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Abstract. Turbulent flows take place in a large variety of astrophysical objects, and often times
are the source of dynamo generated magnetic fields. Much of the progress in our understanding of
dynamo mechanisms, has been made within the theoretical framework of magnetohydrodynamics
(MHD). However, for sufficiently diffuse media, the Hall effect eventually becomes non-negligible.

We present results from simulations of the Hall-MHD equations. The simulations are per-
formed with a pseudospectral code to achieve exponentially fast convergence. We study the role
of the Hall effect in the dynamo efficiency for different values of the Hall parameter.
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1. Introduction
Numerical simulations have progressively become an important tool to study astro-

physical flows. The large-scale dynamics of plasma flows can often be described within
a fluidistic approximation known as one-fluid magnetohydrodynamics (MHD). Complex
flows such as those corresponding to turbulent regimes are ubiquitous in astrophysics,
which is consistent with their extremely large Reynolds numbers.

However, Hall currents can play a significant role in the dynamics of low density and/or
low temperature astrophysical plasmas, such as dense molecular clouds (Wardle & Ng,
1999), accretion disks (Balbus & Terquem, 2001, Sano & Stone, 2002), white dwarfs
and neutron stars (Yakovlev & Urpin, 1980) and in reconnection events at the Earth’s
magnetotail (Mozer, Bale & Phan, 2002).

In these plasmas the one-fluid MHD description needs to be extended to the so-called
two-fluid MHD or Hall MHD. One of the interesting features of the Hall-MHD description,
is that in the ideal limit (i.e. without resistivity) the magnetic field is stretched by the
electron velocity field rather than the bulk velocity field. Since these two velocity fields
can be quite different, the Hall term is expected to produce a measurable effect. For
instance, the Hall term increases the reconnection rate with respect to purely MHD
regimes (Ma & Bhattacharjee, 2001, Morales et al., 2005). Also, the Hall term was found
to enhance or suppress dynamo action depending on the relative importance of the Hall
term when compared to the inductive term (Mininni, Gómez, & Mahajan, 2002). We
therefore perform 3D numerical simulations of the Hall-MHD equations to explore the
role of the Hall current in astrophysical scenarios.

In Section 2 we describe the so-called Hall-MHD equations, which stem from a two-fluid
description of the plasma. In Section 3 we briefly describe simulations in 2.5 dimensions to
study Hall magnetic reconnection. In Section 4 we present the results from 3D simulations
of the Hall-MHD equations to study the efficiency of a turbulent dynamo. Finally, in
Section 5 we list our conclusions. 433
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Figure 1. (a) From left to right, contour plots of the proton (φ) and electron (φe ) stream func-
tions, and the out of plane proton (u) and electron (ue ) velocity components. (b) Reconnected
magnetic flux vs. time for different values of the Hall parameter ε (labelled).

2. The Hall-MHD equations
Highly conductive plasmas tend to develop thin and intense current sheets in their

reconnection layers. Whenever the width of the curent sheets reaches values as low as
c/wpi (wpi is the ion plasma frequency and c is the speed of light), it is no longer possible
to neglect the Hall term in Ohm’s law (Ma & Bhattacharjee, 2001). For a fully ionized
plasma of protons and electrons, the generalized Ohm’s law can be written as:
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where n is the electron and proton density, e is the electron charge, σ is the electric
conductivity, v is the plasma flow velocity, and j is the electric current density. Assuming
incompressibility, the Hall-MHD equations can be cast in their dimensionless form as:

∂tv + (v · ∇)v = (∇× B) × B −∇p + ν∇2v, (2.2)

∂tB = ∇× [(v − ε∇× B) × B] + η∇2B, (2.3)

∇ · B = 0 = ∇ · v. (2.4)
In Eqs (2.2)–(2.4) we have normalized B and v to the Alfvén speed vA = B0/

√
4πρ (B0 :

magnetic field intensity, ρ: mass density), the total gas pressure p to ρv2
A , and longitudes

and times respectively to L0 and L0/vA . The dimensionless dissipation coefficients are the
viscosity ν and the electric resistivity η defined as η = c2/(4πσL0vA ). The dimensionless
coefficient ε = c/(wpi L0) is a measure of the relative strength of the Hall effect. The
dimensionless electron velocity is:

ve = v − ε∇× B. (2.5)

From Eqn (2.3) it is apparent that in the non-dissipative limit (i.e. η → 0) the magnetic
field remains frozen to the electron flow ve rather than to the bulk velocity v.

3. Hall reconnection
To study the role of the Hall effect on magnetic reconnection, we performed simulations

in 2.5 dimensions, i.e. assuming translational symmetry along the cartesian ẑ-direction.
Under this geometrical assumption, the solenoidal fields B and v can be cast:

B = ∇× [ẑa(x, y, t)] + ẑb(x, y, t), (3.1)

v = ∇× [ẑφ(x, y, t)] + ẑu(x, y, t), (3.2)
where a is the magnetic flux function, φ is the stream function, and b and u are the
ẑ-components of these fields. The computation is carried out in a rectangular domain
assuming periodic boundary conditions and the nonlinear terms are evaluated following
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Figure 2. (a) Magnetic energy vs. time for different values of the Hall parameter (labelled).
(b)Total energy spectrum (thick trace) at t = 72 for the case ε = 0.10. Magnetic energy spectra
at t = 18, 36, 72 (from bottom to top) are also shown. The Kolmogorov and Kazantsev spectra
are overlaid (dotted trace) for reference.

a 2/3 dealiased pseudospectral technique. To provide a reconnection scenario, the initial
condition corresponds to two oppositely oriented current sheets to satisfy periodicity (see
also Morales et al., 2006). We performed numerical simulations with a spatial resolution
of 512 × 512 grid points, and different values of the Hall parameter ε. The dissipation
coefficients are set to η = ν = 0.01 to ensure that all the lengthscales are properly
resolved. Note that pseudospectral methods conserve the energy of the system, i.e. no
numerical dissipation is artificially added to the simulation.

The first two panels of Figure 1a show contour plots of the proton (φ) and electron
(φe = φ−εb) stream functions at t = 1. The difference between these patterns contributes
to the in-plane electric current density, which in turn generates the out-of-plane magnetic
field b. The two right hand panels in Figure 1a show contours of the out-of-plane velocities
of protons (u) and electrons (ue = u−εj). The two species show entirely different velocity
patterns. Note that in the ideal limit the magnetic field remains frozen to the electron
flow, which is faster than the proton flow. The magnetic flux reconnected as a function
of time at the X point can be calculated in terms of the difference of the magnetic
potential in the X-point and the O-point, i.e. aX (t) − aO (t). The effect of the Hall term
on the reconnected flux is shown in Figure 1b. As ε is increased the reconnection process
becomes more efficient, as evidenced by the total reconnected flux.

4. Hall dynamo
Haugen, Brandenburg, & Dobler (2004) have shown that not only helical flows can

generate magnetic fields, but also non-helical flows are able to produce the so-called small-
scale dynamos. To study the role of the Hall effect on the generation of magnetic fields
by non-helical turbulent flows, we performed 3D simulations of the Hall MHD equations
(i.e. Eqs (2.2)–(2.3)) with 2563 spatial resolution. We first generate a stationary and
non-helical hydrodynamic turbulence by applying an external forcing. In a second stage,
a random and small magnetic field is introduced at small scales. The exponentially fast
growth of magnetic energy is displayed in Figure 2a for runs with different values of the
Hall parameter (labelled) (see also Gómez, Mininni, & Dmitruk, 2010). There is an initial
linear stage for which the runs with ε = 0.05 (moderate Hall) and ε = 0.10 (large Hall)
are indistinguishable from the case with ε = 0.00 (purely MHD). The slope for these three
runs during this stage is indicated by the dotted straight line in Fig. 2a, which corresponds
to the growth rate of the MHD case (i.e. ε = 0.00). Later in time the run with large Hall



436 D. O. Gómez

(ε = 0.10) departs from this linear regime and starts growing faster. A similar behavior
is observed somewhat later for the run corresponding to moderate Hall (ε = 0.05).
Therefore, in non-helical flows the Hall effect enhances the dynamo efficiency causing
magnetic energy to grow super-exponentially, as has also been observed for large-scale
dynamos in helical flows (Mininni, Gómez, & Mahajan, 2005, also Gómez, & Mininni,
2004, Mininni, Gómez, & Mahajan, 2003). The growth of the magnetic energy spectrum
is shown in Figure 2b. The Kazantsev slope Ek ∝ k3/2 (Kazantsev, 1968) provides a
reasonable approximation at small wavenumbers for all these cases, while the kinetic
energy spectrum remains always close to Kolmogorov (i.e. Ek ∝ k−5/3). At saturation,
the total magnetic energy reaches a sizeable fraction of the total kinetic energy (15% to
20%). Furthermore, magnetic energy remains smaller than kinetic energy at all spatial
scales, which is to be expected for small-scale dynamos.

5. Conclusions
In the present paper, we call the attention on the potential relevance of the Hall effect

in the dynamics of a number of astrophysical flows, specially those characterized by
low electron densities. We quantitatively assess the role of the Hall effect in a number
of astrophysical applications, by performing numerical integrations of the Hall MHD
equations. As a first application we study magnetic reconnection in 2.5D simulations,
showing the enhancement of the reconnection rate caused by the Hall effect. Gómez,
Dmitruk, & Mahajan (2008) have also extended the so-called reduced MHD equations to
include the Hall term (see also Mart́ın, Dmitruk, & Gómez, 2010), which is the relevant
approximation in plasma configurations with a strong external magnetic field. We also
studied the role of the Hall effect in the generation of magnetic fields by turbulent non-
helical flows. We show that even though the Hall term does not affect the kinematic
dynamo stage during which the magnetic energy grows exponentially fast, it is responsible
for a subsequent non-linear state (in between the kinematic and saturation stages) during
which the magnetic energy grows super-exponentially fast.
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