PROGRAMA Física para Matemáticos

¥.3

TEMA 13

Aplicaciones físicas de las ecuaciones diferenciales omdinarias. Sistemas mecánicos simples y circuitos elementales.

Distintos tipos de excitación: excitacions continuas, armónicas, pulsos. Aplicaciones de series e integrales de Fourier, e integrales de Laplace.

Función de Green de un circuito. Integrales de Duhamel.

TEMA II:

OCURrencia de ecuaciones diferenciales en derivadas parciales. Nociones generales sobre la teoría del campo. Campos conservativos y noconservativos. Ecuaciones de Laplace, Poisson, D'Alembert, Helmhotz, Fourier.

TEMA III:

Elementos de Mecánica analítica. Vectores fundamentales de la Mecánica. Ecuaciones de Euder, del cálculo de variadiones y su aplicación en Mecánica. Coordenadas generalizadas. Principio de Hamilton y principio de Fermat y Maupertuis. Ecuaciones de Lagrange. Ecuaciones de Hamilton. Espacios de configuración y espacio de las fases.

THMA IV:

Generalización del principio de Hamilton a sistemas de finfinitos grados de libertad.

Ecuación de las ondad (obtenida de ese principio). Aplicaciones: ecuación de la cuerda vibrante p su solución.

TEMA V:

El problema electrostático. Vectores fundamentales del campo electrostático.

Ecuaciones de Poisson y Laplace: solución elemental. Función de Green. Problemas de Dirichlet y Newman.

TEMA VI:

Aplicación de la teoría con las funciones de variable compleja. El núcleo de Poisson. Transformadas de Hilbert y de Kramer-Krönig.

Nociones sobre el teorema de Titchmarab y las condiciones de causalidad.

TEMA VII:

Ecuaciones de Maxwell. Corriente de desplazam ento. Potenciales electromagnéticos. Propagación de ondas electromagnéticas en un dieléctrico.

Transversalidad de la mismas. Ecuaciones de los potenciales. Teorema de los potenciales retardados.

TEMA VIII:

Relatividad restringida. El principio de relatividad de Galileo y las transformaciones de Galileo. Los principios de relatividad de Einstein. Transformaciones de Lorentz. Einstein.

Aplicaciones matemáticas. Contracción de longitudes y dilatación del tiempo. Simultaneidad relativa.

Teorema de adición de veleccidades en la cinemática de Einstein.

TEMA IX:

NOciones sobre dinámica redativista. Tiempo propio, intervalo cronotópico.

Invariancia de la ecuación de las ondas.

Tetravectores fundamentales: posición, velodidad y cantidad de movimiento. Variación de la masa.

Expresión de la energía de una partícula libre y de la energía cinética.

Invariancia de las ecuaciones de Maxwell.

Noviembre 27/1965

UNIVERSIDAD DE BUENOS AIRES Facultad de Ciencias Exactas y Naturales.