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Abstract. Matter-wave interferometry has been largely studied in the last few years.

Usually, the main problem in the analysis of the diffraction experiments is to establish

the causes for the loss of coherence observed in the interference pattern. In this

work, we use different type of environmental couplings to model a two slit diffraction

experiment with massive particles. For each model, we study the effects of decoherence

on the interference pattern and define a visibility function that measures the loss of

contrast of the interference fringes on a distant screen. Finally, we apply our results

to the experimental reported data on massive particles C70.
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The wave-particle duality of material objects is a hallmark of quantum mechanics.

Up to now, the wave nature of particles has been demonstrated for electrons, neutrons,

atoms, and coherent atomic ensembles. Yet more important, many theoretical studies

have been done around the mesoscopic systems [1, 2]. Mesoscopic objects are neither

microscopic nor macroscopic. They are generally systems that can be described by a

wavefunction, yet they are made up of a significant number of elementary constituents,

such as atoms. Well-known examples these days are fullerene molecules C60 and

C70, which are expected to behave like classical particles. Nonetheless, the quantum

interference of these molecules has been observed [3]. In particular, the advances with

large molecules have stimulated the question what determines the limits to observe

quantum delocalization with massive objects. Thus, there is a need to theoretically

quantify the effect of decoherence (or dephasing) on the observed interference pattern

in a double-slit experiment. It is quite intuitive that the resulting pattern shall be an

interplay between the strength of the coupling to the environment, the slit separation

and the distance the particle travels from the slit to the screen.

We shall study a two slit diffraction experiment with particles of mass M diffracted

by a grating (in the x direction) and then detected on a distant screen (located a

distance L in the y direction). Note that coherence in the x direction is required in

order to observe an interference pattern on the screen, whereas the dynamics in the y

direction can be that of a free non-interacting particle since it just serves to transport
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the particle from the grating to the screen. Initially, we may reasonably assume that the

action of the grating is to prepare a superposition of two Gaussian wavepackets (which

best describe a massive particle), centered at each location of the respective slits and

factorized as [4, 5] Ψ(~x, 0) = (φ1(x, 0) + φ2(x, 0))χ(y, 0)⊗ ζ( ~X, 0), where |φ1|
2 and |φ2|

2

correspond to the probability amplitudes for the particle to pass through slit 1 and slit

2 (in the x-axis), respectively, while χ(y, t) represents the Gaussian wave function in

the y direction (where no superposition is needed) and ζ( ~X, t) describes the state of

the environment coupled to the subsystem. Note that we are assuming translational

invariance in the z-axis [5].

We shall consider the environment as a set of non-interacting harmonic oscillators

and the dynamics of the particles modeled by a quantum brownian motion (QBM) [6].

This behavior can be imputed to the passing of the particles through the slits producing

vibrations or any other kind of interactions with the walls of the grating able to corrupt

the interference pattern. Moreover, also the finite size of the grating and the differences

in the slit apertures can attenuate the visibility of the interference fringes, especially in

the case of complex molecules such us C60 and C70 [7]. In order to study the interference

pattern registered on the screen at a later time tL, we need to obtain the evolution in

time of the reduced density matrix ρr(x, x
′, t), which is given by the following master

equation

∂ρr(x, x
′, t)

∂t
=

i~

2M

(

∂2ρr
∂x2

−
∂2ρr
∂x′2

)

−
D(t)

4~2
(x− x′)2ρr

− γ(t)(x− x′)
(

∂ρr
∂x

−
∂ρr
∂x′

)

+ 2f(t)(x− x′)
(

∂ρr
∂x

+
∂ρr
∂x′

)

,(1)

where γ(t) is the dissipative coefficient (proportional to the square of the coupling

constant to the environment), D(t) the diffusive coefficient and f(t) the coefficient

responsible for the anomalous diffusion. Eq.(1) has been obtained by assuming the

environment to be in equilibrium, at a temperature T. In the case that the system is

coupled to an ohmic environment in the high temperature limit (kBT >> ~ω), these

coefficients are constant γ(t) = γ0, D(t) = 2Mγ0kBT and f(t) ≈ 1/kBT in units of

~ = 1 [6]. It is important to stress that the equation of movement for the generally used

scattering model i∂ρr
∂t

= [H, ρr] − iΛ[x, [x, ρr]], where the effect of the environment is

included in the collision term Λ, can be obtained from Eq.(1) in the high temperature

limit (neglecting dissipation) for the markovian case if written in the Lindblad form.

However, this master equation refers to a more general movement that can be used for all

temperatures, even to study the dynamics of the test particle at zero temperature. Yet

more interesting, this formulation includes the phenomenological scattering model and

verifies the fluctuation-dissipation theorem for a general system in thermal equilibrium.

The interference pattern corresponds to the probability distribution of the time

evolved wave function:

P (~x, t) = |Ψ(~x, t)|2 =
(

φ1(x, t)
∗φ1(x, t) + φ2(x, t)

∗φ2(x, t)

+ φ2(x, t)
∗φ1(x, t) + φ1(x, t)

∗φ2(x, t)
)

⊗ χ(y, t)∗χ(y′, t),
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Figure 1. (a) Evolution in time for the interference pattern registered on the screen

when the system is coupled to an environment. Parameters used: L0 = 2, σx0 = 0.5,

M = 1, γ0 = 0.001 and kBT = 300. (b) For the same values the wigner function at

t = 2 s shows that the interferences have disappeared since the wigner is positive.

which is proportional to the diagonal part of the density matrix defined as ρ(~x, ~x′, t) =

|Ψ(~x, t)〉〈Ψ(~x′, t)|. In the case we are studying herein, i.e an open quantum system, the

interference pattern at a given time t on the screen is given by:

P (~x, t) =
(

|φ1(x, t)|
2 + |φ2(x, t)|

2 + 2Γ(t)Re(φ∗
1(x, t)φ2(x, t))

)

|χ(y, t)|2,

where the terms in brackets correspont to ρr(x, x, t) and Γ(t) encodes the information

about the statistical nature of noise since it is obtained after tracing out the degrees of

freedom of the environment. Γ(t) is an exponential decaying term which suppresses

the interference terms in a decoherence time scale tD. In the case of the QBM,

Γ(t) = e−∆x2
∫

t

0
D(s)ds (with ∆x2 = (x−x′)2) represents the noise induced environmental

effect on the system. In this framework, we numerically solved the master equation

Eq.(1) for the reduced density matrix ρr(x, x
′, t) of two well localized Gaussian wave

packets initially given by

Ψ(~x, 0) = N
(

exp(
(x− L0)

2

4σ2
x0

) + exp(
(x+ L0)

2

4σ2
x0

)
)

⊗ exp(−
y2

4σ2
y0

− ikyy),

where 2L0 is the initial separation of the center of the wave packets, σ2
x0 and σ2

y0 are the

initial width of the packet in the x and y-axis, respectively, and ky the initial moment of

the particle in the y direction. It is important to note that L0, σx0, σy0 and ky are all free

parameters that have to be tuned with the experimental data. In addition, we assume

that ∆py << py, so the moment component is sharply defined and the wave packet has

a characteristic wavelength λdB associated λdB ∼ ~/py << ∆y [8, 9]. Once the reduced

density matrix is known for all time t, we know the dynamics of these two packets and

can study the effects of decoherence on the interference pattern registered on the distant

screen. In Fig.1(a) we present the time evolution for the interference pattern registered

on the screen. We can there observe the two wave packets initially separated a distance
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Figure 2. (a) Time evolution for the visibility fringe ν(t) for kBT = 300, γ0 =

0.001, L0 = 2, M = 1 and σx0 = 0.5. The estimation of the decoherence time

tD ∼ 1/(2Mγ0kBTL
2
0
) = 0.41 s coincides with the timescale at which the visibility

starts to decrease towards a null value. (b) Time evolution for the visibility function

νC(t) for neutrons (CN = 0.1) and fullerenes (CF = 1 and CF = 2 ) in the presence of

an external classical time dependent electromagnetic field (incoherence effects). The

curves are for the first minimum and maximum of the interference pattern and reach

a different asymptotic value than in the case of ν(t).

2L0 which start to spread as time increases. In a short timescale, interferences start to

develop, however we can clearly observe that the minimum fringes of the interference

pattern are not exactly zero. This means that there is a loss of contrast between theis

case (an open system) with respect to the interference pattern of an unitary evolution.

This means that decoherence is already playing a crucial role in determining the wave

behavior of the massive particle. In Fig.1(b) we present the wigner function for the

corresponding reduced density matrix at a fixed time t = 2 s. We can see that it is a

completely positive function, which assures us that decoherence has been effective in this

short timescale. We shall estimate the decoherence time tD, i.e. the timescale for which

the interferences are mostly destroyed (up to a 70 %) as ΓD(tD) = exp(−D∆x2t) ∼ 1/e.

It is easily deduced that tD ≈ 1/(D∆x2). A quantity of particular importance in matter

wave interferometry is the fringe visibility ν(t). In order to study the role of decoherence

on the fringe visibility, we define it as ν(t) ∼ |ρint(x,x,t)|
ρ11(x,x,t)+ρ22(x,x,t)

= Γ(t)
ρ11(x,x,t)+ρ22(x,x,t)

where

ρii = |φi(x, t)|
2, with i = 1, 2 and ρint the interference terms.

Clearly, the visibility fringe goes down as tL, i.e. the observation time, is larger than

the decoherence time tD. However, if we succeed in performing our two slit experiment

in a time tL < tD at a fixed room temperature kBT , we can see that the visibility

fringe decreases as the coupling to the environment (γ0) increases. This is so, because

the decoherence time depends inversely on the coupling constant: the bigger γ0, the

shorter the decoherence time. Not only can we check the dependence upon the coupling

constant but also its time evolution. This behavior is shown in Fig.2(a). For short

times, the visibility increases from zero to a maximum value because the interferences
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Figure 3. The interference pattern (ν ∼ 0.62) registered on the screen considering

the incoherence (or dephasing) effects to model a two slit diffraction experiment with

massive particles C70. The curves are for the isolated case, the theoretical prediction

using the experimental data reported in [3] and the incoherence model using ΓC with

C = 1.

start to develop at that short timescale but are not present at t = 0 (since the wave

packets are initially separated and have to spread so as to generate the interferences

see Fig.1(a)). This maximum value coincides with the estimated decoherence time tD.

Then, the visibility starts to decrease, since the destruction of the interferences is taking

place. Note that the visibility is a quantity that measures the loss of contrast of the

interference fringes. Then, it is expected that those with the bigger contrast suffer from

this attenuation the more, as seen in Fig.2(a). Clearly, the observation time tL must be

shorter than the decoherence time in order to observe the interference pattern.

It shall also be interesting to study the visibility function for a model of incoherence

such as the one presented by us in [10]. In particular, ΓC = J0(|C|) is constant in time for

the experimental data of neutrons and fullerenes [10]. Therein, we previously estimated

the quantity C for these massive particles and observed that, contrary to might be

naively expected, in thought and real experiments, CF ∼ O(1). However, for neutral

particles with permanent dipole moment this value is much lower CN ∼ O(0.01)−O(0.1).

Therefore, we define the visibility function νC(t) as νC(t) =
J0(|C|)

ρ11(x,x,t)+ρ22(x,x,t)
and show

its time evolution for neutrons and fullerenes in Fig.2(b). We recall that this interaction

is always present in charged and neutral particles with permanent dipole moment and

can never be turned off. However, in the case of neutrons it has been shown in [10] that

it can be neglected, whereas it is unexpectedly important for massive particles such as

fullerenes.

Finally, we shall apply our models of decoherence and incoherence to the

experimental data reported in [3] to reproduce the observed pattern for fullerenes C70.

In Fig.3, the interference pattern is shown. Therein, we have considered the unitary and

nonunitary evolution of the particles. For these massive particles, we can see that the

interference pattern is attenuated when the system is open. What is more important, is
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that the modeling of the incoherence effects through the overlap factor ΓC is enough to

reproduce the effects of the environment on the interference pattern of a real diffraction

experiment with massive particles.

All in all, we have presented a fully quantum mechanical treatment using

a microscopic model of environment and also a concrete example to include the

incoherence effects. Therefore, we have studied the effects of decoherence on the

interference pattern of thought diffraction experiments and presented an analysis of

matter wave interferometry in the presence of a dynamical quantum environment

such as the quantum brownian motion model. We have shown the interference

patterns and visibility function ν(t) for thought diffracted free particles in the

high temperature limit (assumption valid for massive particles diffracted at room

temperature). Yet more important, we have defined the visibility function νC(t) for

a model environment previously developed which describes the incoherence effects

originated in the experimental difficulty of producing the same initial/final state for all

particles (i.e the existence of a random variable such as the particle’s emission time). We

showed that it is qualitatively different than the one commonly found in the literature

and very important in the case of diffraction experiments with massive particles such

as fullerenes. In this case, the incoherence effects are enough to model the attenuation

of the interference pattern observed in the real experiment, whereas in the case of cold

neutrons the incoherence effects are not of such importance [11]. Therefore, in the latter

case we must consider the decoherence effects by using the corresponding formulation

(such us QBM). This result might have been expected since the interaction of more

massive particles with the external classical field is more important than for those with

a smaller mass where other kind of interactions (such as with the walls of the grating

or the air molecules) seem to prevail.
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