S G
e

. -
S

e

0
Sy
’ e
G

(

e A R

- ey
/

G
ity s

(: o o : : ; e e i
\ % R S s

AGRADECIMIENTOS

A Maria Teresa Ortufio y Laureano Escudero que contestaron nuestros E-mail y nos
facilitaron los ejemplos para la comparacion de resultados. A Dario Robak que
respondié nuestras consultas aclarando numerosas dudas.

Nuestro agradecimiento ademads a Isabel Mendez y Marcelo Frias, y en forma muy
especial a nuestra directora Irene Loiseau.

A Alfredo Olivero por su apoyo invalorable, y a Lucia Carabajal por su colaboracion.

Alicia y Fabiana

A mis padres.

A Félix, y a mis hijos, Victoria y Leandro.

Por haberme acompafiado, comprendido y apcyado en esta etapa.
Por su infinita paciencia y carifio.

Alicia

A mis padres. A mis amigos y compafieros de estudio, Ménica y Pablo, por todo lo que
compartimos durante estos afios juntos.

A mi amiga Graciela por su importante apoyo

A Alfredo por todo.

Fabiana

A todos de corazon, Muchisimas gracias

INDICE

Seccién Titulo Pdgina
1 INTRODUCCION 2
2 MODELO MATEMATICO 5
3 HEURISTICAS 8
3.1 Por qué usar heuristicas? 8
8.2 Heuristicas constructivas 9
4 QUE ES EL TABU SEARCH? 15
4.1 En qué consiste la técnica 16
5 ALGORITMO TABU SEARCH 30
PROPUESTO
5.1 Caracteristicas particulares 30
5.2 Mddulos principales del programa 41
521 Mddulo principal 41
5.2.2 Mdédulo de entrada de datos 42
5.2.3 Mdédulo de verificacion de precedencias 43
5.2.4 Mdédulo de solucidn inicial 44
5.25 Mddulo de generacidn de la solucion 47
5.2.6 Mddulo de generacidn de lista de 49
candidatos
D2 Mejor movimiento 51
528 Mddulo de ejecucidn del mejor 53
movimiento
529 Médulo de actualizacién de la Lista Tabu 54
5.2.10 Mdédulo Tiempo de Permanencia en la 56
lista Tabu
5211 Mddulo del Criterio de Asp racién 56
5.2.12 Mddulo de Funcién Objetivo 59
5213 Mddulo de Intensificacion 59
5.2.14 Mddulo de Diversificacion 61
5.2/15 Mdédulo de Resultados 61
6 RESULTADOS 62
7 CONCLUSIONES 70
BIBLIOGRAFIA 74

APENDICE 76

RESUMEN

Este trabajo consiste en desarrollar un algoritmo tipo Tabu Search para
un problema de secuenciamiento de tareas (SOP-Sequential Ordering Problem)
que se puede modelar como el problema de encontrar un camino hamiltoniano de
costo minimo en un grafo, respetando relaciones de precedencia. Se presentan
para ello las caracteristicas bésicas del método Tabu Search, (que es un
procedimiento de heuristica general para problemas de optimizacion global),y el
detalle de las caracteristicas principales del algoritmo desarrollado. Se informan
los resultados obtenidos y la comparacién de los mismos, en problemas de

literatura con los resultados presentados por un algoritmo exacto en [3]

ABSTRACT

The present work consists in developing a Tabu Search type algorithm,
for a Sequential Ordering Problem (SOP), which can be modeled as a problem of
finding a minimun cost hamiltonian path in a graph, with precedence constraints.
We present here the basic characteristics of Tabu Search method . It is a
general heuristic procedure for global optimization problems. Moreover, we
describe the principal characteristics of the developed algorithm. They are
presented, and compared on literature problems with the results appearing for

an exact algorithm in [3].

1.-INTRODUCCION

El objetivo de este trabajo fue la mplementacion de un algoritmo tipo
Tabu Search para el problema de Secuenciamiento de Tareas con restricciones
de Precedencia (SOP, Sequential Ordering Problem), y mostrar los resultados
obtenidos compardndolos con aquellos que provienen de un algoritmo exacto tipo

Branch & Cut, usados en [3], para problemas de la vida real.

El SOP de acuerdo a lo que se menciona en [3], parece haber sido tratado
por primera vez por Escudero. Su objetivo fue disefiar heuristicas para ser
implementadas en un sistema de planificacion de produccion que dieron buen
resultado en la prdactica con respecto a la garantia de calidad de la solucién y al

tiempo de procesamiento.

Existen varios problemas de la vida ~eal que pueden ser modelados con un
SOP. Por ejemplo, aplicaciones de ruteo donde se deben realizar retiros y
entregas en un determinado orden. Otro caso es un ruteo on-line de una gria
apiladora en un sistema automdtico de almacenamiento, o en aplicaciones de
encolamiento donde un cierto trabajo tiene: que estar terminado antes que otros

comiencen.

Sir William Hamilton sugirié la clase de grafos que lleva su nombre cuando
le fue encomendado que construyera un ciclo conteniendo cada uno de los
vértices de un dodecaedro. Si & tiene un ciclo Z que pasa por todos los nodos
solo una vez, entonces & es llamado un grafo hamiltoniano y Zes llamado un ciclo
hamiltoniano. No existe ninguna caracterizaciéon elegante de los grafos
hamiltonianos, aunque si se conocen rumerosas condiciones necesarias y
suficientes [9).

El problema de encontrar un camino hamiltoniano factible con minimo

costo total, se conoce como problema de ordenamiento secuencial (SOP) por lo

2

tanto el SOP puede ser visto como una generalizacion del problema del camino
de Hamilton, donde llamaremos factible a un camino Hamiltoniano que satisface
ciertas relaciones de precedencia dadas.

Segun [1], el problema SOP se puede tratar de la siguiente forma: dado
un grafo dirigido , un arco representa la posibilidad de llevar a cabo dos tareas
en forma secuencial y el peso de la arista, representa el costo de ejecutar las
tareas en ese orden. Ademds, las relaciones de precedencia dadas especifican si

algunas tareas deben ejecutarse antes que otras.

El problema SOP es NP-completo Reduciendo en el problema SOP los
nodos I y n a un nodo Unico obtenemos un ATSP (Asymmetric Travelling
Salesman Problem) con restricciones de precedencia sobre n-1nodos. Mds atin, el
SOP se reduce a un problema AHPP (Asymmetric Hamiltonian Paih Problem) en
caso que el digrafo de precedencia tenga un conjunto de arcos vacio. Entonces el
AHPP es un caso especial del SOP. Como el AHPP es un problema NP-completo lo
mismo pasa para el SOP.

Con este objetivo el trabajo incluyé:

¢ Bisqueda de una solucion inicial usando una heuristica golosa.

¢ Desarrollo de una heuristica tipo Tabu Search ad-hoc

A partir de la solucion inicial factible hallada, se aplica la técnica Tabu

Search para obiener la solucién opiima.

La organizacién del trabajo es la siguiente: en el capitulo 2 se explica el
uso de heuristicas en este tipo de problemas y se dan ejemplos de heuristicas
constructivas, usadas para el problema del viajante de comercio. En el capitulo 3
se presenta al SOP, como un problema de programacion lineal 0/1, y en el 4 se
detallan las caracteristicas generales de la técnica Tabu Search como uso de la
memoria, Lista Tabu, criterio de aspiracion, etc. Luego, en el capitulo 5 se
describe el algoritmo Tabu Search propuesto y detalles de la implementacion
realizada, asi como las caracteristicas generales del algoritmo, y, por tltimo se
presentan los resultados obtenidos compardndolos con los logrados con un
algoritmo Branch & Cut. Al final del trabajo se dan las conclusiones obtenidas
con la experiencia y se detalla la bibliografia utilizada. Los detalles sobre las

ejecuciones con los distintos ejemplos , se encuentran en el Apéndice.

2.- MODELO MATEMATICO :

De acuerdo a lo propuesto en [3], vamos a modelizar el problema SOP
utilizando dos grafos, uno de ellos completo, y el otro adicional que indica las
precedencias entre los nodos. Cada nodo representa una tarea en la secuencia 'y

cada arista, el costo de ir de una tarea a otra.

Dado un grafo dirigido D,=(V,A,} sobre n nodos, coeficiente de costos ¢;;
pertenecientes a N, con ¢;; >0, asociado con cada arco (7,j) que pertenece a A,y
digrafo adicional de precedencia P=(V,R), que esta definido en el mismo conjunto
de nodos V' como D,. Un arco (i,j) que pertenece a R representa una relacion de
precedencia, es decir / tiene que preceder a j en todo camino hamiltoniano
factible. Obviamente, el digrafo de precedencia P debe ser aciclico (es decir, no
puede contener ningun ciclo dirigido). Mas aun si (7,/), (j.k) € R entonces k no se
puede llevar a cabo antes que /, en otras palabras, podemos asumir que P es

transitivamente cerrado.

Vamos a presentar la formulacion del SOP, como problema de

Programacion Lineal 0/1 .

Segun se indica en [3] y [1], supongamos un digrafo completo D=(V,A,), y
un digrafo de precedencia P=(V,R). Para cada arco (i) que pertenece a A,
introducimos una variable binaria x;; tal que:
x;;= 1 si (i,j) pertenece a A, en un camino hamiltoniano

x;;= O en caso contrario.
Inmediatamente se pueden hacer deducciones simples.

Dado D,= (V, A,)y P=(V,R) entonces:
1) x;= O para todo (/,j que pertenece a R
2) Xu=0V (i,k) € Rtal que (i j)e Ry (k) e R

8

3) Sea W c V, entonces A(W) = {(i,j) € A, ij € W}

4) Si je Ventonces5°(j) = {(j,k) € Aty 6 (J) = ((i,j) € A,

5) Si Wc V\{j} entonces (j:W) = ((ik) € An | k € W}y (Wij)={(i,j) € A, [ie
wj}

Formulacion como Problema de Programacion Lineal 0/1
x*=Min cx

s.a

1) xE@)-1vieV\{d)
2) x(EG)=1vieV\{n}
(3) Dado un conjunto Ac A,, x(A) denota X) xij.
xX(AW) </ W/|-1vWcV 2</W<n-1
(@) x(:W)+ x(AW)) + x(Wii) <= [W] v (ij)e Ry v W VI (ij} W0
() xye OV (ij)e A,

(1) a (3) y () es la formulacion del problema de determinar un camino
hamiltoniano minimo en D=(V,A,).
(4) es la desigualdad que garantiza que se cumplan las restricciones de

precedencia.

(1) Indica que en el camino hamiltoniano, llega un solo arco al nodo i para todo i
enV

(2) Indica que en el camino hamiltoniano, sale un solo arco del nodo i para todo i
enV

(1) y (2) Aseguran que por cada nodo se pasa una y solo una vez

(3) Es la restriccion llamada ‘eliminacion de subtours’, ya que establece que para
todo subconjunio de k nodos unidos por aristas, solo formardn parte del
camino Hamiltoniano, a lo sumo k-1 aristas, para asi evitar la formacion de
ciclos.

(4) Establece que si i debe preceder a j, no hay directa ni transitivamente un

arco que llegue desde j hacia i

(B) Establece que x ij es una variable binaria

N. Ascheuer en [3] usa esta formulacion para el SOP para luego aplicar un
algoritmo Branch & Cut. Nuestros resultados serdn comparados con los
obtenidos por ellos.

3.- HEURISTICAS

3.1.- Por qué usar heuristicas?

En todos los ejemplos de problemas de optimizacion combinatoria
conocidos (como disefio de redes de telecomunicacion eficientes, ruteo de
vehiculos de entrega, etc), es tedricamente posible enumerar todas las
combinaciones de soluciones y evaluar cada una con respecto a la funcion
objetivo. Las que proveen el valor mds favorable, se llaman “dptimas”. Sin
embargo, desde una vision prdctica, seguir cada estrategia de enumeracion
completa se torna muy laborioso, ya que el nimero de combinaciones crece en

forma exponencial con el tamatio del problema.

Se ha hecho mucho trabajo en los ultimos 40 afios para desarrollar
métodos de biusqueda de dptimos que no requieren explicitamente examinar
cada alternativa. Estas investigaciones tuvieron éxito en el campo de
optimizacion combinatoria, y los métodos de busqueda desarrollados son capaces
de resolver problemas de la vida real, como versiones del problema del vigjante
de comercio, etc. A pesar de eso, gran parte de los problemas encontrados en la
industria son computacionalmente intratables por este método, o son muy
grandes para ser manejados por algoritmos exactos. En estos casos, los métodos
heuristicos se emplean normalmente para encontrar soluciones buenas, pero no
necesariamente optimas. Se han desarrollado varias técnicas generales para
construir heuristicas, que demostraron ser efectivas para obtener buenas
soluciones en problemas dificiles de optimizacion combinatoria. Las mds
conocidas son Simulated Annealing, Tabu Search, Algoritmos Genéticos 'y
GRASP (6reedy Randomized Adaptive Search Procedures).

En el problema que nos ocupa, “minimizar el costo de ejecucion de una
secuencia de trabajos donde existen relaciones de precedencia”, para buscar una

solucion exacta una de las posibilidades es analizar todas las alternativas

8

posibles sobre el orden en que se deberian ejecutar las tareas, algo que es
prdcticamente imposible para secuencias de trabajos numerosas. En el caso del
SOP, que como ya se mencioné es NP-completo no se conocen algoritmos buenos
para resolverlos, es decir, algoritmos que resuelvan el problema en tiempo
polinomial, por lo tanto se usardn heuristicas para lograr buenas soluciones en un

tiempo razonable.

3.2.- Heuristicas constructivas

Son las técnicas heuristicas capaces de construir una solucidn inicial a
partir de los datos de entrada.

Tradicionalmente se han usado heuristicas constructivas para el problema
del vigjante de comercio. Las mds conocidas de estas heuristivas se pueden

categorizar como heuristicas miopes o golosas.

Este tipo de heuristicas trabaja viendo al problema representado por un
grafo, cuyas aristas tienen asociado un costo que puede representar ir de una
ciudad a otra (vigjante de comercio) o ejecutar un trabajo antes que otro
(secuenciamiento de trabajos). Para ello arma una lista ordenada de los nodos

con sus costos asociados, de menor a mayor.

Para citar algunos ejemplos de heuristicas cominmente usadas para el

problema del Vigjante de Comercio, vemos las siguientes [4]:

a) Vecino mds préximo

Esta version de algoritmo miope se debe a Belmore y Nemhauser (1988).
Consiste simplemente en partir del vértice inicial. Comenzamos desde x;
pertenecienie a A, y elegimos en cada iteracion un vértice, elimindndolo de un

conjunto de posibles.

Algoritmo VP(6=(N,M)) [camino en &] (Segun [4])
Input {6=(N.M)con N=(1,2.....,.n}y c;para cada /ijc N}
H= {1}
X0=0
N=N\ {1}
i=1
Mientras N =0 hacer
Inicio
Sea {cik el costo de ai, i k perteneciente a N y ai perteneciente a M}
Elegir jperteneciente a N tal que ¢;;= minimo {ci}
H=Hou {j}
Xo= Xo+Cjj
N= N\{}}
i=j
Fin
Output {H= HU {1}, x= X, + ¢}
Fin

Este algoritmo es de orden O (n?). Un ciclo Hamiltoniano obtenido con
este algoritmo sufre una fuerte influencia de la eleccién del vértice inicial. Para
eliminar esta influencia basta repetir el procedimiento n veces tomando cada vez

un vértice diferente. El algoritmo resultante en este caso serd del orden de O

(n).

Con un ejemplo:

Dada la matriz de costos D= - 1 7 5
1 - 4 3
2 4 - 5 2
7 4 - 3
5 3 2 3 -

10

4
Paso 2
(]
\?_
5@
40 ®
Paso 3
‘\2
5@
49 @

xo= 0, H=(1}

xo=1, H=(1,2}

xo= 4, H=(1,2,5}

11

Paso 4

Xo= 6, H=(12,5,3}

Paso b

x,= 11, H=(1,2534}

Paso 6

x~18, H=(1,2,5,3,4,1}

12

b) Insercién mds préxima

Esta heuristica consiste en:
a) Partir de un ciclo {iy,i>,i3}, de dimension 3
b) Encontrar un vértice k que no pertenezca al ciclo, tal que el costo de la arista
que los une sea menor que para cualquier otro vértice del ciclo.
¢) Encontrar una arista, digamos (i,i+1), del ciclo tal que ci *cuies - s Sea
minimo.
d) Insertar el vértice k entre i e i+l. Si el ciclo es Hamiltoniano, PARAR. En caso

contrario, repetir el procedimiento desde b)

¢) Insercion mds distante

Es similar al anterior. Solo difiere en la eleccion del vértice que deberd

ser el mas distante que cualquier otro.

d) Insercidon mds barata

Es similar a b), pero la eleccion del vértice k debe ser no perteneciente al
ciclo actual y ademds se debe elegir una arista (7,/+1) del ciclo tal que ciy*cyisr- Ciis

sea minimo.

e) Insercion por mayor dngulo

Se construye un ciclo convexo uniendo todos los nodos exteriores de un
grafo, y se elige un vértice k no perteneciente al ciclo y la arista (7,/) del ciclo,
tal que el dngulo formado por las aristas (7,k)y (k) sea mdximo. Se inserta el

vértice ken el ciclo entre iy j.

13

f) Método de las economias

Este método fue propuesto originalmente por Clarke y Wright (1964)(Ver
[4]). para el ruteo de vehiculos, y posteriormente fue utilizado para el problema
del viajante de comercio (Golden, Bodin, Doyle y Stewart, 1980) (Ver[4]).

El procedimiento comienza por la seleccion arbitraria de un vértice inicial
del grafo completo y construye ciclos de tamafio 2 desde este vértice a cada uno
de los n-1 restantes. En cada iteracion, dos ciclos son combinados eliminando
dos aristas (desde y hasta el vértice base) y agregando una arista de conexion.
Los ciclos o “subcaminos” son elegidos para el proceso de combinacion de manera
de maximizar la distancia economizada en relacion a la lista ordenada de forma
mondtona decreciente. Se repite el procedimiento hasta obtener un ciclo
Hamiltoniano. Este algoritmo tiene una complejidad O (n® * logzn). Si con el fin
de eliminar la influencia en la eleccion del vértice base, repetimos el
procedimiento para cada uno de los n-I1 vertices restantes como punto de

referencia, el algoritmo pasaria a ser de orden O (n* * log 2n).

En nuestro caso, para hallar la solucion inicial, se adapté la heuristica del
“vecino mds proximo”, presentada en [4], enriquecida por la eleccion del mejor
vértice y validacion de las precedencias. Esta heuristica, busca dentro de todos
los nodos posibles para moverse, a aquel que tiene menor costo. Va armando un
camino hamiltoniano que cumpla con todas las restricciones de precedencias
establecidas. De esta forma se garantiza que la solucién hallada por este método

es factible.

En este trabajo nos limitamos a la implementacion de la heuristica del
“vecino mds proximo” quedando para futuras investigaciones probar con otras
heuristicas golosas para poder evaluar los resultados y compararlos con los

obtenidos en el presente trabajo.

14

4.- QUE ES EL TABU SEARCH

Tabu Search es un procedimiento de heuristica general para optimizacion
global. Como otras técnicas heuristicas, Tabu Search estd basado en ideas
simples que pueden ser aplicadas eficientemente para conseguir soluciones casi
optimas para muchos tipos de problemas dificiles. En particular, un algoritmo de
tipo Tabu Search permite una amplia exploracion del espacio de soluciones
evitando mediante la confeccion de “Listas Tabu“, que veremos mads adelante,

quedar “atascado” en optimos locales.

Durante las dltimas décadas muchos esfuerzos se han dedicado a la
solucién de grandes problemas de optimizacion combinatorios. Muchos de los
algoritmos son disefiados para tipos de problemas especificos, y no se adaptan

con minimas modificaciones a otros tipos de problemas de optimizacion.

Tabu Search [12] dlcanzé gran éxito en problemas de optimizacion
prdctica, y ha logrado muy buenos resultados en problemas cldsicos como el
problema del viajante de comercio o el coloreo de grafos. Las aplicaciones estdn
creciendo dia a dia en dreas como administracion de recursos, disefo de
procesos, logistica, telecomunicaciones y optimizacion general combinatoria. La
forma actual de Tabu Search la propuso en 1986 Fred Glover[12]. Estd basado
en métodos disefiados para cruzar los limites de factibilidad u optimalidad local,
que son tratados normalmente como barreras. Ideas similares al Tabu Search
fueron desarrolladas en forma independiente por Pierre Hansen, que lo llamé
‘método steepest ascent/ mildest descent“[12]

Junto con Simulated Annealing y Genetic Methods, Tabu Search fue
definido por el Comité de la Préxima Década de Investigacion Operativa
(CONDOR 1988) como ‘“extremadamente prometedor” para el futuro
tratamiento de operaciones prdcticas. La diversidad de aplicaciones exitosas

implementadas de Tabu Search indican que el futuro es ahora.

15

4.1.- En qué consiste la técnica

Tabu Search opera sobre una funcion 7(X) a ser optimizada sobre un
conjunto X, donde 7(X)puede ser lineal o no lineal y el conjunto X es el conjunto
de restricciones sobre el vector x. Estas restricciones pueden incluir
desigualdades lineales o no lineales. Tabu Search comienza de la misma manera
que una busqueda local o de vecindario, procediendo iterativamente desde un
punto (solucidn) a otro hasta que se satisface un criterio de terminacion. Cada x
perteneciente a X tiene un vecindario asociado N(x)incluido en X'y cada solucién
x” perteneciente a N(x) se alcanza desde x por una operacion llamada
movimiento. Normalmente en Tabu Search, los vecindarios se asumen como

simétricos, x es vecino de xsii xes vecino de x

Puede haber movimientos de insercion o movimientos de permutacion. En
el caso de grafos, el movimiento de insercion , por ejemplo, simplemente inserta
un nodo en el grafo entre dos existentes unidos por una arista, y el movimiento
de permutacion intercambia las posiciones de dos nodos en el grafo. Hay algunas
implementaciones que utilizan una estrategia combinada con ambos tipos de
movimientos. Algunas experiencias demuestran que es ventajoso usar mds de una

técnica para moverse de una solucion factible a otra dentro del método.

Uso de la memoria

Con el uso de la memoria, una mala eleccion hecha estratégicamente en
un punto del proceso, puede convertirse en una buena decision en un punto mds

adelante del mismo proceso de busqueda.

Esta caracteristica se llama “exploracion interesada”, y contiene los
principios bdsicos de una bisqueda inteligente (explota rasgos caracteristicos de

las soluciones histéricamente buenas y ademds explora nuevas regiones que

16

parecen prometedoras).

Otra de las caracteristicas de Tabu Search es la memoria flexible, que
permite una gran flexibilidad en la bisqueda. Este tipo de memoria sirve para
usar la informacién recolectada (entre otras cosas, calidad e influencia de cada
eleccion), durante la bisqueda para hacer elecciones “inteligentes” de las
soluciones, porque identifica elementos comunes a soluciones “buenas”, también
se usa para “penalizar” movimientos que podrian provocar que la busqueda se

quedara en 6ptimos locales. Para ello, usa los elementos de la “Lista Tabu".

Este tipo de memoria también contrasta con los disefios de memoria

rigida tipica de estrategias "branch-and-bound”

La memoria flexible de Tabu Search permite, ademds la implementacion
de procedimientos, que son capaces de buscar en una gran parte del espacio de

solucion con minimo requerimiento de memoria.

Las estructuras de memoria en Tabu Search, tienen cuatro

caracteristicas principales: cercania, frecuencia, calidad e influencia.

¢ Cercania y frecuencia se complementan entre si. El mds comin de los
usos de esta memoria es mantener pistas de atributos de soluciones
que fueron cambiadas en un pasado reciente. Para ello se arman las
"Listas Tabu".

¢ Cadlidad es la capacidad de diferenciar el mérito de una solucién
encontrada durante la busqueda. Asi la memoria se puede usar para
identificar elementos que son comunes a soluciones buenas y para
moverse de una solucion a otra. Esta forma de memoria se basa en
incentivar acciones que guien a soluciones buenas y penalicen a otras

acciones que lleven a soluciones peores.

17

¢ Influencia considera el impacto de los cambios producidos por las

distintas soluciones.

Tipos de memoria

Una importante distincion en Tabu Search es la diferencia entre memoria
a corto plazo y memoria a largo plazo. El mds comin de los usos de la memoria a
corto plazo es mantener pistas de atributos de soluciones que fueron cambiados
en un pasado reciente. Para explotar esta memoria, los atributos seleccionados
se llaman Tabu, y las soluciones que contienen elementos Tabu, se transforman
en Tabu. La duracién que un atributo permanece en la Lista Tabu , (medida en
nimero de iteraciones) se llama “permanencia en la Lista Tabu". El espacio de
memoria necesario depende de los atributos y del tamafio del vecindario, pero no

depende del tiempo de permanencia de un atributo o solucién en la Lista Tabu.

En algunas aplicaciones, las componentes de la memoria Tabu Search a
corto plazo son suficientes para producir soluciones de muy alta calidad. Sin
embargo, en general, Tabu Search se vuelve mds fuerte si se incluye la memoria
a largo plazo y sus estrategias asociadas. En estas estrategias, el vecindario
modificado puede contener soluciones que no estdn en el vecindario original, y
que generalmente consisten de soluciones elite (6ptimo local de alta calidad)
encontradas en varios puntos del proceso de solucion. La experiencia ha
demostrado que, contrariamente a lo que se podria suponer, el uso de esta
memoria no requiere largas ejecuciones antes de ver sus beneficios. En general,
sus mejoras se manifiestan en un tiempo razonable, y de ser asi, pueden permitir
que las soluciones sean terminadas algo antes de lo que seria posible de otra
forma, debido a encontrar soluciones de alta calidad en un espacio de tiempo

economico.

18

Lista Tabu

La Lista Tabu estd compuesta por movimientos “prohibidos”, atributos de
soluciones y soluciones encontradas en las 7 lltimas iteraciones. A partir de esta
lista, se restringe el vecindario de soluciones hallado, N(x), con x la solucién
actual, limitdndolo a aquellas soluciones que no estén incluidas ni explicita ni
implicitamente en la lista, obteniendo N*(x). Luego, de N*(x), se elige la mejor
solucion, teniendo en cuenta un determinado criterio, que puede ser la mejora en
el valor de la funcion objetivo, se realiza una operacion llamada movimiento que
va desde la soluciéon actual a la encontrada, actualizando la “Lista Tabu“. La
longitud de la Lista Tabu y los operadores para manejar la lista juegan un

importante rol en la performance.

Tiempo de permanencia en la Lista Tabu

Una forma de identificar un efectivo tiempo de permanencia en la Lista
Tabu y la seleccion de reglas de activacién Tabu, para una clase de problemas
determinada; es observar la aparicion de ciclos cuando el tiempo de permanencia
es muy corto, y el deterioro en la calidad de la solucion cuando ese tiempo es
muy largo. El deterioro lo causa normalmente el prohibir demasiados
movimientos. El mejor valor para determinar ese tiempo de permanencia queda
en un rango intermedio entre los dos extremos. En general, los valores pequefios
para ese pardmetro permiten a la exploracion de soluciones '‘acercarse’ al
optimo local, mientras que los largos son preferibles cuando es importante

romper con la vecindad del éptimo local.

Hay dos formas dindmicas usadas habitualmente para el tiempo de
permanencia en la Lista Tabu. Ambas usan un rango definido por pardmetros fmin
y tmax. El pardmetro # se selecciona aleatoriamente dentro del rango, siguiendo
una distribucion uniforme. En la primera forma, el tiempo se mantiene constante

por una cantidad determinada de iteraciones (que llamaremos «), al término de

19

las cuales, se selecciona un nuevo tiempo de permanencia usando el mismo

mecanismo. La segunda forma, calcula una nueva #en cada iteracion .

Criterio de aspiracion

A pesar de que una solucion del vecindario esté en la Lista Tabu, puede
ser seleccionada, si cumple con el llamado “criterio de aspiracion”.

Este criterio se usa para determinar cuando una regla de activacion- Tabu
puede ser pasada por encima, teniendo en cuenta la calidad de la solucion a
examinar, es decir la mejora que se logra en el valor de la funcidn objetivo y su
comparacion con soluciones histéricamente buenas. El uso correcto de este
criterio puede ser muy importante para lograr un buen nivel de performance en
el método. Existen muchas clases de “criterios de aspiracion”, desde el mds
sencillo que es remover una clasificacion Tabu porque el movimiento produce un
mejor valor de la funcion objetivo, hasta criterios que prueban la influencia de la

movida, es decir el grado de cambio que induce en la solucion.

En Tabu Search se pueden hacer aspiraciones por movimiento y
aspiraciones por atributo, depende de como esté constituida la Lista Tabu. Una
aspiracion por movimiento, cuando se satisface revoca la clasificacion Tabu del
movimiento. Una aspiracion por atributo, cuando se satisface, revoca el Estado

Tabu del atributo.

20

Ejemplos de criterios de aspiracion

Aspiracion por = Descripcion

Default Si todos los movimientos disponibles son
clasificados Tabu, y no estdn admitidos por otro
criterio de aspiracion, entonces se elige una
‘movida para la cual el nimero de iteraciones que
= restan éea minimo.

Objetivo ~ Global: Una aspwagon por movimiento se

mejor que I a mejor ob‘l‘emda.

~ Regional: Una asplr'chn por movimiento se

“satisface si el movimiento produce una solucién

mejor que la mejor encontrada en la region
donde esta la solucion.
Direccion de busqueda Un atributo puede agregarse o borrarse de una
solucion, si la direcciéon de la bisqueda
(mejorando o no) cambié. :
Influencia _El Estado Tabu de una movida de baja influencia
~ se revoca si se puede hacer un movimiento ée =

;ﬂ Ita influencia esfubleciendo el estado para lrerde:

baja mfluencm

Intensificacion y diversificacion

Otra caracteristica muy importante del Tabu Search son las estrategias
de intensificacion y diversificacion. Estas estrategias estdn relacionadas con el

uso de memoria a largo plazo. Las estrategias de intensificacion estdn basadas

21

en modificar las reglas de seleccion para encarar combinaciones de movimientos
y rasgos de solucion que histéricamente se encontraron buenos. La gran
diferencia entre las etapas de diversificacion e intensificacion, es que en la
etapa de intensificacion, la busqueda "da vueltas” para examinar el vecindario de
soluciones elite (las mejores soluciones encontradas durante la bisqueda) ,
porque se piensa que ahi puede haber soluciones adicionales de buena calidad,
mientras que en la etapa de diversificacion encara la busqueda del proceso para

moverse y examinar regiones no visitadas.

Normalmente, Tabu Search trabaja de la siguiente forma: en su forma
mds simple usa una estrategia de memoria a corto plazo, para guiar
inteligentemente la bisqueda lejos de los vecindarios recientemente visitados.
En su version mds completa, usa la estrategia de memoria a largo plazo para
permitir intensificacion y diversificacion, teniendo en cuenta un conjunto de

soluciones buenas conocidas, y las caracteristicas de cada una.

Un diagrama del algoritmo usando memoria a corto plazo seria el siguiente

22

Revision de lista de candidatos
(Generar un ‘movimiento’

p| desde Ia lista de candidatos,
para crear una solucién factible
x’ desde 1a solucién actual x)

Tabu Test
Identificar atributos de x
que se cambiaron para
generar x°. Entre esos
atributos hay alguno tabu?

Crear una L.
.2 . Aspiracion- Test

;a"ml. onuabusin g (Satisface criterio
de calidad ?

Elegir el movimiento

Sila evaluacion de x’ es la Crear una evatuaciéon

mejor para cualquier : tabu penalizada.

candidato, hacer la

modificacién.

@) Ejecutar el
Hay mas movimiento elegido de
moves para oy

examinar?

La memoria a largo plazo y sus estrategias asociadas trabajan de la siguiente
forma:

23

Examinar lista de
candidatos (generar un
| ‘move’ para una solucién

factible x” desde x)

Ejecutar estrategia de
memoria a corto plazo

'

Incrementar en 1 el nro de iteracion

Solucién actual mejor
que solucion anterior?

Incrementar en 1 ¢l nro de iter. de no

Se alcanz6 1a cant.
Permitida de iter. de no

mejora?

Es la porciéon

A
meiora
Estrategia de
intensificacion

inicial de l1a
bisqueda?

GO

Estrategia de
diversificacion

24

ESTRATEGIA DE
INTENSIFICACION

v

Recorrer lista de
soluciones elite

|
!

Elijo la megjor
solucion de 1a lista

Ejecutar movimiento

Generar lista de
candidatos

ESTRATEGIA DE
DIVERSIFICACION

'

Recorrer matriz de residencia y
penalizar por similitud

Elegir otro candidato

25

| PO

Lista de candidatos

Estas estrategias se usan para restringir el nimero de soluciones
examinadas en cada iteracién. Una buena eleccidn en la estrategia de generacién
de lista de candidatos mejora considerablemente la performance y da
excelentes beneficios. Aun donde las estrategias de listas de candidatos no se
usan explicitamente, las estructuras de memoria dan modificaciones eficientes
de evaluaciones de movimiento de una iteracién a otra, y reducen el esfuerzo de

encontrar el mejor movimiento.

Ejemplos de estrategias para la lista de candidatos

Estrategia Aspiracion Plus

| pLUS |
C
a s
I o ®
i ® ASPIRACION |
du @
a cC
d i L € @

ol @ ® &
dn
e
L
Min LY. 2

l 1
T, T T L) T
numero de movimientos

El eje horizontal representa el esfuerzo computacional para examinar

cada movimiento en el vecindario actual .

La linea de Aspiracion es un umbral para la calidad del movimiento a

26

seleccionar, y se puede ajustar dindmicamente durante la busqueda.
La estrategia examina los movimientos hasta encontrar uno que satisface
el umbral, y en ese momento se examina un nimero adicional de movimientos

(igual al valor Plus), y el mejor de todos se selecciona.

Estrategia de Lista de candidatos elite

Este método construye primero una lista Master examinando todos (o
casi todos) los movimientos, y selecciona los k mejores, donde k es el pardmetro
del proceso. Entonces en cada iteracidn, se elige el mejor movimiento de la lista
y se ejecuta. Se sigue hasta que un movimiento cae por debajo de un umbral de
calidad, o hasta que se llega a una determinada cantidad de iteraciones.

Entonces se construye una nueva lista y se repite el proceso.

*

(o
as & A
I o r
- B A "
du
ac & B A & A lUmbral I
ol # = B
dn
d % @

1 2 3

iteraciones

Podemos ver que esta estrategia puede ser una variante de la de
Aspiracion, que permita examinar algunos movimientos fuera de la lista Master
en cada iteracion (donde esos sean de calidad suficiente como para reemplazar

elementos de la lista Master).

27

Estrategia de filtros sucesivos

Los movimientos pueden separarse en las operaciones que lo componen, y
el conjunto de movimientos revisados pueden reducirse restringiendo a aquellos
que produzcan mejor calidad de beneficios para cada operacién por separado.
Por ejemplo, elegir un intercambio que incluye una componente de insercién y una
de borrado (add y drop) puede restringir su atencion sélo a los intercambios
generados de un pequefio subconjunto del "mejor add” y el “mejor drop” que lo

componen.

En problemas de secuenciamiento, una medida puede ser identificar
atributos con informacién como fecha prevista, tiempo de procesamiento,

penalidades por demora.

Si las permutas se usan, entonces alguna tarea es generalmente mejor
candidata que otras para moverse antes o después en la secuencia. La lista de
candidatas considera las permutas cuya composicion incluye al menos uno de los

atributos preferidos.

Lista de candidatos en Abanico Secuencial

Un tipo de lista de candidatos que es muy explotable por procesamiento
en paralelo, es la lista de candidatos en abanico secuencial. La idea bdsica es
generar algunos "p" mejores alternativas en un paso dado, y crear un abanico de
soluciones, una para cada alternativa. Se revisan otra vez las mejores movidas, y

sélo las "p" mejores sobre todas proveen las nuevas “p“ sucesiones en el paso

siguiente.

28

p

sucesiones

Qo Q ==-00
I O=-0C =000

Q

iteraciones

La iteracion O construye una solucion inicial. Las mejores movidas de esta
solucion se usan para generar p sucesiones. Entonces en cada iteracion siguiente
se seleccionan los mejores movimientos que guien a buscar p soluciones
diferentes. Notar que como mds de un movimiento puede guiar a buscar la misma

p

exploracion de p sucesiones distintas.

"

solucion, mds de

n

movimientos pueden necesitarse para continuar la

Listas de candidatos de cambios limitados

En esta estrategia , una solucién mejorada se consigue restringiendo el
dominio de las elecciones, por lo tanto ninguna componente de la solucién cambia
mas de un determinado grado en cada paso. Un limite en este grado, expresado
por una métrica de distancia apropiada al contexto, es seleccionarlo
suficientemente grande para cercar las posibilidades consideradas
estratégicamente relevantes. La métrica puede permitir grandes cambios a lo
largo de una dimension, pero limita los cambios a lo largo de la otra, asi las

elecciones se reducen y evalian mds rdpido.

29

5. - ALGORITMO TABU SEARCH PROPUESTO

5.1- Caracteristicas particulares

A continuacién presentaremos las caracteristicas particulares del algoritmo
implementado, y las estructuras utilizadas para el almacenamiento de datos.
También se detalla el entorno en que fue desarrollado e implementado el

algoritmo.

Criterio de parada

La ejecucién del programa finaliza cuando se produce el primero de los

siguientes eventos:

= Se alcanzé el mdximo nimero de iteraciones solicitadas por el usuario.

= Se dlcanzé el mdximo nimero de iteraciones admisibles de no mejora.

En ambos casos se genera un archivo de resultados.

Los resultados se guardan en un archivo de texto. (Ver detalle en Modulo
Resultados item 5.2.15). Ademds en cada iteracion se almacena en otro archivo
de texto, los siguientes datos:

¢ Valor de la Funcién Objetivo

¢ Valor del reloj de la maquina

Este archivo fue creado para el estudio del comportamiento del
algoritmo. Los datos almacenados en el mismo se reproducen en una planilla Excel
(MSExcel 97), para facilitar la confeccién de un gréfico, que permite observar:
los valores minimo y mdximo obtenidos, los tramos de la busqueda en los cuales

no se obtiene una mejoria en la solucién y otros puntos de interés. El estudio

30

puede realizarse en funcién del tiempo o iteraciones. Los grdficos obtenidos en
las ejecuciones de los distintos ejemplos, se pueden observar en la Segunda

Parte del Apéndice.

Lista Tabu

La Lista Tabu estd formada por una cantidad de permutaciones que
llevaron a las » dltimas soluciones obtenidas. La cantidad de permutaciones
almacenadas es un pardmetro ajustable por cédigo. Ademds de la permutacion se
quarda el tiempo de permanencia en la Lista Tabu que le corresponde a cada una,
es decir la cantidad de iteraciones que faltan para que la permutacion salga de la
Lista Tabu.

Tiempo de permanencia en la Lista Tabu

Se utiliza un pardmetro dindmico para el tiempo de permanencia en la Lista
Tabu, calculado a partir de un #min y un tmax ingresado como pardmeiro. Se
selecciona en forma aleatoria dentro del rango especificado, siguiendo una
distribucion uniforme. Y el resultado es ain mejor cuando el tiempo de

permanencia se recalcula cada una cantidad determinada de iteraciones.

Criterio de aspiracion

El criterio de aspiracion es el que permite sacar un elemento de la Lista
Tabu si cumple con ciertos requisitos. En nuestro desarrollo se utiliza el criterio
de aspiracién por default combinado con el de aspiracion global, y trabaja de la
siguiente forma:
* si todas las soluciones candidatas estdn en la Lista Tabu, entonces revoca es

estado tabu de las permutaciones que les reste el menor tiempo de

31

permanencia en la lista tabu (criterio de aspiracion por default).

* si la solucidén encontrada es Tabu pero mejora el valor de la Funcion Objetivo
lograda en la mejor solucién encontrada hasta el momento, revoca el estado
tabu del elemento de la lista, y esta solucion pasa a ser la seleccionada como
candidata con el valor de la Funcién Objetivo que le corresponde (criterio de

aspiracion global).

Lista de candidatos

La lista de candidatos se obtiene armando un ranking de todas las
soluciones vecinas, seleccionando las n mejores, es decir con mejor valor de

Funcién Objetivo.

Soluciones mantenidas

Ademds de la lista de soluciones elite, usada en la estrategia de

Intensificacion , se mantienen las siguientes soluciones:

e Solucion actual: solucién corriente en cada iteracién, sobre la que se
realizard un intercambio al efectuar la mejor permuta de la lista de
candidatos, o bien se aplicard el criterio de aspiracion. Esta solucién
seleccionada serd la solucion actual de la siguiente iteracién

e Solucion Inicial: solucion construida con la heuristica inicial.

o Mejor solucion historica: mejor solucién encontrada a lo largo de toda la
busqueda.

32

Pardmetros de la busqueda

Las distintas pruebas sobre cada uno de los problemas se realizaron

modificando los valores de los siguientes pardmetros:

Cantidad maxima de iteraciones (max_iter):
Este es un pardmetro de finalizacion. Dado que el algoritmo tiene la
caracteristica de no quedarse en 6ptimos locales, aumentar este pardmetro

permitié que se encontrara una mejor solucion en algunos casos.

Cantidad de iteraciones admisibles de no mejora (max_nomejora):

Este es un pardmetro de finalizacion.

El mismo evité completar la cantidad mdxima de iteraciones en los casos en
que no se obtenia un mejor valor de la Funcién Objetivo durante
max_nomejora iteraciones.

Se experimenté asigndndole miltiples valores, lo que influyéd en otros
pardmetros de no mejoria, descriptos mds adelante, definidos en funcion de

el.

Porcentaje inicial de la bisqueda en el que se activa la estrategia de
Diversificacion (iteriniciales):

Este pardmetro es un porcentaje de la cantidad total de iteraciones.

Durante estas iteraciones, de cumplirse ciertas condiciones, se activa la
diversificacion. Se observé que activar permanentemente (100 %) o no
activar (0 %) la diversificacién, no mejoraba los resultados.

Variaciones de este pardmetro permitieron comprobar como algunos nodos
que ocupaban permanentemente ciertas posiciones en la solucién, se
ubicaban en otras anteriormente no frecuentadas.

Se realizaron mdltiples variaciones de este pardmetro, para estudiar el
comportamiento del algoritmo. La mayoria de los mejores resultados
obtenidos se lograron activando la diversificacion durante el 75 % inicial de

la bisqueda.

33

Porcentaje final de la busqueda en el que se activa la estrategia de
Intensificacion (iterfinales):

Este pardmetro es un porcentaje de la cantidad maxima de iteraciones.
Durante estas iteraciones de cumplirse ciertas condiciones se activa la
intensificacion.

Se observé que activar permanentemente (100 %) o no activar (0 %) la
intensificacion, no mejoraba los resultados.

Se dieron diversos valores a este pardmetro, en algunos casos aumentando
paralelamente el nimero de soluciones elite mantenidas.

Las estrategias de diversificacidn e intensificacion son excluyentes, por lo
tanto los porcentajes de las mismas nunca suman mds que 100 %.
Coherentemente con lo descripto en el pardmetro anterior, los mejores

resultados se obtuvieron con el porcentaje del 25 %.

Cantidad mdxima de iteraciones en que puede dividirse la etapa de
Intensificacion (dif_iter_reini):

Este pardmetro depende del porcentaje anterior, es decir, es la cantidad de
partes en que pueden dividirse las iteraciones finales.

De cumplirse ciertas condiciones, este pardmetro limita la cantidad maxima

de veces en que se realiza intensificacion en la etapa respectiva.

Cantidad maxima admisible de iteraciones de no mejora para activar
estrategia de Intensificacién (maxnomejora_reini):

Este pardmetro es un porcentaje de la cantidad mdxima admisible de
iteraciones de no mejora.

Si durante maxnomejora_reini iteraciones no se obtiene un mejor valor de la
Funcion Objetivo, de cumplirse ademds otras condiciones, se activa la
reinicializacion de la busqueda, continuando la misma desde la mejor solucién
elite en ese momento.

Se probaron en algunos problemas diversos valores de este porcentaje,
aumentando al mismo tiempo la cantidad de iteraciones finales de
intensificacion y la cantidad mdxima de iteraciones en que puede dividirse

dicha etapa, combinando con un aumento en la cantidad de soluciones elite

34

mantenidas.

Los mejores resultados se obtuvieron con este pardmetro fijado en 25 %.

Cantidad maxima admisible de iteraciones de no mejora para activar
estrategia de Diversificacion (diver_nome jora):

Este pardmetro es un porcentaje de la cantidad mdxima admisible de
iteraciones de no mejora.

De estar en las iteraciones iniciales de diversificacion, si durante
diver_nomejora iteraciones no se obtiene un mejor valor de la Funcion
Objetivo, se activa dicha estrategia.

Se realizaron variaciones de este pardmetro conjuntamente con un aumento
en el porcentaje de diversificacion de la busqueda, y en la cantidad de
elementos de la lista de candidatos, con el objetivo de orientar la bisqueda
hacia otras regiones. Esto provocé un aumento de los valores de la funcién de
penalidad de cada movimiento y consecuentemente un ordenamiento distinto
de la lista de candidatos.

Los mejores resultados se obtuvieron con este pardmetro fijado en 25 %.

Factor de Diversificacion calculado en forma aleatoria dentro de los
limites minimo y maximo (dados por un pivote y una tolerancia
respectivamente). El pivote y la tolerancia son variables (Pivote:
sinicialfo Tolerancia: limites_diver)

El factor de diversificacion es un pardmetro ajustable que toma valores
aleatorios, cuando se activa la diversificacion, siguiendo una distribucion
uniforme, dentro del rango dado por el pivote mds/menos la tolerancia, o
toma valor cero al desactivarse.

Cuando toma valores distintos de cero provoca resultados positivos de la
funcion de penalidad de cada movimiento, que se suma al valor de la Funcién
Objetivo de los mismos.

Se probé asignando diversos valores al pivote, pero el mejor ajuste de este
factor se logro tomando el valor de la Funcién Objetivo de la solucién inicial

como pivote, y una tolerancia igual al 25 % de este valor.

35

Tamaiio de la Lista Tabu (tfil):
Este pardmetro fija la cantidad de elementos que pueden permanecer en la
Lista Tabu.

La mayoria de los resultados se obtuvieron con un tamario entre 15y 20.

Limites maximo y minimo del tiempo de permanencia en la Lista Tabu
(t):

Este pardmetro (1) es la mdxima cantidad de iteraciones que un elemento
permanece en la Lista Tabu.

Este valor se selecciona de manera aleatorio dentro del rango [tmin, tmax],
siguiendo una distribucién uniforme.

Las pruebas con este pardmetro se realizaron combinando conjuntamente con
distintos tamafios de la Lista Tabu, para permitir una menor o mayor
permanencia de los elementos de dicha lista.

La mayoria de los resultados se obtuvieron con una permanencia minima
(tmin) de 5 y mdxima (tmax) de 10 iteraciones, de los elementos en la Lista
Tabu.

Cantidad maxima de iteraciones con un mismo tiempo de permanencia en
la Lista Tabu (cant_tt):

Este pardmetro constituye la cantidad de iteraciones que deben transcurrir
para obtener un nuevo pardmetro tt(tiempo de permanencia en la Lista Tabu)
aleatorio.

La mayoria de las pruebas se realizaron modificando el tiempo de

permanencia en la Lista Tabu cada 5 iteraciones.

Tamaiio de la Lista de Candidatos o vecindario restringido (mfil):

Este pardmetro fija la cantidad de mejores permutaciones del vecindario que
serdn seleccionadas en cada iteracion.

En los casos en que el resultado no era bueno se aumenté el tamafio del
vecindario conjuntamente con un aumento del tiempo de permanencia en la
Lista Tabu , con el objetivo de explorar otras regiones del espacio de

busqueda.

36

La mayoria de los resultados se obtuvieron con un tamano entre 15y 20.

e Tamaio Lista de Soluciones Elite (ofil):
Este pardmetro fija la cantidad de soluciones elite mantenidas durante la
busqueda.
En la mayoria de las observaciones se mantuvieron en la lista las cinco
me jores soluciones encontradas.
Se incrementé el tamahio de la lista, en las pruebas que permitieron mayor
nimero de reinicializaciones, lo que posibilité continuar explorando regiones

aparentemente buenas.

e Tamafo Lista de Mejores Soluciones Iniciales (max_cant_solini):
Este pardmetro fija la mdxima cantidad de posibles soluciones, obtenidas por
la heuristica inicial, por donde comenzar la busqueda.
En algunos problemas se encontraron mejores soluciones, tomando como
solucion inicial, alguna de la lista, no necesariamente la mejor respecto del
valor de la Funcién Objetivo. En estos casos se experimenté con todas las

posibles soluciones iniciales, aumentando para esto el valor del pardametro.

Movimiento

El movimiento para ir de una solucién a otra que se usa en este algoritmo
es una permutacion. También existe un movimiento llamado de insercion pero
para nuestro caso no es util, ya que en cada iteracion trabajamos con todos los
nodos del grafo que componen la solucion.

Este movimiento permite, a partir de la solucién actual generar todas las
soluciones vecinas (es decir, todas aquellas que se obtienen permutando el orden
de dos trabajos de la secuencia).

Para la eleccion de la permutacion que generara la solucién candidata, se
realiza un ranking entre las vecinas, evaluando para ello el valor de la Funcidn
Objetivo, de este modo se tiene en cuenta la calidad de la solucién Finalmente,
una vez seleccionada la permutacion, se ejecuta el moviiniento generando una

nueva solucidn.

37

Calculo de Funcion Objetivo

Este cdlculo se realiza una dnica vez para todos los nodos. Luego con cada
permutacion realizada, solo se evalia qué elementos cambian su posicion en la

secuencia y se recalcula el valor inicamente de esa porcion del vector.

Memoria a corto plazo

La memoria a corto plazo, sirve para tener en cuenta en cada iteracion la
historia reciente de los ultimos movimientos ejecutados, y de los valores
asociados a dichos movimientos.

Esta estrategia se aplica mediante el uso de la Lista Tabu. De esta forma, se
evita la ocurrencia de ciclos de tamafio menor o igual a la longitud de la Lista
Tabu.

Control de ciclos

El control de ciclos se realiza en el momento del ingreso de la informacion
que corresponde al grafo de precedencias. Se controla que no existan en el

digrafo P las aristas (i,j) y (j.i), en forma directa o transitiva.

Memoria a largo plazo

Se basa en guardar puntos importantes de la historia de la bisqueda. Las
estrategias asociadas al uso de este tipo de memoria son Diversificacién e

Intensificacion.

38

Diversificacion

La estrategia se basa en la cantidad de veces que cada uno de los
trabajos estd en cada posicion de la secuencia. Para ello, se utiliza una matriz de
residencia, donde cada fila indica el nimero de trabajo y cada columna la

posicion en la secuencia.

Matriz M de residencia

POSICION 1 2 3 n
TRABAJO
1 3
2 1 5 2
3 4
1
N 4 3 2

Se penalizan soluciones similares, para provocar el cambio en el espacio
de busqueda. La penalidad se calcula como:
penalidad j; = Mi; / (mayor frecuencia de la matriz)
Penalidad del movimiento = penalidad ;;+ penalidad ;
El valor del movimiento candidato se cambia por un nuevo valor penalizado,
que es:

Valor penalizado= valor del movimiento + d * penalidad del movimiento

d es un pardmetro ajustable de diversificacién.

La diversificacion se activa cuando se cumple una determinada cantidad
de iteraciones de no mejora (pardmetro diver_nomejora descripto en los
parametros de la busqueda), y si la iteracién corresponde al porcentaje inicial de
la bisqueda donde se activa la estrategia (iteriniciales descripto en los
pardmetros de la busqueda). Se penaliza hasta que se encuentra una solucién que

minimiza la Funcién Objetivo.

39

Intensificacion

Se aplica mediante una lista de soluciones elite, que son las » mejores
soluciones encontradas en toda la historia de la bisqueda. Junto con estas
soluciones se guarda la memoria Tabu asociada. La cantidad de soluciones elite,

es un pardmetro variable.

La estrategia trabaja de la siguiente forma: En la porcién final de la
busqueda, si no se mejora el valor de la Funcién Objetivo, se reinicializa la
busqueda desde la mejor solucidn de la lista elite, con la memoria Tabu asociada.

La estrategia de Diversificacion se utiliza en la primera parte de la

busqueda, y la Intensificacion en la parte final.

Entorno de Desarrollo e Implementacion

El algoritmo fue desarrollado en C++ version 3.0 de Borland, pero las
ejecuciones estan realizadas bajo Microsoft Visual C++ 5.0, dado que al trabajar
en Windows con un compilador de 16 bits se utiliza un limite de memoria
insuficiente para la ejecucion de problemas mayores a un tamafio determinado,
por lo tanto fue necesario cambiar a un compilador de 32 bits.

Se implementé en una PC Pentium IT 266 Mhz, 64 MB de RAM. Sistema
Operativo MS Windows 95.

El algoritmo permite el ingreso de datos por archivo de texto o por teclado.

¢ Se podrdn ingresar los pesos de las aristas y el grafo de precedencias por
archivo de texto y todos los pardmetros de la linea de comando se ingresan
por pantalla.

¢ Si el ingreso es por pantalla se ingresardn los pesos, el grafo de precedencias

y todos los pardmetros de la linea de comando por pantalla.

40

La entrada por archivo de texto se usé para los ejemplos provistos por L.
F. Escudero (a través de M.T. Ortufio, quien nos envié los problemas ESC por E-
mail), y para aquellos citados en [3], como Rbg’ que fueron obtenidos de la pdgina
Web de Zib (www.zib.de)

Se consulté bibliografia para la seleccion de las estructuras para el
almacenamiento de los datos [15]. Para el ingreso del grafo se eligié una matriz
de adyacencia donde cada elemento (7,j), es el costo asociado a ir del nodo / al
nodo j. Para el grafo de precedencias se usa una lista de adyacencias donde cada
lista de cada elemento del arreglo son los nodos a los que debe preceder el nodo

cabeza.

Costos: los costos asociados a la secuencia de ejecucion de los trabajos, se

almacenan en una matriz de nxn, con la diagonal con valor cero.

Lista Tabu: La Lista Tabu se almacena en una matriz, que contiene en cada fila,
la permutacion “prohibida” y el tiempo de permanencia restante en la Lista Tabu

que le corresponde.

El disefio modular del programa permitié una manipulacion relativamente
sencilla del mismo a medida que iba creciendo.

Cada modulo descripto en el item 5.2 estd guardado en su propio archivo
fuente, exportdndose hacia el médulo principal.

El codigo esta comentado para facilitar la comprension del mismo.

5.2.- Modulos principales del programa

5.2.1.- Mdodulo principal

Es el médulo que contiene el cuerpo principal del programa, y realiza las
llamadas a los médulos Entrada (ingreso de datos de entrada), Solucion inicial y

Solucion.

41

Médulo Principal
Comenzar

o Entrada de los datos del problema
e Construir lista de mejores Soluciones Iniciales
e Seleccionar la mejor Solucion Inicial de la lista
e Ingresar los pardmetros de la bisqueda
Repetir

e Busqueda de una mejor Solucion

» Guardar resultados obtenidos

e Seleccionar nueva Solucion Inicial

o Ingresar nuevos pardmetros de la bisqueda

Hasta (no se seleccionen soluciones iniciales)

Fin Principal

5.2.2.- Médulo Entrada de datos

Es el modulo que realiza la entrada de los datos. Los datos necesarios de
entrada para poder ejecutar la busqueda son:
- Costos asociados a la ejecucion de los trabajos

- Restricciones de precedencia que se deben respetar.

Este médulo tiene la facilidad de permitir la entrada de los datos, tanto
por pantalla como por archivo de texto, lo que permite la ejecucion de problemas
con una mayor cantidad de nodos . Esta facilidad fue la utilizada en las
ejecuciones con problemas de la vida real facilitados por Laureano Escudero.

Los valores de los costos asociados se almacenan en una matriz de
adyacencias, y las restricciones de precedencias en una lista de adyacencias,
donde cada uno de los elementos del arreglo representa al nodo predecesor, y
donde los elementos que componen cada lista, son los nodos sucesores
correspondientes.

Este médulo ademds verifica si existen ciclos en el grafo de

42

precedencias, en ese caso emite un mensaje de error indicandole donde y como
se forma el ciclo, dando la posibilidad de volver a ingresar el grafo cuando el

ingreso de los datos es por pantalla.

5.2.3.- Mddulo Verificacién de Precedencias

Este moédulo verifica si una solucién determinada cumple con las
restricciones de precedencia ingresadas. Recibe como entrada un vector que
contiene la solucion a verificar y genera como salida una sefial indicando si
cumple o no la condicion. Esta condicion determina que la solucion sea o no

factible para el problema.

Médulo Precedencias

Verifica si un vector solucién cumple las precedencias, es decir si es o no factible.
Devuelve un 1 si la solucidn verifica precedencias y O en caso contrario.
Comenzar
Posl : =2
Mientras (posl < N) Hacer /* Para todos los nodos menos el primero */
- t:= lista de nodos precedidos por solucién[posi]
- Si (t# @) Hacer
- Mientras (t # @) Hacer
- x:=cabeza(t)
- t:=zcola(t)
- pos2: = posicién de x en vector solucién
- Si (pos2 < posl) Enfonces
- Retornar (0) /* Precedencia Violada */
Fin Si
Fin_Micntras
Fin _Si
- posl:=posl+1
Fin Mizntras
Retornar (1) /* Vector Solucién verifica precedencias */

Fin Precedencias

43

5.2.4.- Médulo Solucién Inicial

Este médulo genera, si es que existe una solucion inicial factible, para
comenzar la busqueda. Para ello utiliza la versién de la heuristica miope del

vecino mds préximo que se debe a Belmore y Nemhauser (1988).(Ver[4])

El algoritmo consiste en partir de un vértice inicial y elegir en cada
iteracién el vértice (vecino) mds proximo, al vértice en consideracion,
elimindndolo del conjunto de posibles. Este algoritmo es del orden O () y el
camino Hamiltoniano obtenido sufre fuerte influencia de la eleccion del vértice

inicial.

Se comparan los resultados obtenidos con cada vértice inicial y se
selecciona el mejor. Recibe como entrada el nimero correspondiente al vértice
inicial, y genera como salida el vector conteniendo la solucién inicial.

Para ello arma una lista ordenada, cuyo tamano depende de un pardmetro,
que son las mejores soluciones iniciales, comenzando por distintos vértices. El
algoritmo permite que se seleccione cualquiera de las soluciones de la lista, no
necesariamente la de menor valor de la Funcién Objetivo.

Este médulo se encarga de verificar la factibilidad de la solucidn, verifica
las restricciones de precedencia ingresadas, mediante la llamada al médulo

correspondiente.

Maodulo Solucion Inicial

Arma una lista ordenada, en funcion del valor de la funcion objetivo, de las
mejores soluciones iniciales. Utiliza la Heuristica Golosa Vecino mds Proximo

para construir una solucién inicial factible desde cada uno de los nodos.

Comienzo
Para Cada (1<i <N) Hacer /*N: cantidad de nodos del problema*/
e Construir Solucién Inicial factible comenzando en nodo i
Si (existe Solucidon Inicial factible comenzando en nodo i) Entonces
. Insertar Solucién Inicial factible en lista ordenada de

soluciones iniciales

Fin Si
Fin Para Cada

Fin Solucion Inicial

45

Heuristica Vecino mds Préximo con control de precedencias

Construye una solucién inicial factible, utilizando la Heuristica Vecino mds
Proximo, comenzando en el nodo inicial pasado como argumento.
Devuelve la solucidn inicial construida, 6 @ si no existe solucion factible

comenzando en el nodo inicial.

Comenzar
Armar vector auxiliar conteniendo la cantidad de predecesores de cada nodo
Armar vector auxiliar de nodos ubicados
Si (cantidad de predecesores del nodo inicial > O) Entonces
e Retornar @ /* No existe solucién factible comenzando en el nodo
inicial*/
Si_no
o Ubicar el nodo inicial en primer posicion del vector solucion
e Restar 1a la cantidad de predecesores de todos los nodos precédidos
por el nodo inicial.
* Marcar nodo inicial en vector de nodos ubicados
Para Cada (nodo no ubicado) Hacer
o Escoger un nodo tal que el costo de ir desde el nodo corriente a
dicho nodo sea minimo, y cuyos predecesores estén ubicados
o Ubicar el nodo seleccionaco en vector solucion
e Restar 1 a la cantidad de predecesores de todos los nodos
precedidos por el nodo seleccionado
* Marcar nodo seleccionado en vector de nodos ubicados
Fin Para Cada

Fin Si

Fin Heuristica Vecino mds Préximo con control de preced=ncias

46

5.2.5.- Médulo Generacién de la Solucidn

Se encarga de buscar la mejor solucién mejorando la obtenida por la
heuristica inicial. Para ello, genera una lista de soluciones candidatas, elige el
mejor movimiento, si ningln movimiento es admisible usa el Criterio de
Aspiracion por defecto y una vez encontrado el mejor movimiento, lo ejecuta.
Ademads verifica la factibilidad de la solucion.

- Recibe como entrada la solucion inicial y genera como salida la mejor

solucion encontrada para el problema.

47

MODULO SOLUCION

Busca una me jor solucién partiendo de la solucién inicial.

Comenzar

o Inicializacién de variables y pardmetros de la biisqueda dependientes de los pardmetros

ingresados.

e Mientras (# iteracién actual < cant_mdx de iteraciones solicitadas) y (cant_iteraciones de no

mejora < cant_mdx admisible de iteraciones de no mejora) Hacer

Si (cant_iteraciones con un mismo t_permanencia en lista tabu = cant_mdx permitida de
iteraciones con igual t_permanencia en lista tabu) Entonces
e Obtener aleatoriamente un nuevo tiempo de permanencia en lista tabu
Fin Si
Si (Etapa de Diversificacién) y (cant_iteraciones de no mejora > cant_mdx admisible de
iteraciones de no mejora de diversificacion) Entonces
e Obtener aleatoriamente un nuevo factor de diversificacién
Si no
e Factor de diversificacién = 0
Fin Si
Armar Lista de Candidatos
Seleccionar Me jor Movimiento
Si (no encontré me jor movimiento para seleccionar) Entonces
/*Todos las permutaciones candidatas son tabu y su estado tabu no fue revocado
por Criterio de Aspiracién Global*/
e Usar Criterio de Aspiracidn por Defecto para seleccionar movimiento
Fin Si
Insertar solucién seleccionada en lista de soluciones elite
Si (Etapa de Intensificacion) y (fo del movimiento seleccionado > fo de la mejor solucién
de la lista de soluciones elite) y (cant_iteraciones desde ultima reinicializacién > cant_mdx
de iteraciones en que puede dividirse la etapa de Intensificacién) Entonces
e Reinicializar biisqueda desde me jor solucién elite
e Ultima Reinicializacién = # iteracién actual
Fin Si
Ejecutar Mejor Movimiento seleccionado
Actualizar matriz de Residencias

Incrementar nimero de iteracién

Fin Mientras

Fin Solucidn

48

5.2.6.- Médulo Generacidn de Lista de Candidatos

Genera la lista de los m mejores movimientos, donde m es un parémetro.
Los mejores movimientos son el resultado de generar y recorrer el vecindario de
la solucion corriente, verificando que se cumplen las restricciones de
precedencia y seleccionando finalmente los m, que resultan en un mejor valor de
la Funcion Objetivo. Para ello se utilizan:
- Verificacién de precedencias (Médulo Precede)

- Evaluacion de Funcién Objetivo (Médulo Funcién Ob jetivo)

La generacion del Vecindario es el resultado de todas las permutaciones
posibles de los nodos en la solucién corriente, lo que da un total de nn-1)/2

soluciones posibles a ser examinadas.

La lista de candidatos de los m mejores, se almacena en una matriz de m
filas. Cada fila contiene un movimiento. Por cada movimiento se guardan las
posiciones de los nodos que se permutaron para obtener la solucién vecina.
Paralelamente, se guarda en un vector el valor de la Funcién Objetivo obtenido

para cada permutacion de la lista de candidatos.

Recibe como entrada, la solucion actual, y genera como salida la lista de
los mejores candidatos, y la lista de los valores de la funcién objetivo
correspondientes a cada puna de las permutaciones. Tanio la matriz de
Candidatos como el vector que contiene los valores de los funcionales, se

devuelven ordenadas por mejor valor de la Funcién Objetivo.

49

Médulo Candidatos

Construye el vecindario restringido para la solucidn corriente, consistente de las
k mejores permutaciones, con respecto al valor de la funcion objetivo, donde k
es un pardmetro del sistema.

Devuelve lista de Candidatos ordenada de menor a mayor, segin valor de la

funcion objetivo, y otras estructuras asociadas a la misma.

Comenzar
Para cada (permutacion (i, j) de nodos entre las N (N - 1) / 2 posibles) Hacer
/*N: Cantidad de nodos del problema*/
Armar solucién vecina permutando los nodos correspondientes de la
solucidn corriente
Si (solucion vecina cumple precedencias) Entonces
e Calcular valor de la funcidn objetivo de la solucién vecina
e Insertar vecino en lista de candidatos
Fin Si
Fin Para
Fin Candidatos

50

Insertar Vecino en Lista de Candidatos

Inserta una permutacion en la lista de candidatos, manteniéndola ordenada segtin
valor de la funcidn objetivo.

Inserta el valor de la funciéon objetivo de la solucion resultante de la
permutacion.

Inserta la pena del movimiento resultante de la permutacion.

Comenzar

o Calcular pena de insercion del nodo i en la posicion j y del nodo j en la
posicion i como:
Pena(x,y) = (frecuencia del nodo x en la posicion y) / (mdxima frecuencia de
la matriz de residencias)

e Calcular la pena del movimiento como (factor de diversificacion) * (pena(i,j) +
pena(j,i))

e Insertar en lista de candidatos la permutacion (i,j) en la posicion que
corresponda
manteniendo la lista ordenada de menor a mayor segin valor de la funcion

objetivo

e Insertar valor de la funcién objetivo de la permutacion (i,j) en vector de
funcidn objetivo,
manteniendo la estructura ordenada segun lista de candidatos

e Insertar pena del movimiento en vector de penas manteniendo la estructura
ordenada segtun lista de candidatos

Fin Insertar vecino en Lista de Candidatos

5.2.7.- Médulo Mejor Movimiento

Selecciona el mejor movimiento de la Lista de Candidatos, evaluando el
mérito del mismo. Este mérito se refiere al valor de la Funcién Objetivo, del
movimiento. Otra caracteristica funcional de este médulo consiste en verificar

si el movimiento es o no admisible. Un movimiento es admisible si no es Tabu o si

51

su estado Tabu se ignora utilizando criterio de aspiracion global.

Recibe como entrada la lista de los mejores candidatos, y la lista de

funcionales Top generadas por el médulo de Candidatos.

Genera como salida el mejor movimiento seleccionado, es decir, los nodos

que componen la permutacion que genera la mejor solucion del vecindario.

Médulo Mejor Movimiento

Selecciona la mejor permutacion de nodos de la lista de candidatos.
Devuelve la posicion en la lista de candidatos, correspondiente a la mejor
permutacion seleccionada, 6 (-1) si no encontré una permutacion para seleccionar.
Comienzo
Mientras (existan permutaciones en la lista de candidatos) y (no encontré la
mejor permutacion) Hacer
Si (permutacion actual es tabu) Entonces
Si (estado tabu puede ser revocado por criterio de aspiracion
global) Entonces

e Encontré la mejor permutacion tabu

Si no
e Avanzar en lista de candidatos
Fin Si
Si no
* Encontré la mejor permutacion no tabu
Fin Si
Fin Mientras

Si (encontré mejor permutacion) Entonces
e Retornar (posicion mejor permutacion)
Si no
e Retornar (-1)
Fin Si
Fin Mejor Movimiento

52

5.2.8.- Médulo E jecucién del Mejor Movimiento

Ejecuta el mejor movimiento que fue generado por el médulo Mejor
Movimiento, reemplazando la solucion actual por la que genera la permutacion
elegida. Ademds verifica, si el valor de la Funcion Objetivo de la solucion
generada es mejor que el valor historico guardado desde el principio de la
busqueda, si es asi actualiza tanto el valor de la Funcion Objetivo historico como
el valor de la mejor solucion hallada. Ademas realiza la actualizacidn de la Lista

Tabu, por medio de la llamada al médulo correspondiente.
Recibe como entrada la solucion actual y el valor de la Funcion Objetivo

actual y genera como salida la nueva solucion, con el valor de Funcion Objetivo

actualizado.

Médulo Ejecutar Movimiento

Ejecuta el mejor movimiento seleccionado.
Comenzar
Actualizar solucion corriente realizando la permutacion de nodos seleccionada.
Actudlizar el valor de la funcion objetivo de la solucidn corriente.
Si (fo de mejor solucion histérica < fo de solucién corriente) Entonces /*fo :
Funcién Objetivo™/
e Incrementar pardmetro de no mejoria
Si_no
e Pardmetro de no mejoria = 0
Fin Si
Si (fo de solucidn corriente < fo de mejor solucién histérica) Entonces
e Actudlizar mejor solucion histérica
e Actualizar valor de la funcidn objetivo de mejor solucion histérica
e Actudlizar nimero de iteracion de mejor solucion histérica
Fin Si
Actudlizar lista tabu

Fin Ejecutar Movimiento

53

5.2.9.- Médulo Actualizacidn de la Lista Tabu

Actualiza la Lista Tabu agregdndole un elemento, que es la permutacion
que produce el mejor movimiento, y actualizando el tiempo de permanencia en la
Lista Tabu de todos los elementos de la lista, eliminando aquellos cuyo tiempo de

permcnencia es cero.

Recibe como entrada el elemento a agregar en la lista , es decir la

permutacion y genera como salida la Lista Tabu actualizada.

Médulo Tabu

Procedimiento Es_Tabu

Verifica si una permutacion de nodos, pasada como argumento, es tabu

Comenzar
Mientras (existan elementos en la lista tabu) y (no encontré la permutacion de
nodos en la
lista tabu) Hacer
Si (permutacion de nodos = elemento corriente de la lista tabu) Entonces
¢ Permutacion es tabu
Si no
e Avanzar en lista tabu
Fin Si
Fin Mientras
Si (encontré permutacion de nodos en lista tabu) Entonces
e Insertar en lista de candidatos cuyos elementos son tabu: la posicion
de la permutacion en lista de candidatos y tiempo de permanencia de
la permutacion
Fin Si
Fin Es Tabu

54

Procedimiento Actualizar Lista Tabu

Inserta el par de nodos, correspondientes a la permutacion pasada como

argumento, en la lista tabu y mantiene actualizada dicha lista.

Para Cada (par de nodos de la lista tabu) Hacer
Si (permanencia en la lista tabu del par de nodos = O) Entonces
/*Fin permanencia de la permutacion en la lista*/
e Eliminar par de nodos de la lista
e Restar 1a cantidad de elementos tabu
Si no
o Restar 1 a permanencia en la lista tabu del par de nodos
Fin Si
Fin Para
Inserta par de nodos en lista tabu
Sumar 1 a cantidad de elementos tabu

Fin Actualizar Lista Tabu

Procedimiento Eliminar Elemento de la Lista Tabu

Elimina de la lista tabu la permutacion de nodos, que recibe como argumento.

Comenzar
Mientras (existan elementos en la lista tabu) y (no encontré permutacion de
nodos en la lista) Hacer
Si (elemento de la lista tabu = permutacion de nodos) Entonces
/*Encontré permutacion de nodos™*/
e Eliminar permutacion de nodos
o Decrementar cantidad de elementos tabuen 1
Si no
e Avanzar en la lista tabu
Fin Si
Fin Mientras
Fin Eliminar Elemento de la Lista Tabu

55

5.2.10.- Mddulo Tiempo de Permanencia en la Lista Tabu

Este médulo calcula el Tiempo de permanencia en la Lista Tabu, que es la
medida en cantidad de iteraciones, que un atributo permanece en esa lista. En
este caso se calcula un Tiempo de Permanencia dindmico, que se selecciona en
forma aleatoria entre dos pardmetros fmin'y tmax siguiendo una distribucion
uniforme. El Tiempo de Permanencia calculado en este médulo es un « tiempo de
permanencia, siendo a la cantidad de iteraciones en que se mantiene constante,

volviéndose a calcular al término de las mismas.

Recibe como entrada los pardmetros tminy tmax, y genera como salida el

valor del tiempo de permanencia en la Lista Tabu.

5.2.11.- Mddulo Criterio de Aspiracidén

La funcidon principal de este modulo es determinar si una Regla Tabu

puede ser violada. Para ello utiliza dos criterios de Aspiracién:

¢ Aspiracion Global: Revoca el Estado Tabu del movimiento si este, es mejor,
en cuanio al valor de la Funcién Objetivo, con respecto al obtenido en la
mejor solucion histdrica, que se actualiza en el médulo de ejecucién del mejor
movimiento.

¢ Aspiracion por Defecto: Si todas las permutaciones no son admisibles, revoca
el estado tabu de aquellos movimientos, que les resia la menor cantidad de

iteraciones para salir de la lista Tabu.

56

Médulo Criterios de Aspiracion

Aspiracion Global

Revoca el estado tabu del movimiento, si este produce una solucién mejor que la
mejor obtenida hasta el momento.

Devuelve 1 si revoca el estado tabu del movimiento y O en caso contrario.

Comenzar
Si (fo del movimiento < fo del mejor movimiento histérico) Entonces /*fo :
Funcion Objetivo™*/
e Revocar el estado tabu del movimiento /* Eliminar elemento
seleccionado de la lista tabu*/
e Retornar (1)
Si no
e Retornar (0) /*No se revoca estado tabu del movimiento*/
Fin Si
Fin_Aspiracion Global

57

Aspiracion por Defecto

Selecciona una permutacion de la lista de candidatos cuyo tiempo restante de

permanencia en la lista tabu sea el menor, y revoca su estado tabu.

Retorna la posicidn, en la lista de candidatos, de la permutacion cuyo estado tabu

fue revocado.

Comenzar
Posicion_seleccionada = posicion primer permutacion de la lista de candidatos
cuyos elementos son tabu
Para cada (permutacién de la lista de candidatos cuyos elementos son tabu)
Hacer
Si (tiempo de permanencia en la lista tabu del candidato corriente <
tiempo de permanencia en la lista tabu del candidato seleccionado)
Entonces
o Posicion_seleccionada = posicion en lista de candidatos del
candidato corriente
Fin Si

Fin Para

Revocar el estado tabu del movimiento /* Eliminar elemento seleccionado de la
lista tabu*/

Retornar (posicion en lista de candidatos de la permutacién cuyo estado tabu fue
revocado)

Fin_Aspiracién por Defecto

58

5.2.12.- Médulo Funcién Objetivo

Este mddulo evalia el valor de la Funcion Objetivo para una solucidn

determinada.

5.2.13.- Médulo Intensificacidn

Guarda en una lista ordenada, segun el valor de la Funcién Objetivo, las
mejores soluciones encontradas durante toda la historia de la bisqueda. Esta
lista se llama lista de Soluciones Elite. En el momento de almacenar una solucion
Elite, se resguarda también el entorno necesario, para poder reinicializar la
busqueda en ese punto. Este entorno consta de la Lista Tabu, el préximo
movimiento posible de ser realizado desde dicha solucién, el valor de la Funcién

Objetivo y otras estructuras necesarias.

La estrategia de Intensificacion, se activa cuando no se logra mejorar el
valor de la Funcidn Objetivo, én la etapa final de la bisqueda, y busca mejorar la
solucion teniendo en cuenta, las mejores soluciones encontradas hasta el
momento, y tratando de reinicializar la bisqueda desde ese punto. En el
momento de la reinicializacidn, se elige la primera solucién de la Lista Elite, esto
es la mejor, y se actualizan todas las estructuras con los datos de aquellas que
fueron guardadas en el moménto de ingresar dicha solucién a la Lista Elite. Se
reordena ademds dicha lista de soluciones y todas las estructuras del entorno

asociados a la misma.

59

Médulo Soluciones Elite

Procedimiento Insertar Solucion Elite

Inserta una solucion en lista de soluciones elite.

Comenzar

Si (solucién no esta en la lista elite) Entonces

/*6uardar entorno actual */

e Insertar solucion en posicion correspondiente manteniendo la lista
ordenada de menor a mayor segun valor de la funcién objetivo de cada
solucion

» Insertar en posicion correspondiente el valor de la funcidn objetivo de
la solucion elite a insertar

¢ Insertar en posicion correspondiente la lista tabu actual.

e Insertar en posicion correspondiente el proximo mejor movimiento a

ser seleccionado, desde la solucion elite a insertar

Fin Si
Fin Insertar Solucion Elite

Procedimiento Reinicializar

Reconstruye el entorno para continuar la bisqueda desde la mejor solucion elite

de la lista.

Comenzar

Solucion corriente = mejor solucion elite

Valor funcién ob jetivo = valor funcidn objetivo de solucidn elite seleccionada
Lista tabu = lista tabu correspondiente a solucion elite seleccionada

Lista de candidatos = préximo mejor movimiento seleccionado desde solucion
elite

Dejar marca de solucion visitada en lista de soluciones elite

Fin Reinicializar

60

5.2.14 - Médulo Diversificacion

Este modulo devuelve un pardmetro ajustable de diversificacion. Dicho
pardmetro se selecciona de manera aleatoria dentro del rango dmin, dmax

siguiendo una distribucién uniforme.

5.2.15.- Médulo Resultados

Este modulo almacena en una archivo de texto todos los resultados de la
busqueda.

Genera un archivo para cada problema , si aiin no existe, y de lo contrario

agrega al existente los resultados obtenidos. Los datos almacenados para cada

ejecucion de cada ejemplo son los siguientes:

Fecha y hora de ejecucion

Nombre del problema

Cantidad de nodos

Solucion obtenida con la heuristica inicial

Funcion Objetivo de la solucién inicial

Mejor solucion encontrada

Funcion Objetivo de la mejor Solucién Encontrada
Tiempo total de ejecucion

Tiempo de Procesamiento que demora en encontrar la mejor Solucién
Cantidad mdxima de iteraciones

Numero de iteraciones realizadas

Nimero de iteracion donde se encontré la mejor solucién

® & & & O O & 6 o oS o o O

Cantidad de reinicializaciones

61

6.- RESULTADOS

La descripcion de las columnas en las tablas de resultados es la siguiente:

N : nimero de nodos

IR|: nimero de relaciones de precedencias (sin las precedencias derivadas

transitivamente)

Solucién: solucién éptima encontrada

Heur. Inicial: valor de la solucién obtenida por la heuristica inicial

CPU : tiempo de CPU que se necesitd para resolver el problema.

Mejor iter: nimero de iteracién en la que se obtuvo el mejor valor de Funcidn

Objetivo

Total de iter: nimero total de iteraciones de la ejecucion

Algoritmo Branch & Cut: resultados obtenidos por el algoritmo desarrollado por

N. Ascheuer , que se toma como referencia para la comparacion de resultados

Algoritmo propio: resultados obtenidos por el algoritmo desarrollado, con una

técnica de tipo Tabu Search, para el presente trabajo

Se presentan dos algoritmos Tabu Search, dependiendo de los tipos de
memoria utilizados:

1) Tabu Search Basico (TSB): es el algoritmo propuesto usando solo estrategia
de memoria a corto plazo. Los resultados obtenidos con este algoritmo se
muestran en el item a)

2) Tabu Search enriquecido (TSE): es el algoritmo propuesto usando
estrategias de memoria a corto y largo plazo, con estrategias de
Intensificacion y Diversificacion. Los resultados obtenidos con este
algoritmo se muestran en los items b) y ¢). En b) se ejecutaron los problemas
en el enforno C++ 3.0. En c) se observan las ejecuciones de los mismos
problemas que en b) agregados aquellos de mayor dimension, procesando bajo

entorno Visual C++ 5.0.

62

a) Resultados obtenidos con el algoritmo Tabu Search bdsico:

TABLAS DE RESULTADOS

Escll 2075 2273 2715
Escl2 1675 1760 1904
Escl4 2125 2625 2625
Esc25 1681 2400 2400
Esc47 1288 3027 3505
Escé63 63 63 68
Esc78 18230 19265 22600
Rbg019a 198 198 198

63

b) Resultados obtenidos con el algoritmo bdsico enriquecido con estrategias de
Intensificacion y Diversificacion, ejecutados bajo C++ 3.0 de Borland.

Esc07

Escll 1 3 2075 2129 | 0:00.11 2075 2715 |0:00:01 |633 2000
Escl2 12 |7 1675 1760 |0:00.42 |1675 1904 |0:00:00 |186 200
Escl4 14 |12 2125 2125 |0:00.18 |2125 2625 |0:00:00 |1206 2000
Esc25 25 |9 1681 2372 [0:01.93 |2003 2400 |0:00:10 |4790 5000
Esc47 47 |10 1288 2609 |1.00.77 |2950 3503 |0:01:13 3014 4000
Esc63 63 |95 62 63 0:00.69 |62 68 0:03:14 | 996 1000
Esc78 78 |77 18230 20130 |0:04.43 |[18575 |22600 |0:02:35 |594 1000
Rbg019a (19 |43 198 198 0:00.23 |198 198 0:00:00 |0 0
Rbg019b |19 |57 199 214 0:00.07 |199 243 | 0:00:03 |306 1000
Rbg021a (21 |68 158 183 0:00.29 |159 236 |0:.00:01 |377 500
Rbg023a (23 |79 155 193 0:00.23 |155 273 |0:00:01 |153 500
Rbg048a |48 |192 351 396 |0:28.85 |396 483 | 0:00:50 |340 400
Rbg04%9a |49 |241 355 425 |0.01.14 417 473 | 0:01:18 376 500
Rbg050a {50 |225 |400 460 |0:11.69 457 500 |0:01.06 |290 500
Rbg050c |50 |256 |467 497 |10:02.36 (495 558 |0:00:38 |158 300
Rbg068a |68 | 249 609 689 [0:0145 |726 917 0:05:12 198 400

64

c) Tabla de resultados obtenidos con el algoritmo Tabu Search bdsico
enriquecido con Intensificacién y Diversificacion, ejecutado en entorno Visual
C++ 5.0, dado que al trabajar en Windows en la version 3.0 de C++ de Borland, se
utiliza un compilador de 16 bits que utiliza un limite de memoria insuficiente para

la ejecucion de problemas de mayor tamaio.

Esc07

Escll 11 2129 |0:00.11 2075 2715 | 0:00:00 |429 650
Escl2 12 1760 |0:00.42 |1675 1907 |0:00:00 |69 250
Escl4 14 2125 |0:00.18 |2125 2625 |0:00:01 |375 1300
Esc25 25 |9 1681 2372 |0:01.93 |1747 3360 |0:00:30 |7509 10000
Esc47 47 |10 1288 2609 |1.00.77 |2367 3503 |0:01:57 |4610 5000
Esc63 63 (95 62 63 0:00.69 |62 68 0:02:36 |27 500
Esc78 78 |77 18230 |20130 |0:04.43 |18640 |22600 |0:01:55 |414 600
Esc98 98 |84 2125 2125 |0:15.09 |2625 2625 |0:00:53 |1 100
Rbg019a |19 |43 198 198 0:00.23 |198 198 0:00:00 |0 1
Rbg019b |19 57 199 214 0:00.07 |199 243 | 0:00:03 |119 500
Rbg02la |21 |68 158 183 0:00.29 |158 236 | 0:00:06 |564 1500
Rbg023a (23 |79 155 193 0:00.23 |155 273 | 0:00:04 |286 500
Rbg02%9a (29 |76 217 248 | 0:0282 221 270 | 0:00:47 | 4730 5000
Rbg048a (48 |192 351 396 |0:28.85 |389 483 0:02:06 | 269 500
Rbg049a (49 |241 355 425 |0:.01.14 407 473 0:05:21 | 427 1000
Rbg050a {50 |225 |400 460 |0:11.69 447 500 |0:02:08 |334 500
Rbg050b |50 |258 397 465 |0:0293 |421 558 |0:04:51 |148 600
Rbg050c |50 |256 467 497 |0:.02.36 (499 558 [0:05:32 |174 500
Rbg068a |68 |249 609 689 0:0145 |738 917 0:02:50 |56 100
Rbg088a |88 |547 1130 1245 |7:11.31 1240 1370 |0:04:38 |17 50

65

Rbg092a [92 [573 [[1036, [1098 |[(*) 1084 [1246 [0:51:34 |186 250
1037]

Rbg094a (94 [457 [1336 [1401 |0:02.05 |1398 [1548 |7:42:54 |908 1700

Rbgl05a [105 [682 [[994. [1224 |(*) 1213 [1357 |[3:18:25 |363 500
1029]

Rbgl09a [109 [622 [[1035, [1117 [(*) 1165 [1473 |4:56:25 |237 500
1038]

Rbgl26a |124 [369 [1381 [1587 |31:17.62 |1584 |1760 |2:22:51 |149 200

Rbgl48a [146 [976 |[1398, [1554 |(*) 1624 [1839 |[8:49:51 |101 200
1399]

Rbgléla |159 |[472 [1962 |2178 |0:20.64 |2224 |2337 |3:02:06 |23 70

Rbgl74a |174 [1113 [[2030, 2193 |(*) 2218 |2240 |6:58:11 |35 70
2033]

Rbg190a [188 [725 |[2227, |2442 |(*) 2585 |2732 |13:52:55 |59 100
2244]

Rbg285a | 283 [820 [3482 [3857 |102:22.40|3887 |4268 |47:09:26 |41 50

(*): Cancela la ejecucion por alcanzar el tiempo mdximo de procesamiento
permitido. En todos los casos mencionados en [3], el tiempo mdximo permitido
es de 5*[n/100] horas de CPU.
En estos casos se indica el rango de valores donde estd la solucién.
Los tiempos de CPU para el caso de Branch & Cut estd medido en
mm:ss.cc(minuto, segundo, centésima), y para el algoritmo propuesto estdé medido
en hh:mm:ss (hora, minuto, segundo).
El algoritmo Branch & Cut fue desarrollado en C, en un entorno SUN SPARC 10
con 64 MB de memoria bajo SUN OS 5.5

Los problemas EscO7-Esc78 fueron provistos por Escudero y
corresponden a datos de Produccion de IBM. Los rbgO19a - rbg285a
corresponden a datos obtenidos de la rutina de una grua apiladora en un sistema
automdtico de almacenamiento. Los archivos de texto con que se ejecutaron

estas pruebas, fueron provistos por Maria Teresa Ortufio, persona a la cual nos

66

derivé Laureano Escudero, ella nos envié los problemas Esc, y el resto de los
problemas identificados por rbg, fueron extraidos de la pdgina Web, indicada

oportunamente por ellos.

Como conclusiones de las ejecuciones realizadas, con las diferentes versiones

de la técnica tabu, tenemos que:

1. Algoritmo Tabu search basico: Los resultados en general no fueron buenos,
se puede ver en la tabla presentada en el item a) de este mismo capitulo, que
el algoritmo no mejora significativamente la solucién obtenida con la

Heuristica Inicial.

2. Algoritmo Tabu Search enriquecido con estrategia de Diversificacién: se
aplico la estrategia de Diversificacion que se define en la Seccion anterior y
mejoraron los resultados con respecto al algoritmo bdsico. Se observé que se
cambia el espacio de bisqueda forzando a los nodos a ocupar diferentes
posiciones en el vector solucion. En algunos casos se observaron cambios
notables, ya que determinados nodos ocupaban siempre las mismas posiciones
antes de la implementacion de la estrategia. La diversificacion se activa
durante las iteraciones iniciales, y se desactiva en la parte final de la
busqueda. (Estos valores son parametrizables por cddigo). Se hicieron
pruebas variando el factor de diversificacion. Este factor parece estar
vinculado a los pesos de las aristas. Se propone un factor de diversificacion
aleatorio en un rango dmin, dmax con una distribucién uniforme, donde dmin y
dmax son iguales al valor de la Funcion Objetivo de la solucién encontrada
mediante la aplicacién de la heuristica inicial moviéndose en un rango que
actualmente estd implementado como el valor de la Funcion Objetivo de la
solucion hallada por la Heuristica Inicial / 4. (Estos valores son
parametrizables por cdédigo). Con la implementacion de esta estrategia,

aparecen los primeros resultados exactos para algunos problemas.

67

3. Algoritmo Tabu Search enriquecido con Estrategia de Intensificacion y
Diversificacion: Se implementé la estrategia explicada en la Seccion
anterior. Esta estrategia se activa durante las iteraciones finales (Este valor
es parametrizable por cédigo). Se propone para la obtencion de mejores
resultados reinicializar mas de una vez dejando una marca en la solucion elite
seleccionada, después de cierto nimero de iteraciones de no mejora. (Este
valor también es parametrizable por cddigo). Se propone ademds que la
estrategia de Intensificacion se active cuando ha transcurrido desde la
ultima reinicializacion una cantidad de iteraciones mayor a un pardmetro.
(También parametrizable en el cédigo). En la experiencia de las ejecuciones
se vio que en algunos ejemplos no reinicializé nunca en toda la biisqueda,
mientras que en otros para lograr el mejor resultado fue necesario hacerlo
hasta el maximo permitido. Con el enriquecimiento de esta estrategia, los
resultados mejoraron notablemente, dando en algunos ejemplos resultados
exactos. En algunos problemas donde, a pesar de la implementacion de ambas
estrategias, los resultados no eran buenos, se propuso y desarrollé un ranking
de soluciones iniciales, ordenadas por el valor de la Funcion Objetivo. Las
soluciones son las halladas con la Heuristica Inicial (vecino mds préximo,
enriquecida con eleccion del vértice inicial y validacion de restricciones de
precedencia). El objetivo es comenzar la bisqueda por distintas soluciones
iniciales. La cantidad de soluciones iniciales del ranking es parametrizable por
codigo. Con esta implementacion, se mejoraron algunos resultados, y se
observé que la solucion inicial seleccionada no fue necesariamente la mejor
con respecto al valor de la Funcion Objetivo.

Se observo, ademds, en otros ejemplos que fue necesario aumentar el nimero
de iteraciones para hallar mejores resultados. Queda para un futuro trabajo
implementar y mejorar ain mds dichos resultados, un ranking de soluciones
obtenidas por el algoritmo variando ciertos pardmetros.

Otra posibilidad para optimizar resultados es variar los tamafios de
diferentes esiruciuras coimo Lista Tabu, Lista de Soluciones Elite, Caniidad
de Soluciones Iniciales, etc. Los resultados de dichas variaciones se

describen en el Capitulo 5- Pardmetros de la Bisqueda.

68

Comparando los resultados de las tablas b) y c), se ve con claridad que
ademds de haber podido ejecutarse ejemplos de mayores dimensiones, se
pudo mejorar el tiempo de ejecucion

Mads detalles sobre los resultados obtenidos, y las soluciones encontradas
tanto inicial como la lograda con la técnica Tabu, se muestran en el Apéndice.
Alli se encuentran los archivos de resultados obtenidos para las ultimas

ejecuciones de cada problema bajo entorno Visual C++ 5.0.

69

7- CONCLUSTIONES

Analizando las tablas de resultados presentadas en el capitulo anterior , se
debe tener en cuenta que el algoritmo Branch & Cut es un método exacto y el
algoritmo desarrollado en el presente trabajo es una heuristica, por lo cual se
concluye que las soluciones obtenidas son razonablemente buenas. Las mismas
fueron logradas con un algoritmo de menor complejidad que el que requiere un

método exacto.

El objetivo de este trabajo fue mostrar el potencial de una técnica Tabu
Search, para un problema SOP con ejemplos de la vida real, y comparar sus
resultados con los obtenidos con un método exacto.

La parametrizacion del algoritmo propuesto da la posibilidad de obtener
mejores resultados variando los pardmetros, como se describe en el Capitulo b
en pardmetros de la Busqueda. Esto también permitic observar el
comportamiento del algoritmo para los distintos problemas ejecutados.

La generacion de una lista de soluciones iniciales, permitio mejorar los
resultados en algunos casos, dado que tomando una solucién distinta a la de

menor valor de funcidn objetivo, se aproximaba mds al resultado exacto.

Los 31 problemas ejecutados, teniendo en cuenta los resultados obtenidos,

comparados con la solucién exacta, se dividen de la siguiente forma:

0% 9 29 %
0-5% 4 13 %
5-10 % 5 16 %
10-15 % 7 225 %
15-20 % 2 65 %
20-25 % 3 9.7 %
25-99 % 1 33%

70

Algunas de las mejoras posibles a realizar al algoritmo son:

Heuristica Inicial

Se podria intentar construir la Solucién Inicial utilizando otra de las

Heuristicas constructivas, citadas oportunamente.

Soluciones No Factibles

Resultaria interesante intentar permitir la exploracion de regiones a
partir de soluciones no factibles, estudiando la forma de transformar

posteriormente la solucion en factible.

Combinacion de Movimientos

Una conocida manera de incrementar el poder de Tabu Search, es crear
diferentes mecanismos de movimientos, que pueden usarse separada o
simultdneamente, durante la bisqueda [11].

Una posibilidad en el contexto de nuestro problema es introducir

movimientos de insercion, explicados oportunamente.

Reglas Tabu

Definir otras restricciones tabu agregando nuevas Listas Tabu.

Una posible regla es la que previene a un nodo de ocupar una determinada
posicion en la secuencia. Otras posibilidades son, prohibir a un determinado nodo
moverse de posicion, no permitir que dos nodos intercambien posiciones entre si,

prevenir que un nodo no ocupe una posicion anterior en la secuencia.

71

Diversificacion

Otros mecanismos que se pueden imponer estdn relacionados con la
diversificacion. Una estrategia frecuentemente usada es implementar una
funcion de memoria a largo plazo que cuente la cantidad de veces que se realiza
una permuta. El propédsito es penalizar movimientos frecuentemente realizados,

con el objetivo de dirigir la bisqueda hacia regiones no visitadas.

Criterio de Aspiracion

Podria implementarse otro Criterio de Aspiracion, como Aspiracion

Regional, descripto oportunamente.

Vecindario Restringido

Una alternativa puede ser implementar alguna de las estrategias para

armar el vecindario restringido, entre las que fueron oportunamente citadas.

Tabu Search Probabilistico

Esta variante de Tabu Search permite una vez evaluado el vecindario, que
la eleccion del mejor movimiento se realice en forma aleatoria, siguiendo una de
las siguientes formas:

o Elegir aleatoriamente entre los k mejores movimientos
o Elegir aleatoriamente entre todos los movimientos con un valor dentro del o
% de los mejores

La seleccion aleatoria puede seguir una distribucién uniforme o seguir

otra funcion de distribucion de probabilidad, construida desde la evaluacion

asociada a cada movimiento.

72

Alternar Estrategias de Diversificacion e Intensificacion

Una alternativa posible es alternar la activacion de las estrategias de

Diversificacion e Intensificacion, estudiando la mejor medida para alternarlas.

Ejecucion del Mejor Movimiento

Se podria intentar ejecutar un movimiento solo cuando este resulte
admisible. El criterio para decidir si un movimiento es admisible podria ser
definir un umbral de mejoria para el valor de la funcién objetivo, o una funcién
de probabilidad. La iteracién podria de esta manera, no resultar en un

movimiento ejecutado, dado que este solo es aceptado cuando es admisible.

Enfoques Hibridos

Los enfoques hibridos son el resultado de combinar dos o mds técnicas
metaheuristicas, de manera tal que el procedimiento resultante sea mds
eficiente que la utilizacién de cada uno de estos.

Tabu Search Algoritmos Genéticos y Simulated Annealing son candidatos

para la creacion de procedimientos hibridos, [11]

73

BIBLIOGRAFIA

[1] Ascheuer, N. - Escudero, L.F - Grostschell, M. - Stoer, M."A cutting plane
approach to the sequential ordering problem (with applications to job scheduling
in manufacturing)” - STAM- Journal Optimization-1993

[2] Ascheuer, N. "Hamiltonian Path Problems in the on-line Optimization of
Flexible Manufacturing Systems”, Phd Thesis, Tech. Univ. Berlin, 1995

[3]1 Ascheuer, N.- Jiinger, M.- Renuelt, 6. "A Branch & Cut algorithm for the
Asymmetric Hamiltonian Path Problem with Precedence Constraints” - diciembre
1997- Preprint SC 97/70, Konrad-Zuse-Zentrum fur Informatiosttechnik-

Berlin

[4] Campello, R.- Maculan, N. “Algoritmos e heuristicas: Desenvolvimento e
Avaliagao de Algoritmos heuristicos”, Editora da UFF, 1994

[B] Feo, T.A.- Resende, M.G.C. "Greedy Randomized Adaptive Search
Procedures” - Junio 1994 (Journal of Global Optimization, 1-27 (1994)

[6] Garey, M.R.- Johnson, D.S. “"Computers and intractability”- Ed. W.H.
Freeman and Company- 1991

[7] Glover, F. “Tabu Search: A tutorial”, Interfaces 20, pp 74-94, 1990

[8] Glover, F. "Multilevel Tabu Search and Embedded Search Neighborhoods
for the Travelling Salesman Problem” - Technical Report- Junio 1991

[9]1 Harary- "Graph Theory”- Addison Wesley Publishing Company - 1972.

[10] Hertz, A.- Taillard, E. - de Werra, D. "Tabu Search” en “Local Search in

74

Combinatorial Optimization”, Arrts, Lenstra(eds), Wiley, 1997

[11] Laguna, M. "A guide to Implementing Tabu Search”- Investigacidn
Operativa Vol Nro 1 PP 5-25 - Abril 1994.

[12] Laguna, M. "II Escuela de Verano Latinoamericana de Investigacion
Operativa- Tabu Search Tutorial”- Mendes, Brasil - 1995

[13] Reeves, C. "Modern heuristic Techniques for Combinatorial Optimization”
, Backwell, 1993

[14] Ronconi, D.P. “Special strategies for Tabu Search to minimize total
tardiness for the permutation flowshop problem”- 27 JAIIO- 1998

[15] Sedgewick, R. “Algoritmos en C++“, Ed.Addison- Wesley/Diaz de Santos-
1995

[16] Szwarcfiter, J.L. "grafos e algoritmos computacionais”- Ed. Campus- 1988

[17] Werra, D. De- Hertz, A. "Tabu Search Techniques” - A Tuiorial and an
application to Neural Networks - Junio 1989

75

APENDICE

Este apéndice consta de dos partes:

PRIMERA PARTE : Impresion de los archivos de resultados de las ejecuciones
con cada uno de los ejemplos.
SEGUNDA PARTE : 6rdficos que muestran el comportamiento del algoritmo en

cuanto al valor de la Funcién Objetivo a lo largo de las iteraciones.

PRIMERA PARTE

Tue Apr 20 11:36:21 PM

Problema: esc07

Cantidad de nodos: 7

Solucion inicial:

2031654

Funcion Objetivo Soluciodn inicial: 2625
Mejor solucion encontrada:
0361542

Funcion Objetivo mejor soluc. encontrada: 2125

Tiempo de ejecucion total: 0.000000 seg

Tiempo de ejec. mejor solucion: 0.000000 seg

Numero de iteraciones solicitadas: 25
Numero de iteraciones realizadas: 25
fejor iteracion: 15

Cantidad de reinicializaciones: 3

76

Tue Apr 20 11:39:20 PM

Problema: escl1
Cantidad de nodos: 11
Solucidn inicial:
351069801274

Funcién Objetivo Solucidn inicial: 2715
Mejor solucion encontrada:
308142596710

Funcidn objetivo mejor soluc. encontrada: 2075

Tiempo de ejecucion total: 0.000000 seg

Tiempo de ejec. mejor solucion: 0.000000 seg

Numero de iteraciones solicitadas: 650
Numero de iteraciones realizadas: 650
Mejor iteracion: 429

Cantidad de reinicializaciones: 2

Tue Apr 20 11:41:20 PM

Problema: esc12
Cantidad de nodos: 12
Solucién inicial:
37960421510118

Funcién Objetivo Solucién inicial: 1907
Mejor solucion encontrada:
37986024101511

Funcion ob jetivo mejor soluc. encontrada: 1675

Tiempo de ejecucion total: 0.000000 seg

Tiempo de ejec. mejor solucion: 0.000000 seg

Numero de iteraciones solicitadas: 250
Nuimero de iteraziones realizadas: 250
Mejor iteracion: 69

Cantidad de reinicializaeciones: 4

78

Tue Apr 20 11:42:19 PM

Problema: esc14

Cantidad de nodos: 14
Solucion inicial:
920731016813512411

Funcion Objetivo Solucidn inicial: 2625
Mejor solucion encontrada:
701036813112541129

Funcion ob jetivo mejor soluc. encontrada: 2125

Tiempo de ejecucion total: 1.000000 seg

Tiempo de ejec. mejor solucion: 0.000000 seg

Numero de iteraciones solicitadas: 1300
Numero de iteraciones realizadas: 1300
Mejor iteracion: 375

Cantidad de reinicializaciones: 4

79

Sun Apr 25 03:09:32 PM

Problema: esc25

Cantidad de nodos: 25

Solucion inicial:
01219731015120162346521242818141711139 22

Funcién Objetivo Solucién inicial: 3360
Mejor solucion encontrada:
2320168012197310151918461352122112417142

Funcion objetivo mejor soluc. encontrada: 1747

Tiempo de ejecucion total: 30.000000 seg

Tiempo de ejec. mejor solucion: 24.000000 seg

Numero de iteraciones solicitadas: 10000
Numero de iteraciones realizadas: 10000
Mejor iteracion: 7509

Cantidad de reinicializaciones: 1

80

Sun Apr 25 03:57:12 PM

Problema: esc47

Cantidad de nodos: 47

Solucion inicial:

4136 46 15 24 45 42 43 19 22 18 32 13 29 17 21 20 44 35 11 30 25 27 34 26
3712031393323116403828234781051469

Funcién Objetivo Solucién inicial: 3503

Mejor solucion encontrada:
04435403414623938124303231751025271391922371114207
294136334564243311832211524288 2616

Funcion objetivo mejor soluc. encontrada: 2367
Tiempo de ejecucion total: 117.000000 seg

'ﬁempo de ejec. mejor solucion: 110.000000 seg

Numero de iteraciones solicitadas: 5000
Numero de iteraciones realizadas: 5000
Mejor iteracién: 4610

Cantidad de reinicializaciones: 35

81

Tue Apr 20 11:56:00 PM

Problema: esc63

Cantidad de nodos: 63

Solucion inicial:
56264815931443018111216222719252913203031322871021
36 38 1517 44 24 41 49 26 34 23 40 42 57 35 46 37 50 52 33 51 45 48 59 39
47 53 58 55 54 60 62 61

Funcién Objetivo Solucidn inicial: 68

Mejor solucién encontrada:
1211546101281518464849403567131923463750384259 2521
36 22 27 14 51 52 30 44 26 57 35 17 10 16 33 23 43 20 32 31 59 45 24 41 39
47 53 58 55 48 29 60 62

Funcion ob jetivo mejor soluc. encontrada: 62
Tiempo de ejecucion total: 156.000000 seg

Tiempo de ejec. mejor solucion: 8.000000 seg

Nuimero de iteraciones solicitadas: 500
Numero de iteraciones realizadas: 500
Mejor iteracion: 27

Cantidad de reinicializaciones: 1

82

Tue Apr 20 11:59:36 PM

Problema: esc78

Cantidad de nodos: 78

Solucién inicial:

02196413717102116514313118 2012 22 37 18 59 32 38 24 60 42 66
4576 46 15 25 28 75 19 29 23 33 55 39 26 3527 4164 40 3044 72 62 73 52
47 34 50 56 36 53 58 43 65 48 67 49 70 51 74 54 71 57 61 63 68 69 77

Funcién Objetivo Solucidn inicial: 22600

Mejor solucion encontrada:

0219671910173 311123 223741559428 4472 39 12 24 66 40 43 20
533 5518 34 74 56 69 38 32 54 14 21 62 68 29 27 25 28 16 30 35 13 26 45
52 73 77 50 76 36 41 58 61 65 48 53 49 70 51 67 60 71 57 75 63 47 64 46

Funcion objetivo mejor soluc. encontrada: 18640
Tiempo de ejecucion total: 166.000000 seg

Tiempo de ejec. mejor solucion: 115.000000 seg

Numero de iteraciones solicitadas: 600
Numero de iteraciones realizadas: 600
Mejor iteracion: 414

Cantidad de reinicializaciones: 1

83

Wed Apr 21 12:01:10 AM

Problema: esc98

Cantidad de nodos: 98

Solucioén inicial:

9329162330374451586572798607 142128 35424956 637077
849131017243138455259667380879416 8131520222729 3436
4143 4850 55 57 62 64 69 7176 78 83 85 90 92 97 512 19 26 33 40 47 54
6168 7582 89 96 4 11 18 25 32 39 46 53 60 67 74 81 88 95

Funcion Objetivo Solucién inicial: 2625

Mejor solucion encontrada:

932916 233037445158 657279860714 2128 3542 4956 637077
849131017 243138455259 6673808794168 1315 20 22 27 29 34 36
4143 48 50 55 57 62 64 69 7176 78 83 85 90 92 97 5 12 19 26 33 40 47 54
6168 7582 89 96 4 11 18 25 32 39 46 53 60 67 74 81 88 95

Funcidn objetivo mejor soluc. encontrada: 2625

Tiempo de ejecucion total: 53.000000 seg

Tiempo de ejec. mejor solucion: 0.000000 seg

Numero de iteraciones solicitadas: 100
Numero de iteraciones realizadas: 100
Mejor iteracion: 1

Cantidad de reinicializaciones: 4

84

Sat Apr 17 06:00:34 PM

Problema: rbg019a

Cantidad de nodos: 19

Solucion inicial:
32016549781211101315161418 17

Funcidén Objetivo Solucidn inicial: 198
Mejor solucién encontrada:
3201654978121110131516 1418 17

Funcion objetivo mejor soluc. encontrada: 198

Tiempo de ejecucion total: 0.000000 seg
Tiempo de ejec. mejor solucion: 0.000000 seg

Numero de iteraciones solicitadas: 1
Numero de iteraciones realizadas: 1
Mejor iteracion: O

Cantidad de reinicializaciones: O

85

Wed Apr 21 12:05:51 AM

Problema: rbg019b

Cantidad de nodos: 19

Solucion inicial:
10243756811101213914151617 18

Funcién Objetivo Solucién inicial: 243
Mejor solucion encontrada:
102574638139141211101516 17 18

Funcion ob jetivo mejor soluc. encontrada: 199

Tiempo de ejecucion total: 3.000000 seg

Tiempo de ejec. mejor solucion: 1.000000 seg

Numero de iteraciones solicitadas: 500
Numero de iteraciones realizadas: 500
Mejor iteracion: 119

Cantidad de reinicializaciones: 4

86

Sun Apr 25 06:07:57 PM

Problema: rbg021a

Cantidad de nodos: 19

Solucion inicial:
10425736111289101716151813 14

Funcién Objetivo Solucidn inicial: 236
Mejor solucion encontrada:
10487365211141312109161518 17

Funcion ob jetivo mejor soluc. encontrada: 158

Tiempo de ejecucion total: 6.000000 seg

Tiempo de ejec. mejor solucion: 2.000000 seg

Numero de iteraciones solicitadas: 1500
Numero de iteraciones realizadas: 1500
Mejor iteracion: 564

Cantidad de reinicializaciones: O

87

Wed Apr 2112:08:02 AM

Problema: rbg023a

Cantidad de nodos: 21

Solucién inicial:
10425736111289101716151813 1419 20

Funcién Objetivo Solucion inicial: 273
Mejor solucion encontrada:
10487365211141312109161519 1817 20

Funcién objetivo mejor soluc. encontrada: 155

Tiempo de ejecucion total: 4000000 seg
Tiempo de ejec. mejor solucion: 2.000000 seg

Numero de iteraciones solicitadas: 500
Numero de iteraciones realizadas: 500
Mejor iteracion: 286

Cantidad de reinicializaciones: 4

88

Wed Apr 21 12:10:06 AM

Problema: rbg029a

Cantidad de nodos: 27

Solucion inicial:
08131103202122525215164672412914112618172319

Funcién Objetivo Solucidn inicial: 270
Mejor solucion encontrada:
0212425567129348131520222123101126141617 1819

Funcion objetivo mejor soluc. encontrada: 221

Tiempo de ejecucion total: 47.000000 seg

Tiempo de ejec. mejor solucion: 44.000000 seg

Numero de iteraciones solicitadas: 5000
Numeiro de iteraciones realizadas: 5000
Meor iteracion: 4730

Ca:itidad de reinicializaciones: 3

89

Wed Apr 21 12:12:46 AM

Problema: rbg048a

Cantidad de nodos: 48

Solucion inicial:

46028272447172031305112813323391516 211218 2619 3123 25
104226714 353429 38 36 444037 4339414245

Funcion Objetivo Soluciodn inicial: 483

Mejor solucion encontrada:
4602747824162112412252914283213112610193391725152 23
2033067 1834313635413845403744433942

Funcidn objetivo mejor soluc. encontrada: 389

Tiempo de ejecucion total: 126.000000 seg

Tiempo de ejec. mejor solucion: 68.000000 seg

Numero de iteraciones solicitadas: 500
Numero de iteraciones realizadas: 500
Mejor iteracion: 269

Cantidad de reinicializaciones: 4

90

Wed Apr 21 05:15:09 PM

Problema: rbg049a

Cantidad de nodos: 49

Solucion inicial:

1082925261632223173018542311202913612247 1415213419
3110 27 28 39 33 42 46 44 36 35 37 3840 41 47 45 43 48

Funcion Objetivo Solucion inicial: 473

Mejor solucion encontrada: ;
108922625432223173018516102315112014 3424612212913
3119728 27 39 33 42 46 44 37 43 41 35 40 36 47 45 38 48

Funcidn objetivo mejor soluc. encontrada: 407

Tiempo de ejecucion total: 321.000000 seg
Tiempo de ejec. mejor solucion: 128.000000 seg

Numero de iteraciones solicitadas: 1000
Numero de iteraciones realizadas: 1000
Mejor iteracion: 427

Cantidad de reinicializaciones: 4

o1

Sun Apr 25 07:47:06 PM

Problema: rbg050a

Cantidad de nodos: 50

Solucién inicial:
201332462874731431784421345291022232518353291620
114112 26 13 45 27 1549 1419 36 37 30 38 46 42 39 40 43 48

Funcién Objetivo Solucién inicial: 500

Mejor solucion encontrada:
2101831967473141427844215292223243325104917916 2011
13 28 12 41 32 34 15 26 37 45 36 35 30 38 39 43 42 48 46 40

Funcidn objetivo mejor soluc. encontrada: 447
Tiempo de ejecucion total: 128.000000 seg

Tiempo de ejec. mejor solucidn: 87.000000 seg

Numero de iteraciones solicitadas: 500
Numero de iteraciones realizadas: 500
Mejor iteracion: 334

Cantidad de reinicializaciones: 2

92

Sun Apr 25 08:17:56 PM

Problema: rbg050b

Cantidad de nodos: 50

Solucion inicial:

1087216304171026193515 342713241418 212522112012 289 29
23356 3332313848434449 47 363742 3945414046

Funcion Objetivo Solucion inicial: 558

Mejor solucion encontrada:
10872330417341026612282213241420251827195162392911
213515 32 31 38 33 48 44 43 49 47 42 37 36 46 45 41 40 39

Funcidn objetivo mejor soluc. encontrada: 421
Tiempo de ejecucion total: 291.000000 seg

Tiempo de ejec. mejor solucion: 121.000000 seg

Numero de iteraciones solicitadas: 600
Numero de iteraciones realizadas: 600
Mejor iteracion: 148

Cantidad de reinicializaciones: 4

93

Sun Apr 25 08:36:25 PM

Problema: rbg050c

Cantidad de nodos: 50

Solucién inicial:
1010219342543215142716173232220402865424137726818
299314533 39111213 24 213547 48 30 46 36 49 44 38 43

Funcion Objetivo Solucién inicial: 558

Mejor solucion encontrada:
1010219254401427542311732322154528739124126937818
2963332201613 3411242138484730464336493544

Funcion objetivo mejor soluc. encontrada: 499
Tiempo de ejecucion total: 332.000000 seg

Tiempo de ejec. mejor solucion: 115.000000 seg

Numero de iteraciones solicitadas: 500
Numero de iteraciones realizadas: 500
Mejor iteracion: 174

Cantidad de reinicializaciones: 4

94

Wed Apr 21 05:38:07 PM

Problema: rbg068a

Cantidad de nodos: 66

Solucién inicial:

104257361112891017 16 1518 13 14 19 20 24 22 23 21 26 28 25 27 30
3129 32 33 34 35 38 44 37 40 39 36 42 41 43 45 46 47 48 49 50 51 52 55 54
56 53 57 61 64 63 65 58 59 60 62

Funcién Objetivo Solucion inicial: 917

Mejor solucion encontrada:

1046873211125109 18 16 14 13 1519 17 20 21 23 22 27 26 24 28 25 31
30 29 35 32 34 33 38 44 40 43 39 36 42 41 37 46 47 45 51 50 48 49 52 55 54
56 53 6157 60 59 65 64 63 62 58

Funcidn objetivo mejor soluc. encontrada: 738
Tiempo de ejecucion total: 170.000000 seg

Tiempo de ejec. mejor solucion: 86.000000 seg

Numero de iteraciones solicitadas: 100
Numero de iteraciones realizadas: 100
Mejor iteracion: 56

Cantidad de reinicializaciones: 3

95

Wed Apr 2105:51:46 PM

Problema: rbg088a

Cantidad de nodos: 88

Solucién inicial:

501234678119101213 151418 23 16 17 19 20 24 21 25 22 32 26 27 28
38 30 29 3140 41 33 43 49 34 48 35 36 37 39 42 44 51 45 46 54 53 47 50 58
57 52 6160 63 5559 56 62 66 67 68 70 6465 697275717879 767377 74
83 84 8180 82 85 86 87

Funcion Objetivo Solucién inicial: 1370

Mejor solucion encontrada:

501234678911131210151418 2016 17 19 23 24 21 25 22 32 27 26 28
38 30 29 31 49 35 33 43 40 34 48 41 36 37 39 42 46 51 45 44 54 53 47 50 58
57 52 61 60 56 5559 63 64 62 68 67 70 66 65 69 717572747776 7378 79
83 84 8580828187 86

Funcion objetivo mejor soluc. encontrada: 1240
Tiempo de ejecucion total: 278.000000 seg

Tiempo de ejec. mejor solucion: 105.000000 seg

Numero de iteraciones solicitadas: 50
Numero de iteraciones realizadas: 50
Mejor iteracion: 17

Cantidad de reinicializaciones: 3

96

Sat Apr 24 11:08:48 PM

Problema: rbg092a

Cantidad de nodos: 92

Solucion inicial:

210345671089111213 191422 2416 15 18 26 20 17 27 25 21 28 29 23
36 30 3132 39 3334354037 42 41 385150 46 45 47 44 43 48 49 54 59 56
52 53 55 57 58 63 61 60 67 69 75 62 64 83 6574 66 77 6880 70817172 73
76 87 85 86 78 88 79 82 84 91 90 89

Funcién Objetivo Solucidn inicial: 1246

Mejor solucion encontrada:

2103451076981113 12 20 14 2219 16 15 23 25 18 17 27 26 21 30 29 24
32 28 33 31 39 34 35 36 40 37 42 41 38 51 50 46 45 47 44 43 48 49 59 58 56
54 53 57 5552 63 6164 62 60 6567 73 68 7274 66 69 76 80 757177 83 78
70 87 85 81 84 82 88 86 79 91 90 89

Funcion objetivo mejor soluc. encontrada: 1084
Tiempo de ejecucion total: 3094.000000 seg

Tiempo de ejec. mejor solucion: 2336.000000 seg

Numero de iteraciones solicitadas: 250
Numero de iteraciones realizadas: 250
Mejor iteracion: 186

Cantidad de reinicializaciones: 1

97

Wed Apr 21 08:07:49 AM

Problema: rbg094a

Cantidad de nodos: 94

Solucion inicial:

653091111217192154167 810 20 2113 22 14 18 23 26 25 24 27 28 29
3031353233343836373940414243444546475048 4951525453
57 62 55 56 58 59 63 60 64 61 71 65 66 67 77 69 68 70 79 80 72 82 88 73 87
747576 78 8183 90 84 85 93 92 86 89 91

Funcién Objetivo Solucién inicial: 1548

Mejor solucion encontrada:

019315611417921012137 158 20 16 14 23 22 21 18 26 25 24 28 29 27
303134333236354137 38444243 394047 45 46 49 52 51 48 50 58 53
57 55 56 54 59 60 62 63 64 61 71 66 65 67 77 69 68 7088 7472 82 79 73 87
80 75 76 78 8183 91 85 84 93 92 86 89 90

Funcién ob jetivo mejor soluc. encontrada: 1398
Tiempo de ejecucion total: 27774.000000 seg

Tiempo de ejec. mejor solucion: 14845.000000 seg

Numero de iteraciones solicitadas: 1700
Numero de iteraciones realizadas: 1700
Mejor iteracion: 908

Cantidad de reinicializaciones: 4

98

Tue Apr 27 11:13:42 AM

Problema: rbgl105a

Cantidad de nodos: 105

Solucion inicial:

1104756832091712 1118 19 20 16 21 13 14 15 27 28 24 23 30 25 26 22
29 34 33 37 3132 41 35 46 36 40 44 43 45 42 38 47 51 48 39 54 53 55 52 56
49 50 59 62 60 57 58 61 63 64 65 66 67 6869 7475727077 7176 7378 79
87 80 89 91 81 88 82 83 84 85 94 86 90 97 96 92 93 95 98 99 100 102 104
103 101

Funcién Objetivo Solucion inicial: 1357

Mejor solucion encontrada:

211047568320117121118 19 20 16 1513 149 22 28 29 23 35 25 24 32
26 34 33 27 3130 37 41 45 46 42 44 43 36 40 39 38 48 49 47 53 50 51 52 56
55 57 54 62 60 6159 58 64 63 66 67 6568 69 7573727077 7174768078
8182 83 79 89 88 87 84 86 85 94 91 90 97 96 92 93 95 98 101 100 102 104
103 99

Funcion objetivo mejor soluc. encontrada: 1213
Tiempo c'z ejecucion total: 11905.000000 seg

Tiempo cz ejzc. mejor solucion: 7858.000000 seg

Numero dz iteraciones solicitadas: 500
Numero c'e iteraciones realizadas: 500
Mejor iteracion: 363

Cantidad de reinicializaciones: 2

99

Tue Apr 27 04:56:59 AM

Problema: rbg109a

Cantidad de nodos: 109

Solucion inicial:

1532074691081916 1118152117 12 13 20 14 23 24 22 25 26 27 28 29
3032 3135343337 364043 42 44 38 39 47 41 51 52 45 49 46 50 65 55 56
58 48 53 57 60 54 63 59 71 68 61 70 62 69 64 73 72 74 66 67 78 75 79 80 81
77 83 82 76 84 86 85 87 92 90 88 91 89 95 93 102 97 96 100 99 94 98 103
101 104 105 107 108 106

Funcién Objetivo Solucion inicial: 1478

Mejor solucion encontrada:

0532176410981912 1118 152117 1413 20 16 23 22 24 26 25 29 28 27
30 32 3135 34 38 33 39 40 36 42 44 43 37 47 41 51 52 45 49 46 48 53 58 50
54 65 55 56 57 70 63 59 71 68 61 60 62 64 67 69 72 74 66 73 76 7579 80 78
77 83 82 8184 87 85 86 92 90 88 91 89 95 93 97 98 96 100 99 94 101 102 107
108 105 104 106 103

Funcion ob jetivo mejor soluc. encontrada: 1165
Tiempo de ejecucion total: 17785.000000 seg

Tiempo de ejec. mejor solucion: 7994.000000 seg

Numero de iteraciones solicitadas: 500
Numero de iteraciones realizadas: 500
Mejor iteracion: 237

Cantidad de reinicializaciones: 5

100

Wed Apr 21 01:07:42 PM

Problema: rbg126a

Cantidad de nodos: 124

Solucion inicial:

0402136475891012111513 141916 17 18 21 20 23 22 25 26 24 27 28
31293034323335383736394241574346494786875883747279
48 53 65 61 54 45 44 59 50 51 52 62 55 56 60 64 66 63 67 68 69 70 71 73 78
7576 77 81 92 80 85 82 84 88 89 90 9196 93 94 95 97 98 99 100 101 103 104
102 106 107 105 109 108 111 112 113 110 117 119 115 116 120 114 118 121 122 123

Funcion Objetivo Solucion inicial: 1760

Mejor solucion encontrada:

0402135647891112101513 1417 16 19 18 21 22 20 25 24 26 23 28 27
302932 3431333538363739446579 414258 47868749 7257 83 61
48 53 54 74 43 45 46 5159 50 52 55 62 56 60 64 66 63 67 69 68 70 7173 75
77 76 78 80 8192 85 82 84 88 89 90 91 96 93 94 95 97 98 99 100 101 103 104
102 106 107 105 109 108 111 112 113 110 114 118 115 116 120 117 119 121 122 123

Funcion ob jetivo mejor soluc. encontrada: 1584
Tiempo de ejecucion total: 11931.000000 seg

Tiempo de ejec. mejor solucion: 8571.000000 seg

Numero de iteraciones solicitadas: 200
Numero de iteraciones realizadas: 200
Mejor iteracion: 149

Cantidad de reinicializaciones: O

101

Tue Apr 20 08:30:40 AM

Problema: rbg148a

Cantidad de nodos: 146

Solucién inicial:
10227173394441513101112141564351623252433268938437
18 22 34 29 37 20 2119 32 28 30 31 36 40 42 48 47 45 46 49 50 54 53 51 52
59 55 60 57 56 58 61 63 64 62 66 68 65 67 69 7177 70 78 80 74 72 75 81 83
79 73 76 87 86 82 84 92 91 85 97 94 88 98 89 90 93 100 95 104 96 99 108
101 106 111 102 110 103 105 107 109 116 112 119 113 114 115 121 117 123 118 125
124 120 127 122 129 126 128 132 133 135 137 130 131 141 134 139 140 136 138
142 143 144 145

Funcion Objetivo Solucion inicial: 1839

Mejor solucion encontrada:
10226176434441511131210141534351623252433278938397
18 22 34 29 37 20 21 36 19 23 30 31 32 46 42 48 47 40 45 49 50 54 53 51 52
57 56 60 59 58 55 61 63 64 62 66 68 67 65 69 7077 7178 80 74 72 75 81 83
79 73 76 87 86 84 82 92 91 85 97 94 90 89 88 99 95 100 98 93 103 96 102
101 106 104 109 110 105 111 108 107 115 112 119 116 118 117 114 113 124 120 125
121 128 123 122 129 127 126 132 133 135 137 131 130 141 134 143 139 140 136
138 144 142 145

Funcidn objetivo mejor soluc. encontrada: 1624
Tiempo de ejecucion total: 31791.000000 seg

Tiempo de ejec. mejor solucion: 15781.000000 seg

Numero de iteraciones solicitadas: 200
Numero de iteraciones realizadas: 200
Mejor iteracion: 101

Cantidad de reinicializaciones: 4

102

Tue Apr 20 06:50:48 PM

Problema: rbglé61la

Cantidad de nodos: 159

Solucion inicial:

210356204897111013141512 16 17 18 19 31 32 21 24 22 23 26 27 39
25 38 29 37 28 30 34 33 36 354142 40 43 44 45 46 47 48 49 50 51 52 53 54
56 58 55 61 57 60 59 62 63 64 65 66 67 68 69 717270747573 77 76 79 99
78 85 87 83 84 80 81 82 86 89 90 98 88 94 91 95 92 93 103 96 102 97 105
100 101 104 107 106 108 110 109 111 112 114 113 115 116 118 117 119 120 121 125
124 122 123 126 130 128 129 127 132 131 134 133 135 137 136 139 138 142 140
141 145 143 144 148 152 146 147 150 149 155 151 153 154 157 158 156

Funcion Objetivo Solucion inicial: 2337

Mejor solucion encontrada:

01235620487911101412 1513 16 18 17 19 31 39 21 24 22 23 37 38 27
25 28 26 29 32 30 36 33 35 34 40 41 42 43 44 45 456 47 48 49 50 51 52 53 54
57 58 55 61 56 60 59 62 64 63 65 66 67 6869 717270747573 777679 99
78 85 87 83 84 80 81 82 86 89 88 98 90 91 94 S5 92 93 103 96 102 97 105
100 101 104 107 106 108 109 110 111 112 114 113 115 116 118 117 119 120 121 125
124 122 123 126 127 128 129 130 132 131 134 133 135 137 136 139 138 142 140
141 145 143 144 148 152 146 147 150 149 155 151 153 154 157 158 156

Funcidn objetivo mejor soluc. encontrada: 2224
Tiempo de ejecucion total: 10926.000000 seg

Tiempo de ejec. mejor solucién: 4263.000000 seg

Numero de iteraciones solicitadas: 70
Numero de iteraciones realizadas: 70
Mejor iteracion: 23

Cantidad de reinicializaciones: 4

103

Mon Apr 26 06:36:37 AM

Problema: rbgl74a

Cantidad de nodos: 174

Solucién inicial:

102386475119181312 16 151014 19 17 20 25 28 23 24 21 27 26 22 29
30313233 343536413940 37 3846 42 48 47 43 44 45 55 50 49 51 54 52
7158 53 70 56 57 59 60 61 62 63 64 6573 66 74 67 78 77 68 69 87 80 72 75
84 83 76 88 85 79 81 82 94 93 86 89 90 91 92 107 101 95 96 108 97 98 99 100
102 109 103 104 105 106 110 111 112 113 114 120 117 115 116 121 118 119 122 123
124 127 125 129 143 130 126 131 135 132 128 136 139 137 151 141 134 133 144
138 152 140 147 142 149 150 145 153 146 155 148 167 158 161 156 162 160 157
159 163 166 154 169 168 165 164 171170 173 172

Funcion Objetivo Solucion inicial: 2440

Mejor solucion encontrada:

103286475119131412 16151718 10 2119 23 22 20 25 28 27 26 24 29
30 3132 33 36 35 34 41 38 40 39 37 43 42 48 47 45 44 46 55 50 52 51 54 49
7158 53 56 70 57 59 60 61 62 63 64 6573 66 68 67 78 77 69 74 87 80 72 75
84 83 76 88 85 82 81 79 94 93 92 89 90 91 86 107 101 95 96 105 102 98 99
100 97 109 103 104 108 106 110 113 112 111 114 120 115 117 116 122 118 123 121
119 124 127 125 129 143 130 126 131 135 132 128 136 141 137 151 139 144 133
134 138 152 140 147 150 149 142 145 153 146 155 148 167 158 161 156 162 154
160 159 163 166 157 169 168 165 164 171170 173 172

Funcidn objetivo mejor soluc. encontrada: 2218
Tiempo de ejecucion total: 25091.000000 seg
Tiempo de ejec. mejor solucién: 12099.000000 seg
Nimero de iteraciones solicitadas: 70

Numero de iteraciones realizadas: 70

Mejor iteracion: 35

Cantidad de reinicializaciones: 5

104

Thu Apr 22 08:24:07 AM

Problema: rbg190a

Cantidad de nodos: 188

Solucién inicial:

210356204897111013 141512 16 17 18 19 31 32 21 24 22 23 26 27 39
25 38 29 61 37 28 30 34 33 36 3541 42 40 43 44 45 46 47 48 49 50 51 52 53
54 56 58 55 59 57 60 100 99 91 62 66 95 103 63 64 98 68 73 74 65 88 67 71
72 70 76 69 85 108 75 90 94 87 83 77 81 107 78 84 79 97 106 80 82 112 96
86 104 89 93 92 110 102 126 105 101 116 128 113 114 131 111 122 115 109 117 118
119 121 120 123 124 125 127 129 130 133 132 135 134 138 136 137 141 139 140
144 148 142 143 146 145 149 147 152 151 150 155 153 160 154 158 156 157 163
159 162 161 165 164 169 179 166 182 167 168 170 171 178 172 173 174 175 176
177 180 181 183 184 185 186 187

Funcion Objetivo Solucién inicial: 2732

Mejor solucion encontrada:

012356204879111013121514 1817 16 19 31 32 21 24 22 23 61 39 27
25 26 29 28 37 38 30 36 33 35 34 40 41 42 43 45 44 47 46 49 48 50 51 52 53
54 56 58 55 59 57 60 100 99 78 62 66 95 103 63 64 98 68 73 74 65 88 69 70
727176 67 85 108 75 97 106 87 83 77 81 107 94 84 79 90 91 80 82 112 96 86
104 89 93 92 101 102 109 105 115 116 128 113 114 126 131 110 111 122 117 118
119 120 121 123 124 125 127 129 130 133 132 135 134 138 136 137 141 139 140
144 148 142 143 146 145 149 147 152 151 150 155 153 160 154 156 158 157 163
159 162 161 165 164 169 167 166 182 179 168 170 172 178 171 173 174 175 176
177 180 181 183 184 185 187 186

Funcion ob jetivo mejor soluc. encontrada: 2585

Tiempo de ejecucion total: 49975.000000 seg

Tiempo de ejec. mejor solucion: 28370.000000 seg

Numero de iteraciones solicitadas: 100

Nuimero de iteraciones realizadas: 100

Mejor iteracion: 59

Cantidad de reinicializaciones: 3

105

Mon Apr 19 06:39:59 PM

Problema: rbg285a2

Cantidad de nodos: 283

Solucion inicial:

17002354768910131112141522 16 17 18 23 19 21 20 25 24 27 28 26
29 32 3130 33 36 34 37 35 38 39 40 42 41 45 43 44 49 46 47 48 5150 53 52
55 56 54 57 58 61 59 60 64 62 63 65 68 67 66 69 72 7187 73 76 79 77 116
117 88 113 104 102 109 78 83 95 91 84 75 74 89 80 81 82 92 85 86 90 94 96
93 97 98 99 100 101 103 108 105 106 107 111 122 110 115 112 114 118 119 120
121 126 123 124 125 127 128 129 130 131 133 134 132 136 137 135 139 138 141
161 140 147 149 145 146 142 143 144 148 151 152 160 150 156 153 157 154 155
165 158 164 159 167 162 163 166 169 168 170 172 171 173 174 176 175 177 178
180 179 181 182 183 187 186 184 185 188 192 190 191 189 194 193 196 195 197
199 198 201 200 204 202 203 207 205 206 210 214 208 209 212 211 217 213
215 216 219 220 218 224 226 221 222 223 229 225 227 228 245 246 234 230
232 231 233 240 238 235 236 237 239 241 247 242 243 244 248 249 250 251
252 253 254 255 256 259 257 260 258 262 263 264 261 266 268 269 267
265 270 273 271 272 275 274 276 277 278 282 279 280 281

Funcion Objetivo Solucion inicial: 4268

Mejor solucion encontrada:

037021547681091213 1114152218 17 16 23 19 21 20 25 24 27 28 26
29323130333634373538394142404543444649474351525055
54 56 £3 58 57 59 60 62 64 61 63 65 68 66 67 69 749587 7172 79 77 116
117 83 113 104 102 109 78 83 84 91 73 75 76 81 89 80 €2 85 92 86 90 94 96
93 97 98 99 100 101 103 105 107 106 108 110 111 122 115 112 114 118 119 120
121 126 123 124 125 127 128 129 130 131 133 134 132 126 137 135 139 138 141
161 140 147 149 145 146 142 143 144 148 151 150 160 152 153 156 157 154 155
165 158 164 159 167 162 163 166 169 168 170 171 172 173 174 176 175 177 178
180 179 181 182 183 187 186 184 185 188 189 190 191 192 194 193 196 195 197
199 198 201 200 204 202 203 207 205 206 210 214 208 209 212 211 217 213

106

215 216 219 220 218 224 226 221 222 223 229 225 227 228 245 233 234 230
246 231 232 240 238 235 236 237 239 241 247 242 243 244 248 249 250 251
253 252 254 255 256 259 257 260 258 262 263 264 261 266 268 265 269
267 270 273 272 271 275 274 277 276 278 282 279 280 281

Funcion ob jetivo mejor soluc. encontrada: 3887
Tiempo de ejecucion total: 169766.000000 seg

Tiempo de ejec. mejor solucion: 142639.000000 seg

Numero de iteraciones solicitadas: 50
Numero de iteraciones realizadas: 50
Mejor iteracion: 41

Cantidad de reinicializaciones: O

107

SEGUNDA PARTE
El estudio de los resultados se dividié en tres partes:

e Problemas que arrojaron resultados exactos
e Problemas que arrojaron resultados aproximados (no mas del 10 % de la
solucion exacta)

e Problemas que arrojaron resultados distantes de la solucién exacta.

En todos los casos las pruebas se realizaron variando y combinando los
pardmetros ajustables de la bisqueda, y tamafios de ciertas estructuras
importantes para la misma.

A continuacion se presentan los grdficos y las tablas de valores de cada
iteracion, correspondientes al comportamiento del algoritmo para cada problema
estudiado.

En todos los problemas se tomaron para cada iteracion los valores de la Funcidn
Objetivo y el valor del reloj. El nimero de iteraciones varia en cada problema,
dado que en algunos casos fue necesario aumentar esta cantidad, con el objetivo

de encontrar la mejor solucion.

108

Estudio de problemas cuyo resultado resulté distante de la solucidn exacta:

e Se observé que para el problema esc25 aumentar la cantidad de iteraciones
totales mejoraba el valor de la funcion objetivo obtenida.
La mejor solucién obtenida para este problema se obtuvo partiendo de la
solucién inicial nimero catorce de la lista de mejores soluciénes iniciales, con
10000 iteraciones.

El comportamiento del algoritmo para este problema resulté:

esc25 c¢/10000 Iteraciones

Funcién Objetivo

1 1135 2269 3403 4537 5671 6805 7939 9073

Iteraciones

ITER FO CPU
1 3360 00:00:00
1135 4200 00:00:03
2569 4235 00:00:09
3403 3674 00:00:11
4537 2573 00:00:15
b671 5514 00:00:18
6805 5353 00:00:21
7509 1747 00:00:24
7939 3765 00:00:25
9073 3414 00:00:28
10000 4105 00:00:30

109

Estudio de problemas cuyo resultado resulté distante de la solucion exacta:

e Para el problema esc47 dado que la solucién obtenida en la mayoria de las
pruebas no era buena, se aumenté la diversificacion y la intensificacion
durante la busqueda.

La mejor solucion se obtuvo partiendo de la solucidn inicial nimero siete de la
lista de mejores soluciones iniciales, con 5000 iteraciones.

El comportamiento del algoritmo para este problema resulté:

esc47 c¢/5000 Iteraciones

Funcidén
Objetivo

~ M~ O OO WU ~ M~ ~ I~ N OO W ~— M~
O «~ »~ N M © O I~ I 00 O O
M O O N O 0O «~ I ~~ O M © O N uv 0
- v «~ N N N OO OO O M - < <
Iteraciones
ITER FO CPU

1 3503 00:00:00|

307 5586 00:00:11

613 5277 00:00:18]

919 5596 00:00:25]

1225 5220 00:00:31

1531 5676 00:00:35|

1837 5217 00:00:40]

2143 5364 00:00:45)

2449 4957 00:00:52

2755 5401 00:01:01

3061 4532 00:01:11

3367 4747 00:01:21

3673 4615 00:01:30]

3979 4087 00:01:39

4285 3738 00:01:44

4591 3288 00:01:50}

4610 2367 00:01:50]

4897 3192 00:01:55)

5000 3234 00:01:57

110

Estudio de problemas cuyo resultado resultdé distante de la solucion exacta:

o El problema esc98 en la mayoria de las pruebas terminé encontrando su mejor
solucién en la primera iteracién, esto es, la solucion inicial. Se probé comenzar con
todas las posibles soluciones iniciales, halladas con la heuristica inicial, sin obtener
mejoria en los resultados. Se observé que aumentar la cantidad de iteraciones no
mejoraba la soluciéon obtenida. Igual resultado se obtuvo al aumentar la
diversificacion e intensificacion durante la bisqueda. De igual manera se probaron
sin mejoria distintas combinaciones de los pardmetros de la bisqueda. El

comportamiento del algoritmo para este problema resulto:

esc98 c¢/100 lteraciones

o)
=
=
o 3000 2625
8 2000
$S 1000
g O INIRERARRI RN AN AN NN RN AN AN IR AN AR AR IR NI ANARNARANNEERIRIRARAARERARRRRERERERE!
e SN MO W N0 W =N OO0 W = I
- «— N O O ¥ ¥ U © O~~~ 0O O O
Iteraciones
ITER FO cPU

1 2625 00:00:00

7 2625 00:00:04

13 2625 00:00:07

19 2625 00:00:11

25 2625 00:00:14

31 2625 00:00:17

37 2625 00:00:20

43 2625 00:00:23

49 2625 00:00:26

55 2625 00:00:29

61 2625 00:00:33

67 2625 00:00:36

73 2625 00:00:38

79 2625 00:00:41

85 2625 00:00:44

91 2625 00:00:48

97 2625 00:00:52

100 2625 00:00:53

11

Estudio de problemas cuyos resultados obtenidos resultaron exactos:

28607 /28 lteraciones
£ 4000
£ 3000 —
2000 S~ Lo N
$ 1000
o T |
L -~ ®®won~oc-oenxg g R
iteraciones

—

ITER FO CPU

1 2625 00:00:00
3 2600 00:00:00
5 2700 00:00:00
7 2825 00:00:00
9 2950 00:00:00
11 3050 00:00:00
13 2475 00:00:00
15 2125 00:00:00
17 2950 00:00:00
19 2650 00:00:00
21 3075 00:00:00
23 2725 00:00:00
25 2300 00:00:00

112

Estudio de problemas cuyos resultados obtenidos resultaron exactos:

esc63 ¢/500 Iteraciones

Th

g_‘?‘i 50 “62 ~ T R

5 Q

w O o |

T b5 RESIRNER8BLLS
Iteraciones

ITER FO CPU
1 68 00:00:00
27 62 00:00:08
31 63 00:00:09
61 65 00:00:18
91 71 00:00:28
121 70 00:00:37
151 67 00:00:47
181 1D 00:00:57
211 73 00:01:07
241 72 00:01:16
271 73 00:01:26
301 70 00:01:35
331 73 00:01:44
361 73 00:01:54
391 63 00:02:03
421 68 00:02:12
451 65 00:02:21
481 67 00:02:30
500 65 00:02:36

113

Estudio de problemas cuyos resultados obtenidos resultaron exactos:

rbg019b ¢/500 Ilteraciones

o)
2
k>
o
(@)
=
O
IT)
c
=
LL

Iteraciones
ITER FO CPU

1 243 00:00:00

30 214 00:00:01

59 210 00:00:01

88 217 00:00:01

117 225 00:00:01

119 199 00:00:01

146 233 00:00:01

175 225 00:00:01

204 251 00:00:02

233 256 00:00:02

262 266 00:00:02

291 263 00:00:02

320 290 00:00:02

349 298 00:00:02

378 223 00:00:02

407 214 00:00:02

436 214 00:00:03

465 214 00:00:03

494 199 00:00:03

500 205 00:00:03

114

Estudio de problemas cuyos resultados obtenidos resultaron exatos:

rbg021a c/1500 Iteraciones

S

E

o)

@]

S

2 O e —

e TERBIS-SBIRTTIRIZTESKI

Iteraciones

ITER FO CPU
1 236 00:00:00
87 205 00:00:01
173 210 00:00:01
259 191 00:00:01
345 180 00:00:02
431 182 00:00:02
517 202 00:00:02
564 158 00:00:02
603 184 00:00:03
689 184 00:00:03
177D 181 00:00:03
861 173 00:00:03
947 204 00:00:04
1033 198 00:00:04
1119 206 00:00:04
1205 221 00:00:05
1291 234 00:00:05
1377 224 00:00:05
1463 189 00:00:06
1500 203 00:00:06

115

Estudio de problemas cuyos resultados obtenidos resultaron exactos:

rbg023a c/500 lteraciones

Funcion
Objetivo

Iteraciones
ITER FO CPU

1 273 00:00:00
31 201 00:00:01
61 218 00:00:01
91 203 00:00:01
121 225 00:00:02
151 219 00:00:02
181 199 00:00:02
211 186 00:00:02
241 181 00:00:02
271 195 00:00:02
286 155 00:00:02
301 178 00:00:03
331 187 00:00:03
361 176 00:00:03
391 176 00:00:03
421 185 00:00:03
451 217 00:00:03
481 194 00:00:03
500 196 00:00:04

116

Estudio de resultados de problemas varios:

rbg148a c¢/200 lteraciones

1900 T e R e
§ 2 1800 N |
S B 1700 +—>~—— —
38 1600 — — 1624 ——
1500
TN RIL8ERB3C-NSIBENE
Iteraciones
ITER FO CPU

1 1839 00:00:00

12 1718 00:22:37

23 1660 00:52:11

34 1626 01:21:48

35 1626 01:24:29

45 1626 01:51:49

b6 1626 02:21:28

67 1626 02:51:09

78 1626 03:20:39

89 1626 03:50:37

100 1626 04:20:20

101 1624 04:23:01

111 1624 04:49:52

122 1624 05:19:27

133 1624 05:49:19

144 1624 06:18:57

155 1624 06:48:29

166 1624 07:18:08

177 1624 07:48:02

188 1624 08:17:36

199 1624 08:47:09

200 1624 08:49:51

117

Estudio de resultados de problemas varios:

rbg092a ¢/250 Iteraciones

3
_'.g-i 1 300 Wﬂ e e R e e e e e e s s e s s
8 1200 N —
5 1100 & ———4084——
2 1000 - .
T T2 5 9558385858 -85
- T Y v v v v (N N
Iteraciones
ITER FO CPU
1 1246 00:00:00
16 1135 00:01:37
31 1097 00:03:13
46 1096 00:04:48
61 1096 00:07:31
76 1096 00:11:18
91 1096 00:15:03
106 1096 00:18:48
121 1095 00:22:35
136 1095 00:26:22
151 1095 00:30:09
166 1095 00:33:53
181 1091 00:37:40
186 1084 00:38:56
196 1084 00:41:26
211 1084 00:45:12
226 1084 00:48:54
241 1084 00:50:34
250 1084 00:51:34

118

Estudio de resultados de problemas varios:

rbg174a c/70 lteraciones
S
.'.q_-; 2500 B S _ . . _
S 2400 ==
© 2300 | T S——
22 2200 2218
€ 2100 T T e
- T O T 23 8 85 8 FT 985 8 o 8
Iteraciones

ITER FO CPU

1 2440 00:00:00

6 2360 00:21:15

11 2311 00:52:09

16 2281 01:23:43

21 2261 01:54:33

26 2244 02:25:23

31 2241 02:56:14

35 2218 03:21:39

36 2218 03:27:51

41 2218 03:58:43

46 2218 04:29:30

51 2218 05:00:17

56 2218 05:31:47

61 2218 06:02:41

66 2218 06:33:29

70 2218 06:58:11

119

Estudio de resultados de problemas varios:

rbg050a ¢/500 Iteraciones

120

g g 500 { —————
£ 2 450 = —————— Y
w O
400 :] ,
TFG5SLELIRBBRENER
Iteraciones
ITER FO CPU
1 500 00:00:00
31 473 00:00:08
61 472 00:00:16
91 471 00:00:24
121 472 00:00:32
151 472 00:00:41
181 471 00:00:49
211 471 00:00:56
241 471 00:01:04
271 471 00:01:11
301 477 00:01:19
331 450 00:01:26
334 447 00:01:27
361 448 00:01:34
391 448 00:01:41
421 448 00:01:49
451 447 00:01:56
481 448 00:02:04
500 447 00:02:08

Estudio de resultados de problemas varios:

rbg190a c/50 Iteraciones

S
8 2700 | e
€ 2500 T T T
L oS rocpcomlResEESg e
Iteraciones
ITER FO CPU

1 2732 00:00:00

4 2704 00:19:51

7 2684 00:34:58

10 2670 00:54:51

13 2656 01:17:16

16 2620 01:33:15

19 2607 01:44:52

22 2604 01:57:35

25 2604 02:09:17

28 2604 02:34:17

31 2587 03:01:32

33 2585 03:19:28

34 2586 03:28:25

37 2586 03:565:21

40 2586 04:22:19

43 2586 04:49:36

46 2586 05:16:29

49 2585 05:43:17

50 2585 05:48:29

121

Estudio de resultados de problemas varios:

rbg050b ¢/600 Iteraciones

c o 600 e S S s SR
S 2 400 I~
O o
S g 200
w O 0 |
THoRBIITLEBTILDOMBSTN
~ v~ v~ N N N OO O MO I © v v wu
Iteraciones
ITER FO CPU
1 558 00:00:00
37 451 00:00:16
13 451 00:00:58
109 446 00:01:42
145 422 00:01:57
148 421 00:02:01
181 425 00:02:37
217 424 00:02:50
253 426 00:03:05
289 425 00:03:18
325 464 00:03:29
361 478 00:03:39
397 513 00:03:50
433 513 00:04:01
469 426 00:04:12
505 424 00:04:23
541 424 00:04:34
577 425 00:04:44
600 424 00:04:51

122

Estudio de resultados de problemas varios:

rbg050c ¢/500 Iteraciones

123

s 2 600 | e e
2 £ 550 | —
S T 500 =X M
“ O 450 Lo
TSE53BBLI5BB885E8
Iteraciones
ITER FO CPU
1 558 00:00:00
31 b14 00:00:11
61 514 00:00:20
91 514 00:00:41
121 514 00:01:00
151 523 00:01:30
174 499 00:01:55
181 499 00:02:02
211 499 00:02:22
241 499 00:02:37
271 499 00:02:48
301 500 00:03:10
331 31 00:03:39
361 536 00:04:10
391 499 00:04:27
421 499 00:04:59
451 499 00:05:20
481 499 00:05:28
500 499 00:05:32

Estudio de resultados de problemas varios:

rbg105a ¢/500 lteraciones

124

5 o 1400 +——
g 1ON M
IE 8 1100 o o ——
1100 - - e
®» 8318323 =-IRIBE
- - - N NANOMOO®OS T T
Iteraciones
ITER FO CPU
1 1357 00:00:00
o2 1238 00:06:31
63 1238 00:14:56
94 1238 00:21:30
125 1238 00:29:42
156 1221 00:44:44
187 1221 00:53:03
218 1221 01:05:04
249 1222 01:15:17
280 1220 01:30:23
311 1220 01:45:33
342 1220 02:00:41
363 1213 02:10:58
373 1213 02:15:51
404 1213 02:31:01
435 1213 02:46:12
466 1213 03:01:21
497 1213 03:16:57
500 1213 03:18:25

Estudio de resultados de problemas varios:

Funcion

Objetivo

rbg109a ¢/500 Iteraciones

Iteraciones
ITER FO CPU

1 1478 00:00:00
32 1202 00:07:56
63 1202 00:24:20
94 1202 00:43:31
125 1202 01:03:09
156 1171 01:22:25
187 1171 01:41:40
218 1171 02:00:52
238 1165 02:13:14
249 1165 02:20:04
280 1165 02:39:16
311 1165 02:59:12
342 1166 03:18:22
373 1209 03:37:30
404 1165 03:56:39
435 1165 04:15:50
466 1165 04:35:03
497 1165 04:35:03
500 1165 04:56:25

125

	Portada
	Indice
	Resumen
	Introduccion
	Modelo matemático
	Heurísticas
	Por qué usar heurísticas?
	Heurísticas constructivas

	Qué es el tabu search
	En qué consiste la técnica

	Algoritmo tabu search propuesto
	Características particulares
	Módulos principales del programa

	Resultados
	Conclusiones
	Bibliografía
	Apendice

