Curso o Seminario de Postgrado y/o Doctorado

Departamento: CIENCIAS BIOLÓGICAS - F. C. E. y N. - U.B.A.

Nombre del curso o Seminario: Genética Toxicológica

Responsables: Dra. Marta D. Mudry, Dra. Alba G. Papeschi

En caso de que el responsable del Curso no sea Docente de esta Facultad, deberá adjuntarse su currículo vitae y una nota solicitando la autorización.

Docentes que colaboran en el dictado del curso.

Adjuntar listado con nombre, apellido y cargo docente (currículo sino son docentes de la Facultad).

Dirigido a:

Lic. en Biología, Médicos, Veterinarios, Ing. Agrónomos

En ambos casos consignar día y mes, aún cuando sea tentativo.

Modalidad horaria:

Informar días y horario aún cuando sea tentativo.

Martes, miércoles y jueves de 9 a 13 hs.

Martes y jueves de 14 a 18 hs.

Fecha de iniciación: 26/01/09

Cantidad de horas totales: 140 hs

Cantidad de horas semanales: 20 hs

Fecha de finalización: 13/03/09

- a) Horas semanales de clases teóricas: 12 hs
- b) Horas semanales de clases de problemas:
- c) Horas semanales de laboratorios, trabajo de campo, etc.: 8 hs

Nº de alumnos mínimo: 3

Nº de alumnos máximo: 30

En caso de número máximo, indicar prioridades de ingreso o método de selección.

Forma de evaluación: Evaluación final

Puntaje para doctorado:

Justificar si difiere de las pautas aconsejadas por la Comisión de Investigación, Publicaciones y Postgrado.

Arancel (Justificar):

En caso de aceptar excepciones al arancel total, indicarlos con claridad.

100 módulos

Modalidad de pago:

Nº de aprobación de programa:

Si aún no fue aprobado poner "nuevo". En todos los casos adjuntar programa. !!!

Comisión que evaluó el curso:

V° B° del Departamento.

Dra. María Busch Directora Depto. Ecologia, Genética y Evolución

GENÉTICA TOXICOLÓGICA

2009

34

PROGRAMA ANALÍTICO

- 1. Genética Toxicológica. Historia y antecedentes de la disciplina. Marco teórico, alcances y vocabulario. Ciítotoxicidad. Tóxico, Blanco, Sinergismo, Antagonismo, Potenciación. Evaluación de la toxicidad. Relación dosis-respuesta: DL50, CL50, DE50, CE50. Índice terapéutico. Toxicocinética y Toxicodinamia. Mecanismo de absorción y distribución de los tóxicos. Biotransformación de xenobióticos. Mecanismos de excreción de tóxicos. Genotoxicidad. Mutagenicidad. Tipos de agentes. Evaluación de daño. Niveles de análisis. Ensayos de Corto (STT) y de Largo plazo (LTT). Teratogénesis. Carcinogénesis. Principales teorías y ejemplos que las ilustran.
- 2. Biomonitoreo y bioindicadores de exposición. Estudios "in vivo" e "in vitro". Niveles de complejidad creciente. Las bacterias como primer nivel de análisis en los ensayos de corto plazo (STT). Ejemplos de Ensayos bacterianos para monitoreo genotóxico. Ventajas y controversias. Características y alcances del modelo "in vitro". El empleo del cultivo de tejidos en el análisis de genotoxicidad. Líneas celulares. Conceptos generales de los estudios "in vitro".
- 3. Células y tejidos: Ciclo celular: sus etapas, "checkpoints". Mitosis y alteraciones de la mitosis. Acción de agentes mutagénieos. Mutación: deleciones puntuales y alteraciones cromosómicas. Genoma: puntos calientes y sitios frágiles. El valor de las nuevas metodologías con sondas y marcadores específicos. Métodos de diagnóstico. Susceptibilidad individual. Marcadores de efecto.
- 4. Características y alcances del modelo "in vivo". Modelos biológicos y organismos centinelas. Precauciones y proyecciones del monitoreo por exposición inducida. El ejemplo de monitoreo ambiental con organismos acuáticos. Mutagénesis química y evaluación de daño inducido en roedores. El valor del modelo de cepa endo y exocriada en diferentes ejemplos de uso tradicional (ratón y rata).
- 5. Modelos biológicos de especies autóctonas provenientes del estado salvaje. El uso en medicina veterinaria y humana. Parámetros mínimos para el conocimiento adecuado del modelo alternativo en mamíferos de distinto tamaño según los objetivos del monitoreo: Otros ejemplos en vertebrados superiores. Bioterio y mantenimiento en cautiverio de especímenes para estudios de monitoreo genotóxico.
- 6. Reparación, concepto. Sistemas de reparación en eucariontes y procariontes. Lesiones en el ADN. Reparación de roturas de doble cadena. Reparación directa. Fotorreactivación: Reparación por escisión de bases. Reparación por escisión de nucleótidos. Reparación post replicativa. Reparación del mal apareamiento. Enfermedades asociadas a defectos de reparación.
- 7. Monitoreo genético y reparación. Métodos para evaluar la capacidad de reparación. Una mirada más cercana UDS, ECGA (electroforesis de células aisladas en gel de agarosa). El "Ensayo Cometa". Lesiones oxidativas. Inductores e inhibidores. Distintos ejemplos de evaluación con Ensayo Corneta.
- 8. Ensayos de Corto Plazo con organismos vegetales. El modelo de *Allium cepa* en el monitoreo ambiental. Efectos de potenciales mutágenos sobre el ciclo celular. Su evaluación mediante el índice de fases, la relación anafase telofase y el índice mitótico. Evaluación de daño cromosómico y estructuras relacionadas: aberraciones cromosómicas, puentes mitóticos, fragmentos, micronúcleos. Análisis y aplicación de las técnicas. Alcances del método en la

Dra. Maria Busch Directora Deplo Ecología/Genética y Evolución

- evaluación toxicológica y el estado de los ambientes naturales. Ventajas y desventajas. Limitaciones del modelo.
- 9. Análisis de daño por exposición dirigida. Cinética celular como indicador para biomonitoreo de exposición ambiental o individual. Intercambio de Cromátides Hermanas (ICH=SCE). Exposición a genotóxicos químicos y/o físicos. La sangre periférica como sustrato para evaluar exposición. Análisis de aberraciones cromosómicas. Citotoxicidad y citostaticidad. Cinética celular como indicador de exposición. Alteraciones numéricas y estructurales: aneuploidías y reordenamientos estructurales, su relación con los agentes inductores.
- 10. El modelo de *Drosophila* para el estudio del daño genético (mutagénesis y recombinogénesis) o epigenético (teratogenético). Ensayos disponibles. Pruebas de SMART (Somatic Mutation and Recombination Test): su utilidad y alcances. Ensayo en alas y en ojos. Tipos de cepas. La influencia de la temperatura y otros factores. Ejemplos de exposiciones a diferentes agentes químicos y físicos.
- 11. Evaluación de daño y batería mínima de Ensayos de Corto Plazo. Ejemplos de la literatura y desarrollo de distintos proyectos de trabajo en el orden nacional e internacional. La necesidad del trabajo colaborativo en Genética Toxicológica. El ejemplo de Ensayo de Micronúcleos en distintos modelos experimentales y ejemplos de exposición para el monitoreo de agentes aneugénicos.
- 12. Estilos de vida. Ejemplos de diferentes agentes involucrados en diferentes etapas del proceso de carcinogénesis. Hábitos alimentarios. El ambiente como desencadenante de exposición accidental y/o laboral. Exposiciones endémicas. Deshechos industriales y contaminantes urbanos. Avances tecnológicos y contaminación ambiental. Exposición ocupacional y accidentes.

Dra. María Busch Directora Ecologia, Genética y Evolución

Universidad de Buenos Aires Facultad de Ciencias Exactas y Naturales

Referencia Expte. Nº 486.589/2006

Buenos Aires, 2.2 DIC 2008

VISTO:

la nota 28/11/2008 presentada por la Dra. María Busch, Directora del Departamento de Ecología, Genética y Evolución, mediante la cual eleva la Información y el Programa del Curso de Posgrado GENETICA TOXICOLOGICA, que será dictado durante el VERANO DE 2009 (desde el 26/01/2009 al 13/03/2009), por la Dra. Marta D. Mudry y la Dra. Alba G. Papeschi.

CONSIDERANDO:

lo actuado por la Comisión de Doctorado de esta Facultad 10/12/2008 lo actuado por la Comisión de Enseñanza, Programas, Planes de Estudio y Posgrado, lo actuado por la Comisión de Presupuesto y Adiminstración, lo actuado por este cuerpo en Sesión Ordinaria realizada en el día de la fecha, en uso de las atribuciones que le confiere el Artículo Nº 113º del Estatuto Universitario,

EL CONSEJO DIRECTIVO DE LA FACULTAD DE CIENCIAS EXACTAS Y NATURALES R E S U E L V E:

Artículo 1º: Autorizar el Dictado del Curso de Posgrado GENETICA TOXICOLOGICA, de 208 hs. de duración.

Artículo 2°: Aprobar el Programa del Curso de Posgrado GENETICA TOXICOLOGICA obrante a fs 34 y 35 del Expediente de la referencia.

Artículo 3°: Aprobar un Puntaje de cinco (5) puntos para la Carrera del Doctorado.

Artículo 4°: Aprobar un Arancel de 100 Módulos. Disponer que los montos recaudados serán un Zados conforme a lo dispuesto por Resolución CD Nº 072/03.

Artículo 5°: Comuníquese a la Dirección del Departamento de Ecología, Genética Zvolución, a la Biblioteca de la FCEyN y a la Subsecretaría de Postgrado (con fotocopia del Programa incluida). Con plido archivese.

Resolución CD N° 3 1 SP/med/11/12/2008

3100==

Mans

D. JORGE ALIAGA

Des MATEURS ISTICUOS Americana (CLCARA ACURY