
-r
r
e
r
e:
r:

r
(

t
r
r:
1

r:
\

r
(

(
r

r:
r:

r:
r:

r
r:
r
r
r

e
r
r
e
r
e
e
e
e
e
e

. . ,

"r·
r:

AGRADECI"~IENTOS
r:
(

A María Teresa Ortuño y Laureano Escudero que contestaron nuestros E-mail y nos
facilitaron los ejemplos para la comparación de resultados. A Darío Robak que
respondió nuestras consultas aclarando numerosas dudas.
Nuestro agradecimiento además a Isabel Me dez y Marcelo Frías, y en forma muy
especial a nuestra directora Irene Loiseau.
A Alfredo Olivero por su apoyo invalorable, ...,a Lucía Carabajal por su colaboración.

r:

r
Alicia y Fabiana

(
r:
r

A mis padres.
A Félix, y a mis hijos, Victoria y Leandro.
Por haber me acompañado, comprendido y apcyado en esta etapa.
Por su infinita paciencia y cariño.

Alicia

r:
A mis padres. A mis amigos y compañeros de estudio, Mónica y Pablo, por todo lo que
compartimos durante estos años juntos.
A mi amiga Graciela por Su importante apoyo.
A Alfredo por todo.

r:
r: Fabiana

r:
(

A todos de corazón, Muchísimas gracias
r:
r:

r:
r:

e:
r
e:
r
r:
r:

INIDICEr
r:
(Sección Título Página
('

(' 1 INTRODUCCION 2
r> 2 MODELO MATEMA TICO 5
r> 3 HEURISTICAS 8
r 3.1 Por qué usar heurísticas? 8
r: 3.2 Heurísticas constructivas 9
r> 4 QUE ES EL TABU SEARCH? 15
(' 4.1 En qué consiste la técnica 16
r> 5 ALGORITMO TABU SEARCH 30
r> PROPUESTO
r> 5.1 Características particulares 30
r: 5.2 Módulos principales del proqrcmc 41
r: 5.2.1 Módulo principal 41
r> 5.2.2 Módulo de entrada de datos 42
r: 5.2.3 Módulo de verificación de precedencias 43
r: 5.2.4 Módulo de solución inicial 44
r> 5.2.5 Módulo de generación de la solución 47
r> 5.2.6 Módulo de generación de lista de 49
r> candidatos
r> 5.2.7 Mejor movimiento 51
r: 5.2.8 Módulo de ejecución del mejor 53
r movimiento
r 5.2..9 Módulo de actualización de la Lista Tabu 54
r> 5.2..10 Módulo Tiempo de Permanenciaen la 56
r: lista Tabu
r: 5.2.11 Módulo del Criterio de Aspiración 56
r 5.2..12 Módulo de Función Objetivo 59
r: 5.2..13 Módulo de Intensificación 59

5.2.14 Módulo de Diversificación 61
r: 5.2..15 Módulo de Resultados 61
r: 6 RESULTADOS 62
r 7 CONCLUSIONES 70
r- BIBLIOGRAFIA 74
r: APENDICE 76
r>

r:

r
r

r:
r:
r:
r:
r:

r:

r:

Este trabajo consiste en desarrollar un algoritmo tipo Tabu Search para
un problema de secuenciamiento de tareas (SOP-Sequential Ordering Problem)

que se puede modelar como el problema de encontrar un camino hamiltoniano de
costo mínimo en un grafo, respetando reladones de precedencia. Se presentan
para ello las características básicas del método Tabu Search, (que es un

pr-ocedimiento de heurística general para pr-oblemas de optimización global),y el

detalle de las características principales del algoritmo desarrollado. Se informan
los resultados obtenidos y la comparación de los mismos, en problemas de
literatura con los resultados presentados por un algoritmo exacto en [3]

r:

ABSTRACT
r:

r:

The present work consists in devel.,ping a Tabu Search type algorithm,
for a Sequential Ordering Problem (SOP), ~Jhichcan be modeled as a problem of
finding a minimuncost hamiltonian path in el graph, with precedence constraints.
We present here the basic characteristics of Tabu Search method . It is a
general heuristic procedure for global o timization problems. Moreover, we
describe the principal characteristics of the developed algorithm. They are
presented, and compared on literature problems with the results appearing for
an exact algorithm in [3] .

r:
r:

r
r:

r
r:

1
r:

('

r>

l.-INTRODUCCION

r:

El objetivo de este trabajo fue la .mplementación de un algoritmo tipo

Tabu Search para el problema de Secuenciamiento de Tareas con restricciones
de Precedencia (SOP, Sequential Orderif1!J1Probtem). y mostrar los resultados
obtenidos comparándolos con aquellos que provienen de un algoritmo exacto tipo
Branch & Cut, usados en [3] , para problemas de la vida real.

r: El SOP de acuerdo a lo que se menciona en [3], parece haber sido tratado
por primera vez por Escudero. Su cbjetivc fue diseñar heueístlccs para ser
implementadas en un sistema de planificación de producción que dieron buen

resultado en la práctica con respecto a la !,arantía de calidad de la solución y al
tiempo de procesamiento.

Existen varios problemas de la vida I"ealque pueden ser modelados con un
SOP. Por ejemplo, aplicaciones de ruteo donde se deben realizar retiros y
entregas en un determinado orden. Otro caso es un ruteo on-line de una grúa
apiladora en un sistema automático de almacenamiento, o en aplicaciones de
encolamiento donde un cierto trabajo tiene: que estar terminado antes que otros
comiencen.

Sir William Hamilton sugirió la clase de grafos que lleva su nombre cuando
le fue encomendado que construyera un ciclo conteniendo cada uno de los
vértices de un dodecaedro. Si G tiene un ciclo Z que pasa por todos los nodos
solo una vez, entonces Ges llamado un gra'fo hamiltoniano y Z es llamado un ciclo
hamiltoniano. No existe ninguna caracterización elegante de los grafos

hamiltonianos, aunque sí se conocen rumeroscs condiciones necesarias y

suficientes [9].

El problema de encontrar un camino hamiltoniano factible con mínimo
costo total, se conoce como problema de ordenamiento secuencia I (SOP) por lo

2r:

.~

tanto el SOP puede ser visto como una generalización del problema del camino
de Hamilton, donde llamaremos factible a un camino Hamiltoniano que satisface
ciertas relaciones de precedencia dadas.

Según [1], el problema SOP se puede tratar de la siguiente forma: dado

un grafo dirigido, un arco representa la posibilidad de llevar a cabo dos tareas

en forma secuencial y el peso de la arista, representa el costo de ejecutar las
tareas en ese orden. Además, las relaciones de precedencia dadas especifican si
algunas tareas deben ejecutarse antes que otras.

El problema SOP es NP-completo .Reduciendo en el problema SOP los
nodos J y n a un nodo único obtenemos un A TSP (Asymmetric Travel/ing

Salesman Problem) con restricciones de precedencia sobre n-I aodos. Más aún, el
SOP se reduce a un problema AHPP [Asymmetric Hami/tonian Path Problem) en
caso que el digrafo de precedencia tenga un conjunto de arcos vacío. Entonces el
AHPP es un caso especial del SOP. Comoel AHPP es un problema NP-completo lo
mismo pasa para el SOP.

Coneste objetivo el trabajo incluyó:

• Búsqueda de una solución inicial usando una heurística golosa.
• Desarrollo de una heurística tipo Tabu Search ad-hoc

A partir de la solución inicial factible hallada, se aplica la técnica Tabu

Search para cbtener la solucién ópi'ima.

3
/

r
r:
r:
t:
t:

e
('
r:
r:
r
t:
r:
r
í
t:
r:
\
r
t:

e
r:
r:
r:
r:

La organización del trabajo es la siguiente: en el capítulo 2 se explica el
uso de heurísticas en este tipo de problemas y se dan ejemplos de heurísticas
constructivas, usadas para el problema del viajante de comercio. En el capítulo 3

se presenta al SOP, como un problema de programación lineal 0/1, y en el 4 se

detallan las características generales de la técnica Tabu Search como uso de la

memoria, Lista Tabu, criterio de aspiración, etc. Luego, en el capítulo 5 se
describe el algoritmo Tabu Search propuesto y detalles de la implementación
realizada, así como las características generales del algoritmo, y, por último se
presentan los resultados obtenidos comparándolos con los logrados con un
algoritmo Branch & Cut. Al final del trabajo se dan las conclusiones obtenidas
con la experiencia y se detalla la bibliografía utilizada. Los detalles sobre las

ejecuciones con los distintos ejemplos, se encuentran en el Apéndice.

r:

(

í
r:
r:
r:
r
("

r
r:
r
(

í

í

(

e
r

4

r:
r>

r: ,
2.- MODELO MATEMATICO

r:

í
r

De acuerdo a lo propuesto en [3], vamos a modelizar el problema SOP

utilizando dos grafos, uno de ellos completo, y el otro adicional que indica las
precedencias entre los nadas. Cada nodo representa una tarea en la secuencia y

cada arista, el costo de ir de una tarea a otra.

r:

Dado un grafo dirigido Dn={V,AJ sobre n nadas, coeficiente de costos cij

pertenecientes a N, con cij >O,asociado con cada arco {iJ} que pertenece a An y

digrafo adicional de precedencia P={V,R), que está definido en el mismo conjunto
de nadas V como Dn. Un arco {i,j} que pertenece a R representa una relación de
precedencia, es decir i tiene que preceder a j en todo camino hamiltoniano
factible. Obviamente, el digrafo de precedencia Pdebe ser acíclico (es decir, no
puede contener ningún ciclo dirigido). Mas aún si {iJ}, {j,k} E R entonces k no se
puede llevar a cabo antes que i, en otras palabras, podemos asumir que P es
transitivamente cerrado.

Vamos a presentar la formulación del SOP, como problema de
Programación Lineal 0/1 .

r:

Según se indica en [3] y [1], supongamos un digrafo completo D={V,AJ, y

un digrafo de precedencia P={V,R). Para cada arco {iJ} que pertenece a An
introducimos una variable binaria Xi} tal que:
Xi}= 1 si (i,j) pertenece a An en un camino hamiltoniano
Xi}= O en caso contrario.

Inmediatamente se pueden hacer deducciones simples.

Dado Dn= (V, An}y P={V,R} entonces:
1) X}F O para todo (iJ .,que pertenece a R

2) Xk=OV (i,k) E Rtal que (iJ) E Ry U,k} E R

5

r:

r:
r
r:

3) Seo Wc V,entonces A(W) = ((ij) E An/ i,j E W).
4) Si j E Ventonces 8+U) = ((j,k) E A,J Y 8 -U) = ((ij) E A,J,
5) Si W s;; V \{j} entonces U:W) = ((j,k) E An / k E W) Y (W.j)= ((ij) E An / i E

W)

Formulación como Problema de Programacion Lineal 0/1

x*=Min c'x

s.a

(1) x(8 -(i))=1 'r7 i E V \ {1}

(2) x(8 +(i))=1 'r7 i E V \ en}

(3) Dado un conjunto A~ An, x(A) denota L(ij) xij.

x(A(W))5 / W/ -1 'r7 Wc V, 25 /W! 5n-1
(4) x(j:W) + x(A(W)) + x(W.·i) es: / W/ 'r7(ij) E R Y 'r7 W S;; V \ (ij). WdJ

(5) xi} E {Q1} 'r7 aj) E An
r:

r:

(1) a (3) y (5) es la formulación del problema de determinar un camino

hamiltoniano mínimo en D=(V,An).

(4) es la desigualdad que garantiza que se cumplan las restricciones de

precedencia.

r:

(1) Indica que en el camino hamiltoniano, llega un solo arco al nodo i para todo i

en V
(2) Indica que en el camino hamiltoniano, sale un solo arco del nodo i para todo i

en V

(1) Y (2) Aseguran que por cada nodo se pasa una y solo una vez

(3) Es la restriccién llamada 'eliminación de subtours', ya que establece que para

todo subconjunte de k nodos unidos por aristas, solo formará¡., parte del

camino Hamiltoniano, a lo sumo k-1 aristas, para así evitar la formación de

ciclos.

(4) Establece que si i debe preceder a j, no hay directa ni transitivamente un

6

í

r

í

r
r:

í

arco que llegue desde j hacia i
(5) Establece que x ij es una variable binaria

í N. Ascheuer en [3] usa esta formulación para el SOP para luego aplicar un
algoritmo Branch & Cut. Nuestros resultados serán comparados con los

obtenidos por ellos.

r:

r

r:

r:

r:

7

,
3.- HEURISTICAS

3.1.- Por qué usar heurísticas?

En todos los ejemplos de problemas de optimización combinatoria
conocidos (como diseño de redes de telecomunicación eficientes, ruteo de
vehículos de entrega, etc), es teóricamente posible enumerar todas las
combinaciones de soluciones y evaluar cada una con respecto a la función
objetivo. Las que proveen el valor más favorable, se llaman "óptimas". Sin
embargo, desde una visión práctica, seguir cada estrateg1a de enumeración

completa se torna muy laborioso, ya que el número de combinaciones crece en
forma exponencial con el tamaño del problema.

r

Se ha hecho mucho trabajo en los últimos 40 años para desarrollar

métodos de búsqueda de óptimos que no requieren explícitamente examinar
cada alternativa. Estas investigaciones tuvieron éxito en el campo de
optimización combinatoria, y los métodos de búsqueda desarrollados son capaces

de resolver problemas de la vida real, como versiones del problema del viajante
de comercio, etc. A pesar de eso, gran parte de los problemas encontrados en la
industria son computacionalmente intratables por este método, o son muy
grandes para ser manejados por algoritmos exactos. En estos casos, los métodos
heurísticos se emplean normalmente para encontrar soluciones buenas, pero no
necesariamente óptimas. Se han desarrollado varias técnicas generales para
construir heurísticas, que demostraron ser efectivas para obtener buenas
soluciones en problemas difíciles de optimización combinatoria. Las más
conocidas son Simulated Annealing, Tabu Search, Algoritmos Genéticos y
GRASP(Greedy Randomized Adaptive Search Procedures).

En el problema que nos ocupa, "minimizar el costo de ejecución de una
secuencia de trabajos donde existen relaciones de precedencia", para buscar una
solución exacta una de las posibilidades es analizar todas las alteri"lativas

8

-

posibles sobre el orden en que se deberían ejecutar las tareas, algo que es
prácticamente imposible para secuencias de trabajos numerosas. En el caso del
SOP, que como ya se mencionó es NP-completo no se conocen algoritmos buenos

para resolverlos, es decir, algoritmos que resuelvan el problema en tiempo

polinomial,por lo tanto se usarán heurísticas para lograr buenas soluciones en un

tiempo razonable.

3.2.- Heurísticas constructivas

Son las técnicas heurísticas capaces de construir una solución inicial a

partir de los datos de entrada.
Tradicionalmente se han usado heurísticas constructivas para el problema

del viajante de comercio. Las más conocidas de estas heurístivas se pueden
categorizar como heurísticas miopes o golosas.

Este tipo de heurísticas trabaja viendo al problema representado por un
grafo, cuyas aristas tienen asociado un costo que puede representar ir de una
ciudad a otra (viajante de comercio) o ejecutar un trabajo antes que otro
(secuenciamiento de trabajos). Para ello arma una lista ordenada de los nodos
con sus costos asociados, de menor a mayor.

r:
Para citar algunos ejemplos de heurísticas comúnmente usadas para el

problema del Viajante de Comercio, vemos las siguientes [4]:

a) Vecino más próximo

Esta versión de algoritmo miope se debe a Belmore y Nemhauser (1988).
Consiste simplemente en partir del vértice inicial. Comenzamos desde Xl

perteneciente a N, y elegimos en cada iteración un vértice, elimioondolo de un
conjunto de posibles.

9

r
í
r:
(

í
r:
r
r
r
(

rr:
r
r
r
i:

r:
(

r:
r:

r

r:
r:
r
(

r:
r:

(

(

(

e
r:

Algoritmo VP(G=(N,M)) [camino en G] (Según [4])

Input {G=(N,M) con N={l,2,,n}y cijpara cada í,j E N¡
H= {l}

xo=O

N=N\ {l}
í=l

Mientras N ;é O hacer

Inicio

Sea {Cikel costo de aik, i,k perteneciente a N y aikperteneciente a M}

Elegir jperteneciente a Ntal que CiP mínimo {Cik}
H= Hu {¡}

Xo= X(Jf"Cij

N= N\{¡}

í=j

Fin

Output {H= Hu {l},XtF Xo + Cij}

Fin

Este algoritmo es de orden O (n2). Un ciclo Hamiltoniano obtenido con

este algoritmo sufre una fuerte influencia de la elección del vértice inicial. Para

eliminar esta influencia basta repetir el procedimiento n veces tomando cada vez

un vértice diferente. El algoritmo resultante en este caso será del orden de O

(n3).

Con un ejemplo:

Dada la matriz de costos D = 1 2 7 5
1 3 4 3
2 4 5 2
7 4 5 3
5 3 2 3

10

r:
r:
r:
r:
í

r Paso 1:

r:

r:

Paso 2
r:
I

r
Paso 3

r:

r:
r

r:
r

1.~
•

3 •

1.~
•----

3 •

-o H={l)Xo- ,

-1 H=(.1,2}Xo- ,

- 4 H={1,2,5}Xo- ,

11

r

Paso 4

Paso 5

Paso 6

1•
~

1•
~

1

5-.......--+----

xo= 6, H={J,2,5,3}

x; = 11, H ={J,2,5, 3, 4}

Xo=J8, H={J,2,5,3,4,J}

12

r:

b) Inserción más próxima

Esta heurística consiste en:
a) Partir de un ciclo {h,i2,i3},de dimensión 3

b) Encontrar un vértice k que no pertenezca al ciclo, tal que el costo de la arista
que los une sea menor que para cualquier otro vértice del ciclo.

e) Encontrar una arista, digamos (i,i+l), del ciclo tal que Cik +Cki+l - Cii+l sea
mínimo.

d) Insertar el vértice k entre i e i+1.Si el ciclo es Hamiltoniano, PARAR.En caso

contrario, repetir el procedimiento desde b)

e) Inserción más distante

Es similar al anterior. Solo difiere en la elección del vértice que deberá
ser el más distante que cualquier otro.

d) Inserción más barata

Es similar a b), pero la elección del vértice k debe ser no perteneciente al
ciclo actual y además se debe elegir una arista (;,;+1) del ciclo tal que Cik+Cki+r Cii+1

sea mínimo.

e) Inserción por mayor ángulo

Se construye un ciclo convexo uniendo todos los nodos exteriores de un
grafo, y se elige un vértice k no perteneciente al ciclo y la arista (iJ) del ciclo,

tal que el ángulo formado por las aristas (i,k)y (kJ) sea máximo. Se inserta el
¡

vértice ken el ciclo entre iy j.

13

(

r:

f) Método de las economías

Este método fue propuesto originalmente por Clarke y Wright (1964)(Ver
[4]), para el ruteo de vehículos, y posteriormente fue utilizado para el problema
del viajante de comercio (Golden, Bodin, Doyley Stewart, 1980) (Ver[4]).

El procedimiento comienza por la selección arbitraria de un vértice inicial

del grafo completo y construye ciclos de tamaño 2 desde este vértice a cada uno
de los n-1 restantes. En cada iteración, dos ciclos son combinados eliminando
dos aristas (desde y hasta el vértice base) y agregando una arista de conexión.
Los ciclos o "subcaminos" son elegidos para el proceso de combinación de manera

de maximizar la distancia economizada en relación a la lista ordenada de forma
monótona decreciente. Se repite el procedimiento hasta obtener un ciclo

Hamiltoniano. Este algoritmo tiene una complejidad O (n2 * log2n).Si con el fin
de eliminar la influencia en la elección del vértice base, repetimos el

procedimiento para cada uno de los n-J vertices restantes como punto de
referencia, el algoritmo pasaría a ser de orden O (n3 * log 2n).

En nuestro caso, para hallar la solución inicial, se adaptó la heurística del
"vecino más próximo", presentada en [4], enriquecida por la elección del mejor
vértice y validación de las precedencias. Esta heurística, busca dentro de todos
los nodos posibles para moverse, a aquel que tiene menor costo. Va armando un
camino hamiltoniano que cumpla con todas las restricciones de precedencias
establecidas. De esta forma se garantiza que la solución hallada por este método
es factible.

En este trabajo nos limitamos a la implementación de la heurística del
"vecino más próximo" quedando para futuras investigaciones probar con otras
heurísticas golosas para poder evaluar los resultados y compararlos con los
obtenidos en el presente trabajo.

14

r:
r:

(

,
4.- QUE ES EL TABU SEARCH

Tabu Search es un procedimiento de heurística general para optimización
global. Como otras técnicas heurísticas, Tabu Search está basado en ideas

simples que pueden ser aplicadas eficientemente para conseguir soluciones casi

óptimas para muchos tipos de problemas difíciles. En particular, un algoritmo de
tipo Tabu Search permite una amplia exploración del espacio de soluciones
evitando mediante la confección de "Listas Tabu", que veremos más adelante,

quedar "atascado" en óptimos locales.

Durante las últimas décadas muchos esfuerzos se han dedicado a la
solución de grandes problemas de optimización combinatorios. Muchos de los
algoritmos son diseñados para tipos de problemas específicos, y no se adaptan
con mínimas modificaciones a otros tipos de problemas de optimización.

Tabu Search [12] alcanzó gran éxito en problemas de optimización
práctica, y ha logrado muy buenos resultados en problemas clásicos como el
problema del viajante de comercio o el coloreo de grafos. Las aplicaciones están
creciendo día a día en áreas como administración de recursos, diseño de
procesos, logística, telecomunicaciones y optimización general combinatoria. La
forma actual de Tabu Search la propuso en 1986 Fred Glover[12]. Está basado
en métodos diseñados para cruzar los límites de factibilidad u optimalidad local,
que son tratados normalmente como barreras. Ideas similares al Tabu Search
fueron desarrolladas en forma independiente por Pierre Hansen, que lo llamó
"método steepest ascent/ mildest descentH[12]

r:

Junto con Simulated Annealing y Genetic Methods, Tabu Search fue
definido por el Comité de la Próxima Década de Investigación Operativa
(CONDOR 1988) como "extremadamente prometedor" para el futuro
tratamiento de operaciones prácticas. La diversidad de aplicaciones exitosas
implementadas de Tabu Search indican que el futuro es ahora.

15

r
(

í

r: 4.1.- En qué consiste la técnica
r:

r:
r Tabu Search opera sobre una función f{X) a ser optimizada sobre un

conjunto X, donde f{X) puede ser lineal o no lineal y el conjunto X es el conjunto

de restricciones sobre el vector x Estas restricciones pueden incluir

desigualdades lineales o no lineales. Tabu Search comienza de la misma manera

que una búsqueda local o de vecindario, procediendo iterativamente desde un

punto (solución) a otro hasta que se satisface un criterio de terminación. Cada x
perteneciente a Xtiene un vecindario asociado N{x) incluído en Xy cada solución

x" perteneciente a N{x) se alcanza desde x por una operación llamada

movimiento. Normalmente en Tabu Search, los vecindarios se aSumen como

simétricos, x' es vecino de xsii xes vecino de x~

(

(

(

Puede haber movimientos de inserción o movimientos de permutación. En

el caso de grafos, el movimiento de inserción, por ejemplo, simplemente inserta

un nodo en el grafo entre dos existentes unidos por una arista, y el movimiento
de permutacidn intercambia las posiciones de dos nodos en el grafo. Hay algunas

implementaciones que utilizan una estrategia combinada con ambos tipos de

movimientos. Algunas experiencias demuestran que es ventajoso usar más de una

técnica para moverse de una solución factible a otra dentro del método.

í

í

r
(

(

r Uso de la memoria

r
Con el uso de la memoria, una mala elección hecha estratégicamente en

un punto- del proceso, puede convertirse en una buena decisión en un punto más

adelante del mismo proceso de búsqueda.

r:
r-

Esta característica se llama "exploración interesada", y contiene los

principios básicos de una búsqueda inteligente (explota rasgos característicos de

las soluciones históricamente buenas y además explora nuevas regiones que

16

e

parecen prometedoras).

Otra de las características de Tabu Search es la memoria flexible, que

permite una gran flexibilidad en la búsqueda. Este tipo de memoria sirve para

usar la información recolectada (entre otras cosas, calidad e influencia de cada

elección), durante la búsqueda para hacer elecciones "inteligentes" de las

soluciones, porque identifica elementos comunes a soluciones "buenas", también

se usa para "penalizar" movimientos que podrían provocar que la búsqueda se

quedara en óptimos locales. Para ello, usa los elementos de la "Lista Tabu".

Este tipo de memoria también contrasta con los diseños de memoria

rígida típica de estrategias "branch-and-bound"

La memoria flexible de Tabu Search permite, además la implementación

de procedimientos, que son capaces de buscar en una gran parte del espacio de

solución con mínimo requerimiento de memoria.

Las estructuras de memoria en Tabu Search, tienen cuatro

características principales: cercanía, frecuencia, calidad e influencia.

• Cercanía y frecuencia se complementan entre si. El más común de los

usos de esta memoria es mantener pistas de atributos de soluciones

que fueron cambiadas en un pasado reciente. Para ello se arman las

"Listas Tabu".

• Calidad es la capacidad de diferenciar el mérito de una solución

encontrada durante la búsqueda. Así la memoria se puede usar para

identificar elementos que son comunes a soluciones buenas y para

moverse de una solución a otra. Esta forma de memoria se basa en

incentivar acciones que guíen a soluciones buenas y penalicen a otras

acciones que lleven a soluciones peores.

17

• Influencia considera el impacto de los cambios producidos por las

distintas soluciones.

Tipos de memoria

Una importante distinción en Tabu Search es la diferencia entre memoria

a corto plazo y memoria a largo plazo. El más común de los usos de la memoria a

corto plazo es mantener pistas de atributos de soluciones que fueron cambiados

en un pasado reciente. Para explotar esta memoria, los atributos seleccionados

se llaman Tabu, y las soluciones que contienen elementos Tabu, se transforman

en Tabu. La duración que un atributo permanece en la Lista Tabu , (medida en

número de iteraciones) se llama "permanencia en la Lista Tabu". El espacio de

memoria necesario depende de los atributos y del tamaño del vecindario, pero no

depende del tiempo de permanencia de un atributo o solución en la Lista Tabu.

En algunas aplicaciones, las componentes de la memoria Tabu Search a

corto plazo son suficientes para producir soluciones de muy alta calidad. Sin

embargo, en general, Tabu Search se vuelve más fuerte si se incluye la memoria

a largo plazo y sus estrategias asociadas. En estas estrategias, el vecindario

modificado puede contener soluciones que no están en el vecindario original, y

que generalmente consisten de soluciones elite (óptimo local de alta calidad)

encontradas en varios puntos del proceso de solución. La experiencia ha

demostrado que, contrariamente a lo que se podría suponer, el uso de esta

memoria no requiere largas ejecuciones antes de ver sus beneficios. En general,

sus mejoras se manifiestan en un tiempo razonable, y de ser así, pueden permitir

que las soluciones sean terminadas algo antes de lo que sería posible de otra

forma, debido a encontrar soluciones de alta calidad en un espacio de tiempo

económico.

18

La Lista Tabu está compuesta por movimientos "prohibidos", atributos de

soluciones y soluciones encontradas en las n últimas iteraciones. A partir de esta

lista, se restringe el vecindario de soluciones hallado, N(x), con x la solución

actual, limitándolo a aquellas soluciones que no estén incluídas ni explícita ni

implícitamente en la lista, obteniendo N*(x). Luego, de N*(x), se elige la mejor

solución, teniendo en cuenta un determinado criterio, que puede ser la mejora en

el valor de la función objetivo, se realiza una operación llamada movimiento que

va desde la solución actual a la encontrada, actualizando la "Lista Tabu". La

longitud de la Lista Tabu y los operadores para manejar la lista juegan un

importante rol en la performance.

Tiempo de permanencia en la Lista Tabu

Una forma de identificar un efectivo tiempo de permanencia en /0 Lista
Tabu y la selección de reglas de activación Tabu, para una clase de problemas

determinada; es observar la aparición de ciclos cuando el tiempo de permanencia

es muy corto, y el deterioro en la calidad de la solución cuando ese tiempo es

muy largo. El deterioro lo causa normalmente el prohibir demasiados

movimientos. El mejor valor para determinar ese tiempo de permanencia queda

en un rango intermedio entre los dos extremos. En general, los valores pequeños

para ese parámetro permiten a la exploración de soluciones "acercarse" al

óptimo local, mientras que los largos son preferibles cuando es importante

romper con la vecindad del óptimo local.

Hay dos formas dinámicas usadas habitualmente para el tiempo de

permanencia en la Lista Tabu. Ambas usan un rango definido por parámetros tmín
y tmax. El parámetro t se selecciona aleatoriamente dentro del rango, siguiendo

una distribución uniforme. En la primera forma, el tiempo se mantiene constante

por una cantidad determinada de iteraciones (que llamaremos a), al término de

19

(

í

(
(
(

las cuales, se selecciona un nuevo tiempo de permanencia usando el mismo

mecanismo. La segunda forma, calcula una nueva t en cada iteración.
r:

r
(

Criterio de aspiración

(

(A pesar de que una solución del vecindario esté en la Lista Tabu, puede

ser seleccionada, si cumple con el llamado "criterio de aspiración".

Este criterio se usa para determinar cuando una regla de activación- Tabu

puede ser pasada por encima, teniendo en cuenta la calidad de la solución a

examinar, es decir la mejora que se logra en el valor de la función objetivo y su

comparación con soluciones históricamente buenas. El uso correcto de este

criterio puede ser muy importante para lograr un buen nivel de performance en

el método. Existen muchas clases de "criterios de aspiración", desde el más

sencillo que es remover una clasificación Tabu porque el movimiento produce un

mejor valor de la función objetivo, hasta criterios que prueban la influencia de la

movida, es decir el grado de cambio que induce en la solución.

(

(

(

(

En Tabu Search se pueden hacer aspiraciones por movimiento y

aspiraciones por atributo, depende de cómo esté constituída la Lista Tabu. Una

aspiración por movimiento, cuando se satisface revoca la clasificación Tabu del

movimiento. Una aspiración por atributo, cuando se satisface, revoca el Estado
Tabu del atributo.

20
(

Ejemplos de criterios de aspiración

Aspiración por

Objetivo

Si todos lbs mlJv¡-' tDsdisponiblesso
~dasificados TObu,y ~stcín admitiaos por Qtro~
_ c•.•iferi'(r-de-aspi~acióBFertt(mcesse elige una

anO'l«fa pura la cuClt~
resta

Default

Dirección de búsqueda

Influencia

Intensificación y. diversificación

Otra característica muy importante del Tabu Search son las estrategias
de intensificación y diversificación. Estas estrategias están relacionadas con el
uso de memoria a largo plazo. Las estrategias de intensificación están basadas

21

en modificar las reglas de selección para encarar combinaciones de movimientos

y rasgos de solución que históricamente se encontraron buenos. La gran

diferencia entre las etapas de diversificación e intensificación, es que en la

etapa de intensificación, la búsqueda "da vueltas" para examinar el vecindario de

soluciones elite (las mejores soluciones encontradas durante la búsqueda) ,

porque se piensa que ahí puede haber soluciones adicionales de buena calidad,

mientras que en la etapa de diversificación encara la búsqueda del proceso para

moverse y examinar regiones no visitadas.

Normalmente, Tabu Search trabaja de la siguiente forma: en su forma

más simple usa una estrategia de memoria a corto plazo, para guiar

inteligentemente la búsqueda lejos de los vecindarios recientemente visitados.

En su versión más completa, usa la estrategia de memoria a largo plazo para

permitir intensificación y diversificación, teniendo en cuenta un conjunto de

soluciones buenas conocidas, y las características de cada una.

Un diagrama del algoritmo usando memoria a corto plazo sería el siguiente

22

Revisión de lista de candidatos
(Generar un 'movimiento'

,--------------.¡ desde la lista de candidatos,
para crear una solución factible
x' desde la solución actual x)

Tabu Test
Identificar atributos de x
que se cambiaron para
generar x'. Entre esos
atributos hay alguno taba?

Crear una
evaluación tabu sin
penalizar

Aspiración" Test
Satisface criterio
de calidad?

Elegir el movimiento
Si la evaluación de x' es la
mejor para cnalquier
candidato, hacer la
modificación.

Crear una evaluación
14----1

tabu penalizada.

Ejecutar el
movimiento elegido de
x a x'

La memoria a largo plazo y sus estrategias asociadas trabajan de la siguiente
forma:

23

Examinar lista de
candidatos (generar un
'move' para una solución
factible x' desde x)

Ejecutar estrategia de
memoria a corto plazo

Incrementar en 1el mo de iteración

Solución actual mejor
que solución anterior?

Incrementar en 1el nro de iter. de no
meiora

Se alcanzó la cant.
Permitida de iter. de no
mejora?

Estrategia de
intensificación

Es la porción
inicial de la
búsqueda?

Estrategia de
diversificación

24

ESTRATEGIA DE
INTENSIFICACION

~

Recorrer lista de
soluciones elite

,
Elijo la mejor
solución de la lista

"
Ejecutar movimiento

I

"
Generar lista de
candidatos

ESTRATEGIA DE
DIVERSIFICACION

Recorrer matriz de residencia y
penalizar por similitud

"
I Elegir otro candidato

25

Lista de candidatos

Estas estrategias se usan para restringir el número de soluciones

examinadas en cada iteración. Una buena elección en la estrategia de generación

de lista de candidatos mejora considerablemente la performance y da

excelentes beneficios. Aún donde las estrategias de listas de candidatos no se

usan explícitamente, las estructuras de memoria dan modificaciones eficientes

de evaluaciones de movimiento de una iteración a otra, y reducen el esfuerzo de

encontrar el mejor movimiento.

Ejemplos de estrategias ~ la lista de candidatos

Estrategia Aspiración Plus

e
a s
I o

I •
d u... -
a e
di.

Ó •
d n
e

PLUS

•
--_ .. _-

•
IASPIRACION

•• •
•

II/lí"

número de movimIentos

El eje horizontal representa el esfuerzo computacional para examinar

cada movimiento en el vecindario actual.

La línea de Aspiración es un umbral para la calidad del movimiento a

26

seleccionar, y se puede ajustar dinámicamente durante la búsqueda.

La estrategia examina los movimientos hasta encontrar uno que satisface

el umbral, y en ese momento se examina un número adicional de movimientos

(igual al valor Plus), y el mejor de todos se selecciona.

Estrategia de Lista de candidatos elite

Este método construye primero una lista Master examinando todos (o

casi todos) los movimientos, y selecciona los k mejores, donde k es el parámetro

del proceso. Entonces en cada iteración, se elige el mejor movimiento de la lista

y se ejecuta. Se sigue hasta que un movimiento cae por debajo de un umbral de

calidad, o hasta que se llega a una determinada cantidad de iteraciones.

Entonces se construye una nueva lista y se repite el proceso.

e
a s
I o
i I
d u
a e
d i

Ó

d n
e

)K ILista Ma~ter I

><)(
IReconstruc('ión I

•• •
----------_._------ •

••
• ~ • __'Umbral

• •• •
1 2 3

iteraciones

Podemos ver que esta estrategia puede ser una variante de la de

Aspiración, que permita examinar algunos movimientos fuera de la lista Master

en cada iteración (donde esos sean de calidad suficiente como para reemplazar

elementos de la lista Master).

27

Estrategia de filtros sucesivos

Los movimientos pueden separarse en las operaciones que lo componen, y

el conjunto de movimientos revisados pueden reducirse restringiendo a aquellos

que produzcan mejor calidad de beneficios para cada operación por separado.

Por ejemplo, elegir un intercambio que incluye una componente de inserción y una

de borrado (add y drop) puede restringir su atención sólo a los intercambios

generados de un pequeño subconjunto del "mejor add" y el "mejor drop" que lo

componen.

En problemas de secuenciamiento, una medida puede ser identificar

atributos con información como fecha prevista, tiempo de procesamiento,

penalidades por demora.

Si las permutas se usan, entonces alguna tarea es generalmente mejor

candidato que otras para moverse antes o después en la secuencia. La lista de

candidatos considera las permutas cuya composición incluye al menos uno de los

atributos preferidos.

Lista de candidatos en Abanico Secuencial

Un tipo de lista de candidatos que es muy explotable por procesamiento

en paralelo, es la lista de candidatos en abanico secuencial. La idea básica es

generar algunos "p" mejores alternativas en un paso dado, y crear un abanico de

soluciones, una para cada alternativa. Se revisan otra vez las mejores movidas, y

sólo las "p" mejores sobre todas proveen las nuevas "p" sucesiones en el paso

siguiente.

28

e
a s
I o
i I

d u 6é----.A;-----:¡A.
a e
d i

Ó

d n
e

2 3
I I

iteraciones

La iteración O construye una solución inicial. Las mejores movidas de esta

solución se USanpara generar p sucesiones. Entonces en cada iteración siguiente

se seleccionan los mejores movimientos que guíen a buscar p soluciones

diferentes. Notar que como más de un movimiento puede guiar a buscar la misma

solución, más de "p" movimientos pueden necesitarse para continuar la

exploración de p sucesiones distintas.

Listas de candidatos de cambios limitados

En esta estrategia , una solución mejorado se consigue restringiendo el

dominio de las elecciones, por lo tanto ningurla componente de la solución cambia

más de un determinado grado en cada paso. Un límite en este grado, expresado

por una métrica de distancia apropiada al contexto, es seleccionarlo

suficientemente grande para cercar las posibilidades consideradas

estratégicamente relevantes. La métrica puede permitir grandes cambios a lo

largo de una dimensión, pero limita los cambios a lo largo de la otra, así las

elecciones se reducen y evalúan más rápido.

29

5. - ALGORITMO TABU SEARCH PROPUESTO

5.1- Características particulares

A continuación presentaremos las características particulares del algoritmo
implementado, y las estructuras utilizadas para el almacenamiento de datos.
También se detalla el entorno en que fue desarrollado e implementado el

algoritmo.

Criterio de parada

La ejecución del programa finaliza cuando Se produce el primero de los

siguientes eventos:

~ Se alcanzó el máximo número de iteraciones solicitadas por el usuario.

~ Se alcanzó el máximo número de iteraciones admisibles de no mejora.

En ambos casos se genera un archivo de resultados.

Los resultados se guardan en un archivo de texto. (Ver detalle en Modulo
Resultados item 5.2.15). Además en cada iteración se almacena en otro archivo
de texto, los siguientes datos:

• Valor de la Función Objetivo
• Valor del reloj de la máquina
Este archivo fue creado para el estudio del comportamiento del

algoritmo. Los datos almacenados en el mismo se reproducen en una planilla Excel
(MSExcel 97), para facilitar la confección de un gráfico, que permite observar:

los valores mínimoy máximo obtenidos, los tramos de la búsqueda en los cuales
no se obtiene una mejoría en la solución y otros puntos de interés. El estudio

30

puede realizarse en función del tiempo o iteraciones. Los gráficos obtenidos en
las ejecuciones de los distintos ejemplos, se pueden observar en la Segunda

Parte del Apéndice.

La Lista Tabu está formada por una cantidad de permutaciones que
llevaron a las n últimas soluciones obtenidas. La cantidad de permutaciones

almacenadas es un parámetro ajustable por código. Además de la permutación se
guarda el tiempo de permanencia en /0 Lista Tabuque le corresponde a cada una,
es decir la cantidad de iteraciones que faltan para que la permutación salga de la

Lista Tabu.

Tiempo de permanencia en la Lista Tab~

Se utiliza un parámetro dinámico para el tiempo de permanencia en la Lista
Tabu, calculado a partir de un tmin y un tmax ingresado como parámetro. Se
selecciona en forma aleatoria dentro del rango especificado, siguiendo una
distribución uniforme. Y el resultado es aún mejor cuando el tiempo de
permanencia se recalcula cada una cantidad determinada de iteraciones.

Criterio de aspiración

El criterio de aspiración es el que permite sacar un elemento de la Lista
Tabu si cumple con ciertos requisitos. En nuestro desarrollo se utiliza el criterio

de aspiración por default combinado con el de aspiración global, y trabaja de la

siguiente forma:
* si todas las soluciones candidatas están en la Lista Tabu, entonces revoca es

estado tabu de las permutaciones que les reste el menor tiempo de

31

permanencia en la lista tabu (criterio de aspiración por default).

* si la solución encontrada es Tabu pero mejora el valor de la Función Objetivo
lograda en la mejor solución encontrada hasta el momento, revoca el estado
tabu del elemento de la lista, y esta solución pasa a ser la seleccionada como
candidato con el valor de la Función Objetivo que le corresponde (criterio de

aspiración global).

Lista de candidatos

La lista de candidatos se obtiene armando un ranking de todas las
soluciones vecinas, seleccionando las n mejores, es decir con mejor valor de
Función Objetivo.

Soluciones mantenidas

Además de la lista de soluciones elite, usada en la estrategia de
Intensificación, se mantienen las siguientes soluciones:

• Solución actual: solución corriente en cada iteración, sobre la que se
realizará un intercambio al efectuar la mejor permuta de la lista de
candidatos, o bien se aplicará el criterio de aspiración. Esta solución
seleccionada será la solución actual de la siguiente iteración

• Solución Inicial: solución construida con la heurística inicial.
• Mejor solución histórica: mejor solución encontrada a lo largo de toda la

búsqueda.

32

Parámetros de la búsqueda

Las distintas pruebas sobre cada uno de los problemas se realizaron
modificando los valores de los siguientes parámetros:

• Cantidad máxima de iteraciones (mo>citer):
Este es un parámetro de finalización. Dado que el algoritmo tiene la
característica de no quedarse en óptimos locales, aumentar este parámetro
permitió que se encontrara una mejor solución en algunos casos.

• Cantidad de iteraciones admisibles de no mejora (mo>cnomejora):
Este es un parámetro de finalización.
El mismo evitó completar la cantidad máxima de iteraciones en los casos en
que no se obtenía un mejor valor de la Función Objetivo durante

max_nomejora iteraciones.
Se experimentó asignándole múltiples valores, lo que influyó en otros
parámetros de no mejoría, descriptos más adelante, definidos en función de
él.

• Porcentaje inicial de la búsqueda en el que se activa la estrategia de
Diversificación (iteriniciales):
Este parámetro es un porcentaje de la cantidad total de iteraciones.
Durante estas iteraciones, de cumplirse ciertas condiciones, se activa la
diversificación. Se observó que activar permanentemente (100 %) o no
activar (O '7'0) la diversificación, no mejoraba los resultados.
Variaciones de este parámetro permitieron comprobar como algunos nodos
que ocupaban permanentemente ciertas posrcrones en la solución, se
ubicaban en otras anteriormente no frecuentadas.
Se realizaron múltiples variaciones de este parámetro, para estudiar el
comportamiento del algoritmo. La mayoría de los mejores resultados

obtenidos se lograron activando la diversificación durante el 75 % inicial de
la búsqueda.

33

• Porcentaje final de la búsqueda en el que se activa la estrategia de
Intensificación (iterfinales):
Este parámetro es un porcentaje de la cantidad máxima de iteraciones.
Durante estas iteraciones de cumplirse ciertas condiciones se activa la

intensificación.

Se observó que activar permanentemente (100 'Yo) o no activar (O 'Yo) la

intensificación, no mejoraba los resultados.
Se dieron diversos valores a este parámetro, en algunos casos aumentando
paralelamente el número de soluciones elite mantenidas.
Las estrategias de diversificación e intensificación son excluyentes, por lo
tanto los porcentajes de las mismas nunca suman más que 100 'Yo.

Coherentemente con lo descripto en el parámetro anterior, los mejores
resultados se obtuvieron con el porcentaje del 25 'Yo.

• Cantidad máxima de iteraciones en que puede dividirse la etapa de

Intensificación (dif_iter _reini):
Este parámetro depende del porcentaje cntericr-, es decir, es la cantidad de
partes en que pueden dividirse las iteraciones finales.
De cumplirse ciertas condiciones, este parámetro limita la cantidad máxima
de veces en que se realiza intensificación en la etapa respectiva.

• Cantidad máxima admisible de iteraciones de no mejora para activar
estrategia de Intensificación (maxnomejora_reini):
Este parámetro es un porcentaje de la cantidad máxima admisible de
iteraciones de no mejora.
Si durante maxnomejora_reini iteraciones no se obtiene un mejor valor de la
Función Objetivo, de cumplirse además otras condiciones, se activa la
reinicialización de la búsqueda, continuando la misma desde la mejor solución
elite en ese momento.
Se probaron en algunos problemas diversos valores de este porcentaje,
aumentando al mismo tiempo la cantidad de iteraciones finales de
intensificación y la cantidad máxima de iteraciones en que puede dividirse
dicha etapa, combinando con un aumento en la cantidad de soluciones elite

34

mantenidas.
Los mejores resultados se obtuvieron con este parámetro fijado en 25 %.

• Cantidad máxima admisible de iteraciones de no mejora para activar
estrategia de Diversificación (diver_nomejora):
Este parámetro es un porcentaje de la cantidad máxima admisible de
iteraciones de no mejora.
De estar en las iteraciones iniciales de diversificación, si durante
diver_nomejora iteraciones no se obtiene un mejor valor de la Función
Objetivo, se activa dicha estrategia.

Se realizaron variaciones de este parámetro conjuntamente con un aumento
en el porcentaje de diversificación de la búsqueda, y en la cantidad de
elementos de la lista de candidatos, con el objetivo de orientar la búsqueda
hacia otras regiones. Esto provocó un aumento de los valores de la función de
penalidad de cada movimiento y consecuentemente un ordenamiento distinto
de la lista de candidatos.

Los mejores resultados se obtuvieron con este parámetro fijado en 25 'Yo.

• Factor de Diversificación calculado en forma aleatoria dentro de los
límites mínimo y máximo (dados por un pivote y una tolerancia
respectivamente). El pivote y la tolerancia son variables (Pivote:
sinicialfo Tolerancia: límites_diver)

El factor de diversificación es un parámetro ajustable que toma valores
aleatorios, cuando se activa la diversificación, siguiendo una distribución
uniforme, dentro del rango dado por el pivote más/menos la tolerancia, o
toma valor cero al desactivarse.
Cuando toma valores distintos de cero provoca resultados positivos de la
función de penalidad de cada movimiento, que se suma al valor de la Función
Objetivo de los mismos.

Se probó asignando diversos valores al pivote, pero el mejor ajuste de este
factor se logró tomando el valor de la Función Objetivo de la solución inicial
como pivote, y una tolerancia igual al 25 % de este valor.

35

• Tamaño de la lista Tabu (tfil):
Este parámetro fija la cantidad de elementos que pueden permanecer en la
Lista Tabu.

La mayoría de los resultados se obtuvieron con un tamaño entre 15 y 20.

• Límites máximo y mínimo del tiempo de permanencia en la lista Tabu
(tt):

Este parámetro (tt) es la máxima cantidad de iteraciones que un elemento
permanece en la Lista Tabu.

Este valor se selecciona de manera aleatorio dentro del rango [tmin, tmax],
siguiendo una distribución uniforme.

Las pruebas con este parámetro se realizaron combinando conjuntamente con
distintos tamaños de la Lista Tabu, para permitir una menor o mayor
permanencia de los elementos de dicha lista.
La mayoría de los resultados se obtuvieron con una permanencia mínima

(tmin) de 5 y máxima (tmax) de 10 iteraciones, de los elementos en la Lista
Tabu.

• Cantidad máxima de iteraciones con un mismo tiempo de permanencia en
la lista Tabu (cant_tt):

Este parámetro constituye la cantidad de iteraciones que deben transcurrir
para obtener un nuevo parámetro tt(tiempo de permanencia en la Lista Tabu)
aleatorio.

La mayoría de las pruebas se realizaron modificando el tiempo de
permanencia en la Lista Tabu cada 5 iteraciones.

• Tamaño de la Lista de Candidatos o vecindario restringido (mfil):
Este parámetro fija la cantidad de mejores permutaciones del vecindario que
serán seleccionadas en cada iteración.

En los casos en que el resultado no era bueno se aumentó el tamaño del
vecindario conjuntamente con un aumento del tiempo de permanencia en la
Lista Tabu , con el objetivo de explorar otras regiones del espacio de
búsqueda.

36

La mayoría de los resultados se obtuvieron con un tamaño entre 15 y 20.

• Tamaño Lista de Soluciones Elite (ofil):

Este parámetro fija la cantidad de soluciones elite mantenidas durante la

búsqueda.

En la mayoría de las observaciones se mantuvieron en la lista las cinco

mejores soluciones encontradas.

Se incrementó el tamaño de la lista, en las pruebas que permitieron mayor

número de reinicializaciones, lo que posibilitó continuar explorando regiones

aparentemente buenas.

• Tamaño Lista de Mejores Soluciones Iniciales (max_cant_solini):

Este parámetro fija la máxima cantidad de posibles soluciones, obtenidas por

la heurística inicial, por donde comenzar la búsqueda.

En algunos problemas se encontraron mejores soluciones, tomando como

solución inicial, alguna de la lista, no necesariamente la mejor respecto del

valor de la Función Objetivo. En estos casos se experimentó con todas las

posibles soluciones iniciales, aumentando para esto el valor del parámetro.

Movimiento

El movimiento para ir de una solución a otra que se usa en este algoritmo

es una permutación. También existe un movimiento llamado de inserción pero

para nuestro caso no es útil, ya que en cada iteración trabajamos con todos los

nodos del grafo que componen la solución.

Este movimiento permite, a partir de la solución actual generar todas las

soluciones vecinas (es decir, todas aquellas que se obtienen permutando el orden

de dos trabajos de la secuencia).

Para la elección de la permutación que generará la solución candidato, se

realiza un ranking entre las vecinas, evaluando para ello el valor de la Función

Objetivo, de este modo se tiene en cuenta la calidad de la solución Finalmente,

una vez seleccionada la permutación, se ejecuta el movimiento generando una

nueva solución.

37

Calculo de Función Objetivo

Este cálculo se realiza una única vez para todos los nodos. Luego con cada
permutación realizada, solo se evalúa qué elementos cambian su posición en la
secuencia y se recalcula el valor únicamente de esa porción del vector.

Memoria g corto plazo

La memoria a corto plazo, sirve para tener en cuenta en cada iteración la

historia reciente de los últimos movimientos ejecutados, y de los valores
asociados a dichos movimientos.

Esta estrategia se aplica mediante el uso de la Lista Tabu. De esta forma, se
evita la ocurrencia de ciclos de tamaño menor o igual a la longitud de la Lista
Tabu.

Control de ciclos

El control de ciclos se realiza en el momento del ingreso de la información
que corresponde al grafo de precedencias. Se controla que no existan en el
digrafo P las aristas (i,j) y U,i), en forma directa o transitiva.

Memoria s ~ plazo

Se basa en guardar puntos importantes de la historia de la búsqueda. Las
estrategias asociadas al uso de este tipo de memoria son Diversificación e
Intensificación.

38

Diversificación

La estrategia se basa en la cantidad de veces que cada uno de los

trabajos está en cada posición de la secuencia. Para ello, se utiliza una matriz de

residencia, donde cada fila indica el número de trabajo y cada columna la

posición en la secuencia.

Matriz M de residencia

POSICION

TRABAJO

1

2

3

1 2 3

3
1 5

~4

1

-4 3

n

2

N
Se penalizan soluciones similares, para provocar el cambio en el espacio

de búsqueda. La penalidad se calcula como:

penalidad ij = Mij I (mayor frecuencia de la matriz)

Penalidad del movimiento = penalidad ij + penalidad ji

El valor del movimiento candidato se cambia por un nuevo valor penalizado,

que es:

Valor penalizado= valor del movimiento + d * penalidad del movimiento

d es un parámetro ajustable de diversificación.

La diversificación se activa cuando se cumple una determinada cantidad

de iteraciones de no mejora (parámetro diver _nomejora descripto en los

parámetros de la búsqueda), y si la iteración corresponde al porcentaje inicial de

la búsqueda donde se activa la estrategia (iteriniciales descripto en los

parámetros de la búsqueda). Se penaliza hasta que se encuentra una solución que

minimiza la Función Objetivo.

39

Intensificación

Se aplica mediante una lista de soluciones elite, que son las n mejores
soluciones encontradas en toda la historia de la búsqueda. Junto con estas
soluciones se guarda la memoria Tabu asociada. La cantidad de soluciones elite,

es un parámetro variable.

La estrategia trabaja de la siguiente forma: En la porción final de la
búsqueda, si no se mejora el valor de la Función Objetivo, se reinicializa la
búsqueda desde la mejor solución de la lista elite, con la memoria Tabu asociada.

La estrategia de Diversificación se utiliza en la primera parte de la
búsqueda, y la Intensificación en la parte final.

Entorno de Desarrollo e Implementación

El algoritmo fue desarrollado en C++versión 3.0 de Borland, pero las
ejecuciones están realizadas bajo Microsoft Visual C++5.0, dado que al trabajar
en Windows con un compilador de 16 bits se utiliza un límite de memoria
insuficiente para la ejecución de problemas mayores a un tamaño determinado,
por lo tanto fue necesario cambiar a un compilador de 32 bits.

Se implementó en una PC Pentium TI 266 Mhz, 64 MB de RAM. Sistema
Operativo MS Windows 95.

El algoritmo permite el ingreso de datos por archivo de texto o por teclado.
• Se podrán ingresar los pesos de las aristas y el grafo de precedencias por

archivo de texto y todos los parámetros de la línea de comando se ingresan
por pantalla.

• Si el ingreso es por pantalla se ingresarán los pesos, el grafo de precedencias
y todos los parámetros de la línea de comando por pantalla.

40

La entrada por archivo de texto se usó para los ejemplos provistos por L.
F. Escudero (a través de M.T. Ortuño, quien nos envió los problemas ESC por E-
mail), y para aquellos citados en [3], como 'Rbg' que fueron obtenidos de la página
Web de Zib (www.zib.de)

Se consultó bibliografía para la selección de las estructuras para el

almacenamiento de los datos [15]. Para el ingreso del grafo se eligió una matriz
de adyacencia donde cada elemento (ij), es el costo asociado a ir del nodo i al
nodo j. Para el grafo de precedencias se usa una lista de adyacencias donde cada
lista de cada elemento del arreglo son los nodos a los que debe preceder el nodo
cabeza.

Costo$. los costos asociados a la secuencia de ejecución de los trabajos, se
almacenan en una matriz de nxn, con la diagonal con valor cero.

Lista Tabu. La Lista Tabu se almacena en una matriz, que contiene en cada fila,
la permutación "prohibida" y el tiempo de permanencia restante en la Lista Tabu

que le corresponde.

El diseño modular del programa permitió una manipulación relativamente
sencilla del mismoa medida que iba creciendo.

Cada módulo descripto en el item 5.2 está guardado en su propio archivo
fuente, exportándose hacia el móduloprincipal.

El código esta comentado para facilitar la comprensión del mismo.

5.2.- Módulos principales del programa

5.2.1.- Módulo principal

Es el módulo que contiene el cuerpo principal del programa, y realiza las
llamadas a los módulos Entrada (ingreso de datos de entrada), Solución inicial y
Solución.

41

Módulo Principal

Comenzar
• Entrada de los datos del problema
• Construir lista de mejores Soluciones In iciales
• Seleccionar la mejor Solución Inicial de la lista

• Ingresar los parámetros de la búsqueda
Repetir

• Búsqueda de una mejor Solución
• Guardar resultados obtenidos
• Seleccionar nueva Solución Inicial

• Ingresar nuevos parámetros de la búsqueda
Hasta (no se seleccionen soluciones intcícles)

Fin Principal

5.2.2.- Módulo Entrada de datos

Es el módulo que realiza la entrada de los datos. Los datos necesarios de
entrada para poder ejecutar la búsqueda son:
- Costos asociados a la ejecución de los trahajos
- Restricciones de precedencia que se deben respetar.

Este módulo tiene la facilidad de pe:rmitir la entrada de los datos, tanto
por pantalla como por archivo de texto, lo que permite la ejecución de problemas
con una mayor cantidad de nodos . Esta facilidad fue la utilizada en las
ejecuciones con problemas de la vida real fucilitcdos por Laureano Escudero.

Los valores de los costos asociados se almacenan en una matriz de
adyacencias, y las restricciones de precedencias en una lista de adyacencias,

donde cada uno de los elementos del arr~glo representa al nodo predecesor, y
donde los elementos que componen cada lista, son los nodos sucesores
correspondientes.

Este módulo además verifica si existen ciclos en el grafo de

42

precedencias, en ese caso emite un mensaje de error indicándole donde y como

se forma el ciclo, dando la posibilidad de volver a ingresar el grafo cuando el

ingreso de los datos es por pantalla.

5.2.3.- Módulo Verificación de Precedencias

Este módulo verifica si una solución determinada cumple con las

restricciones de precedencia ingresadas. Recibe como entrada un vector que

contiene la solución a verificar y genera como salida una señal indicando si

cumple o no la condición. Esta condición determina que la solución sea o no

factible para el problema.

Módulo Precedencias

Verifica si un vector solución cumple las precedencics, es decir si es o no factible.
Devuelve un 1 si la solución verifica precedencias y Oen caso contrario.
Comenzar

Posl : = 2
Mientras (posl s N) Hacer 1* Para todos los nodos menos el primero */

t: = lista de nodos precedidos por soluciénjposl]
Si (t =1= 0) Hacer

- Mientras (t =1= 0) Hacer

- x : = cabeza (t)

- t: = cola (t)
- pos2: = posición de x en vector solución
- Si (pos2 < posl) EVltonces

- Retornar (O) /* Precedencia Violada*/
Fin Si

Fin Mientras

Fin Si

- posl: = posl + 1
Fin Mi~ntras

Retornar (1) /* Vector Solución verifica precedencias */
Fin Precedencias

43

5.2.4.- Módulo Solución Inicial

Este módulo genera, si es que existe una solución inicial factible, para

comenzar la búsqueda. Para ello utiliza la versión de la heurística miope del

vecino más próximo que se debe a Belmore y Nemhauser (1988).(Ver[4])

El algoritmo consiste en partir de un vértice inicial y elegir en cada

iteración el vértice (vecino) más próximo. al vértice en consideración,

eliminándolo del conjunto de posibles. Este algoritmo es del orden O (rf) y el

camino Hamiltoniano obtenido sufre fuerte influencia de la elección del vértice

inicial.

Se comparan los resultados obtenidos con cada vértice inicial y se

selecciona el mejor. Recibe como entrada el número correspondiente al vértice

inicial, y genera como salida el vector conteniendo la solución inicial.

Para ello arma una lista ordenada, cuyo tamaño depende de un parámetro,

que son las mejores soluciones iniciales, comenzando por distintos vértices. El

algoritmo permite que se seleccione cualquiera de las soluciones de la lista, no

necesariamente la de menor valor de la Función Objetivo.

Este módulo se encarga de verificar la factibilidad de la solución, verifica

las restricciones de precedencia ingresadas, mediante la llamada al módulo

correspondiente.

44

Módulo Solución Inicial

Arma una lista ordenada, en función del valor de la función objetivo, de las
mejores soluciones iniciales. Utiliza la Heurística Golosa Vecino más Próximo
para construir una solución inicial factible desde cada uno de los nodos.

Comienzo
Para Cada (1~ i s N) Hacer I*N: cantidad de nodos del problema*/

• Construir Solución Inicial factible comenzando en nodo i
Si (existe SolucióVlInicial factible comenzando en nodo i) Entonces

• Insertar Solución Inicial factible en lista ordenada de
soluciones iniciales

Fin Si
Fin Para Cada

Fin Solución Inicial

45

Heurística Vecino más Próximo con control de precedencias

Construye una solución inicial factible, utilizando la Heurística Vecino más

Próximo, comenzando en el nodo inicial pasado como argumento.
Devuelve la solución inicial construida, ó 0 si no existe solución factible
comenzando en el nodo inicial.

Comenzar
Armar vector auxiliar conteniendo la cantidad de predecesores de cada nodo
Armar vector auxiliar de nadas ubicados
Si (cantidad de predecesores del nodo inicial> O) Entonces

• Retornar 0 r No existe solución factible comenzando en el nodo
inicial*j

• Ubicar el nodo inicial en primer posición del vector solución
• Restar 1 a la cantidad de predecesores de todos los nadas precedidos

por el nodo inicial.

• Marcar nodo inicial en vector de nodos ubicados
Para Cada (nodo no ubicado) Hacer

• Escoger un nodo tal que el costo de ir desde el nodo corriente a
dicho nodo Sea mínimo, y cuyos predecesores estén ubicados

• Ubicar el nodo seleccionado en vector solución
• Restar 1 a la cantidad de predecesores de todos los nadas

precedidos por el nodo seleccionado

• Marcar nodo seleccionado en vector de nodos ubicados
Fin Para Cada

Fin Si
Fin Heurística Vecino más Próximo con control de preced::!ilcias

46

5.2.5.- Módulo Generación de la Solución

Se encarga de buscar la mejor solución mejorando la obtenida por la

heurística inicial. Para ello, genera una lista de soluciones candidatos, elige el

mejor movimiento, si ningún movimiento es admisible usa el Criterio de

Aspiración por defecto y una vez encontrado el mejor movimiento, lo ejecuta.

Ademásverifica la factibilidad de la solución.

Recibe como entrada la solución inicial y genera como salida la mejor

soluciónencontradapara el problema.

47

MODULO SOLUaON

Busca una mejor solución partiendo de la solución inicial.

Comenzar

• Inicialización de variables y parámetros de la búsqueda dependientes de los parámetros

ingresados.

• Mientras (# iteración actual (cant_máx de iteraciones solicitadas) y (cant_iteraciones de no

mejora (canCmáx admisible de iteraciones de no mejora) Hacer

• Si (cant_iteraciones con un mismo t...,permanenciaen lista tabu = cant_máx permitida de

iteraciones con igual t...,permanenciaen lista tabu) Entonces

• Obtener aleatoriamente un nuevo tiempo de permanencia en lista tabu

Fin Si

• Si (Etapa de Diversificación) y (canCiteraciones de no mejora> canCmáx admisible de

iteraciones de no mejora de diversificación) Entonces

• Obtener aleatoriamente un nuevo factor de diversificación

• Factor de diversificación = O

Fin Si

• Armar Lista de Candidatos

• Seleccionar Mejor Movimiento

• Si (no encontró mejor movimiento para seleccionar) Entonces

/*T odos las permutaciones candidatas son tabu y su estado tabu no fue revocado

por Criterio de Aspiración Global* /

• Usar Criterio de Aspiración por Defecto para seleccionar movimiento

Fin Si

• Insertar solución seleccionada en lista de soluciones elite

• Si (Etapa de Intensificación) y (fo del movimiento seleccionado> fo de la mejor solución

de la lista de soluciones elite) y (canCiteraciones desde última reinicialización > canCmáx

de iteraciones en que puede dividirse la etapa de Intensificación) Entonces

• Reinicializar búsqueda desde mejor solución elite

• Ultima Reinicialización = # iteración actual

Fin Si

• Ejecutar Mejor Movimiento seleccionado

• Actualizar matriz de Residencias

• Incrementar número de iteración

Fin Mientras

Fin Solución

48

5.2.6.- Módulo Generación de Lista de Candidatos

í

Genera la lista de los m mejores movimientos, donde m es un parámetro.
Los mejores movimientos son el resultado de generar y recorrer el vecindario de
la solución corriente, verificando que se cumplen las restricciones de
precedencia y seleccionando finalmente los m, que resultan en un mejor valor de
la Función Objetivo. Para ello se utilizan:
- Verificación de precedencias (Módulo Precede)
- Evaluación de Función Objetivo (Módulo Función Objetivo)

La generación del Vecindario es el resultado de todas las permutaciones

posibles de los nodos en la solución corriente, lo que da un total de n(n-l)/2
soluciones posibles a ser examinadas.

r:
La lista de candidatos de los m mejores, se almacena en una matriz de m

filas. Cada fila contiene un movimiento. Por cada movimiento se guardan las
posiciones de los nodos que se permutaron para obtener la solución vecina.
Paralelamente, se guarda en un vector el valor de la Función Objetivo obtenido
para cada permutación de la lista de candidatos.

Recibe como entrada, la solución actual, y genera como salida la lista de
los mejores candidatos, y la lista de los valores de la función objetivo
correspcadieates a cada puna de las permutaciones. Tea+e la matriz de
Candidatos como el vector que contiene los valores de los fUí'ldoi'lales, se
devuelven ordenadas por mejor valor de la Función Objetivo.

49

Módulo Candidatos

Construye el vecindario restringido para la solución corriente, consistente de las
k mejores permutaciones, con respecto al valor de la función objetivo, donde k
es un parámetro del sistema.

Devuelve lista de Candidatos ordenada de menor a mayor, según valor de la
función objetivo, y otras estructuras asociadas a la misma.

Comenzar

Para cada (permutación (i, j) de nodos entre las N (N - 1) / 2 posibles) Hacer
/*N: Cantidad de nodos del problema*/

Armar solución vecina permutando los nodos correspondientes de la
solución corriente
Si (solución vecina cumple precedencias) Entonces

• Calcular valor de la función objetivo de la solución vecina

• Insertar vecino en lista de candidatos
Fin Si

Fin Para
Fin Candidatos

50

Insertar Vecino en lista de Candidatos

Inserta una permutación en la lista de candidatos, manteniéndola ordenada según

valor de la función objetivo.
Inserta el valor de la función objetivo de la solución resultante de la

permutación.
Inserta la pena del movimiento resultante de la permutación.

Comenzar
• Calcular pena de inserción del nodo en la posición j y del nodo j en la

posición i como:
Pena(x,y) = (frecuencia del nodo x en la posición y) / (máxima frecuencia de
la matriz de residencias)

• Calcular la pena del movimiento como (factor de diversificación) * (pena(ij) +

pena(j,i))

• Insertar en lista de candidatos la permutación (i,j) en la posición que

corresponda
manteniendo la lista ordenada de menor a mayor según valor de la función

objetivo

• Insertar valor de la función objetivo de la permutación (i,j) en vector de
función objetivo,

manteniendo la estructura ordenada según lista de candidatos

• Insertar pena del movimiento en vector de penas manteniendo la estructura
ordenada según lista de candidatos

Fin Insertar vecino en lista de Candidatos

5.2.7.- Módulo Me jor Movimiento

Selecciona el mejor movimiento de la Lista de Candidatos, evaluando el

mérito del mismo. Este mérito se refiere al valor de la Función Objetivo, del
movimiento. Otra característica funcional de este módulo consiste en verificar

si el movimiento es o no admisible. Un movimiento es admisible si no es Tabu o si

51

su estado Tabu se ignora utilizando criterio de aspiración global.

Recibe como entrada la lista de los mejores candidatos, y la lista de

funcionales Top generadas por el módulo de Candidatos.

Genera como salida el mejor movimiento seleccionado, es decir, los nodos
que componen la permutación que genera la mejor solución del vecindario.

Módulo Mejor Movimiento

Selecciona la mejor permutación de nodos de la lista de candidatos.
Devuelve la posición en la lista de candidatos, correspondiente a la mejor
permutación seleccionada, ó (-1) si no encontró una permutación para seleccionar.
Comienzo

Mientras (existan permutaciones en la lista de candidatos) y (no encontró la
mejor permutación) Hacer

Si (permutación actual es tabu) Entonces
Si (estado tabu puede ser revocado por criterio de aspiración
global) Entonces

• Encontró la mejor permutación tabu

• Avanzar en lista de candidatos
Fin Si

• Encontró la mejor permutación no tabu
Fin Si

Fin Mientras
Si (encontró mejor permutación) Entonces

• Retornar (posición mejor permutación)

• Retornar (-1)

Fin Si

Fin Mejor Movimiento

52

5.2.8.- Módulo E jecución del Me jor Movimiento

Ejecuta el mejor movimiento que fue generado por el módulo Mejor
Movimiento, reemplazando la solución actual por la que genera la permutación
elegida. Además verifica, si el valor de la Función Objetivo de la solución

generada es mejor que el valor histórico guardado desde el principio de la
búsqueda, si es así actualiza tanto el valor de la Función Objetivo histórico como
el valor de la mejor solución hallada. Además realiza la actualización de la Lista
Tabu, por medio de la llamada al módulo correspondiente.

Recibe como entrada la solución actual y el valor de la Función Objetivo

actual y genera como salida la nueva solución, con el valor de Función Objetivo
actualizado.

Módulo Ejecutar Movimiento
Ejecuta el mejor movimiento seleccionado.
Comenzar
Actualizar solución corriente realizando la permutación de nodos seleccionada.
Actualizar el valor de la función objetivo de la solución corriente.
Si (fo de mejor solución histórica < fo de solución corriente) Entonces /*fo :
Función Objetivo* /

• Incrementar parámetro de no mejoría

• Parámetro de no mejoría = O

Fin Si
Si (fo de solución corriente < fo de mejor solución histórica) Entonces

• Actualizar mejor solución histórica
• Actualizar valor de la función objetivo de mejor solución histórica
• Actualizar número de iteración de mejor soluclén histórica

Fin Si
Actualizar lista tabu
Fin Ejecutar Movimiento

53

(

5.2.9.- Módulo Actualización de la Lista Tabu
/

Actualiza la Lista Tabu agregándole un elemento, que es la permutación

que produce el mejor movimiento, y actualizando el tiempo de permanencia en la

Lista Tabu de todos los elementos de la lista, eliminando aquellos cuyo tiempo de

permanencia es cero.

Recibe como entrada el elemento a agregar en la lista , es decir la

permutación y genera como salida la Lista Tabu actualizada.

Módulo Tabu

Procedimiento Es T abu

Verifica si una permutación de nodos, pasada como argumento, es tabu

Comenzar

Mientras (existan elementos en la lista tabu) y (no encontró la permutación de

nodos en la

lista tabu) Hacer

Si (permutación de nodo s = elemento corriente de la lista tabu) Entonces

• Permutación es tabu

• Avanzar en lista tabu

Fin Si

Fin Mientras

Si (encontró permutación de nodos en lista tabu) Entonces

• Insertar en lista de candidatos cuyos elementos son tabu: la posición

de la permutación en lista de candidatos y tiempo de permanencia de

la permutación

Fin Si

Fin Es Tabu

54

Procedimiento Actualizar Lista Tabu

Inserta el par de nodos, correspondientes a la permutación pasada como

argumento, en la lista tabu y mantiene actualizada dicha lista.

Para Cada (par de nodos de la lista tabu) Hacer
Si (permanencia en la lista tabu del par de nodos = O) Entonces

/*Fin permanencia de la permutación en la lista*/

• Eliminar par de nodos de la lista
• Restar 1a cantidad de elementos tabu

• Restar 1a permanencia en la lista tabu del par de nodos

Fin Si
Fin Para
Inserta par de nodos en lista tabu
Sumar 1a cantidad de elementos tabu
Fin Actualizar Lista Tabu

Procedimiento Eliminar Elemento de la Lista Tabu
Eliminade la lista tabu la permutación de nodos, que recibe como argumento.

Comenzar
Mientras (existan elementos en la lista tabu) y (no encontró permutación de
nodos en la lista) Hacer

Si (elemento de la lista tabu = permutación de nodos) Entonces
/*Encontró permutación de nodos*/

• Eliminar permutación de nodos
• Decrementar cantidad de elementos tabu en 1

• Avanzar en la lista tabu
Fin Si

Fin Mie~tras
Fin Eliminar Elemento de la Lista Tabu

55

5.2.10.- Módulo Tiempo de Permanencia en la Lista Tabu

Este módulo calcula el Tiempo de permanencia en la Lista Tabu, que es la

medida en cantidad de iteraciones, que un atributo permanece en esa lista. En

este caso se calcula un Tiempo de Permanencia dinámico, que se selecciona en

forma aleatorio entre dos parámetros tmin y tmax siguiendo una distribución

uniforme. El Tiempo de Permanencia calculado en este módulo es un a tiempo de

permanencia, siendo a. la cantidad de iteraciones en que se mantiene constante,

volviéndose a calcular al término de las mismas.

Recibe como entrada los parámetros tmin y tmax, y genera como salida el

valor del tiempo de permanencia en la Lista Tabu.

5.2.11.- Módulo Criterio de Aspiración

La función principal de este módulo es determinar si una Regla Tabu

puede ser violada. Para ello utiliza dos criterios de Aspiración:

• Aspiración Global: Revoca el Estado Tabu del movimiento si este, es mejor,

en cuanto al valor de la Función Objetivo, con respecto al obtenido en la

mejor solución histórica, que se actualiza en el módulo de ejecución del mejor

movimiento.

• Aspiración por Defecto: Si todas las permutceiones no SO&'l admisibles, revoca

el estado tabu de aquellos movimientos, que les resta la menor cantidad de

iteraciones para salir de la lista Tabu.

56

Módulo Criterios de Aspiración

Aspiración Global

Revoca el estado tabu del movimiento, si este produce una solución mejor que la

mejor obtenida hasta el momento.
Devuelve 1 si revoca el estado tabu del movimiento y O en caso contrario.

Comenzar
Si (fo del movimiento < fo del mejor movimiento histórico) Entonces /*fo
Función Objetivo* /

• Revocar el estado tabu del movimiento 1* Eliminar elemento
seleccioacde de la lista tabu*/

• Retornar (1)

• Retornar (O) /*No se revoca estado tabu del movimiento*/
Fin Si
Fin Aspiración Global

57

Aspiración por Defecto

Selecciona una permutación de la lista de candidatos cuyo tiempo restante de
permanencia en la lista tabu sea el menor, y revoca su estado tabu.

Retorna la posición, en la lista de candidatos, de la permutación cuyo estado tabu

fue revocado.

Comenzar
Posición_seleccionada = posición primer permutación de la lista de candidatos
cuyos elementos son tabu
Para cada (permutación de la lista de candidatos cuyos elementos son tabu)
Hacer

Si (tiempo de
tiempo de
Entonces

• Posición_seleccionada = posición en lista de candidatos del
candidato corriente

permanencia en la lista tabu del candidato corriente <

permanencia en la lista tabu del candidato seleccionado)

Fin Si
Fin Para
Revocar el estado tabu del movimiento 1* Eliminar elemento seleccionado de la
lista tabu*/

Retornar (posición en lista de candidatos de la permutación cuyo estado tabu fue
revocado)
Fin Aspiración por Defecto

58

5.2.12.- Módulo Función Ob jetivo

Este módulo evalúa el valor de la Función Objetivo para una solución
determinada.

5.2.13.- Módulo Intensificación

Guarda en una lista ordenada, según el valor de la Función Objetivo, las
mejores soluciones encontradas durante toda la historia de la búsqueda. Esta
lista se llama lista de Soluciones Elite. En el momento de almacenar una solución
Elite, se resguarda también el entorno necesario, para poder reinicializar la
búsqueda en ese punto. Este entorno consta de la Lista Tabu, el próximo
movimiento posible de ser realizado desde dicha solución, el valor de la Función
Objetivo y otras estructuras necesarias.

La estrategia de Intensificación, se activa cuando no se logra mejorar el

valor de la Función Objetivo, en la etapa final de la búsqueda, y busca mejorar la
solución teniendo en cuenta, las mejores soluciones encontradas hasta el
momento, y tratando de reinicializar la búsqueda desde ese punto. En el
momento de la reinicialización, se elige la primera solución de la Lista Elite, esto

es la mejor, y se actualizan todas las estructuras con los datos de aquellas que
fueron guardadas en el momérito de ingresar dicha solución a la Lista Elite. Se
reordena además dicha lista de soluciones y todas las estructuras del entorno
asociados a la misma.

59

Módulo Soluciones Elite
Procedimiento Insertar Solución Elite
Inserta una solución en lista de soluciones elite.
Comenzar
Si (solución no esta en la lista elite) Entonces

/" Guardar entorno actual *1

• Insertar solución en posición correspondiente manteniendo la lista
ordenada de menor a mayor según valor de la función objetivo de cada
solución

• Insertar en posición correspondiente el valor de la función objetivo de
la solución elite a insertar

• Insertar en posición correspondiente la lista tabu actual.

• Insertar en posición correspondiente el próximo mejor movimiento a
ser seleccionado, desde la solución elite a insertar

Fin Si
Fin Insertar Solución Elite

Procedimiento Reinicializar

Reconstruye el entorno para continuar la búsqueda desde la mejor solución elite
de la lista.

Comenzar

• Solución corriente = mejor solución elite
• Valor función objetivo = valor función objetivo de solución elite seleccionada
• Lista tabu = lista tabu correspondiente a solución elite seleccionada
• Lista de candidatos = próximo mejor movimiento seleccionado desde solución

elite

• Dejar marca de solución visitada en lista de soluciones elite
Fin Reinicializar

60

5.2.14.- Módulo Diversificación

Este módulo devuelve un parámetro ajustable de diversificación. Dicho

parámetro se selecciona de manera aleatoria dentro del rango dmín, dmax
siguiendo una distribución uniforme.

5.2.15.- Módulo Resultados

Este módulo almacena en una archivo de texto todos los resultados de la
búsqueda.

Genera un archivo para cada problema, si aún no existe, y de lo contrario

agrega al existente los resultados obtenidos. Los datos almacenados para cada
ejecución de cada ejemplo son los siguientes:

• Fecha y hora de ejecución

• Nombre del problema

• Cantidad de nodos

• Solución obtenida con la heurística inicial

• Función Objetivo de la solución inicial

• Mejor solución encontrada

• Función Objetivo de la mejor Solución Encontrada

• Tiempo total de ejecución

o Tiempo de Procesamiento que demora en encontrar la mejor Solución

• Cantidad máxima de iteraciones

• Número de iteraciones realizadas

• Número de iteración donde se encontró la mejor solución

• Cantidad de reinicializaciones

61

6.- RESULTADOS

La descripción de las columnas en las tablas de resultados es la siguiente:

N : número de nodos

I R1: número de relaciones de precedencias (sin las precedencias derivadas

transitivamente)

Solución: solución óptima encontrada

Heur. Inicial: valor de la solución obtenida por la heurística inicial

CPU : tiempo de CPU que se necesitó para resolver el problema.

Mejor iter: número de iteración en la que se obtuvo el mejor valor de Función

Objetivo

Total de iter: número total de iteraciones de la ejecución

Algoritmo Branch & Cut: resultados obtenidos por el algoritmo desarrollado por

N. Ascheuer , que se toma como referencia para la comparación de resultados

Algoritmo propio: resultados obtenidos por el algoritmo desarrollado, con una

técnica de tipo Tabu Search, para el presente trabajo

Se presentan dos algoritmos Tabu Search, dependiendo de los tipos de

memoria utilizados:

1) Tabu Search Básico (TSB): es el algoritmo propuesto usando solo estrategia

de memoria a corto plazo. Los resultados obtenidos con este algoritmo se

muestran en el item a)

2) Tabu Search enriquecido (TSE): es el algoritmo propuesto usando

estrategias de memoria a corto y largo plazo, con estrategias de

Intensificación y Diversificación. Los resultados obtenidos con este

algoritmo se muestran en los items b) y c). En b) se ejecutaron los problemas

en el entorno C++ 3.0. En e) se observan las ejecuciones de los mismos

problemas que en b) agregados aquellos de mayor dimensión, procesando bajo

entorno Visual C++5.0.

62

TABLAS DE RESULTADOS

a) Resultados obtenidos con el algoritmo Tabu Search básico:

Algoritmo Branch & Cut ...~ Algorifttmpropio TSB
'"'- .,;;,.-

Problema SoluciaD" 9 Solució~ -o'S ",J::ieur.Inicial
'-","""'-'

'i!IMii, " . 1.',_ '" '"
Esc07 2125 2600 2625

Esd1 2075 2273 2715

Esd2 1675 1760 1904

Esd4 2125 2625 2625

Esc25 1681 2400 2400

Esc47 1288 3027 3505

Esc63 63 63 68

Esc78 18230 19265 22600

Rbg019a 198 198 198

63

b) Resultados obtenidos con el algoritmo básico enriquecido con estrategias de
Intensificación y Diversificación, ejecutados bajo C++3.0 de Borland.

Algoritmo Branch&cut '1 :¡¡¡¡¡: Algoritmo propio TSE --"!'F!'!'

~~ ~ =.
Problema n IR-'I Solu Heur. CPlf".••• &'UiW' CP~ Mej~, •• Total

"""""ci6n'" iSlnicial-ci6n Inicialaiter.1L de 'i

~
~ I~~- c·~~ =~ iter =1

11III'

Esc07 7 6 2125 2550 0:00.05 2125 2625 0:00:00 15 15

Esc11 11 3 2075 2129 0:00.11 2075 2715 0:00:01 633 2000

Esc12 12 7 1675 1760 0:00.42 1675 1904 0:00:00 186 200

Esc14 14 12 2125 2125 0:00.18 2125 2625 0:00:00 1206 2000

Esc25 25 9 1681 2372 0:01.93 2003 2400 0:00:10 4790 5000

Esc47 47 10 1288 2609 1:00.77 2950 3503 0:01:13 3014 4000

Esc63 63 95 62 63 0:00.69 62 68 0:03:14 996 1000

Esc78 78 77 18230 20130 0:04.43 18575 22600 0:02:35 594 1000

Rbg019a 19 43 198 198 0:00.23 198 198 0:00:00 O O

Rbg019b 19 57 199 214 0:00.07 199 243 0:00:03 306 1000

Rbg021a 21 68 158 183 0:00.29 159 236 0:00:01 377 500

Rbg023a 23 79 155 193 0:00.23 155 273 0:00:01 153 500

Rbg048a 48 192 351 396 0:28.85 396 483 0:00:50 340 400

Rbg049a 49 241 355 425 0:01.14 417 473 0:01:18 376 500

Rbg050a 50 225 400 460 0:11.69 457 500 0:01:06 290 500

Rbg050c 50 256 467 497 0:02.36 495 558 0:00:38 158 300

Rbg068a 68 249 609 689 0:01.45 726 917 0:05:12 198 400

64

c) Tabla de resultados obtenidos con el algoritmo Tabu Search básico

enriquecido con Intensificación y Diversificación, ejecutado en entorno Visual

C++ 5.0, dado que al trabajar en Windows en la versión 3.0 de C++ de Borland, se

utiliza un compilador de 16 bits que utiliza un límite de memoria insuficiente para

la ejecución de problemas de mayor tamaño.

---Algoritmo"src.nch&cuC' Algo.ifte prop~
",,,,!

-~~

Prob~ma n I~ Solu =' Heur. CPlJ Solu Heur. CPU~ " Mejor Total
1= ;!iición ~icial (Sun ción I~Inicial (Pentium iter.,,~ dec:,g:

:::::::::! .;'
,-;¡¡. "" ..•. . =¡; lo;;. S~~O) n .:.~iterIj== ~ .~

Ese07 7 6 2125 2550 0:00.05 2125 2625 0:00:00 15 25

Ese11 11 3 2075 2129 0:00.11 2075 2715 0:00:00 429 650

Esc12 12 7 1675 1760 0:00.42 1675 1907 0:00:00 69 250

Esc14 14 12 2125 2125 0:00.18 2125 2625 0:00:01 375 1300

Ese25 25 9 1681 2372 0:01.93 1747 3360 0:00:30 7509 00סס1

Ese47 47 10 1288 2609 1:00.77 2367 3503 0:01:57 4610 5000

Ese63 63 95 62 63 0:00.69 62 68 0:02:36 27 500

Ese78 78 77 18230 20130 0:04.43 18640 22600 0:01:55 414 600

Ese98 98 84 2125 2125 0:15.09 2625 2625 0:00:53 1 100

Rbg019a 19 43 198 198 0:00.23 198 198 0:00:00 O 1

Rbg019b 19 57 199 214 0:00.07 199 243 0:00:03 119 500

Rbg021a 21 68 158 183 0:00.29 158 236 0:00:06 564 1500

Rbg023a 23 79 155 193 0:00.23 155 273 0:00:04 286 500

Rbg029a 29 76 217 248 0:02.82 221 270 0:00:47 4730 5000

Rbg048a 48 192 351 396 0:28.85 389 483 0:02:06 269 500

Rbg049a 49 241 355 425 0:01.14 407 473 0:05:21 427 1000

Rbg050a 50 225 400 460 0:11.69 447 500 0:02:08 334 500

Rbg050b 50 258 397 465 0:02.93 421 558 0:04:51 148 600

Rbg050e 50 256 467 497 0:02.36 499 558 0:05:32 174 500

Rbg068a 68 249 609 689 0:01.45 738 917 0:02:50 56 100

Rbg088a 88 547 1130 1245 7:11.31 1240 1370 0:04:38 17 50

65

Rbg092a 92 573 [1036, 1098 (*) 1084 1246 0:51:34 186 250

1037]

Rbg094a 94 457 1336 1401 0:02.05 1398 1548 7:42:54 908 1700

Rbg105a 105 682 [994. 1224 (*) 1213 1357 3:18:25 363. 500

1029]

Rbg109a 109 622 [1035, 1117 (*) 1165 1473 4:56:25 237 500

1038]

Rbg126a 124 369 1381 1587 31:17.62 1584 1760 2:22:51 149 200

Rbg148a 146 976 [1398, 1554 (*) 1624 1839 8:49:51 101 200

1399]

Rbg161a 159 472 1962 2178 0:20.64 2224 2337 3:02:06 23 70

Rbg174a 174 1113 [2030, 2193 (*) 2218 2240 6:58:11 35 70

2033]

Rbg190a 188 725 [2227, 2442 (*) 2585 2732 13:52:55 59 100

2244]

Rbg285a 283 820 3482 3857 102:22.40 3887 4268 47:09:26 41 50

(*): Cancela la ejecución por alcanzar el tiempo máximo de procesamiento

permitido. En todos los casos mencionados en [3], el tiempo máximo permitido

es de 5*[n/1oo] horas de CPU.

En estos casos se indica el rango de valores donde está la solución.

Los tiempos de CPU para el caso de Branch & Cut está medido en

mm:ss.cc(minuto, segundo, centésima), y para el algoritmo propuesto está medido

en hh.mm.ss (hora, minuto, segundo).

El algoritmo Branch & Cut fue desarrollado en C, en un entorno SUN SPARC10

con 64 MBde memoria bajo SUN OS 5.5

Los problemas Esc07 -Esc78 fueron provistos por Escudero y

corresponden a datos de Producción de 1BM. Los rbg019a - rbg285a

corresponden a datos obtenidos de la rutina de una grúa apiladora en un sistema

automático de almacenamiento. Los archivos de texto con que se ejecutaron

estas pruebas, fueron provistos por María Teresa Ortuño, persona a la cual nos

66

derivó Laureano Escudero, ella nos envió los problemas Ese, y el resto de los

problemas identificados por rbg, fueron extraídos de la página Web, indicada

oportunamente por ellos.

Comoconclusiones de las ejecuciones realizadas, con las diferentes versiones
de la técnica tabu, tenemos que:

1. Algoritmo Tabu search básico: Los resultados en general no fueron buenos,
se puede ver en la tabla presentada en el item a) de este mismo capítulo, que
el algoritmo no mejora significativamente la solución obtenida con la
Heurística Inicial.

2. Algoritmo Tabu Search enriquecido con estrategia de Diversificación: se
aplicó la estrategia de Diversificación que se define en la Sección anterior y
mejoraron los resultados con respecto al algoritmo básico. Se observó que se
cambia el espacio de búsqueda forzando a los nodos a ocupar diferentes
posiciones en el vector solución. En algunos casos se observaron cambios
notables, ya que determinados nodos ocupaban siempre las mismas posiciones
antes de la implementación de la estrategia. La diversificación se activa
durante las iteraciones iniciales, y se desactiva en la parte final de la

búsqueda. (Estos valores son parametrizables por código). Se hicieron
pruebas variando el factor de diversificación. Este factor parece estar
vinculado a los pesos de las aristas. Se propone un factor de diversificación
aleatorio en un rango dmín, dmax con una distribución uniforme, donde dmin y
dmax son iguales al valor de la Función Objetivo de la solución encontrada
mediante la aplicación de la heurística inicial moviéndose en un rango que
actualmente está implementado como el valor de la Función Objetivo de la
solución hallada por la Heurística Inicial / 4. (Estos valores son

parametrizables por código). Con la implementación de esta estrategia,
aparecen los primeros resultados exactos para algunos problemas.

67

3. Algoritmo Tabu Search enriquecido con Estrategia de Intensificación y

Diversificación: Se implementó la estrategia explicada en la Sección
anterior. Esta estrategia se activa durante las iteraciones finales (Este valor
es parametrizable por código). Se propone para la obtención de mejores
resultados reinicializar más de una vez dejando una marca en la solución elite

seleccionada, después de cierto número de iteraciones de no mejora. (Este
valor también es parametrizable por código). Se propone además que la
estrategia de Intensificación se active cuando ha transcurrido desde la
última reinicialización una cantidad de iteraciones mayor a un parámetro.
(También parametrizable en el código). En la experiencia de las ejecuciones
se vio que en algunos ejemplos no reinicializó nunca en toda la búsqueda,

mientras que en otros para lograr el mejor resultado fue necesario hacerlo
hasta el maximo permitido. Con el enriquecimiento de esta estrategia, los

resultados mejoraron notablemente, dando en algunos ejemplos resultados
exactos. En algunos problemas donde, a pesar de la implementación de ambas
estrategias, los resultados no eran buenos, se propuso y desarrolló un ranking
de soluciones iniciales, ordenadas por el valor de la Función Objetivo. Las
soluciones son las halladas con la Heurística Inicial (vecino más próximo,
enriquecida con elección del vértice inicial y validación de restricciones de

precedencia). El objetivo es comenzar la búsqueda por distintas soluciones
iniciales. La cantidad de soluciones iniciales del ranking es parametrizable por
código. Con esta implementación, se mejoraron algunos resultados, y se

observó que la solución inicial seleccionada no fue necesariamente la mejor
con respecto al valor de la Función Objetivo.
Se observó, además, en otros ejemplos que fue necesario aumentar el número
de iteraciones para hallar mejores resultados. Queda para un futuro trabajo
implementar y mejorar aún más dichos resultados, un ranking de soluciones
obtenidas por el algoritmo variando ciertos parámetros.

Otra posibilidad para optimizar resultados es variar los tamaños de
diferentes estructuras COMO Lista Tabu, Lista de Soluciones Elite, Cantidad
de Soluciones Iniciales, etc. Los resultados de dichas variaciones se
describen en el Capítulo 5- Parámetros de la Búsqueda.

68

Comparando los resultados de las tablas b) y e), se ve con claridad que
además de haber podido ejecutarse ejemplos de mayores dimensiones, se
pudo mejorar el tiempo de ejecución

Más detalles sobre los resultados obtenidos, y las soluciones encontradas

tanto inicial como la lograda con la técnica Tabu, se muestran en el Apéndice.
Allí se encuentran los archivos de resultados obtenidos para las últimas
ejecuciones de cada problema bajo entorno VisualC++5.0.

69

7- CONCLUSIONES

Analizando las tablas de resultados presentadas en el capítulo anterior, se
debe tener en cuenta que el algoritmo Branch & Cut es un método exacto y el

algoritmo desarrollado en el presente trabajo es una heurística, por lo cual se
concluye que las soluciones obtenidas son razonablemente buenas. Las mismas
fueron logradas con un algoritmo de menor complejidad que el que requiere un

método exacto.

El objetivo de este trabajo fue mostrar el potencial de una técnica Tabu

Search, para un problema SOP con ejemplos de la vida real, y comparar sus
resultados con los obtenidos con un método exacto.

La parametrización del algoritmo propuesto da la posibilidad de obtener
mejores resultados variando los parámetros, como se describe en el Capítulo 5
en parámetros de la Búsqueda. Esto también permitió observar el
comportamiento del algoritmo para los distintos problemas ejecutados.

La generación de una lista de soluciones iniciales, permitió mejorar los
resultados en algunos casos, dado que tomando una solución distinta a la de
menor valor de función objetivo, se aproximaba más al resultado exacto.

Los 31 problemas ejecutados, teniendo en cuenta los resultados obtenidos,
comparados con la solución exacta, se dividen de la siguiente forma:
~~

0% 9 29 <Yo

0-5% 4 13 <Yo

5-10 % 5 16 %

10-15 % 7 22,5 %

15-20 <Yo 2 6,5 %

20-25 % 3 9,7%

25-99 % 1 3,3 %

70

Algunas de las mejoras posibles a realizar al algoritmo son:

Heurística Inicial

Se podría intentar construir la Solución Inicial utilizando otra de las

Heurísticas constructivas, citadas oportunamente.

Soluciones No Factibles

Resultaría interesante intentar permitir la exploración de regiones a

partir de soluciones no factibles, estudiando la forma de transformar

posteriormente la solución en factible.

Combinación de Movimientos

Una conocida manera de incrementar el poder de Tabu Search, es crear

diferentes mecanismos de movimientos, que pueden usarse separada o

simultáneamente, durante la búsqueda [11].

Una posibilidad en el contexto de nuestro problema es introducir

movimientos de inserción, explicados oportunamente.

Reglas Tabu

Definir otras restricciones tabu agregando nuevas Listas Tabu.

Una posible regla es la que previene a un nodo de ocupar una determinada

posición en la secuencia. Otras posibilidades son, prohibir a un determinado nodo

moverse de posición, no permitir que dos nodos intercambien posiciones entre sí,

prevenir que un nodo no ocupe una posición anterior en la secuencia.

71

Diversificación

Otros mecanismos que se pueden imponer están relacionados con la

diversificación. Una estrategia frecuentemente usada es implementar una

función de memoria a largo plazo que cuente la cantidad de veces que se realiza

una permuta. El propósito es penalizar movimientos frecuentemente realizados,

con el objetivo de dirigir la búsqueda hacia regiones no visitadas.

Criterio de Aspiración

Podría implementarse otro Criterio de Aspiración, como Aspiración

Regional, descripto oportunamente.

Vecindario Restringido

Una alternativa puede ser implementar alguna de las estrategias para

armar el vecindario restringido, entre las que fueron oportunamente citadas.

Tabu Search Probabilístico

Esta variante de Tabu Search permite una vez evaluado el vecindario, que

la elección del mejor movimiento se realice en forma aleatoria, siguiendo una de

las siguientes formas:

• Elegir aleatoriamente entre los k mejores movimientos

• Elegir aleatoriamente entre todos los movimientos con un valor dentro del <X

% de los mejores

La seleccién aleatoria puede seguir una distribución uniforme o seguir

otra funcién de distribución de probabilidad, construida desde la evaluación

asociada a cada movimiento.

72

Alternar Estrategias de Diversificación e Intensificación

Una alternativa posible es alternar la activación de las estrategias de
Diversificación e Intensificación, estudiando la mejor medida para alternar las.

Ejecución del Mejor Movimiento

Se podría intentar ejecutar un movimiento solo cuando este resulte
admisible. El criterio para decidir si un movimiento es admisible podría ser
definir un umbral de mejoría para el valor de la función objetivo, o una función
de probabilidad. La iteración podría de esta manera, no resultar en un
movimiento ejecutado, dado que este solo es aceptado cuando es admisible.

Enfoques Híbridos

Los enfoques híbridos son el resultado de combinar dos o más técnicas
metaheurísticas, de manera tal que el procedimiento resultante sea más
eficiente que la utilización de cada uno de estos.

Tabu Search Algoritmos Genéticos y Simulated Annealing son candidatos
para la creación de procedimientos híbridos, [11]

73

r:

,
BIBLIOGRAFIA

[1] Ascheuer, N. - Escudero, L.F - Grostschell, M. - Stoer, M."A cutting plane

approach to the sequential ordering problem (with applications to job scheduling
in manufacturing)" - SIAM- Journal Optimization-1993

[2] Ascheuer, N. "Hamiltonian Path Problems in the on-line Optimization of
Flexible Manufacturing Systems", Phd Thesis, Tech. Univ.Berlin, 1995

[3] Ascheuer, N.- Jünger, M.- Renuelt, G. "A Branch & Cut algorithm for the
Asymmetric Hamiltonian Path Problem with Precedence Constraints" - diciembre

1997- Preprint SC 97/70, Konrad-Zuse-Zentrum fur Informatiosttechnik-
Berlin

[4] Campello, R.- Maculan, N. "Algoritmos e heurísticas: Desenvolvimento e
Avcliccco de Algoritmos heurísticos", Editora da UFF, 1994

[5] Feo, T.A.- Resende, M.G.C. "Greedy Randomized Adaptive Search
Procedures" - Junio 1994 (Journal of Global Optimization, 1-27 (1994)

[6] Garey, M.R.- Johnson, D.S. "Computers and intractability"- Ed. W.H.

Freeman and Company- 1991

[7] Glover, F. "Tabu Search: A tutorial", Interfaces 20, pp 74-94,1990

[8] Glover, F. "Multilevel Tabu Search and Embedded Search Neighborhoods
for the Travelling Salesman Problem" - Technical Report- Junio 1991

[9] Harary- "Graph Theory"- Addison Wesley Publishing Company- 1972.

[10] Hertz, A.- Taillard, E. - de Werra, D. "Tabu Search" en "Local Search in

74

Combinatorial Optimization", Arrts, Lenstra(eds), Wiley,1997

[11] Laguna, M. "A guide to Implementing Tabu Search"- Investigación
Operativa Vol Nro 1 PP5-25 - Abril 1994.

[12] Laguna, M. "TI Escuela de Verano Latinoamericana de Investigación
Operativa- Tabu Search Tutorial"- Mendes, Brasil - 1995

[13] Reeves, C. "Modern heuristic Techniques for Combinatorial Optimization"
, Backwell, 1993

[14] Ronconi, D.P. "Special strategies for Tabu Search to minimize total
tardiness for the permutctlon flowshop problem"- 27 JATIO- 1998

[15] Sedgewick, R. "Algoritmos en C++",Ed.Addison- Wesley/Diaz de Santos-
1995

[16] Szwarcfiter, J.L. "grafos e algoritmos computacionais"- Ed. Carnpus- 1988

[17] Werra, D. De- Hertz, A. "Tabu Search Techniques" - A Tutor-icl and an
application to Neural Nefworks - Junio 1989

75

APENDICE

Este apéndice consta de dos partes:

PRIMERA PARTE: Impresión de los archivos de resultados de las ejecuciones

con cada uno de los ejemplos.
SEGUNDA PARTE: Gráficos que muestran el comportamiento del algoritmo en
cuanto al valor de la Función Objetivo a lo largo de las i"eraciones.

PRIMERA PARTE

Tue Apr 20 11:36:21PM

Problema: esc07
Cantidad de nodos: 7
Solución inicial:

2031654
Función Objetivo Solución inicial: 2625
Mejor solución encontrada:
0361542

Función Objetivo mejor soluc. encontrada: 2125
Tiempo de ejecución total: 0.000000 seg

Tiempo de ejec. mejor solución: 0.000000 seg

Número de iteraciones solicitadas: 25
Númei"ode íterecíones realizadas: 25

Mejor iteración: 15
Car'ltidadde reinicializaciones: 3

76

Tue Apr 20 11:39:20 PM

Problema: esell
Cantidad de nodos: 11
Solución inicial:

3 5 10 6 9 8 O 1 2 7 4

Función Objetivo Solución inicial: 2715
Mejor solución encontrada:
3 O 8 14 2 5 9 6 7 10

Función objetivo mejor soluc. encontrada: 2075
Tiempo de ejecución total: 0.000000 seg

Tiempo de ejec. mejor solución: 0.000000 seg

Número de iteraciones solicitadas: 650
Número de iteraciones realizadas: 650
Mejor iteración: 429

Cantidad de reiniciclizacicnes: 2

77

í

Tue Apr 20 11:41:20 PM

Problema: esc12
Cantidad de nodos: 12
Solución inicial:

3 7 9 6 O 4 2 1 5 10 118

Función Objetivo Solución inicial: 1907
Mejor solución encontrada:
3 7 9 8 6 O 2 4 10 1 5 11

Función objetivo mejor soluc. encontrada: 1675
Tiempo de ejecución total: 0.000000 seg

Tiempo de ejec. mejor solución: 0.000000 seg

Número de iteraciones solicitadas: 250
Número de ite".a~i<1Jn~sreclízcdes: 250
Mejor iteración: 69

Cantidad de reiniclcllzecleaes: 4

78

Tue Apr 20 11:42:19 PM

Problema: esc14
Cantidad de nodos: 14
Solución inicial:

9 2 O 7 3 10 1 6 8 13 5 12 4 11

Función Objetivo Solución inicial: 2625
Mejor solución encontrada:
7 O 10 3 6 8 13 1 12 5 4 112 9

Función objetivo mejor soluc. encontrada: 2125
Tiempo de ejecución total: 1.000000 seg

Tiempo de ejec. mejor solución: 0.000000 seg

Número de iteraciones solicitadas: 1300
Número de iteraciones realizadas: 1300
Mejor iteración: 375

Cantidad de reiniciclizcciones: 4

79

Sun Apr 2503:09:32 PM

Problema: esc25

Cantidad de nodos: 25
Solución inicial:

o 12 19 73 10 15 1 20 16 23 46 5 21 24 2 8 18 14 17 1113 9 22

Función Objetivo Solución inicial: 3360
Mejor solución encontrada:
23 20 16 8 O 12 19 7 3 10 15 1 9 184 6 13 5 21 22 1124 17 14 2

Función objetivo mejor soluc. encontrada: 1747
Tiempo de ejecución total: 30.000000 seg

Tiempo de ejec. mejor solución: 24.000000 seg

Número de iteraciones solicitadas: 00סס1

Número de iteraciones realizadas: 00סס1
Mejor iteración: 7509
Cantidad de reinicializaciones: 1

80

Sun Apr 2503:57:12 PM

Problema: esc47
Cantidad de nodos: 47
Solución inicial:

41 36 46 15 24 45 42 43 19 22 18 32 13 29 17 21 20 44 35 11 30 25 27 34 26
37 12 O 31 39 33 23 116 40 38 28 2 3 4 7 8 10 5 14 6 9

Función Objetivo Solución inicial: 3503
Mejor solución encontrada:
0443540 34 146 2 3938 124303 23 17510 25 27 13 9 19 22 371114207
29 41 36 33 45 6 42 43 3118 32 2115 24 28 8 26 16

Función objetivo mejor soluc. encontrada: 2367
Tiempo de ejecución total: 117.000000 seg

Tiempo de ejec. mejor solución: 110.000000 seg

Número de iteraciones solicitadas: 5000
Número de iteraciones realizadas: 5000
Mejor iteración: 4610

Cantidad de reinicializaciones: 35

81

Tue Apr 20 11:56:00 PM

Problema: esc63
Cantidad de nodos: 63
Solución inicial:

56 2 6 4 8 1 59 3 1443 O 18 1112 16 22 27 19 25 29 13 20 30 31 32 28 7 10 21
3638 151744 24 4149 263423 40 42 573546 3750 52 33 51454859 39
47 53 58 55 54 60 62 61

Función Objetivo Solución inicial: 68
Mejor solución encontrada:
12 1154 61 O 1 28 15 18 46 4 8 49 40 3 56 7 13 19 2 34 6 37 50 38 42 5 9 25 21

36 22 27 14 51 52 30 44 26 57 35 17 10 16 33 23 43 20 32 31 59 45 24 41 39
4753585548296062

Función objetivo mejor soluc. encontrada: 62
Tiempo de ejecución total: 156.000000 seg

Tiempo de ejec. mejor solución: 8.000000 seg

Número de iteraciones solicitadas: 500
Número de iteraciones realizadas: 500
Mejor iteración: 27
Cantidad de reinicializaciones: 1

82

Tue Apr 20 11:59:36 PM

Problema: esc78
Cantidad de nodos: 78
Solución inicial:

o 2 1 9 6 4 13 7 17 10 2116 5 14 31 3 118 20 12 22 37 18 59 32 38 24 60 42 66
45 76 46 15 25 28 75 19 29 23 33 55 39 26 35 27 41 64 40 30 44 72 62 73 52
473450 56 36 535843654867497051 74 54715761636869 rr

Función Objetivo Solución inicial: 22600

Mejor solución encontrada:
O 2 196 719 10 173 3111 23 22 374155942844 72 39 12 246640 43 20
5 33 55 18 347456 69 38 32 5414 21 62 68 29 27 25 28 16 3035 13 26 45
5273 rr 50 7636415861654853497051676071577563476446

Función objetivo mejor soluc. encontrada: 18640

Tiempo de ejecución total: 166.000000 seg

Tiempo de ejec. mejor solución: 115.000000 seg

Número de iteraciones solicitadas: 600
Número de iteraciones realizadas: 600

Mejor iteración: 414
Cantidad de reinicializaciones: 1

83

Wed Apr 2112:01:10 AM

Problema: esc98
Cantidad de nodos: 98
Solución inicial:

93 2 9 16 23 30 37 44 51 58 65 72 79 86 O 7 14 21 28 35 42 49 56 63 70 77
84913 10172431 38 45 52 5966 73 808794168 13 15 20 22 2729 3436
41 43 48 50 55 57 62 64 69 71 76 78 83 85 90 92 97 5 12 19 26 33 40 47 54
61687582899641118 2532394653606774818895

Función Objetivo Solución inicial: 2625

Mejor solución encontrada:
93 2 9 16 23 30 37 44 51 58 65 72 79 86 O 7 14 21 28 35 42 49 56 63 70 77
84913 10172431384552 596673 808794168 13 15 20 22 2729 3436
41 43 48 50 55 57 62 64 69 71 76 78 83 85 90 92 97 5 12 19 26 33 40 47 54

61687582899641118 2532394653606774818895

Función objetivo mejor soluc. encontrada: 2625
Tiempo de ejecución total: 53.000000 seg

Tiempo de ejec. mejor solución: 0.000000 seg

Número de iferaciones solicitadas: 100
Número de iteraciones realizadas: 100
Mejor iteración: 1
Cantidad de reinicializaciones: 4

84

Sat Apr 1706:00:34 PM

Problema: rbg019a

Cantidad de nodos: 19
Solución inicial:

3 2 O 16 54978 12 111013 1516 1418 17

Función Objetivo Solución inicial: 198
""ejor solución encontrada:
3 2 O 16 5497812 111013 1516 1418 17

FlInciónobjetivo mejor soluc. encontrada: 198
Tiempo de ejecución total: 0.000000 seg

Tiempo de ejec. mejor solución: 0.000000 seg

Número de iteraciones solicitadas: 1
Número de iteraciones realizadas: 1
Mejor iteración: O

Cantidad de reinicializaciones: O

85

Wed Apr 2112:05:51 AM

Problema: rbg019b
Cantidad de nodos: 19
Solución inicial:

10 243 7568 111012 139 141516 1718

Función Objetivo Solución inicial: 243
Mejor solución encontrada:
102 57463 8 13 9 14 12 111015161718

Función objetivo mejor soluc. encontrada: 199
Tiempo de ejecución total: 3.000000 seg

Tiempo de ejec. mejor solución: 1.000000 seg

Número de iteraciones solicitadas: 500
Número de iteraciones realizadas: 500
Mejor iteración: 119

Cantidad de reinicializaciones: 4

86

Sun Apr 2506:07:57 PM

Problema: rbg021a

Cantidad de nodos: 19
Solución inicial:

10 4 2 5 7 3 6 1112 8 9 10 17 16 15 18 13 14

Función Objetivo Solución inicial: 236
Mejor solución encontrada:
10 4 8 7 3 652 111413 12 109 16 15 18 17

Función objetivo mejor soluc. encontrada: 158
Tiempo de ejecución total: 6.000000 seg

Tiempo de ejec. mejor solución: 2.000000 seg

Número de iteraciones solicitadas: 1500
Número de iteraciones realizadas: 1500
Mejor iteración: 564

Cantidad de reinicializaciones: O

87

Wed Apr 2112:08:02 AM

Problema: rbg023a
Cantidad de nodos: 21
Solución inicial:

10425736 111289 10 17 16 15 18 13 1419 20

Función Objetivo Solución inicial: 273

Mejor solución encontrada:
10 4 8 7 3 652 111413 12 109 16 15 19 18 1720

Función objetivo mejor soluc. encontrada: 155
Tiempo de ejecución total: 4.000000 seg

Tiempo de ejec. mejor solución: 2.000000 seg

Número de iteraciones solicitadas: 500
Número de iteraciones realizadas: 500
Mejor iteración: 286

Cantidad de reinicializaciones: 4

88

Wed Apr 2112:10:06 AM

Problema: rbg029a
Cantidad de nodos: 27
Solución inicial:

08 13 1103 20 21 22 5 25 2 15 16 46 7 24 12 9 14 1126 18 1723 19

Función Objetivo Solución inicial: 270
Mejor solución encontrada:
O 2 1 24 25 56 712 9 348 13 1520 22 21 23 10 1126 1416 17 18 19

Función objetivo mejor soluc. encontrada: 221
Tiempo de ejecución total: 47.000000 seg

Tiempo de ejec. mejor solución: 44.000000 seg

Número de iteraciones solicitadas: 5000
Númei"ode iteraciones realizadas: 5000
Mejor iteración: 4730
Carr'ridadde reinicializaciones: 3

89

Wed Apr 2112:12:46 AM

Problema: rbg048a

Cantidad de nodos: 48
Solución inicial:

46 O 2 8 27244717203 130511 28 1332 33 9 1516 2112 18 26 1931 23 25
104 22 6 7 1435 34 29 38 36 4440 3743 394142 45

Función Objetivo Solución inicial: 483
Mejor solución encontrada:

46 O 27478 2416 2112 4 1 22 5 29 1428 32 131126 10 1933 9 1725 15 2 23
20 3 306718 34 31 36 3541 384540 374443 3942

Función objetivo mejor soluc. encontrada: 389
Tiempo de ejecución total: 126.000000 seg

Tiempo de ejec. mejor solución: 68.000000 seg

Número de iteraciones solicitadas: 500
Número de iteraciones realizadas: 500
Mejor iteración: 269

Cantidad de reinicializaciones: 4

90

Wed Apr 2105:15:09 PM

Problema: rbg049a
Cantidad de nodos: 49
Solución inicial:

10 8 2 9 25 26 16 32 22 3 1730 18 5 4 23 1120 29 13 6 12 24 714 15 21 34 19
3110 27 28 39 33 42 46 44 36 35 37 38 40 41 474543 48

Función Objetivo Solución inicial: 473

Mejor solución encontrada:
10 8 9 2 26 254 32 22 3 17 30 18 5 16 10 23 15 11 20 14 34 24 6 12 21 29 13

3119 7 28 2739 33 42 46 44 3743 41 35 40 36 4745 38 48

Función objetivo mejor soluc. encontrada: 407
Tiempo de ejecución total: 321.000000 seg

Tiempo de ejec. mejor solución: 128.000000 seg

Número de iteraciones solicitadas: 1000

Número de iteraciones realizadas: 1000
Mejor iteración: 427

Cantidad de reinicializaciones: 4

9i

Sun Apr 2507:47:06 PM

Problema: rbg050a
Cantidad de nodos: 50
Solución inicial:

2 O 1 33 24 6 28 747 31 4 3 178 44 21 34 5 29 10 22 23 25 18 35 32 9 16 20
114112 26 13 45 27 15 49 14 19 36 37 30 38 46 42 39 40 43 48

Función Objetivo Solución inicial: 500

Mejor solución encontrada:
2 10 18 3 1967473141427844 21 5 29 22 23 2433 251049 179 16 20 11
13 28 12 41 32 34 15 26 3745 36 35 30 38 39 43 42 48 46 40

Función objetivo mejor soluc. encontrada: 447
Tiempo de ejecución total: 128.000000 seg

Tiempo de ejec, mejor solución: 87.000000 seg

Número de iteraciones solicitadas: 500
Número de iteraciones realizadas: 500
Mejor iteración: 334

Cantidad de reinicializaciones: 2

92

Sun Apr 2508:17:56 PM

Problema: rbg050b
Cantidad de nodos: 50
Solución inicial:

10872 16304171026193515342713241418212522 1120 12 289 29
23 3 5 6 33 32 31 38 48 43 44 49 47 36 37 42 39 45 41 40 46

Función Objetivo Solución inicial: 558
Mejor solución encontrada:
10 8 7 2 3 304 17 34 10 26 6 12 28 22 13 24 14 20 25 18 27 19 5 16 23 9 29 11
21 35 15 32 31 38 33 48 4443 49 4742 3736 46 4541 40 39

Función objetivo mejor soluc. encontrada: 421
Tiempo de ejecución total: 291.000000 seg

Tiempo de ejec. mejor solución: 121.000000 seg

Número de iteraciones solicitadas: 600
Núm~i"ode iteraciones realizadas: 600
Mejor iteración: 148

C!!l'itidadde reinicializaciones: 4

93

Sun Apr 2508:36:25 PM

Problema: rbg050c
Cantidad de nodos: 50
Solución inicial:

10 10 2 19 34 25432 15 142716 173 23 22 2040 28 6 542 41 37726 8 18
29 9 3145 33 39 1112 13 24 21 354748 30 46 36 49 44 38 43

Función Objetivo Solución inicial: 558
Mejor solución encontrada:
10 10 2 19 25440 1427542 31173 23 22 1545 28 7 39 12 41 26 9 378 18
29 6 33 32 20 16 13 34 1124 21 38 48 47 30 46 43 36 49 35 44

Función objetivo mejor soluc. encontrada: 499
Tiempo de ejecución total: 332.000000 seg

Tiempo de ejec, mejor solución: 115.000000 seg

Número de iteraciones solicitadas: 500
Número de iteraciones realizadas: 500
Mejor iteración: 174

Cantidad de reinicializaciones: 4

94

Wed Apr 2105:38:07 PM

Problema: rbg068a

Cantidad de nodos: 66
Solución inicial:

1042 573 6 1112 8 9 10 17 16 15 18 13 14 19 20 24 22 23 21 26 28 25 2730
31 29 32 33 343538443740 39 36 42 4143 45 46 47484950 51 52 55 54
5653576164636558596062

Función Objetivo Solución inicial: 917

Mejor solución encontrada:
1O 4 6 8 7 3 2 1112 5 10 9 18 16 14 13 15 19 17 20 21 23 22 27 26 24 28 25 31
30 29 35 32 34 33 38 44 40 43 39 36 42 41 37 46 47 45 51 50 48 49 52 55 54
56 53 61 57 60 59 65 64 63 62 58

Función objetivo mejor soluc. encontrada: 738
Tiempo de ejecución total: 170.000000 seg

Tiempo de ejec. mejor solución: 86.000000 seg

Número de iteraciones solicitadas: 100
Número de iteruciones realizadas: 100

Mejor iteración: 56
Cantidad de reinicializaciones: 3

95

/
Wed Apr 2105:51:46 PM

/

Problema: rbg088a

Cantidad de nodos: 88
Solución inicial:

5 O 1 2 3 46 78 119 10 12 13 15 14 18 23 16 1719 20 2421 25 22 32 26 27 28
38 30 29 31 40 41 33 43 49 34 48 35 36 37 39 42 44 51 45 46 54 53 47 50 58
57526160635559566266676870646569727571 78 79 76 73 77 74
83 84 81 80 82 85 86 87

Función Objetivo Solución inicial: 1370
Mejor solución encontrada:
5 O 1 2 34678 9 1113 12 10 15 14 18 20 16 1719 23 2421 25 22 32 2726 28

38 30 29 31 49 35 33 43 40 34 48 41 36 37 39 42 46 51 45 44 54 53 47 50 58
5752616056555963646268677066656971 75 727477 76737879
83 84 85 80 82 81 87 86

Función objetivo mejor soluc. encontrada: 1240
Tiempo de ejecución total: 278.000000 seg

Tiempo de ejec. mejor solución: 105.000000 seg

Número de iteraciones solicitadas: 50
Número de iteraciones realizadas: 50
Mejor iteración: 17
Cantidad de reinicializaciones: 3

96

Sat Apr 24 11:08:48 PM

Problema: rbg092a
Cantidad de nodos: 92
Solución inicial:

2 10 3 4 5 6 7 10 8 9 1112 13 19 14 22 24 16 15 18 26 20 17 27 25 21 28 29 23

36 30 31 32 39 33 34 35 40 37 42 41 38 51 50 46 45 47 44 43 48 49 54 59 56
5253555758636160676975626483657466 rr 68807081 71 7273
76 87 85 86 78 88 79 82 84 91 90 89

Función Objetivo Solución inicial: 1246

Mejor solución encontrada:
2 10 3451076 9 8 1113 12 20 14 22 19 16 15 23 25 18 172726 21 30 29 24
32 28 33 31 39 34 35 36 40 37 42 41 38 51 50 46 45 47 44 43 48 49 59 58 56
54 53 57 55 52 63 61 64 62 60 65 67 73 68 72 74 66 69 76 80 75 71 rr 83 78

70 87 85 81 84 82 88 86 79 91 90 89

Función objetivo mejor soluc. encontrada: 1084
Tiempo de ejecución total: 3094.000000 seg

Tiempo de ejec. mejor solución: 2336.000000 seg

Número de iteraciones solicitadas: 250
Número de iteraciones realizadas: 250
Mejor iteración: 186
Cantidad de reinicializaciones: 1

97

Wed Apr 2108:07:49 AM

Problema: rbg094a
Cantidad de nodos: 94
Solución inicial:

6 5 3 O 9 11112 17 19 2 15 4 16 7 8 10 20 2113 22 14 18 23 26 25 24 27 28 29
30 31 35 32 33 34 38 36 37 39 40 41 42 43 44 45 46 47 50 48 49 51 52 54 53
57625556585963606461 7165 66 6777 69687079807282887387
7475767881839084859392868991

Función Objetivo Solución inicial: 1548
Mejor solución encontrada:
0193 156114179 2 1012 13 7 15 8 20161423 22 2118 26 25 24 28 29 27
30 31 34 33 32 36 35 41 37 38 44 42 43 39 40 4745 46 49 52 51 48 50 58 53
57555654596062636461 7166 656777 69687088747282797387
80 75 76 78 81 83 91 85 84 93 92 86 89 90

Función objetivo mejor soluc. encontrada: 1398
Tiempo de ejecución total: 27774.000000 seg

Tiempo de ejec. mejor solución: 14845.000000 seg

Número de iteraciones solicitadas: 1700
Número de iteraciones realizadas: 1700
Mejor iteración: 908
Cantidad de reinicializaciones: 4

98

Tue Apr 27 11:13:42 AM

Problema: rbg105a

Cantidad de nodos: 105
Solución inicial:

110 4 7 5 6 8 3 2 O 9 17 12 1118 19 20 16 2113 14 15 27 28 24 23 30 25 26 22
29 34 33 3731 32 41 35 46 36 40 44 43 45 42 38 47 51 48 39 54 53 55 52 56
4950 59 62 60 575861636465666768697475727077 71 76 73 78 79
87 80 89 91 81 88 82 83 84 85 94 86 90 97 96 92 93 95 98 99 100 102 104
103 101

Función Objetivo Solución inicial: 1357
Mejor solución encontrada:

211047568 3 2 O 11712 1118 19 20 16 15 13 149 22 28 29 23 35 25 24 32
26 34 33 2731 30 37 41 45 46 42 44 43 36 40 39 38 48 49 47 53 50 51 52 56
5557 5.l!· 6260615958646366676568697573 72 7077 71 74 768078
81 82 63 79 89 88 87 84 86 85 94 91 90 97 96 92 93 95 98 101 100 102 104
10399

Funcién objetivo mejor soluc. encontrada: 1213
Tiempo d.e ejecución total: 11905.000000 seg

Tiempo ¿~ ejec. mejor solución: 7858.000000 seg

Número ol~iteraciones solicitadas: 500
Número ce iteraciones realizadas: 500
Mejor iteración: 363
Cantidad de reinicializaciones: 2

99

Tue Apr 2704:56:59 AM

Problema: rbgl09a
Cantidad de nodos: 109
Solución inicial:

153 2 O 746 9 108 19 16 1118 15 2117 12 13 20 14 23 24 22 25 26 27 28 29
30 32 31353433 373640 43 4244 38 39 4741 51 52 454946 50 65 55 56
5846535760546359716861 70 62 69 6473727466677875798081

77 83 82 76 84 86 85 87 92 90 88 91 89 95 93 102 97 96 100 99 94 98 103
101104105107108106

FunciónObjetivo Solucióninicial:1478
Mejor soluciónencontrada:
053 2 1764 1098 19 12 1118 15 2117 14 13 20 16 23 22 2426 25 29 28 27
30 32 31 35 34 38 33 39 40 36 42 44 43 37 47 41 51 52 45 49 46 48 53 58 50
54655556577063597168616062646769727466737675798078

77 83 82 81 84 8785 86 92 90 88 91 89 95 93 9798 96 100 99 94 101102 107
108 105 104 106 103

Funciónobjetivo mejor soluc. encontrada: 1165
Tiempode ejecución total: 17785.000000 seg

Tiempode ejec. mejor solución:7994.000000 seg

Número de iteraciones solicitadas: 500

Número de iteraciones realizadas: 500
Mejor iteración: 237
Cantidad de reinicializaciones: 5

100

Wed Apr 2101:07:42 PM

Problema: rbg126a
Cantidad de nodos: 124
Solución inicial:

o 40 2 1 3 6 4 7 5 8 9 10 12 1115 13 14 19 16 17 18 21 20 23 22 25 26 24 27 28

31 29 30 34 32 33 35 38 3736394241574346494786 8758 83 7472 79
48 53 65 61 54 45 44 59 50 51 52 62 55 56 60 64 66 63 67 68 69 70 71 73 78
75 76 rr 81 92 80 85 82 84 88 89 90 91 96 93 94 95 97 98 99 100 101103 104
102 106 107105 109 108 111112 113 110117119 115 116 120 114118 121122 123

Función Objetivo Solución inicial: 1760

Mejor solución encontrada:
O 40 2 1 3 5 6 4 78 9 1112 10 15 13 14 17 16 19 18 21 22 20 25 24 26 23 28 27
30 29 32 34 31 33 35 38 36 37 39 44 65 79 41 42 58 4786 8749 72 5783 61
48535474434546515950 52 556256606466636769687071 7375
rr 76 78 80 81 92 85 82 84 88 89 90 91 96 93 94 95 97 98 99 100 101103 104
102 106 107105 109 108 111112 113 110114118 115 116 120 117119 121122 123

Función objetivo mejor soluc. encontrada: 1584
Tiempo de ejecución total: 11931.000000 seg

Tiempo de ejec. mejor solución: 8571.000000 seg

Número de iteraciones solicitadas: 200
Número de iteraciones realizadas: 200
Mejor iteración: 149
Cantidad de reinicializaciones: O

101

Tue Apr 2008:30:40 AM

Problema: rbg148a
Cantidad de nodos: 146
Solución inicial:

102 27173 3944 41513 101112 1415643516 23 25 2433 26 89 38437
18 22 3429 37202119 32 28 30 31 36 40 424847454649 50 54 53 51 52
59556057565861636462666865676971 77 70 78807472758183
79 73 76 87 86 82 84 92 91 85 97 94 88 98 89 90 93 100 95 104 96 99 108
101106 111102 110103 105 107109 116112119113114115121117 123 118125
124 120 127 122 129 126 128 132 133 135 137 130 131141134 139 140 136 138
142 143 144 145

FunciónObjetivo Solución inicial:1839
Mejor soluciónencontrada:
102 26 17643 44 41 5 1113 12 10 14 15 3 4 3516 23 25 2433 278 9 38 397
18 22 34 29 37 20 21 36 19 28 30 31 32 46 42 48 47 40 45 49 50 54 53 51 52
5756605958 556163 64 62 6668 676569 7077 71 78 807472 758183
79 73 76 87 86 84 82 92 91 85 97 94 90 89 88 99 95 100 98 93 103 96 102
101106 104109 110105 111108 107115 112119116118117114113124 120 125
121128 123 122 129 127 126 132 133 135 137 131130 141134 143 139 140 136
138 144 142 145

Funciónobjetivo mejor soluc. encontrada: 1624
Tiempode ejecución total: 31791.000000 seg

Tiempode ejec. mejor solución:15781.000000 seg

Número de iteraciones solicitadas: 200

Número de iteraciones realizadas: 200
Mejor iteración: 101
Cantidad de reinicializaciones: 4

102

Tue Apr 20 06:50:48 PM
Problema: rbg161a
Cantidad de nodos: 159
Solución inicial:

2 103 56 20489 71110 13 1415 12 16 1718 19 31 32 21 24 22 23 26 2739
25 38 29 37 28 30 34 33 36 35 41 42 40 43 44 45 46 47 48 49 50 51 52 53 54

56 58 55615760596263 646566676869 71 72 70747573 77 76 79 99
78 85 87 83 84 80 81 82 86 89 90 98 88 94 91 95 92 93 103 96 102 97 105
100 101104107106 108 110 109 111112 114 113 115 116 118 117 119 120 121125
124 122 123 126 130 128 129 127 132 131134 133 135 137 136 139 138 142 140

141145 143 144 148 152 146 147150 149 155151153 154157158 156

Función Objetivo Solución inicial: 2337
Mejor solución encontrada:
O 1 2 3 5 6 20 4 8 7 9 1110 14 12 15 13 16 18 17 19 31 39 21 24 22 23 37 38 27
25 28 26 29 32 30 36 33 35 3440 41 42 4·344 45 46 47 48 49 50 51 52 53 54
57585561566059626463656667686971 7270747573 77 767999

78 85 87 83 84 80 81 82 86 89 68 98 90 91 94 95 92 93 103 96 102 97 105
100 101104107106 108 109 110 111112 114113 115 116 118 117 119 120 121125
124 122 123 126 127 128 129 130 132 131134 133 135 137 136 139 138 142 140
141145 143 144148 152 146 147150 149 155 151153 154157158 156

Función objetivo mejor soluc. encontrada: 2224
Tiempo de ejecución total: 10926.000000 seg

Tiempo de ejec. mejor solución: 4263.000000 seg

Número de iteraciones solicitadas: 70
Número de iteraciones realizadas: 70

Mejor iteración: 23
Cantidad de reinicializaciones: 4

103

Mon Apr 2606:36:37 AM
Problema: rbgl74a

Cantidad de nodos: 174
Solución inicial:

102 3 8 6475 119 18 13 12 16 15 10 14 19 1720 25 28 23 24 21 27 26 22 29

30 31 32 33 34 35 36 41 39 40 37 38 46 42 48 4743 4445 55 50 49 51 54 52
7158 53 70 56 575960616263646573 66 74 67 78 77 6869 878072 75
84 83 76 88 85 79 81 82 94 93 86 89 90 91 92 107 10195 96 108 97 98 99 100
102 109 103 104 105 106 110111112 113 114120117115 116 121118 119 122 123

124 127 125 129 143 130 126 131135 132 128 136 139 137 151141134 133 144
138 152 140 147 142 149 150 145 153 146 155 148 167 158 161156 162 160 157
159 163 166 154 169 168 165 164 171170 173 172

Función Objetivo Solución inicial: 2440

Mejor solución encontrada:

10 3 2 8 6 4 7 5 119 13 14 12 16 15 17 18 10 2119 23 22 20 25 28 27 26 24 29
30 31 32 33 36 35 34 41 38 40 39 37 43 42 48 4745 44 46 55 50 52 51 54 49
71585356705759606162636465736668677877 697487807275
84 83 76 88 85 82 81 79 94 93 92 89 90 91 86 107 101 95 96 105 102 98 99
100 97 109 103 104108 106 110 113 112 111114 120 115 117 116 122 118 123 121
119 124 127 125 129 143 130 126 131135 132 128 136 141137 151139 144 133
134 138 152 140 147 150 149 142 145 153 146 155 148 167158 161156 162 154

160 159 163 166 157 169 168 165 164 171 170 173 172

Función objetivo mejor soluc. encontrada: 2218
Tiempo de ejecución total: 25091.000000 seg
Tiempo de ejec. mejor solución: 12099.000000 seg
Número de iteraciones solicitadas: 70
Número de iteraciones realizadas: 70
Mejor iteración: 35
Cantidad de reinicializaciones: 5

104

Thu Apr 22 08:24:07 AM
Problema: rbg190a
Cantidad de nodos: 188
Solución inicial:

2 103 56 20489 71110 13 1415 12 16 1718 19 31 32 21 24 22 23 26 2739

25 38 29 61 37 28 30 34 33 36 35 41 42 40 43 44 45 46 4748 49 50 51 52 53

54565855595760100 999162 66 95 103 63 649868737465886771
72 70 76 69 85 108 75 90 94 87 83 n 81 107 78 84 79 97 106 80 82 112 96
86 1048993 92 110 102 126 105101116 128 113 114 131111122 115 109 111118
119 121120 123 124 125 127 129 130 133 132 135 134 138 136 137 141 139 140
144148 142 143 146 145149147152 151150 155 153 160 154 158 156 157163
159 162 161165 164 169 179 166 182 167 168 170 171178 172 173 174 175 176
In 180181183 184185186187
Función Objetivo Solución inicial: 2732
Mejor solución encontrada:
O 1 2 3 56 204879 1110 13 12 15 14 18 1716-19 31 32 21 24 22 23 61 39 27
25 26 29 28 37 38 30 36 33 35 3440 41 42 43 45 44 47 46 49 48 50 51 52 53
54565855595760100 997862669510363649868737465886970
72 71 76 67 85 108 75 97 106 87 83 n 81107 94 84 79 90 91 80 82 112 96 86
104 89 93 92 101 102 109 105 115 116 128 113 114 126 131 110 111122 117 118
119 120 121123 124 125 127 129 130 133 132 135 134 138 136 137 141 139 140
144 148 142 143 146 145149 147152 151150 155 153 160 154 156 158 157163

159 162 161165 164 169 167166 182 179 168 170 172 178 171173 174 175 176
In 180 181183 184185 187186
Función objetivo mejor soluc. encontrada: 2585
Tiempo de ejecución total: 49975.000000 seg
Tiempo de ejec. mejor solución: 28370.000000 seg
Número de iteraciones solicitadas: 100
Número de iteraciones realizadas: 100
Mejor iteración: 59
Cantidad de reinicializaciones: 3

105

Mon Apr 1906:39:59 PM

') Problema: rbg285a2

Cantidad de nodos: 283
Solución inicial:

1 70 O 2 3 547689 10 13 1112 14 15 22 16 1718 23 19 21 20 25 24 27 28 26
29 32 31 30 33 36 34 37 35 38 39 40 42 41 45 43 44 49 46 4748 51 50 53 52
5556 545758 61 59 606462 63 65 68 6766 6972 718773 76 79 77 116
11788 113 104102 109 78 83 95 91 84 75 74 89 808182 92 8586 90 94 96
93 97 98 99 100 101 103 108 105 106 107 111122 110 115 112 114 118 119 120
121126 123 124 125 127 128 129 130 131133 134 132 136 137 135 139 138 141
161140 147149 145 146 142 143 144 148 151152 160 150 156 153 157154 155

165 158 164159 167162 163 166 169 168 170 172 171173 174 176 175 177 178
180 179 181182 183 187 186 184 185 188 192 190 191189 194 193 196 195 197
199 198 201 200 204 202 203 207 205 206 210 214 208 209 212 211 217 213
215 216 219 220 218 224 226 221 222 223 229 225 227228 245 246 234 230

232 231 233 240 238 235 236 237239 241 247242 243 244 248 249 250 251
252 253 254 255 256 259 257 260 258 262 263 264 261 266 268 269 267
265 270 273 271272275274276 277 278282 279280281

Función Objetivo Solución inicial: 4268
Mejor solución encontrada:

0370 2 154768 109 12 13 111415 22 18 1716 23 19 21 20 25 24 27 28 26
29 32 313033 36343735 38 394142 40 45 43 4446494748 5152 50 55
545653 58 5759 6062 646163 65 68 66 676974958711 72 79 TI 116

11783 113 104102 109 78 83 8491 73 7576 8189 8082 85 92 86 90 94 96
93 97 98 99 100 101 103 105 107 106 108 110 111122 UGiH2 114 118 119 120
121126 123 124 125 127 128 129 130 131133 134 132 1 (, 131135 139 13S 141

161 140 147 149 145 146 142 143 144 148 151150 160 1 2 1~3 1 6 157 li ~ 155
165 158 164159 167162 163 166 169 168 170 171172 113 174 176 115 177 178

180 179 181182 183 187 186 184 185 188 189 190 191192 194 193 196 195 197
199 198 201 200 204 202 203 207 205 206 210 214 208 209 212 211 217 213

106

215 216 219 220 218 224 226 221 222 223 229 225 227228 245 233 234 230
246 231 232 240 238 235 236 237239 241 247242 243 244248 249 250 251

253 252 254 255 256 259 257 260 258 262 263 264 261 266 268 265 269
267270273 272 271275274 zrr 276 278282 279280281

Función objetivo mejor soluc. encontrada: 3887
Tiempo de ejecución total: 169766.000000 seg

Tiempo de ejec. mejor solución: 142639.000000 seg

Número de iteraciones solicitadas: 50
Número de iteraciones realizadas: 50
Mejor iteración: 41

Cantidad de r-einiciclizcciones: O

107

SEGUNDA PARTE

El estudio de los resultados se dividió en tres partes:

• Problemas que arrojaron resultados exactos
• Problemas que arrojaron resultados aproximados (no más del 10 % de la
solución exacta)

• Problemas que arrojaron resultados distantes de la solución exacta.

En todos los casos las pruebas se realizaron variando y combinando los
parámetros ajustables de la búsqueda, y tamaños de ciertas estructuras
importantes para la misma.

A continuación se presentan los gráficos y las tablas de valores de cada
iteración, correspondientes al comportamiento del algoritmo para cada problema

estudiado.
En todos los problemas se tomaron para cada iteración los valores de la Función
Objetivo y el valor del reloj. El número de iteraciones varia en cada problema,
dado que en algunos casos fue necesario aumentar esta cantidad, con el objetivo
de encontrar la mejor solución.

108

Estudio de problemas cuyo resultado resultó distante de la solución exacta:

• Se observó que para el problema esc25 aumentar la cantidad de iteraciones
totales mejoraba el valor de la función objetivo obtenida.
La mejor solución obtenida para este problema se obtuvo partiendo de la
solución inicialnúmero catorce de la lista de mejores soluciónes iniciales, con

00סס1 iteraciones.
El comportamiento del algoritmo para este problema resultó:

esc25 c/10000 Iteraciones

g 8000 .--,
:;:
.~ 6000 +-------------;
Jl
O 4000
c:
~ 2000 +--=~~~------------------------~~~~~~
u
§ O~ ,. mn~ __ ~~~nm ~~ma~um __ mn~ aggd

1 1135 2269 3403 4537 5671 6805 7939 9073
Ite raciones

ITER FO CPU
1 3360 00:00:00

1135 4200 00:00:03
2569 4235 00:00:09
3403 3674 00:00:11
4537 2573 00:00:15
5671 5514 00:00:18
6805 5353 00:00:21
7509 1747 00:00:24
7939 3765 00:00:25
9073 3414 00:00:28
00סס1 4105 00:00:30

109

Estudio de problemas cuyo resultado resultó distante de la solución exacta:

• Para el problema esc47 dado que la solución obtenida en la mayoría de las

pruebas no era buena, se aumentó la diversificación y la intensificación

durante la búsqueda.

La mejor solución se obtuvo partiendo de la solución inicial número siete de la

lista de mejores soluciones iniciales, con 5000 iteraciones.

El comportamiento del algoritmo para este problema resultó:

esc47 c/5000 Iteraciones

Iteraciones

ITER FO CPU
1 3503 00:00:00

307 5586 00:00:11
613 5277 00:00:18
919 5596 00:00:25
1225 5220 00:00:31
1531 5676 00:00:35
1837 5217 00:00:40
2143 5364 00:00:45
2449 4957 00:00:52
2755 5401 00:01:01
3061 4532 00:01:11
3367 4747 00:01:21
3673 4615 00:01:30
3979 4087 00:01:39
4285 3738 00:01:44
4591 3288 00:01:50
4610 2367 00:01:50
4897 3192 00:01:55
5000 3234 00:01:57

110

Estudio de problemas cuyo resultado resultó distante de la solución exacta:

• El problema esc98 en la mayoría de las pruebas terminó encontrando su mejor

solución en la primera iteración, esto es, la solución inicial. Se probó comenzar con

todas las posibles soluciones iniciales, halladas con la heurística inicial, sin obtener

mejoría en los resultados. Se observó que aumentar la cantidad de iteraciones no

mejoraba la solución obtenida. Igual resultado se obtuvo al aumentar la

diversificación e intensificación durante la búsqueda. De igual manera se probaron

sin mejoría distintas combinaciones de los parámetros de la búsqueda. El

comportamiento del algoritmo para este problema resultó:

esc98 c/100 Iteraciones
O>•• 3000CI)

I""" ,,~""" "'"'''' '"'''' "'"'''' "'"'''' "'"'' "'"'''' "'"'''' "'"'' "'"'''' ,1

....•.c 2000O
c: 1000-O

'(3
Oc:::J ,....... 1"- C") (J) LO ,....... 1"- C") (J) LO ,....... 1"- C") (J) LO ,....... 1"-LL ,....... ,....... N C") C") ~ ~ LO <D <D 1"- 1"- co (J) (J)

Iteraciones

!TER FO (plJ

1 2625 00:00:00

7 2625 00:00:04

13 2625 00:00:07

19 2625 00:00:11

25 2625 00:00:14

31 2625 00:00:17

37 2625 00:00:20

43 2625 00:00:23

49 2625 00:00:26

55 2625 00:00:29

61 2625 00:00:33

67 2625 00:00:36

73 2625 00:00:38

79 2625 00:00:41

85 2625 00:00:44

91 2625 00:00:48

97 2625 00:00:52

100 2625 00:00:53

111

Estudio de problemas cuyos resultados obtenidos resultaron exactos:

,
4000

I 3000
20001100~

~ ••• ('t)

i---.... ./ ?1?~- ~

Iterlclone.

ITER FO CPU
1 2625 00:00:00
3 2600 00:00:00
5 2700 00:00:00
7 2825 00:00:00
9 2950 00:00:00
11 3050 00:00:00
13 2475 00:00:00
15 2125 00:00:00
17 2950 00:00:00
19 2650 00:00:00
21 3075 00:00:00
23 2725 00:00:00
25 2300 00:00:00

112

Estudio de problemas cuyos resultados obtenidos resultaron exactos :.

c: o
'o .~.- -(,,)Q)c:•
::::J"c
LLO

esc63 c/SOO Iteraciones

Iteraciones

ITER FO CPU
1 68 00:00:00

27 62 00:00:08
31 63 00:00:09
61 65 00:00:18
91 71 00:00:28
121 70 00:00:37
151 67 00:00:47
181 75 00:00:57
211 73 00:01:07
241 72 00:01:16
271 73 00:01:26
301 70 00:01:35
331 73 00:01:44
361 73 00:01:54
391 63 00:02:03
421 68 00:02:12
451 65 00:02:21
481 67 00:02:30
500 65 00:02:36

113

Estudio de problemas cuyos resultados obtenidos resultaron exactos:

rbg019b c/500 Iteraciones

Iteraciones

ITER FO CPU
1 243 00:00:00

30 214 00:00:01
59 210 00:00:01
88 217 00:00:01
117 225 00:00:01
119 199 00:00:01
146 233 00:00:01
175 225 00:00:01
204 251 00:00:02
233 256 00:00:02
262 266 00:00:02
291 263 00:00:02
320 290 00:00:02
349 298 00:00:02
378 223 00:00:02
407 214 00:00:02
436 214 00:00:03
465 214 00:00:03
494 199 00:00:03
500 205 00:00:03

114

Estudio de problemas cuyos resultados obtenidos resultaron exatos:

rbg021 a c/1500 Iteraciones
o
>:;::
.~ 300 t:: -- ------------~---------:
~~~g

c::::
~LL.

('f) (J) LO 'r" 1'- ('f)
('f) 'r" o (J) 1'- <Do 'r" N N ('f) ..;t
~~~~~~

Iteraciones

ITER FO CPU
1 236 00:00:00

87 205 00:00:01
173 210 00:00:01
259 191 00:00:01
345 180 00:00:02
431 182 00:00:02
517 202 00:00:02
564 158 00:00:02
603 184 00:00:03
689 184 00:00:03
775 181 00:00:03
861 173 00:00:03
947 204 00:00:04
1033 198 00:00:04
1119 206 00:00:04
1205 221 00:00:05
1291 234 00:00:05
1377 224 00:00:05
1463 189 00:00:06
1500 203 00:00:06

115

Estudio de problemas cuyos resultados obtenidos resultaron exactos:

rbg023a c/500 Iteraciones

Iteraciones

ITER FO CPU
1 273 00:00:00

31 201 00:00:01
61 218 00:00:01
91 203 00:00:01
121 225 00:00:02
151 219 00:00:02
181 199 00:00:02
211 186 00:00:02
241 181 00:00:02
271 195 00:00:02
286 155 00:00:02
301 178 00:00:03
331 187 00:00:03
361 176 00:00:03
391 176 00:00:03
421 185 00:00:03
451 217 00:00:03
481 194 00:00:03
500 196 00:00:04

116

Estudio de resultados de problemas varios:

rbg148a c/200 Iteraciones

1900· --.,

~iji~~§:,,,,,,,,,"''''''''''''''''''''''''"''"'"''''',::~~'';
~ N ~ ~ ~ m ~ ro m o ~ N ~ ~ ~ m ~ ro m~ N ~ ~ ~ m ~ ro o ~ N ~ ~ ~ m ~ ro m

~ ~ "'r"'""' "C""'""' ~ "r"'""' "C""'""' "C""'""' "C""'""' "C""'""'

Iteraciones

ITER FO CPU
1 1839 00:00:00

12 1718 00:22:37
23 1660 00:52:11
34 1626 01:21:48
35 1626 01:24:29
45 1626 01:51:49
56 1626 02:21:28
67 1626 02:51:09
78 1626 03:20:39
89 1626 03:50:37
100 1626 04:20:20
101 1624 04:23:01
111 1624 04:49:52
122 1624 05:19:27
133 1624 05:49:19
144 1624 06:18:57
155 1624 06:48:29
166 1624 07:18:08
177 1624 07:48:02
188 1624 08:17:36
199 1624 08:47:09
200 1624 08:49:51

117

Estudio de resultados de problemas varios:

rbg092a c/250 Iteraciones
o
>

f ¡¡¡¡~"""""""""""""""""""""""''''''',:,,''''''''''''''',,:,,''''''''''''''''''''''''"""'"""""""""""""""""""":::,,"""""",!:::lu. ..-- <D ..--
..-- N ~..--..--..--N N N

..-- <D ..-- <D ..-- <D ..--
..-- ('t') ~ <D 1'- (J)

<D ..-- <D ..--o N ('t') LO <D ..-- <D<D ro (J)

Iteraciones

ITER FO CPU
1 1246 00:00:00

16 1135 00:01:37
31 1097 00:03:13
46 1096 00:04:48
61 1096 00:07:31
76 1096 00:11:18
91 1096 00:15:03
106 1096 00:18:48
121 1095 00:22:35
136 1095 00:26:22
151 1095 00:30:09
166 1095 00:33:53
181 1091 00:37:40
186 1084 00:38:56
196 1084 00:41:26
211 1084 00:45:12
226 1084 00:48:54
241 1084 00:50:34
250 1084 00:51:34

118

Estudio de resultados de problemas varios:

rbg174a c/70 Iteraciones
o
>; 2500 ~--,
(1)
~ 2400 +,~---------------------------------------~
~ 2300 +---~--=-~~------------------------------~
'0 2200 .L, ======::::::::::::::=~~"'c··"'~".•l:fnl======d
o§ 2100 ~~~~~~~~~~~~~~~~~~~~~

LL T""- en T""- en T""- en T""- en
T""- T""- N N M M

Iteraciones

ITER FO CPU
1 2440 00:00:00
6 2360 00:21:15
11 2311 00:52:09
16 2281 01:23:43
21 2261 01:54:33
26 2244 02:25:23
31 2241 02:56:14
35 2218 03:21:39
36 2218 03:27:51
41 2218 03:58:43
46 2218 04:29:30
51 2218 05:00:17
56 2218 05:31:47
61 2218 06:02:41
66 2218 06:33:29
70 2218 06:58:11

119

Estudio de resultados de problemas varios:

rbg050a c/500 Iteraciones

Iteraciones

ITER FO CPU
1 500 00:00:00

31 473 00:00:08
61 472 00:00:16
91 471 00:00:24
121 472 00:00:32
151 472 00:00:41
181 471 00:00:49
211 471 00:00:56
241 471 00:01:04
271 471 00:01:11
301 477 00:01:19
331 450 00:01:26
334 447 00;01:27
361 448 00:01:34
391 448 00:01:41
421 448 00:01:49
451 447 00:01:56
481 448 00:02:04
500 447 00:02:08

120

Estudio de resultados de problemas varios:

rbg190a e/50 Iteraeiones
o>:; 2800 -,-----------------------
(1)

~ 2700 .~I----~-=------------------~
~ ------------
'o 2600 +------~==~---===;;;;;;;;;;~~;:====1••..,u..,
(,J

§ 2500 ~~~~~~~~~~~~~~~~~~~~rrrl
LL o ('f) <D (J) N lO ro ..-

..- ..- ..- ..- N N N ('f)

Iteraciones

ITER FO CPU
1 2732 00:00:00
4 2704 00:19:51
7 2684 00:34:58
10 2670 00:54:51
13 2656 01:17:16
16 2620 01:33:15
19 2607 01:44:52
22 2604 01:57:35
25 2604 02:09:17
28 2604 02:34:17
31 2587 03:01:32
33 2585 03:19:28
34 2586 03:28:25
37 2586 03:55:21
40 2586 04:22:19
43 2586 04:49:36
46 2586 05:16:29
49 2585 05:43:17
50 2585 05:48:29

121

Estudio de resultados de problemas varios:

rbg050b c/600 Iteraciones

Iteraciones

ITER FO CPU
1 558 00:00:00

37 451 00:00:16
73 451 00:00:58
109 446 00:01:42
145 422 00:01:57
148 421 00:02:01
181 425 00:02:37
217 424 00:02:50
253 426 00:03:05
289 425 00:03:18
325 464 00:03:29
361 478 00:03:39
397 513 00:03:50
433 513 00:04:01
469 426 00:04:12
505 424 00:04:23
541 424 00:04:34
577 425 00:04:44
600 424 00:04:51

122

Estudio de resultados de problemas varios:

rbg050c c/500 Iteraciones

600 ~ -----------------------,e o I
'0 .~ 550 :.- ~ :

~~:~~~ 2.__=__-==-__n•••_"_~

Iteraciones

ITER FO CPU
1 558 00:00:00

31 514 00:00:11
61 514 00:00:20
91 514 00:00:41
121 514 00:01:00
151 523 00:01:30
174 499 00:01:55
181 499 00:02:02
211 499 00:02:22
241 499 00:02:37
271 499 00:02:48
301 500 00:03:10
331 531 00:03:39
361 536 00:04:10
391 499 00:04:27
421 499 00:04:59
451 499 00:05:20
481 499 00:05:28
500 499 00:05:32

123

Estudio de resultados de problemas varios:

c: o
'0 >-- ;;
(,J Cl)
c: "-::J..c
u.Q

rbg105a c/500 Iteraciones

1400 §----------------- ---------- !!
1300 ~~~~~~ ':::ag~ '::'..':::::::::J

Iteraciones

ITER FO CPU
1 1357 00:00:00

32 1238 00:06:31
63 1238 00:14:56
94 1238 00:21:30
125 1238 00:29:42
156 1221 00:44:44
187 1221 00:53:03
218 1221 01:05:04
249 1222 01:15:17
280 1220 01:30:23
311 1220 01:45:33
342 1220 02:00:41
363 1213 02:10:58
373 1213 02:15:51
404 1213 02:31:01
435 1213 02:46:12
466 1213 03:01:21
497 1213 03:16:57
500 1213 03:18:25

124

Estudio de resultados de problemas varios:

rbg109a C/SOOIteraciones

e o 2000 h
JI~~g~L_~ =- j

Iteraciones

ITER FO CPU
1 1478 00:00:00

32 1202 00:07:56
63 1202 00:24:20
94 1202 00:43:31
125 1202 01:03:09
156 1171 01:22:25
187 1171 01:41:40
218 1171 02:00:52
238 1165 02:13:14
249 1165 02:20:04
280 1165 02:39:16
311 1165 02:59:12
342 1166 03:18:22
373 1209 03:37:30
404 1165 03:56:39
435 1165 04:15:50
466 1165 04:35:03
497 1165 04:35:03
500 1165 04:56:25

125

	Portada
	Indice
	Resumen
	Introduccion
	Modelo matemático
	Heurísticas
	Por qué usar heurísticas?
	Heurísticas constructivas

	Qué es el tabu search
	En qué consiste la técnica

	Algoritmo tabu search propuesto
	Características particulares
	Módulos principales del programa

	Resultados
	Conclusiones
	Bibliografía
	Apendice

