FACULTAD DE CIENCIAS EXACTAS Y NATURALES U.B.A

1		DEPARTAMENTO: de Física	
2		ORIENTACION	• • • • • • •
_	•	Post-Grado en	
		mining on Meteorologia	
		Tdiomag.	
3		e) Cursos de Idlomas	· · · · · · · · · · · · · · · · · · ·
		THE CANDENDA A	
5		Nº DE CODIGO DE CARRERA: MATERIA, TECNICAS DE CALCULO NUMERICO EN FLUIDOS Nº DE CODIGO	6.
6	5	- PUNTAJE PROPUESTO : 5 (cinco) puntos	
-		- PLAN DE ESTUDIO : 1957/1987	
,	a .	- CARACTER DE LA MATERIA: Optativa	
		- DURACION: Cuatrimestral	
:	, •	TOTAL DE CLASES SEMANAT.: 8(ocho) hs.	
1	0 .	a) Teóricas 4 hs. d) Seminarios	hs.
		a) Teóricas	hs.
		b) Problemas hs. f) Teórico-prácticas	hs.
		c) Laboratorio hs. f) Teórico-prácticas	ha.
		c) Laboratorio	20.
	11.	- CARGA HORARIA TOTAL:	
		- ASIGNATURAS CORRELATIVAS:	
	13.	FORMA DE EVALUACION: Aprobación de trabajos prácticos y examen fi	nal
		PROGRAMA ANALITICO: (Se adjunta)	
	15	BIBLIOGRAFIA: (Se adjunta)	

FIRMA PROFESOR:

ACLARACION FIRMA: Dr. Luis Bilbao

H. SHINKE

FECHA: -8 AGO 1994

FIRMA DIRECTOR: Dr. BUILLERMO DUSSE

APROBADO POR RESOLUCION ED 1156/94

Técnicas de cálculo numérico en fluidos Curso de Post-Grado.

Conocimientos previos requeridos: un curso de grado sobre Mecánica de Fluidos, conocimientos de programación en BASIC (o FORTRAN) en computadoras personales y nociones elementales sobre cálculo numérico.

Carga horaria: 8 horas semanales (4 de teóricas y 4 de prácticas).

Régimen de promoción: evaluación de trabajos prácticos más un examen final.

Programa

- 1. Introducción. Propiedades físicas de los fluidos. Ecuaciones de movimiento. Condiciones iniciales y de contorno. Descripción somera de los métodos numéricos usuales.
- Ecuaciones en derivadas parciales. Técnicas numéricas básicas: discretización, aproximación de las derivadas, precisión de la discretización. Convergencia. Estabilidad. Precisión. Eficiencia computacional. Problema de la generación de la grilla. Esquemas explícitos. Esquemas implícitos.
- 3. Método de Volumen Finito. Ecuaciones integrales. Formulaciones Lagrangiana y Euleriana. Ecuaciones semidiscretas. Aspectos geométricos de las ecuaciones semidiscretas. Variables en las superficies. Condiciones de contorno. Integración temporal. Análisi de estabilidad mediante modos normales. Ejemplo: compresión de una columna cilíndrica de un gas ideal.
- 4. Método de los paneles. Fluidos no viscosos e incompresibles. El problema del perfil alar con sustentación. Conexión con el método "Boundary Element". Métodos de paneles de alto orden. Método de paneles para el flujo compresible.
- 5. Métodos de residuos pesados. Formulación general. Aplicación a ecuaciones diferenciales ordinarias. Método de elementos finitos. Interpolación lineal. Interpolación cuadrática. Interpolación bidimensional. Métodos espectrales. Ecuación de difusión. Métodos seudoespectrales.
- 6. Problemas estacionarios. Caso no lineal: método de Newton. Caso lineal: métodos directos. Sistemas tridiagonales: algoritmo de Thomas. Método de eliminación de Gauss. Métodos iterativos.
- 7. Ecuación de difusión. Caso unidimensional. Métodos explícitos: FTCS, Richardson y DuFort-Frankel, esquemas a tres niveles. Métodos implícitos: totalmente implícito, Crank-Nicolson, esquema a tres niveles generalizado, esquemas de alto orden. Condiciones iniciales y de contorno. Caso multidimensional. Métodos de desdoblamiento: ADI, esquemas de dos y tres niveles generalizados. Métodos de elementos finitos: esquemas desdoblados. Método de paso fraccionado.

- 8. Problemas dominados por el término convectivo lineal. Caso unidimensional: FTCS, Upwind, Leapfrog y Lax-Wendroff, Crank-Nicolson. Disipacióny dispersión numérica: análisis de Fourier. Ecuación de convección-difusión estacionaria: efecto del número de Reynolds numérico, método Upwind de alto orden. Ecuación de transporte unidimensional: esquemas implícitos y explícitos. Ecuaciones de transporte bidimensional: formulación de desdoblamiento, difusión "cross stream".
 - 9. Problemas dominados por el término convectivo no lineal. Ecuación de Burgers unidimensional: comportamiento físico, esquemas explícitos, esquemas implícitos, grillas no uniformes. Ecuación de Burgers bidimensional: solución exacta, esquemas de desdoblamiento.

Bibliografía indicativa:

- 1. Numerical Methods in Fluid Dynamics, M. Holt, Springer-Verlag, 1977.
- 2. Computational Techniques for Fluid Dynamics (Part 1 and 2), C. A. Fletcher, Springer-
- 3. Computational Fluid Dynamics, An Introduction, J. F. Wendt (Ed.), Springer-Verlag, 1992.

added that this ... married faire at Miles

A STATE OF THE