
This content has been downloaded from IOPscience. Please scroll down to see the full text.

Download details:

IP Address: 157.92.4.6

This content was downloaded on 26/01/2015 at 13:58

Please note that terms and conditions apply.

Rotating helical turbulence: three-dimensionalization or self-similarity in the small scales?

View the table of contents for this issue, or go to the journal homepage for more

2011 J. Phys.: Conf. Ser. 318 042015

(http://iopscience.iop.org/1742-6596/318/4/042015)

Home Search Collections Journals About Contact us My IOPscience

iopscience.iop.org/page/terms
http://iopscience.iop.org/1742-6596/318/4
http://iopscience.iop.org/1742-6596
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


Rotating helical turbulence: three-dimensionalization

or self-similarity in the small scales?

A. Pouquet1, J. Baerenzung2, P.D. Mininni1,3, D. Rosenberg1

and S. Thalabard1,4

1Computational and Information Systems Laboratory, NCAR, Boulder, USA
2 Interdisciplinary Center for Dynamics of Complex System, Postdam, Germany
3Departamento de F́ısica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos
Aires, and IFIBA, CONICET, Ciudad Universitaria, 1428 Buenos Aires, Argentina.
4 CEA, L’Orme les Merisiers, F–91191 Gif sur Yvette cedex, Saclay, France.

E-mail: pouquet@ucar.edu, baeren@voila.fr, mininni@df.uba.ar, duaner@ucar.edu,

simon.thalabard@gmail.com

Abstract. We present numerical evidence on how three-dimensionalization is recovered at
small scale in rotating turbulence with helical forcing provided by a Beltrami flow. The relevant
ranges (large-scale inverse cascade of energy, anisotropic and isotropic direct cascades of energy
and helicity, dissipative) are each moderately resolved. These results stem from large direct
numerical simulations on grids of either 15363 or 30723 points. In the latter case, the scale at
which the inertial wave time and the eddy turn-over time are equal is found to be more than one
order of magnitude larger than the dissipation scale. We also examine how the presence of such
an intermediate scale could affect truncation due to the use of a helical spectral Large Eddy
Simulation procedure which can allow for extending the analysis to a wider range of parameters.
Finally, the self-similarity of the direct cascade of energy to small scales for rotating flows,
observed recently in numerical simulations as well as in several laboratory experiments, will be
discussed briefly for its scaling properties and its conformal invariance.

1. Introduction

Rotating turbulence, present in many astrophysical and geophysical flows be it only because of
conservation of angular momentum as interstellar molecular clouds contract under their own
gravity, has been studied in detail for many years, using a variety of tools: theory (the weak
turbulence regime amenable to closure), experiments and observations, numerical simulations
and models (see, e.g. for review Cambon, Rubinstein & Godeferd, 2004; Bellet et al., 2006;
Bourouiba, 2007). However, the role of velocity-vorticity correlations, or helicity–an invariant in
the ideal case (see for review Moffatt & Tsinober, 1992)–is not as well elucidated. Indeed, it is
difficult to assess since it involves small-scale derivatives. Its potential importance in atmospheric
dynamics was recognized early on (Lilly, 1986); it is measured in hurricanes (Xu & Wu, 2003),
and its spectrum in the planetary boundary layer follows a Kolmogorov law (Koprov, 2005). In
this context, we give here a rapid overview of some of the recent issues that have emerged when
examining such flows at high numerical resolution.
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2. Resolving the Zeman scale

The effect of rotation is strong when the Rossby number Ro = U0/[L0Ω] is small, i.e. when
the time-scale associated with inertial waves is small compared with the nonlinear turn-over
time; here, U0 and L0 are characteristic velocity and scale, and Ω is the strength of the imposed
rotation. At large scale, it is known that the flow undergoes an inverse cascade (see e.g. Smith,
Chasnov & Waleffe, 1996) and is anisotropic, organizing in columnar structures, which were
shown recently to be highly helical as well (Mininni & Pouquet, 2010b).

However, these two times do not vary in the same fashion with scale, and thus, there exists
a scale, which we call the Zeman scale (Zeman, 1994) `Ω = 2π/kΩ, at which Ro ∼ 1, that is
nonlinearities and rotation become comparable. Isotropization and a traditional Kolmogorov
scaling may well occur at smaller scales, whereas the large scales are presumably dominated
by nonlinear dynamics modulated by waves and in which the role of helicity has been shown
recently to be essential (see Mininni & Pouquet, 2010a,b). Note that we are not talking here
of isotropization occurring in the dissipative range, as has been found in some cases, but in the
inertial range; in other words, the condition τΩ < τdiss must be fulfilled, equivalent to Ro < Re,
a condition that is met in most astro-geophysical flows. It is easy to find phenomenologically
that, with ε = DE/DT the energy injection rate, `Ω = [Ω3/ε]1/2 (Dubrulle & Valdetarro,
1992; Zeman, 1994), including in the helical case (Mininni, Rosenberg & Pouquet, 2011). We
present in this paper evidence for isotropization in a small scale inertial range, and we study as
well statistical properties of the self-similar regime induced by the cascade of helicity (see also
Mininni, Rosenberg & Pouquet, 2011).

Figure 1. Spectra of energy (solid
line) and helicity normalized by the forcing
wavenumber kF = 4 (dashed line), for run R2
with weak rotation (Ω = 0.06). The straight
line follows a Kolmogorov k−5/3 law, which is
observed for both spectra in this weak Ω case.

Figure 2. Spectral variation of the fluxes
of energy (solid line) and normalized helicity
(dashed line) at the same time as in Fig. 1,
i.e. at the end of this preliminary phase of the
computation. Observe the absence of flux at
scales larger than the forcing.

2.1. Preliminaries: the case of weak rotation
We integrate numerically the Navier-Stokes equations in the rotating frame of reference, with
the Coriolis force acting on the flow of velocity u, assumed incompressible, ∇ · u = 0:

∂u
∂t

+ ω × u + 2Ω× u = −∇P + ν∇2u + F , (1)

where P is the total pressure modified by the centrifugal term, ω = ∇ × u is the vorticity,
and the rotation Ω is imposed in the vertical direction; F is a fully helical (and still isotropic
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although not invariant under plane symmetry) Beltrami forcing centered around k ∼ kF , using
the so-called ABC flow; finally, the Reynolds number is Re = U0L0/ν with ν the kinematic
viscosity. Note that no polarization anisotropy (see eq. (6) in Cambon & Jacquin, 1989) is
introduced by this forcing since it is maximally helical: energy and helicity Fourier spectra E(k)
and H(k) for the forcing have H(k) = kE(k) (see also equation (2)).

Two direct numerical simulations (DNS) are discussed in this paper, on grids of respectively
15363 points (R1) and 30723 points (R2), with kF,R1 = 7 (Mininni & Pouquet, 2010a,b), and
kF,R2 = 4 (Mininni, Rosenberg & Pouquet, 2011); their respective Reynolds and Rossby numbers
are ReR1 ≈ 5.1 × 103, ReR2 ≈ 2.7 × 104, RoR1 ≈ 0.06, RoR2 ≈ 0.07. Note that Large Eddy
Simulation (LES) runs performed for run R2 are also briefly analyzed in §3. For both DNS runs,
we first started with negligible rotation (Ro ≈ 8.5) and let the flows establish a statistically
steady state: a Kolmogorov spectrum obtains for both the energy and the helicity normalized
by the forcing wavenumber (see Fig. 1 for R2), and the fluxes are constant at small scales and
equal to zero at scales larger than the forcing (see Fig. 2); note the slight domination of the
helicity flux, likely a trace of the weak rotation. We now introduce rotation at a time labelled
t = 0, and study the further evolution of such flows using a pseudo-spectral code parallelized
with a hybrid method (Mininni, Rosenberg, Reddy, & Pouquet, 2011), as discussed next.

2.2. Temporal data in the strong rotation case for t ≥ 0
We show the total energy and dissipation, E(t) and Z(t) = 2ν

∫
k2E(k)dk, as a function of time,

in Fig. 3 and Fig. 4 respectively, for R1 (solid line) and R2 (dashed line). R1 is allowed to evolve
for a long time to observe the build-up of the inverse cascade of energy, weaker in R2 due to the
proximity of kR2

F with the gravest mode, kmin = 1. Scales smaller than the forcing scale have
stabilized in Run 2 (not shown) but larger scales do display some growth in time. Note that it
takes longer in rotating turbulence for dissipation to completely stabilize, compared to standard
turbulence, since the energy spectrum is slightly steeper than k−2 (Mininni & Pouquet, 2009).
The Taylor Reynolds number has saturated for this flow at t ∼ 4, with Rλ ≈ 4500, whereas by
t = 7, the integral scale has almost doubled.
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Figure 3. Energy for DNS runs on grids of
15363 (R1, solid line) and 30723 (R2, dashed
line) points, as a function of time. Note the
slow growth at the end for R1, indicative of
the slow build-up of the inverse cascade.
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Figure 4. Dissipation as a function of time,
for the same DNS runs as in Fig. 3. Note
the similar time scales for both flows which
have similar Rossby numbers, as the dynamics
adjust to the stronger imposed rotation.
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2.3. Spectra and fluxes in the presence of strong rotation
The overall global temporal similarities between runs R1 and R2 does lead, however, to different
dynamics when examining the repartition of energy and helicity among scales with the help of
their isotropic Fourier spectra, E(k) and H(k), with

∫
E(k)dk = E = 1

2 < |u2| >,
∫

H(k)dk =
H =< u · ω >. Spectra are built-up from their axi-symmetric counterparts defined from the
two-point one-time velocity covariance U(k), with φ the longitude with respect to the x axis:

e(|k⊥|, k‖) = Σk⊥≤|k×ẑ|≤k⊥+1 U(k) =
∫

U(k)|k| sin θdφ = e(|k|, θ) , (2)

and with θ the co-latitude in Fourier space with respect to the vertical axis with unit vector
ẑ. Here, k⊥ and k‖ refer to the direction of rotation, i.e. the vertical axis; θ = 0 corresponds
to e(|k⊥| = 0, k‖), and θ = π/2 to e(|k⊥|, k‖ = 0), i.e. the so-called slow manifold, since when
k‖ = 0, the waves have zero frequency; similar definitions hold for h(|k⊥|, θ). Note that in the
definition of contour lines of axisymmetric spectra, a trigonometric factor 1/ sin θ is included
in order to allow measuring the density of energy and of helicity, contained in circles of radius
k sin θ (note that for a fully isotropic flow, this density is independent of θ so that circles obtain
in that case).
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Figure 5. Spectral product E(k)H(k),
compensated by either k4 (red line) or k10/3

(black), corresponding respectively to the
new helically-dominated wave-modulated
regime at large scale (Mininni & Pouquet,
2010b) or to a dual Kolmogorov law at
smaller scale, each moderately resolved.
Note the quasi-absence of bottleneck.

Figure 6. Anisotropic spectra of energy
(solid line) and helicity (dashed line)
in the slow manifold (k‖ = 0), the
latter normalized by kF , as a function of
k⊥, where directions refer to the vertical
rotation axis. The arrow gives the Zeman
wavenumber kΩ. Note the breakdown of
the helicity spectrum beyond kΩ.

It is known that nonlinear transfer to small scales is slowed-down in the presence of waves.
This can be modeled by an argument first put forward in Dubrulle & Valdetarro (1992) (see also
Zhou, 1995) for rotating flows; the resulting spectrum is E(k) ∼ [εΩ]3/2k−2. In the presence of
helicity, it was found that the small-scale cascade is dominated by helicity and one should take
into account instead its own rate of dissipation, namely ε̃ ≡ dH/dt; dimensionally, this leads
to e + h = 4 with e and h the inertial indices for energy and helicity, and with e = h = 2 in
the non-helical case. This new law, with some evidence that e 6= h, was presented in Mininni
& Pouquet (2010a). We show in Fig. 5 that it seems again to be valid at large scale, on a
small range of scales, but that at smaller scale a Kolmogorov law seems to be recovered, with
a transition around k ≈ 30; an evaluation of the Zeman scale yields kΩ =

(
Ω3/ε

)1/2 ∼ 30,
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in rather close agreement with the numerical data. Note that the phenomenological argument
gives a prediction for the spectral product E(k)H(k) ∼ k−4, but not for the individual spectra
themselves. In the case of maximal helicity throughout the range (H(k) = kE(k)), we would
have e = 5/2, h = 3/2, a state that is not reached in this computation and which is known to
be unstable in the non-rotating case (Podvigina & Pouquet, 1994).

Furthermore, when we examine the anisotropic spectra of energy and helicity (see Fig. 6) in
the case of k‖ = 0, we see that not only is there a break in the slope of these spectra around
kΩ, but also that for k > kΩ, the helicity spectrum looses its coherence of sign; we can infer
from this that the small scales are helical, but with structures in which velocity and vorticity
are either parallel or anti-parallel, a known feature in the non-rotating case.

Figure 7. Helicity spectrum for several
co-latitudes θ (see for definitions Mininni,
Rosenberg & Pouquet, 2011). For k < kΩ

(shown with an arrow), anisotropy prevails.

Figure 8. Angular energy spectrum, with
a blow-up for the large scales in the inset,
with anisotropy showing up in the form of
elliptic contour lines.

Angular spectra are shown in Fig. 7 for the helicity, the corresponding spectra for energy
being discussed in Mininni, Rosenberg & Pouquet (2011). Again, a marked transition is seen in
the vicinity of the Zeman wavenumber, indicated by an arrow in the figure: at large scales, there
is a substantial variation of energy distribution with co-latitude, whereas at sufficiently small
scales, isotropy does seem to recover way before the dissipation range that occurs close to the
cut-off kmax = 1024. Finally, in Fig. 8 is given a contour plot of the angular energy spectrum in
terms of |k⊥| and k‖, with in the inset a large-scale zoom displaying the anisotropic (ellipsoidal)
contour lines at the largest scales.

2.4. Structures
One of the striking findings of our preceding study of helical rotating turbulence is the appearance
of fully helical large-scale columnar structures, which we coined Beltrami Core Vortices, or
BCV. What happens when isotropization is recovered at small scale? We see in Fig. 9 a
perspective volume rendering (PVR) of the vertical component of the velocity; red-green are for
negative values, and blue-purple for positive values of similar magnitudes, corresponding for uz

to updrafts. The figures are performed using the VAPOR freeware (Clyne et al., 2005) allowing
for loss-less wavelet compression of the data and different available resolutions for rendering.
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The helicity at the same time and with the same angle of view is given in Fig. 10, and a zoom
using a higher graphical resolution is displayed in Fig. 11.

One feature not present in our preceding simulation R1, is the fact that, at times, the complex
small-scale downdrafts seems to wrap around the more organized vertical updraft. The origin
of such a behavior is unknown at the present time. The evidence for columnar structures is less
clear in the helicity PVR given in Fig. 10. The helicity is dominated by small scales which are
isotropic on average but the large-scale columnar organization is still clearly detectable.

Figure 9. Vertical velocity uz

above a given threshold using
Perspective Volume Rendering
(PVR) at t = 6.7 for R2
(30723 resolution), with red-
green for negative, and blue-
purple for positive (updraft).
Observe the columns due to
rotation and the wrapping of
some vortices around them.

Figure 10. Helicity PVR at
the same time as Fig. 9. The
columns seen in uz are still
discernible, but the isotropiza-
tion of the small scales ob-
served in the angular spectra
of Figs. 7 and 8 is responsible
for the overall fuzzyness of the
columns, compared to run R1
for which kΩ ∼ kdiss.

Figure 11. PVR zoom,
with enhanced graphical
resolution using VAPOR
(Clyne et al., 2005); note
the wrapping around of
vortex filaments (at the
top, mostly blue slightly
slanted vortex bunch),
also present in the uz

zoom (not shown).

3. Modeling of rotating turbulence when the Zeman scale is resolved

It would be of interest to study such complex rotating flows in greater detail, in particular
resolving better each of the relevant ranges (large-scale inverse cascade, barely existent for run
R2, the direct anisotropic and the direct isotropic energy and helicity cascades and the dissipative
range), but the cost may be prohibitive. One way around such a difficulty is to use Large-Eddy
Simulations (LES) which have been developed over the years for turbulent flows (see e.g. the
review in Cambon & Scott, 1999), including in the rotating helical case. But a question arises
as to wether there is a need to resolve sufficiently in detail the Zeman scale in the LES run in
order to model the turbulent flow accurately. To address this, we conducted a series of LES runs
using the helical spectral model developed in Baerenzung et al. (2011), at various resolutions,
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1283, 2563 and 5123 grid points, and respective cut-off wavenumbers 64, 128 and 256 with the
intention of comparing them to run R2. Recall that, in this model, the energy spectrum of the
resolved part is fitted to compute the relevant transport coefficients, namely the eddy viscosity
and eddy noise, with their respective symmetric (energetic) and helical components. The fit to
the resolved scales occurs over a range from 3

4kmax to kmax. Thus, in all cases, the fit range lies
beyond the Zeman scale of run R2, and the fit sees nominally only the isotropic range, though in
the first 1283 case, these scales are quite close. While it is of interest ideally to evaluate all three
cases where the fit occurs (1) entirely within the anisotropic range, (2) across the transition,
and (3) entirely within the isotropic range, it is somewhat difficult and expensive to produce a
DNS that will facilitate such a detailed comparison.

We show now the preliminary results of this study. In Fig. 12, we give the temporal evolution
for the three LES runs and for the DNS run R2 (solid line); the LES runs at all resolutions give
similar (although not identical) results, with an error at peak of less than 3%. Differences are
discernible, though, when examining the spectra displayed in Fig. 13 for the 5123 resolution,
and in the inset for the 1283 resolution run; the green and red arrows indicate respectively the
Zeman scale for the LES and the DNS. Note that all spectral and flux data is averaged in the
temporal window t ∈ [5.5, 6.5]. One can see that while the energy does not differ by much,
the lower-resolution LES gives neither a good Kolmogrov dual isotropic range (E(k) ∼ k−5/3,
H(k) ∼ k−5/3), nor a good value for the Zeman scale. The value computed for kΩ in the 5123

LES is nearly identical to that from run R2. Finally, Fig. 14 gives the fluxes of energy (in black)
and helicity (in red), the latter normalized by the forcing wavenumber kF = 4; the solid line is
for the DNS R2 run and the dashed line for the LES run on a grid of 5123 points, i.e. 63 times
smaller. Note that the flux is cubic and therefore, the errors are a bit amplified compared to
the energy but remain small; this is the probable cause of the larger discrepancy in the values
of the fluxes as compared with the energy, although the flux ratio in the LES, which determines
in what regime we are, is in rather good agreement with the DNS. We note to conclude this
section that such a tool may prove useful in exploring further rotating turbulence, in particular
having better resolved inverse and anisotropic direct cascades.
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Figure 12. Temporal evolu-
tion of energy for the DNS run
R2 on 30723 grid points (solid
line), and for LES runs at
resolutions from 1283 to 5123

points (see inset, and see also
Fig. 3 for the DNS run R1).
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Figure 15. Three different paths (shown
in color) of zero-field lines of the vertical
component of the vorticity averaged in the
vertical, 〈ωz〉z, all started from the black
horizontal line at the top. These paths are
super-imposed on the grey-scale display of
〈ωz〉z for Run R1 on a grid of 15363 points
(Thalabard et al., 2011), and are analyzed for
their Gaussian properties (see Fig. 16).
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Figure 16. PKS test for Gaussianity for
paths similar to those shown in Fig. 15. Inset:
probability distribution functions (color dots
corresponds to the three path increments
τ1,2,3 shown in color), where τs are the
pseudo-time associated with the projection of
the paths shown in Fig. 15 on the horizontal
line using a conformal transformation. A
Gaussian is indicated with a dotted line.

4. Conformal invariance

Another striking feature of rotating helical turbulence is the fact that the direct cascade of
energy appears to be self-similar, as seen in the numerical study of Run R1 (Mininni & Pouquet,
2010b), and for rotating non-helical flows (Mininni, Alexakis & Pouquet, 2009), as well as in
the laboratory (Baroud et al., 2003; Seiwert, Morize & Moisy, 2008; van Bokhoven et al., 2009).
Self-similarity is diagnosed by way of a linear variation with order of the scaling exponents ζp of
structure functions of the velocity, based for example on the longitudinal velocity difference δuL

on a distance r and projected along the distance r, namely δuL(r) = [u(x + r) − u(x)] · r/|r|.
Defining 〈δu(r)p〉 ∼ rζp , self-similarity obtains when ζp = γp. One of the unanticipated results
of the numerical and experimental investigations was that different γ are obtained for various
flows, a feature that can be attributed through a simple phenomenological argument to the
presence or not of helicity in the flow, as confirmed in the numerical studies mentioned earlier.

There is evidence in the literature for turbulence in two dimensions that not only it is self-
similar (in the inverse cascade), but in fact it is also conformal invariant, a stronger property
that involves invariance under change of direction (Bernard et al., 2006). Similarly, one can ask
if, in the direct cascade of energy to small scales in three-dimensional rotating turbulence, one
can also observe conformal invariance. This can be done by studying the fractal properties of
zero-vorticity paths in the flow, once it has been averaged in the direction of rotation. Fig. 15
shows the resulting vertical vorticity averaged in the vertical (direction of rotation) for the run
R1 on a grid of 15363 points, with kF = 7, Re ≈ 5100 and Ro ≈ 0.06; the three different colors
correspond to three different paths which are analyzed for their chaotic properties using the so-
called Schramm-Löwner evolution (SLE) algorithm (see for review Gruzberg & Kadanoff, 2004;
Cardy, 2005). The results show that, indeed, conformal invariance obtains with an associated
Brownian diffusion coefficient κ ∼ 3.6 ± 0.1 (see for more details Thalabard et al., 2011). The
Kolmogorov-Smirnov PKS test is performed to verify if the associated process in the complex
plane [x, y] is Brownian, checking for Gaussianity, as shown in Fig. 16 for three paths indicated
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by different colors (and marked as well on the τ -time axis). This shows that three-dimensional
rotating helical turbulence is conformal invariant in the direct cascade, and represents the first
known instance of such a process, likely due to the weakened nonlinear interactions with inertial
waves. The conformal invariance properties of the inverse cascade are presently under study for
another series of runs with forcing at smaller scale.

5. Conclusion

The study of the intermittency properties of the flow of Run R2 is left for future work. One
may have to separate the data into the scales larger (resp. smaller) than the Zeman scale to see
whether isotropization affects the results of self-similarity, and study the energy as well as the
helicity cascade. We expect self-similarity for the large-scale range, but what of the smaller-scale
range when the Zeman scale is resolved and isotropy (and thus, presumably intermittency) is
recovered? Will there be two ranges for intermittency scaling, as there is clearly for the energy
and helicity spectra? Of course, in order to study the combined effect of the inverse cascade of
energy (here, barely present), the first anisotropic range and the isotropic range of the direct
cascades of energy and helicity, and finally the dissipation range, means that none of these ranges
will be well resolved and that further studies will be necessary, either with larger simulations
or with the help of models of turbulence, as considered here, or using a divide and conquer
approach.
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