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Abstract

The maintenance of genomic integrity is of main importance to the survival and health of organisms which are continuously
exposed to genotoxic stress. Cells respond to DNA damage by activating survival pathways consisting of cell cycle
checkpoints and repair mechanisms. However, the signal that triggers the DNA damage response is not necessarily a direct
detection of the primary DNA lesion. In fact, chromatin defects may serve as initiating signals to activate those mechanisms.
If the modulation of chromatin structure could initiate a checkpoint response in a direct manner, this supposes the
existence of specific chromatin sensors. p19INK4d, a member of the INK4 cell cycle inhibitors, plays a crucial role in
regulating genomic stability and cell viability by enhancing DNA repair. Its expression is induced in cells injured by one of
several genotoxic treatments like cis-platin, UV light or neocarzinostatin. Nevertheless, when exogenous DNA damaged
molecules are introduced into the cell, this induction is not observed. Here, we show that p19INK4d is enhanced after
chromatin relaxation even in the absence of DNA damage. This induction was shown to depend upon ATM/ATR, Chk1/Chk2
and E2F activity, as is the case of p19INK4d induction by endogenous DNA damage. Interestingly, p19INK4d improves DNA
repair when the genotoxic damage is caused in a relaxed-chromatin context. These results suggest that changes in
chromatin structure, and not DNA damage itself, is the actual trigger of p19INK4d induction. We propose that, in addition to
its role as a cell cycle inhibitor, p19INK4d could participate in a signaling network directed to detecting and eventually
responding to chromatin anomalies.
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Introduction

Chromatin structure is closely related to many mechanisms

involving DNA such as replication, transcription, repair and

recombination. As a consequence of such interaction, any event

impairing the stability of chromatin is likely to compromise DNA

metabolism and genome integrity. Therefore, stimuli that can

drive abnormal changes in chromatin structure should be detected

in order to guarantee the maintenance of the integrity and

functional activity of the genomes [1,2].

Upon exposure to DNA damaging agents, mammalian cells

trigger a sequence of multi-component biochemical reactions

selected to maintain genome integrity. Beyond the activation of

DNA repair enzymes, the DNA damage response (DDR) includes

a complex system of signaling molecules which activate different

cellular processes such as cell cycle checkpoints, apoptosis and

transcription of specific target genes [3,4,5]. However, a cell may

fail to repair the damage, in which case, genome stability becomes

compromised and this may eventually lead to oncogenesis [6,7,8].

There is growing evidence that, when DNA damage is

generated, chromatin suffers structural changes around the lesion.

These changes not only take place at the level of the surrounding

histones [9,10], but also at a more global level, as it happens with

the phosphorylation of the core histone variant H2AX which

extends many kilobases away from each double-strand break

[11,12]. DNA damage actually seems to elicit a wide-range

phenomenon according to some reported examples as is the case

of p53 which, in association with the acetyl transferase p300, has

been shown to mediate global chromatin decondensation after UV

irradiation [13]. Moreover, some reports support the notion that

chromatin structure reorganization, even in the absence of DNA

damage, may be enough to activate DDR in the cell [14]. This

raises the question of whether DNA damage might be a mere

initiator of changes in chromatin organization, the latter being the

actual trigger of some of the events elicited during the DDR in the

cell. In fact, chromatin remodeling following DNA double strand

break has been demonstrated to be important in the signaling and

dynamics of the DNA repair machineries [15].

INK4 proteins are a family of cell cycle inhibitors that bind to

CDK4/6 kinases and thus block the G1 to S phase transition of

the cell cycle [16,17,18]. There are several experimental results

supporting that one of them, p19INK4d (hereafter referred as

p19), also participates in DNA damage repair, and this new role
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seems to be independent of its capacity to regulate cell cycle

progression [19,20]. Interestingly, p19 expression is induced upon

diverse genotoxic insults and this induction is specific for this

INK4 member only [19,21]. The introduction of damaged DNA

molecules into the cell has been reported to induce some DNA

damage responsive genes by mimicking the effects of UV

irradiation, as is the case of p21Cip1, a member of the Cip/Kip

family of cell cycle inhibitors [22]. However, when damaged DNA

molecules are introduced into the cell (either oligonucleotides or

plasmids), p19 induction is not observed, suggesting that the

presence of DNA damage is not enough to induce p19

transcription [21].

These data allow us to hypothesize that p19 induction after

genotoxic insults might indeed be a consequence of the chromatin

structural alterations that take place when the damage is

generated. Supporting this idea, in this work we demonstrated

that chromatin relaxation elicited the induction of p19 and,

interestingly, that this occurred in the absence of DNA damage.

We also found that this induction was dependent upon ATM/

ATR, Chk1/Chk2 and E2F activity, both after treating cells with

DNA damaging agents and when chromatin structure was altered,

pointing at a common pathway for p19-stimulated induction. In

addition, p19 improved DNA repair when the genotoxic injury

was caused in a relaxed-chromatin context. The distinct response

of different genes to the presence of exogenous damaged DNA

[21], along with the evidence presented here, strongly supports the

existence of different mechanisms involved in cellular DDR. These

mechanisms would be specifically activated in response to different

stimuli such as DNA damage itself or chromatin structural

changes, which then eventually lead to the onset of certain sets

of genes depending on the type of stimulus received.

We propose that, in addition to its role as a cell cycle inhibitor,

p19 could participate in a signal network directed to detecting and

eventually responding to chromatin anomalies.

Results

p19 is Induced by Chromatin Relaxation
When DNA damage is generated in a cell, the lesion elicits a

cascade of both physical and biochemical events, which ultimately

causes a change in chromatin structure not only around the

damage but also many kilobases away from the lesion and even at

a global scale in the whole genome [11,13]. Given that transfected

damaged DNA oligonucleotides, which lack chromatin organiza-

tion, do not suffice to trigger p19 induction, we speculated that the

downstream chromatin reorganization following the appearance

DNA damage might be the actual initiator signal leading to the

induction of the p19 gene.

We first analyzed whether an alteration in chromatin structure

might by itself trigger p19 gene induction. To answer this question,

we induced global chromatin relaxation in the cells by using three

well-documented chromatin-modifying agents: chloroquine, tri-

chostatin A (TSA), and hypotonic medium [23]. The effect of

these agents on chromatin condensation was evaluated by

digestion with micrococcal nuclease, which preferentially cuts

the DNA in the linker region between nucleosomes. All the

treatments assayed caused a marked increase in cellular chromatin

accessibility to micrococcal nuclease (Fig. S1). When cells were

incubated with 100 mM chloroquine, 200 nM TSA or medium

containing 50 mM NaCl (representing a hypotonic condition), p19

expression was induced (Fig. 1A). Interestingly, the levels and

kinetics of p19 induction obtained with these chromatin-modifying

agents were similar to those obtained when cells were irradiated

with 40 J/m2 UV or incubated with 50 ng/ml neocarzinostatin

(Fig. 1A and B). We also observed induction of p19 protein after

incubation with each of the chromatin modifiers (Fig. 1C). A

similar increase in both mRNA and protein expression of p19 was

observed in human neuroblastoma SH-SY5Y cells irradiated with

UV or treated with chloroquine, TSA or incubated in hypotonic

conditions (Fig. 1D and E).

It has been previously reported that DNA damage triggers the

induction of p19 but not of the other INK4 proteins [19,20]. So,

we speculated that chromatin modifications, as a downstream

effect of DNA damage according to our hypothesis, should also

have a specific effect over p19 but not over the other INK4

variants. In fact, mRNA expression analysis showed that

p16INK4a, p15INK4b, and p18INK4c are not induced when

cells are subjected to any of the chromatin-modifying conditions

tested (Fig. S2). The parallelism observed between the effects of

DNA damage and chromatin modification over the INK4 family

members strengthens our idea of how the cell responds to DNA

damage and points to chromatin modifications as an intermediate

step in this process.

The above results suggest that chromatin structure alterations

caused by chloroquine, TSA or hypotonic medium were sufficient

to induce p19 expression. However, as p19 mRNA levels are also

increased by several genotoxins, we tested whether those

treatments could cause DNA damage. To rule out this possibility,

we analyzed the phosphorylation status of H2AX, a histone

variant that is present in chromatin and that is phosphorylated

around double-strand breaks, constituting an indicator of DNA

damage in the cell [24]. When cells were incubated with

chlroquine, TSA or hypotonic medium, cH2AX remained

undetected (Fig. S3A), suggesting that the induction observed

was actually due to chromatin modifications and not a product of

the DNA damage generated as a side-effect of the treatments

applied. As a positive control, addition of the damaging agent

camptothecin [25] induced H2AX phosphorylation (Fig. S3A).

Furthermore, unlike irradiation with UV light, none of the

treatments used to cause alterations in chromatin structure were

able to form cyclobutane pyrimidine dimers (CPDs) in Neuro-2a

cells (see below and data not shown). Moreover, it is very unlikely

that the three chromatin modifiers assayed, which are structurally

and functionaly unrelated, would induce DNA damage other than

double strand-breaks or CPD dimers.

It is known that p19 expression fluctuates with cell cycle

progression and that this protein accumulates during G1/S

transition and S phase to fall again through the remainder of

the cycle [19,26]. A chance exists that these treatments might

somehow favor the arrest of cells at G1/S phases, giving rise to an

indirect increase of p19 expression, obscuring the actual effect of

chromatin alteration in p19 gene induction. To explore this

possibility, we performed flow-cytometric analysis to determine the

cell cycle distribution of cells subjected to chloroquine, TSA or

hypotonic conditions. None of the chromatin-modifying condi-

tions evaluated had any effects on cell cycle distribution (Fig. S3B).

Conversely, flow cytometric analysis 24 h following incubation

with 500 nM mimosine, a ribonucleotide reductase inhibitor,

arrested cells at G1/S boundary. These results indicate that

alterations in chromatin structure trigger a cell response that

eventually leads to p19 induction, which is independent of DNA

damage and cell cycle progression.

Other authors have reported that TSA induces formation of

H2AX gamma foci in a way similar to genotoxic DNA damage

[27,28] and that it changes the distribution of cells in the different

phases of cell cycle [29]. However, those effects were observed

between 12 and 24 h after TSA treatment and at larger

concentration than that used in this work. So, our results cannot
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be compared with those reported in those papers. We do not

discard that alterations in the cell cycle or H2AX phosphorylation

by the chromatin modifiers used may happen latter in our system,

but are not related to the prior induction of p19. On the other

hand, Baure et al. [30] studied the changes in chromatin structure

caused by incubation in a hypotonic medium, and like that

observed in our work, found no changes in the cell cycle profile.

However, they detected H2AX phosphorylation after 1 h of

treatment in hypotonic medium.

Chromatin Relaxation Induces p19 through the ATM
Signaling Pathway

To further support these observations, we deepened into the

signaling cascade behind both scenarios: DNA damage and

chromatin modification. ATM, a phosphatidyl 3-kinase-like

kinase, a well-documented kinase involved in DDR, has also been

found to be activated under chromatin disturbing conditions such

as the ones used herein [14]. We therefore aimed at this kinase in a

first attempt to decipher the signaling elements involved after

DNA damage and chromatin modification. Preincubation of cells

with Ku-55933, a specific inhibitor of ATM [31], as well as

preincubation with caffeine, a broad-range inhibitor of phospha-

tidyl 3-kinase-like kinases [32], abolished p19 induction not only

when the cells were exposed to a DNA-damaging agent (Fig. 2A,

left panel), but also when chromatin was distorted by chloroquine,

TSA or hypotonic medium (Fig. 2A, right panel). This indicates

that p19 induction is dependent upon ATM activation. So far,

both stimuli were shown to be signaled by the same kinase,

supporting the notion that changes in chromatin structure might

be an immediate downstream event leading to p19 induction after

Figure 1. Chromatin relaxation triggers the induction of p19. A. HEK-293 cells were incubated with 100 mM chloroquine or 200 nM TSA or
hypotonic medium (50 mM NaCl) as indicated. Total RNA (10 mg) extracted from cells at the indicated times were subjected to northern blot analysis
with the 32P-labeled probes specified at the right margin. B. HEK-293 cells were irradiated with 40 J/m2 or incubated with 50 ng/ml NCS. The
expression of p19 was assessed by northern blot. C and E. HEK-293 cells (C) or SH-SY5Y cells (E) were irradiated with 40 J/m2 UV or incubated with
100 mM chloroquine or 200 nM TSA or hypotonic medium and cell lysates prepared at the indicated times. Western blot analysis of p19 were carried
out with 20 mg of total cellular proteins and detected with p19 monoclonal antibody. Anti-b-actin antibody was uses as a protein loading control. D.
SH-SY5Y cells were irradiated with 40 J/m2 UV or incubated with 100 mM chloroquine or 200 nM TSA or hypotonic medium (50 mM NaCl) as
indicated. Total RNA (10 mg) extracted from cells at the indicated times were subjected to northern blot analysis with the 32P-labeled probes specified
at the right margin. In all cases (A–E) results are representative of three independent experiments with similar results. Densitometric analysis of p19 is
represented in the lower panels. Bars represent the mean 6 S.D. of three experiments. Student’s t-test was used to compare samples obtained at
different times with samples obtained at zero time (* p,0.05, at least). Chloroquine (chlo), hypotonic medium (hypo), b-tubulin (b-tub),
neocarzinostatin (NCS).
doi:10.1371/journal.pone.0061143.g001
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DNA damage. We next analyzed if ATR, another phosphatidyl 3-

kinase-like kinase involved in DNA damage response, was required

for p19 induction after genotoxic treatment or chromatin

alteration. To do this, we performed similar experiments in Seckel

cells that display impaired phosphorylation of ATR-dependent

substrates [33]. Neither genotoxins nor chromatin modifiers were

able to induce p19 in ATR-deficient Seckel cells (Fig. 2C).

Conversely, UV, neocarzinostatin and incubation under the three

chromatin disturbing conditions tested increased the levels of p19

mRNA in primary human fibroblasts C5RO, an induction that

was abolished when cells were preincubated with Ku-55933

(Fig. 2D). These results imply that both ATM and ATR kinases

are involved in p19 induction.

It has been previously shown that TSA treatment triggers p19

induction by a cis acting mechanism [34], so this far, the effect of

TSA on p19 might actually be due to a simple effect of this drug

over p19 own promoter. However, it is important to notice that,

given that ATM and ATR inhibition abrogated p19 induction

under all the above-mentioned conditions, the possibility of an

effect in cis of TSA on p19 promoter should be discarded, at least

as the main reason, because p19 induction needed intermediate

factors, in this case ATM and ATR.

To further explore the molecular events leading to p19

induction after DNA damage and to better understand the role

of chromatin in this process, we studied the role of two

downstream kinases that are activated by ATM: Chk1 and

Chk2 [6]. Specific Chk1 and Chk2 inhibitors, SB-218078 and 2I

respectively, blocked p19 induction under the three chromatin-

disturbing conditions tested, indicating that both Chk1 and Chk2

are necessary for p19 gene induction when chromatin relaxation is

induced (Fig. 2B, right panel). This also showed to be the case

when DNA damage was triggered by neocarzinostatin (Fig. 2B, left

panel). However, it is interesting to notice that only Chk1 seems to

be necessary for p19 induction when cells are exposed to UV

damaging conditions. A possible explanation for this observation is

that, given its wide spectrum of effects in a cell, UV might be

activating a Chk2 alternative signaling pathway that somehow

compensates the lack of Chk2 when this kinase is inhibited.

Specific Induction of p19 by Chromatin-relaxing Agents
The results described so far indicate that p19 induction, whether

by genotoxin or by chromatin-remodeling agents, is mediated by

ATM. This kinase becomes activated in response to a great variety

of stress stimuli and participates in numerous signal transduction

pathways [5,35]. We therefore sought to examine whether the

effect of the chromatin remodeling agents on p19 was specific, or

if, in contrast, any stimulus capable of activating ATM would also

induce p19. Since ATM is also activated by heat shock, which

occurs independently of DNA damage [36], we analyzed the effect

of this treatment on p19 expression. We observed that p19 levels

remained unaffected by heat shock until at least 8 h following

treatment (Fig. 3A). In contrast, p21 mRNA levels were

upregulated 4 h after treatment, as previously reported [37], and

this induction was prevented by caffeine.

To further explore the specificity of this effect, we asked whether

chromatin-remodeling agents are able to induce the expression of

other ATM-regulated genes. We therefore examined the expres-

sion of c-fos, a gene positively regulated by ATM in response to

DNA damage [38]. Whereas both UV irradiation and neocarzi-

nostatin treatment activated c-fos transcription, chloroquine

treatment did not (Fig. 3B).

Taken together, these results show that p19 induction, caused

by chromatin-remodeling agents and mediated by ATM, is a

specific event. This conclusion, along with the fact that other genes

were not induced under these conditions, as is the case for the

other INK4 proteins analyzed, indicates that p19 induction is a

specific and downstream-regulated event after chromatin remod-

eling.

Chromatin Relaxation needs the E2F1 Transcription
Factor for p19 Induction

Previous results from our lab have shown that p19 induction

triggered by UV irradiation is mediated by the transcription factor

E2F1 (Fig. 4A). In order to analyze whether p19 induction elicited

by chromatin relaxation is also E2F-dependent, we tested the cells

in the presence of a decoy oligonucleotide harboring the E2F

consensus binding site. As was the case for UV, chloroquine-

triggered p19 induction showed to be dependent upon E2F, and

this was also the case for neocarzinostatin damage (Fig. 4A).

To confirm the functional contribution of E2F1 factors to the

regulation of p19 transcription by chromatin relaxation, we

constructed a reporter plasmid harboring 2250 bp of the 59-

flanking region of the p19 gene. This region contains two

functional E2F-binding sites responsible for the genotoxin-

mediated induction of p19 located at 2685 and 2636 from the

translation initiation site [39]. HEK-293 cells were transiently

transfected with this p19CAT vector and then incubated with each

of the chromatin-modifying agents or treated with neocarzinosta-

tin or UV irradiated before harvesting and analysis of chloramfe-

nicol acetyltransferase (CAT) activity. Chloroquine, TSA and

hypotonic medium induced p19CAT expression comparable to

that observed with genotoxins (Fig. 4B). The effect of the same

treatments on the transcriptional activity of the p19 gene promoter

was almost completely blocked in mutant-carrying changes in both

E2F1 binding sites, proving that, as is the case for genotoxins, p19

induction by chromatin-relaxing agents needs the E2F1 transcrip-

tion factor and functional binding sites in its promoter.

These results led us to hypothesize that E2F1 might be the

molecule that mediates the effects of both events (DNA damage

and alteration in the chromatin structure) on the expression of the

Figure 2. DNA damage or chromatin relaxation induces E2F1 and p19 through ATM/ATR-Chk1/Chk2 signaling. A. HEK-293 cells,
previously treated with 10 mM Ku-55933 or 5 mM caffeine for 1 h, were exposed to 40 J/m2 UV or 50 ng/ml neocarzinostatin (left panel) or incubated
with 100 mM chloroquine or 200 nM TSA or subjected to hypotonic medium (right panel). B. HEK-293 cells, previously treated with 10 mM Ku-55933
or 15 nM SB-218078 or 20 nM Chk2 inhibitor for 1 h, were exposed to 40 J/m2 UV or 50 ng/ml neocarzinostatin (left panel) or incubated with 100 mM
chloroquine or 200 nM TSA or subjected to hypotonic medium (right panel). In (A) and (B) after 4 h, cells were harvested and subjected to northern
blot analysis using a 32P-labelled probe specific for human p19 mRNA and reprobed for E2F1 and b-tubulin mRNA. C and D. ATM-deficient Seckel
cells (C) or primary human fibroblasts C5RO (D), previously treated with 10 mM Ku-55933, were exposed to 40 J/m2 UV or 50 ng/ml neocarzinostatin
or incubated with 100 mM chloroquine or 200 nM TSA or subjected to hypotonic medium (50 mM NaCl). In (C) and (D) after 4 h, cells were harvested
and subjected to northern blot analysis using a 32P-labelled probe specific for human p19 mRNA and reprobed for b-tubulin mRNA. Each figure
shows a representative autoradiograph of three independent experiments with similar results. Densitometric analysis of p19 and E2F1 are
represented in the lower panels. Bars represent the mean 6 S.D. of three experiments. Student’s t-test was used to compare treated and non-treated
samples (* p,0.05, at least). None (N), b-tubulin (b-tub), caffeine (C), Ku-55933 (K), chloroquine (chlo), hypotonic medium (hypo), SB-218078 (SB),
Chk2 inhibitor (2I).
doi:10.1371/journal.pone.0061143.g002
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p19 gene across the ATM/ATR-Chk1/Chk2 pathway. Then, we

analyzed whether the expression and/or transcriptional activity of

E2F1 is affected by genotoxic agents and by the treatments that

modify chromatin structure. The expression of E2F1 was induced

in cells exposed to UV light or treated with neocarzinostatin

(Fig. 2B). A similar induction of E2F1 was observed when the cells

were incubated with TSA or chloroquine or cultured in a

hypotonic medium. In addition, in both cases, the induction of

E2F1 expression was blocked almost totally by incubation with an

inhibitor of ATM or with inhibitors of Chk1 or Chk2 (Fig. 2B).

These results suggest that a signal transduction pathway, common

between both events (the induction of p19 and E2F1), is activated

after the treatment with chromatin-remodeling agents.

We next asked whether this increase in E2F1 expression

correlated with an increase in its transcriptional activity. To test

this, HEK 293 cells were transfected with a plasmid containing a

minimal promoter with four consensus sites for the binding of E2F

transcription factors upstream the CAT reporter gene and then

incubated with the remodeling agents of chromatin. The

treatment with each of them caused an increase in the CAT

activity higher than 3-fold (Fig. 4C).This increase in CAT activity

was suppressed when the cells were pre-incubated with the

inhibitor of ATM or with the inhibitors of Chk1 or Chk2.

Together, these results support our hypothesis that E2F1 would

operate downstream Chk1 and Chk2 in the signal pathways that

mediate p19 induction in response to changes in chromatin

structure.

Chromatin Relaxation and DNA Damage Share the Same
Signaling Pathway

In an attempt to confirm that chromatin relaxation is a

downstream event in the signaling cascade triggered by DNA

damage that results in p19 induction, we decided to treat cells with

p19 inducing conditions, i.e. chromatin relaxation and DNA

Figure 3. Chromatin relaxation-mediated induction of p19 is specific. A. HEK-293 cells, previously treated or not with 5 mM caffeine during
1 h, were incubated at 43uC for 1 h and then cultured at 37uC from 0 to 8 h. B. HEK-293 cells, previously treated with 5 mM caffeine for 1 h, were
incubated with 100 mM chloroquine at the indicated times. In (A) and (B), cells were harvested and subjected to northern blot analysis using a 32P-
labelled probe specified at the right margin. Each figure shows a representative autoradiograph of three independent experiments with similar
results. Densitometric analysis of p19, p21 and c-fos are represented in the lower panels. Bars represent the mean 6 S.D. of three experiments.
Student’s t-test was used to compare samples obtained at different times with samples obtained at zero time (* p,0.05, at least). b-tubulin (b-tub),
heat shock (HS), caffeine (caff), chloroquine (chlo).
doi:10.1371/journal.pone.0061143.g003
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damage, at the same time. If our hypothesis was correct,

chromatin relaxation downstream events would be shared by

both these triggering agents and, under saturating conditions [19],

no additive or synergistic effect should be seen in cells stimulated

with both p19 inducing conditions.

As described above, cells damaged with UV or neocarzinostatin

showed an increase in p19 mRNA levels similar to that in cells

treated with the chromatin-relaxing agents (Fig. 1A and B and

Fig. 5A). Notably, when cells were exposed to both situations

simultaneously, no increases in p19 mRNA levels or p19 promoter

transcriptional activity were observed with respect to the levels

obtained with one condition alone, as would have been expected if

DNA damage and chromatin relaxation had been triggering

different signaling cascades (Fig. 5A and C). High concentrations

of E2F revealed that p19 induction can reach higher levels than

those obtained by any of the conditions tested in the present work,

indicating that additive or synergistic effects should have been seen

if they had existed, given that the transcriptional response of p19

promoter was not saturated (Fig. 5B).

This result strengthens the idea that UV might be actually

activating a Chk2 alternative kinase, because the lack of additive

or synergistic effects (in cells treated with UV and one of the

chromatin-relaxing agents) can only be explained if both stimuli

trigger the induction of p19 through the same cascade of kinases or

at least through redundant kinases.

Following the same criterion, we exposed cells to a combination

of DNA damage and chromatin relaxation in the presence of E2F

decoy molecules. No differences were observed between damaged

cells, chromatin relaxed cells and cells subjected to both conditions

together (Fig. 4A), again pointing at a common pathway between

DNA damage and chromatin relaxation.

These experiments along with the evidence already mentioned,

strongly indicate that chromatin relaxation is most probably a

downstream event after DNA damage, at least in the context of

p19 induction.

Chloroquine-mediated p19 Induction Increases the
Ability of Neuro-2a Cells to Repair UV-damaged DNA

We next asked about the physiological relevance of this

mechanism. First, we hypothesized that disturbed chromatin

structure would make DNA more susceptible to damage. To

confront this hypothesis, we determined the DNA damage caused

by UV irradiation alone or in the presence of chloroquine

measured as the level of CPD lesions formed. In the latter case,

chloroquine was added simultaneously with UV irradiation or 4 h

Figure 4. E2F mediates induction of p19 in response to DNA
damage or chromatin relaxation. A. HEK-293 cells were transfected
with 500 nM E2F decoy oligonucleotide. Twenty four hours later, cells
were exposed to 40 J/m2 UV or 50 ng/ml NCS and incubated in the
presence or in the absence of 100 mM chloroquine. After 4 h, cells were
harvested and subjected to northern blot analysis using a 32P-labelled
probe specific for human p19 mRNA and reprobed for E2F1 and b-
tubulin mRNA. Figure shows a representative autoradiograph of three
independent experiments with similar results. Densitometric analysis of
p19 and E2F1 are represented in the lower panel. Bars represent the
mean 6 S.E of three experiments. Student’s t-test was used to compare
treated and non-treated samples (* p,0.05, at least). B. HEK-293 cells
transiently cotransfected with 4 mg of p19CAT, or equivalent amount of
mutant plasmid, containing the 59-flanking region of p19 gene and
5 mg pCEFL-b-galactosidase were exposed to 40 J/m2 UV or incubated
with 50 ng/ml NCS or 100 mM chloroquine or 200 nM TSA or hypotonic
medium. After 24 h cells were harvested and CAT activity was

determined as described. Results are expressed as relative CAT activity
with respect to basal value of p19CAT which was set to 100. Bars
represent the mean 6 S.D. of three independent experiments
performed in quadruplicate. Student’s t-test was used to compare
treated with non treated samples (* p,0.01). C. HEK-293 cells,
transiently cotransfected with 4 mg of pE2F4XCAT and 5 mg pCEFL-b-
galactosidase and, when indicated, 4 mg of a vector expressing E2F1
cDNA, were treated with 100 mM chloroquine, or 200 nM TSA or
subjected to hypotonic medium and incubated in the presence or in
the absence of 10 mM Ku-55933 or 15 nM SB-218078 or 20 nM Chk2
inhibitor. After 24 h cells were harvested and CAT activity was
determined as described. Results are expressed as relative CAT activity
with respect to basal value of pE2F4XCAT which was set to 100. Bars
represent the mean 6 S.D. of three independent experiments
performed in quadruplicate. Student’s t-test was used to compare
treated with non treated samples (* p,0.01). Decoy E2F oligonucleo-
tide (DecE2F), b-tubulin (b-tub), chloroquine (chlo), hypotonic medium
(hypo), neocarzinostatin (NCS), Ku-55933 (Ku), SB-218078 (SB), Chk2
inhibitor (2I).
doi:10.1371/journal.pone.0061143.g004
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before cells were irradiated (Fig. 6B). The CPD lesions observed

were actually due to UV light as chloroquine by itself was unable

to form such structures. Cells treated with chloroquine and UV at

the same time displayed CPD levels similar to those of cells treated

with UV alone. However, when the same UV dose was applied to

Neuro-2a after a 4 h chloroquine treatment –a lapse sufficient to

alter chromatin structure (Fig. S1)– the CPD lesions detected were

significantly higher. These results strongly support our above

hypothesis.

To evaluate whether p19 induction in response to distortion of

chromatin structure plays a physiological role in the maintenance

of genomic stability, we used a Neuro-2a cell line stably transfected

Figure 5. Absence of synergism of genotoxins and chromatin modifiers effects on p19 induction. A. HEK-293 cells were exposed to 40 J/
m2 UV or 50 ng/ml neocarzinostatin and incubated in the presence or in the absence of 100 mM chloroquine, or 200 nM TSA or hypotonic medium.
After 4 h, cells were harvested and subjected to northern blot analysis using a 32P-labelled probe specific for human p19 mRNA and reprobed for
E2F1 and b-tubulin mRNA. B. HEK-293 cells were transfected with increasing levels of an expression vector encoding E2F1 gene, harvested after 24 h,
and p19 and E2F1 expression assessed by northern blot. In parallel cells were incubated with 100 mM chloroquine or 200 nM trichostatin A or
hypotonic medium or exposed to 40 J/m2 UV as indicated. After 4 h p19 and E2F1 expression was determined by northern blot. In (A) and (B) each
figure shows a representative autoradiograph of three independent experiments with similar results. Densitometric analysis of p19 and E2F1 are
represented in the lower panels. Bars represent the mean 6 S.D. of three experiments. Student’s t-test was used to compare treated and non-treated
samples (* p,0.05, at least). C. HEK-293 cells, transiently cotransfected with 4 mg of p19CAT and 5 mg pCEFL-b-galactosidase, were exposed to 40 J/
m2 UV or treated with 50 ng/ml NCS and incubated in the presence or in the absence of 100 mM chloroquine or 200 nM TSA or hypotonic medium.
After 24 h cells were harvested and CAT activity was determined as described. Results are expressed as relative CAT activity with respect to basal
value of p19CAT which was set to 100. Bars represent the mean 6 S.D. of three independent experiments performed in quadruplicate. b-tubulin (b-
tub), chloroquine (chlo), neocarzinostatin (NCS), hypotonic medium (hypo).
doi:10.1371/journal.pone.0061143.g005

Figure 6. Chloroquine-mediated induction of p19 increases the ability of Neuro-2a cells to repair UV-damaged DNA. A. Stably
transfected p19 AS Neuro-2a cells were cultured in a serum free-medium during 24 h, and then incubated with 50 mM ZnSO4 during 16 h. After this
time, cells were treated with 100 mM chloroquine and, simultaneously (chlo+UV) or after 4 h (chlo R UV) irradiated with 40 J/m2 UV, and incubated
with 10 mCi/ml [3H]thymidine for 10 h. Cell lysates were tested for unscheduled DNA synthesis assay. Bars represent the mean 6 S.D. of three
different experiments performed in triplicate. Student’s t-test was used to compare Zn2+-treated with non treated samples (* p,0.05) and to compare
chloroquine R UV-treated with chloroquine+UV-treated from stable transfectant samples (* p,0.05). B. Neuro-2a cells were assayed for the presence
of CPD lesions. Stably transfected p19AS Neuro-2a cells were incubated in a free-Zn2+ medium and treated with 100 mM chloroquine and,
simultaneously (Chlo+UV) or after 4 h (chlo R UV) irradiated with 40 J/m2 UV. Immediately after UV irradiation, cells were harvested, DNA isolated
and examined for the presence of CPD lesions by immuno-slot blot using and specific antibody. Ethidium bromide staining was used to ensure equal
protein content. Figure shows a representative photograph of three independent experiments. Densitometric analysis of CPD lesions is represented
in the right panel. Bars represent the mean 6 S.D. of three experiments performed in triplicate. Student’s t-test was used to compare samples treated
with choroquine R UV with samples treated with UV. (* p,0.05). Chloroquine (Chlo), EtBr (ethidium bromide).
doi:10.1371/journal.pone.0061143.g006
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with a vector harboring p19 cDNA in the reverse orientation

whose expression is driven by a Zn2+-induced promoter. When

these cells were incubated with 50 mM Zn2+, p19 expression was

significantly diminished and its UV-mediated induction almost

completely blocked (Fig. S4). Unscheduled DNA synthesis was

carried out to determine the ability of these cells to repair UV-

damaged DNA in the presence or in the absence of chloroquine.

As previously reported, p19-deficient cells display a diminished

ability to repair UV-mediated DNA damage ([21] and Fig. 6A).

This result actually points out a lower capacity of DNA repair

since similar levels of UV-mediated DNA damage were observed

in cell lines that overexpress or underexpress p19 mRNA.

The reasoning behind the experiment was whether distortion of

chromatin structure facilitates UV damage on DNA, and whether

cells which express proteins, like p19, whose transcription is

sensitive to chromatin defects could ameliorate the adverse

consequences derived from the greater impact of genotoxicity

better than cells which do not express such proteins. A significant

increase in DNA repair was observed in UV-irradiated Neuro-2a

p19AS cells previously treated with chloroquine with respect to

UV-irradiated cells simultaneously treated with chloroquine both

in the absence of Zn2+ (compare chloroquineRUV with

UV+chloroquine, gray bars) (Fig. 6A). Conversely, cells with

diminished levels of p19 displayed no significant changes in DNA

repair activity in the same conditions (Fig. 6A compare

chloroquineRUV with choloroquine+UV, black bars). Impor-

tantly, these results reveal that p19-deficient cells were unable to

cope with the greater exposure to DNA-damaging agents like UV

in a relaxed chromatin environment.

Discussion

The maintenance of genomic integrity is of main importance to

the survival and health of organisms, which are continuously

exposed to genotoxic stress. Cells respond to DNA damage by

activating survival pathways consisting of cell cycle checkpoints

and repair mechanisms. The signal that triggers the DDR is not

necessarily a direct detection of the primary DNA lesion. In

contrast, in many cases it could include recognition of genotoxic

intermediates or detection of abnormal chromatin structure

[40,41].

The present study uncovers the activation mechanism of p19 in

response to changes in chromatin structure in a DNA damage-

independent manner. The results show that p19 is a downstream

target of the main DDR signaling pathway: ATM/ATR and

Chk1/Chk2 kinases. In addition, ATM/ATR activation would

arise without introduction of any DNA damage and suggests that

these kinases could be activated immediately by modulation of

chromatin condensation. In agreement with our results, it has

been reported that DNA-intercalating agents such as chloroquine,

inhibitors of histone deacetylases, and hypotonic conditions, which

all disturb chromatin state, can lead to activation of the ATM

kinase without introduction of DNA damage [14].

There are several possible ways by which chromatin defects

could participate in the induction of checkpoints: a) they might

make DNA more sensitive to damage, thus activating the DDR, b)

the chromatin defects might cause structural changes that block

replication, leading to checkpoint activation and S-phase arrest, c)

chromatin defects could be a direct initiator of the checkpoint

response. Since the alterations in chromatin structure triggering

p19 induction were independent of DNA damage and cell cycle

progression, our results are consistent with the third possibility. We

cannot discard that other kinds of DNA damage distinct of double

strand-breaks or CPD dimers could be caused. However, the

possibility that all three chromatin modifiers assayed would induce

DNA damage is very unlikely.

Our results strongly support that the transcription factor E2F1

plays a role in response to disturbed chromatin structure,

motivated either by DNA damage or any other origin, connecting

the ATM/ATR-Chk1/Chk2 pathway with the induction of p19

expression. In this regard, Zhang et al. reported that the small

subunit of eukaryotic ribonucleotide reductase (RRM2), an

enzyme complex essential for de novo synthesis of deoxyribonucle-

otides, is transcriptionally upregulated upon DNA damage and

that induction dependens on E2F1 transcription factor. The

authors demonstrated that, after Chk1 silencing, E2F1 expression

was reduced both at the mRNA and protein levels, indicating that

the regulation of RRM2 expression is mediated by Chk1-

dependent upregulation of E2F1 [42]. On the other hand, it has

been established that E2F1 is a physiological target of Chk2 kinase

in response to DNA damage. Thus, phosphorylation by Chk2

increases E2F1 levels through an extended half life [43]. Our

results are in agreement with those described above. We observed

that the upregulation of E2F1 and its increased transcriptional

activity in response to either DNA damage or irregular chromatin

structure depend on Chk1 and Chk2 kinase activities.

Defective structures of chromatin can be produced indepen-

dently of DNA damage. These alterations can have adverse

consequences in the accomplishment of the diverse cellular

functions that are executed on the DNA: interferences in the

mechanisms of replication and transcription, abnormal recruit-

ment of regulatory proteins, greater exposure to DNA-damaging

agents, among others. It is logical to assume that the presence of

this defective chromatin triggers a response similar to that of DDR

in the prevention of potential damage. In this respect, the

induction and activation of E2F1, which enhances mechanisms of

repair and apoptosis [44,45] and, on the other hand, the

subsequent induction of p19, through its DNA repairing and

antiapoptotic properties [19,20], would lead to an adequate

Figure 7. Chromatin-based defects as inducers of p19 protein.
Chromatin structure defects can trigger ATM/ATR and Chk1/Chk2
activation leading to an increase in E2F1 protein levels as a result of
transcriptional induction. E2F1 upregulation induces the transcription
of p19 which, in turn, promotes DNA repair.
doi:10.1371/journal.pone.0061143.g007
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balance between cell death and survival signals, which would

contribute to the maintenance of genomic integrity. The

observation that p19-expressing cells have greater capacity to

repair damaged DNA in a relaxed-chromatin context points out in

this direction.

Based on these results, we propose a model that integrates

chromatin-disruption events, the DDR signaling pathway and p19

(Fig. 7). According to this model, alterations in chromatin structure

lead to activation of ATM/ATR kinases and the checkpoint

kinases Chk1/Chk2, which in turn induce the E2F1 gene and

increased levels of E2F1 transcription factor. Transcriptional

activation of p19 by E2F1 would contribute to enhancing the

capacity of the cells to repair DNA in case of a potential genotoxic

injury.

In light of these data, we propose that an alteration in

chromatin structure could initiate a checkpoint response by itself.

This hypothesis implies the coexistence of two checkpoint

activation pathways, one through DNA lesions and its metabolic

intermediates, and the other from chromatin-based defects. The

existence of these two pathways would be advantageous for the cell

task directed to maintaining genomic integrity.

Materials and Methods

Cell Culture and Transfections
HEK293 (ATCC, CRL-1537), Neuro-2a (ATCC, CCL-131),

Seckel (Coriell Cell Repositories, GM09812) and C5RO (human

fibroblast line immortalized by the stable expression of telomerase)

[46] cells were grown in Dulbeccos modified Eagle medium

(DMEM) (Invitrogen) supplemented with 10% fetal bovine serum

(FBS), 1% penicillin/streptomycin, 100 mM non-essential ami-

noacids, and 2 mM glutamine (Invitrogen) at 37uC in a humidified

5% CO2 atmosphere. SH-SY5Y cells (ATCC, CRL-2266) were

grown in DMEM/F12 medium and similarly supplemented. For

establishment of Neuro-2a stable clones, the pMTCB6 vector,

containing p19 cDNA in the reverse orientation was used [20].

Transfections were performed using LipofectamineTM 2000

Reagent (Invitrogen). Twenty-four hours after transfection cells

were replated at low density to allow the isolation of single

colonies. The clonal cell lines derived from the transfectants

(p19AS and empty vector) were maintained in selective medium

containing 400 mg/ml geneticin disulfate (G418, Calbiochem-

Novabiochem). For metallothionein promoter induction stable

transformants were treated with 50 mM ZnSO4 for at least 12 h.

Treatment of parental Neuro-2a cells with up to 150 mM ZnS04

for 12 h did not alter p19 mRNA levels.

Caffeine, KU-55933, SB-218078, and Chk2 Inhibitor were

added to the medium one hour prior to the correspondent

treatment. Cells were transfected with an expression vector

encoding E2F1 cDNA or with a 500 nM decoy oligodeoxynucleo-

tide harboring the E2F binding site with LipofectamineTM 2000

Reagent (Invitrogen). Decoy sequence is as follows: 59-ATG CGC

GAA ACG CGT TTT CGC GTT TCG CGC ATA GTT TTC

T-39. Twenty four hours after transfection cells were exposed to

DNA damaging or chromatin relaxing conditions. Heat shock

treatments were carried out a 43uC for 1 hour in a water bathe

and then cultured at 37uC in fresh DMEM supplemented with

10% fetal calf serum for the indicated times [47].

Chromatin Relaxation
Exponentially growing cells were incubated in fresh medium

containing 100 mM chloroquine or 200 nM TSA for the indicated

time intervals. For hypotonic treatment, cells were incubated in

hypotonic medium (phosphate buffer saline; 0.45% glucose; 1%

FBS; 50 mM or 100 mM NaCl) for one hour. Then the hypotonic

medium was replaced with fresh DMEM and cells were incubated

for the times indicated in each case.

DNA Damage
Exponentially growing cells were trypsinized and seeded at 50–

60% confluence. Twenty four hours after plating, cells were

irradiated in open-dishes with the corresponding with 40 J/m2

UVC dose, 254 nm (range 240–280 nm) at room temperature.

Following UV-irradiation, medium was replaced and cells were

incubated for the indicated time at 37uC in a 5% CO2 humidified

incubator along times indicated in each case. Neocarzinostatin

(Sigma-Aldrich) was used in some cases to induce DNA damage.

This drug was added to exponentially growing cells in a final

concentration of 50 ng/ml (unless otherwise indicated) for the

indicated period of time.

RNA Extraction and Northern Blot Analysis
Total cellular RNA was isolated from cultured cells as described

previously [48]. Ten mg of total RNA were denatured, electro-

phoresed in 1% glyoxal/agarose gels, and transferred to nylon

membranes (Hybond-N+, GE Healthcare). The membranes were

sequentially hybridized with 32P-labeled probes as described

before [19]. The membranes were scanned onto a Bio-Imaging

Analyzer Fujifilm BAS-1800II. Quantification of the bands

obtained was performed using ImageJ program (NIH).

Western Blot
HEK 293 and SH-SY5Y cells lysates for immunoblotting were

prepared by scraping cells into radioimmune precipitation assay

buffer (1x PBS; 1% Nonidet P-40; 0.5% sodium deoxycholate;

0.1% SDS; 10 mg/ml phenylmethylsulfonylfluoride; 60 mg/ml

aprotinin and 1 mM sodium orthovanadate). The lysates were

centrifuged at 10,000 g for 10 min to remove cell debris. Cell

lysates (20 mg) were fractionated by SDS-PAGE and thereafter

blotted to a nitrocellulose membrane. Staining with Ponceau S was

used to ensure equal protein content. The membrane was

immunoblotted with monoclonal mouse anti-human p19 antibody

(USB). The antibody was detected using horseradish peroxidase-

linked goat anti-mouse IgG (Santa Cruz), visualized by the ECL

detection system (Amersham-Pharmacia) and a Bio-Imaging

Analyzer Fujifilm LAS-1000. Quantification of the bands obtained

was performed using ImageJ program (NIH).

Total histones were purified by an acid extraction method

according to manufacturers procedure (Upstate). Briefly, adherent

cells were washed and harvested in 1 ml PBS, centrifuged at

2006g for 10 minutes and incubated on ice for 30 minutes in 5

volumes of lysis buffer (10 mM HEPES ph 7.9; 1.5 mM MgCl2;

10 mM KCl) with hydrochloric acid at a final concentration of

0.2 N. The acid soluble fraction containing the histones was

recovered by centrifugation at 11,000 g for 10 minutes at 4uC.

cH2AX was detected using a monoclonal antibody from Upstate

following manufacturers recommendations, with a dilution 1:1000

in TTBS buffer.

Reporter Gene Assay
The reporter plasmids used were: p19CAT, containing 2250 bp

of the human 59-flanking region of p19 gene upstream of the

chloramphenicol acetyltransferase (CAT) reporter gene in vector

pBLCAT6 and p19mutCAT harboring mutations in the two E2F

binding sites of p19 promoter. E2F sites in the human p19

promoter were mutated as follows: TTTCCCGC to TTTCCTAC

(2630/2629 from TIS) and GCGCGACC to ATGCGACC
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(-685/2684). Plasmid pE2WTx4CAT, encoding the chloram-

phenicol acetyltransferase (CAT) reporter gene driven by an E2

core promoter and four copies of the E2F enhancer [49], was

kindly provided by M. Imperiale (University of Michigan Medical

School).

Cells were transfected following the standard calcium phosphate

precipitation method essentially as previously described [50].

Briefly, cells seeded in 6-well dishes were transfected with 4 mg

p19CAT or equal amount of the mutated version, 5 mg of pCEFL-

b-galactosidase and expression vectors when indicated. Total

DNA amount was adjusted to 15 mg/well with non-specific DNA

carrier. After 16 h, the medium was replaced by serum-free

medium, and cells were further incubated for 24 h. Cells were

then harvested and CAT and b-galactosidase activities were

determined as previously described [50]. CAT activity was

normalized to b-galactosidase activity.

Unscheduled DNA Synthesis
Neuro-2a p19AS cells seeded in 6-well dishes were washed with

PBS and growth medium was replaced by serum-free medium

which was renewed after 24 h. Inhibition of DNA semiconserva-

tive synthesis was confirmed under these conditions. Cells were

treated or not with 50 mM ZnSO4. After 16 h, cells were

incubated with 100 mM choroquine and, simultaneously or after

4 h, irradiated with 40 J/m2 UV and further cultured in serum

free-medium with 10 mCi/ml [3H]thymidine. Ten hours later,

cells were washed three times with cold PBS, harvested and

collected at 3000 g for 5 min. Cells were lysed with 5% TCA for

30 min and centrifuged at 10,000 g for 10 min. Pellet was washed

twice with cold PBS and resuspended in 1 M NaOH. The

incorporated radioactivity was quantified by scintillation counting.

Unscheduled DNA synthesis was expressed as dpm/mg protein.

Cyclobutane Pyrimidine Dimers (CPD) Detection by
Immuno-slot Blot Assay

The amount of thymine dimers in the DNA was measured by

an immune-slot-blot assay using a CPD-specific monoclonal

antibody [51]. Approximately 106 Neuro-2a cells were plated into

60-mm dishes, incubated with 100 mM choroquine and, simulta-

neously or after 4 h, irradiated with 40 J/m2 UV. The cells were

collected immediately after irradiation and the genomic DNA was

isolated as previously described [52]. Cellular DNA was denatured

in TE buffer (10 mM Tris-HCl and 1 mM EDTA, pH 7.5) by

boiling for 5 min and 100 ng of each sample was spotted in

triplicate onto a Hybond N+ membrane (GE Healthcare) using a

slot blot apparatus. DNA was fixed to the membrane for 20 min

on 3 MM paper soaked in 0.4 N NaOH. The membranes were

blocked overnight in phosphate-buffered saline, 0.2% Tween 20

(PBS-T) containing 5% (w/v) skim milk. After washing in PBS-T,

the membranes were incubated for 2 h at room temperature with

a monoclonal antibody specific for thymine dimers (Kamiya

Biomedical) at a dilution of 1/2000 in blocking buffer. The

antibody was detected using horseradish peroxidase-linked goat

anti-mouse IgG (Santa Cruz), visualized by the ECL detection

system (Amersham-Pharmacia) and a Bio-Imaging Analyzer

Fujifilm LAS-1000. Quantification was performed using ImageJ

program (NIH). The membranes were stained with ethidium

bromide (10 mg/ml) and 1% methylene blue in order to ensure

equal amounts of loaded DNA and this quantification was used to

relativized the CPD lesions assessed.

Supporting Information

Figure S1 Cloroquine, TSA and hypotonic medium
increased MNase accessibility of chromatin. HEK-293

cells were incubated with 100 mM chloroquine (A) or 200 nM

TSA (B) or hypotonic medium (50 mM NaCl) (C) as indicated.

After 4 h whole nuclei were isolated and incubated with 2 U/ml

MNase for the indicated times. Total genomic DNA was purified

and the pattern of DNA digestion was analyzed by electrophoresis

as described in materials and methods section. Each figure shows a

representative gel of three independent experiments with similar

results. Choroquine (Chlo), microccocal nuclease (MNase),

hypotonic (Hypo) and isotonic (Iso) medium, markers (M).

(TIF)

Figure S2 p19 is the only member of INK4 family that is
induced by chromatin relaxation. HEK-293 cells were

exposed to 100 mM chloroquine, 200 nM TSA or hypotonic

medium (50 mM NaCl) for the indicated times. Total RNA

(10 mg) extracted from cells at the indicated times were subjected

to northern blot analysis with the 32P-labeled probes specified at

the right margin. Figure shows a representative autoradiograph of

three independent experiments with similar results. Chloroquine

(chlo), hypotonic medium (hypo), b-tubulin (b-tub), neocarzinos-

tatin (NCS).

(TIF)

Figure S3 Induction of p19 by chromatin modifying
agents is independent of double strand DNA damage
and cell cycle arrest. A. HEK-293 cells were incubated with

100 mM chloroquine or 200 nM TSA or hypotonic medium

(50 mM NaCl) as indicated. After 4 h histone proteins were

purified by an acid extraction protocol. The level of H2AX

phosphorylation (cH2AX) was assessed by western blot. Cells

incubate with 1 mM camptothecin was used as a positive control.

Histone H3 was used as a loading control. Figure shows a

representative western of three independent experiments with

similar results B. HEK-293 cells were incubated with 100 mM

chloroquine or 200 nM trichostatin A or hypotonic medium as

indicated. After 4 h cells were harvested and subjected to flow

cytometric cell cycle analysis. Mimosine (200 mM) was used as a

G1/S boundary arrest positive control. Bars represent de mean 6

S.D. of four independent experiments performed in duplicate.

Student’s t test was used to compare % of cells in G1 and S phases

from 24 h mimosine treated cells with 4 h mimosine treated cells

(* p,0.05). Camptothecin (CT), chloroquine (chlo), hypotonic

medium (hypo).

(TIF)

Figure S4 Diminished expression of p19 mRNA in Zn2+-
treated Neuro-2a p19AS cells. Total RNA was extracted from

50 mM ZnS04 treated and/or 40 J/m2 UV irradiated stably

transfected p19AS cells and subjected to northern blot analysis

using a 32P-labeled probe specific for p19 mRNA and reprobed for

b-tubulin (b-tub) mRNA. Figure shows a representative autora-

diograph of three independent experiments with similar results.

Densitometric analysis of p19 is represented in the right panel.

Bars represent the mean 6 S.D. of three experiments. Student’s t-

test was used to compare treated and non-treated samples

(* p,0.05, at least).

(TIF)

Materials and Methods S1

(DOC)
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