UNIVERSIDAD DE BUENOS AIRES FACULTAD DE CIENCIAS EXACTAS Y NATURALES

DEPARSAMENTO: de FISICA

ASIGNATURA: Física I (Biólogos y Geólogos)

CARRERA/S: Ciencias Biológicas Ciencias Geológicas ORIENTACION:

PLAN

CARACTER: Obligatorio

DURACION DE LA MATERIA: 1 (un) cuatrimestre

HORAS DE CLASE: a) Teóricas...... hs. b) Problemas ...4... hs
c) Laboratorio.4... hs. d)Seminarios..... hs
c) Totales:...24.... hs

ASIGNATURAS CORRELATIVAS

Trabajos Prácticos de Análisis I

PROGRAMA

1. Introducción

Breve descripción de la Física. Estado actual del conocimiento físico. Fundamentos de la Física: Teoría Atómica; partículas y fuerzas; teorías físicas; leyes fundamentales de conservación de la naturaleza. Sistemas macroscópicos. Relación de la Física con las Ciencias Biológicas y Geológicas.

Caracterización de las magnitudes físicas: dimensiones, propiedades geométricas, unidades, magnitudes, dimensiones y unidades fundamentales y derivadas. Sistemas de unidades. Equivalencia entre unidades. Magnitudes sin dimensiones derivadas de relaciones geométricas y físicas. Propiedades geométricas de las magnitudes físicas: magnitudes escalares, vectoriales, y tensoriales. Repaso del algebra y el cálculo vectorial. Representación de vectores en sistemas de coordenadas ortogonales: versores, componentes de un vector. Derivación de vectores. Gradiente de una función escalar.

Análisis dimensional: ejemplos

3. Cinemática del punto

Modo de especificar la posición de un objeto. Grados de libertad. Movimientos de un objeto: traslaciones y rotaciones. Limitaciones del movimiento: vínculos.

Movimientos traslatorios: objetos puntuales. Traslaciones con vinculos: movimiento unidimensional y bidimensional. Trayectoria de un móvil. Movimiento en una dimensión: linea horaria, velocidad y aceleración. Movimiento rectilineo uniforme y uniformemente acelerado. Caida libre. Movimiento en tres dimensiones: vector posición, vector velocidad, vector aceleración. Componentes intrinsecas de la aceleración: aceleración centripeta y tangencial. Tiro oblicuo.

Movimiento circular. Velocidad angular y vector velocidad angular. Aceleración en el movimiento circular. Movimiento circular uniforme, aceleración centripeta.

Movimiento relativo. Sistemas de referencia en movimiento relativo de traslación y de rotación; aceleración de Coriolis.

La Tierra como sistema de referencia: efecto de la rotación terrestre sobre la aceleración de la gravedad; efectos de la aceleración de Coriolis: desviación en la caida libre; desviación de movimientos horizontales: circulación de corrientes marinas; circulación ciclónica en la atmosfera.

4. Dinámica del punto

Causas del movimiento. Fuerzas. Sistemas de referencia. Dinamica de los movimientos de traslación. Experimentos de Calileo.

Principios de la Dinamica: Ley de insrcia, Ley de masa. Relación entre el peso y la masa de un cuerpo. Unidades y dimensiones de masa y fuerza. Interacciones y fuerzas de reacción: Ley de Acción y Reacción. Fuerzas de rozamiento entre superficies sólidas; angulo de roce dinamico; rozamiento estático.

Puerzas de fricción sobre un móvil que se mueve en el aire: frenamiento debido a la viscosidad del aire; frenamiento en régimen turbulento. Velocidad límite de la caída libre en el aire. Leyes de escala de la velocidad límite. Criterio para distinguir el caso de flujo laminar del caso turbulento: el número de Reynolds. Dinámica del movimiento circular. Fuerza centripeta. Reacción de la fuerza centrípeta.

5. Impulso y cantidad de movimiento de un punto material

Fuerzas que dependen del tiempo. Impulso de una fuerza. Cantidad de movimiento. Relación entre el impulso y la variación de la cantidad de movimiento.

Ejemplos: amortiguamiento de una caída: altura máxima de caída que se puede amortiguar sin graves fracturas óseas. Resistencia mecánica de los huesos de los animales. Leyes de escala del tamaño de los animales y su esqueleto.

Interacciones. Conservación de la cantidad de movimiento de un sistema de dos partes que interactúan. Transferencia de cantidad de movimiento. Ejemplos: zambullida, en el agua, cálculo de la pérdida de velocidad al penetrar en el agua; rebote de una piedra sobre el agua.

6. Sistemas inerciales y no inerciales

Sistemas de referencia en movimiento relativo. Sistemas inerciales. Sistemas no inerciales. Sistemas acelerados: fuerzas ficticias: sistemas en caída libre: ingravidez.

Sistemas rotantes: fuerza centrifuga; fuerza de Coriolis. Características de las fuerzas inerciales o ficticias. La fuerza peso como fuerza inercial.

Limitaciones de la dinámica newtoniana.

7. Trabajo y nergia

Moción de Frabajo mecánico. Definición de trabajo. Dimensiones y unidades.
Trabajo realizado por una fuerza a lo largo de una trayectoria. Trabajo
de la fuerza peso. Fuerzas conservativas. Noción de campo de fuerzas.
Noción de Energía: distintas clases de energía.
Energía cinética: el Teorema de las fuerzas vivas. Transformaciones de la
energía. Fuerzas de rozamiento y disipación.
Energía potencial gravitatoria. Energía potencial de fuerzas conservativas.
La fuerza como el gradiente de la energía potencial.
Energía mecánica total. Conservación de la energía mecánica total. Aplicaciones de la conservación de la energía mecánica al caso de movimientos
unidimensionales. Diagrama de la energía. Tipos de movimiento. Puntos de
retorno. Ejemplos: gravedad en las proximidades de la superficie terrestre;
oscilaciones de un resorte. Estimación del período de oscilación de un resorte.
Potencia.

Energía y fuerzas disipativas, Ejemplos: caída libre con resistencia del aire; caso de un aerolito que ingresa en la atmósfera: distancia de frenado.

8. Propiedades mecánicas de los solidos

Modelos atómicos de un sólido: fuerzas que dependen de la deformación.
Fuerzas elásticas: Ley de Hooke. Módulos de elasticidad. Valores típicos.
Limitaciones de la ley de Hooke: deformación y ruptura de un sólido.
Nociones de reología. Fuerzas de rozamiento: su origen.
Flujo y resistencia mecánica de sólidos en la naturaleza: la altura de los relieves montañosos; el equilibrio isoestático.

9. Oscilaciones

Oscilaciones armonicas de una masa movida por un resorte. Ecuaciones del movimiento. Efecto de fuerzas disipativas: oscilaciones amortiguadas. Oscilaciones forzadas en régimen estacionario: amplitud y fase de la oscilacione. Resonancia: efectos de la disipación sobre la amplitud en resonancia. Oscilaciones anarmónicas. Oscilaciones de un pendulo: Corrección a la formula del período de un pendulo para oscilaciones de amplitud finita, pero pequeña.

10. Sistemas de Partículas

Cantidad de movimiento total de un sistema. Centro de masa. Conservación de la cantidad de movimiento total. Movimiento del centro de masa. Momento angular de una partícula. Variación del momento angular. Relación entre el momento angular y la energía cinética. Momento de inercia de una masa puntual respecto de un punto.

Particula sometida a fuerzas centrales: Conservación del momento angular, Ley de las áreas.

Momento angular de un sistema de partículas. Variación del momento angular del sistema.

11. Gravitación

Introducción: argumentos que llevaron a Newton a postular la ley de gravitación. Ley Universal de la gravitación. La constante universal de la gravitación.

Energía potencial y fuerza gravitatoria. Potencial y campo gravitatorio. Potencial y campo gravitatorio de una cascara esférica de densidad uniforme. Potencial y campo gravitatorio en el exterior de un cuerpo extenso con simetría esférica. Aceleración de la gravedad en la superficie de un planeta. Potencial y campo gravitatorio en el interior de una esfera con densidad uniforme.

Variación de la densidad con la profundidad en el interior de la Tierra.

Campo gravitatorio en el interior de la Tierra.

Gravimetría: Efecto de la forma y la rotación de la Tierra sobre la aceleración de la gravedad. Fórmula internacional de la gravedad. Correcciones a la aceleración de la gravedad por variaciones de altura y espesor de la corteza terrestre. Anomalías de la gravedad, sus origenes, órdenes de magnitud de los distintos efectos. Corrección de Bötvös. Mareas: expresión aproximada de la fuerza de marea debida a la Luna o al Sol. Forma de equilibrio de una Tierra fluida bajo el efecto de la fuerza de marea. Efecto conjunto de la Luna y el Sol sobre las mareas. Mareas y rotación terrestre: periodicidad de las mareas, excitación de ondas de marea.

Frenamiento de la rotación terrestre por efecto de las mareas.

Efecto de la conservación del momento angular total del sistema TierraLuna: Alejamiento de la Luna. Caso de satélites en órbitas retrógadas:
acercamiento del satélite al planeta. Distancia mínima de acercamiento:
fragmentación de un satélite. Límite de Roche.

12. Sistema de dos cuerpos. Movimiento Planetario

Movimiento del centro de masa y movimiento relativo. Reducción del problema de dos cuerpos.

Movimiento relativo. Masa reducida. Conservación del momento angular y ley de las áreas.

Movimiento radial. Problema unidimensional equivalente. Potencial centrifugo.

Distintos tipos de órbitas. Caso de fuerzas que dependen de la inversa del cuadrado de la distancia. Deducción de la tercera Ley de Kepler para el caso de órbitas circulares. Orbitas planetarias.

13. Dinámica del cuerpo rígido. Rotaciones

El cuerpo rigido como sistema. Condición de indeformabilidad. Movimientos de un cuerpo rigido: Traslaciones y rotaciones. Movimiento del centro de masa.

Rotaciones respecto del centro de masa. Momento angular: su relación con la velocidad angular. Componente del momento angular en la dirección de la velocidad angular: momento de inercia respecto del eje de rotación. Componente del momento angular perpendicular a la velocidad angular: su significado, casos en que se anula. Ejes principales de rotación, momentos principales de inercia; Ejemplos de cuerpos de forma geométrica simple.

Momento angular y momento de inercia respecto de un eje cualquiera: Teorema de Steiner.

Energía cinética de rotación.

Dinámica de un cuerpo rígido. Cuerpo rígido con un eje fijo.
Cuerpo rígido sin eje fijo: las ecuaciones de Euler. Cuerpo rígido en rotación libre: cuerpo simétrico; cuerpo con un eje de simetría: precesión de Euler. Precesión de Euler de la Tierra: variaciones de la posición de los polos terrestres: período de Chandler. Causas de las diferencias entre la teoría de Euler y el movimiento observado. Cambios de gran magnitud en la dirección del eje de rotación terrestre: el vagabundeo polar.

Cuerpo rigido bajo la acción de momentos externos: precesión forzada. Efectos de la Luna y el Sol sobre la orientación del eje de rotación de la Tierra: la precesión de los equinoccios, estimación del período^X.

14. Estática

Objetivos de la estática.

Estática del punto. Condiciones de equilibrio. Punto vinculado; vínculos sin rozamiento y con rozamiento: el caso de rozamiento estático. Estática del cuerpo rígido. Condiciones de equilibrio. Cuerpo rígido vinculado: cuerpo con un punto fijo y con un eje fijo. Vínculos don rozamiento.

Sistemas de fuerzas equivalentes: reglas para simplificar sistemas de fuerzas: traslación de fuerzas, resultantes de fuerzas concurrentes, fuerzas paralelas, cupla.

Estabilidad del equilibrio. Estabilidad respecto de desplazamientos infinitésimos. Estabilidad respecto de desplazamientos finitos.

Nociones de equilibrio y estabilidad de cuerpos deformables. Concepto de presión, unidades. Ejemplos de equilibrios inestables de líquidos. Equilibrio y estabilidad de suelos. Esfuerzo total y esfuerzo neutro. Angulo de reposo de una pendiente de materiales sueltos. Materiales cohesionados. Modos de cedimiento.

15. Propiedades mecánicas de los fluidos

Características mecanicas de los fluidos. Deformabilidad. Viscosidad: definición, coeficiente de viscosidad: dimensiones, unidades, valores tipicos. Nociones de reología: fluidos newtonianos y no newtonianos. Propiedades de fluidos newtonianos: fluidos seudoplásticos y dilatantes; fluidos con rigidez Dependencia de la viscosidad con el tiempo: fluidos thixotropicos y reopicticos. Viscoelasticidad. Fluidos no newtonianos en biblogía y geología, escalas de tiempos. Fuerzas de superficie. Tensión superficial en líquidos: su origen. Coeficiente de tensión superficial: dimensiones, unidades, valores típicos. Liquidos en contacto con solidos o con otros liquidos; tensión interfacial. Angulo de contacto entre un líquido y un sólido. Factores que modifican la magnitud de la tensión superficial e interfacial. Importancia de los efectos de superficie en la biología y la geología. Sistema en que los efectos de superficie son importantes. Presión en un fluido en reposo: la presión es igual en todas las direcciones. Presión en un gas: la ecuación de estado de un gas ideal; temperatura y energía interna de un gas ideal. Compresibilidad y dilatación termica de fluidos. Módulos de compresión isotérmico y adiabatico de un gas. Modulo de compresión de líquidos. Valores típicos. Coeficientes de expansión térmica de gases y líquidos, a presión constante y a volumen constante. Presión de superficie en un líquido debida a la tensión superficial: gota esférica: generalización: ecuación de Laplace.

16. Ecuaciones fundamentales de la mecánica de fluidos

La Segunda Ley de Newton para un fluido. Fuerzas que actúan en el seno de un fluido; fuerzas de origen externo, gradientes de presión, fuerzas viscosas. La ecuación de Navier-Stokes. Conservación de la masa: la ecuación de continuidad. La relación constitutiva.
Cálculo de la derivada total respecto del tiempo de una magnitud, siguiendo el movimiento del fluido.

17. Estática en fluidos

Fluidos en reposo bajo la acción de la gravedad: ecuación fundamental de la hidrostática. Presión hidrostática.

Fluidos incompresibles: variación de la presión con la profundidad en un líquido en reposo. Aplicaciones: vasos comunicantes; principio de Pascal; prensa hidráulica.

Fuerzas que actúan sobre un cuerpo sumergido en un líquido: empuje.

Principio de Arquimedes. Flotación, isoestasia. Estabilidad de la flotación.

Principio de Arquimedes. Flotación isoestasia. Estabilidad de la flotación Estática de fluidos bajo la acción de fuerzas de superficie. Efecto capilar: ascenso de líquidos en tubos capilares. Capa líquida entre dos láminas sólidas. Burbújas en un conducto de sección variable: efecto Jamin.

Gases en reposo bajo la acción de la gravedad. Equilibrio en la atmósfera terrestre. Variación de la presión con la altura. Variación de la Temperatura en la atmósfera. Atmósfera isoterma. Atmósfera adiabática. Estabilidad del equilibrio de la atmósfera: gradientes térmicos estables e inestables.

18. Flujos estacionarios

leza.

Ecuaciones que rigen a los flujos estacionarios. Flujos incompresibles: condiciones para que el fluido se pueda considerar incompresible.

Nociones elementales de estabilidad de flujos estacionarios: origen de la turbulencia y factores que determinan la aparición del regimen turbulento.

El número de Reynolds. Número de Reynolds crítico. Condiciones para

que un flujo sea laminar.

Propiedades de los flujos laminares: líneas de flujo; tubos de flujo.

Deducción de la fórmula de Bermouilli para flujos estacionarios.

Aplicaciones del Teorema de Bermouilli para flujos sin viscosidad: tubo de Pitot, efecto Venturi, sustantación de un ala, generación y amplificación de alas en la superficie de una masa de agua.

Efectos de la viscosidad: flujo en un tubo cilindrico, fórmula de Poiseuille. Generalización de la ecuación de Bermouilli para flujos viscosos: el término de fricción y el fector de fricción.

Flujos turbulentos: velocidad media y fluctuaciones; esfuerzos de Reynolds Generalización de la fórmula de Bermouilli al caso de flujos turbulentos; el término de fricción y el factor de fricción. Generalización a conductos de sección no circular: el radio hidráulico.

Flujos medios porosos. Porosidad, permeabilidad, Ley de Daray.

Flujo de dos fluidos no miscibles en un medio poroso: saturación residual, efectos de superficie; el número capilar.

Fluidización de un medio granular no cohesionado atravesado por un flujo; velocidad mínima de fluidización; ejemplos de fluidización en la natura-

19. Flujos no estacionarios. Ondas en medios materiales.

Fenómenos transitorios que ocurren al interrumpir un flujo estacionario. El efecto de martillo hidraulico.

Perturbaciones en medios materiales. Ondas de pequeña amplitud. Ondas acústicas en gases: la ecuación de las ondas en una dimensión. Soluciones de la ecuación de las ondas: propagación de las perturbaciones, líneas características. Velocidad de propagación. Ondas sinusoidales: frecuencia, longitud de onda, período, número de onda. Distintas clases de ondas que se pueden propagar en medios materiales; relación general entre la velocidad de las ondas, las fuerzas de restitución y la inercia.

Ondas acusticas en gases y en líquidos. Ondas en sólidos: ondas transversales y longitudinales; ondas sismicas. Ondas de superficie en líquidos: olas de gravedad en el agua: olas en aguas profundas, dispersión de las olas; olas en aguas poco profundas; tsunamis . Tension superficial y olas capilares . Ondas de superficie en sólidos: ondas de Rayleigh, ondas de Love X. Energia y flujo de energia de una onda. Ondas planas. Propagación en tres dimensiones: ondas esféricas. Propagación en dos dimensiones de las ondas de superficie. Propagación de ondas en medios inhomogéneos: reflexión y refracción en superficies que separan dos medios donde la velocidad de propagación es diferente * Reflexión total. * Conversión de una onda de un tipo en una onda diferente en la reflexión y refracción . Desviación de una onda que atraviesa un medio en que la velocidad de propagación varía lentamente con la posición: curvatura del rayo. Aplicación a la propagación de ondas sísmicas. Nociones elementales acerca de difusión y absorción de ondas. Nociones elementales sobre ondas de amplitud grande: efectos no lineales, su origen. Descripción de los efectos no lineales: distorsión de la forma de la onda, rompimiento de olas, turbulencia y generación de ondas de choque.

20. Corriente electrica

Intensidad de corriente. Densidad de corriente. Unidades. Circuito eléctrico. Conductividad, resistividad, resistencia. Medición de intensidad. Ley de Joule. Fuerza electromotriz. Diferencia de potencial entre puntos de un circuito. Nudos y mallas. Reglas de Kirchoff.

Aplicaciones de las ecuaciones de los circuitos: conexión de resistencias en serie y en paralelo, potenciómetro. Nociones sobre circuitos de corriente alterna. Valores eficaces. Corrientes monofásica y trifásica. Aplicaciones referidas a las instalaciones de uso común: polo "vivo", polo "neutro", conexión a tierra, elección de cables adecuados.

21. Electrostática

Estructura atómica. Carga eléctrica. Ley de Coulomb. Radiaciónes ionizantes. Características de los distintos tipos de radiación. Penetración de la radiación.Dosis. Dosis equivalente. Unidades. Electrización por contacto. Superposición de interacciones eléctricas. Conservación de la carga. Campo eléctrico. Sistema de unidades. Carga puntual, dipolo, distribución continua de carga. Ejemplos: estimación de la fuerza entre dipolos. Flujo del campo eléctrico. Teorema de Gauss. Aplicaciones: campo eléctrico terrestre. Cargas inducidas, fuerzas entre átomos y moléculas.

22. Potencial electrico

Energia potencial de una partícula cargada en un campo eléctrico. definición de potencial electrostático. Unidades. Diferencia de potencial. Circulación del vector campo eléctrico. Cálculo del potencial en casos específicos. Superposición de potenciales. Gradientes de potencial. Relación con el campo. Aplicaciones: Fenómenos eléctricos en la atmosfera. Potencial de Nerst, potencial en reposo de una célula.

23. Campo magnético

Vector inducción magnética. Flujo magnético. Unidades. Fuerza sobre una carga en movimiento. Orbitas de partículas cargadas en campos magnéticos. Fuerza sobre una corriente. Fuerza y momento sobre un circuito. Dipolos magnéticos. Energía de un dipolo en un campo magnético. Campo magnético creado por una corriente. Campo de un solenoide. Fuerza entre conductores paralelos. Campo de una carga en movimiento. Fuerza entre cargas. Ley de Faraday. Fuerza electromotriz sobre un conductor en un campo magnético. F.e.m. inducida. Ley de Lenz. Dinamo. Aplicaciones: Espectrógrafo de masas. Galvanómetro. Campo magnético terrestre.

24. Propiedades eléctricas y magnéticas de la materia
Carga y campo eléctrico dentro y en la superficio de un conductor.
Potencial de un conductor cargado. Efecto de las puntas. Superficies equipotenciales capacidad de un conductor cargado. Experiencia de Cavendish. Electroscopio. Propiedades de dieléctricos. Carga inducida. Susceptibilidad eléctrica. Coeficiente dieléctrico. Vector desplazamiento eléctrico. Vector polarización. Condensadores. Condensador plano con dieléctrico. Energía de un condensador cargado. Nociones sobre piezoelectricidad. Magnetización. Curva de histéresis.

Los temas indicados con un asterisco (x) se dieron en clase como ejemplos y a fines complementarios, y no integran el programa de examen. Se entiende que el asterisco se refiere a la frase comprendida entre el punto ortográfico anterior y dicho asterisco.

COMPLA

TOAT y d. Dick, fisica, John Wiley.

V ZENGERI, Fisica Ceneral, Aguilar.

V DIEBIAGI, Mccánica, Onica, Accestoa, Percodinfisica, Micient

A. 18.

- a chede Nacamica Alementale SUDEBA.
- Colombiad. Pfrice general y experimental. Interesericana.
- a Chouse de la como las ciencias de la vida, severté,
- MAC DOMAID y BIMID. Ficica para las ciencias de la vida. Fondo Miscasivo Interamericano.

FIRMA DEL PROFE OR.

Aclaración fires, Dr. Jahla Casson

1 7 OCT. 1984

Firm del sirectors blue

Alia Butie

DRA. SILVIA N. C. DUHAU
DIRECTORA INTERINA
DEPARTAMENTO DE FISICA