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Abstract

Background: The vast computational resources that became available during the past decade enabled the development
and simulation of increasingly complex mathematical models of cancer growth. These models typically involve many free
parameters whose determination is a substantial obstacle to model development. Direct measurement of biochemical
parameters in vivo is often difficult and sometimes impracticable, while fitting them under data-poor conditions may result
in biologically implausible values.

Results: We discuss different methodological approaches to estimate parameters in complex biological models. We make
use of the high computational power of the Blue Gene technology to perform an extensive study of the parameter space in
a model of avascular tumor growth. We explicitly show that the landscape of the cost function used to optimize the model
to the data has a very rugged surface in parameter space. This cost function has many local minima with unrealistic
solutions, including the global minimum corresponding to the best fit.

Conclusions: The case studied in this paper shows one example in which model parameters that optimally fit the data are
not necessarily the best ones from a biological point of view. To avoid force-fitting a model to a dataset, we propose that
the best model parameters should be found by choosing, among suboptimal parameters, those that match criteria other
than the ones used to fit the model. We also conclude that the model, data and optimization approach form a new complex
system and point to the need of a theory that addresses this problem more generally.
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Introduction

A necessary step in making predictions from mathematical

models of biological processes is the estimation of the parameters

needed to simulate the model. This is a well studied problem in

systems biology, usually addressed utilizing a large variety of

approaches [1–5].

Fitting parameters of mechanistic models to experimental data

is usually a daunting task [6]. There are several difficulties

associated with parameter fitting. One such difficulty stems for the

fact that models may display sloppy parameter sensitivities [7,8],

whereby some parameters can compensate other parameters,

resulting in some arbitrariness in the specification of their values.

Another generic difficulty is that different values of the model

parameters may be similarly consistent with the data (the problem

of identifiability). Yet a third difficulty is that finding the optimal

values of the model parameters may require the exploration of a

huge space. In this paper we highlight a fourth difficulty usually

not discussed when fitting parameters to data. Given a model that

is only an approximate representation of a system under study, and

data extracted from this system, the model parameters that best

represent the mechanistic details of the system may not be found

by minimizing a cost function. In other words, the parameters at

the global minimum of the cost function may not yield the most

meaningful parameters from a physiological point of view. In

effect, when minimizing a cost function the optimization process

can force the search to go to a corner of the parameter space

which, while fitting the data exquisitely, yields physiologically

meaningless parameters. In view of these difficulties, the question

of how to approach the generic problem of searching the

parameter space of models that are only approximate represen-

tations of complex systems remains a challenging one.

The utilization of mathematical models to describe and predict

morphological and physiological aspects of tumor growth [9] has

the potential to increase our understanding of tumor development,

and holds the promise to suggest new ways to improve the efficacy

PLoS ONE | www.plosone.org 1 October 2010 | Volume 5 | Issue 10 | e13283



of therapeutic interventions. Over the last ten years increasingly

complex mathematical models of cancerous growth have been

developed, in particular on solid tumors, in which growth

primarily comes from cellular proliferation [10,11]. The growth

of micro-tumors in the avascular stage can be studied using

multicellular spheroids as a biological model [12–14]. The

multicellular spheroid model [15] is at present considered an

excellent in vitro model to study complex aspects of tumor

physiology, especially those related to therapeutic strategies that

cannot be adequately treated by other simpler models [16,17].

This kind of model represents an intermediate level of complexity

between in vitro monolayer cell cultures and in vivo solid tumors.

Ward and King [18] proposed a mathematical representation of

the processes that describe the growth or remission of an avascular

micro-tumor in terms of the nutrient concentration present in the

medium, based on a system of nonlinear partial differential

equations. The model assumes the existence of a continuum of

cells in two possible states: alive or dead. According to the

concentration of a generic nutrient, the living cell may reproduce

or die, following a saturation kinetics. The division or death of cells

implies the expansion or contraction of the tumor volume. The

growth of an avascular tumor can be described by the temporal

dependence of the radius of its spheroidal volume. This radius is

easily accessible by experimentation, and can in principle be used

to constrain the parameters of avascular tumor growth models.

We are interested in fitting the parameters of an avascular tumor

growth model [18] using time course data. This is a good system to

explore the above-mentioned difficulties, associated with parame-

terizing a model. On the one hand this model has six parameters

which is a large, yet manageable number of parameters. On the

other hand, the influence of these parameters on the final shape of

the growth curve is far from obvious, and therefore there is no

simple way to estimate the parameters from exploration of the

growth curve. To fit the parameters in this model we did a

systematic exploration of the cost function defined as the sum of the

squares of the differences between model prediction and time

course data, summed over the observed time points. To minimize

this cost function we implemented and tested four different

algorithms: (1) Levenberg-Marquardt [19,20]; (2) Fletcher-Davi-

don-Powell [21]; (3) Downhill Simplex [22]; (4) Parallel Tempering

[23]. Each of these methods belongs to different families of

optimization techniques, described below. We use the massive

parallel architecture of a Blue Gene supercomputer to sample the

parameter space and characterize the rugged nature of the solution

landscape. We found the surprising result that the global minimum

of the cost function is not biologically meaningful. This conclusion

indicates that the global minimum of the cost function might not be

the place to look for the parameters of our model.

In subsequent sections, we will present and discuss strategies to

find the parameters of this model, characterize the cost function

landscape, and study the parameters they yield in terms of pre-

existing biological knowledge.

Methods

Model of avascular tumor growth
A detailed description of the mathematical aspects of the

avascular tumor growth model to be considered in this paper can

be found in the original reference [18], while the numerical

implementation of the solution has been described in [24]. In this

section, we summarize the basic tenets of the model with the aim of

introducing the parameters whose values we want to fit from

experimental data. As the experimental model is a spheroid, we can

assume a spherically symmetric system whose variables depend on

the spatial coordinates only through the radius r, i.e., the distance

form any point in the spheroid to a fixed center. Three variables

determine the model: i) the density of living cells, n(r,t); ii) the local

growth velocity, v(r,t); and iii) the nutrient concentration, c(r,t).

After non-dimensionalization and some reordering of the terms

[18], the equations for the density of living cells is:

Ln

Lt
zv

Ln

Lr
~ ½km(c){kd (c)�(1{n){dkd (c)nf gn,

where km(c) and kd (c) are the rate of mitosis and death

respectively, and d is the fraction of the original cell volume that

a cell occupies after it dies, i.e., d~VD=VL with VL and VD

denoting the volume of a living and dead cell respectively. The

dependencies of km and kd on the concentration are given by

saturating functions assumed to have the form

km(c)~
c

czcc

, kd (c)~1{s
c

czcd

:

The parameter cc represents the crossover concentration above

which the rate of mitosis reaches its normalized saturation value of

1. In like manner, the critical concentration cd denotes the

crossover concentration of nutrient below which the normalized

death rate saturates to 1 and above which the normalized death

rate saturates to 1{s; here, s denotes the basal cell death rate

parameter, which is independent of nutrient conditions.

The equation for the normalized local velocity is [18]

1

r2

L(r2v)

Lr
~½km(c){(1{d)kd (c)�n:

Finally, we will use the equation for the nutrient concentration

inside the spheroid. This equation results from a quasi-steady

approximation of the reaction diffusion equation ruling the

nutrient concentration:

1

r2

L
Lr

r2 Lc

Lr

� �
~bkm(c)n,

where b represents the amount of nutrient consumed on cell

mitosis. It is assumed that the nutrient consumption by non-

mitotic processes is much smaller than that the nutrients consumed

during mitosis.

The initial conditions

rbd (0)~1, n(r,0)~1, c(r,0)~cbd ,

specify that the radius rbd (t) at the boundary of the tumor at time

t~0 is our unit of lengths and that the initial density of cells n(r,0)
is one, that is we start with a unique cell submerged in a medium

with nutrient concentration given by cbd , the latter being also the

nutrient concentration at the tumor boundary.

The boundary conditions are:

drbd

dt
~v(rbd (t),t), c(rbd (t),t)~cbd ,

v(0,t)~0,
Lc(0,t)

Lr
~0:

The first boundary condition in the first line implies that the

boundary of the spheroid moves with the local velocity at the
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boundary. The second boundary condition establishes that the

spheroid is immersed in a medium with nutrient concentration

cbd . The third and fourth boundary conditions (second line) are

respectively that the center of the tumor is not moving (i.e., our

center of coordinates is at the center of the tumor), and that the

radial gradient of concentration at the center has to be zero by the

spherical symmetry.

In summary, this model has 6 free parameters, represented by a

6-dimensional array h~(d,s,b,cc,cd ,cbd ). The original model as

formulated in [18] had four additional parameters, which we are

setting to the values suggested in [18]. By their normalization, our

six parameters are contained in the interval ½0,1�. Different

combinations of parameters lead to one of three possible

evolutions: linearly increasing, saturating, and decreasing (Figure

S1 in File S1).

Experimental Data
Multicellular spheroid techniques have been widely used and

studied since the 1980’s [25–28]. One of the most important

measures obtained from these spheroids is the growth curve, i.e.,

the radius or volume of the spheroids as a function of time. With

the experimental technology currently available, this curve can be

measured very precisely. In [13,14] the authors measured the

growth curve of multicellular tumor spheroids used as paradigms

of prevascular and microregional tumor growth and compared the

experimental growth curves to many different empirical models of

multicellular spheroid growth. The authors concluded that the

standard Gompertz curve [29], defined as rbd (t)~a exp½b exp (ct)�
could not be distinguished from the actual growth curves within

the margin of error of the experimental data. Taking into account

these observations we used a noisy Gompertz curve to constrain

the parameters of our tumor growth model. We generated

synthetic growth data from a Gompertz model that was previously

shown [13,14] to follow very closely experimental volume growth

data with values of a~7:6, b~{12 and c~{0:121. We also

added 5% of noise to the volume growth curve, a level of noise

similar to what is observed in real experiments. Figure 1 shows the

volumetric growth curve generated using the Gompertz model

with 5% of noise (left panel), as well as the corresponding non-

dimensionalized radius growth curve (right panel). The latter curve

will be used in the remaining of this paper to constrain the

parameters of a tumor growth model.

Parameter Estimation
The parameters included in the tumor growth model are

represented by the 6-dimensional array h. In order to obtain

numerical values for our model parameters, we will attempt to

minimize the differences between our tumor growth model and

the data by finding the minima of the quadratic cost function [30]:

x2(h)~
XN

k~0

(yk(h){datak)2,

where yk(h) is the model’s prediction for observation k which

depends on the parameters h, and datak represents the

experimentally measured data values (in our case, synthetic data)

at observation k. In our particular application, synthetic

experimental observations are taken at times tk, and the value

datak corresponds to the radius of the spheroid at time tk. The

model prediction for the spheroid radius at time tk is denoted by

yk(h), and the sum is over all the time points tk. For future

reference, the residuals vector f is defined as fk~yk(h){datak.

The methods used for the minimization of the cost function are

Levenberg-Marquardt [19], Parallel tempering [23], MIGRAD

[31] and downhill simplex [22] (see supplemental section 2 for

method details).

Because of the complexity of our partial-differential-equation

based model, the simulation of each spheroid growth may take

several minutes in a single Blue Gene [32,33] node, the exact time

depending on the parameter values. To have a dense sampling of

the parameter space, independent runs were implemented and

executed in a massively parallel environment. Communication

between nodes was implemented using MPI [34]. The paralleliza-

tion consisted of running the different methods from many starting

points simultaneously and parallelizing the independent model

evaluations, i.e. Jacobian calculation in LM or MIGRAD and

different temperature simulations in PT. To sample the parameter

space with the goal of identifying the minima of the cost function,

hundreds of thousands of runs were executed. These runs took

several months even leveraging the thousands of compute nodes

available in Blue Gene. The availability of these resources resulted

in a relatively dense evaluation of the parameter space, and the

identification of what seems to be the global minimum of the cost

function.

Results

As explained in the previous sections, the model has 6 free

parameters h~(d,s,b,cc,cd ,cbd ), each bounded in the ½0,1�
interval. Sometimes we will refer to the parameters as Parameter

1, Parameter 2, etc., with the number indicating the order in the

parameter array. We will first show a comparative evaluation of

the advantages and disadvantages of the different optimization

approaches. For this we will use each method to minimize the cost

function x2(h) defined in the previous section, where: (a) datak

corresponds to the non-dimensional tumor radius at time tk, given

by non-dimensional synthetic data (right panel of Figure 1) and (b)
yk(h) is the tumor radius at time tk, rbd (tk) that results from

running the avascular tumor growth model with parameters h.

Figure 1. Data generated using a Gompertz model that fitted
previously reported experimental data. Gompertzian fit to the
measured volumetric data with a 5% of noise added. The in-box axis
corresponds to the same data, where the non-dimensionalized radius as
a function of non-dimensionalized time is illustrated, used as the data in
the remaining of this paper.
doi:10.1371/journal.pone.0013283.g001
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The sum of squares were performed over the evolution of the

radius of the tumor over 100 time points tk as shown in Figure 1.

Our objective is to determine which parameter sets h minimize

x2(h). A six-dimensional grid of two inner points for each

parameter was generated for the initial parameter values from

where to start the optimizations. For each of the four optimization

methods to be explored, these 64 mesh points were executed in

parallel. For the PT method, a first run for sampling the parameter

space was executed with 64 different temperatures. After this

initial sampling, a second run with very low temperature (all nodes

the same temperature) was executed in order to reach the local

minima for each parallel replica. The starting points were the

parameters corresponding to the minimum cost function value

attained in the previous runs.

Figure 2 shows the histograms of the minima of the cost

function attained by each of the methods investigated. We observe

that many of the minima found by the Simplex Method are orders

of magnitude larger than those found by the other methods, with

the smallest minimum of the cost function being in the 100’s (in

the non-dimensionalized units of length squared). In some runs

MIGRAD execution had to be interrupted before finishing

because it reached the stipulated maximum number of iterations;

in these cases, we called ‘‘minima’’ the smallest values calculated

up to that point. MIGRAD and PT were able to find similarly

good values, with the smallest minima of the cost function being

around 20. The LM method clearly found the best minima of the

cost function, with smallest values being around 2 (Figure S2 in

File S1).

To further study the differences between the LM and PT/

MIGRAD minima, we applied Principal Component Analysis

[35] (PCA) to the LM solutions. The direction that explains most

of the variance has mainly components on the 4th and 6th

parameters. Applying PCA to the solutions reached by the others

methods with good parameter space sampling (Migrad, PT)

yielded two main principal components for which, as was the case

for LM, parameters 4th and 6th have the largest components.

Thus we plot the projection of the minima sampled by the

different methods on the plane given by the 6th (cbd ) and the 4th

(cc) parameters. This two-dimensional glimpse of the six-

dimensional parameter space is shown in Figure 3 for all the

methods considered.

The Simplex method (top right subfigure) shows a very poor

parameter space coverage and a rather high range of cost function

values at the attained minima as evidenced by the scale of the

color bars to the right of the figure. MIGRAD and PT show a

similar tendency toward finding minima in the high range of the

6th parameter values. LM shows the best set of minima with a very

significant lower value for the 6th parameter, in contrast with the

tendencies in the MIGRAD and PT runs. It is also interesting to

highlight the very different search strategies of the different

methods. By construction, PT implements a stochastic search

strategy, and therefore reaches corners of the parameter space not

sampled by the other methods. LM has a good coverage of the

parameter space, and it takes a more ordered but yet rather non-

local search of the phase space. MIGRAD performs a localized

search, more local than PT and LM, but less local than Simplex.

In the latter, the original starting mesh of the simulations can be

clearly identified, and not too far reaching excursions from the

original mesh are explored.

The location and number of local minima shown in Figure 3

suggest that the cost function landscape is a rather rugged one,

plagued with local minima. In Figure 4 we explicitly constructed

the surface of the cost function as a function of parameters 4 and 6,

using all the runs available from all the optimization methods used,

yielding a total of more than 100,000 evaluations. This figure

shows an extremely rugged landscape with many peaks and valleys

permeating the parameter space. This ruggedness is smoothed out

by the fact that the value of the cost function shown in Figure 4 is

the average over of the cost function values with the same values of

parameters cbd and cc, but different values for the other four

Figure 2. Histograms of the minima of the cost function obtained using different optimization methods. In all cases, runs started from a
fixed 6-dimensional mesh of 64 points, in which each parameter was evaluated at 2 values. The optimization methods were launched and run until
convergence, and the minimum obtained in each run was recorded to create these histograms.
doi:10.1371/journal.pone.0013283.g002
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parameters. We also tried different strategies to represent the cost

function landscape, such as plotting the minimum over of the cost

function with the same values of parameters cbd and cc. This

alternative representation of the cost function yielded a similarly

rugged landscape (data not shown).

Can the ruggedness of the cost function landscape be due to the

noisy nature of the data being fitted? It could be conjectured that

noiseless data would yield a cost function landscape that is less

plagued with local minima. If this were the case, it would make

sense to smooth out the data before fitting a model to it. To

address this question we recalculated the landscape removing the

5% noise that had been added to the Gompertz curve, and

therefore fitting the model to a smooth curve. The results (data not

shown) show a landscape with a similar ruggedness as that of

Figure 4, indicating that the rough surface cannot be attributed to

the noise in fitted data.

To explore the behavior of the parameter space over the other

parameters, we show the sampled parameter space projected onto

the 5th (cd ) and the 1st (d) parameters in Figure 5 for LM, PT and

MIGRAD, the three methods with good minima sampling.

Minima found with LM resulted in 5th parameter values very

close to zero. Even though MIGRAD and PT show a similar

tendency, the minima values reached by these methods are not as

low as those obtained by LM. One way to explain this difference is

that PT bases its searches on random moves, and the probability of

getting in a trough as narrow as 10{8 (the value found by LM for

parameter 5) is very unlikely. On the other hand, as we said

before, MIGRAD was interrupted before finishing because the

number of iterations performed reached the maximum stipulated.

As the MIGRAD method resembles LM, it might be expected that

a sufficiently long MIGRAD run would eventually reach similar

minima values as LM, albeit in many more iterations.

Even though many of the 64 minima obtained in each method

had similar values of the cost function (Figure S2 in File S1), the

corresponding parameter values were not necessarily close. In

order to understand the structure of the parameter sets found

Figure 3. 6th (cbd ) vs. 4th (cc) parameters runs for all methods. Grey points represent individual runs. Colored points are the best cost function
values obtained in for each of the 64 initial conditions. The value of the attained minimum for each run is color-coded in the color scale at the right of
each subfigure. Note that the color bars have different scales.
doi:10.1371/journal.pone.0013283.g003

Figure 4. The landscape of the cost function as a function of the 6th (cbd ) and 4th (cc) parameters. The cost function value has been
averaged over the values that correspond to the same values of cbd and cc , but for which the other coordinates differed. This data was taken from all
runs available of all methods.
doi:10.1371/journal.pone.0013283.g004
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using the different methods, we ordered the parameter sets using

standard hierarchical clustering techniques (Figure S3 in File S1).

As a metric for the hierarchical clustering we used the correlation

between the parameter vectors (normalized inner product), and

used average linkage as the method for hierarchical agglomeration

of clusters.

We divided the sets of minima into seven clusters for each

method. The clusters resulting from the LM optimization are

tighter and more homogeneous within clusters than those resulting

from PT. For each of the seven clusters and each method the

mean value of each parameter was chosen as the representative

solution (Table S1 and Table S2 in File S1).

Conventional wisdom would indicate that the best parameter

set is the one that minimizes the cost function, i.e. the best fit to the

experimental data. In the present case, the parameter set that

yielded the minimum from LM method would have been chosen.

Notwithstanding, growth curves from all minima closely followed

the experimental growth curve (see Figure S2 in File S1). Even

though we have 100 points to constrain the six parameters of the

model, there is still the possibility that the optimization has

‘‘forced’’ the parameters of model to data. We claim that

optimality of the cost function is not the only criterion for

choosing the best parameters: the best parameters have to be

interpretable, and should compare well with their experimentally

measured counterparts. The current literature provides very good

experimental measurements for b and cc (the 3rd and 4th

parameters, respectively). Therefore we checked the consistency of

the parameters obtained from our optimization of the cost

function with the experimentally measured values of b and cc.

In Figure 6 we plot the minima obtained by the different

optimization methods (solid points) and the cluster centroids (x

symbols). In the figure blue and green correspond to LM and PT

methods respectively. The biological realistic values reported in

literature are shown in the gray box.

Only one minimum centroid for each method was within the

biologically feasible values. Surprisingly, neither of these two

parameter sets corresponded with the cluster that contained the

minimum for either PT or LM. This is a counterintuitive result, as

one would expect that the global minimum is the one that

optimizes all aspects of the solution. However, the results shown in

Figure 6 clearly show that only a few of the minima are

biologically realistic, and the global minimum is not amongst

these. We shall discuss this issue further in the Discussion section.

Both parameters sets that yield values consistent with the known

biology are very similar, except for the 5th parameter which in LM

is seven orders of magnitude smaller than in the PT minima. In

order to shed some light into this difference we performed

sloppiness analysis [7,8] for the model around the parameter sets

given by the two centroids. In sloppiness analysis, a slightly

modified cost function is used, in which the values datak are

replaced by the values of the model at the optimal parameter

yk(h�). The Hessian of this modified cost function is computed,

and its eigenvalues and eigenvectors are studied. The spectra of

eigenvalues for our system had a very wide range of values, with

the ratio of the maximum to the minimum eigenvalues being

separated by several order of magnitude. The eigendirections

corresponding to the large eigenvalues are stiff directions, whereas

the sloppy directions in parameter space are those directions in

which an excursion doesn’t change the modified cost function

considerable. Generally, the directions determined by the

eigenvectors in sloppiness analysis are linear combination of

parameters. In both methods (LM and PT) the minimum

eigenvalue corresponded to an eigenvector which was essentially

the vector (0,0,0,0,1,0). Therefore, the difference of several orders

of magnitude difference in the 5th parameter may be explained by

the fact that this parameter corresponds to the most sloppy

direction in parameter space, at least in the neighborhood of the

centroids.

Discussion

When the optimal is not the best
The avascular tumor model used in this work has 6 parameters,

each of which represents a physiological mechanism. We fitted

these six parameters to data derived from a three-parameter

Gompertz curve with added error. Is there any point in trying to

fit data that can be fitted with three parameters to a much more

complicated model with six parameters? We believe that this

parameter-counting argument (six parameters in a model to fit a

three parameter Gompertz curve) can be misleading. The

avascular tumor growth presented here is a nonlinear partial

differential equation in which the solution rbd (t) depends subtly on

the equation parameters. If the full model were perfect (to within

the error), the optimization should find physiologically reasonable

parameters that reproduce the data in an indistinguishable way

from the Gompertz curve, regardless of the fact that the data can

also be fitted with an empirical model of 3 parameters plus noise.

One of the main conclusions of this paper is that the notion that

model parameters have to be obtained by global minimization of a cost function

may be too strong a generalization. Parameter fitting requires not just

brute-force computation but also some strategic thinking. The

problem is not so much fitting the data at hand, but rather the

Figure 5. All optimization runs as seen from the cut of the parameter space through the 5th (cd ) and 1st (d) parameters, for the LM,
PT and MIGRAD methods. Gray points represent individual runs. Color points are the best cost function value obtained in each compute node.
The color bars coding the value of the cost function at the minima are in different scales for the different methods.
doi:10.1371/journal.pone.0013283.g005
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ability of the model to make predictions under conditions different

from the ones used in the fitting. This is a similar problem as the

one faced in machine learning when we want to generalize a

classifier to previously unseen data after training it in a training set:

a perfect fit to a training set may be due to overfitting, and may

result in poor generalization to previously unseen data. In terms of

mechanistic models, a perfect fit may result from the fact that the

data to be fitted is in the realm of possible outcomes of the model,

even with unrealistic parameters. In this section we will elaborate

further on these ideas.

In the problem studied in this paper, we formulated the model

of avascular tumor growth based on a set of parameters with a

relatively clear interpretation. At least some of these parameters

could in principle be contrasted to experimentally measured

parameters. In this framework, we have presented a methodolog-

ical approach for parameter estimation and evaluation of an in-

silico model of avascular tumor growth. We evaluated several

algorithms to find best-fit parameters, and encountered a

proliferation of local minima embedded in a very rough cost

function surface. We clearly found a best performing optimization

method in LM, which efficiently sampled the parameter space and

found what appears to be the global minimum of our cost

function.

The optimal parameters obtained by our extensive search of the

parameter space was not, however, the best minimum in the sense

of making the model interpretable. Indeed, the global minimum

consisted of values for the parameters cc and b that were outside of

the region where experiments place these parameters. Therefore,

even if the fit to the growth curve of the model with the global

minimum parameters optimized the cost function, any additional

measurement that depends crucially on the value of these

parameters would make the model fail to match the data. In

other words, in our case, the optimal minimum of the cost function

was not the best solution of our problem as it yielded an unfeasible

parameter set. The two sets of (cluster centroid) parameters which

were consistent with the literature showed a reasonable fit, albeit

not optimal. Indeed, the relative error of the model at those

parameter values fall outside the error bars of the experimental

data (Figure S4 in File S1).

This seemingly paradoxical situation in which the optimal

parameter set may not be the best solution to our problem can be

illustrated with a simple example. Suppose that we have a set of

measurements that depend on a non-dimensionalized time t
according to data(t)~tzt3. Suppose that our model is of the

form y(t)~atzbt2. It is clear that our model, while qualitatively

correct, is not exact. Continuing with our example, assume that we

have collected data from time t~0 to time t~T (where T is also

non-dimensional). The cost function that we need to minimize is:

x2(a,b; T)~
Ð T

0
dt½y(t){data(t)�2

~
Ð T

0
dt½(a{1)tzbt2{t3�2:

The global minimum of this function is obtained at parameter

values a� and b� given by the relations:

a�~1{
2

5
T2, b�~

4

3
T :

The best value for the parameter a should be 1, as this

parameter represents the importance of the linear coefficient of the

data whose linear coefficient is 1. Indeed a� is close to 1 for small

values of T , which is where the model best represents the data.

However, if we sampled for a longer time, the paradoxical

situation results that our estimate of the parameters worsens. It is

clear that the parameter b while trying to capture the curvature of

the data, is parameterizing the wrong dependence (a t2

dependence rather than the t3 dependence of the data in our

example). For a long sampling time T , the parameter b grows

Figure 6. cc vs b points of all minima found (dots) and cluster centroids (crosses). Blue and green represents the minima obtained using the
LM and PT methods respectively. The gray box shows the biologically feasible parameter space.
doi:10.1371/journal.pone.0013283.g006
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linearly with time, as it tries to compensate the smaller curvature of

the model in order to fit the data. The parameter a also has to

compensate in order for the model to match the data at the high

range of t. So, if T~0:5, the values of a� and b� are 0:9 and 0:67,

very close to the actual values of 1 and 1 respectively. However, if

T~5, we would have a�~{9 and b�~6:67: clearly the linear

term is assuming negative values, very far from the reality of the

actual data. The optimization process has forced the parameters to

fit the data and in so doing, the parameters lost their

interpretability of being the linear coefficient and a coefficient

related to curvature.

Our intention in presenting this analytical example is to show

that when the data is not in the realm of the results that the model

can produce, the optimal of the cost function may not yield a

meaningful set of parameters. Our simple example makes this

point obvious, as we know the functional form that represents the

data.

There is another lesson that we can extract from this simple

example. It is clear that the optimal parameter values depend on

the range of the data to be fitted. Therefore, one simple test of the

sanity of a model’s optimal parameters is to fit the data at different

time points (or in data sets with different range of values). If the

optimal parameters dramatically depend on the range of the data

to be fitted (such as the dependence of a� and b� on T ), then

something is wrong with the model.

In their interesting discussion on modeling in systems biology,

Cedersund and Roll [36] suggest that a model can be viewed

under three epistemological lenses: 1) A model is used as an

instrument (as a means) to obtain a certain prediction (instrumen-

talism). Typically this is the approach that is used when data is

modeled using generic statistical methods such as regression; 2) A

model is to be the ‘‘perfect’’ representation of the real system

(direct realism), as is the quest when theoretical physicists seek the

ultimate laws of nature. This means that the ‘‘perfect’’ model will

not only be able to give accurate predictions of the measurable

system output, but also will provide an accurate description of all

the components and processes involved in the generation of this

output. 3) An intermediate view exists between 1) and 2) according

to which a model yielding good predictions on a diverse data set

could be expected to contain some degree of correlation between

its mechanisms and the corresponding mechanisms of the real

system (critical realism). In this view, a model is considered as a

simplification of the true system that only captures some of its

aspects, and one therefore has to be careful when drawing

conclusions about what these aspects might be. For the avascular

tumor model discussed in this paper, some of the simplifications

were the assumed perfect spherical symmetry, the Michaelis-

Menten growing behavior, the disregard for the discrete nature of

the cellular composition of the tumor and the mechanical stresses

that cells exert on each other, etc. Cedersund and Roll suggest,

and we agree, that of these three approaches (i.e. instrumentalism,

direct realism and critical realism), it is the last option that best

describes modeling for systems biology. When our models are

simplified version of reality and therefore not exact, the best

parameters (in the sense of being physiologically meaningful) may

not be found by optimization.

If parameter estimation cannot simply rely on cost function

optimization, how are we to choose our parameters to determine

our models? We believe that the optimization of a cost function,

even a cost function with regularization, is only one side of the coin

in the fitting process, and that experimental design [37] has to be

considered simultaneously with the optimization process. If we

have independent data sets probing different regimes of a system, a

good strategy may be to take all the local minima solutions that fit

the first data set to within an approximation (but not just the global

minimum, assuming it can be found), try each of those solutions on

the new dataset, and choose the parameter set that fits the best to

the second data set. Some experiments will determine some

parameters better than others, so a reasonable strategy for

parameter fitting is to produce independent experiments that

constrain different parameters. Lumping all the experiments in a

single cost function may not be the best approach to find

parameters from data, as parameters values may be strained until

the data at hand is fitted. It may be preferable to fit the model with

a subset of experimental data, and contrast the resulting minima

with the rest of the experimental data, specially reserved for this

purpose. This approach is akin to the cross-validation technique

used in statistical learning.

A formalization
To further explore how the approach sketched in the previous

paragraph can be applied, we next describe a formal methodology

to choose model parameters in the avascular tumor growth model

or any other biological system. We start by sampling the cost

function x2(h,D1) with a first constraining data set D1. In the case

of the avascular tumor growth model D1 was the spheroid radius-

versus-time data. Rather than just choosing the parameter h�1 that

minimizes the cost function as the ‘‘true’’ parameter values, we

postulate that the ‘‘best’’ parameter values are contained in the set

S1(e) of parameters that render the cost function not larger than

e2. The choice of e will depend of the experimental error s in the

data, and on the error eM in the fit due to simplifications of the

model, plausibly following the relation e2~s2ze2
M . S1(e) is thus

defined as

S1(e)~ hDx2(h�1,D1)ƒx2(h,D1)ƒe2
� �

It may be expected that a simplified model at its best parameters

(i.e., realistic and amenable to predict the results of new

experiments) can represent the data, albeit with a relatively large

eM . If the model is based on first principles, one could expect eM to

be very small, as the theory should account for the data very

faithfully. A principled value of eM (and thus of e) is hard to

determine, but an empirical way for its computation will be

discussed below.

The next step in the process is to choose a subset of the

parameters contained in S1(e) that are consistent with other data

sets. In the case of our avascular tumor growth model, possible

additional data sets can be extracted from the following

experiments: 1) changing the nutrient concentration of the

surrounding medium of the spheroid to obtain different saturation

levels of growth curves and 2) measuring the necrotic core size, for

example by histological or immunohistochemical markers. These

experiments will generate additional data sets D2,D3, . . ., etc. In

general, the nature and design of these additional experiments will

depend on the system being studied. The n-th experimental data

set Dn will determine the n-th plausible parameter set Sn(e)
defined as

Sn(e)~ h=x2(h�n,Dn)ƒx2(h,Dn)ƒe2
� �

where h�n is the parameter that minimizes x2(h,Dn). If we want the

e to be the same for all plausible parameter sets, the cost functions

have to be normalized by the number of experimental data points.

If we have a total of k datasets, we want to find those parameters

that satisfy the constraints imposed by all datasets. This is simply

When Optimal Is Not the Best
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the intersection of the plausible parameter sets imposed by each

data set:

S(e)~
\k
i~1

Si(e)

We choose e to be the minimum such that S(e) is non-empty.

If S(e) has only one element, we take that to be the best

parameter. If it has more than one parameter, we take the best

parameter value as the one that minimizes the cost function

x2(h,D1,D2, . . . ) constructed using all the available data sets. If the

value of the resulting e is too large, then the fits of the model

through the data sets are very poor, indicating that the model is

too rough to represent the data, and needs to be refined. If the

model can produce an acceptable e, with reasonable fits through

the data, then the model is a good representation of the actual

system in the realm of the mechanisms probed by the experiments

that produced the datasets D1,D2, . . . ,Dk.

It is interesting to make a parallel between cost function

optimization and thermodynamics. In a thermodynamic system at

zero temperature, we expect the system to be found in a microstate

that minimizes the internal energy. If we increase the temperature,

the system will be able to attain other energy states, and at some of

these energies there may be a large number of compatible

microstates. At a given finite temperature, the system will not be

typically found at the microstate that attains the minimum energy,

but at a set of microstates that negotiate a balance between having

as small an internal energy as possible, and as many microstates

available as possible (i.e., as large an entropy as possible). The

internal energy at a finite temperature is no longer the global

minimum of the internal energy. Rather, the internal energy

adjusts itself to be at a value in which the system minimizes its free

energy. The parallel with our parameter estimation problem is as

follows. The space of model parameters is equivalent to the set of

microstates in a thermodynamics system. When e is zero (zero

temperature), i.e., there is no experimental noise, and the model is

a perfect representation of reality, we expect the actual parameters

of the model to be those that minimize of the cost function (as the

microstate of the thermodynamics system at zero temperature

corresponds to the minimum of the internal energy). However,

when e is non-zero, many parameter values are compatible with

the same value of the cost function, and we cannot any longer

claim that the right parameter set is the one that minimizes the

cost function (as we cannot say that at finite temperature the right

microstate of the thermodynamic system is the one minimizes the

internal energy). In the case of the parameter estimation problem,

it may be possible to define a modified cost function that is the

equivalent of the free energy in the thermodynamic system, and

which is minimized at the set of parameters compatible with a

given e. This discussion, however, is beyond the scope of the

present paper.

Final conclusions
We conclude that, in the absence of a model based on first

principles, parameter estimation cannot just rely on cost function

optimization. We have seen that it is necessary to double-check the

parameters to identify possible runaway solutions given the

complexity of the solution space. Our independent assessment of

the parameters with data not used for cost function optimization

allowed us to further restrict the minima and reach a compromise

between cost function optimality and biological plausibility. We

submit that this approach should be considered as an important

part of the process of assigning parameters to complex biological

models.

Supporting Information

File S1 Supplemental figures with the corresponding text.
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