Tesis de Licenciatura
Reuso de Computaciéon

Mario Daniel Bergotto
{mbergott@dc.uba.ar}
Departamento de Computacion
Facultad de Ciencias Exactas y Naturales
Universidad de Buenos Aires
Argentina
Directora: Dra. Patricia Borensztejn
{patricia@dc.uba.ar}

24 de julio de 2000

El significado de la finalizacion de este trabajo exrcede enormemente lo estrictamente
académico, ya que marca un antes y un después en mi vida. FEs por eso que ademds de
agradecer infinitamente a todas las personas que colaboraron directamente con este trabajo,
lo dedico especialmente a:

M famalia, por el inmenso apoyo y amor que me supieron dar en todo este tiempo, y que no
dudo continuard por siempre.

Malvina, por darme tanta felicidad y hacerme ver mucho mas lejos de lo que se puede utili-
zando la razon.

Mis amigos, que me acompanaron en todo momento.

Este trabajo no hubiera sido posible sin la colaboracion e infinita paciencia de Patricia Bo-
rensztejn, a quien siempre agradeceré todo el tiempo y esfuerzo que dedico para llevar a buen
término este proyecto.

Ademds, quisiera expresar mi gratitud a Daniel Etiemble, quien ayudd a dar el puntapié
1icial de este trabajo.

Nuevamente, gracias a todos.

Abstract

En su larga evolucion, los microprocesadores han incorporado una serie de técnicas para
solucionar las trabas que se encuentran en los programas que impiden aprovechar todos los
recursos hardware disponibles. Los accesos a memoria principal, las dependencias de control,
las dependencias falsas, son limitantes que casi todos los procesadores actuales atacan de
alguna manera. Por otro lado, hasta hace pocos anos, el cuello de botella que imponen las
dependencias de datos verdaderas habia sido dejado sin tratar. En anos recientes se le ha
prestado una gran atencion al grupo de técnicas denominadas superespeculativas. En general,
el objetivo que estas técnicas persiguen es sobreponerse a la limitacion de las dependencias de
datos verdaderas, colapsandolas, haciendo posible que instrucciones que deberian ejecutarse
de forma secuencial lo hagan en forma paralela.

En este trabajo se presenta el concepto de reuso de computacion, como una generalizacion
del reuso de instrucciones. Como caracteristica distintiva, se puede mencionar que el reuso de
computacion es util aun en el caso de un cambio de contexto, lo cual lo hace especialmente itil
en ambientes multitarea, que son la mayoria de los casos en la actualidad. El fenomeno de
reuso de computacion se cuantifico para las instrucciones de aritmética entera, y se encontrd
que la mayoria de ellas puede ser reusada. Ademds, en un intento por mejorar la eficiencia
del esquema se desarrollo un mecanismo de filtrado basado en los valores de los operandos.

También se discute una implementacion hardware para aprovechar el fenémeno de reuso
de computacion basado en una cache asociativa de 4 vias. FEste punto no es para nada
trivial, ya que ninguna de las entradas de la funcion de direccionamiento de la cache tiene
una distribucion uniforme que podria distribuir uniformememte los datos en la cache. Se
desarrollaron varias funciones de direccionamiento y se compararon.

Por dltimo, se evalian de forma cuantitativa los beneficios del esquema de reuso de
computacion propuesto mediante simulaciones de un procesador superescalar que incorpora
el esquema presentado en el trabajo. Se observan ganancias de performance en todos los
programas simulados, y el reuso de computacion presenta un ventajas sobre un esquema de
reuso de instrucciones simulado. Esta ventaja puede ampliarse de manera significativa si se
tiene en cuenta un ambiente multitarea.

Indice General

1 Introduccién

2 Conceptos

2:1
2.2
2.3

24

2.5

2.6
2.7

2.8

Conceptos basicos
Medidas de rendimientoo
Técnicas para mejorar el rendimiento
2.3.1 Procesador segmentadoo
2.3.2 Problemas asociados con la segmentacién
2.3.3 Procesador superescalar
Solucién de los problemas asociados con la segmentacién
2.4.1 Riesgos producidos por dependencias de datos
2.4.2 Riesgos producidos por dependencias de control
Técnicas para mejorar el rendimiento
2.5.1 Planificaciéon dindmica
2.5.2 Renombre de registroso
2.5.3 Prediccién desaltoso
El préximo paso: Prediccién de valores y Reuso de instrucciones
Estado del arte en prediccién de valores y reuso de instrucciones
2.7.1 Esquema Sv
272 ESOOBMASH « o « 5 5 v 5 2 55 s ¢ 5 53 ¢ 6 4 5 % 68 5 F 4@ 5 8 5 5 # A
2.7.3 Esquema Sn+d
Este trabajo.: « : « x5 w5 ¢ o5 5 55 78 8 55 8 5 @ % @ 65 £ 6% ¥ 5w s % &3

3 La herramienta de simulacién SimpleScalar

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

Arquitectura SimpleScalar L
Generacién de cédigo para el simulador
Estructura interna del simulador
Ejecucién de un proceso en SimpleScalar L.
Sim-Safe, un simulador funcional basico.
Sim-Outorder, simulador de rendimiento
Otros simuladores

11
12
13
16
16
16
18
20
21
23
25
29
31
35
37
37
38

381 DPEONES. - o s n s s v % 0 5 5 i HE A E SRR R R AEFH 49

3.8.2 Incorporacién del reuso de computacién 49
3.8.3 Incorporacién de estadisticas de reuso de computacién 50
Cuantificando el reuso de computacién 51
4.1 Introduccidn e e e e e e e e e e e e e e e 51
4.2 Instrucciones sobre las que se aplicard el esquema de reuso. 52
4.2.1 Anaélisis de las instruccionesde salto 52
4.2.2 Anélisis de las instrucciones de load/store 53
4.2.3 Anélisis de las instrucciones de aritmética en coma flotante 53
4.3 Simulaciones e e e e e e e 53
4.3.1 Ambiente de simulacién 54
4.3.2 Esquema simulado L. 55
4.3.3 Restltados -« = o i v i v s s e m e s s Eom a s s s s h5
44 Conclusiones. e e e e e e e e e 56
Filtros de instrucciones 58
5.1 Consideraciones iniciales 58
5.2 Definiciones basicas e e e e e e e e e e e e e e e 59
5.3 Filtrosiniciales e e 59
5.4 Andlisis de valores operadoso 60
5.5 Filtros desarrollados 61
5.6 Conclusiones e e e 62
Implementacion 64
6.1 Consideraciones iniciales 64
6.2 Funcién de indexadodel buffer. 64
6.3 Estudio de la distribucion de los cédigos de operacién y de los valores de los
operandoS e e e e e e e e e e 65
6.4 Desarrollo de la funcién de hashing 66
6.5 Resultados 67
Mediciones de performance 69
Conclusiones 71

Capitulo 1
Introducciéon

Los procesadores superescalares actuales emplean un abanico importante de técnicas especu-
lativas para mejorar su rendimiento. El ejemplo mas importante son los predictores de saltos,
a los cuales se ha dedicado mucho estudio desde hace ya varios afios. Sin embargo, este no
es el unico ejemplo de aplicacién de técnicas especulativas. Desde hace ya muchos anos, las
memorias caches, tanto de datos como de instrucciones, se han incorporado en todo tipo de
procesadores. Este es otro ejemplo tipico de especulacién, ya que las memorias caches no
almacenan solamente el dato puntual accedido, sino que almacenan ademas datos vecinos,
suponiendo, especulando, con que los datos mas préximos serdn accedidos proximamente.

Por otro lado, sélo recientemente se ha comenzado a estudiar cémo atacar el problema
de las dependencias verdaderas. Las técnicas de prediccién de valores [22], [23], [24], [25]
y reuso de instrucciones [27). tratan directamente con estas dependencias, colapsandolas y
haciendo que instrucciones que tendrian que ejecutarse secuencialmente lo puedan hacer en
paralelo. -

La técnica de reuso de instrucciones es una técnica no especulativa que evita la ejecucién
de instrucciones que van a generar el mismo resultado que en una ejecucién anterior. Al evitar
cdlculos innecesarios el camino critico se acorta, reduciendo el tiempo de ejecucién. Como
hemos dicho, esta técnica es "no especulativa”, pero esto debe entenderse en el sentido de
que es una técnica segura, ya que en el caso de intentar reusar una instruccién y no lograrlo,
no hay ninguna penalizacién asociada,

Segun se define en {29], la repeticidn de una instruccién ocurre cuando dos instancias
dindmicas de la misma instruccién estética generan el mismo resultado. Esto sucede si (y
no sélo si) ambas instancias dindmicas operan sobre los mismos inputs.

El aporte de este trabajo consiste en un nuevo esquema de reuso basado en una de-
finicién alternativa de repeticién. El estudio de esta nueva definicién y los esquemas de
reuso propuestos estan apoyados en simulacionesrealizadas con la herramienta de simulacién
SimpleScalar [33]. .

Estudiando detenidamente la definicién presentada en [29] surge que requerir la existencia
de una ejecucién anterior de la misma instruccién estatica para poder reusarla es demasiado
fuerte. Si se relaja esta condicién y solamente se requiere una ejecucién anterior de la misma.

operacion se pueden obtener esquemas que permitan mayores indices de reuso y que son
utiles aun en el escenario de un cambio de contexto.

En este trabajo se ha cuantificado el fenémeno de reuso de computacién mediante la
realizacion de distintas simulaciones variando el tamano de la cache utilizada. Estas simu-
laciones han arrojado como resultado que un alto porcentaje de las instrucciones dindmicas
son reusables segun la definicién presentada.

Ademads, se observé que a medida que el tamano de la cache decrece, la eficiencia, en
el sentido de usar la cache para almacenar las instancias dindmicas que tienen una mayor
probabilidad de ser repetidas, se transforma en un factor cada vez mas importante.

Por ello, se desarrollé un esquema de filtrado para evitar que instrucciones que tienen po-
cas probabilidades de ser reusadas sean insertadas en la cache, con el consiguiente desperdicio
de espacio.

La idea de un mecanismo de filtrado no es nueva, ya que [29] y [27] sugieren una politica
de insercion ’inteligente’ para el buffer de reuso, ya que solamente un 20% de las instrucciones
insertadas constituyen la mayor parte del reuso. El enfoque aqui propuesto para esa politica
es evitar la insercién de instrucciones en el buffer de reuso, aplicando ciertas reglas sobre los
valores de los operandos.

Para desarrollar el mecanismo de filtrado se realizaron pruebas para determinar cuéles
son los valores mas utilizados en los programas, con el objetivo de que el filtro a desarrollar
permita el paso de las instrucciones que los usen.

Pensando en un disefio util para una implementacién real, se diseié un esquema de reuso
de computacion implementado con una cache de asociatividad limitada. Este desarrollo trajo
implicé la experimentacion de varias funciones de hashing basadas en el cédigo de operacion y
los valores de los operandos. Se consiguié una funcién que, segun la medida aqul establecida,
es aun mejor que la usada en el esquema de reuso de instrucciones contra el que se compara.
De todas maneras, un mayor estudio sobre este punto deberia contribuir a mejorar el indice
de aciertos, para acercarse aun mas al conseguido por el esquema totalmente asociativo.

Por ultimo, se realizaron medidas de performance sobre un procesador superescalar de
cuatro vias. El resultado mas importante es que el esquema de reuso de computacién utili-
zado mejora efectivamente la performance en todos los benchmarks simulados. Aun mas, las
ganancias obtenidas son mayores que las del esquema de reuso de instrucciones con el que
se compara.

Capitulo 2

Conceptos

2.1 Conceptos basicos

La referencia obligada cuando se comienza un trabajo en arquitectura de procesadores es el
modelo de computacién que John Von Neumann desarrollé en el ano 1945 [1], sentando las
bases de las actuales computadoras.

El computador posee tres elementos basicos: una unidad de procesamiento donde se
realizan las distintas operaciones, una unidad de almacenamiento donde residen tanto los
datos como el programa a ejecutar, y una conexién que comunica a ambos. El concepto que
distingue a este modelo de lo existente hasta ese momento es la separacién entre el control
y el almacenamiento, ya que anteriormente el programa y la unidad de control componi
una entidad indivisible. El programa, o sea, la secuencia de instrucciones que la maquina
debe ejecutar, reside en la unidad de almacenamiento, y para determinar cual es la siguiente
instruccién a ejecutar, en la unidad de control existe el registro PC (Program Counter), que
indica la direccién de memoria de la proxima instruccién a ejecutar. Al separar el control
del almacenamiento, este modelo brinda una gran flexibilidad, que no se poseia hasta el
momento de su desarrollo. La ejecucion de una instruccién en este modelo comprende varios
pasos:

e Fetch: Acceder a la celda de memoria indicada por el registro PC, pasando el contenido
del registro por la conexién. El dato referenciado pasa por la conexién hasta la unidad
de procesamiento. Se actualiza el contenido del registro PC para que apunte a la
préxima instruccion a ejecutar.

e Lectura de operandos: Se transfieren los operandos requeridos por la operacién desde la
unidad de almacenamiento hasta la unidad de procesamiento. La transferencia de cada
operando comprende transferir la direccion de memoria del mismo hacia la unidad de
almacenamiento por la conexion, el acceso al dato propiamente dicho y la transferencia
hacia la unidad de procesamiento utilizando la conexién.

e Fjecucion: Se realiza la operacion indicada por la instruccién.

e FEscritura: Se transmite por la conexién el resultado de la operacién, y por dltimo se
lo guarda en la unidad de almacenamiento.

Analizando los computadores de los ultimos 50 anos, podemos observar que el concepto
de programa almacenado permanece valido hasta nuestros dias, y a pesar de que grandes
mejoras se han producido en muchos aspectos, este concepto se ha mantenido inalterable con
el paso de los anos. Estas mejoras, que se describen en las préximas secciones, apuntan a
mejorar el rendimiento del procesador, por lo que antes de estudiarlas en detalle, pasaremos
a definir métricas para el rendimiento.

2.2 Medidas de rendimiento

.,Cémo decidir si un procesador es mejor que otro? Lo primero que hay que hacer es definir
que es lo que uno espera del mismo.

Tipicamente, lo que un usuario final desea tener es un buen tiempo de respuesta, o sea, el
tiempo que toma la realizacién de la tarea. Por otro lado otro tipo de usuario, por ejemplo
el administrador de un servidor de bases de datos, se interesa méas en obtener una mejor
productividad, definida como la cantidad de trabajo realizado en un tiempo determinado
[3]. Para esta persona, no es tan importante el hecho de que un tdnico trabajo finalice
rapidamente, sino que lo importante es que la totalidad del tiempo insumido en completar
el conjunto de trabajos sea la minima posible.

Cuando se comparan dos procesadores, por ejemplo X e Y, es l6gico querer tener una
medida del rendimiento relativo de uno con respecto a otro para alguna tarea o un conjunto
de ellas. Para hacer esta comparacién, se mide el tiempo que toma la/s tareas tanto en X
como en Y y luego se calcula:

T.

Esta ecuacién indica cuanto mas rapido es el procesador X que el Y para la tarea medida.
Ahora bien, jcudles son los componentes del tiempo de ejecuciéon de un programa? El
proceso de ejecucion de un determinado conjunto N de instrucciones insume una determinada
cantidad de ciclos de ejecucién. Por otro lado, también influye en el tiempo que tomard
ejecutar ese conjunto de instrucciones el tiempo que toma cada uno de esos ciclos. Una
manera muy utilizada de resumir estas tres variables (cantidad de instrucciones, cantidad de
ciclos y tiempo de ciclo) es la siguiente ecuacién [3]:

Tiempo de CPU = MG P

Frecuencia

Siendo N la cantidad de instrucciones en lenguaje maquina del programa, CPI el cociente
entre la cantidad de ciclos utilizados y la cantidad de instrucciones ejecutadas y Frecuencia
la inversa del tiempo de ciclo del reloj del procesador. Esta ecuacién permite resumir de

una manera sencilla los factores que afectan el tiempo de ejecucién de un programa. Por
otro lado, permite aproximar el tiempo que tomara ejecutar un programa, si se dispone de
la cantidad de instrucciones que se van a ejecutar, el tiempo de ciclo del procesador y una
buena aproximacién del CPI. Es importante notar que en la mayor parte de los casos de la
vida real el CPI es altamente dependiente del cédigo que se ejecuta, ya que pueden existir
instrucciones que tomen mas ciclos que otras.

En la férmula anterior se introduce un nuevo concepto: el de ciclo de reloj. Un micro-
procesador se compone de dos tipos de elementos légicos: elementos de estado y elementos
de légica combinatoria. Los elementos de légica combinatoria son los que realizan las ope-
raciones, es decir, al poner un dato a la entrada el mismo se transforma, obteniendo un
resultado en la salida luego de un determinado tiempo de retardo. En otras palabras, su
salida depende tnicamente de la entrada. La razon de ésto es que los elementos de logica
combinatoria no poseen memoria interna.

Por otro lado, los elementos de estado almacenan informacion, o sea, poseen una memoria
interna. Los registros y memorias son ejemplos de elementos de estado. Un tipico elemento
de estado posee dos entradas y una salida. Las entradas corresponden al valor del dato a
escribir y a la senal de reloj, que determina cuando se almacena el dato de entrada. La salida
proporciona el valor que se escribié en el ciclo de reloj anterior.

Todos los microprocesadores actuales tienen un funcionamiento sincrdnico , es decir,
gobernado por un reloj central. La funcién de este reloj en un microprocesador es la de
proveer la sefial de actualizacion de los elementos de estado dentro del mismo. El tiempo
que transcurre entre dos ticks de reloj se llama tiempo de ciclo del reloj.

La ecuacién anterior resume los tres parametros pricipales que debe manejar un arquitecto
a la hora de mejorar el rendimiento de la implementaciéon de una arquitectura. Por un
lado, el tiempo medio de ejecucién de una instruccién (CPI) es altamente dependiente de
las decisiones de diseno a nivel logico que se hagan. El diseno del pipeline, la cantidad
de etapas, memorias cache, predictores de salto, etc., afectan este factor. El tiempo de
ciclo del procesador depende mucho de la tecnologia que esté disponible al momento de
la implementacion real del hardware. Mejor tecnologia implica compuertas légicas mas
rapidas, lo que implica un menor tiempo de propagacién de las sefiales dentro del procesador.
Al disminuir este tiempo, la frecuencia del reloj puede incrementarse, lo cual lleva a un
procesador mas rapido. La cantidad de instrucciones, por otro lado, es un a&mbito totalmente
distinto, ya que depende exclusivamente del compilador y el programador. La influencia
del arquitecto en este sentido se limita al momento en el cual se disefia el conjunto de
instrucciones, ya que dependiendo de qué instrucciones decida incluir en el conjunto, la
cantidad de instrucciones necesarias para realizar una determinada operaciéon cambiard de
manera acorde.

Frecuentemente, en especial cuando se habla de una arquitectura en la que se inicia la
ejecucién de mas de una instruccién por ciclo de reloj, en lugar de hablar de CPI se suele
hablar de su inversa, el IPC. Este valor, que se define como 1/CPI, indica la cantidad de
instrucciones que se ejecutan por ciclo. Actualmente, dada la proliferacién de procesadores
superescalares, tal es el nombre de los procesadores con dicha caracteristica, es mucho mas

comun hablar en términos de IPC que de CPIL.

Utilizando la ecuacién anterior se puede realizar la comparacion entre dos maquinas para
un determinado programa o conjunto de programas. Por otro lado, no siempre uno tiene una
tarea especifica en la cual comparar dos maquinas, sino que lo que se desea obtener es una
idea mas general sobre la velocidad de la misma. Ademds, no siempre existe la posibilidad
de disponer de todas las maquinas que uno quiere comparar para tomar las mediciones de
tiempo deseadas.

Lo deseable para estos casos seria tener un nimero o indice para cada madaquina que
indique su potencia de computo. Teniendo este nimero, el problema anterior se solucionaria
trivialmente comparando el indice de todas las maquinas a analizar. Lamentablemente, la
obtencién de un tnico nimero que resuma el rendimiento de una maquina no es tarea sencilla
[4].

Una manera posible para obtener este indice consiste en establecer un conjunto de progra-
mas de prueba o benchmarks para ser ejecutados en las maquinas a analizar y luego combinar
de alguna manera [5] los tiempos de ejecucién obtenidos. Estos programas de prueba de-
ben ser seleccionados de forma tal que el rendimiento que se muestra sobre estos programas
se refleje mas tarde en el rendimento del sistema aplicandole la carga real. Una vez que
estos conjuntos de programas se estandarizan son los mismos fabricantes los que publican
los resultados obtenidos como una manera de dar a conocer el potencial de sus productos.
Los beneficios de este sistema para el usuario final son grandes. Al estar estandarizados los
programas que se ejecutan, el ambiente de ejecucién y la forma de combinar los resultados,
la tarea de comparar se vuelve mucho mas facil.

Uno de los conjuntos de benchmarks mas difundidos es el propuesto por la System Per-
formance Evaluation Cooperative (SPEC) [6]. De esta iniciativa, de la cual participan re-
presentantes de muchas comparias, es que surge el conjunto de benchmarks SPECCPU,
que consiste en 8 programas de aritmética entera y 10 de coma flotante. Para obtener una
medida del rendimiento global del sistema sobre los benchmarks los resultados obtenidos
se combinan utilizando la media geométrica de las razones entre los tiempos de ejecucion
obtenidos y los de una maquina base. Las tablas 2.1 y 2.2 muestran los distintos programas
que componen la versién 1995 de este conjunto.

La version mencionada de este conjunto de benchmarks es la utilizada en este trabajo para
medir los resultados de los esquemas propuestos. Sin embargo, al trabajar exclusivamente
con simulaciones, los tiempos de ejecuciéon no son significativos, con lo cual no pueden ser
utilizados para computar el indice propuesto. La solucién que se aplica en estos casos consiste
en obtener el IPC del procesador simulado para cada uno de los benchmarks. Al tener el
IPC y la cantidad de instrucciones ejecutadas, el tiempo total de CPU queda librado a la
implementaciéon hardware que se realice del procesador simulado. Es por esto que en las
simulaciones de performance que se realizan en este trabajo hablaremos en términos de IPC
para comparar rendimientos.

10

Tabla 2.1: Benchmarks de Aritmética entera

Benchmark | Descripcion
go An internationally ranked go-playing program.
m88ksim A chip simulator for the Motorola 88100 microprocessor.
gee Based on the GNU C compiler version 2.5.3.
compress A in-memory version of the common UNIX utility.
li Xlisp interpreter.
ijpeg Image compression/decompression on in-memory images.
perl An interpreter for the Perl language.
vortex An object oriented database.
Tabla 2.2: Benchmarks de Aritmética de coma flotante
Benchmark | Descripcion
tomcatv Vectorized mesh generation.
swim Shallow water equations.
su2cor Monte-Carlo method.
hydro2d Navier Stokes equations.
mgrid 3d potential field.
applu Partial differential equations.
turb3d Turbulence modeling.
apsi Weather prediction
fpppp From Gaussian series of quantum chemistry benchmarks
waved Maxwell’s equations

2.3 Técnicas para mejorar el rendimiento

Muchas son las mejoras que han surgido desde que se construyeron los primeros procesadores
para mejorar su rendimiento. Por un lado, los adelantos tecnoldgicos a nivel de integracién
de circuitos y diseno légico permitieron una mejor implementacién hardware del disefio del
arquitecto, lo que implica un ciclo de reloj mas corto.

Por otro lado, en cuanto a mejoras a nivel 16gico, se pueden destacar dos: la segmentacién
y el paralelismo. Ninguna de las dos ideas supone un cambio conceptual en el modelo de
computacién utilizado, por lo que ambas ideas pueden considerarse como agregados sobre el
modelo Von Neumann para intentar mejorar el rendimiento de los procesadores basados en
él.

La segmentacion es una técnica en la cual varias instrucciones se superponen durante su
ejecucion. El concepto basico es dividir el trabajo a realizar en etapas y superponer la ejecu-
cién de varios trabajos, mientras que estén en etapas distintas. El caso tipico para ilustrar

11

la técnica de segmentacion es el de una fébrica de autos. El procedimiento de fabricacién de
un auto consiste en cientos de etapas que tienen como producto final un auto perfectamente
funcional. En cada una de las etapas se realiza un trabajo fijo y determinado sobre el auto
en fabricacién, y al concluir la ejecucién de la misma, el auto en fabricacién pasa a la etapa
siguiente. Al liberarse los recursos asignados a la etapa, otro auto en fabricacién puede entrar
en esa fase de produccién. Este modo de trabajo permite que se estén produciendo a la vez
tantos autos como etapas, y que el intervalo de salida entre dos autos al final de la linea de
produccién sea el tiempo de la etapa mas larga. A pesar de que el tiempo de fabricacién de
un tdnico auto no disminuye, y hasta aumente, la productividad aumenta de forma dréstica.

En nuestro caso, el producto a fabricar es el resultado de la instruccién, y las etapas en
las que se divide el proceso de la ejecucién son, basicamente, las mismas que en el modelo
Von Neumann.

La técnica de paralelismo también implica superposicién en la ejecucién de las instruc-
ciones, pero en este caso tambien se multiplican los recursos para ejecutarla. En el caso de
la fabrica de autos el ejemplo seria la replicacion de todos los recursos necesarios para la
fabricacién de un auto, que incluso podria ser la linea de montaje completa, en cuyo caso
estariamos en un caso en una situacion en la que se combinan la técnica de segmentacién
con la de paralelismo.

A continuacién se analizara con mas detalle la arquitectura de un procesador segmentado
y los problemas que traen la implementacién de las técnicas de segmentacién y paralelismo.
Por simplicidad, se trabajard con un procesador de tipo RISC, cuyas tunicas instrucciones
de acceso a memoria son load y store. Esta caracteristica simplifica mucho el diseno del
procesador y permite una aplicacién mas pura de los conceptos explicados en este trabajo. De
trabajar con un procesador con instrucciones mas complejas, deberian resolverse cuestiones
mas relacionadas con la adaptacion de las técnicas mencionadas a las instrucciones complejas
especificas del procesador que con las técnicas en si mismas.

2.3.1 Procesador segmentado

El objetivo que se persigue al diseniar un procesador segmentado es el de completar la ejecu-
cién de una instruccion por ciclo del procesador, o sea, obtener un IPC igual a 1. Comence-
mos la descripcion de un procesador segmentado por las distintas etapas que componen la
ejecucion de una instruccién y los recursos asociados con cada etapa. La divisién en etapas
que se utiliza a continuacién es simplemente un ejemplo, ya que dependiendo de distintas
decisiones de diseno la cantidad de etapas y las operaciones que se realizan en cada una de
ellas puede cambiar de manera significativa.

Fetch: lectura del registro PC, acceso a memoria para buscar la instruccién, almacena-
miento de la instruccién en el registro de instruccién actual, incremento del PC.

Decodificacion: lectura del registro de instruccién y determinacion de las seniales de
control necesarias para la ejecucién de la instruccién.

Lectura: lectura de los operandos del banco de registros.

FEjecucion: ejecuciéon de la/s operaciones. En el caso de una instruccién de aritmética

12

Figura 2.1: Procesador Tradicional y Procesador Segmentado [2]

Crelo 1 Cistn 2 Ciclo 3 Crelo 4 Cidp v Cideid
f]

2 B O B]
- Load iR

Fetch 1 AL | Mem | Mem | Fe

H H i
- Load
©Fewh | Reg t ALY | Mem I we
| i !
Store [Fetch Reg ALY dem WE
R Fatoh Reg ALY Werm we |

entera, se utilizard la ALU entera, para una de coma flotante se utilizarda una ALU de coma
flotante. Para las instrucciones de acceso a memoria, en esta etapa se calcula la direccién
efectiva del acceso. Para las instrucciones de salto, en esta etapa se realiza el calculo de la
condicion.

Memoria: en esta etapa se realizan los accesos a memoria, tanto de lectura como de
escritura. Las instrucciones de salto actualizan el registro PC. Para cualquier otro tipo de
instruccién, no hay ninguna actividad asociada con esta etapa.

FEscritura (Write-Back): escritura del resultado en el banco de registros.

En cada ciclo del procesador cada instruccién avanza a la proxima etapa, hasta finalizar
la etapa de escritura. En la figura 2.1 se puede observar cémo seria la ejecucion de un mismo
codigo en un procesador tradicional y en uno segmentado. Se puede observar claramente
como la superposicién de tareas permite un importante ahorro de tiempo.

El balance del trabajo a realizar en cada etapa es critico en el diseno del procesador,
ya que el tiempo que toma la etapa mas larga determina el tiempo de ciclo del procesador.
Cada arquitectura divide la ejecucién de la instruccién de manera diferente , mas aun, es
comun que distintas implementaciones de la misma arquitectura posean una divisién en
etapas distinta. Un buen ejemplo de esta situacion es la arquitectura IA32, de la cual su
primera implementacion fue el microprocesador Intel 80386, y luego evolucioné hasta lo que
hoy en dia es el Pentium III [7]. Ambos microprocesadores son capaces de ejecutar cédigo
del primero de ellos, a pesar de que ambos procesadores son drasticamente distintos.

2.3.2 Problemas asociados con la segmentacion

El ejemplo de la fabrica de autos hace pensar que la segmentacién de la ejecucién de ins-
trucciones es algo bastante sencillo. Sin embargo, el solapamiento de la ejecucion de varias
instrucciones trae aparejados algunos problemas que deben solucionarse.

En los ejemplos de c6digo que se exponen en el resto del trabajo se utiliza el mismo len-

13

guaje ensamblador estilo MIPS que en [3]. En lineas generales, el formato de una instruccién
en este ensamblador es:

op dest, fuentel[, fuente2]

Las operaciones que se utilizan en el trabajo son:

Instruccién Descripcién
add $d,$r,$t $d=9%r + $t
mul $d,$r,$t $d=9%r * $t
sub $d,$r,$t $d=9r - $t
and $d,$r,$t $d=$r AND $t
or $d,$r,$t $d=9%r OR $t

load (o lw) $d,DIR($r) | $d=MEM[DIR+$r]

store (o sw) DIR(%r),$t | MEM[DIR+$r|=5t

beq $r,$t, DEST Si $r===5%t, entonces PC=DEST
bne $r,$t, DEST Si $r!="$t, entonces PC=DEST

Tratamiento de dependencias de control.

Al escribir una instruccién despues de otra el programador determina una dependencia de
control entre ambas, ya que la primera debe ejecutarse antes que la segunda. Por otro lado,
existen dependencias que se determinan en tiempo de ejecucion, mediante las instrucciones
de salto condicional. Al ejecutar una instruccién de este tipo el procesador debe esperar a
conocer el resultado de la condicién para saber cudl es la préxima instruccién a ejecutar. En
un procesador segmentado esta situacién representa un problema grave [8], [9], [10], porque
al momento de determinarse la condicién del salto, las instrucciones que seguian en secuencia
al salto ya han ingresado al pipeline, a pesar de no conocerse todavia si deben ejecutarse o
no.

Dependencias de datos.

Consideremos el cédigo en lenguaje ensamblador de la figura 2.2 y analicemos las dependen-
cias de datos que se presentan.

Cada instruccién 7 del programa posee un conjunto de entradas D(i) (dominio) y de
salida R(7) (rango). Se dice que existe una dependencia de datos entre las instrucciones i y
J con j > 1 en las siguientes situaciones:

R(i)ND() # 0
V
R(i)NR(>) # 0
V
D(E)NR(j) # 0

14

Figura 2.2: Codigo con dependencias de datos [2]

ciclos = - —

Sub $2. $1, $3

And $12, 52, 85

Or $13, $6, $2

Add$14,82,82 |

Sw $15. 100(52)!

Utilizando estas definiciones, podemos clasificar las dependencias en dos grupos: las de-
pendencias verdaderas y las dependencias falsas. El primer grupo de dependencias esta
formado por el primer conjunto de dependencias (Rango-Dominio). Este tipo de depen-
dencia se llama verdadera pues es la que se da en el caso que una instrucciéon necesita el
valor obtenido por una anterior. El otro grupo de dependencias, las falsas, se compone de
los otros dos tipos de dependencias (Rango-Rango y Dominio-Rango). Estas dependencias
se producen cuando se utiliza un mismo registro o posicién de memoria para almacenar el
resultado de dos instrucciones distintas. La clasificacién de ’falsa’ proviene del hecho que de
utilizar registros o posiciones de memoria diferentes la dependencia dejaria de existir y se
obtendria un cédigo seméanticamente equivalente.

En la figura 2.2 se han destacado las dependencias verdaderas. Analizando la forma
en que el procesador segmentado ejecutaria esta secuencia de instrucciones, se nota que
el resultado que se obtendra dista mucho de ser el que el programador pensd, ya que las
instrucciones AND, OR y ADD no tienen disponible en la etapa de decodificacion y lectura
el resultado de la instrucciéon SUB.

Distinto es el caso de la instruccion SW (Store Word), pues al llegar a la etapa de
decodificacion y lectura la instruccion SUB ya ha escrito su resultado en el banco de registros,
por lo que no existe problema alguno con respecto a la instrucciéon SUB.

En este breve ejemplo hemos visto que aunque todas las instrucciones posteriores a la
primera tenian dependencias con ella, no todas estas dependencias eran riegosas para la
correcta ejecucion del programa. Diremos entonces que las dependencias entre la instruc-
ciéon SUB y la AND, OR y ADD constituyen riesgos, mientras que la dependencia entre la
instruccién SUB y la SW no lo es. Que una dependencia se transforme en un riesgo o no
depende en gran parte del disenio del pipeline. Un buen ejemplo de ésto son las dependencias

15

dominio/rango en el disefio utilizado en esta secciéon. Dado que todas las instrucciones pasan
por la misma cantidad de etapas, este tipo de dependencia nunca se puede convertir en un
riesgo.

Dado que los riesgos pueden llegar a afectar la correctitud del resultado obtenido, el
procesador debe tener un mecanismo que los detecte y realice alguna accién preventiva o
correctiva.

2.3.3 Procesador superescalar

Cuando a la segmentacién del camino de datos se le agrega la replicacion del mismo se dice
que estamos en el caso de un procesador superescalar.

En este tipo de arquitectura el objetivo que se persigue es ejecutar mas de una instruccién
por ciclo, tantas como sea posible, aprovechando el hecho de que no todas las instrucciones
tienen dependencias de datos muy cercanas. Es en este tipo de arquitecturas que, tal como
se mencionaba arriba, el concepto de CPI deja su lugar al de IPC, més apto para explicar el
hecho de que mds de una instruccién puede terminar por ciclo.

Los problemas que se presentan en estas arquitecturas son basicamente los mismos que en
un procesador segmentado, sélo que al haber un niimero mayor de instrucciones ejecutdndose
en paralelo, la magnitud de los problemas se incrementa de manera acorde.

2.4 Solucion de los problemas asociados con la segmen-
tacion

Como se mencionaba anteriormente, los problemas bésicos que se encuentran al disenar un
procesador segmentado son los riesgos producidos por dependencias de datos y de control.
A continuacién se analizardn distintas alternativas para solucionar ambos problemas.

2.4.1 Riesgos producidos por dependencias de datos

En la figura 2.2 veiamos un trozo de cédigo y algunas de las dependencias verdaderas existen-
tes en él. Como mencionabamos antes, las flechas en sentido contrario al avance del tiempo
indican los riesgos que se encuentran en la ejecucién de ese fragmento de cédigo.

La solucién mas sencilla para estos problemas consiste en detener el avance de las instruc-
clones con problemas hasta que desaparezca el riesgo. Esta detencion se consigue mediante la
detencién del mecanismo de fetch, para evitar que nuevas instrucciones ingresen al pipeline,
y a la insercién de instrucciones NOP (No OPeracién) en la etapa de decodificaciéon. Esto
ultimo se realiza generando en dicha etapa las senales de control de la instruccién NOP en
lugar de las que corresponden a la instruccién original, haciendo ’creer’ al resto de las etapas
del pipeline que la instruccién original era una NOP. La figura 2.3 muestra un ejemplo de
esta solucion.

16

Figura 2.3: Detencién del pipeline [2]

v

ciclos

Sub §2, $1. $3

And $12, $2, §5 =NOP

And $12, $2, $5==NOP
And $12, $2. $5==NOP

And $12, $2. §5

En ese ejemplo, se ve como la instruccién 2 se detiene en la etapa de decodificacién hasta
el ciclo 5 esperando que el operando que necesita esté disponible. Mediante esta detencién
se asegura que la instruccion 2 operard con los datos esperados por el programador.

El inconveniente que se presenta con esta solucién es que nos aparta del objetivo que se
persigue al segmentar el procesador, que es ejecutar una instruccion por ciclo, de modo tal
que se necesita alguna mejora. En el ejemplo de la figura 2.3, notemos que el dato que la
instruccién 2 precisa en la etapa de ejecucion ya esta calculado al finalizar el ciclo 3, que es
cuando se realiza la operacién aritmética requerida. Si existiera una manera de que ese valor
pasara directamente desde el final de la etapa de ejecucién al principio de la misma etapa,
no seria necesaria detencién alguna. Esta idea de ”cortar camino” es lo que se llama un
cortocircuito. Este nombre viene dado porque observando los nuevos caminos de datos que
se agregan, éstos parecieran cortocircuitar el pipeline. Utilizando cortocircuitos de manera
adecuada es posible eliminar gran parte de las detenciones por riesgos de datos. Veamos
como quedaria nuestro ejemplo utilizando algunos cortocircuitos. La figura 2.4 muestra la
ejecucion del mismo fragmento de cédigo, pero utilizando cortocircuitos que se destacan en
el grafico.

Lamentablemente, no todas las detenciones pueden ser evitadas utilizando cortocircuitos.
El caso tipico de esta situacién se puede observar en la figura 2.5. En ese ejemplo, al no estar
disponible el dato que se necesita al comienzo de la etapa de ejecucion, no es posible utilizar
un cortocircuito que evite la detencién. Este problema, el de no disponer del dato producido
por un load inmediatamente anterior, es comuin en muchas arquitecturas. Tanto es asi que
existe un mecanismo especifico para solucionarlo, llamado ’load retardado’, que consiste en
que o bien el programador o el compilador saben que cuando se escribe un load, la instrucciéon
inmediata posterior no tendra disponible el dato que carga el load. Esta idea se utilizé un

17

Figura 2.4: Utilizacién de cortocircuitos [2]

v

ciclos

Sub $2, $1, $3

And $12. 52, $5

Or $13, $6. $2

Add $14, $2, 82

Sw $15, 100($2);

varias arquitecturas, por ejemplo MIPS [11], dado que no es necesario agregar ningin tipo
de hardware para implementarla. Por otro lado, esta técnica tiene desventajas, ya que no
siempre serd posible encontrar una instruccién que no dependa del load para poner en la
posicién inmediata siguiente al load, y en ese caso es necesario insertar con una no-operacion
en esa posicién, lo que es equivalente a realizar una detencién del pipeline. Otra desventaja,
mayor que la anterior, es que al evolucionar la implementaciéon de la arquitectura, si se
desea compatibilidad binaria serd necesario mantener esta caracteristica, que es necesaria
simplemente por cuestiones de implementacion. Al incorporar cuestiones de implementacion
dentro de la definicién de la arquitectura, el espacio de diseno disponible en el futuro se
reduce considerablemente.

Asi como para el pipeline que se describe en esta seccion la latencia para tener disponible
el dato que se carga en una instruccién es de un ciclo, otros disenos de pipeline podrian
definir latencias mayores.

2.4.2 Riesgos producidos por dependencias de control

El otro problema que se presenta al disenar un procesador segmentado es el de las depen-
dencias de control. Como se mencionaba en una seccién anterior, el problema radica en
que recién en el momento en que se ejecuta el salto es que se conoce cual es la préoxima
instruccién a ejecutar, pero en ese punto las instrucciones que seguian en secuencia al salto
ya han ingresado al pipeline. La figura 2.6 es un ejemplo de esta situacion.

Al igual que en el caso del load retardado, se puede plantear un salto retardado, que
consiste simplemente en que el programador o el compilador conoce que una cantidad de
instrucciones después del salto seran ejecutadas sin importar si el salto es tomado o no. El

18

Figura 2.5: Riesgos producidos por instruccién load [2]

. 1 3 7
ciclos >

hw $2, 100($1)

and $12, $2, §5
or $13, $6, $2

Sw 15, 100(32)

problema se traslada ahora al compilador o al programador, que debe encontrar instrucciones
que no dependan del resultado del salto para insertar inmediatamente después.

Esta solucién, aunque permite en teoria cumplir con el objetivo de ejecutar una instruc-
cion por ciclo, esta lejos de ser ideal, ya que por un lado, no siempre existen esas instrucciones
libres que no dependen del resultado del salto, y por otro lado, la cantidad de instrucciones
que se necesita tener disponibles es dependiente del diseno del pipeline, lo cual limita futuras
evoluciones de la arquitectura.

Una solucién que simplifica el trabajo del compilador es detener el ingreso de nuevas
instrucciones al pipeline hasta conocer el resultado del salto. De esta manera, el problema
anterior desaparece, a costa de la pérdida de rendimiento que supone la detencién del pro-
cesador. Una mejora sobre este esquema consiste en suponer que el salto no serd tomado
y permitir que las instrucciones subsiguientes ingresen al pipeline, y en caso de que el salto
sea tomado, anular las instrucciones que no debian ejecutarse. La anulacién de estas ins-
trucciones es bastante mas sencillo de lo que parece ser a simple vista, ya que con inhibir la
escritura del resultado de la ejecucién de la instruccién en el banco de registros o la memoria
se consigue el efecto deseado.

Esta técnica, que llamaremos ’suponer no tomado’ (not taken), se implementé en varios
procesadores, como por ejemplo el Intel 486 [12], dado que con un costo realmente bajo en
hardware, permite al compilador olvidarse del problema de las dependencias de control, con
una pérdida de performance mas razonable que la alternativa de detencién. La alternativa
de ’suponer no tomado’ tiene una particularidad que es importante notar: hace que el CPI
de las instrucciones de salto condicional dependa de si el salto es tomado o no tomado.
Para nuestro modelo de pipilene, en caso de un salto no tomado, el CPI es 1, pero si es no
tomado es 4. Este hecho cambia totalmente la forma de predecir el tiempo de ejecucién de

19

Figura 2.6: Dependencias de control en un pipeline [2]

ciclos
Beq$1, $3, 60 B Beq $1,$3,60
And $12,$2,%$5
And $12, 52, 85 ‘ Or $13,$6,$2

Add $14,$2,$2
lw $4,50($7)

Or $13, 86, $2

Add$14,32,82 |

Iw $4,50(87)

un programa, ya que el mismo dependera de la cantidad de saltos tomados y no tomados, lo
cual sélo se sabe en tiempo de ejecucion.

Asi como esta politica favorece los saltos no tomados, se puede pensar en un mecanismo
para favorecer a los saltos tomados. Esta politica, sin embargo, no es tan facil de implementar
como la anterior, ya que en primer lugar, la direccién destino del salto no siempre es conocida
al ciclo siguiente de hacer el fetch del salto, y por otro lado, la recuperacién cuando se
encuentra un salto no tomado es sensiblemente mas dificultosa. Esto ultimo es porque las
instrucciones de salto calculan la direccién a ejecutar en el caso que el mismo sea tomado,
pero no la direccién en el sentido no-tomado, con lo que debe ser el control del procesador el
que recuerde la direccién que sigue a la instruccién de salto previendo que el mismo no sea
tomado.

Los dos mecanismos anteriormente mencionados son conceptualmente importantes por-
que son los primeros que favorecen algunas instancias de instrucciones de salto sobre otras.
Dicho de otra manera, estas técnicas mejoran el rendimiento especulando sobre el resulta-
do de las instrucciones de salto condicional. Técnicas muchisimo mas complejas que estas
se han estudiado e implementado y en las proximas secciones se explicaran las ideas mas
importantes en este campo.

2.5 Técnicas para mejorar el rendimiento

Las técnicas explicadas en la seccién anterior solucionan los problemas asociados con la
aplicacién de la segmentaciéon y el paralelismo que afectan la correctitud del resultado ob-
tenido. Como se ha visto, estas soluciones traen aparejada una pérdida de performance que
nos aleja de los objetivos planteados al incorporar dichas técnicas. A continuacién se expli-
cardn algunas de las técnicas mas importantes para mejorar el rendimiento de un procesador

20

R5+ 3

R10 «+ ...

R10 < R10...
R3 + R5...

R3 < mem[R3 + R10]
R9 +— R9...

R7 + R9...

R4 < R3 — R7
bne R4, RO, 1
R9 + R9...

. RS+ R5

—
= O

Figura 2.7: Algoritmo y plan de ejecucién asociado [2]
segmentado o superescalar.

2.5.1 Planificacion dinamica

En un procesador segmentado tradicional, las instrucciones entran al pipeline en el orden
especificado por el programador. Una vez realizado el fetch, la instrucciéon no pasa a etapas
posteriores del pipeline hasta que todas las dependencias de datos hayan sido satisfechas.
Este enfoque, que hace recaer en el compilador el problema de la planificacién de las instruc-
ciones para minimizar los ciclos de detencién, estda pensado principalmente para mantener la
correctitud semdntica del cédigo ejecutado. Otra posibilidad, mucho mas interesante desde
varios puntos de vista, es que el plan de ejecuciéon de las instrucciones lo realice directamente
el procesador de forma dindmica en tiempo de ejecucién. Este ultimo enfoque presenta va-
rias ventajas. Por un lado, simplifica el compilador, ya que el mismo puede desentenderse de
casos en los cuales las dependencias de datos no se conocen en tiempo de compilaciéon. Por
ejemplo, se puede mencionar el caso de instrucciones tipo load dentro de ciclos, cuya direc-
cién efectiva se calcula en cada iteracién del ciclo. Por otro lado, permite que un cédigo que
se compila para un diseno de pipeline determinado funcione eficientemente en otro distinto.

Analicemos el fragmento de cdodigo de la figura 2.7:

El grafo de la figura 2.7 resume las dependencias de datos existentes en el programa de
la misma figura. Por ejemplo, podemos observar un arco dirigido desde el nodo 2 hasta el 3,
dado que la instruccién 3 requiere el valor producido por la instruccién 2 en R10.

Un procesador segmentado escalar ejecutaria las instrucciones segun el siguiente plan:

1,2,3,4,5,6,7,8,9,...

Si suponemos una latencia de un ciclo para poder utilizar el resultado de una instruccion,

21

y guiandonos por el grafo de dependencias, este plan de ejecucién causaria detenciones entre
las instrucciones 2y 3,4y 5,6y 7,7y 8, y 8y 9.
En cambio, un procesador con planificacién dindmica podria realizar el siguiente plan:

1,2,6,3,7,4,5,8,9,...

En este caso sélo se generarian detenciones entre las instrucciones 4y 5, y 8 y 9. Aunque
a primera vista el plan de ejecucién que se obtiene con la planificacién dindmica es superior
al tradicional desde el punto de vista de cantidad de detenciones del pipeline, no todas son
ventajas.

La ejecucién en orden tiene una ventaja muy importante, y es la simplicidad de la im-
plementacion. Dado el diseno del pipeline, una gran cantidad de dependencias de datos, por
ejemplo las rango-rango, se resuelven (no se transforman en riesgos) por la construccién
misma del pipeline, lo cual reduce de manera significativa la complejidad de la operacién de
verificar si una instruccién puede avanzar en el pipeline o no. Al desordenarse la ejecucién
de las instrucciones, esta ventaja desaparece por completo, y el cdlculo de dependencias se
vuelve extremadamente complejo, especialmente cuando en lugar de tener un procesador
segmentado se tiene un procesador superescalar que intenta ejecutar mas de una instruccién
por ciclo.

Por otro lado, el tratamiento de excepciones se vuelve mucho mas complejo, porque el
retiro de una instruccién del pipeline no implica que todas las anteriores del programa hayan
sido retiradas. Esta situacién puede dejar al procesador en un estado inconsistente, ya que
al producirse una excepcion, el estado de la maquina puede no ser consistente con el del
programa segun la ultima instruccion ejecutada sin excepciones.

Es por esta situacion que al implementarse un esquema de planificacién dinamica también
debe implementarse un método de tratamiento de excepciones que permita mantener en todo
momento la consistencia entre el estado del procesador y el del programa segin la tdltima
instruccién que se haya retirado del pipeline. Con este objetivo es que en general las etapas
del pipeline de un procesador superescalar suelen ser las siguientes:

e Fetch: obtencion de las instrucciones. Actualizacion del PC.
e Decodificacion: cédlculo de las senales de control para la instruccién.

e Inicio: Renombre de registros, prediccion de saltos y verificacion de espacio en la etapa
de Despacho para enviar la instruccién a dicha etapa.

e Despacho: inicio de la ejecucién de aquellas instruciones libre de dependencias de datos
verdaderas.

e Ejecucion: ejecucién de la operacién propiamente dicha.

e Write-Back: escritura del resultado en una estructura de datos auxiliar.

22

e Commit: retiro en orden de la instruccién. Escritura del resultado definitivo en los
registros de la arquitectura.

La estructura auxiliar que se menciona en la etapa de Write-Back permite almacenar los
resultados de las instrucciones que se ejecutan fuera de orden, para que luega la etapa de
Commit retire de la misma los resultados de las instrucciones segun el orden especificado
por el programador.

2.5.2 Renombre de registros

Un problema que se suele dar a menudo en un procesador con planificacién dindmica es el
de la figura 2.8.

MUL 1LR2R1
ADD 3R7.R1
/

ADD R1,R8,R2
MUL R4,R3 R1

ADD R4,R6,R5

Figura 2.8: Ejemplo de dependencias falsas

En este caso, como el programador estd reutilizando los registros R1 y R4, ya sea porque
no conoce el funcionamiento interno del procesador o porque no tiene ningin otro registro
para utilizar, el procesador no puede explotar el paralelismo existente en el algoritmo. En
ese ejemplo, el procesador no puede iniciar la ejecucién en paralelo de las instrucciones 2 y 3,
ya que la instruccién 3 podria escribir el registro R1 antes de que la 2 lea su contenido. Una
situacion similar ocurre entre las instrucciones 4 y 5, ya que si el programador hubiera elegido
un registro distinto de R4 como destino en la iltima, ambas se podrian haber ejecutado en
paralelo.

Este problema, el de las dependencias falsas, se vuelve mas grave cuando la cantidad
de registros de la arquitectura es pequena. Una solucién posible para ésto es definir una
cantidad de registros mayor en la arquitectura, o sea, incrementar el nimero de registros
visibles al programador. Al haber una mayor cantidad de registros para utilizar, se minimiza
la cantidad de reusos, y con ellos las detenciones por riesgos causados por antidependencias.
Esta solucién, aunque sencilla, tiene la desventaja de modificar la arquitectura, lo cual no es
para nada deseable.

23

Otra alternativa, que ha sido implementada en muchos procesadores, es implementar la
técnica de renombre de registros [19]. Esta técnica, que a continuacién explicaremos con un
mayor nivel de detalle, consiste en definir una mayor cantidad de registros fisicos que los que
son visibles al programador (l6gicos), y hacer que sea el procesador el que maneje el mapeo
entre registros fisicos y logicos.

La técnica de renombre de registros se utiliza para determinar las dependencias de datos
entre las instrucciones y proveer un manejo de excepciones preciso. Cuando un registro es
renombrado, los registros légicos referenciados por una instruccién se mapean en registros
fisicos utilizando una tabla de mapeo. Un registro légico se mapea en un nuevo registro fisico
cada vez que es el registro destino de una instruccién. Por lo tanto, cuando una instruccién
almacena un nuevo valor en un registro légico, ese registro légico es renombrado para utilizar
un nuevo registro fisico. Sin embargo, el valor anterior permanece en el viejo registro fisico,
lo cual permite recuperarlo en caso de que la instruccién sea abortada por una excepcién o
un salto incorrectamente predicho.

Durante la ejecucién de las instrucciones se genera una cantidad de resultados tempora-
rios. Estos valores temporarios son almacenados en el banco de registros junto con valores
permanentes. Los valores temporarios se transforman en nuevos valores permanentes cuando
la instruccién correspondiente se gradia. Diremos que una instruccién se gradia cuando to-
das las instrucciones anteriores en el orden especificado por el programa se han completado
exitosamente.

El chequeo de dependencias se realiza mientras cada instruccién es renombrada. En ese
momento los nombres de sus registros logicos se comparan para determinar las dependencias
entre todas las instrucciones que se decodifican en el mismo ciclo.

Las estructuras de datos utilizadas para implementar el renombre de registros son una
tabla de mapeo, una lista de instrucciones activas y una lista de registros libres.

Supongamos un procesador con P registros fisicos. En todo momento el valor de cada
registro fisico se encuentra en alguna de estas listas. Cuando se hace el fetch de una instruc-
cion se la coloca en la tabla de mapeos. La lista de instrucciones activas mantiene un listado
de todas las instrucciones presentes en el pipeline en cada momento. Esta lista se mantiene
siempre en orden. Las instrucciones en las colas pueden ser ejecutadas fuera de orden, pero
antes de que el resultado pueda ser almacenado finalmente en el banco de registros, debe ser
almacenado en orden segun determina la lista de instrucciones activas. Una vez que el valor
se almacena de forma definitiva, se transforma en obsoleto y por lo tanto la instrucciéon que
lo gener6 deja de ser activa. En este momento se dice que la instruccién se ha graduado.
El registro fisico puede entonces ser retornado a la lista de libres. La figura 2.9 ilustra los
distintas etapas por las que pasa una instruccién. Cada instruccién puede ser identificada
univocamente por su ubicaciéon dentro de la lista de activos. Un valor de unos pocos bits
llamado el tag de la instrucciéon acompana a cada instrucciéon durante su ejecucion y permite
que sea facilmente ubicada dentro de la lista de instrucciones activas para ser marcada como
‘finalizada’ cuando la instruccién se gradue.

Cuando un valor se saca de la lista de libres se pasa a la tabla de mapeo y ésta se actualiza.
El valor del registro en particular ahora contiene el valor actual de un operando. El viejo

24

Figura 2.9: Diagrama de bloques del esquema de renombre de registros

Cache de
instrucciones

Antigua
ubicacién
fisica

Instruccién
graduada

valor de la tabla de mapeo se ubica entonces en la lista de activos. El valor permanece en la
lista de activos hasta que la instruccién se gradia, indicando que ha finalizado en el orden
especificado por el programa. Una instruccién sélo se puede graduar después de que ella
misma y todas las instrucciones anteriores hayan finalizado exitosamente. Una vez que una
instruccién se ha graduado, todos los valores anteriores se pierden.

2.5.3 Prediccidon de saltos

Es conocido que aproximadamente entre un 15% y un 20% de las instrucciones ejecutadas son
instrucciones de salto, con lo cual si tomamos una secuencia de 5 instrucciones, es altamente
probable que una de ellas sea un salto. En un procesador segmentado, esto significa que la
mayor parte del tiempo habrd una instruccién de salto en el pipeline. Para cuantificar la
pérdida de performance que esto implica, supongamos un CPI promedio de 2 para un salto
y una proporcién del 15% de saltos. Entonces :

CPIPromedio = 85% x1+ 15% 52 =115

Lo que significa una pérdida de 15% del rendimiento simplemente debido a los saltos. A
pesar de que esta situacién no parece tan mala, si en lugar de un procesador segmentado
clasico hablamos de un procesador superescalar que inicia la ejecucién de 4 instrucciones por
ciclo, los cédlculos son mucho mas pesimistas, ya que es muy probable que en cada grupo
de cuatro instrucciones que ingresen al procesador se encuentre una instruccién de salto.

25

Figura 2.10: Ejemplos de saltos predecibles

1: 10 1: if Vacio(ConjuntoA) then
2: while 7 < 1000 do 2: ImprimirResultadoFinal()
3: arrayAVGJi]=(arrayl[i]+-array2[i])/2 3: else

4: i<+ i+1 4: SeguirProcesando()

5: end while 5. end if

En este caso, las pérdidas por un salto mal predicho son muchisimo mayores (cantidad de
instrucciones iniciadas por ciclo multiplicadas por la latencia de ejecucion del salto).

Las técnicas expuestas anteriormente para resolver la problemédtica de las dependencias
de control no son lo suficientemente efectivas como para resolver de manera eficiente un
problema de tal magnitud. Es por eso que se han desarrollado infinidad de mecanismos
[13], [14], [15], [16] para reducir la influencia negativa de las dependencias de control lo més
posible.

La ultima idea que se habia expuesto en secciones anteriores consistia en suponer, es-
pecular, con que la direccién del salto seria o bien tomado o bien no tomado. Sin embargo, al
beneficiar solamente un tipo de saltos, la utilidad de estas técnicas es mas bien reducida. Las
alternativas que se explicaran a continuacién se basan en la idea de especular dindmicamente
sobre la direccién del salto.

Para poder especular hay que tener informaciéon que nos permita tomar una decision.
En el caso de los saltos, esta informacién consiste en el resultado de la ejecucién de las
instrucciones de salto anteriores. Por ejemplo, supongamos que para cada instruccion de salto
que se ejecuta, se almacena su direccién y la direcciéon que toma; cuando se realiza el fetch
de una instruccién se compara la direccion que se accede contra la informacién almacenada,
y en caso de encontrarla se decide cual sera la préxima direccién de fetch segun el resultado
almacenado de la dltima ejecucién del salto. Este mecanismo [14], facilmente implementable
en hardware, es uno de los primeros predictores de saltos que fueron implementados en
procesadores comerciales, como el AMD K5 [18] y el MIPS R8000 [17]. El funcionamiento del
mismo estd basado en el hecho de que una gran parte de los saltos tiene un comportamiento
bastante determinado hacia un sentido, con lo cual al almacenar el resultado de la ultima
ejecucion se tiene cierta seguridad de que en proximas ejecuciones se repetira el resultado. Es
facil imaginar el porqué de esta ultima afirmacion si se piensa en los ciclos, o construcciones
IF simples como los que figuran en la figura 2.10. En el ejemplo del ciclo, es bastante sensato
apostar que la mayoria de las veces el salto que determina si se entra o no al ciclo, hard que
se entre en el mismo. En el ejemplo del IF, también serd bastante seguro apostar a que el
conjunto sobre el que se estd operando no estard vacio la mayor parte de las veces. Estos
son dos casos tipicos, aunque si uno observa con detenimiento muchos fragmentos de codigo
es posible encontrar muchos casos mas de saltos con un comportamiento muy marcado en
un sentido determinado.

Generalizando el esquema anterior, en lugar de utilizar un solo bit que indica el resultado
de la ultima ejecucion del salto, se puede plantear el uso de mas bits, que interpretados como
nimeros en base 2 representan los distintos estados de un autémata finito deterministico.

26

Cada estado poseera entonces dos transiciones, segun el resultado de la ejecucion, y ademads
cada estado tendra asociada una prediccién. En la figura 2.11 se puede apreciar un ejemplo
utilizando dos bits. En este ejemplo los estados '00’ y 01’ tienen asociada la prediccién
'no tomado’, mientras que los estados 10’ y ’11’ estan asociados a la predicciéon 'tomado’.
Una técnica particular que se implement6 en muchos procesadores, como el Pentium [7] y el
UltraSparc [20] es la de la figura 2.12, llamada bimodal [14].

Figura 2.11: Predictor de cuatro estados

Al utilizar mas bits para predecir el salto es 16gico pensar que la precisién de la prediccién
debe aumentar, aunque esto no siempre es asi, ya que aunque muchos saltos presentan un
comportamiento bastante marcado, muchos otros tienen un comportamiento mas erratico,
aunque también predecible. Analicemos el siguiente ejemplo:

1: forz=1 to k do

9 if 2 mod k = 0 then
3: stl;

4 else

5 st2;

27

Figura 2.13: Esquema de un predictor global

2" entradas

n bits

Registro de desplazamiento

<« kbits—p

6: end if
7. end for

En este ejemplo, el salto de la instruccién IF tiene un comportamiento totalmente prede-
cible, pero a la vez sin ninguna tendencia hacia una rama o la otra. En estos casos, utilizar
unicamente informacién sobre la tendencia del salto en un sentido u otro no es suficiente.
Lo que se necesita es almacenar una historia sobre los ultimos acontecimientos de forma tal
de aprender de ellos para realizar una mejor predicciéon. Por ejemplo, se podria memorizar
que si en las tltimas n ejecuciones del salto se obtuvo determinado patrén, entonces en la
préxima ejecucion se predecird determinado camino.

Existen dos técnicas basadas en esta idea: la técnica global y la técnica local. La pri-
mera de ellas consiste en almacenar la historia de los dltimos n saltos en un registro de
desplazamiento de n bits. El contenido de este registro se utiliza para indexar una tabla,
que contiene contadores de k£ bits, que dan la predicciéon. De una manera intuitiva, lo que
se hace es asociar a cada patrén de ejecucién una predicciéon. En la figura 2.13 se puede
apreciar un esquema de un predictor global.

Por otro lado, la técnica local almacena informacién combinada. Por un lado, al igual
que en la técnica global, se almacena la historia de los dltimos n saltos en un registro de des-
plazamiento. Por otro lado, existen 2" tablas con contadores del tipo del predictor bimodal
indexadas por la direccion de la operacién de salto. En este caso, el registro de desplazamien-
to se utiliza para determinar cual de las 2" tablas posibles para una direccién determinada
se utilizard para realizar la prediccién. Intuitivamente, lo que se hace es guardar la tenden-
cia de cada salto, pero asociada también con los eventos anteriores. Esta combinacién de
informacién global y local es muy poderosa, y ya existen procesadores que la incorporan,
como el Intel Pentium Pro [21].

28

Figura 2.14: Esquema de predictor local

—7 Dits—] [—Z bits— [e—2 bits—» —2 bits—p

=

00 01 10 11
[Izl'\l{istoria ultimos dos saltos

La figura 2.15 resume los resultados que se obtienen para los predictores comentados,
segun el tamano de la estructura de datos utilizada. Como se puede ver, en general a medida
que aumenta la cantidad de informacién almacenada, mejor es la prediccién. Sin embargo,
esto no es una regla general, ya que, por ejemplo, el predictor bimodal satura cerca del
94% de aciertos. A partir de este punto, aunque se duplique la cantidad de almacenamiento
utilizada no se consiguen mejoras. La situacién para los otros predictores no es muy distinta,
s6lo que el punto de saturacién se encuentra bastante mas alejado.

2.6 El proximo paso: Prediccion de valores y Reuso de
instrucciones

Como hemos visto hasta ahora, los procesadores superescalares actuales emplean un abanico
importante de técnicas especulativas para mejorar su rendimiento. El ejemplo mas impor-
tante son los predictores de saltos, a los cuales se ha dedicado mucho estudio desde hace ya
varios anos. Sin embargo, este no es el unico ejemplo de aplicacién de técnicas especulativas.
Desde hace ya muchos afnos, las memorias caches, tanto de datos como de instrucciones, se
han incorporado en todo tipo de procesadores. Este es otro ejemplo tipico de especulacién,
ya que las memorias caches no almacenan solamente el dato puntual accedido, sino que al-
macenan ademds datos vecinos, suponiendo, especulando, con que los datos mas préximos
seran accedidos proximamente.

A lo largo de este trabajo se han explicado varios problemas y se han mostrado solu-
ciones bastante eficientes para todos ellos. Por otro lado, nunca se ha intentado atacar el
problema de las dependencias verdaderas [9], ya que las mismas constituyen la esencia mis-

29

Figura 2.15: Indice de prediccién [15]

Coreitionat Branch Prediclion Acourscy (%)

88 | i | L I I i L i i i
32 64 128 268 512 1K 2K 4K BK 18K 32K &4K
Pradicior Size (bytes)

ma del programa y de respetarlas depende la correctitud de los resultados. Como veremos
en las préximas secciones, las técnicas de prediccién de valores [22], [23], [24], [25] y reuso
de instrucciones [27] tratan directamente con las dependencias verdaderas, colapsdndolas y
haciendo que instrucciones que tendrian que ejecutarse secuencialmente lo puedan hacer en
paralelo. A diferencia de las técnicas anteriormente explicadas, no existen procesadores co-
merciales en la actualidad que hayan incorporado una de estas técnicas, ya que las mismas se
encuentran todavia en plena etapa de investigacién. La prediccién de valores es una técnica
especulativa que consiste en predecir los valores de los operandos que no estdn disponibles
en el momento en que se los necesita. En una etapa posterior, cuando los operandos estan
disponibles, esta prediccién se verifica contra los datos reales. En caso de haber tenido éxito
con la prediccién, la instruccién puede retirarse, y en caso de fallo debe reejecutarse con
los operandos correctos. La ventaja de esta técnica consiste en que al no tener que espe-
rar a sus operandos, la instruccién puede ejecutarse en paralelo con otras instrucciones que
normalmente deberian finalizar antes.

La técnica de reuso de instrucciones es una técnica no especulativa que evita la ejecucién
de instrucciones que van a generar el mismo resultado que en una ejecucién anterior. Al evitar
calculos innecesarios el camino critico se acorta, reduciendo el tiempo de ejecucion. Como
hemos dicho, esta técnica es "no especulativa”, pero esto debe entenderse en el sentido de
que es una técnica segura, ya que en el caso de intentar reusar una instruccién y no lograrlo,
no hay ninguna penalizacién asociada, al contrario de la técnica de prediccién de valores.

La figura 2.16 muestra dos pipelines, ejemplificando una posible implementacién de un
pipeline con prediccién de valores y reuso de instrucciones en cada caso. La diferencia mas
importante entre ambos esquemas reside en el camino hacia atrads que se encuentra en el
pipeline que incorpora la prediccion de valores, indicando la posibilidad de reejecucién de
una instruccién en el caso que la prediccién haya sido erronea. En la figura 2.17 se puede
observar como es la ejecucién de tres instrucciones en un procesador superescalar tradicional,
en uno que incorpora prediccién de valores (VP) y en uno con reuso de instrucciones (IR).

30

Figura 2.16: Pipeline incorporando (a) Reuso de instrucciones (b) Prediccién de Valores [26]

Fetch » Decode & | Issue [”| Execute » Commit
Rename
o, RB | ,| Reuse si reusada
PC | Access test
(@
Fetch » Decode & | Issue [| Execute » Commit
Rename
y
" VPT diccid prediccion erronea Verify
PC AcceSS predaiccion

(b)

Las instrucciones I, J y K de este ejemplo forman una cadena de dependencias de datos, lo
cual hace que en el procesador superscalar base sea posible hacer el fetch y la decodificacion
de las tres en paralelo, pero que a partir de la etapa de ejecucién sea necesario que avancen
en forma secuencial. En el pipeline con prediccién de valores la cadena de dependencias se
rompe prediciendo los valores de los resultados de I y J, lo cual hace que las tres instrucciones
puedan avanzar en paralelo. En el ultimo caso, los resultados anteriores de las instrucciones
son reusados en paralelo con la decodificacién de las mismas.

2.7 Estado del arte en prediccion de valores y reuso de
instrucciones

Como se explicaba anteriormente el tiempo de ejecucién de un programa (7') se compone
de tres factores:

e N: el nimero de instrucciones.

e CPI: Cantidad de ciclos de reloj por instruccién.

® t.c0: duracién del ciclo de reloj.

Todas las técnicas implementadas hasta el momento para mejorar el rendimiento (o sea,

minimizar T), atacan la ecuacién intentando disminuir CPI 0 t,ico-

31

Figura 2.17: Comparacién entre camino normal, con prediccién de valores y con reuso de
instrucciones [~

Superescalar base Con VP Con IR
Pipeline 1 2 3 4 5 6 7] 2 3 4 1 2 3
Fetch 1,J,K 1,J,K 1,J,K
Dec&Ren 1.J,K 1,J,K 1,J,K
Execute | J K) 1,J,K
Commit | J K 1,J,K 1,J,K

Complementando las técnicas actuales que minimizan el CPI o el tiempo de ciclo, el reuso
de instrucciones apunta a minimizar T reduciendo la cantidad de instrucciones ejecutadas
efectivamente por el procesador. El principio es el mismo que una cache de datos, que reduce
la cantidad efectiva de accesos a memoria principal almacenando en un pequeno repositorio
los datos mas requeridos.

La idea de reusar operaciones tiene ya varios anos. Sin embargo, sélo recientemente se le
ha dado mayor atencién a esta idea, existiendo numerosos trabajos publicados sobre el tema
(28], [29], [27].

El concepto bésico sobre el cual se fundamentan todos los trabajos es la localidad de
valores [30]. Asi como una cache de datos se basa en el principio de localidad temporal
y espacial, suponiendo que si un dato se accede en un determinado instante es altamente
probable que el mismo dato o uno muy cercano sea accedido proximamente, algo similar
ocurre con el resultado de las operaciones, en el sentido de que si una instancia de una
instruccién genera determinado valor, es probable que la préxima vez que se ejecute se
obtenga el mismo valor.

Ampliando el principio de localidad es que surge la idea de predictibilidad de valores [31],
[32] . De la misma manera en que existen instrucciones que obtienen una y otra vez el mismo
resultado, existen muchas otras que no lo hacen, pero que obtienen resultados ’predecibles’.
Un ejemplo tipico es la variable de control en un ciclo: la instruccién que la actualiza siempre
obtiene un valor distinto, pero la secuencia de valores que genera es extremadamente sencilla
de calcular, por ejemplo de cuatro en cuatro, o de uno en uno.

Basandonos en estos dos conceptos es que surgen basicamente dos técnicas para mejorar
el rendimiento de un procesador: la mencionada de reuso de instrucciones y la prediccion de
valores.

Un trabajo basico en el tema de cuantificacién de la redundancia presente en los pro-
gramas es [29]. Este trabajo consiste bédsicamente en un estudio tanto cuantitativo como
cualitativo de la redundancia en los programas y sus causas.

32

while NodoAccedido.Indice != IndiceBuscado do
if NodoAccedido.IndicejIndiceBuscado then
if NodoAccedido.HijoDerecho != NULO then
0 NodoAccedido <+~ NodoAccedido.HijoDerecho
else

Return(No Encontrado)

e ° end if

else
if NodoAccedido.Hijolzquiero != NULO then
° NodoAccedido +NodoAccedido.Hijolzquierdo

else

° e Return(No Encontrado)
end if

end if
end while
Return(NodoAccedido)

Figura 2.18: Arbol binario y algoritmo de busqueda asociado

El fenémeno estudiado en ese trabajo se utilizé en un principio para desarrollar técnicas
para mejorar la performance de las instrucciones de acceso a memoria, dado que son un
componente importante del camino critico en la ejecucién del programa y que en gran parte
operan sobre datos repetidos. Esto ultimo es asi pues muchas veces se utiliza la memoria
para almacenar constantes que son accedidas repetidamente, o cuando se recorren estructuras
complejas en memoria, ya que la mayoria de las veces no cambia la estructura utilizada para
acceder a los datos, sino solamente los datos. Como ejemplo de esta situacion, se puede citar
un arbol binario donde los datos se almacenan solamente en las hojas. El proceso de acceder
a una determinada hoja contiene varios accesos a memoria, pero cada instruccién, excepto la
ultima en el caso en que se vaya actualizando el dato almacenado en la hoja en cada acceso,
devuelve exactamente el mismo resultado.

El grafo de la figura 2.18 junto con el algoritmo de busqueda asociado es un ejemplo
concreto de la situacion planteada en el parrafo anterior. Si se accede repetidamente al nodo
5, los accesos a memoria para obtener la direccion de los nodos 1,3,4 y 5, siempre daran
el mismo resultado. Incluso, si luego de acceder al nodo 5 intentamos acceder al nodo 6,
nuevamente tendremos operaciones ”repetidas”, ya que recorreremos nuevamente el camino
1,3,4 para acceder a dicho nodo.

Los autores de [29] definen en ese trabajo que la repeticién de una instruccién ocurre
cuando dos instancias dindmicas de la misma instruccién estatica generan el mismo resultado.
Esto sucede si (y no s6lo si) ambas instancias dindmicas operan sobre los mismos inputs. Esto
también puede suceder si los inputs no son los mismos, ya que en el caso de instrucciones que
devuelven un valor booleano, es tipico que muchas combinaciones de operandos devuelvan
el mismo resultado. Por otro lado, también puede suceder que a pesar de tener los mismos
operandos, la operacién obtenga distintos resultados. Este comportamiento es tipico de las
instrucciones de load, ya que al ir cambiando el contenido de la memoria, distintos ’loads’
de la misma direccién de memoria obtienen distintos resultados.

33

A continuacién se analizaran los resultados de una de las simulaciones méas importantes
que componen el trabajo mencionado. Los resultados a analizar corresponden a simulacio-
nes de programas del conjunto de benchmarks SPEC95 realizadas con el conjunto de herra-
mientas SimpleScalar [33]. La simulacién consiste en ejecutar cada uno de los benchmarks
seleccionados, almacenando hasta 2000 instancias unicas por instruccion estatica. Para de-
terminar si una instancia dindmica se encuentra repetida, se verifica que sus operandos sean
los mismos que los de una instancia anterior. Notemos que esta condicién es mas fuerte que
la que surge de la definicién que se provee en ese trabajo [29].

Tabla 2.3: Estadisticas de reuso de instrucciones [29]

Instrucciones dindamicas Instrucciones estaticas
Benchmark Inputs Total Repetidas Total | Ejecutadas Repetidas

(millones) % % del total | % sobre ejec.
go null.in (ref) 1000 85.2 84552 62.9 934
m88ksim ctlin (ref) 1000 98.8 37824 4.5 97.7
ijpeg vigo.ppm (traim) 942.2 79.3 58894 254 98.1
perl scrabble.in (train) 555.6 84.2 73850 22.3 65.6
vortex vortex.in (train) 1000 93.2 125018 28.3 93.5
li 22.1sp files (ref) 1000 77.8 23026 23.6 92.0
gce reload.i (ref) 666.3 75.5 299988 39.5 87.7
compress bigtest.in (ref) 1000 56.9 13798 13.1 66.3

Como se ve en la columna 'Repetidas’, la cantidad de instrucciones repetidas es realmente
muy importante. Estas estadisticas son las que justifican las técnicas de reuso de instruc-
ciones y prediccién de valores, del mismo modo que un estudio sobre localidad espacial y
temporal de datos avala el uso las memorias cache en un procesador.

La pregunta que surge cuando se ven estos resultados es, naturalmente, cudl es la causa
de tanta redundancia. La ejecucién de un programa consiste en la aplicacién de un conjunto
de operaciones sobre un conjunto de entradas, pero existe una diferencia importante entre el
conjunto dindmico de operaciones y el estatico, o sea el programa que escribe el programador.
Esta diferencia existe porque cuando uno escribe un programa, no escribe explicitamente
toda la secuencia de operaciones a realizar. Por ejemplo, cuando se desea obtener la suma
de los elementos de un arreglo de 20 posiciones, uno no escribe directamente las 20 sumas
necesarias para obtener el resultado deseado, sino que escribe un ciclo que recorre el arreglo
sumando sus componentes. Al ejecutarse el programa, el cuerpo del ciclo va acumulando la
suma de los componentes del vector, y las instrucciones que controlan el flujo del programa
determinan si hay que seguir acumulando o se ha llegado al final.

En ese ejemplo se nota claramente que hay una separacién en la funcién que cumplen las
instrucciones en un programa. Por un lado, las instrucciones del cuerpo del ciclo se dedican
a realizar la suma solicitada. Por otro lado, las instrucciones que controlan el flujo estan
construyendo la secuencia dindmica de operaciones. Conceptualmente, estdan construyendo
en forma dindmica un programa compuesto por veinte sumas para obtener la sumatoria de

34

los elementos del vector. En el resto del trabajo, nos referiremos a estas instrucciones como
aquellas dedicadas a construir el camino dindmico de ejecucién. Ademads, diremos que las
otras instrucciones estan dedicadas al cémputo especifico del programa.

Esta diferencia entre el conjunto dindmico y el estatico de las operaciones de un programa
se produce porque es deseable tener una representacion estatica compacta de la computacion
a realizar y porque pretendemos tener programas que puedan operar sobre distintos conjuntos
de entradas. Sireemplazaramos el ciclo para sumar los elementos del vector por veinte sumas,
no podriamos utilizar vectores de distinta longitud distinta a 20.

Otra razén para explicar la existencia de tanta redundancia es que, tal como se men-
cionaba mas arriba, los datos sobre los cuales se opera estdn organizados en estructuras de
datos, por lo que hay instrucciones que se ejecutan para direccionar y acceder a los datos
para realizar el proceso de computaciéon propiamente dicho.

Una vez comprobada la existencia de esta redundancia en los programas, el préximo paso
es analizar la forma de aprovecharla para mejorar el tiempo de ejecucién de los programas.

Un punto en comun para todos estos esquemas es la forma de aprovechar una instruccién
repetida. Todos los esquemas que revisaremos a continuacién estan basados en evitar que las
instrucciones repetidas pasen por la etapa de ejecucion en el pipeline. De esta manera, una
instruccién ‘repetida’ pasara por las siguientes etapas: fetch, despacho, inicio, write-back y
commit, pasando por alto la etapa de ejecucién, tal como se especifica en la figura 2.16.

Dado que este trabajo se relaciona de manera directa con el tema de reuso de instruccio-
nes, de aqui en adelante se dejara de lado el tema de prediccién de valores para profundizar
sobre reuso de instrucciones.

Existen varios trabajos sobre reuso de instrucciones publicados recientemente, pero uno
de los trabajos en los que esta idea se aplica de una manera mas generalizada es [27]. En dicho
trabajo se presentan tres esquemas de reuso de instrucciones implementables en hardware,
aunque el énfasis no estd puesto en los detalles de la posible implementacién sino en las
funcionalidades requeridas por cada uno de los esquemas para funcionar.

2.7.1 Esquema Sv

El esquema Sv es una implementacion directa del concepto de reuso de instrucciones. Los va-
lores de los operandos se almacenan junto con el resultado de la ejecucién. El funcionamiento
del esquema es el siguiente:

Cuando se decodifica una instruccién, se comparan los valores de los operandos actuales
contra los almacenados en el buffer de reuso. Si son los mismos, entonces el resultado es
reusado. Las instrucciones de acceso a memoria, dado que en realidad son dos operaciones
en una (calculo de direccién y el acceso a memoria en si mismo) precisan una operatoria
distinta. Por un lado, el célculo de la direccién efectiva de memoria puede ser reusado si los
operandos no cambiaron. Por otro lado, el acceso a memoria de la instruccién sélo podra
ser reusado en caso de que ningun store anterior haya modificado la posicién de memoria
referenciada. En el caso de los store, el acceso a memoria, la escritura, no puede ser reusado.

En la figura 2.19 se muestra la estructura del buffer de reuso en cuestién.

35

El campo tag contiene parte del PC para direccionar la tabla. En los campos result,
operand valuel y operand value2 se almacenan el resultado y los valores de los operandos
de la instruccién. Estos campos son los que se utilizan para determinar la reusabilidad de
la instruccién. Los campos memualid y address son utilizados si el cdlculo de direccién de
memoria puede ser reusado o no. El bit memuvalid indica si el dato cargado de memoria
(que estd en el campo result) es valido. El campo address almacena la direccién efectiva del
acceso.

El test de reuso en este esquema consiste en comparar los valores de los operandos
de la instruccién contra los almacenados en la entrada correspondiente del buffer. Si hay
coincidencia, entonces el campo result (si la instruccién no es un load) o el campo address
(para instrucciones load) son védlidos. Si la instruccién es un load, entonces ademds de
ese chequeo debe se debe revisar el bit memuvalid para determinar si el resultado del load
(almacenado en el campo result) puede reusarse.

Figura 2.19: Estructura de los buffers de reuso [27]

operand] | operand2 gt | mem
t
value value address e valid

(2)

tag operandl| operand2| ,qdress | resylt | result) mem

tag

reg name | reg name valid | valid
d2
tag |- -~~~ ot L i address| result res'ult e
src-index | reg name| sre-index | reg name vaild | vaild

(c)

Para instrucciones que no son load, no es necesario realizar ningtn tipo de invalidacién
en la tabla, ya que los operandos determinan de forma univoca el resultado. Por otro lado,
las entradas que corresponden a instrucciones de tipo load se invalidan cuando se realiza un
store a la misma direccién. Mas precisamente, cuando se realiza un store se deben buscar

36

las entradas en la tabla cuyo campo address sea igual al de la direccién del store, y se pone
a cero el bit memuvalid.

2.7.2 Esquema Sn

El objetivo de este esquema es simplificar el test de reuso. En lugar de almacenar en el
buffer de reuso los valores de los operandos, se almacenan los nombres de los registros de los
operandos de la instruccién. La figura 2.19(b) muestra el esquema de una entrada en el buffer
de reuso de este esquema. Se puede apreciar que la diferencia mas importante entre ambos
esquemas reside en que en el lugar donde estdn los valores de los operandos en la entrada
del Sv se encuentra ahora el nombre del registro. La segunda diferencia es la existencia del
big resultvalid, que indica la validez del resultado, que es puesto a uno cuando un registro es
insertado por primera vez en el buffer.

El test de reuso consiste simplemente en revisar el estado de los bits resultvalid y memuva-
lid. El célculo de direccién efectiva en las instrucciones load/store y el resultado de cualquier
otro tipo de instruccién puede ser reusado si el bit resultvalid estd en uno. El resultado de
una instruccién load puede ser reusado si tanto el bit resultvalid como el bit memuvalid estdn
en uno.

A diferencia del esquema Sv, es necesario un algoritmo de invalidacién para actualizar el
bit resultvalid. Ademas de que un store invalida a un load a la misma direccién, cuando un
registro se escribe, se busca en el buffer de reuso las entradas cuyos campos de operandos
coinciden con el nombre del registro escrito. El bit resultvalid se resetea en las entradas
coincidentes, indicando que el resultado ya no puede ser reusado.

2.7.3 Esquema Sn-+d

El esquema Sn+d extiende al Sn intentando establecer cadenas de instrucciones dependientes,
y manteniendo el estado de la reusabilidad de las cadenas de instrucciones.

Para explicar el funcionamiento del esquema es necesario primero establecer algunas
definiciones. Las instrucciones que producen valores usados por otras instrucciones en una
cadena de instrucciones se llaman instrucciones fuente. Las instrucciones cuyas instrucciones
fuente no estdn en la cadena, lo cual indica que su informacién sobre dependencias de datos no
esta disponible, se llaman independientes. Por ultimo, aquellas instrucciones cuya instrucciéon
fuente esta en la cadena se llaman dependientes. La figura 2.20 ejemplifica estas definiciones.

Cada entrada en el buffer de reuso es bastante parecida a la del esquema Sn, excepto por
el agregado del campo src-indez. Los links de dependencias se crean almacenando el indice
del buffer de reuso de la instruccion fuente. Un valor invalido se inserta en este campo si la
instruccién fuente no existe en el buffer de reuso.

Ademas del buffer de reuso existe en este esquema una tabla auxiliar denominada RST
(Register Source Table). La RST posee una entrada para cada registro de la arquitectura y
mantiene cudl es la entrada del buffer de reuso que contiene o contendra el ultimo valor para
ese registro. Cuando una entrada para una instruccion es reservada en el buffer, la entrada

37

Figura 2.20: Instrucciones fuente, dependientes e independientes [27]

v Rl <--0 [V independiente

Source

T R2<em 1l + 4 [

LRI <11 +12 [+

en la RST correspondiente al registro destino de la instruccién se actualiza para apuntar
a la entrada reservada. Si la instruccion que es la ultima productora de un registro no se
encuentra en el buffer, entonces la entrada en la RST correspondiente a ese registro se marca
como invalida.

El test de reuso para las instrucciones independientes es el mismo que en el esquema Sn.
En el caso de las instrucciones dependientes, éstas pueden ser reusadas si sus instrucciones
fuente (apuntadas por el campo src-indez), son efectivamente las dltimas productoras de
sus operandos. Esta condicién se determina con ayuda de la RST.

De la misma manera que en los esquemas Sv y Sn, los stores invalidan a los loads de la
misma direccion reseteando el bit memuwalid. Al igual que en el esquema Sn, las instrucciones
independientes son invalidadas cuando sus operandos fuente son sobreescritos reseteando el
bit resultvalid. Las instrucciones dependientes no necesitan ser invalidadas ya que su reusabi-
lidad se establece utilizando su informacion de dependencias. En cambio, estas instrucciones
se invalidan cuando sus instrucciones fuente son desalojadas del buffer de reuso. Para reali-
zar esta operacion se deben buscar en el buffer aquellas instrucciones cuyo campo src-indez
concuerde con el indice de la instruccién que se desaloja. El bit resultvalid de aquellas
instrucciones que concuerden es reseteado indicando la no validez de la entrada.

2.8 Este trabajo...

El aporte de este trabajo consiste en un nuevo esquema de reuso basado en una definicion
alternativa de repeticion. El estudio de esta nueva definicion y los esquemas de reuso propues-
tos estdn apoyados en simulaciones realizadas con la herramienta de simulaciéon SimpleScalar
(33].

38

Estudiando detenidamente la definicién presentada en [29] surge que requerir la existencia
de una ejecucién anterior de la misma instruccién estatica para poder reusarla es demasiado
fuerte. Si se relaja esta condicién y solamente se requiere una ejecucién anterior de la misma
operacion se pueden obtener esquemas que permitan mayores indices de reuso y que son
utiles aun en el escenario de un cambio de contexto. Esto ultimo es una gran ventaja sobre
los esquemas tradicionales de reuso de instrucciones, ya que en trabajos anteriores, como el
buffer de reuso se direcciona utilizando el contenido del registro PC, el buffer de reuso debe
ser vaciado en cada cambio de contexto para evitar una ejecucién errénea. Los esquemas
que se presentan en este trabajo no utilizan el registro PC para indexar ninguna estructura
de datos, por lo que las mismas no necesitan ser vaciadas en un cambio de contexto.

La definicién de reuso que se utiliza en este trabajo lleva esquemas en los que no se reusan
instrucciones, en el sentido de una operacién asociada a una posicion de memoria, sino que
lo que se estd reusando es la computaciéon propiamente dicha. Es por esto que los esquemas
que se presentan en este trabajo se llaman de reuso de computacion y no de instrucciones.
El esquema de reuso propuesto es comparable al Sv descripto anteriormente. En este caso,
cada entrada en el buffer de reuso contendra el cédigo de operacién, los valores de ambos
operandos y el resultado obtenido. Entonces, el test de reuso consiste en verificar que tanto
el cédigo de operacion y los valores de los operandos de la instruccién a reusar coincidan
con los almacenados. El caso de las instrucciones de acceso a memoria es especial, y serd
analizado en el capitulo 4. Por dltimo, si dejamos por un momento de lado las instrucciones
de acceso a memoria, es claro que no es necesario realizar ningin tipo de invalidaciéon de
entradas en el buffer de reuso.

Como primer paso para el desarrollo de un esquema hardware de reuso de computacién
se debe realizar una cuantificacién del fendmeno de repeticién segin la definicién usada en
este trabajo. Este estudio permitird conocer la magnitud del fenémeno y analizar la mejor
manera de explotarlo para obtener una mejora de performance.

En el capitulo 4 se analizaran las simulaciones realizadas para cuantificar el fenémeno
de reuso de computacion. Luego se analizardn los resultados obtenidos con el objetivo de
desarrollar un esquema de reuso que permita aprovechar la redundancia observada en la
primer parte.

39

Capitulo 3

La herramienta de simulacion
SimpleScalar

En la actualidad, dado el amplio espacio de disefio en arquitectura de procesadores y el costo
de una implementacién real, la situacién habitual es trabajar utilizando simulaciones. Las
simulaciones son una alternativa mucho mas eficiente en términos de costo y versatilidad que
experimentar con hardware real, dada la flexibilidad intrinseca del software. Existen muchos
tipos de simuladores, desde aquellos que simulan cada una de las compuertas légicas del
circuito, hasta los que simplemente simulan el comportamiento definido por la arquitectura.

Un simulador de arquitectura es una herramienta que reproduce el comportamiento de
un determinado dispositivo, permitiendo obtener las mismas salidas que el dispositivo si-
mulado y ademds métricas sobre su comportamiento. En nuestro caso, el dispositivo que
intentamos simular es un procesador. Los simuladores de arquitectura pueden dividirse en
dos grandes ramas: los funcionales y los de rendimiento. Los simuladores funcionales imple-
mentan la arquitectura del procesador que se estudia, o sea, la visién del programador. En
este tipo de simuladores no se provee ningin detalle sobre el proceso interno que involucra
la ejecucién de una instruccion. Por otro lado, los simuladores de rendimiento implementan
la microarquitectura del dispositivo estudiado, con lo cual se logra una simulacién detallada
del comportamiento microarquitecténico del procesador que se estudia.

A partir de este punto se puede seguir abriendo cada una de las ramas de esta clasificacién.
Por el lado de los simuladores funcionales, podemos dividirlos segun trabajen con trazas o
por ejecuciéon de cédigo. La traza de un programa se compone de todas las instrucciones
dindmicamente ejecutadas, junto con todos los accesos a memoria realizados. Los simuladores
que procesan trazas son los mas simples, ya que no precisan implementar la funcionalidad
de cada instruccién de la arquitectura, sino que obtienen el resultado de la ejecucién de cada
instruccién de la traza misma. Al no ejecutar cada instruccién estos simuladores suelen ser
extremadamente rapidos. Por otro lado, existe una desventaja importante, ya que la traza
debe ser generada anteriormente a la simulacién, lo cual puede ser un proceso complejo.
Un simulador que trabaja por ejecuciéon de cédigo ejecuta el programa original, lo que es
equivalente a generar la traza en tiempo de ejecucién. Esta caracteristica hace mas dificil

40

su implementacién, pero por otro lado otorga muchas ventajas, sobre todo en cuanto a
la flexibilidad que brinda con respecto a los programas a ejecutar. Los simuladores por
ejecucién también pueden ser divididos segun su forma de ejecutar el cédigo. Una manera
es hacerlo como un intérprete, o sea, leer cada instruccién e implementar su funcionalidad
dentro del ambiente del simulador mismo. Por otro lado, en el caso que el procesador
simulado sea compatible a nivel de arquitectura con el anfitrién, existe la posibilidad de
ejecutar realmente cada instruccién, copiando luego el resultado obtenido en el estado del
procesador simulado.

Dado que en el trabajo a realizar es necesario realizar tanto estudios de performance
como analisis de los valores almacenados en estructuras de datos internas del procesador, es
indispensable trabajar con un simulador que trabaje por ejecucién de cédigo. En la actua-
lidad existen numerosas herramientas de ese tipo, por lo que la eleccién de SimpleScalar se
debi6 en un grado importante a que la modularidad de los simuladores permite realizar mo-
dificaciones en cualquier aspecto de la arquitectura simulada de forma simple. Por otro lado,
la arquitectura que define el simulador es ampliamente utilizada en los trabajos de investiga-
cién sobre reuso, lo cual permite comparar con mayor precision los resultados obtenidos con
los de otros trabajos. Finalmente, el codigo fuente de dicha herramienta es piblico, al igual
que los benchmarks SPEC95 compilados para la arquitectura, lo cual implica un ahorro de
tiempo muy considerable.

La herramienta SimpleScalar es un conjunto de moédulos que permiten implementar si-
muladores de arquitectura tanto funcionales como de rendimiento, basados en ejecucion
interpretada de cédigo. Ademds de estos médulos bésicos se incluyen varios simuladores
funcionales y un simulador de rendimiento, que permiten al desarrollador contar con una
base para experimentar.

3.1 Arquitectura SimpleScalar

El primer paso para trabajar con una herramienta de simulacién es conocer la arquitectura
que ésta simula. La arquitectura SimpleScalar es un derivado de la arquitectura MIPS-IV.
El conjunto de herramientas define versiones de la arquitectura tanto big-endian como little-
endian de la arquitectura para incrementar la portabilidad del mismo, ya que la versién a
utilizar debe ser coincidente con el tipo de endianness de la maquina anfitriona.

La arquitectura del conjunto de instrucciones SimpleScalar es un superconjunto del MIPS
con algunas diferencias, como por ejemplo la no existencia de delay slots y el formato de
instruccién de 64 bits. Los registros de la arquitectura, cuyo nombre y semdntica se pueden
observar en la tabla 3.1, son los mismos que en la arquitectura MIPS-IV.

El formato de instruccién, que es una extensiéon del MIPS a 64 bits, esta disenado para
facilitar la exploracién sobre conjuntos de instrucciones. Los campos para especificar re-
gistros son de 8 bits para permitir el agregado de nuevos registros en la definicién de la
arquitectura. El cédigo de operacion de 16 bits estd en una posicion fija en los distintos
tipos de instrucciones para acelerar la decodificacién de las instrucciones. Ademéds, existe

41

Tabla 3.1: Registros en la arquitectura SimpleScalar [33]

Nombre hardware | Nombre software | Descripciéon
$0 $zero registro fijo a cero
$1 $at reservado por el ensablador
$2 - $3 $v0 - $v1 registros de retorno resultado de funcién
$4 - $7 $a0 - $a3 registros de valor de argumento de funcién
$8 - §15 $t0 - $t7 registros temporarios, salvados por llamador
$16 - $23 $s0 - $s7 registros salvados, guardados por llamado
$24 - $25 $t8 - $t9 registros temporarios, salvados por llamador
$26 - $27 $k0 - $k1 reservados por el SO
$28 $egp Puntero global
$29 $sp Puntero de pila
$30 $s8 registros salvados, guardado por llamado
$31 $ra registro de direccién de retorno
$hi $hi registro de resultado alto
$lo $lo registro de resultado bajo
$f0 $£31 registros de coma flotante
$fcc $fce Cédigo de condicién de coma flotante

un campo para anotaciones, que puede ser modificado luego de compilado el cédigo, que
permite modificar el juego de instrucciones sin necesidad de alterar el ensamblador.

SimpleScalar utiliza un espacio virtual de direcciones de 31 bits, organizada segin indica
la tabla 3.1.

3.2 Generacion de codigo para el simulador

El primer paso para realizar una simulacién es compilar el programa deseado para la ar-
quitectura SimpleScalar. Es claro que para realizar dicha tarea es necesario disponer de
compiladores, ensamblador y bibliotecas de funciones standard para dicha arquitectura.

El conjunto de herramientas SimpleScalar incluye un port de las herramientas GNU GCC,
GAS, GLD y de la biblioteca GLIBC para la arquitectura SimpleScalar, de modo tal que
cualquier programa puede ser compilado para ser ejecutado posteriormente por el simulador.

Este diseno permite maximizar la utilidad del conjunto, ya que el problema de la genera-
cion de cddigo para un simulador muchas veces limita los programas que es posible ejecutar
en él a un conjunto bastante reducido.

La secuencia de generaciéon de cddigo, segin se especifica en la figura 3.2, comienza
con un codigo Fortran o C. El cédigo Fortran debe pasar por la herramienta f2c para ser
traducido a C. Una vez disponible el fuente en C, se lo compila utilizando la versién de
GCC para la arquitectura SimpleScalar. Posteriormente se ensambla con GAS y se linkea
con las bibliotecas standard de C, tambien portadas para la arquitectura. Como resultado

42

Figura 3.1: Organizacién de memoria en SimpleScalar [33]

Virtual Memory

0x00400000

| 0x 16000000

|| 0x7££c000
(eiitiiiid |

de este proceso se obtiene un ejecutable para el simulador. Como nota adicional en cuanto
a programas disponibles para el simulador, es importante notar que estdn disponibles junto
con el simulador los benchmarks del SPEC95 compilados. Dado que este es uno de los
conjuntos de benchmarks mas utilizados en investigaciéon sobre arquitectura, esto representa
una gran ventaja a la hora de reducir el tiempo de preparacién de las simulaciones. Ademas,
en la versién 3.0 se incorpord en el paquete la posibilidad de ejecutar cédigo binario de la
arquitectura Alpha [34].

3.3 Estructura interna del simulador

A pesar de que se incluyen algunos simuladores base, SimpleScalar esta disenado de forma tal
que sea el usuario final mismo el que programe los simuladores. Con este objetivo es que el
diseno esta compuesto por varios médulos que se unen para formar los distintos simuladores.

Un programa para la arquitectura SimpleScalar se compone de instrucciones pertene-
cientes al SimpleScalar ISA y de llamadas al sistema operativo. Esta clasificacién determina
que el nicleo funcional del simulador esta compuesto por dos médulos: el de la definicién de
la méquina simulada y el proxy de llamadas al sistema operativo. El médulo de definicion

43

Figura 3.2: Cadena de generacién de c6digo en SimpleScalar [33]

Cadigo Fortran Cadigo C

Cédigo
assembler

Archivos
objeto

Ejecutables

de la méquina especifica el conjunto de instrucciones y la implementacién de cada una de
ellas en el simulador. El proxy interpreta las llamadas al sistema operativo simulado, las
ejecuta en el sistema operativo real, y copia los resultado en la maquina simulada. Esta es
una caracteristica muy importante, ya que permite ejecutar casi cualquier tipo de cédigo en
el simulador.

A partir de estos dos componentes basicos es que se construyen los simuladores. Para
hacer mas sencilla esta tarea es que existe otro grupo de médulos, los pertenecientes al niicleo
de rendimiento. En este grupo podemos encontrar el médulo cargador, el de registros, el de
memoria, el de cache, el prediccién de saltos, estadisticas, etc. La mayoria de los médulos de
este grupo son opcionales para construir un simulador. Por ejemplo, lo mas comin es que
un simulador utilice el médulo cargador y de registros, pero el programador podria decidir
utilizar un médulo de memoria distinto del provisto en la distribucién.

Los simuladores provistos en la distribucién son una excelente base para experimentar.
En la mayoria de los casos, s6lo es necesario realizar modificaciones pequefias sobre alguno
de estos simuladores base para realizar las simulaciones deseadas.

44

Figura 3.3: Estructura de SimpleScalar [33]

Programa de
usuario

Interfase
prog/sim
Nucleo
funcional

Nucleo de
performance |

3.4 Ejecucién de un proceso en SimpleScalar

En esta seccién se describirdan los procesos involucrados en la ejecucién de un proceso en
SimpleScalar. Esta descripcion se realizard enumerando las distintas llamadas que se realizan
en el procedimiento main del simulador.

e Registro de las opciones del simulador (sim_reg_options)
e Chequeo de las opciones del simulador (sim_check_options)

e Registro de las estadisticas especificas del simulador (sim_reg_stats)

Inicializacién del estado del simulador (sim_init)

Comienzo de la simulacién (sim_main)

Vuelco de las estadisticas recolectadas durante la simulacién (sim_aux_stats)

Des-inicializacién del estado del simulador (sim_uninit)

45

El punto mas interesante de este proceso estd en la funcién sim_main, que es la que
realiza la simulacién propiamente dicha. El trabajo del programador consiste en modificar
esta funcién para adaptarla a sus necesidades. Los médulos sim-safe, sim-fast, sim-bpred,
sim-outorder, entre otros, son algunos de los médulos donde se implementa esta funcién,
cada uno incorporando caracteristicas particulares a la simulacién.

3.5 Sim-Safe, un simulador funcional basico

Sim-safe es el simulador més sencillo provisto en la distribucién SimpleScalar. Es un si-
mulador funcional que provee minimo detalle y casi no provee estadisticas sobre el proceso
ejecutado. Su funcionamiento es muy sencillo, ya que consiste en un ciclo infinito en el cual
se hace el fetch de la instruccién corriente y se la ejecuta en cada iteracién del mismo. Este
ciclo se corta iinicamente al ejecutar el proceso una llamada al sistema operativo simulado,
para terminarlo.

3.6 Sim-Outorder, simulador de rendimiento

Sim-Outorder es el simulador méas detallado que se incluye en la distribuciéon SimpleScalar.
Este programa simula el estado microarquitecténico de un procesador superescalar ciclo a ci-
clo, permitiendo obtener estadisticas muy detalladas sobre todos los aspectos del procesador.
La arquitectura del pipeline del procesador simulado es la que se muestra en la figura 3.4.
Al igual que Sim-Safe, el funcionamiento basico del simulador estd controlado por un ciclo
infinito, pero en este caso en cada iteracién del ciclo se ejecuta un procedimiento por cada
etapa del pipeline. La ejecucion se realiza en el sentido inverso del avance de las instruccio-
nes, ya que de esta manera se resuelven los problemas de sincronizacién de los elementos de
estado entre las etapas con una sola pasada por cada etapa del pipeline por ciclo.

e ruu_commit: Esta funcién maneja las instrucciones de la etapa de writeback que
estan listas para ser retiradas, realizando el retiro en orden de las mismas.

e ruu_writeback: La etapa writeback del procesador se realiza en esta funcién. En
cada ciclo busca si hay eventos de writeback planificados para ese ciclo, para cada
uno de ellos recorre la lista de dependencias de la instruccién correspondiente y marca
las instrucciones dependientes indicando que se ha satisfecho la dependencia. En caso
de que la instruccién ya no tenga ninguna dependencia, la rutina la marca como lista
para su inicio. La etapa de writeback también detecta predicciones de salto incorrectas;
cuando se determina que se ha realizado una prediccién incorrecta se vuelve atras el
estado del procesador al ultimo checkpoint, descartando las instrucciones ejecutadas
equivocadamente.

e ruu_issue y ruu_refresh: la etapa issue del procesador se implementa en estas dos
funciones. Estas dos funciones implementan el despertar de las instrucciones y su

46

Figura 3.4: Pipeline de Sim-Outorder [33]

asignacion a unidades funcionales, manteniendo el estado de las dependencias, tanto
de registros como de memoria. En cada ciclo, las rutinas de planificacién determinan
cudles son las instrucciones tales que todas sus dependencias de datos en lo referente a
registros estan satisfechas. El inicio de instrucciones de tipo load se detiene en caso de
que algun store anterior todavia no tenga resuelta su direccién efectiva de acceso. Si la
direccion de un store anterior coincide con la del load, el resultado del store es enviado
directamente a la instruccién load. En caso contrario, el load es enviado al sistema
de memoria. La etapa de ejecuciéon también se maneja en ruu_issue. En cada ciclo
se toman tantas instrucciones listas de la cola del planificador como sea posible, sin
superar el maximo especificado en la configuracién del simulador. La disponibilidad de
unidades funcionales también se verifica, y si existen ports disponibles las instrucciones
son iniciadas. Por iltimo, la rutina planifica los eventos de writeback utilizando los
tiempos de latencia de las unidades funcionales.

ruu_dispatch: en esta funcién es donde se implementa la decodificacién de instruc-
ciones y el renombre de registros. Una vez por ciclo, esta funcién toma tantas instruc-
ciones como puede de la IFQ (sin pasarse del maximo establecido por la configuracién
del simulador), y las coloca en la cola del planificador.

47

e ruu_fetch: esta funcién implementa la etapa de fetch del procesador. La unidad de
fetch modela el ancho de banda de memoria para realizar el fetch de instrucciones, y
toma como entrada el contenido del registro PC, el estado del predictor y la senal de
prediccién incorrecta de las unidades ejecutoras de saltos. Como resultado, se alimenta
la IFQ (Instruction Fetch Queue) con las instrucciones obtenidas de la cache de
instrucciones. En cada fetch no se pueden obtener instrucciones de mas de una linea
de cache. Ademas, esta etapa se bloquea ante un fallo de la cache hasta que el fallo
se resuelve. Una vez colocadas las instrucciones en la IFQ, se consulta al predictor de
préxima linea para saber qué instrucciones traer en el préximo ciclo.

3.7 Otros simuladores

Ademads de los dos simuladores anteriormente detallados, SimpleScalar provee los siguientes
simuladores:

e sim-fast: version acelerada de sim-safe. Elimina los controles de errores para lograr
una simulacién funcional mucho mas rapida que sim-fast.

o sim-bpred: Agrega un predictor de saltos al simulador funcional basico. A las es-
tadisticas propias del simulador funcional se agregan las del predictor (hits, accesos).

e sim-cache: simula el comportamiento de caches de nivel 1 y 2, permitiendo configu-
rar la cantidad de conjuntos, nivel de asociatividad, tamafio de bloque y politica de
reemplazo.

3.8 Modificando un simulador

En esta seccién se describe el modo de modificar el simulador sim-outorder para implementar
reuso de computacion, de forma tal de ejemplificar como trabajar con SimpleScalar en otros
proyectos.

Para este proyecto en particular, las modificaciones a realizar consisten en:

e Agregar opciones para habilitar o deshabilitar el reuso de computacién, los mecanismos
de filtrado y establecer la cantidad méaxima de instrucciones a ejecutar.

e Modificar la etapa de decodificacion para acceder al buffer de reuso.

e Agregar a las estadisticas a imprimir al finalizar la simulacién aquellas relacionadas
con el esquema de reuso de computacién.

A continuacién analizaremos cada una de estas modificaciones en detalle.

48

3.8.1 Opciones

Cuando el usuario ejecuta el simulador desde la linea de comando, existen numerosas opciones
que se pueden especificar para configurar el comportamiento de la maquina simulada. Dadas
las necesidades especificas de la simulacién que se intenta desarrollar es necesario agregar
algunas opciones mas.

SimpleScalar ya provee un mdédulo para el tratamiento de opciones del simulador. En
nuestro caso, deseamos agregar a las opciones que sim-outorder provee las siguientes :

e -cr_enabled Si el usuario desea habilitar el reuso de computacién debera especificar este
parametro en true.

e -cr_filtering Este parametro se utilizard para habilitar o deshabilitar el mecanismo de
filtrado del esquema de reuso.

e -maz:inst Con esta opcién el usuario podra especificar la cantidad maxima de instruc-
ciones a ejecutar.

Para registrar estas opciones hay que modificar la funcién sim_reg_options de sim-outorder,
agregando una llamada por cada opcidn a la funcién de registro del médulo option que corres-
ponda segun el tipo de dato de la opcidn a registrar. Estas funciones permiten asociar una
variable con cada opcion. Para nuestro caso, serd necesario llamar a la funcién opt_reg_flag
para las opciones cr_enabled y cr_filtering, y a la funcién opt_reg_uint para la opciéon max:inst.
Con el simple hecho de agregar estas tres llamadas, el usuario ya tiene a su disposicién esas
tres opciones para el simulador. Mas tarde, el programador deberd agregar el cédigo para
que estas opciones se comporten como se disend.

3.8.2 Incorporacién del reuso de computacion

Este item involucra dos modificaciones. Por un lado, se debe incorporar dentro del pipeline el
test de reuso de computacién, y ademéas se debe modificar el pipeline para alterar el camino
que siguen las instrucciones reusadas. Para incorporar el test de reuso es necesario modificar
la etapa dispatch para poder obtener el codigo de operacién y los valores de los operandos
que las instrucciones que pasan por esa etapa utilizan. Una vez obtenidos estos valores, se
llama a una funcién propia que verifica si hay un acierto o no en el buffer de reuso. En caso
de haber acierto, se marca la instruccién como reusada. Para que las instrucciones reusadas
eviten la etapa de ejecucidn, se altera la funcién dispatch de la siguiente manera. En su
versién original, esta funcién encola las instrucciones listas para que luego la ruu_issue la
envie a ejecutar cuando haya unidades funcionales disponibles. El cambio a realizar consiste
en que, si la instruccién a encolar ha sido marcada como reusada, entonces directamente se
la envia a la etapa de write-back.

49

3.8.3 Incorporacién de estadisticas de reuso de computacion

Para analizar el comportamiento del buffer de reuso es necesario conocer la cantidad de
accesos realizados, la cantidad de inserciones y la cantidad de hits obtenidos. Teniendo en
cuenta que esas tres estadisticas se mantienen en tres variables, lo inico que resta por hacer
es indicarle al simulador que esas tres variables mantienen estadisticas que deben imprimirse
al finalizar la simulacion. Para realizar el registro de estas variables, se debe incluir una
llamada a la funcién sim_reg_counter por cada una de las variables dentro del procedimiento
del simulador donde se registran las estadisticas especificas del simulador (sim_reg_stats).

30

Capitulo 4

Cuantificando el reuso de
computacion

4.1 Introduccion

En este capitulo se analiza de forma cuantitativa el fenémeno de reusabilidad de computa-
cién. Para realizar dicho andlisis es necesario obtener estadisticas de reuso sobre programas
reales, las cuales se obtienen mediante la simulacién de la ejecucién de los mismos en una
arquitectura dada. Los resultados que se obtienen de estas simulaciones permite pasar a
una segunda etapa, la de disefiar un esquema implementable en hardware que aproveche la
redundancia existente en beneficio de una reduccién del tiempo de ejecucion.

Segin se establece en [27], el fen6nemo de repeticién se produce cuando dos instancias
dindmicas de la misma instruccion estatica producen el mismo resultado. Dicho fenémeno
se puede aprovechar para acelerar la ejecucién de un programa, ya que no es necesario
realizar la ejecucién de aquellas instrucciones para las cuales se conoce cudl es el resultado
que generaran. En dichos casos, no seria necesario que la instruccién pase por la etapa
de ejecucion del pipeline, sino que la misma podria pasar directamente desde la etapa de
decodificacion a la etapa de commit. La principal desventaja que presenta esta definicion de
repetecién es que, al estar atada a las instrucciones estaticas, no es posible realizar reuso entre
diferentes threads de ejecucién. En el resto de este trabajo se considerara que una instancia
dindmica de una instruccion estatica estd repetida si tiene el mismo cédigo de operacion y los
mismos inputs que una instancia dindmica anterior, ya sea de la misma instruccién estatica
o no. Notemos que esta definicién , a diferencia de la usada en otros trabajos, no requiere
que ambas instancias pertenezcan al mismo thread de ejecucién. Esta es una diferencia muy
importante, ya que permite que los esquemas basados en esta definicion sean ttiles incluso
en el escenario de ambientes multitarea, cosa que no sucede en esquemas tradicionales.
Normalmente, ante un cambio de thread de ejecucién las estructuras de datos deben vaciarse
debido a que los datos que contienen son especificas del thread que se esta ejecutando, con
lo cual utilizar esta informacién al cambiar de thread puede llevar a resultados incorrectos.
El vaciamiento de la estructura implica una pérdida de performance debida al tiempo que

o1

toma completar nuevamente la estructura con informacién sobre el nuevo thread.

4.2 Instrucciones sobre las que se aplicara el esquema
de reuso.

Tabla 4.1: Estadisticas de reuso de valores

Integer Float Integer Single Double

Benchm. # Inst Insert. | Hit | Insert. | Hit | Insert. | Hit | Insert. | Hit

(millones) % % % %
applu 1000 492.91M | 76.40 | 359.88M | 77.98 0.0 0 243.12M | 38.61
ccl 235.58 156.4M | 80.89 0.1M 99.99 0.0M 0 0.0M 0
compress 1000 632.54M | 63.09 | 152.71M | 48.51 0 0 14.58M 0.29
fpppp 1000 | 140.13M | 91.35 | 734.98M | 71.28 | 0.090M | 99.87 | 325.10M | 45.63
go 1000 818.13 77.78 0.0M 0 0.0M 0 0.0M 0
hydro2d 1000 438.53M | 45.13 | 330.13 | 95.56 0.0M 0 148.77M | 94.02
li 537.87 333.20M | 85.04 | 0.004M | 99.97 0.0M 0 0.0M 0
m88ksim 244.75 178.86M | 94.09 0.0M 85.89 0.0M 62.96 0.0M 88.33
mgrid 1000 424.58M | 35.70 | 547.73M | 69.80 0.0M 0 264.12M | 10.12
su2cor 1000 627.07M | 81.52 | 26.87TM | 99.99 0.0M 0 8.88M | 99.99
swim 1000 372.26M | 59.03 | 263.79M | 75.50 | 215.02M | 33.32 | 32.78M | 66.75
tomcat 1000 551.14M | 79.95 | 77.5M | 96.21 0.0M 0 58.52M | 78.93
turb3d 1000 595.76M | 55.60 | 190.82M | 94.04 0.0M 93.96 | 137.78M | 92.26
waved 1000 431.47M | 72.96 | 236.36M | 81.26 0.0M 0 139.29M | 33.24
MEDIA 71.32 - 78.28 - 20.71 - 46.29

El esquema de reuso propuesto en este trabajo se aplicard inicamente a las instrucciones
de aritmética entera, por lo que se dejan de lado las instrucciones de transferencia de control,
aritmética de coma flotante y acceso a memoria. Varias son las razones para acotar las
instrucciones sobre las que se aplicard el esquema de reuso, principalmente la busqueda de
una implementacién hardware sencilla y una buena relacién costo/beneficio. Bajo estas dos
premisas es que se limita el esquema a desarrollar, teniendo en cuenta que la redundancia que
yace en el proceso del cdlculo del camino dindmico de ejecucion y las operaciones booleanas
deberia ser mayor que en otro tipo de procesos, y que la mayor parte de esta computacién
se realiza con operaciones de aritmética entera.

4.2.1 Analisis de las instrucciones de salto

Las instrucciones de salto condicional podrian considerarse como un tipo de instruccién de
aritmética entera, teniendo en cuenta que el cdlculo de la condicién generalmente consiste
en una operacion bastante sencilla. Bajo esta consideracién, la aplicacién de un esquema
de reuso a estas instrucciones no agregaria demasiada complejidad. Sin embargo, no es éste
el punto por el cual estas instrucciones no se tratan en este trabajo. El punto principal

92

consiste en que lo mas importante a estudiar para estas instrucciones es la interrelacién
entre la prediccion de saltos y un esquema de reuso. A simple vista, el esquema de reuso
disminuiria la penalizacién para los saltos mal predichos, pero en realidad un estudio de la
interrelacién entre predictores de salto y esquemas como el que se presenta aqui, mereceria
un trabajo aparte.

4.2.2 Anadlisis de las instrucciones de load/store

Con respecto a las instrucciones de acceso a memoria, el aspecto principal por el cual han
sido omitidas es que las mismas no pueden ser tratadas exactamente de la misma manera que
las otras instrucciones. Esto es asi porque es tipico de estas instrucciones obtener resultados
diferentes con los mismos inputs, ya que un store sobre una direccién de memoria cambia
el resultado de los loads posteriores sobre la misma direccién. Bajo estas condiciones, para
incorporar estas instrucciones en un esquema de reuso seria necesario agregar un esquema de
invalidacién similar al que se utiliza en los esquemas presentados en [27], con lo se agregaria
bastante complejidad al hardware.

4.2.3 Analisis de las instrucciones de aritmética en coma flotante

A pesar de que las instrucciones de coma flotante por lo general toman mas de un ciclo en
su etapa de ejecucién, con lo que potencialmente podrian generar un gran ahorro de tiempo
si fueran reusadas, se tomo la decision de no incluirlas en el esquema de reuso.

Para comprender esta decision es necesario remitirse a las primeras simulaciones que se
realizaron para este trabajo. Estas simulaciones fueron realizadas con el objetivo de estudiar
el grado de redundancia en los valores escritos en los bancos de registros enteros y de coma
flotante. Como conclusién de estas simulaciones se pudo determinar que las instrucciones de
coma flotante en precision simple son muy pocas como para justificar el uso del esquema de
reuso, y las de doble precisién generan resultados muy poco redundantes.

Con respecto a las operaciones con numeros enteros realizadas en la unidad de coma
flotante, a pesar de que se observa bastante redundancia en la tabla de resultados, en una
implementaciéon real seria necesario duplicar el hardware del esquema de reuso solamente
para las instrucciones de coma flotante, lo cual significa un costo demasiado alto.

4.3 Simulaciones

Para poder cuantificar el fenémeno de reuso de computacién es necesario analizar todas y
cada una de las instrucciones que ejecuta el procesador y determinar si la misma es reusable
o no utilizando un determinado esquema de reuso. En la siguiente seccién se describen el
ambiente de simulacion y el esquema de reuso utilizados con tal propésito. Una vez obtenidos
los resultados de estas simulaciones, estos deben analizarse para disenar un esquema de reuso
que, aprovechando la redundancia existente, mejore la performance.

53

4.3.1 Ambiente de simulacion

El nicleo central de todas las simulaciones realizadas en este trabajo es el conjunto de
herramientas Simplescalar [33]. Este set de programas provee varios simuladores que van
desde un simulador funcional muy simple hasta un simulador de performance que permite
analizar el comportamiento de un procesador superescalar ciclo por ciclo, el cual puede
ser configurado casi en todos sus detalles arquitecténicos. Las simulaciones se realizaron
utilizando 14 programas seleccionados del conjunto de benchmarks SPEC95. Los valores
de los inputs fueron tomados del conjunto 'Reference’ de los benchmarks, que figuran en la
tabla 4.2.

Tabla 4.2: Inputs utilizados

Benchmark | Input

go null.in
m88ksim ctl.raw

gce expr.i
compress bitest.in

li deriv.lsp
vortex vortex.raw
tomcatv tomcatv.in
swim swim.in
su2cor su2cor.in
hydro2d hydro2d.in
mgrid mgrid.in
applu applu.in
turb3d turb3d.in
fpppp natoms.in
waved waved.in

En todos los casos se ejecutaron los primeros 200 millones de instrucciones del programa.
Es importante notar que aunque la cantidad de instrucciones simuladas es bastante impor-
tante, no lo es tanto para hacer una simulacién de performance detallada. Sin embargo, dado
que el objetivo de esta simulacién es tener una primer medida de la redundancia existente
en los programas segun la definicién dada en el principio, y que el tiempo de simulacién es
excesivamente largo para los tamanos de cache mas grandes, la cantidad de instrucciones
simulada se estableci6 en ese valor. Otro aspecto que vale la pena considerar es el de las
instrucciones de inicializacién de cada benchmark. Es conocido que una cantidad de ins-
trucciones que depende de los parametros de entrada no pertenece al cémputo propio del
benchmark, sino que se dedica a inicializar estructuras de datos en memoria, verificar la
correctitud de los parametros, etc. Por lo general se intenta saltear la ejecucién de estas
instrucciones para que los resultados de la fase de inicializacion no afecten los resultados
del ntcleo del benchmark, pero en este caso se decidié ejecutar el programa completo para
estudiar el programa completo.

54

4.3.2 Esquema simulado

El esquema utilizado para cuantificar la reusabilidad consiste en una cache totalmente aso-
ciativa con politica de reemplazo FIFO. Varios tamanos de la cache fueron usados de forma
tal de poder analizar el comportamiento del esquema en funcién del tamano de la cache.
El funcionamiento del esquema es el siguiente. Cada vez que se inicia la ejecucién de una
instruccién de aritmética entera se accede a la cache utilizando el cédigo de operacién y el
valor de los operandos. En caso de existir un acierto la instruccién se considera reusada. Si
no hubiera acierto la instruccion es insertada en el primer lugar de la cache. Otra forma
de actualizacién del buffer que fue estudiada consistié en insertar la instruccion en el buffer
aun en el caso de encontrarla. La idea intuitiva para hacerlo es darle un mayor tiempo de
vida dentro del buffer a una instrucciéon que ha demostrado que genera repeticiones. La
desventaja que presenta esta politica es que se desperdicia espacio en el buffer con instancias
repetidas. Las simulaciones realizadas demostraron que esta desventaja es mucho peor que
los beneficios que se pensaban.

4.3.3 Resultados

La tabla 4.4 y la figura 4.1 muestra los resultados obtenidos en las simulaciones utilizando
1K, 4K y 64K entradas en la cache. En la tabla 4.3 se describe el contenido de cada columna.

Tabla 4.3: Significado de las columnas de la tabla 4.4

Columna Contenido
Insertado % | Cantidad de accesos a la cache sobre el total de instrucciones ejecutadas
Hit % Cantidad de hits en la cache sobre el total de instrucciones ejecutadas
Eficiencia % | Total de hits dividido por el total de accesos a la cache

En la tabla 4.4 se puede observar que el 35% de las instrucciones ejecutadas son reusables
para el caso de la cache de 64K entradas. Ademas es muy importante notar que al disminuir
el tamano de la cache a 4K entradas el promedio de instrucciones insertadas baja sélo al
30%, lo cual es muy positivo ya que permite pensar que las estructuras de datos necesarias
para una implementacién hardware no necesariamente tienen que ser grandes. Por otro lado
la eficiencia de la cache no se comporta de una manera tan bondadosa como la cantidad de
hits, ya que en el caso de la cache de 64K entradas la misma se ubica en torno al 93% pero en
la de 1K entradas disminuye hasta un 76%. Este resultado no favorece una implementacién
real, ya que a pesar de que el resultado obtenido para la cache de 64K entradas es muy bueno,
para una implementacién hardware es deseable trabajar con estructuras mas pequenas que
permitan un tiempo de ciclo mas pequeno.

Con estas consideraciones en mente, de ahora en adelante se utilizard una cache de 4K
entradas

99

Tabla 4.4: Estadisticas de reuso de computacion

64K entradas 4K entradas 1K entradas
Benchmark | Insertado Hit Eficiencia Hit Eficiencia Hit Eficiencia
% % % % % % %
applu 30.01% 24.76% 82.51% 23.53% 78.41% 18.88% 62.91%
ccl 39.71% 37.70% 95.17% 35.48% 89.36% 32.67% 82.27%
compress 57.42% 49.87% 86.85% 47.78% 83.21% 43.93% 76.50%
fpppp 3.04% 2.97% 97.75% 2.82% 92.70% 2.57% 84.53%
go 54.54% 54.45% 99.82% 45.41% 83.24% 45.35% 83.14%
hydro2d 38.21% 36.92% 96.64% 35.28% 92.33% 33.41% 87.43%
Ii 30.79% 30.78% 99.94% 27.73% 90.03% 24.29% 78.88%
m88ksim 47.79% 44.18% 92.46% 43.07% 90.12% 41.17% 86.14%
megrid 36.78% 31.66% 86.07% 27.55% 74.89% 17.95% 48.80%
su2cor 41.69% 40.36% 96.81% 37.14% 89.10% 35.31% 84.69%
swim 23.80% 23.41% 98.35% 21.64% 90.95% 17.42% 73.19%
tomcat 37.18% 37.03% 99.58% 35.59% 95.73% 31.39% 84.42%
turb3d 58.85% 53.45% 90.92% 51.83% 88.07% 42.18% 71.67%
waved 30.94% 22.26% 71.92% 21.15% 68.36% 17.65% 57.04%
MEDIA 37.91% 34.98% 92.48% 32.57% 86.17% 28.86% 75.82%

4.4 Conclusiones

En este capitulo se ha cuantificado el fenémeno de reuso de computacién mediante la realiza-
cion de distintas simulaciones variando el tamano de la cache utilizada. Estas simulaciones
han arrojado como resultado que un alto porcentaje de las instrucciones dindmicas son reu-
sables segtin la definicién utilizada en este trabajo.

A medida que el tamano de la cache decrece, la eficiencia, en el sentido de usar la
cache para almacenar las instancias dindmicas que tienen una mayor probabilidad de ser
repetidas, se transforma en un factor cada vez mas importante. Al disponer de una menor
cantidad de entradas en la cache, es necesario realizar un uso mucho mas eficiente del espacio
disponible. El enfoque usado en este trabajo para incrementar la eficiencia consiste en
capturar la redundancia expuesta por la computacién utilizada para determinar el camino
dindmico de ejecucién, esperando que esta computacién sea altamente redundante. Esta
suposicion se realiza sobre la base de que el resultado de las instrucciones de salto es altamente
predecible, con lo cual es razonable suponer que las instrucciones que producen sus operandos
también deben serlo. Para capturar las instrucciones involucradas en esta porcién del flujo
de ejecucidn, se necesita algun tipo de mecanismo para filtrar de la cache las instancias que
no tienen una alta probabilidad de ser repetidas, de forma tal de aumentar la eficiencia. En
el siguiente capitulo se elabora un mecanismo de filtro para lograr ese objetivo. La idea de
un mecanismo de filtrado no es nueva, ya que [29] y [27] sugieren una politica de insercion
‘inteligente’ para el buffer de reuso, ya que solamente un 20% de las instrucciones insertadas
constituyen la mayor parte del reuso. El enfoque aqui propuesto para esa politica es evitar
la insercién de instrucciones en el buffer de reuso, aplicando ciertas reglas sobre los valores

56

iencia

e de aciertos y efici

Porcentaj

Figura 4.1

~Hit %

4K 64K

of entries

1K

de los operandos.

a7

Capitulo 5

Filtros de instrucciones

5.1 Consideraciones iniciales

La idea detréds de filtrar instrucciones de la cache consiste en que es esperado que algunas
instrucciones tengan mayor probabilidad de repetirse que otras. Por ejemplo, podriamos
esperar que sl

Rl=1yR2=1
la operacién
R3 = R1 + R2
tendra mayores posibilidades de ser repetida que si
R1 = 143294 y R2 = 1998123

Llamemos filtro a un mecanismo que permite que ciertas entradas pasen a través de el
y no otras mediante la aplicacién de un conjunto de reglas. El objetivo del filtro que es de
interés para este trabajo es el de llenar la cache sélo con aquellas instancias relacionadas con
el proceso de construccion del camino dindmico de ejecucion y no con aquellas relacionadas
con el proceso de computacion especifico del programa. Se espera que la computacion invo-
lucrada en el primer grupo posea una mayor reusabilidad que otros ya que el objetivo final
de las instrucciones pertenecientes a dicho grupo es proveer los operandos de las instruccio-
nes de salto. Dado que, como se ha mostrado en secciones anteriores, el resultado de las
instrucciones de salto es altamente predecible, lo mismo deberia suceder con las operaciones
que generan los operandos.

Analicemos el ejemplo de la figura 5.1. En ese pequeno ejemplo se pueden observar los dos
tipos de operaciones mencionados. Por un lado, en la condicion del 'IF’ se pueden observar
operaciones booleanas sencillas. En el programa assembler resultante este 'IF’ concluye con
un salto condicional que determinara cual de las ramas seguir. En general, se puede esperar

58

Figura 5.1: Ejemplo de cédigo
if ((a AND b) OR (!c)) then
Result[i] <—c[i]*d[i]+exp(pli])
else
Result[i] <—exp(p[i])
end if

que este salto sea altamente predecible, por lo que es razonable pensar que lo mismo debe
ser para las operaciones realizadas para calcular los operandos de la instruccién de salto. Por
otro lado, en las ramas 'THEN’ y "ELSE’ hay llamadas a funciones, acceso a operandos en
memoria y operaciones complejas, de las cuales no se espera que generen tanta redundancia.

En este ejemplo, el objetivo a lograr mediante el filtro es evitar la insercién en el buffer
de reuso de las instrucciones en las ramas "THEN’ y "ELSE’.

5.2 Definiciones basicas

Definimos que el filtro [a, b] se aplica a un determinado esquema de reuso de computacién
cuando se requiere que al menos uno de los operandos de las instrucciones a ser insertadas
en el buffer de reuso esté en rango [a,b]. Por otro lado, se define el ancho de un filtro como
|b—al. Uno de los objetivos mas importantes de este trabajo es el de encontrar un filtro que
deje pasar la mayor cantidad posible de instrucciones, pero de manera tal de mantener la
eficiencia tan alta como sea posible, para no desperdiciar espacio en el buffer de reuso con
instrucciones que no van a ser reusadas.

5.3 Filtros iniciales

El primer filtro simulado fue el [0,1], ya que las operaciones que realizan la computacién que
se intenta capturar trabajan sobre valores booleanos la mayor parte del tiempo. Por otro
lado, dado que el procesador simulado utiliza el valor 0 para 'Falso’ y 1 para ’Verdadero’,
se obtiene naturalmente este filtro. En la tabla 5.1 se muestra el efecto de la aplicacién del
filtro [0,1] al esquema original con la cache de 4K entradas. Como resultados sobresalientes,
podemos mencionar los siguientes puntos: se puede notar que la eficiencia se incrementa de
forma significativa, lo cual indica que las instrucciones que se insertan en la cache tienen una
muy alta probabilidad de ser reusadas.

Como efecto negativo de la aplicacién de este filtro se puede ver que la cantidad de ins-
trucciones insertadas en el buffer se ha reducido drasticamente también. Si consideramos
el cociente entre la cantidad de instrucciones insertadas en el esquema sin filtrar y el que
incorpora el fitro [0,1], se obtiene que sélo un 46% de las instrucciones que se habian inser-
tado en el esquema original han logrado pasar el filtro propuesto. Este compromiso entre

99

Tabla 5.1: Estadisticas del filtro [0,1]

Benchmark | Insertado Hit Eficiencia
% % %
applu 7.49% | 7.30% | 97.41%
ccl 21.64% 20.85% 96.37%
compress 32.94% 31.40% 95.32%
fpppp 1.05% 1.04% 98.99%
20 31.77% | 31.74% | 99.90%
hydro2d 21.73% 20.59% 94.75%
li 15.36% 14.42% 93.88%
m88ksim 27.91% 27.20% 97.46%
mgrid 12.68% 12.62% 99.49%
su2cor 23.94% 22.53% 94.09%
swim 8.32% 8.32% 99.98%
tomcat 21.02% 20.37% 96.91%
turb3d 24.62% 23.69% 96.21%
waved 10.47% 9.42% 89.97%
MEDIA 18.64% 17.96% 96.48%

incrementar la eficiencia y disminuir la cantidad de instrucciones insertadas es el principal
problema que se encontré en el desarrollo de filtros.

Es deseable tener filtros que permitan que una mayor cantidad de instrucciones sean
insertadas en la cache, pero que a la vez mantengan la eficiencia del filtro [0,1]. Para
desarrollar este filtro es necesario una mejor comprensién de cuales son los valores sobre
los que las instrucciones operan la mayor parte de las veces. Una vez adquirido un mayor
entendimiento sobre cuales valores son mas frecuentemente usados, se pueden desarrollar
filtros que permitan mantener altos indices de insercién, de aciertos y de eficiencia.

5.4 Analisis de valores operados

Para hacer el andlisis mencionado, se realizaron simulaciones para contabilizar que valores
son leidos o escritos en el banco de registros. Esta simulacién consiste en una modificaciéon
de un simulador funcional provisto por SimpleScalar en la que se alterd la rutina de acceso
al banco de registros para que mantenga estadisticas sobre los valores escritos o leidos. Dado
que es extremadamente dificil almacenar todos los valores referenciados, en estas simulaciones
se limit6 el rango de los valores observados a [-64,+64]. Como resultado de estas simulaciones
se obtuvo que los valores positivos cercanos a cero son los mas frecuentemente usados. En
las figuras 5.2 y 5.3 se pueden observar los resultados obtenidos. Es importante notar que la
cantidad de ocurrencias de cada valor se presenta en escala logaritmica. Lo mas destacado
en ambos graficos es el pico en el valor 0, y la gran diferencia en cantidad de ocurrencias que
existe entre los valores positivos y negativos. Asimismo, tambien es interesante la tendencia
a decrecer que se observa para los valores positivos a medida que se van alejando del cero.

60

Figura 5.2: Valores leidos del banco de registros

Valores leidos del banco de registros
— 10E+08

10E+18

Cantidad

_
7
R

L 1 0E+02

5.5 Filtros desarrollados

Con los resultados de las simulaciones anteriores se desarrollé el filtro [0,3]. La simplicidad
para implementar en hardware este filtro, al igual que el [0,1], viene del hecho de que es muy
sencillo de verificar si un valor va a pasarlo o no. Por ejemplo, para el filtro [0,3] lo tnico
que debe verificarse es que todos los bits menos los dos menos significativos sean cero.

La tabla 5.2 muestra el efecto de aplicar el filtro al esquema original. Como resultado, en
promedio 7% mas instrucciones que en caso del filtro [0,1] fueron insertadas, mientras que
la eficiencia se mantuvo sin cambios significativos.

Dado el resultado obtenido al ampliar el filtro, se simulé el filtro [0,15], obteniendo los
resultados que se muestran en la tabla 5.3.

En este caso se insertaron 23% instrucciones mas que en el caso del filtro [0,1], llegando
a un 60% del total de las instrucciones insertadas en el esquema, original. Por otro lado, la
eficiencia del esquema se ubica en torno al 94%, lo cual es un valor bastante cercano al que
se obtiene con los filtros anteriormente mencionados. De aqui en mads, cuando se referiera a
un esquema con filtrado, se lo hard al esquema con el filtro [0,15].

61

Figura 5.3: Valores escritos en el banco de registros

Valores escritos en el banco de registros

=y = 7 1.0E408

Fo® R e

Cantidad

5.6 Conclusiones

En este capitulo se desarrollé un esquema de filtrado para evitar que instrucciones que
tienen pocas probabilidades de ser reusadas sean insertadas en la cache, con el consiguiente

desperdicio de espacio.

Para desarrollar el mecanismo de filtrado se realizaron pruebas para determinar cudles
desarrollar

son los valores mas utilizados en los programas, con el objetivo de que el filtro a
permita el paso de las instrucciones que los usen.
Los esquemas de reuso planteados hasta el momento en este trabajo no son

cache de asociatividad limitada.

62

utiles para
una implementacién real, ya que el requerimiento de que la cache sea totalmente asociati-
va implicaria un tiempo de ciclo demasiado largo. Para solucionar este problema, en las
proximas secciones se discutird un esquema de reuso de computacién implementado con una

Tabla 5.2: Estadisticas del Filtro [0,3]

Benchmark | Insertado Hit Eficiencia
% % %
applu 9.24% | 8.58% | 92.00%
ccl 23.20% 22.31% 96.16%
compress 34.40% 32.86% 95.52%
fpppp 1.17% 1.15% 99.03%
20 31.77% | 3L.75% | 99.90%
hydro2d 22.17% 21.03% 94.84%
i 17.20% 16.24% 94.41%
m8&8ksim 29.22% 28.40% 97.18%
mgrid 13.50% 13.20% 97.77%
su2cor 24.53% 23.11% 94.22%
swim 8.78% 8.78% 99.98%
tomcat 21.50% 20.84% 96.96%
turb3d 27.66% 26.27% 94.97%
waved 10.93% 9.87% 90.34%
MEDIA 19.66% 18.88% 96.01%

Tabla 5.3: Estadisticas del Filtro [0,15]

Benchmark | Insertado Hit Eficiencia
% % %
applu 14.73% | 13.51% | 91.67%
cel 27.28% 25.74% 94.37%
compress 38.18% 36.59% 95.83%
foppp 152% | 151% | 99.01%
go 36.37% 36.32% 99.86%
hydro2d 25.21% 23.72% 94.07%
i 19.99% 18.04% 90.28%
m8&8ksim 32.48% 29.84% 91.87%
mgrid 16.31% 15.51% 95.13%
su2cor 29.16% 27.13% 93.00%
swim 8.80% 8.79% 99.93%
tomcat 24.22% 23.52% 97.10%
turb3d 34.77% 32.21% 92.63%
waved 13.25% 10.25% 77.35%
MEDIA 23.01% 21.62% 93.72%

63

Capitulo 6

Implementaciéon

6.1 Consideraciones iniciales

En este capitulo se discute una posible implementacién hardware de reuso de computacion.

A pesar de que los esquemas que se han planteado hasta este punto son relativamente sen-
cillos de implementar sobre hardware real, el hecho de tener una cache totalmente asociativa
de 4K entradas implica un tiempo de ciclo excesivamente largo, con lo cual se desvaneceria
toda posible ventaja del esquema de reuso. Para resolver este problema es necesario desarro-
llar un esquema de reuso de computacién basado en una cache con asociatividad limitada,
dado que a mayor nivel de asociatividad mas largo debera ser el tiempo de ciclo. Hechas
estas consideraciones, se trabajara en el desarrollo de un esquema de reuso con una cache
de asociatividad 4. Este nivel de asociatividad se puede encontrar en muchas estructuras de
datos implementadas en hardware en procesadores actuales, con lo cual se puede asegurar
que no representa una limitacién para el tiempo de ciclo. Como ejemplos podemos citar el
cache de nivel 1 del procesador Intel 486 [12].

Al pasar de un esquema totalmente asociativo a uno parcialmente asociativo surge la
necesidad de contar con una funcién de direccionamiento que determine en cudl de todos los
conjuntos debe realizarse la bisqueda asociativa. Para las caches de memoria principal esto
no es un problema pues siempre se utiliza alguna porcién del contenido del registro PC para
hacerlo. En este caso esto no es posible, ya que usar ese registro implicaria perder una de
las ventajas mas importantes del reuso de computacién frente al reuso de instrucciones, que
es la no obligatoriedad de vaciar el buffer en cada cambio de contexto.

6.2 Funcion de indexado del buffer

El principal problema a solucionar cuando se limita la asociatividad de la cache es el desa-
rrollo de la funcién de direccionamiento que determine el conjunto en el cual se debe realizar
la busqueda. En este caso el problema es mas complejo que en los casos tradicionales, ya que
esta funcién debe construirse unicamente a partir del cédigo de operacién de la instruccion

64

y de los valores de sus operandos. Como se menciona arriba, no es posible utilizar el registro
PC por la definicién de reusabilidad usada en este trabajo. La construccién de esta funcién
de direccionamiento de la cache puede pensarse como el desarrollo de una funcién de hashing,
que debe asignar a cada posible valor de entrada una ubicacién en la cache.

La funcién que se intenta desarrollar debe cumplir con dos objetivos. El primero de ellos
es basicamente de correctitud. O sea, si al insertar el dato 'a’ en la cache la funcién asigna
la entrada k, al consultar sobre la existencia del dato ’a’, la funcién debe devolver la entrada
k como lugar a buscar.

El segundo objetivo es bastante mas ambicioso. Supongamos que se construye una funcién
de indexado tal que a todo input le es asignada la entrada 0. Obviamente esta funcién es
‘correcta’, en el sentido definido anteriormente. Ahora bien, por supuesto que esta funcién
no sirve absolutamente para nada, ya que se estd desperdiciando lugar en la cache. Ninguna
de las entradas (excepto una) es usada para nada, con lo que los recursos dedicados a la
cache han sido malgastados por completo. Lo que es deseable, en otras palabras, es que la
funcién de hashing a obtener distribuya los datos de la manera mas uniforme posible. Para
obtener tal funcién de hashing es necesario conocer la distribucién tanto de los cédigos de
operacion como de los valores de los operandos.

6.3 Estudio de la distribuciéon de los cédigos de opera-
cién y de los valores de los operandos

Complementando el estudio realizado en el capitulo 4 en el que se determiné que los valores
mas frecuentemente utilizados son los positivos cercanos a cero, se realizaron mas simulacio-
nes para establecer la distribucién de los c6digos de operacién. Es muy importante notar que
este estudio es totalmente dependiente del procesador simulado, ya que el juego de instruc-
ciones de cada arquitectura determina cuales seran las instrucciones mas utilizadas. Ademas,
cada juego de instrucciones asigna a cada operacién un cédigo distinto. Un trabajo accesorio
al presente podria consistir en el diseno de un juego de instrucciones optimizado para los
esquemas de reuso aqui presentados.

Como resultado de las simulaciones se obtuvo que muy pocos cédigos de operacién son
los mas usados.

Este resultado no favorece en lo absoluto el segundo objetivo de la funcién de hashing
buscada, ya que teniendo en cuenta que también los valores de los operandos utilizados se
ubican en torno al cero, ninguno de los inputs de la funcién posee una distribucién unifor-
me. El trabajo a realizar consistird entonces en buscar una funcién que combine estos dos
pardmetros de manera tal de obtener una distribucién lo mas uniforme posible. Por otro
lado, dado que se compararan varias funciones de direccionamiento, serd necesario tener una
medida de la bondad de dicha funcién, con lo cual se deberd establecer una funcién que
permita comparar el grado de uniformidad de la distribucién obtenida.

65

6.4 Desarrollo de la funcién de hashing

Tal como se puede suponer dado que la funcién debe ser implementada en hardware, las
operaciones que compondrédn la funcién seran funciones légicas bésicas, de forma tal que el
cdlculo sea lo mas répido posible. Los componentes que se usaran son compuertas AND,
OR y XOR. A continuacién se explica de una manera intuitiva cual es el efecto deseado al
aplicar cada una de las compuertas.

La compuerta AND se utilizara cuando se desee que haya mayor probabilidad de obtener
un cero que un uno en la posicién donde se la aplique. Dada la distribucién de los inputs de
la funcién, no se precisara demasiado.

La compuerta OR tiene como efecto dar una mayor probabilidad de obtener un uno que
un cero en la posicién donde se la aplique. La compuerta XOR es un punto intermedio entre
las dos anteriores. Estas dos tltimas compuertas serdn el niicleo de la funcién.

Dada la gran cantidad de posibilidades de combinar las compuertas arriba mencionadas
es necesario tener una medida de la uniformidad de la distribucién obtenida. Por ello es que
se establecié la siguiente funcién para medirla:

P o221
i=1%

Siendo 7 la cantidad de conjuntos en el buffer y a; la cantidad de accesos al ¢ — esimo
conjunto.

Para llegar a esta funcién se tuvo en cuenta en un primer momento el calculo de la
distancia entre la distribucién obtenida por la funcién a testear y una distribucién uniforme.
Para obtener una distribucién uniforme equivalente en cuanto a total de accesos al buffer de
reuso se recurri6 al siguiente cédlculo:

n

De esta manera se calcula la cantidad de accesos que habria en cada posicion del buffer
si la distribucién fuera absolutamente uniforme. Ahora, sumarizando el valor absoluto de la
diferencia entre la cantidad de accesos realizados por la funcién a testear en cada posicién
del buffer y el obtenido por la funcién anterior se obtiene:

.y las - (2|

Esta férmula calcula cuanto se aparta la funcién propuesta de una distribucién uniforme
en forma absoluta. El problema ahora reside, justamente, en que esta es una medida absoluta,
dependiente de la cantidad total de accesos. Lo deseable es tener una medida que sea
independiente de la cantidad total de accesos realizados en la simulacién. Es por eso que en
la férmula final se divide la misma por la cantidad total de accesos.

Para verificar que esta funcion provee de una buena medida sobre la uniformidad de la
funcién, notemos que en el caso que los a; sean todos iguales, el dividendo de la funcién es

66

Tabla 6.1: Funciones de direccionamiento desarrolladas

Nombre Definicién
crd ((OpA XOR OpB) AND 0x3F8)<< 3 + (OpCode XOR OpA XOR OpB) AND 0x7
crd (((OpA OR OpB) AND 0x1c)<<5) + ((OpB AND 0x3)<<5) +

((OpA AND 0x3)<<3) + (OpCode OR OpA OR OpB) AND 0x7
cr6 (((OpCode XOR+0OpA XOR OpB) AND 0x7)<<7) + ((OpA OR OpB) AND 0x7f)
or8 ((OpA XOR OpB) AND 0x3F8)<<3 + (OpA XOR OpB) AND 0x7

0. Luego, a medida que los a; se apartan del promedio de accesos, la funcién crece. A modo
de ejemplo, en el caso de tener n accesos y m entradas en la cache y que todos los accesos se
realicen en una sola entrada, la férmula anterior se transforma en:

nen .y m=bn

—_—m m
n

Si simplificamos esta expresion, se puede observar que el maximo de la misma se acerca a
2. Ademas de comparar las distintas funciones de hashing entre si, se compararon contra los
valores obtenidos para la funcién de direccionamiento del esquema de reuso de instrucciones
Sv [27]. Ese esquema estd basado en un buffer de reuso indexado por el registro PC. Este
buffer contiene los valores de ambos operandos y el resultado de la operacién. El test de
reuso consiste en chequear el tag para verificar que se trate de la misma instruccién estatica
y luego en comparar los valores almacenados de los operandos contra los actuales. A simple
vista, este esquema es muy similar al de este trabajo, la diferencia radica en la necesidad
de verificar el tag en el de reuso de instrucciones o el cédigo de operacién en el de reuso de
computacién. Una modificacién que se realiz6 sobre el esquema original de [27] es que en
ese trabajo el esquema se aplica a todo tipo de instrucciones con excepcion de las de coma
flotante. En la versién que se simula en este trabajo el esquema se aplica tinicamente a las
instrucciones de aritmética entera, de forma tal de hacer una comparacién equitativa con el
esquema de reuso de computacion.

6.5 Resultados

La tabla 6.2 muestra el promedio de la funcién d sobre todos los benchmarks, para todas las
funciones desarrolladas, tanto en el esquema con filtrado como sin filtrado.

La columna ’Hit’ muestra el indice de hits obtenido; la columna ’d’ muestra el valor de
la funcién d segin fue definida anteriormente. Por tltimo, la columna 'Full Asoc’ muestra
la relacién de hits entre el esquema con asociatividad limitada y el totalmente asociativo.

A partir de los resultados obtenidos se decidié usar la funcién cr3 para indexar la cache.
Es importante notar que esta funcién, de acuerdo con la medida definida anteriormente, es
aun mejor que la usada en el esquema de reuso de instrucciones en cuanto a uniformidad.
De todas maneras, un mayor estudio sobre este punto deberia contribuir a mejorar el indice
de aciertos, para acercarse aun mas al conseguido por el esquema totalmente asociativo.

67

Tabla 6.2: Comparacion de funciones de direccionamiento

Sin filtrado

Con filtrado

Funcién Hit d Tot. Asoc. Hit d Tot. Asoc.
% % % %

cr3 27.40% | 1.312485 84.12% 19.29% | 1.556623 89.22%

crd 24.29% | 1.640304 74.57% 18.77% | 1.718545 86.84%

cr6 25.75% | 1.828952 79.06% 19.48% | 1.607808 90.10%

cr8 25.89% | 1.371022 79.49% 18.73% | 1.568553 86.63%

IR-Sv 21.22% | 1.454280 N/A N/A N/A N/A

68

Capitulo 7

Mediciones de performance

Para medir el impacto del esquema de reuso de computacién sobre la performance global
en la performance del procesador, se realizaron simulaciones modificando un simulador de
performance provisto por el conjunto de herramientas usado en el resto del trabajo. Este
simulador permite una simulacién detallada ciclo a ciclo de un procesador superescalar,
configurando si el modo de operacion es en orden o fuera de orden, la cantidad de unidades
funcionales, la latencia de las mismas, la configuracion de las caches, predictor de saltos, etc.
La configuracién utilizada para las simulaciones se detalla en la tabla 7.1.

Se realizaron simulanciones del procesador sin ningun esquema de reuso, incorporando los
esquemas de reuso de computacién con y sin filtrado e incorporando el esquema de reuso de
instrucciones Sv, de forma tal de realizar una comparacién. En este caso, a diferencia de las
simulaciones anteriores, los benchmarks se ejecutaron durante 1000 millones de instrucciones.
Los inputs utilizados fueron los mismos que en las simulaciones anteriores.

De la manera que en las simulaciones anteriores, la politica de reemplazo del buffer es
FIFO y el filtro utilizado es el [0-15]. La tabla 7.2 expone los resultados obtenidos en la
simulacién.

El resultado mas importante observable a simple vista es que el esquema de reuso de com-
putacién utilizado mejora efectivamente la performance en todos los benchmarks simulados.
Aun mas, las ganancias obtenidas son mayores que las del esquema de reuso de instrucciones
con el que se compara.

Ademas e los resultados obtenidos con el esquema de reuso de computacién, con y sin
filtrado, se muestran los resultados de las simulaciones utilizando el esquema Sv restringido
mencionado anteriormente. Se puede apreciar que el esquema de reuso de computacién
obtiene mayores ganancias que el de instrucciones. Es importante notar que a pesar de
que la diferencia no es muy importante en el caso de benchmarks monotarea, la misma
deberia ampliarse al considerar benchmarks que simulen un ambiente multitarea dadas las
caracteristicas distintivas del reuso de computacion.

69

Tabla 7.1: Configuracién del procesador simulado

Instruction Fetch

4 instructions per cycle

Instruction Cache

16K bytes, direct mapped, 32 byte line, 6 cycles miss latency

Branch Predictor

Bimodal, 2048 entries

Speculative execution
mechanism

Out of order issue of 4 instructions per cycle,
32 entry reorder buffer , 32 entry load/store queue.

Architected registers

32 integer, hi, lo, 32 floating point, fcc

Functional units

8-integer ALUs, 2 load/store units, 4-FP ALUs,
1 integer multiplier/divider, 1 FP multiplier/divider

Functional unit latency

integer ALU-1/1, load/store 1/1,

(total/issue) integer multiplier/divider 3/1, integer divider 20/19, FP adder 2/1,
FP multiplier 4/1, FP divider 12/12, FP sqrt 24/24
Data Cache 16K bytes, direct mapped, 32 byte line, 6 cycles miss latency
Tabla 7.2: Estadisticas de performance
Benchmark | Original Con filtrado Sin filtrado Esquema Sv
IPC IPC IPC IPC

applu 1.8065 | 1.8487 (+2.33%) | 1.8521 (+2.52%) | 1.8384 (+1.76%)
cel 1.0740 | 1.0970 (+2.14%) | 1.1038 (+2.77%) | 1.0953 (+1.98%)
compress 1.3419 1.3755 (+2.50%) | 1.3866 (+3.33%) | 1.3508 (+0.66%)
fpppp 0.8511 | 0.8513 (+0.02%) | 0.8514 (+0.03%) | 0.8514 (+0.03%)
go 2.6063 2.6657 (+2.27%) | 2.7065 (+3.84%) | 2.7065 (+3.84%)
hydro2d 1.3935 | 1.4002 (+0.48%) | 1.4060 (+0.89%) | 1.3978 (+0.30%)
li 1.8350 1.8595 (+1.33%) | 1.9163 (+4.43%) | 1.8631 (+1.53%)
m8&8ksim 1.9858 | 2.0406 (+2.75%) | 2.0481 (+3.13%) | 2.0175 (+1.59%)
mgrid 2.1861 2.1971 (+0.50%) | 2.2072 (+0.96%) | 2.1913 (+0.23%)
su2cor 1.2375 | 1.2616 (+1.94%) | 1.2676 (+2.43%) | 1.2562 (+1.51%)
swim 1.7047 | 1.7076 (+0.17%) | 1.7109 (+0.36%) | 1.7104 (+0.33%)
tomcat 1.1509 | 1.1653 (+1.25%) | 1.1730 (+1.92%) | 1.1666 (+1.36%)
turb3d 2.1255 | 2.1882 (+2.94%) | 2.2154 (+4.22%) | 2.1612 (+1.67%)
waveb 1.7345 | 1.7533 (+1.08%) | 1.7537 (+1.10%) | 1.7536 (+1.10%)
MEDIA 1.6452 | 1.6722 (+1.64%) | 1.6856 (+2.45%) | 1.6685 (+1.42%)

70

Capitulo 8

Conclusiones

En este trabajo se presenté una alternativa al reuso de instrucciones llamada reuso de com-
putacién. Se cuantificé el fenémeno de reuso de computacién en instrucciones de aritmética
entera y se encontré en las simulaciones realizadas que utilizando una cache totalmente aso-
ciativa de 64K entradas, mas del 92% de las instrucciones ejecutadas pueden ser reusadas.
Para caches con una menor cantidad de entradas los resultados son tambien muy positivos,
ya que para el caso de una cache con 4K entradas se alcanzan valores de reuso del orden del
86% en promedio, e incluso para el caso de una cache de tan solo 1K entradas, mas del 75%
de las instrucciones son reusadas.

El siguiente paso consisti6 en la evaluacién del impacto del uso de un filtro de de instruc-
ciones. Este es un mecanismo disefiado para permitir que la gran mayoria de las instrucciones
puedan acceder a la cache, pero a la vez haciendo un uso mas eficiente del espacio disponible
rechazando la insercién de instrucciones que tienen una baja probabilidad de ser reusadas.
Al utilizar el filtro propuesto, se consiguen indices de eficiencia del 94%, manteniendo mas
del 66% de los hits que en el esquema sin filtrado.

Todas estas simulaciones se realizaron utilizando una cache totalmente asociativa. Como
la implementacién real de ese esquema es demasiado costosa en términos de espacio y tiempo
de ciclo, se analizé6 como implementar un esquema de reuso de computacién con una cache
asociativa de 4 vias. En la busqueda de esa implementacién se encontré que el punto critico
a resolver es el de la funcién de direccionamiento a usar, ya que las entradas que se utilizan
para dicha funcién tienen una distribucién estadistica muy alejada de la uniforme.

El dltimo paso consistié en realizar simulaciones que mostraron la mejora de performace
que se puede obtener al utilizar reuso de computaciéon sobre instrucciones de aritmética ente-
ra, a comparacion de un esquema de reuso de instrucciones. Como resultado mas destacado,
se observé que el esquema de reuso de computacion propuesto obtiene una performance leve-
mente superior al esquema de reuso de instrucciones. Este punto merece especial atencién.

Existen dos temas que fueron dejados sin tratar en este trabajo. Por un lado, las ins-
trucciones de salto, acceso a memoria y punto flotante no fueron incluidas para el esquema
de reuso propuesto. El estudio del fenomeno de reuso de computacién sobre estos grupos
de instrucciones merece un trabajo mas extenso. Por otro lado, se mencion6 que una de las

71

ventajas mas importantes del reuso de computacion sobre el de instrucciones es que el prime-
ro es util en un ambiente multitarea. Esta afirmacién, aunque conceptualmente verdadera,
necesita ser estudiada de una manera mucho mas profunda, y un estudio cuantitativo de
esta caracteristica seria muy importante para establecer una diferencia aun mas clara entre
el reuso de computacion y el reuso de instrucciones.

T2

Bibliografia

1]

[10]

[11]

Burks, A. W., H. H. Goldstine y J. von Neumann, ” Preliminary discussion of the logical

design of an electronic computing instrument”, Informe al Ejrcito de los Estados Unidos,
1946.

Borensztejn, P. y Bergotto, M. Transparencias del curso ” Arquitectura de Procesado-
res” (http://www.dc.uba.ar/ap/clases). Facultad de Ciencias Exactas y Naturales, UBA,
1999.

Henessy, J.L. y D.A. Patterson, ”Computer Organization & Design. The Hardwa-
re/Software Interface”, Morgan Kaufmann Publishers, Inc. San Francisco, California,
1999.

Smith, J.E. ” Characterizing computer performance with a single number”, Comm. ACM
31:10 1202-06, 1988.

Flemming, P.J. y J.J. Wallace, "How not to lie with statistics: The correct way to
summarize benchmark results”, Comm. ACM 29:3 218:21, 1986.

SPEC ”"SPEC Benchmark suite release 1.0”, Santa Clara, CA., 1989.

Alpert D. y Avnon D. Architecture of the Pentium microprocessor. IEEE Micro, Junio
1993, 11-21.

E.M. Riseman y C.C. Foster. The inhibition of potential parallelism by conditional
jumps. IEEE Transactions on Computers, paginas 1405-1411, Diciembre 1972.

D. Wall. Limits of Instruction-level parallelism. En Fourth International Conference on
Architectural Support for Programming Languages and Operating Systems, paginas
176-188, 1991.

M. Lam y R. Wilson. Limits of control flow on parallelism. En Proceedings of the 19th
International Symposium on Computer Architecture, paginas 46-57, 1992.

Mirapuri S., Woodacre M. Vasseghi N. The MIPS R4000 processor. IEEE Micro, Abril
1992, 10-22.

73

[12]

[13]

[14]

[15]
[16]

[17]
18]
[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

Crawford J. H. The 1486 CPU: executing instructions in one clock cycle. IEEE Micro,
Febrero 1990, 27-36

T.Y. Yeh y Y. N. Patt. Two-level adaptive training branch prediction. En Proceedings
of the 24th Annual Symposium on Microarchitecture , paginas 51-61. Noviembre 1991.

J. Smith. A study of branch prediction strategies. Proceedings of the 8th Annual Sym-
posium on Computer Architecture, May 1981.

S. MacFarling. Combining Branch Predictors. Technical report TN-36, WRL, June 1993

S. McFarling and J. Hennessy. Reducing the Cost of Branches, 13th International Sym-
posium on Computer Architecture. June 1996.

Hsu P. Y-T. Designing the FPT microprocessor. IEEE Micro, Abril 1994, 23-33.
Slater M. AMD’s K5 designed to outrun Pentium. Microprocessor Report, 8(14),1-11.

R.M. Tomasulo An efficient algorithm for exploiting multiple arithmetic units. IBM
Journal of Research and Development, 11(1):25-33, Enero 1967.

Greenley D. et al. UltraSparc: the next generation superscalar 64-bit SPARC. Proc.
COMPCON 1995, pp. 442-51.

Colwell R. P., Steck R.L. A 0.6 micron BiCMOS processor with dynamic execution.
Proc. ISSCC95, pp. 176-177.

M.H. Lipasti y J.P. Shen. ” Approaching 10 IPC via superspeculation” Technical Report
CMU-MIG-1, Carnegie Mellon University, 1997.

F. Gabbay y A. Mendelson. Speculative Execution based on Value Prediction. Techinal
Report EE Department TR 1080, Technion - Israel Institute of Technology, Noviembre
1996.

F. Gabbay y A. Mendelson. Using Value Prediction to Increase the Power of Speculative
Execution Hardware. ACM Transactions on Computer Systems (TOCS), Agosto 1998.

M.H. Lipasti y J. P. Shen. Exceeding the Dataflow Limit Via Value Prediction. En
Proceedings of 29th International Symposium on Microarchitecture, paginas 226-237,
Diciembre 1996.

Avinash Sodani, and Gurindar S. Sohi, Understanding the differences between value
prediction and instruction reuse, University of Wisconsin—Madison, 1998.

Avinash Sodani, and Gurindar S. Sohi, Dynamic Instruction Reuse, University of
Wisconsin—-Madison, June 1997.

74

[28]

[29]

[30]

[31]

[32]

[33]

[34]

S. E. Richardson ”Caching function results: Faster arithmetic by avoiding unnecesary
computation”. Technical report, Sun Microsystems Laboratories, 1992.

Avinash Sodani, and Gurindar S. Sohi, An Empirical Analysis of instruction repetition,
University of Wisconsin—Madison, 1998.

M.H. Lipasti, C.B. Wilkerson y J.P. Shen. Value Locality and Load Value Prediction. En
Proceedings of 7th International Conference on Architectural Support for Programming
Languages and Operating Systems, paginas 138-147, Septiembre 1996.

Y. Sazeides y J.E. Smith. The Predictability of Data Values. En Proceedings of 30th
Annual international Symposium on Microarchitecture (MICRO-30), paginas 248-258,
Diciembre 1997.

Y. Sazeides y J.E. Smith. Modeling Program Predictability. En Proceedings of the 25th
Annual International Symposium on Computer Architecture, paginas 73-84. Junio-Julio
1998.

D. Burger, T. M. Austin, and S. Bennet. Evaluating Future Microprocessors: The
Simplescalar Tool Set. Technical Report CS-TR-96-1308 , University of Wisconsin—
Madison, July 1996

P. Bannon y J. Keller. ”Internal architecture of Alpha 21164 microprocessor”. COMP-
CON 95, 1995.

75

	Portada
	Abstract
	Indice general
	Introducción
	Conceptos
	Conceptos básicos
	Medidas de rendimiento
	Técnicas para mejorar el rendimiento
	Solucion de los problemas asociados con la segmentación
	Técnicas para mejorar el rendimiento
	El próximo paso: predicción de valores y reuso de instrucciones
	Estado del arte en predicción de valores y reuso de instrucciones
	Este trabajo...

	La herramienta de simulación

SimpleScalar
	Arquitectura SimpleScalar
	Generación de código para el simulador
	Estructura interna del simulador
	Ejecución de un proceso en SimpleScalar
	Sim-Safe, un simulador funcional básico
	Sim-Outorder, simulador de rendimiento
	Otros simuladores
	Modificando un simulador

	Cuantificando el re uso de
computación
	Introducción
	Instrucciones sobre las que se aplicará el esquema

de reuso
	Simulaciones
	Conclusiones

	Filtros de instrucciones
	Consideraciones iniciales
	Definiciones básicas
	Filtros iniciales
	Análisis de valores operados
	Filtros desarrollados
	Conclusiones

	Implementación
	Consideraciones iniciales
	Función de indexado del buffer
	Estudio de la distribución de los códigos de operación

y de los valores de los operandos
	Desarrollo de la función de hashing
	Resultados

	Mediciones de performance
	Conclusiones
	Bibliografía

