expresar requeri-
mientos de sistemas concurrentes y de tiempo real. A lo largo de este trabajo presentamos un formalismo
para expresar comportamientos no deseados de un sistema basado en órdenes parciales de eventos y mos-
tramos como puede ser aplicado a la verificación formal de sistemas. Consideramos que este formalismo, al
cual llamamos patrones de eventos, tiene las siguientes ventajas:

• Admite una notación gráfica.

• Permite expresar en forma compacta propiedades de concurrencia o causalidad entre eventos, lo cual
lo hace especialmente adecuado para ser aplicado en la verificación de sistemas concurrentes.

• Permite expresar restricciones temporales cuantitativas, lo cual lo hace especialmente adecuado para
verificación de sistemas de tiempo real.

• Posee una semántica simple, basada en el concepto de pattern matching.

Mostramos cómo pueden ser utilizados estos patrones de eventos en la especificación de patrones de mal
comportamiento, es decir, en la descripción de comportamientos no deseados en el sistema. Vimos que en
general resulta más simple y directo definir cuales son los comportamientos "erróneos" de un sistema que
describir en forma general los casos en los cuales no se produce ningún error. Comprobamos mediante
ejemplos concretos que el soporte a las propiedades de concurrencia y causalidad de los patrones de eventos
hace posible escribir propiedades que sería impracticable escribir en una lógica temporizada o incluso con
autómatas temporizados.

En este trabajo también demostramos formalmente que la verificación de patrones de mal comportamiento
es decidible y construimos además un prototipo de verificador basado en autómatas temporizados.
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Entendemos el que este trabajo sienta una base sólida para la construcción de un framework de especificación
formal que pueda ser utilizado por diseñadores y desarrolladores de sistemas fuera del ámbito académico,
aunque queden todavía varios puntos sobre los cuales profundizar.

7.2 Trabajos relacionados
Como mencionamos anteriormente, existe un interés creciente en este área de investigación y se han reali-
zado varios trabajos orientados a proveer herramientas y notaciones de especificación de propiedades mas
amigables.

En [DAC98] se analizaron cientos de ejemplos de especificaciones formales generadas por distintos grupos
de investigación y expresadas usando distintos formalismos. Una de las conclusiones más interesantes de
ese trabajo es que a pesar del enorme poder expresivo que tienen la mayor parte de los formalismos de
especificación existentes, el 80% de las especificaciones que analizaron corresponden a patrones simples como
response", universalityéy absence '.
El trabajo presenta un catálogo de patterns de especificación siguiendo el espíritu de los design patterns de
[GHJV95]. El catálogo indica como adaptar cada uno los patterns de especificación a algunos formalismos
muy difundidos, incluyendo tanto formalismos basados en eventos como basados en estados. Un componente
importante de estos patterns es el concepto de contexto (scope en inglés) que indica sobre que porción de la
ejecución debe valer una propiedad. Ejemplos de contextos son: global, debe valer durante toda la ejecución;
before, debe valer antes de cierto evento / estado y between, debe valer entre cierto estado / evento Q y
cierto estado / evento R.
Aunque el uso de estos patterns de especificación facilita la tarea de especificación de propiedades, el catálogo
se limita (intencionalmente) a un conjunto acotado y pequeño de patterns e incluye soporte para un número
relativamente pequeño de formalismos. Por otro lado, los patterns soportados por este catálogo asumen un
modelo no temporizado y por lo tanto no son adecuados para sistemas de tiempo real. La principal diferencia
con nuestro enfoque es que el objetivo de ese trabajo no era desarrollar un nuevo lenguaje sino dar soporte
al uso de los ya existentes.

En [UKM02] se introdujo un lenguaje para describir escenarios negativos basado en MSCs con el fin de cap-
turar requerimientos. Algo similar, aunque con un propósito distinto, son los LSCs presentados en [DH99].
Aunque nuestro enfoque comparte la idea de trabajar con órdenes parciales para describir escenarios prohi-
bidos, nuestro enfoque se diferencia de estos otros dos en varios aspectos. En primer lugar, usamos nuestro
lenguaje como medio para expresar propiedades que serán verificadas contra un modelo o implementación
bajo análisis. En segundo lugar, no estamos limitados a describir intercambio de mensajes ni tampoco ins-
tancias que generan eventos. Más aún, la visibilidad de los eventos es tratada en forma bastante distinta
en nuestro trabajo. La consecutividad entre eventos no es una característica primitiva (es decir, dos eventos
consecutivos en un patrón de eventos no necesariamente deben matchear ocurrencias consecutivas de dichos
eventos en una ejecución). Por otro lado, en nuestro enfoque no es necesario recurrir a la notación ajter/until
o utilizar triggering conditions para expresar cuando un matching es válido. En tercer lugar, nuestro lenguaje
permite expresar restricciones temporales explícitas. A diferencia de LSCs, la semántica de nuestro patrones
está dada en forma declarativa y el procedimiento de construcción del tableau muestra la existencia de una
solución algorítmica al problema de verificación. Finalmente, nuestros patrones permiten expresar ciertos
requerimientos de liveness como por ejemplo que un estímulo nunca sea respondido.

En [DKM+94] se propone un lenguaje gráfico llamado GIL (Graphical Interval Logic). El corazón del lenguaje
son los intervalos en los que se evalúan distintas fórmulas lógicas. Más allá de este soporte incorporado para
hablar de intervalos en una ejecución y de la estructuración gráfica de las fórmulas, el lenguaje hereda
la mayor parte de la complejidad de las lógicas temporizadas y de intervalos. GIL utiliza un modelo no
temporizado y asume un orden total entre los eventos del sistema, con lo cual no resulta adecuado para
sistemas concurrentes y/o de tiempo real.

3Cierto estado / evento P debe estar siempre seguido del estado / evento Q
3Cierto estado / evento ocurre durante toda la duración de determinado contexto
3Cierto estado / evento no ocurre en determinado contexto
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La herramienta TimeEdit[TIMOl] desarrollada por Bell Labs tiene una filosofía similar a la de este trabajo
desde el punto de vista de que busca simplificar la tarea de escribir escenarios que nunca deberían ocurrir,
en este caso para las herramientas de verificación Spin[Ho197] y FeaVer. Sin embargo TimeEdit tampoco
soporta restricciones temporales ni ordenamiento parcial de eventos.

Finalmente, en [AEYOO, AY99] se usan Message Sequence Charts (MSCs) para especificar formalmente el
comportamiento de los sistemas. Sin embargo, el enfoque de estos trabajos es distinto al nuestro: utilizan los
MSCs (es decir, un formalismo gráfico de alto nivel) para modelar el sistema y utilizan formalismos existentes
(en este caso autómatas) para expresar propiedades a verificar. En nuestro enfoque, el énfasis esta puesto
en facilitar la tarea de especificar y verificar formalmente propiedades del sistema. Los MSCs asumen un
orden parcial entre los eventos del sistema, permitiendo una representación más abstracta y compacta de
la concurrencia y de las dependencias de causalidad, característica que comparten con nuestros patrones de
eventos. Nuevamente, en estos trabajos se usa un modelo no temporizado con lo cual tampoco se brinda un
soporte fuerte a la verificación de sistemas de tiempo real.

7.3 Trabajo futuro
Como resultado de este trabajo hemos establecido una base sólida sobre la que se abren numerosas posibili-
dades de investigación futura.

Uno de los puntos teóricos que quedan pendientes es la caracterización del poder expresivo de los patrones
de eventos y la determinación de una cota precisa de la complejidad de la verificación de patrones de mal
comportamiento.

Teniendo en cuenta el objetivo de la transferencia de tecnología hacia la industria de desarrollo de sistemas,
creemos que es fundamental construir una herramienta de edición gráfica para los patrones de eventos. La
notación gráfica presentada en este trabajo tiene carácter de prototipo y creemos que es necesario trabajar
sobre una notación que resulte visualmente atractiva y cuya semántica resulte también intuitiva. Otro
punto interesante para explorar es la utilización de asistentes (wizards) para orientar a los diseñadores en
la construcción de patrones complejos (esta idea fue aplicada en [SAC002] a la construcción de autómatas
temporizados) .

Entendemos que una parte del trabajo futuro está relacionada con el análisis de extensiones para los patrones
de eventos y otra parte está relacionada con la exploración de otras aplicaciones para los mismos.
Una de las posibles extensiones consiste en permitir predicar sobre el primer o el último evento ocurrido
entre un conjunto de eventos no relacionados causalmente entre sí. Esta extensión agregaría poder expresivo
a los patrones. Otras posibles extensiones serían la incorporación de proposiciones a los patrones de eventos,
la modularización de patrones y la posibilidad de definir patrones paramétricos.

Este trabajo estuvo orientado a la utilización de patrones de eventos para verificar formalmente la ausencia
de comportamientos no deseados en un sistema. Creemos interesante investigar la aplicación de patrones de
eventos en el monitoreo de sistemas en ejecución. En ese contexto, podrían utilizarse los patrones de eventos
como oráculos, contrastándolos con los logs que genera el sistema para ver si se alcanza alguna situación no
deseada (similar al enfoque de [BOB03]).

Otra área en la que creemos que podría resultar útil la aplicación de patrones de eventos es en la restricción
de modelos de un sistema. Los patrones de eventos podrían ser utilizados para restringir el conjunto de
ejecuciones generadas por una modelización del sistema. En ese sentido, usaríamos patrones de eventos para
expresar cosas tales como: "las ejecuciones que verifican el patrón P no se corresponden con la realidad" .

Por otro lado, este trabajo se orienta a la verificación de sistemas con semánticas de interleaving, concre-
tamente a sistemas modelados usando autómatas temporizados. Quiere decir que si bien los patrones de
eventos brindan un soporte sintáctico a la especificación de propiedades de concurrencia y causalidad, este
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soporte se pierde a nivel semántico y en el algoritmo de verificación. Resulta interesante explorar otras
semánticas posibles para los patrones de eventos que permitan conservar la representación compacta de la
concurrencia y que permitan, además, aplicar los patrones en la verificación de modelos con estructura de
orden parcial (por ejemplo, sistemas modelados con MSCs Graphs).

Finalmente, en este trabajo mostramos un método de verificación de patrones de mal comportamiento basado
en la construcción de un autómata reconocedor. En este punto se abren dos caminos posibles igualmente
interesantes: por un lado, explorar otros métodos de verificación específicamente diseñados para los patrones
de eventos que permitan utilizar eficientemente las características propias de los patrones (por ejemplo,
para obtener algoritmos más eficientes en tiempo y espacio) y por otro lado, revisar la construcción de los
autómatas reconocedores teniendo en cuenta las herramientas existentes para optimización de autómatas
temporizados por reducción del número de relojes o del número de locaciones (por ejemplo [BG002, DY96]).



Apéndice A

Demostraciones

A.l Propiedades de la composición paralela de autómatas tempo-
rizados

Proposición 2.1. Dados dos autómatas temporizados Ai
ejecución 17 sobre El U E2,

1,2 Y una

Demostración. Queremos ver que existe una forma de evolucionar siguiendo 17 en A1IIA2 si y sólo si existe
una forma de evolucionar en Al siguiendo I7rEi y en A2 siguiendo I7rE2• Quiere decir que para una ejecución
17 = ("0"1 ... "i ... , to <J t 1 <J ••• <J ti <J ..• ) deben existir las sucesiones infinitas de estados {qn} en Ad IA2, {q~}
en Al y {q;} tales que:

(A.1)

sii
(A.2)

donde

si <;i E El
en otro caso

si "i E E2

en otro caso

Ahora bien, por definición de 11, habrá una evolución en un paso q =t q' en A1IIA2 si y sólo si existen las
evoluciones en un paso:

{ 11"1(q) =}f 11"1(q') si a E El
en Al

11"l(q) =*"; 11"1(q') en otro caso

{11"2(q) =}f 11"2(q') si a E E2 en A211"2(q) =}; 11"2(q') en otro caso

Quiere decir que si existe una sucesión de estados {qn} en A1IIA2 que verifique (A.l), entonces las sucesiones
{q~} y {q;} tales que q; = 11"l(qi) Y q¡ = 11"2(qi) para todo i, verifican (A.2). Por otro lado, si existen por
separado {q~} y {q;} en Al y A2, respectivamente, que verifique (A.2) entonces la sucesión {qn} tal que
qi = (q;, q¡) para todo i verifica (A.l).

D
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A.2 Propiedades del producto de autómatas de Büchi ternporiza-
dos

Proposición 2.2. Dados dos autómatas temporizados Ai = (Si,Xi,:Ei,Ai,Ii,SOJ, con
autómata de Büchi temporizado B = (A2,F), con F s:;;S2 y una ejecución o sobre :El U :E2,

1,2, un

Demostración. Al l8i B es el autómata de Büchi (AIIIA2, SI X F). Quiere decir que a será aceptada por
Al l8i B si y sólo si pertenece al lenguaje .c(AIIIA2) y además existe una forma de evolucionar siguiendo o
en AIIIA2 de forma tal de visitar un número infinito de veces locaciones en SI x F. Por la Observación 2.1,
sabemos que a estará en el lenguaje .c(AIIIA2) si y sólo si (jfEl pertenece a .c(Al) y (jfE2 pertenece a .c(A2).

Por otro lado, que exista una forma de evolucionar siguiendo en o en AIIIA2 que verifique la condición de
aceptación de Al l8i B es equivalente a pedir que haya una forma de evolucionar en A2 siguiendo a f E2 de
forma tal de visitar un número infinito de veces locaciones en F (porque implícitamente, todas las locaciones
de Al son locaciones de aceptación). Finalmente, que (jfE2 E .c(A2) y que sea posible evolucionar en A2
siguiendo a f E2 Yverificando la condición de aceptación de B equivale a decir que o rE2 E E (B).

o

A.3 Propiedades de la satisfacción de patrones básicos
Propiedad 3.1. Clausura por extensiones.
Dado un patrón básico P = (:E,P, e, ->, ¡) y una ejecución finita, sobre :E,si, F= P entonces para cualquier
ejecución " sobre :E,«' F= P.

Demostración. Supongamos que , F= P. Eso quiere decir que existe al menos un matching básico ~entre P
Y" es decir, un mapeo que verifica las condiciones M1-M3. Dado que estas tres condiciones sólo predican
sobre posiciones de " es fácil ver que ~con el codominio ampliado a TI", será también un matching básico
entre ,,' y P, sin importar cual sea s'. O

Propiedad 3.2. Satisfacción finita.
Dado un patrón básico P = (:E,P, e, ->, ¡) y una ejecución, sobre :E, si e F= P entonces existe una posición
i E TI, tal que 'il F= P.

Demostración. Supongamos que, F= P. Eso quiere decir que existe al menos un matching básico ~entre P
y,. Sea n = maxxEPx, o sea, el máximo de la imagen de ",

Por la forma en que elegimos a n, todas las posiciones a las cuales ~mapea puntos del patrón están incluidas
en el prefijo 'nI' Esto significa que ~verifica trivialmente las condiciones M1 - M3 aplicadas a 'nI y a P,
dado que en ninguna de esas condiciones se hace referencia a posiciones de la ejecución que estén más allá
de la última posición resaltada. Quiere decir que ~ es un matching básico entre 'nI y P y, por lo tanto,
'nI F= P. O

A.4 Propiedades de la satisfacción de patrones temporizados
Propiedad 3.3. Clausura por extensiones.
Dado un patrón P = (:E,P, e, -r+, ¡,J) y una ejecución finita a sobre :E, si a F= P entonces para cualquier
ejecución a' sobre :E,o a' F= P.

Demostración. La demostración de esta propiedad es similar a la demostración de la Propiedad 3.1 para el
caso no temporizado.
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Como en ese caso, decir que una ejecución (7 t= P significa que existe al menos un matching temporizado :
entre P y (7 y esto, a su vez, significa que existe un mapeo : que verifica las condiciones MI-Ma + MT2.
Nuevamente, estas condiciones aplicadas a: sólo predican sobre posiciones de (7, con lo cual el mismo mapeo
pero con el codominio ampliado a TI"", será un matching temporizado entre (7(7' y P, sin importar cual sea (7'.

o

Propiedad 3.4. Satisfacción finita.
Dado un patrón temporizado P = (~,P, e, --->, 'Y,ó) y una ejecución temporizada (7 sobre ~, si (7 t= P entonces
existe una posición i E TI" tal que (7i) t= P.

Demostración. Siguiendo el razonamiento que hicimos en la página 93, en la demostración de la Propiedad
3.2 para el caso no temporizado, supongamos que (7 t= P, y: :P f-> TI" es uno de los matchings temporizados
entre (7 y P.

Es fácil ver que: verifica trivialmente las condiciones MI-M3 + MT2 aplicadas a (7n) Y P, donde n =
maxxEPX, o sea, el máximo de la imagen de ", Como (7n) es un prefijo finito de (7, queda demostrada la
propiedad. O

A.5 Propiedades de la satisfacción de patrones de eventos
Propiedad 3.5.Clausura débil por extensiones.
Dado un patrón de eventos P = (~,P,e, -r+, 'Y,ó, O, (0) Y una ejecución temporizada finita (7 sobre ~, si (7 t= P
entonces para cualquier ejecución (7' = (",T) tal que" n lLp = 0, (7(7' t= P.

Demostración. Para demostrar esta propiedad vamos a seguir la idea usada en las demostraciones de la
propiedad clausura por extensiones para el caso sin temporizar (Propiedad 3.1) y el caso temporizado (Pro-
piedad 3.3). Como hicimos en esos casos, vamos a suponer que (7 t= P Y que: es un matching entre P y (7

y vamos a mostrar la forma de construir un matching 7 entre (7(7' y P (suponiendo que (7' cumple con las
hipótesis de la propiedad).

Sea (7' = (,,',T') una ejecución sobre ~ tal que ,,' nlLp = 0. Sea 7 el mapeo : pero con el codominio ampliado
a TI"",.
Es fácil ver que 7 verifica MI-M3+MT2+MI+MTI por las mismas razones expuestas en los casos ante-
riores. Sin embargo, no es tan directo ver que 7 verifica MS.

Sabemos que para todo punto x E P, (",,')(x = "(x"" También sabemos que:

Vi, x < i < 1(71, "i rt 'Y(x,(0) (A.3)

porque: verifica MS y por hipótesis:

Vi, O ~ i < 1(7'1, .,: rt lLp (A.4)

y, en particular, < rt 'Y(x, (0).

Quiere decir que para todo punto x E P, "(x'" n 'Y(x,(0) = 0 y por lo tanto 7 también verifica MS.

Dado que mostramos que 7 es un matching entre (7(7' y P, (7(7' t= P.
O

Propiedad 3.6.Satisfacción finita.
Dado un patrón P = (~, E, e, --->, 'Y,ó, O, (0) Y una ejecución temporizada (7 sobre ~, si (7 t= P entonces existe
una posición i E II" tal que ai] F P y, además, a(i n lLp = 0.
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Demostración. Siguiendo el razonamiento usado para demostrar la propiedad de Satisfacción finita para los
casos no temporizado y temporizado, supongamos que 17 F P, y : : P 1--> TI" es uno de los matchings entre 17

-».
Es fácil ver que ~verifica trivialmente las condiciones MI-M3 + MT2+ MI + MTI aplicadas a I7n] YP,
donde n = maxXEPX, o sea, el máximo de la imagen de ". Es también bastante directo ver que lo mismo
ocurre con MS. Dado que sabemos que para todo punto x E P, <;(xn ,(x, (0) = 0, en particular debe valer
que <;(x,n] n ,(x, (0) = 0.

Para ver que, además, <;(nnlLp = 0, podemos observar que dado que: verifica MS, para todo x, <;(xn,(x, (0) =
0. Pero también debe pasar que para todo x, <;(n n ,(x, (0) = 0, y por lo tanto, <;(n n lLp = 0.

o

A.6 Propiedades de autómatas reconocedores de patrones básicos
Propiedad 4.1. Dado un patrón básico P = (E, P, E, -+, ,) y su autómata reconocedor
Ap = (8,X,E,A,I,so), sean e y e' configuraciones de P. Si [e] ~ [e'], entonces toda evolución en-
tre [e] y [e'] tiene la forma:

([eo], ve) =t: ([el], VI) =t; ... ([ed, vd ~f: ... ~~:~:([en], vn)

donde eo = e, en = e' y para todo i, O:S i < n, Vi E Vx, ai E E U {A}, ti E R+ Y ei+l es igual a ei o
es una extensión de ei.

Demostración. Si existiera una evolución entre [e] y [e'], tendría la forma:

([eo],vo) ~f~ ([el], VI) =: ...([ei], Vi) =t; ... ~~:~:([en], vn)

donde eo = e, en = e' y para todo i, O:S i < n, Vi E Vx, ai E E U {A}, ti E R+. Esto debe ser así porque
Strap no puede formar parte de ninguna evolución entre [e] y [e'] por ser Strap una locación trampa distinta
de [e] y [e'].
Queremos ver que ei+l debe ser igual a ei o debe ser una extensión de ei.

Tomemos un i arbitrario, O :S i < n. Sabemos que ([ei], Vi) ~f: ([ei+l], Vi+l). Quiere decir que o bien
existe una arista ([ei], ai, 'Ij;, p, [ei+d) en Ap o a = >. y [ei] = [ei+l]. El segundo caso es trivial, veamos el
primero. La arista entre [ei] y [ei+l] sólo puede ser M ark o 8kip. Si pertenece a Skip entonces es un loop
y por lo tanto ei = ei+l. Si, en cambio, pertenece a M ark, entonces necesariamente ei+l debe ser una
extensión de ei. O

Propiedad 4.2. Corrección del autómata reconocedor para patrones básicos
Dado un patrón básico P = (E, P, E, -+, ,) y su autómata reconocedor Ap = (8, X, E, A,I, so), para toda
configuración e E ep y toda ejecución finita <; sobre E,

si qinit ~, [e] entonces <; Fe P

Demostración. Sea e una configuración de P. Sea <; una ejecución finita. Supongamos que qinit ~, [e].
Queremos ver que esto es una condición suficiente para que <; satisfaga parcialmente P, restringido a e. Para
ver que ésto es cierto, alcanza con demostrar que existe un matching básico parcial entre e y P restringido
a e. Construiremos un mapeo a partir de una evolución entre qinit Y [e] y mostraremos que cumple las
condiciones MPI-MP4.
Sea n = 1<;1. Por la Propiedad 4.1, una evolución entre qinit Y saccept etiquetada por < debe ser de la forma:

qinit = ([eo], vo) ~~~ ([el], VI) ~t ...([ed, Vi) ~t ...~~:=~([en], vn)

donde reo] = [0] = so, Vo = 0, [en] = [e] y para todo i, O< i < n, Vi E Vx, ti E R+ y ei+l es igual a ei o
es una extensión de 8i. En particular, sabemos que:
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0-::; i < n (A.5)

Sea ~el mapeo construido según la siguiente regla:

x= max i
O<i<n
X~ei

Es decir, para un punto x E e, x determina la última locación de la evolución que no contiene a x y [ex+1]

es la primera locación que si lo contiene.
Probemos ahora que ~cumple las condiciones de validez MPl - MP4, es decir:

para x E e (A.6)

MPl) Queremos ver que para todo punto e E e nE, <;eE f(e).
Sea e un punto cualquiera en e. Por (A.6), [ee] es la última locación de la evolución que no contiene a e y
[eH1] es la primera locación que si lo contiene. Dado que por (A.5) sabemos que [e e] =?,. [eHd y también
sabemos que lee] #- [eH1] y e E E, debe existir una arista M ark de la forma ([ee], <;e,-¡P, p, [eH1]). Por la
forma en que fue construido Mark, debe pasar que <;eE e(e).

MP2) Queremos ver que para todo par de puntos x, y E e, si x -< y entonces x < y.
Sea x un punto cua1quiera en e. Supongamos que existe un punto y E e tal que y -< x. Por (A.6), [ex+1]
es la primera locación que contiene a x y [eY+1] es la primera locación que contiene a y. Dado que las
locaciones contienen configuraciones (por la forma en que se construyó S), es necesario que [eY+l] aparezca
en la evolución antes que [ex+d (si no, [ex+1] contendría a x y no a y y no sería una configuración). Por lo
tanto, necesariamente y + 1 < x + 1, lo que es equivalente a y < x.
MP3) Queremos ver que para todo par de puntos x,y E e, si x < y entonces <;(x,9)n ,(x, y) = 0.
Sean x, y dos puntos cualesquiera en e. Supongamos que x < y. Queremos ver que para toda posición i,
x < i < y, <;i rt ,(x, y).
Sea i una posición cualquiera entre x y y. Dado que i > x, por (A.6), x E ei. Análogamente, dado que i < y,
y rt ei.

Por otro lado, por (A.5) sabemos que [ei] =?'i [ei+d. Esto quiere decir que o bien <;i = A, con lo cual
trivialmente no pertenece a ,(x, y), o <;iE ~ Ydebe existir en A una arista de la forma ([ei], <;i,-¡P, p, [ei+1]).
Es fácil ver que si ese es el caso, dicha arista sólo puede ser Skip o M ark.
Supongamos que ([ei], <;i,-¡P, p, [ei+1]) es una arista Skip. Esto implica, entre otras cosas, que <;i rt f(ei) y,
por definición de I', esto quiere decir que dado que x E ei e Y rt ei, <;ino puede aparecer en ,(x, y).
Supongamos, ahora, que ([ei],<;i,-¡p,P, [ei+l]) es una arista Mark. Esto implica, entre otras cosas, que
ei+1 = ei l:±J {e}, para algún punto e E E y que <;i rt f<>e(ei). Entonces, dado que i + 1 -::; y, y rt ei+1, con
lo cual e #- y. Dado que x E ei, y rt ei y que y #- e, necesariamente <;i rt ,(x, y).
En los tres casos llegamos a que <;i rt ,(x, y).

MP4) Por último, queremos ver que para todo par de puntos x,y E P, si x E e, y E P \ e, entonces
<;(xn ,(x, y) = 0.
Sea x un punto cualquiera en e. Sea y otro punto cualquiera en P\ e. Queremos ver que para toda posición
i, x < i < n, <;i rt ,(x, y).
Sea i una posición cualquiera entre x y n. Dado que i > x, por (A.6), x E ei. Por otro lado, dado que todas
las configuraciones del camino están incluidas en e y y está en el complemento de e, necesariamente y rt ei.

Siguiendo el mismo razonamiento que en el caso anterior, sabemos que o bien <;i= A, con lo cual claramente
no pertenece a ,(x, y) o debe existir una arista de la forma ([ei], <;i,-¡P, p, [ei+d), que sólo podrá ser Skip o
Mark.
Supongamos que existe una arista ([ei], <;i, -¡P, p, [ei+1]) en Skip. Como dijimos antes, esto implica que
<;i rt f(ei), y como vimos que x E ei y y rt ei, entonces necesariamente <;i rt ,(x, y).
Supongamos, por otro lado, que existe una arista ([ei], <;i,-¡P, p, [ei+d) en iVIark. Nuevamente, esto quiere
decir que ei+1 = ei l:±J {e}, para algún punto e E E y que <;i rt f<>e(ei). Dado que e E ei+1 e e, y no puede
ser igual a e. Como x E ei, y rt ei e Y#- e, por def. de fl>e necesariamente <;i rt ,(x, y).
En los tres casos, llegamos a que "i ~ ,(x, y).
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Con esto queda demostrado que: es un matching básico parcial entre C; y P restringido a e y en consecuencia
C; Fe P.

o

Propiedad 4.3. Completitud del autómata reconocedor para patrones básicos.
Dado un patrón básico P = (1'.,p,e,->,¡) y su autómata reconocedor A1' = (S,X,1'.,A,I,so), para toda
configuración e E e1' y toda ejecución finita C; sobre 1'.,

si C; Fe P entonces qinit =?( [e]

Demostración. Sea e una configuración de P y C; una ejecución finita sobre 1'.. Supongamos que C; Fe P.
Eso quiere decir que existe un matching básico parcial: entre C; y P restringido a e. Para demostrar que se
puede evolucionar descfe qinit hacia [e] consumiendo C;, vamos a dar una forma de construir una evolución
entre dichas locaciones a partir de :.
Sea n = 1c;1. Consideremos la siguiente secuencia de conjuntos de puntos:

donde:

ei = {x E e 1 x < i} , para O:s i :s n (A.7)

Podemos observar que:

• eo = 0,

porque ningún punto puede ser mapeado a una posición menor que O.

• en = e,
porque: mapea puntos en posiciones de e, es decir, entre Oy n - 1 Y por lo tanto, para todo punto
x E e, x < n.

• Para todo i, O :s i :s n, ei es una configuración.
Para ver que esto es cierto tenemos que ver que para cualquier punto y E ei, todo predecesor de y
también pertenece a ei. Dado x -< y, por MP2 sabemos que x < y. Quiere decir que x < y < i Ypor
lo tanto x E e;.

• Para todo i, O :s i :s n, [ei] es una locación de A1"
Porque vimos que los ei son configuraciones.

• Cada ei+1, con O :s i < n es igual a ei o es una extensión de ei.
Por la forma en que construimos los ei, cada conjunto puede diferir del siguiente en a lo sumo aquellos
puntos x para los cuales x = i. Pero como sabemos que: es inyectiva eso quiere decir que o bien
no existe ningún x tal que x = i, con lo cual ei+1 = ei, o existe exactamente uno, llamémoslo p, y
ei+1 = ei l±J {p}.

• Para todo i, O :s i < n, si C;if= A entonces existe una arista de la forma ([ei], C;i, 'l/J, P, [ei+1])'
Dado un i cualquiera, O:s i < n, sup C;iE 1'..

Si ei+l = ei, por MP3 y MP4 sabemos que C;i(j. r(ei). Si este no fuera el caso, existirían x E ei
e y (j. ei = ei+1 tales que C;iE ¡(x, y). Con lo cual, si y E e (es decir, x < i < y), : violaría MP3
y si y E P \ e, como x < i, : violaría MP4. Por lo tanto, debe existir una arista Skip de la forma
([e;], C;i,'l/J, p, [ei])

Si ei+1 = ei l±J {p}, por MP3 y MP4 sabemos que C;i(j. fl>p(ei). Si este no fuera el caso, existirían
x E ei e y (j. ei tales que y f= p y C;iE ¡(x, y). Con lo cual, si y E e (es decir, x < i = P < y), : violaría
MP3 y si y E P\ e, : violaría MP4. Por otro lado, por MPl sabemos que p E E Yque C;i = C;p E e(p).
Quiere decir debe existir una arista M ark de la forma ([ei], <;"i,¡P, p, [ei \±I {p}]).
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• Para todo i, O :S i < n, si 'i = A entonces [ei] = [8i+1].

Dado un i cualquiera, O :S i < n, sup 'i = A. Si 8i+l = 8i I±I {p}, querría decir que p = i. Pero entonces
: violaría MPl porque A = 'i (j:. P(p) .

• Para todo i, O :S i < n, ([8i], O) =?~i ([8i+l], O).
Dado un i cualquiera, O :S i < n, sabemos que existen la transición temporal ([ei],O) -+0 ([ei],O)
y la transición discreta ([8i], O) -+" ([ei+l], O) y, por lo tanto, la evolución en un paso ([8i], O) =?~'

([ei+1J, O).

Con estas observaciones en mente, podemos concluir que:

([80], O) =?~o ([81], O) =?~l ... =?~n-l ([en], O)

lo cual implica que qini: = ([0], O) = ([ea], O) =?' [8n] = [e].
o

Teorema 4.4. Tableau para patrones básicos.
Dado un patrón básico P = (~,P, P, -+, ,) y su autómata reconocedor Ap = (S,X,~, A, T, so), el autómata
de Büchi temporizado Tp = (Ap, {saccept}) reconoce el lenguaje .c (P).

Demostración. La demostración del teorema está dividida en dos lemas. El Lema A.l prueba que .c*(Tp) ~
.c(P) y, por el otro lado, el Lema A.2 prueba que .c(P) ~ .L.*(Tp).

o

Lema A.1. (Corrección del tableau)
Dado un patrón básico P y su autómata reconocedor Ap y sea el autómata de Büchi temporizado
Tp = (Ap, {saccept}),

.L.* (Tp) < e (P)

Demostración. Queremos ver que .c*(Tp) ~ .c(P), es decir, que todas las ejecuciones aceptadas por Tp

corresponden sólo a ejecuciones aceptadas por P.

Sea, una ejecución en .c*(Tp). Por la definición de lenguaje de un autómata de Büchi temporizado, sabemos
que existen r E nOO(Ap) y T tales que r = (" T) Y saccept E inf(r).

Que r visite un número infinito de veces la locación saccept implica, entre otras cosas, que en un número
finito de pasos r alcanza Saccept. Quiere decir que existe un i E N tal que:

'i]qinit =?ri] Saccept

Por la propiedad de Corrección del autómata reconocedor para patrones básicos 4.2 sabemos que 'il 1=p P,
y por lo tanto, 'il 1=P. Como los patrones básicos son cerrados por extensiones (Propiedad 3.1) podemos
extender este resultado a todo " es decir, ,1= P.

Finalmente, como r es divergente y por lo tanto infinita, < también debe serlo y debe pasar que < E .c(P). O

Lema A.2. (Completitud del tableau)
Dado un patrón básico P y su autómata reconocedor Ap y sea el autómata de Büchi temporizado
Tp = (Ap, {saccept}),

t: (P) ~ e:(Tp )
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Demostración. Queremos ver que 12(P) <;;; 12*(Tp), es decir, que todas las ejecuciones infinitas aceptadas por
P son también aceptadas por Tp. Para ésto, tenemos que mostrar que para cualquier ejecución infinita <;
aceptada por P existe una forma de evolucionar en Ap consumiendo dicha ejecución de forma tal de pasar
un número infinito de veces por la locación saccept.

Veamos que es posible construir a partir de <; una evolución finita que permita llegar desde qinit hasta saccept
y una evolución infinita y divergente que permita quedarse para siempre en saccept, verificando la condición
de aceptación de T«. Sea <; una ejecución tal que <; E 12(P). Por definición, sabemos que <; F P Y que 1<;1 = oo.
Por la propiedad de satisfacción finita de patrones básicos (Propiedad 3.2), sabemos que existe una posición i
de <; tal que <;iJ F P. Sabemos que también vale que <;iJ Fp P. Por la propiedad de Completitud del autómata
reconocedor para patrones básicos 4.3, existe una evolución entre qinit Y [P] de la forma qinit =>"1 [P]. Pero
como [P] = Saccep(

qinit =>"1 saccept

Esto quiere decir que existen V1,"" Vi E Vx y to, ... , ti E R+ tales que:

r1 = (so, O) =>i~ (S1, vi) =>i: ... =>i; (saccept, v;)

Por otro lado, sabiendo que en Boccept existen transiciones Skip para todos los eventos y que el invariante es
T, existe la evolución infinita y divergente:

r2 = (Saccept, Vi) =l'" (Saccept, Vi + 1) =>~'+2 ... =?" (Saccept, Vi + j) =>~'+i+l ...
Llamemos T a la secuencia temporal finita de la forma T = to <J ••• <J ti Y T' a la secuencia temporal infinita
de la forma T' = 1 <J 1 <J .• '. Se puede ver que r1 r2 = (e, T <J T'), r1 r2 E R00 (Ap) Y además r1 r2 visita saccept
infinitas veces. Con esto hemos demostrado que <; E 12*(Tp). O

A.7 Propiedades de autómatas reconocedores de patrones tempo-
rizados

Proposición 4.5. Preservación de verdad. Dada una restricción temporal sp, para todo real no negativo t,

7P",(rp)[xlt] es verdadero sii t F ip

Demostración. (Por inducción en la complejidad de la restricción)
Si ip E :JN, entonces ip será de la forma:

ip = {a,,B} (A.8)

donde Q E N Y ,B E N o ,B = 00 y {= ( 1 [, } =) 1 ]. Quiere decir que 7P", (rp) será una restricción sobre x de
la forma:

a~xÁx~,B
donde ~ E {<, ::;}.Por lo tanto, 7P",(rp)[xlt] tendrá la forma:

(A.9)

(A. lO)

con lo cual7P",(rp)[xlt] será verdadero si y sólo si tE {a,,B}, es decir, si y sólo si t F ip,
Si sp = .e, con e E :JN, entonces 7P",(rp)[xlt] = .(7P", (e)) [xlt] = .(7P", (e)[xlt]). Por hipótesis inductiva,
7P",(e)[xlt] es verdadero si y sólo si t F e, quiere decir que '(7P",(e)[xlt]) sii t J:é e, es decir, sii t F rp.

O

Proposición 4.6. Dada una restricción temporal sp y un reloj x,

v F V;x(rp) sii v(x) F rp
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Demostración. Dado que x es el único reloj que aparece en '1j;x(ep), sólo interesa v(x) para determinar si v
satisface o no '1j;x(ep).
Es decir, v F '1j;x( ep) sii '1j;x( ep)[x!v(x)] es verdadero, y por la Proposición 4.5, ésto último pasa sii v(x) F ep. O

Propiedad 4.7. Dado un patrón temporizado P = (E, P, e, -->,'" ó) y su autómata reconocedor
Ap = (S, X, E, A, T, so), sean e y e' configuraciones de P. Si [e] =} [e'], entonces toda evolución en-
tre [e] y [e'] tiene la forma:

([eo],vo) =: ([el], v¡) =: ..,([ei], v;) =t: ... =l;'; ([en], vn)

donde eo = e, en = e' y para todo i, O::; i < n, Vi E Vx, ai E EU {A}, ti E R+ y ei+l es igual a ei o
es una extensión de .ei.

Demostración. Como vimos para el caso no temporizado, si existiera una evolución entre [e] y [8'], tendría
la forma:

([eo],vo) =t: ([el], VI) =: ...([ei], v;) =}f: ... =}~:~.'([en], vn)

donde eo = e, en = e' y para todo i, O ::; i < n, Vi E Vx, ai E E U {A}, ti E R+. Queremos ver que ei+l
debe ser igual a ei o debe ser una extensión de ei.

Dado un i arbitrario, O ::; i < n, sabemos que ([ei], v;) =}f: ([ei+l], Vi+l) y, por lo tanto, debe existir una
arista de la forma ([ei], ai, '1j;, p, [ei+lD o bien ai = A y [ei] = [ei+d. Además, en el primer caso la arista
sólo puede ser Mark, lnstant o Skip. En todos los caso, o bien ei = ei+l o ei+l debe ser una extensión
de ei. O

Propiedad 4.8. Corrección del autómata reconocedor para patrones temporizados.
Dado un patrón temporizado P = (E, P, e, -->", ó) y su autómata reconocedor Ap = (S,X, E, A,T, so), para
toda configuración e E ep y toda ejecución finita a = (<;, T) sobre E,

si qinit =}~ [e] entonces a Fe P

Demostración. Sea e una configuración de P, sea a una ejecución finita y supongamos que qinit =}~ [e].
Siguiendo el mismo razonamiento que usamos en la demostración de la propiedad de Corrección para el caso
no temporizado (página 95), mostraremos que existe un matching temporal parcial entre a y P restringido
a e. Construiremos un mapeo a partir de una evolución entre qinit y [e] y mostraremos que cumple las
condiciones MPI-MP4 + MPTI-MPT2.
Sea n = !a!. Sean to, ... , tn-l E R+ tales que T se pueda escribir como T = to <l tI <l'" <l tn-l. Dado que a
etiqueta alguna evolución entre qinit Y [e], por la Propiedad 4.7, dicha evolución debe ser de la forma:

(A.ll)

donde reo] = [0] = so, Vo = 0, [en] = [e] y para todo i, 0< i < n, Vi E Vx y ei+1 es igual a Oi o es una
extensión de ei.

Como en el caso no temporizado, elijamos 7 de la siguiente manera:

x = max i
O<i<n
X~ei

Es fácil ver que 7 verifica MPI-MP4 usando un razonamiento análogo al presentado en la página 95. Veamos
que, además, 7 verifica MPTI y MPT2.

para x E e (A.12)

MPTI) Queremos ver que para todo punto x E T, x = A.
Sea i un punto cualquiera en e nl. Por (A.12), [e;] es la última locación de la evolución que no.(;ontiene a i
y [e;+1] es la primera locación que si lo contiene. Sabemos también que [e;] =}q [6;+1]y también sabemos
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que [e;] =1= [e;+l], debe existir una arista Instant de la forma ([8;], c:;-;, 'lj;, p, [e;+l]). Por la forma en que fue
definido el conjunto Instant, debe pasar que c:;-; = A.

MPT2) Queremos ver que para todo par de puntos x, y E e, x < y ~ t.(T[x,y]) 1=8(x, y).
Sean x,y dos puntos cualesquiera en e. Supongamos que x < y. Por (A.12) sabemos que y rf: 8y pero
y E e9+1, con lo cual debe pasar que e9+1 = eyl±J{y}. Por (A.ll) sabemos que ([ey]' vy) ~~: ([ey+1], V9+1) =
([ey l±J{y}], V9+1), por lo tanto, debe existir una transición discreta entre ley] y [ey l±J{y}] correspondiente a
una arista de la forma ([ey]' C:;-y,'lj;, p, ley l±J{y}]). Es fácil ver que dicha arista sólo puede pertenecer a M ark
o a Instant, con lo cual 'lj; = 'lj;~r = ApEer 'lj;zp(8(p, y)) y vy + ty 1='lj;~r·

En particular, vy + ty 1= 'lj;z.(8(x, y)). Usando la Proposición 4.6, sabemos que vy + ty 1= 'lj;z.(8(x, y)) equivale
a que:

(Vy + ty)(zx) 1=8(x,y)

Análogamente, sabemos que ex+! = ex l±J{x} y que existe una arista Mark o Instant de la forma
([ex], C:;-x,'lj;',p', [ex l±J{x}]). Con lo cual, p' = {zx}.
Por la forma en que se construyeron las aristas de A'P, las únicas aristas que resetean relojes son las aristas
Mark e Instant. Además, un reloj Zx, correspondiente al punto x, sólo se resetea cuando se marca x. Esto
quiere decir que en cualquier evolución como la presentada en (A.ll) un reloj se resetea a lo suma una vez.
Quiere decir que z¿ se resetea en la transición entre [ex] y [ex+d y no se vuelve a resetear después de la
posición x + 1. Por lo tanto:

Vx+1 (Zx)
Vx+2(Zx)
VX+3(Zx)

o
tx+!
tX+1 + tX+2

Vy(Zx) tx+1 + ... + tY-1

Por último, observemos que t.(T[x,y]) = Ty - Tx = tX+1 + ... + ty. Quiere decir que t.(T[x,y]) = vy(Zx) + ty =
(vy + ty)(zx) y, por lo que acabamos de demostrar, t.(T[x,y]) 1= 8(x, y).
Con esto queda demostrado que: es un matching temporal parcial entre a y P restringido a e y en conse-
cuencia a I=e P.

o

Propiedad 4.9.Completitud del autómata reconocedor para patrones temporizados.
Dado un patrón temporizado P = (L.,P, e, -+, ,,8) y su autómata reconocedor A'P = (8, X,L.,A, I, so), para
toda configuración e E e'P y toda ejecución finita a sobre L.,

si a I=e P entonces qinit ~C7 [e]

Demostración. Sea e una configuración de P y a = (e, T) una ejecución finita sobre L.. Supongamos, además
que a I=e P. Como en el caso anterior, seguiremos el razonamiento usado en la demostración de la propiedad
de Completitud para el caso no temporizado (página 97).
Dado que a I=e P, sabemos que existe un matching temporal parcial 7 entre a y P restringido a 8. Para
demostrar que se puede evolucionar desde qinit hacia [e] por a, vamos a dar una forma de construir una
evolución entre dichas locaciones a partir de 7.

Sea n = lal. Consideremos la secuencia de conjuntos de eventos presentada en la página 97:

donde:

ei = {x E e Ix < i}, para O~ i ~ n

Podemos observar que en este caso también vale que:

(A.13)
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• 80 = 0

• 8n = 8

• Para todo i, O:s i :s n, e; es una configuración

• Para todo i, O :s i :s n, [8;] es una locación de Ap

• Cada 8i+1, con O :s i < n es igual a ei o es una extensión de 8;

• Para todo i, O :s i < n, si ,; i- A entonces existe una arista de la forma ([e;], ,;, '!j;, p, [8;+1]).

• Para todo i, O :s i < n, si ,; = A entonces [e;] = [8i+1] o existe una arista de la forma
([e;], A, '!j;, p, [8i+d).

Si ,; = A Y 8;;1 = 8; vale trivialmente esta propiedad. Veamos ahora que pasa si ,; = A Y
8i+1 = e; I±i{p}.
Si se diera este caso, por MPTl sabemos que p rt E, porque los eventos no pueden ser mapeados
en posiciones A. Por lo tanto, p E I Y por definición de I nstant, debe existir una arista de la forma
([ei], A, '!j;, p, [8i I±i[p}]).

Sea to, ... , tn-1 la sucesión de números reales no negativos tal que T se pueda escribir como T = to<lt 1<l.. ·<Jtn-1

y sea VD,· .. ,Vn la secuencia de valuaciones dada por:

o
{

V; + t; si ei+1 = ei O:Si<n
Reset¿..(v; + ti) si ei+1 = e; I±i{x}

Veamos que también vale que para todo i, O:S i < n, ([e;], v;) =}~:([ei+1],Vi+1).

VD
(A.14)

Dado un i cualquiera, O :s i < n, sabemos que existe la transición temporal ([e;], v;) ~ti ([e;], V; + ti) dado
que el invariante de todas las locaciones del autómata es T. Por otro lado, sabemos que o bien existe una
arista de la forma ([8;], ,;, '!j;, p, [ei+1]) o e; = ei+1 y ,; = A. Si este último fuera el caso, trivialmente
existiría la transición discreta ([e;], V; + ti) ~>. ([e;], V; + ti), con lo cual existiría la evolución en un paso
([ei], Vi) =}~:([ei+1], Vi+1). Supongamos, entonces, que se da el primer caso.
Si ei+1 = ei, la arista sólo puede ser Skip y por lo tanto la guarda debe ser T y p debe ser vacío, con lo
cual existe la transición discreta ([e;], Vi + ti) ~~i ([ei], Vi + t;) Y también en este caso existe la evolución
en un paso ([8;], Vi) =}~:([ei+1], Vi+l).
Si, en cambio, ei+1 = ei I±i{p} para algún punto p, entonces debe existir una arista M ark e Instant. Por
la forman en que fueron construidas esas aristas sabemos que '!j; = '!j;~i YP = {zp} y por (A.14) sabemos que
Vi+1 = Resetzp(vi + t¡) = Resetp(v; + ti). Quiere decir que para demostrar que existe la transición discreta
([ei], Vi + ti) ~~i ([ei],Vi+¡), sólo faltaría ver que Vi + ti 1= '!j;~i.

Supongamos que Vi + ti ¡¿ '!j;~i· Dado que por definición '!j;~i = /\XE9
i

'!j;zx(Ó(x, p)), debe existir algún x E ei
tal que Vi + ti ¡¿ '!j;z'(Ó(x, p)) y, por la Propiedad 4.6, (Vi + ti)(Zx) = (Vi'>+ ti'»(Zx) ¡¿ ó(x, p).
Por (A.13), e:<+l = exl±i{x}, con lo cual (A.14) nos dice que Vx+1 = Reset;(vx+tx). Además, por la forma en
que fue definida la secuencia VD, ... ,Vn, cada reloj z; es reseteado una única vez en la secuencia (coincidiendo
con el punto en donde se agrega x en la secuencia de configuraciones que definimos al principio):

Vx+1 (Zx)
Vx+2(Zx)
Vx+3(Zx)

O
tX+1

tX+1 + tX+2

V¡i(Zx) tX+1 + ... + ti'>-l

Con lo cual, vi'>(Zx) + ti'> = (vi'>+ ti'» (zx) = Ti'>- Tx = b..( T[x,¡i]). Quiere decir que b..( T[x,i'>])¡¿ ó(x, p) y esto violaría
la hipótesis de que 7 era un matching temporal parcial.
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Por lo tanto, debe ser el caso que vp + tp 1= -¡P~i Y debe existir la evolución en un paso ([ei],Vi) ~~:
([ei+d, Vi+l).
Con estas observaciones en mente, podemos concluir que:

([80], va) ~i~ ([81], VI) ~i: ... ~~:=:([en], vn)

lo cual implica que '[irüt = ([80], va) ~~ [en] = [8].
o

Teorema 4.10. Tableau para patrones tempoTizados.
Dado un patrón temporizado P = ('E.,p,e,--.,¡,ó) y su autómata reconocedor A1' = (S,X,'E.,A,I,so), el
autómata de Büchi terr:porizado T1' = (A1', {saccept}) reconoce el lenguaje 12(P).

Demostración. Como en el caso anterior, la demostración del teorema está dividida en dos lemas. El lema
A.3 prueba que 12(T1') <;;:: 12(P) y, por el otro lado, el lema A.4 prueba que 12(P) <;;:: 12(T1')'

o

Lema A.3. (Corrección del tableau)
Dado un patrón tempoTizado P = ('E., P, e, --., ¡,ó) y su autómata reconocedor A1' y sea el autómata de Büchi
temporizado T1' = (A1', {saccept}),

12(T1') <;;:: 12(P)

Demostración. Queremos ver que 12(T1') <;;:: 12(P), es decir, que todas las ejecuciones aceptadas por T1'
corresponden sólo a ejecuciones aceptadas por P.

Sea O" = (e, T) una ejecución en 12(T1')' Como en el caso no temporizado, la definición de leng'uaje de un
autómata de Büchi temporizado implica que existe una forma de evolucionar desde qinit, consumiendo 0",

de forma tal de visitar saccept un número infinito de veces. Quiere decir que, en particular, debe existir una
forma de evolucionar desde qinit hasta saccept consumiendo un prefijo finito de 0":

para algún i E N. Pero a su vez, esto implica por la propiedad de Corrección del autómata reconocedor
para patrones temporizados 4.8 que O"iJ I=p P, y por lo tanto, O"iJ 1= P. Dado que la satisfacción de patrones
temporizados es cerradas por extensiones (Propiedad 3.3) podemos concluir que O" 1= P.

Como r es divergente, O" debe serIo también, y con ésto hemos demostrado que O" E 12(P). o

Lema A.4. (Completitud del tableau)
Dado un patrón temporizado P = ('E., P, e, --., ¡,ó) y su autómata reconocedor A1' y sea el autómata de Büchi
tempoTizado T1' = (A1', {saccept}) I

12(P) <;;:: 12(T1')
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Demostración. Queremos ver que por cada ejecución divergente aceptada por P, existe una forma de evolu-
cionar en A1' consumiendo dicha ejecución, de forma tal de pasar un número infinito de veces por Saccept.

Sea O" = (<;, T) una ejecución tal que O" E L(P). Por definición de L, sabemos que O" F P Yque O" es divergente.

Por la propiedad de satisfacción finita de los patrones temporizados (Propiedad 3.4), sabemos que existe un
prefijo finito de O" que satisface P. Sea i una posición tal que O"i] F P. Sabemos que entonces también vale
que O"i] Fp P. Por la propiedad de Completitud del autómata reconocedor para patrones temporizados 4.9
sabemos que esto último significa que:

qinit =>0";) saccept

es decir, existe al menos. una evolución, llamémosla r¡, que partiendo desde qinit alcance Soccept , consumiendo
las primeras i posiciones de 0".

Siguiendo el mismo razonamiento que para el caso no temporizado, sabemos que existe al menos una evolución
divergente r2 que partiendo desde el último estado de r¡, permanezca para siempre en saccept (cumpliendo de
esa forma la condición de aceptación de T1') Y además r¡ r2 = 0". Con esto queda demostrado que O" E L (T1').

O

A.8 Propiedades de autómatas reconocedores de patrones de even-
tos

Propiedad 4.12. Corrección del autómata reconocedor para patrones de eventos.
Dado un patrón de eventos P = (¿, P, E, -., " o, O, 00) Y su autómata reconocedor A1' = (5, X,:8, A,I, so),
para toda configuración e E e1' y toda ejecución finita O" = (<;, T) sobre ¿,

si qinit =>~ [e] entonces O" Fe P

Demostración. Sea e una configuración de P, sea O" una ejecución finita y supongamos que qinit =>~ [e].
Siguiendo el mismo razonamiento que usamos en la demostración de la propiedad de Corrección para los ca-
sos temporizado y no temporizado (páginas 59 y 95, respectivamente), mostraremos que existe un matching
parcial entre O" y P restringido a e. Para ésto, construiremos un mapeo a partir de una evolución entre qinit
y [e] y mostraremos que cumple las condiciones MP1-MP4 + MPTI-MPT2 + MPI + MPS + MPTI.

Sea n = lO" l. Sean to, ... , tn-¡ E R+ tales que T se pueda escribir como T = to <l t¡ <l ••• <l tn-¡· Dado que O"
etiqueta alguna evolución entre qinit Y [e], por la Propiedad 4.11, dicha evolución debe ser de la forma:

qinit = ([eo],vo) =>~~([8¡],v¡) =>~: ... ([ei],Vi) =>;: ... =>~:=~([en],vn)

donde leo] = [0] = so, Vo = O, [en] = [e] y para todo i, O< i < n, Vi E Vx y ei+¡ es igual a ei o es una
extensión de ei. En particular, sabemos que:

(A.15)

O ~ i < n (A.16)

Como en los casos anteriores, elijamos: de la siguiente manera:

x = rnax i para x E 8 (A.17)
O<i<n
x~e;

Es fácil ver que: verifica MP1-MP4 + MPT1-MPT2 usando un razonamiento análogo al presentado en
las páginas 95 y 59. Veamos que, además, : verifica MPI + MPS + MPTI.
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MPI) Queremos ver que para todo punto x E e, ~i() n ')'(0, x) = 0.

Sea x E e. Queremos ver que para todo i, O ::; i < X,~i ~ ')'(0, x). Sea i cualquiera en el rango mencionado.
Sabemos que x ~ ei+1 porque i + 1 ::; x. Además, por (A.16) sabemos que o bien existe una arista de la
forma ([ei], ~i, '!f1, p, [ei+1D o ei = ei+1 y ~i = A.

Si ~i = A, listo, porque A ~ ')'(0, x) <:::; E. Si, en cambio, ~i E E Yexiste una arista ([ei], ~i, '!f1, p, [ei+d) en el
autómata, entonces sólo puede pasar que dicha arista sea Skip o M ark,

Si la arista es Skip entonces necesariamente ~i ~ r*(ei) y dado que x ~ ei y ~i ~ r*(e;), sólo puede pasar
que ~i ~ ')'(O,x).

Si la arista es M ark eritonces ei+1 = ei l±!{y}, para algún evento y y necesariamente ~i ~ r;y(ei). Dado
que y = i < X,y =1= x, x ~ ei y ~i ~ r;y(ei), entonces sólo puede pasar que ~i ~ ')'(0, x).

En todos los casos llegamos a que ~i ~ ')'(O,x).

MPS) Queremos ver que para todo punto x E e, ~(i( n ')'(x, (0) = 0.

Sea x E 8. Queremos ver que para todo i, x < i < n, ~i ~ ')'(x, (0). Sea i cualquiera en ese rango. Sabe-
mos que x E ei. Por (A.16) también sabemos o bien existe una arista de la forma ([ei], ~i, '!f1, p, [ei+d) o
ei = ei+1 y ~i = A.

Si ~i = A, listo, porque A ~ ')'(x, (0) <:::; E. Si ~i E E, entonces sólo puede pasar que exista una arista Skip o
Mark de la forma ([8i],(i, '!f1, p, [8i+1D.

Si la arista es Skip, entonces ~i ~ ')'(x, (0) (porque ~i ~ r*(ei) y x E ei).

Si la arista es Mark entonces ei+1 = 8l±! {y}, para algún punto y. Con lo cual tenemos que x E ei y
(i ~ r;y(8i), luego sólo puede pasar que ~i ~ ')'(x, (0).

En todos los casos tenemos que ~i ~ ')'(x, (0).

MPTI) Queremos ver que para todo punto x E e, Ll(7i(]) F=8(0, x).

Sea x E 8. Sabemos que ei(+1 = ex l±!{x} y que ([ei(], Vi() =>i~([8X+I], vx+I). Además, la transición
discreta sólo puede corresponder a una arista M ark o 1nstant, con lo cual Vi(+ ti( F='!f1e: y, por lo tanto,
Vi(+ tx F='!f1zx(8(0,x)).

Observemos que los Zx sólo se resetean en las aristas Mark o Instant que reconocen o marcan el punto x,
y ésto sólo pasa una vez a lo largo de toda la evolución. Además, Zo no se resetea nunca. Quiere decir que
podemos observar el valor del reloj Zo a lo largo de toda la evolución:

VO(Zo)
. VI(ZO)

V2(ZO)

O(zo) = O
to
to + tI

Vi«(Zo) to + ... + ti(-I

Sabemos que Vi(+ ti( F='!f1zo (8(0, x)). Por la Proposición 4.6, (Vi(+ tx)(zo) F=8(0, x).

Pero (Vi(+ ti()(zo) = Vi«(zo) + ti( = to + ... + ts. = Ll(7i(]). Y quiere decir que Ll(7x]) F=8(0, x).
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Con esto queda demostrado que ~es un matching parcial entre a- y P restringido a e y, como consecuencia
directa, a- Fe P.

o

Propiedad 4.13.Completitud del autómata reconocedor para patrones de eventos.
Dado un patrón de eventos P = (L-,P, f.,~", J, 0, 00) y su autómata reconocedor Ap = (S, X, L-,A,T, so),
para toda configuración 8 E 8p y toda ejecución finita a- sobre L-,

si a- Fe P entonces qinit :::}<7 [e]

Demostración. Sea e una configuración de P y a- = (e, T) una ejecución finita sobre L-. Supongamos, además
que a- Fe P y, por lo tallto, que existe al menos un matching parcial: entre a- y P restringido a e. Corno en
los casos anteriores, para demostrar que se puede evolucionar desde qinit hacia [e] por a, vamos a dar una
forma de construir una evolución entre dichas locaciones a partir de :.

Consideremos una vez más la secuencia de conjuntos de eventos presentada en la página 97:

donde n = Ia-I y para todo i, O :s: i :s: n:

8i = {x E e I x < i} (A.18)

Se puede ver que también en este caso vale que:

• eo = 0

• en = e
• Para todo i, O :s: i :s: n, ei es una configuración

• Para todo i, O :s: i :s: n, red es una locación de Ap

• Cada ei+l, con O :s:i < n es igual a ei o es una extensión de ei

• Para todo i, O :s: i < n, existe una arista de la forma ([e;], <;i, 'ljI, p, [ei+d) o e; = ei+l y <;i = .A.
El razonamiento es el mismo que usamos en la página 97. La única diferencia es que en esa oportunidad
probamos que <;; no violaba ninguna restricción de eventos mostrando que no pertenecía a r(ei) o a
r e-x (ei), según el caso. En el caso de los patrones de eventos faltaría probar que esto también vale
cuando usamos r- y r~.

En la página 97, vimos que si <;i E L- Y ei+l = e;, necesariamente <;; ~ r(e;). Por MPS y MPI,
sabemos que además <;i ~ r*(ei). Si este no fuera el caso, existiría un punto x E e; (y x < i) tal que
<;i E ,(x, 00), con lo cual: violaría MPS, o existiría un punto y ~ e; = ei+l (e i < 9) tal que <;i E ,(O, y),
con lo cual ~violaría MPI. Por lo tanto, existe una arista Skip de la forma ([e;],<;;, T, 0, [ei]).

Por otro lado, si <;i E L- y ei+l = ei l±J {p}, para algún punto p, entonces corno en el caso temporizado
<;i ~ rt>p(e;). Nuevamente, MPI y MPS no aseguran que <;i ~ r~p(e;). Si este no fuera el caso,
existiría un punto x E e; tal que <;; E ,(x, 00), con lo cual: violaría MPS, o existiría un punto y ~ e;
tal que y i= p Y <;; E ,(O, y), con lo cual: violaría MPI. Finalmente, por MPl sabemos que p E E
Y<;; = <;f> E f.(p). Quiere decir que existe una arista en Mark de la forma ([ei], <;;, 'ljI~, {zp}, [eí l±J {p}]).

Si <;; = .Ael razonamiento es similar al del caso temporizado.
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Como en el caso de los patrones temporizados, consideremos la sucesión de números reales no negativos
to, ... , tn-1 tal que T se pueda escribir como T = to <ltI <l... <ltn-1 Y la secuencia de valuaciones Vo,· .. , Vn

dada por:

o

{
Vi + ti si ei+1 = ei

O::;i<n
Resetz.(vi + ti) si ei+1 = ei I:±J {x}

Veamos que también vale que para todo i, O::; i < n, ([ei], Vi) =*;: ([ei+1], Vi+1).

Vo

(A.19)

Dado un i cualquiera, O::; i < n, sabemos que existe la transición temporal ([ei], Vi) ~ti ([ei], Vi + ti) dado
que el invariante en todas las locaciones del autómata es T. Vimos también en la página 102 que si ei+1 = ei
entonces siempre existe-la transición discreta ([ei],Vi + ti) ~<i ([ei+1], Vi+1) Y que si ei+1 = ei I:±J {p}, pa-
ra algún punto p, entonces existe una arista M ark o Instant de la forma ([ei],~i, V->~, {zp}, [ei I:±J {p}]) Y
para demostrar que existe la transición discretea ([ei],Vi + ti) ~<i ([8i+1], Vi+1) alcanza con probar que
Vi + ti 1= V->~.

Supongamos que se da este último caso, es decir ei+1 = 8i I:±J {p}. Vimos en el caso de los patrones tempo-
rizados que Vi + ti 1= V->~i' Dado que V->~ = V->~i 1\ V->zo(Ó(O, p)), faltaría probar que (Vi + t;)(zo) 1= Ó(O, p).

Supongamos que (Vi + ti)(ZO) ~ Ó(O, p). Se puede ver en (A.19) que zo no se resetea nunca (excepto al
principio de la evolución). Por lo tanto:

Vo(Zo)
VI (zo)
V2(ZO)

O(Zo) = O
to
to + tI

V¡;(Zo) to + ... + t¡;-l

Con lo cual, (Vi + ti)(zo) = V¡;(zo) + t¡; = to + ... + t¡; = T¡;= ~(T¡;)). Quiere decir que ~h)) ~ Ó(O, p) y esto
violaría la hipótesis de que ~verificaba MPTI.

Quiere decir que en todos los caso existe la evolución en un paso ([ei], v;) =*t ([ei+1], Vi+1)'

Una vez más, podemos concluir que:

([eo], vo) =*;~([el], VI) =*;~... =*~:::::([8n], Vn)

lo cual implica que qinit = ([eo], vo) =*" [en] = [e].
o

Teorema 4.14. Tableau para patrones de eventos.
Dado un patrón de eventos P = (~, P,f,~, ,,/,Ó, O,00), el autómata de Büchi temporizado 7-p = (A-p, {saccepd)
reconoce el lenguaje 12(P).

Demostración. Como en los dos casos 'anteriores, la demostración del teorema está dividida en dos lemas.
El lema A.5 prueba que 12(7-p) ~ 12(P) y, por el otro lado, el lema A.6 prueba que 12(P) ~ 12(7-p).

o

Lema A.5. (Corrección del tableau)
Dado un patrón de eventos P = (~, P, f,~, ,,/,Ó, O, 00) Y su autómata reconocedor A-p y sea el autómata de
Büchi temporizado 7-p = (A-p, {saccepd),

L(7p) ~ L(P)
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Demostración. Queremos ver que f.(Tp) ~ f.(P), es decir, que todas las ejecuciones aceptadas por Tp

corresponden sólo a ejecuciones aceptadas por P.

Sea 17 = (e, T) una ejecución en f.(Tp). La condición de aceptación de Büchi implica que existe una forma
de evolucionar desde qinit, siguiendo 17, pasando infinitas veces por Boccept- Quiere decir que, en particular,
debe existir una forma de evolucionar desde qinit hasta Baccept consumiendo un prefijo finito de 17:

para algún i E N y, además, se puede consumir el resto de la ejecución atravesando únicamente aristas
Skip sobre saccept. Por la propiedad de Corrección del autómata reconocedor para patrones de eventos 4.12,
17i]Fp P, y por lo tanto, 17i]F P. Sin embargo, a diferencia de los casos anteriores, saber que un prefijo
finito de 17 satisface el patrón P no nos alcanza para asegurar que la ejecución completa lo haga.
Para poder concluir que 17 satisface el patrón, debemos mostrar que l7(i no contiene ningún evento "prohibi-
dos" hasta el final de la ejecución. Estos eventos están dados por el conjunto lLp = UXEP ')'(x, 00).
Por otro lado, sabemos que lLp = f*(P) y que para todos los eventos más allá de la posición i es posible
atravesar una arista Skip, con lo cual necesariamente ninguno de esos eventos pertenece a f*(P). Quiere
decir podemos afirmar que <;(inlLp = 0. Ahora si, la propiedad de Clausura débil por extensiones (Propiedad
3.5) nos permite concluir que 17 F P.
Como r es divergente, 17 debe serlo también, y con ésto hemos demostrado que 17 E f.(P). O

Lema A.6. (Completitud del tableau)
Dado un patrón de eventos P = (~, P, e, -t, ')',8, 0, 00) y su autómata reconocedor Ap y sea el autómata de
Büchi temporizado Tp = (Ap, {saccepd),

f.(P) ~ f.(Tp)

Demostración. Queremos ver que por cada ejecución divergente aceptada por P, existe una forma de evolu-
cionar en Ap consumiendo dicha ejecución, de forma tal de pasar un número infinito de veces por saccept·
Sea 17 = (<;, T) una ejecución tal que 17 E L(P). Por definición de L, sabemos que 17 F P y que 17es divergente.
Por la propiedad de Satisfacción finita de los patrones de eventos (Propiedad 3.6), sabemos que existe una
posición i de 17 tal que:

17i]F P
'ti nlLp = 0

(A.20)
(A.21)

Sabiendo que vale (A.20), la propiedad de Completitud del autómata reconocedor de patrones de eventos 4.13
nos permite afirmar que 17i]F[p] P y, por lo tanto:

qinit ~cril saccept

es decir, existe al menos una evolución que comienza en qinit Y alcanza saccept, consumiendo las primeras
i posiciones de 17. Llamemos rI a dicha evolución. Vamos a probar que es posible consumir el resto de la
ejecución atravesando únicamente aristas Skip sobre saccept.
Por definición, existe una arista Skip en saccept para cada evento que no pertenezca al conjunto r'*(P). Pero
también sabemos por (4.1) que f*(E) = lLp y por (A.21) podemos afirmar que 'j (j. f*(P), para todo j > i.
Quiere decir que existe al menos una evolución divergente r2 que partiendo desde el estado final de rI,

permanezca para siempre en saccept (y por lo tanto verifique la condición de aceptación de Tp), y que
además rI r2 = 17. Y esto alcanza para demostrar que 17 E f. (Tp ).

o



Apéndice B

Implementación en Jaya

La implementación del verificador de patrones fue realizada en Java utilizando el JSDK versión 1.4.1. Dado
que se trata de una versión prototipo, el verificador brinda únicamente una interfaz por línea de comando.

El verificador recibe dos archivos como input. Uno de los archivos corresponde al autómata temporizado
que modela el sistema y el otro al patrón de mal comportamiento que se quiere verificar. El verificador
contestará "Si" si y sólo si el sistema satisface el patrón y "No" en otro caso. El archivo con la definición del
autómata temporizado que representa al sistema debe tener el formato aceptado por la herramienta Kronos
[Yov]. La definición del patrón de mal comportamiento a verificar se debe dar a través de un documento
XML que cumpla con la estructura especificada por el DTD incluido en la sección B.2.

B.l Caso de estudio
Veremos a continuación un ejemplo de uso del componente traductor del Verificador de Patrones. Usaremos
como caso de estudio el protocolo CSMAjCD presentado en la sección 5.2.

El primer listado muestra el documento XML con la definición del Patrón 5.4, correspondiente al Requeri-
miento 5.4.

<? xml version= "LO" ?>
<! OOCTYPE pattern SYSTEM "pattern.dtd" >

<pattern id= "csrna-cd-q" >
<alphabet>

<event>BEGIN1 <jevent>
<event>BEGIN2<jevent>
<event> EN01 <j event>
<event>EN02<jevent>
<event>C01<jevent>
<event>C02<jevent>

<jalphabet>
<eventsets>

<eventset name= "ENO" >
<event>EN01<jevent>
<event> EN02< j event>

< j eventset>
<Ieventsets>

109
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<points>
<e-point id= "p" >

<event>BEGINl <jevent>
<je-point>
<e-point id= "q" >

<event>BEGIN2<jevent>
<je-point>
<e-point id= "r" >

<eventset-ref name= "END" [»

<je-point>
<jpoints>
<precedence>

<precedes>"
<point-ref id= "p'' j>
<point-ref id= "r" [»
<event>BEGIN1<jevent>
<event>EN D1<j event>
<event>CDl «] event>

<j precedes>
<precedes>

<point-ref id= "q" [»
<point-ref id= "r" [»

<event>BEGIN2<jevent>
<event> END2< j event>
<event>CD2<j event>

<j precedes>
<j precedence>

<jpattern>

XML para el Patrón 5.4

El comando:

traductor pattern1.xml pattern1.tg

permite obtener en el archivo pattern1 .tg el automáta reconocedor para el Patrón 5.4. El siguiente listado
muestra este autómata reconocedor en el formato definido por Kronos [Yov].

j* Automata Temporizado generado automaticamente (do not remove this line) *j

j* Generales * j
#states 6
#trans 42
#clocks O

j* Locaciones y transiciones * j

j* Location: { } [INIT] * j
state: O
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prop: INIT
invar: TRUE
trans:

TRUE => C02 ; RESET { } ; goto O
TRUE => BEGINl ; RESET{ } ; goto O
TRUE => BEGIN2 ; RESET{ } ; goto O
TRUE => BEGIN2 ; RESET{ } ; goto 5
TRUE => EN01 ; RESET { } ; goto O
TRUE => EN02 ; RESET { } ; goto O
TRUE => COl; RESET { } ; goto O
TRUE => BEGINl ; RESET{ } ; goto 2

1* Location: Trap [TRA'P] */
state: 1
prop: TRAP
invar: TRUE
trans:

TRUE => EN02 ; RESET { } ; goto 1
TRUE => C02 ; RESET { } ; goto 1
TRUE => COl; RESET { } ; goto 1
TRUE => BEGINl ; RESET { } ; goto 1
TRUE => BEGIN2 ; RESET { } ; goto 1
TRUE => ENOl ; RESET { } ; goto 1

1* Location: { p } */
state: 2
invar: TRUE
trans:

TRUE => ENOl ; RESET { } ; goto 1
TRUE => BEGIN2 ; RESET{ } ; goto 3
TRUE => BEGIN2 ; RESET{ } ; goto 2
TRUE => EN02 ; RESET { } ; goto 2
TRUE => C02 ; RESET { } ; goto 2
TRUE => BEGINl ; RESET{ } ; goto 1
TRUE => COl; RESET { } ; goto 1

1* Location: { p, q } */
state: 3
invar: TRUE
trans:

TRUE => BEGIN2; RESET{ } ; goto 1
TRUE => ENDl; RESET{ } ; goto 4
TRUE => BEGINl ; RESET{ } ; goto 1
TRUE => EN02 ; RESET { } ; goto 4
TRUE => EN02 ; RESET { } ; goto 1
TRUE => ENOl ; RESET { } ; goto 1
TRUE => COI; RESET { } ; goto 1
TRUE => C02 ; RESET { } ; goto 1

1* Location: { p, q, r } [ACCEPT] */
state: 4
prop: ACCEPT
invar: TRUE
trans:
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TRUE => EN02 ; RESET { } ; gota 4
TRUE => COI; RESET { } ; gota 4
TRUE => BEGIN2 ; RESET{ } ; gota 4
TRUE => ENOl ; RESET{ } ; gota 4
TRUE => BEGINl ; RESET { } ; gota 4
TRUE => C02 ; RESET { } ; gota 4

1* Location: { q } */
state: 5
invar: TRUE
trans:

TRUE => EN02 ; RESET{ } ; gota 1
TRUE => C02 ; RESET{ } ; gota 1
TRUE => ENDl ; RESET { } ; gota 5
TRUE => COI; RESET { } ; gota 5
TRUE => BEGINl ; RESET{ } ; gota 3
TRUE => BEGIN2 ; RESET{ } : gota 1
TRUE => BEGINl; RESET{ } ; gota 5

Autómata reconocedor para el Patrón 5.4 generado automáticamente

Por otro lado, el listado muestra el documento XML con la definición del Patrón 5.5, correspondiente al
Requerimiento 5.5.

<? xml version= "1.0" ?>
<! OOCTYPE pattern SYSTEM "pattern.dtd" >

<pattern id="csma/cd-2">
<alphabet>

<event>BEGINl</event>
<event>BEGIN2</event>
<event>ENO1</ event>
<event>EN02</ event>
<event>COl </ event>
<event>C02</ event>

</alphabet>
<points>

<e-point id= "p">
<event>BEGINl</event>

</e-point>
<e-point id= "q">

<event>BEGIN2</event>
</e-point>
<instant id= "r" />

</points>
<precedence>

<precedes>
<point-ref id= "p" />
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<point-ref id= "r" />
<event>BEGINl </event>
<event> EN DI </ event>
<event>CDl </event>
<interval>

<lower-bound value= "52" included= "false" />
</interval>

</ precedes>
<precedes>

<point-ref id= "q" />
<point-ref id= "r" />
<event>BEGIN2</event>
<eveñt> EN D2< / event>
<event>CD2</ event>

</ precedes>
</ precedence>

</pattem>

XML para el Patrón 5.5

Nuevamente, el comando:

traductor pattern2.xml pattern2.tg

Nos permite obtener el autómata reconocedor para el Patrón 5.5, mostrado en el siguiente listado:

1* Automata Temporizado generado automaticamente (do not remove this line) */

1* Generales */
#states 6
#trans 41
#clocks 2
X_p XJ

1* Locaciones y transiciones */

1* Location: { } [INIT] */
state: O
prop: INIT
invar: TRUE
trans:

TRUE => END2; RESET{ } ; gato O
TRUE => BEGINl ; RESETX_p ; goto 2
TRUE => CD2 ; RESET { } ; goto O
TRUE => CDl ; RESET { } ; gota O
TRUE => BEGIN2 ; RESET{ } ; gota 5
TRUE => BEGINl ; RESET{ } ; gota O
TRUE => BEGIN2 ; RESET{ } ; gota O
TRUE => ENDl ; RESET{ } : goto O
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/* Location: Trap [TRAP] */
state: l
prop: TRAP
invar: TRUE
trans:

TRUE => BEGIN2 ; RESET{ } ; goto l
TRUE => EN02 ; RESET { } ; goto l
TRUE => COI; RESET { } ; goto l
TRUE => ENOI ; RESET{ } ; goto l
TRUE => C02 ; RESET{ } ; goto l
TRUE => BEGINI ; RESET{ } ; goto l

/* Location: { p } */
state: 2
invar: TRUE
trans:

TRUE => C02 ; RESET { } ; goto 2
TRUE => COI; RESET { }; goto l
TRUE => BEGIN2 ; RESET { } ; goto 3
TRUE => ENOI ; RESET { } ; goto l
TRUE => BEGIN2 ; RESET{ } ; goto 2
TRUE => EN02 ; RESET{ } ; goto 2
TRUE => BEGINI ; RESET{ } ; goto l

/* Location: { p, q } */
state: 3
invar: TRUE
trans:

X_p > 52=> ; RESET {XJ} ; goto 4
TRUE => BEGIN2 ; RESET{ } ; goto l
TRUE => C02 ; RESET { } ; goto l
TRUE => COl ; RESET{ } ; goto l
TRUE => BEGINI ; RESET { } ; goto l
TRUE => ENOI ; RESET { } ; goto l
TRUE => EN02 ; RESET{ } ; goto l

/* Location: { p, q, r } [ACCEPT] */
state: 4
prop: ACCEPT
invar: TRUE
trans:

TRUE => BEGIN2 ; RESET{ } ; goto 4
TRUE => ENOI ; RESET{ } ; goto 4
TRUE => BEGINI ; RESET { } ; goto 4
TRUE => COI; RESET { } ; goto 4
TRUE => EN02 ; RESET{ } ; goto 4
TRUE => C02 ; RESET { } ; goto 4

/* Location: { q } */
state: 5
invar: TRUE
trans:

TRUE ;:;;> ENDl ; RESET{ } ; goto 5
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TRUE => COI; RESET { } ; goto 5
TRUE => BEGIN2 ; RESET { } ; goto 1
TRUE => BEGINl ; RESET { } ; goto 5
TRUE => END2 ; RESET { } ; goto 1
TRUE => BEGINl ; RESET {X_p} ; goto 3
TRUE => CD2 ; RESET{ } ; goto 1

Autómata reconocedor para el Patrón 5.5 generado automáticamente

B.2 DTD del documento para definición de patrones de mal com-
portamiento

<? xml encoding="US-ASCI" ?>

<! -- Pairoti de eventos. Un patron de eventos está definido por un alfabeto (conjunto de eventos), una serie
de conjuntos de eventos con algún nombre descriptivo (usado para agrupar eventos con propiedades similares),
un conjunto de puntos, una relación de precedencia entre los puntos y un conjunto de restricciones entre
pares de puntos. La definición de un relación de precedencia es opcional. Si no se define ninguna, se asume
que ningún punto está causalmente relacionado con ningún otro. Las restricciones entre puntos causalmente
relacionados pueden ser definidas cuando se define la precedencia entre dichos puntos o utilizando la sección
de "restrictions". Las restricciones entre puntos no relacionados sólo puede definirse en esa última sección.
Si no se define ninguna restricción, se asume que no hay eventos prohibidos entre ningún par de puntos y
que el delay permitido es (O, infinito) en todos los casos. -->
< ! ElEMENT pattern (alphabet,labelsets? ,points,precedence? ,restrictions?) >
<! ATTlIST pattern id ID #REQUIRED>

< ! -- Alfabeto de un patrón de eventos. Define el conjunto de eventos del patrón. Todos los eventos asociados
a puntos del patrón así como los eventos mencionados en restricciones o en conjuntos de eventos deben estar
declarados en esta sección. De no ser así, se lo considerará un error. El alfabeto puede ser vacío.
usado en: pattern -->
< !ElEM ENT alphabet (event*) >

< ! -- Define un único evento. El nombre del evento no necesita ser único, pero no es recomendable repetir
eventos en el mismo alfabeto.
usado en: alphabet, eventset, e-point, forbidden -->
<! ElEMENT event (#PCDATA) >

< ! -- Agrupaciones de eventos. Definen conjuntos de eventos a los cuales asocia un nombre representativo
para ser referenciado en otras secciones del documento. Todos los eventos deben haber sido declarados en
el alfabeto del patrón. No es obligatorio declarar eventsets, pero si la sección está presente, entonces debe
incluir al menos un conjunto de eventos.
usado en: pattern -->
<! ElEMENT eventsets (eventset+) >

< ! -- Conjunto de eventos. Define un conjunto de eventos al cual se le asocia un nombre único. Este conjunto
podrá ser referenciado en otras secciones del documento usando "eoentset-re]". El conjunto no puede ser
vacío.
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usado en: eventsets -->
<!ElEMENT eventset [event-l-] >
<!ATTlIST eventset name ID #REQUIRED>

< ! -- Referencia a un conjunto de eventos. Permite hacer referencia a un conjunto de eventos desde distintas
secciones del documento. El conjunto debe haber sido definido en la sección "eventsets".
usado en: e-point, forbidden -->
<! ElEMENT eventset-ref EMPTY>
<! ATTlIST eventset-ref name IDREF #IMPlIED>

< ! -- Conjunto de puntos del patrón. Define el conjunto de puntos que integran el patrón. Los puntos deben
ser diferenciados en e-points e i-points. Los e-points deben tener 1o más eventos asociadas, mientras que los
i-points no tienen eventos asociadas. Los puntos declarados en esta sección (tanto e-points como i-points)
pueden ser referenciados en otras partes del documento usando point-ref. La referencia se hace usando el id
del punto.
usado en: pattern -->
<! ElEMENT points (e-point*,i-point*) >

<! -- Uno de los e-points del patrón. Debe tener asociado uno o más eventos y/o uno o más conjuntos de
eventos. Desde el punto de vista del patrón, se considera la unión de todos los eventos mencionadas en esta
sección, sea directamente o a través de un conjunto de eventos. Se puede hacer referencia a un e-point en
otras partes del documento usando "poirü-re]".
usado en: points -->
<! ELEMENT e-point «event-eventset-ref)+) >
<! ATTlIST e-point id ID #REQUIRED>

< ! -- Uno de los i-points del patrón. Los i-points no tienen eventos asociadas. Se puede hacer referencia a
un i-point en otras partes del documento usando "point-ref".
usado en: points -->
<! ELEMENT i-point EMPTY>
<! ATTLlST i-point id ID #REQUIRED>

<! -- Hace referencia a un e-point o i-point definido en "points".
usado en: precedes, forbidden, delay -->
<! ELEMENT point-ref EMPTY>
<! ATTlIST point-ref id IDREF #IMPlIED>

< ! -- Punto especial que representa el comienzo de la ejecución
usado en: precedes, forbidden, delay -->
<! ElEMENT before-start EMPTY>

< ! -- Punto especial que representa el final de la ejecución
usado en: precedes, forbidden, delay -->
<! ElEMENT after-end EMPTY> .

< ! -- Relación de precedencia entre los puntos del patrón. Define uno o más pares de puntos relacionados.
No es obligatorio definir una relación de precedencia para el patrón, pero si se incluye esta sección, no puede
estar vacía.
usado en: pattern -->
<! ElEMENT precedence (precedes+) >

< ! -- Precedencia entre dos puntos del patrón. Compuesta por dos puntos, cero o más restricciones de
eventos y cero o más restricciones temporales. El orden de los puntos está dado por el orden en que se
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escriben en el documento. Un punto puede ser definido por una referencia a un e-point o a un i-point o
por los puntos especiales "before-start" y "after-end". Esos puntos corresponden al comienzo y al final de
la ejecución, 1·espectivamente. Las restricciones entre puntos relacionados pueden definirse en esta sección
y/o en "restrictions". De todas formas, para el patrón se considera para cada par de puntos la unión de las
restricciones definidas en esta sección y en "restrictions".
usado en: precedence -->
<! ELEMENT precedes «point-ref-before-start-after-end),(point-ref-before-start-after-end),
(event-c-eventset-ref}" .lntervalf]

< ! -- Restricciones entre los puntos del patrón. Define las restricciones de eventos y temporales entre los
pares de puntos del patrón. Si no se define ninguna restricción de eventos para un par de puntos dado, se
asume que todos los eventos están permitidos. Si no se define ninguna restricción temporal para un par de
puntos determinado, se-asume que el delay permitido es (O, infinito). Para el patrón se considera para cada
par de puntos la unión de las restricciones definidas en esta sección y en "precedes".
usado en: pattern -->
<! ELEMENT restrictions (forbidden*,delay*) >

<! -- Restricción de eventos entre un par de puntos del patrón. Los puntos se definen como en "precedes".
En este caso no importa el orden en que aparezcan los puntos. Para cada par de puntos se puede definir
una única restricción. Si esto no fuera así, se lo considerará un error. Los eventos se pueden mencionar en
forma directa o a través de conjuntos de etiquetas definidos en "eventsets".
usado en: restrictions -->
< ! ELEMENT forbidden «point-ref-before-start-after-end),(point-ref-before-start-after-end),
(event-e-eventset-refj-j-] >

<! -- Restricción de temporal entre un par de puntos del patrón. Los puntos se definen como en "precedes".
En este caso no importa el orden en que aparezcan los puntos. Para cada par de puntos se puede definir una
única restricción. Si esto no fuera así, se lo considerará un error.
usado en: restrictions -->
< ! ELEMENT delay «point-refl before-start Iafter-end), (point-ref Ibefore-start Iafter-end) ,interval) >

< ! -- Intervalos de números reales no negativos. Un intervalo consiste en un límite inferior y un límite
superior. Si el límite inferior no se indica, se asume (O Si el límite superior no se indica, se asume infinito)
-->
< ! ELEMENT interval (Iower-bound?, upper-bound?) >
<! ELEMENT lower-bound EMPTY>
<! ATTLlST lower-bound value CDATA #REQUIRED included (true Ifalse) #REQUIRED>
<! ELEMENT upper-bound EMPTY>
<! ATTLlST upper-bound value CDATA #REQUIRED included (true Ifalse) #REQUIRED>
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