
This content has been downloaded from IOPscience. Please scroll down to see the full text.

Download details:

IP Address: 157.92.4.72

This content was downloaded on 18/08/2015 at 17:50

Please note that terms and conditions apply.

Self–similar asymptotics in convergent viscous gravity currents of non–Newtonian liquids

View the table of contents for this issue, or go to the journal homepage for more

2009 J. Phys.: Conf. Ser. 166 012011

(http://iopscience.iop.org/1742-6596/166/1/012011)

Home Search Collections Journals About Contact us My IOPscience

iopscience.iop.org/page/terms
http://iopscience.iop.org/1742-6596/166/1
http://iopscience.iop.org/1742-6596
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


Self–similar asymptotics in convergent viscous

gravity currents of non–Newtonian liquids

Julio Gratton1 and Carlos Alberto Perazzo2

1 INFIP–CONICET, Dpto. de F́ısica, FCEyN, UBA, Ciudad Universitaria, Pab. I, 1428
Buenos Aires, Argentina.
2 Universidad Favaloro and CONICET, Soĺıs 453, 1078 Buenos Aires, Argentina.
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Abstract. We investigate the evolution of the ridge produced by the convergent motion of
two substrates, on which a layer of a non–Newtonian power–law liquid rests. We focus on the
self–similar regimes that occur in this process. For short times, within the linear regime, the
height and the width increase as t1/2, independently of the rheology of the liquid. In the self–
similar regime for large time, the height and the width of the ridge follow power laws whose
exponents depend on the rheological index.

1. Introduction
Mountains belts arise due to the shortening of the crust that occurs when two lithospheric
plates collide, or when a plate is subducted beneath an other. However there is also abundant
geological evidence showing that extension occurs in the central part of many mountain belts,
notwithstanding shortening is taking place. This apparently paradoxical fact suggested one of
us [1] the idea that mountain building occurs as a consequence of a dynamic balance between the
shortening of the plate and the spreading flow, that occurs because an isostatically compensated
range is not in hydrostatic equilibrium, and tends to spread and collapse unless restrained by
appropriate stresses. Indeed, it can be easily estimated that the characteristic time for the
collapse of a mountain range resulting from root spreading is of the same order of magnitude
as the times involved in orogeny, which means that both processes (shortening and lateral
spreading) occur simultaneously. Starting from these considerations the scaling laws for the
evolution of orogenic belts were derived, based on simple physical hypotheses about the viscous
flow caused by the shortening of the Earth’s crust [1], which is assumed to have a velocity that
depends on the depth.

Various physical models have been used to simulate the build–up and the evolution of
mountain belts. All are extensions and variations of the thin viscous sheet model of England and
McKenzie [2; 3]. A discussion and a classification of these models has been made by Medvedev
and Podladchikov [4; 5], to which the reader is referred for more details. All these numerical
calculations attempt to describe specific orogenies as realistically as possible. No effort has been
made to gain a deeper physical insight of the process. In particular no scaling laws have been
derived from these models. Unlike in [1] most thin viscous sheet models assume that the velocity
field does not depend on the vertical coordinate, so that the main gradient is horizontal. It was
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shown in [1] that this assumption leads to scaling laws that are slightly different from those
derived under the assumption that the main velocity gradient is vertical.

To achieve a better understanding about these kind of flows we investigated a simple model
that consists of an initially uniform fluid layer that rests over an horizontal substrate. This
substrate is divided in two parts, that for t > 0 are pushed one against the other [6]. This
convergent motion drags the liquid, and produces a ridge (see figure 1). We studied the evolution
of the flow of a Newtonian liquid, and we showed that there are two self–similar regimes that
occur in different space–time domains. These regimes and their corresponding scaling laws
were obtained analytically. Here we extend these results for liquids with a power–law rheology,
because this behavior is more appropriate to describe the behavior of the lithosphere.

U0

Figure 1. Formation of a ridge due to the convergent motion of the substrates.

2. Basic equations
The geometry of our model is shown in figure 1: an initially uniform liquid layer rests on two
substrates, that start to move suddenly with velocities U0 > 0 (the substrate for X < 0) and
−U0 (the substrate for X > 0). Thanks to the symmetry of the problem it is enough to consider
the half–plane X > 0. Then we assume that a uniform semiinfinite liquid layer, whose thickness
is H0, rests on a rigid horizontal surface, and that at X = 0 there is a vertical wall over which
the liquid slips. At T = 0 the substrate starts to move with the constant speed −U0 so that the
liquid accumulates against the wall. We assume a power–law rheology of the form

τij = AE(1−n)/nε̇ij , E = (ε̇ij ε̇ij)1/2. (1)

Here τij and ε̇ij = 1
2(∂jvi + ∂ivj) are the components of the stress and the strain rate tensors,

and A, n are positive constants. A Newtonian liquid corresponds to n = 1, in which case
the viscosity is A/2. Reasonable values for the lithosphere are n = 3 and A = 1013 (c.g.s)
[7]. We assume that the flow is slow and dominated by shear stresses, so we can employ the
lubrication approximation [8] (we neglect surface effects). Let H ≡ H(X, T ) be the thickness of
the layer, and U ≡ U(X,T ) its vertically averaged horizontal velocity. The boundary conditions
are U(0, T ) = 0 and H(∞, T ) = H0. We define the dimensionless variables u, h, x, t by means
of

U = U0u, H = H0h, X = X0x, T =
X0

U0
t,

where

X0 =
ρg

A

[
2

1+n
2 H2n+1

0

(n + 2)U0

] 1
n

,

g is the acceleration of gravity and ρ is the density of the liquid. The evolution equation is then

ht = hx + s
(
hn+2|hx|n

)
x
, s ≡ sign(hx). (2)

This equation can be written as the continuity equation

ht = −(uh)x, (3)
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where
u = −1− s hn+1|hx|n, (4)

is the dimensionless vertically averaged horizontal velocity. In the case we are considering
s = −1, then the initial and boundary conditions are

h(x, 0) = 1, h(∞, t) = 1, h1+ 1
n hx

∣∣∣
x=0

= −1. (5)

The second of these conditions implies that for large x, where hx → 0, the velocity is essentially
equal to that of the substrate. The third condition implies that u(0, t) = 0, which means that
at x = 0 the nonlinear diffusion term in (4) exactly cancels the advective term. On the other
hand, from mass conservation one has

∫∞
0 (h− 1)dx = t. Then we see that the accumulation of

mass near x = 0 due to advection is counteracted by the diffusion produced by gravity. Notice
that the boundary condition at x = 0 depends on the rheology, and that as n increases the ridge
tends to have a steeper peak.

3. Numerical solutions
The problem (2–5) does not have a closed solution. We show some numerical results in figures
2 and 3. Figure 2 displays the evolution of the ridge for n = 3. It can be observed that h has
an inflexion point. It is located near x = 0 at the beginning, and migrates towards large x as
t increases, tending to reach the leading part of the ridge, where h approaches 1. It can be
also noticed that the aspect ratio (heigth/width) of the ridge decreases with time. Qualitatively
similar results are found for other values of n. In figure 3 we compare the profiles for n = 1,
3 and 10 and for t = 0.3 and t = 8. It can be observed that the larger is n, the narrower and
higher is the ridge.

1 2 3 4 5 6 7

1

2

3

h

x

Figure 2. Numerical profiles for n = 3 and t = 0.3, 1, 2, 4 y 8.

4. Self–similar behavior for t ¿ 1
For small t, when h ≈ 1, equation (2) can be linearized. To this end we seek a solution of the
form

h(x, t) = 1 + t1/2f(ψ), ψ =
x

2
√

t
, (6)

in which the elevation difference t1/2f(ψ) ¿ 1. Here the exponents of t in front of f and in the
definition of ψ are both equal to 1/2. This choice ensures that the linearized boundary condition
at x = 0 and the mass conservation do not depend on t, and implies that in this regime the
height and the width of the ridge increase as t1/2 regardless of n. Notice however that n appears
in the equation for f :

0 = f − ψf ′ − 2−nn(−f ′)n−1f ′′, (7)
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Figure 3. Numerical profiles at t = 0.3 (left) and t = 8 (right) for n = 1 (full line), 3 (dashes)
and 10 (points).
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Figure 4. Profiles of f for t ¿ 1 with n = 1, 2, 3, and ∞).

so that the shape of the ridge depends on n.
The boundary conditions are f ′(0) = −2 and f(∞) = 0. From the second of these conditions

we obtain

f(0) =
√

2n

n− 1 +
√

π
2

.

In the limit n →∞ the solution of (7) is f∞ =
√

2−2ψ. The solution for n = 1 was obtained
in [6] and is

f1 =
2e−ψ2

√
π

− 2ψerfc(ψ),

where erfc(ψ) = 1 − erf(ψ) is the complementary error function. For other values of n the
function f is obtained by numerical integration. In figure 4 we show f(ψ) for different values of
the rheological index. The maximum height of the ridge in the linear regime is given by

hw = 1 +
√

2n

n− 1 +
√

π
2

t1/2. (8)

In figure 5 we show the evolution of the maximum elevation difference hw − 1. It can be seen
that for small t it tends to the self–similar behavior given by equation (8).
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Figure 5. Evolution of the maximum height of the ridge. The full line corresponds to the
scaling law t1/2 and the circles to the numerical solutions with n =1, 2 and 3.

Summarizing, in this regime the height and the width increase as t1/2 regardless of n, but hw

and the shape of the ridge depend on n.

5. Self–similar behavior for t À 1
For very large time the solution tends to another self–similar regime. To obtain it we seek a
solution of the form h = tαF (ξ), with ξ = x/tβ. Imposing the boundary condition at x = 0
and assuming mass conservation, we find that α = n/n3 and β = n2/n3, where n2 = 1 + 2n
and n3 = 1 + 3n. Replacing in the differential equation for h and integrating once, we find the
following differential equation for F :

F − Fn2
(−F ′)n = A, A = const. (9)

By comparing this with the boundary condition at ξ = 0 we find that A = 0. Then the solution
of (9) is

F =
(
B − n2

n
ξ
)n/n2

, ξ =
x

tn2/n3
.

In consequence

h = tn/n3

(
B − n2

n

x

tn2/n3

)n/n2

.

To find B we define xf as the place where h = 0, and we obtain xf = (nB/n2) tn2/n3 . Since
h À 1 in the present regime, xf can be called the “front” of the current. Next we impose∫ xf

0 ht dx = 1, and we find B = (n3/n)n2/n3 , so finally we obtain

h = hw

(
1− x

xf

)n/n2

, (10)

with
hw ≡ h(0) =

(n3

n
t
)n/n3

, xf =
n

n2
hn2/n

w . (11)

In figure 6 we show this solution for different values of n at a given time.
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Figure 6. Self–similar solution (10–11) for t = 10 with n = 1, 2 y 3, and in red for n →∞.
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Figure 7. Evolution of maximum height of the ridge for n = 3 and large t. The full line
corresponds to the numerical solutions, the dashed line corresponds to equation (11) and the
dotted line correspond to the quasi–self–similar solution.

A better approximation can be achieved by means of the quasi–self–similar approach [9; 10].
For this purpose we define the position of the front as the place where h = 1, we proceed as
before, and B is obtained as the solution of the following equation:

B =
(

B

tn/n3
+

n3

n

)n2/n3

.

From this equation we find the following equations for hw and xf in place of (11):

hn3/n
w = hn2/n

w +
n3

n
t, xf =

n

n2

(
hn2/n

w − 1
)

. (12)

From these results one sees that for very large times the quasi–self–similar solution tends to
agree with the self–similar one. Closed form expressions of hw and xf can only be obtained for
n = 1 and ∞, but they are very cumbersome and we shall not reproduce them here. In figure
7 we compare the values of hw for n = 3 from the numerical solution with those given by the
self–similar and the quasi–self–similar solutions.

We can improve the description far from the crest if we follow an approach similar to that
described in [6]. To this end, we look for a solution that satisfies F (∞) = t−n/n3 (to ensure that
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Figure 8. Comparison of the numerical profiles (lines) at t = 1.2, 6, 18 and 60 with the profiles
of the rescaled solution (circles) from (15) in which hw is given by the numerical solutions and
n = 3.

h(∞) = 1), sacrificing the condition at ξ = 0. Next we set α = n/n3, β = n2/n3 and integrate
the leading term of the differential equation for f . The resulting equation is again (9), but now
A 6= 0, and the solution is given in implicit form by

ξ =
n

2(1 + n)

(
−F 1+n2

A

)1/n

2F1

[
1 + n2

n
,
1
n

;
1 + n3

n
;
F

A

]
+ c. (13)

Here c = const. and 2F1[a, b; c; w] is the hypergeometric function. Now we allow the integration
constants A and c to depend weakly on t. To satisfy the condition at infinity we set A = t−n/n3 ,
and to find c we require that h = hw when x = 0. The solution is then

x =
∫ hw

h

(
s2+n

s− 1

)1/n

ds. (14)

Notice that this integral can be expressed in terms of the incomplete Beta function, although
there is no advantage in doing that. Of course the solution (14) does not satisfy the boundary
condition at x = 0 given in (5). However it is possible to modify (14) in order to fulfill this
condition by rescaling x. This rescaling is needed to ensure that h′(0) has the appropriate value,
and can be achieved multiplying the r.h.s. of (14) by the factor [(hw − 1)/hw]1/n. We then find

x =
(

hw − 1
hw

)1/n ∫ hw

h

(
s2+n

s− 1

)1/n

ds. (15)

So far we have not yet specified hw. If we employ the value of hw obtained from the numerical
solutions the agreement is excellent, even for t ≈ 1, as can be appreciated in figure 8. For t not
very large the hw from (12) corresponding to the quasi–self—similar solution differs only by a
few percent (the difference tends to increase with n) from the exact value (see figure 7). Then
if high precision is not needed, one can use the rescaled solution (15) with the value of hw given
by (12).

6. Conclusions
As in the Newtonian case the evolution of the ridge takes place in two stages. In the beginning
the profile h(x, t) looks like the self–similar solution (6–7). Later on h(x, t) tends to the solution
(10–11). The transition between these stages occurs around t ≈ 1, and corresponds to the
migration of the inflexion point of h(x, t), that initially is close to x = 0, and approaches xf
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as t → ∞. During the first stage the width and the relief increase as t1/2. But as the height
becomes large, the mass that is added mostly goes to increase the width of the ridge, which then
grows faster than the height.

Summarizing, in the formation of a ridge there are two self–similar regimes. In the linear
regime, when t . 0.1, the profile is given by (6–7) and the horizontal and vertical scales increase
as t1/2. As n varies the shape of the ridge varies between f1 for n = 1 and a triangle for n →∞.
In the large time regime (when t & 10) the profile is given by (10–11) and the height scales
as tn/(1+3n), while the width increases as t(1+2n)/(1+3n). These scaling laws coincide with those
previously derived in [1] by means of dimensional analysis. For fixed t, as n increases, the peak
of the ridge becomes more pronounced and its average slope becomes larger.

The analogy between the present results and those derived for a Newtonian liquid [6] can be
traced to the fact that the constitutive relation (1) introduces a single-dimensional parameter
(A) into the problem, as in the case of a Newtonian liquid (the viscosity coefficient). In
both instances this dimensional parameter can be scaled out by an appropriate definition of
the dependent variable, and thus does not appear in the final governing equations. For this
reason one finds similarity solutions whenever the analogous Newtonian problem is self–similar.
The dimensionality of A depends on the rheological index n and, as a consequence, the large
time scaling laws have rheology–dependent exponents. It is interesting to observe that these
dependences are weak. However, the differences between Newtonian and non–Newtonian flows
are quantitatively significant.
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