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(BSC), 29, Jordi Girona 08034 Barcelona, Spain

Abstract. We present an overview of the validity of the Proximity Force Approximation
(PFA) in the calculation of Casimir forces between perfect conductors for different geometries,
with particular emphasis for the configuration of a cylinder in front of a plane. In all cases we
compare the exact numerical results with those of PFA, and with asymptotic expansions that
include the next to leading order corrections. We also discuss the similarities and differences
between the results for Casimir and electrostatic forces.

1. Introduction
The experimental and theoretical activity in the analysis of the Casimir effect is, nowadays,
extremely intense. After 60 years, there are several high precision experiments and theoretical
calculations for a variety of geometries. In the last years, there has been a remarkable progress in
this field. On the experimental side, the new generation of experiments started about ten years
ago [1]. The precision achieved, much larger than that of the first generation of experiments [2],
triggered a lot of theoretical activity. While there were exact calculations for single cylindrical
[3] and spherical [4], perfectly conducting shells, the calculation of the interaction of two different
bodies, beyond the original two parallel plates, started about eight years ago. Since then, various
theoretical techniques have been developed in order to understand the geometric dependence of
the Casimir force. These include the use of the argument theorem to perform explicitly the sum
over modes [5, 6, 7, 8], semiclassical and optical approximations [9], methods based on functional
integrals [10] and scattering theory [11]. Many of these approaches have a common root in the
multiple scattering theory developed in the seventies [12] (see also [13] for an updated review and
applications to semitransparent bodies), and the evolution in the computational power allowed
a precise numerical evaluation that involves, in general, the computation of determinants of
infinite matrices. There are also full numerical approaches, as the worldline numerics [14], that
has been applied to scalar fields satisfying Dirichlet boundary conditions, or finite difference
methods that evaluate the Casimir energy from the two point function of the electromagnetic
field [15]. As a consequence of this theoretical activity, we now have exact results for a variety
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of geometries that involve perfectly conducting shells: cylinder and sphere in front of a plane
[16, 17, 18], eccentric cylinders [7, 8], two spheres [17], surfaces with periodic corrugations [19],
Casimir pistons [20], etc. Some of these methods also apply to the case of imperfect mirrors,
that we will not consider here.

For more than fifty years, the interaction between different bodies was computed mainly
using the so called proximity force approximation (PFA) [21]. This approximation, expected to
be valid as long as the interacting surfaces are smooth and very close, uses the original Casimir
expression for the energy per unit area for parallel plates separated by a distance d

Epp(d) = − π2

720d3
, (1)

and approximates the interaction between two conducting surfaces that form a curved gap of
variable width z by

EPFA =
∫

Σ
dσ Epp(z). (2)

It is clear that this formula does not take into account the non-parallelism of the surfaces.
Moreover, the result will depend on the particular surface Σ chosen to perform the integral.
However, these corrections are expected to be small for low-curvature, very close surfaces.

Until the development of the theoretical methods described above , the accuracy of the PFA
was not assesed, simply because PFA is an uncontrolled approximation, and there were no exact
calculations to compare with. On general grounds, denoting by L a typical length associated
to the curvature of one of the surfaces (assumed much smaller than the curvature of the second
surface) and by d the minimum distance between surfaces, one expects

E12 = EPFA

{
1 + Γ

L
d

+ O

[(L
d

)2
]}

, (3)

where Γ is a constant, whose numerical value fixes the accuracy of the PFA in each particular
geometry (one can write similar expressions for geometries that involve two surfaces of similar
curvature). As we will see, the situation is a bit more complex, since the corrections to PFA
may contain non-analytic corrections as

(
L
d

)n
ln

(
L
d

)
.

In this paper, we will present an overview of the accuracy of the PFA for the case of perfectly
conducting shells with different geometries: concentric cylinders (Section 2), concentric spheres
(Section 3), a cylinder in front of a plane (Section 4), and a sphere in front of a plane (Section
5). In all cases, we will compare the exact numerical results with the PFA, and obtain the
numerical value of the constant Γ, which fixes the magnitude of the next to leading order
(NTLO) correction. Moreover, we will also present, for each geometry, analogous comparisons
for the electrostatic energy. These are, of course, trivial textbook examples. However, we think
that the computation of the electrostatic energy using PFA is an interesting pedagogical exercise
that illustrates the accuracy of the approximation for a different interaction, based on the result
for the electrostatic energy contained between two parallel plates at a potential difference V

Upp =
ε0AV 2

2d
. (4)

Moreover, as we will also point out in our final remarks (Section 6), analogies with classical
electromagnetism may be useful to suggest and/or to understand new effects in Casimir physics.

Some of the results presented here have been previously obtained by the authors and
collaborators (concentric cylinders [6], cylinder in front of a plane [22]). The exact formula
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for the Casimir energy in the concentric-spheres geometry has been derived in Ref.[5, 23].
However, a numerical analysis and a discussion of the relevant limiting situations (in particular
the proximity limit) has not been considered before. Therefore, in Section 4 we describe with
some detail the derivation of analytic results in the small and large distance limits, along with
numerical computations. For the sake of completeness, we also describe briefly the results for
the sphere-plane configuration obtained by other authors [17, 18] (Section 5).

2. Concentric Cylinders
Let us first consider two concentric cylinders of length L, with radii a and b, respectively (with
L À a, b to neglect border effects). The exact formula for the Casimir interaction energy is
given by [5, 6]

Ecc
12 =

L

4πa2

∫ ∞

0
dβ β lnM cc(β), (5)

where

M cc(β) =
∏
n

[
1− In(β)Kn(αβ)

In(αβ)Kn(β)

] [
1− I ′n(β)K ′

n(αβ)
I ′n(αβ)K ′

n(β)

]
, (6)

where α = b/a. The first factor corresponds to Dirichlet (TM) modes and the second one to
Neumann (TE) modes. The concentric-cylinders configuration is interesting from a theoretical
point of view, since it can be used to test analytic and numerical methods. It also has potential
implications for the physics of nanotubes [7, 24]. This result can also be derived as a particular
case from the general formula for eccentric cylinders [7, 8].

The short distance limit α− 1 ¿ 1 has already been analyzed for this case [6], and involves
the summation over all values of n, that can be performed after using the uniform expansion for
Bessel functions (in the next section, we will present a similar calculation for concentric spheres).
As expected, the resulting value is equal to the one obtained via the proximity approximation,
namely

Ecc
PFA = − π3L

360a2

1
(α− 1)3

. (7)

When obtaining the PFA for a given configuration, the result is in general ambiguous, since it
depends on the choice of the surface Σ (Eq.(2)). Eq.(7) corresponds to the energy per unit area
for parallel plates times the area of the inner cylinder. In this case one could also choose, for
instance, the area of the outer cylinder, which results in an extra factor of α that modifies the
NTLO correction. The intermediate choice of the geometric mean of the areas gives

Ecc
PFA = − π3L

360a2

α1/2

(α− 1)3
, (8)

and reproduces the result that is obtained using a semiclassical approximation based on periodic
orbit theory [6].

In the opposite limit (α À 1), it can be shown that to leading order only the TM n = 0
mode contributes to the interaction energy, and that the energy decreases logarithmically with
the ratio α = b/a,

Ecc
12 ≈ − 1.26L

8πb2 ln α
. (9)

It is worth to stress that, while for small values of α both TM and TE modes contribute with
the same weight to the interaction energy, the TM modes dominate in the large α limit.

In previous works, we have evaluated the analytic corrections to the PFA given in Eq.(7).
Due to the simplicity of this configuration, it is possible to obtain not only the next to leading
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order, but also the next to next to leading contribution [22, 25]. The Casimir energy, beyond
the proximity approximation, can be written as [22, 25]

Ecc
12 ≈ − π3L

360a2(α− 1)3

{
1 +

1
2
(α− 1)− (

1
10

+
2
π2

)(α− 1)2 + ...

}
. (10)

In the expression above, the first term inside the parenthesis corresponds to the proximity
approximation contribution in Eq.(7), while the second and third terms are the first and second
order corrections respectively. It is important to stress here that both TM and TE modes
contribute with the same weight to the energy up to the next to leading order, but it is not
the case in the second order correction [22, 25]. It is also remarkable that the PFA based on
the geometric mean of the areas given in Eq.(8) reproduces the exact result not only to leading
order but also to the NTLO. In Refs.[22, 25] we have shown that PFA can be used as a useful
tool in order to improve the numerical evaluation at very small distances, and we have used
this improvement in order to check numerically the non linear correction to PFA described in
Eq.(10).

Let us now consider the electrostatic analogue for this configuration. It is trivial to evaluate
the exact expression for the electrostatic interaction energy, which can be written as

U cc
12 =

πε0V
2

ln α
, (11)

where V is the difference between the electrostatic potential of the inner and outer cylinders.
The proximity approximation for the electrostatic interaction energy can be computed from

the result of two parallel plates Eq.(4), and it is given by

U cc
PFA ≈

πε0V
2

α− 1
, (12)

where we have used the area of the inner cylinder. Taking the ratio between the exact and PFA
results , it is possible to read the next to leading correction, which is given by

U cc
12

U cc
PFA

≈ 1 +
1
2

(α− 1) . (13)

Remarkably, the NTLO correction has the same numerical factor both for the electrostatic
interaction energy and for the Casimir interaction energy shown in Eq.(10). Related to this, the
calculation of U cc

PFA using the geometric mean of the areas also reproduces the exact result U cc
12

including the NTLO.
There is an additional analogy between the calculations of the electrostatic and Casimir

energies: in the large distance limit α À 1, both energies vanish only logarithmically as the
radius of the inner cylinder tends to zero (see Eqs.(9) and (11)).

3. Concentric spheres
Let us now consider two concentric spherical shells of radii a and b respectively, with α = b/a > 1.
The Casimir interaction energy can be computed using a procedure similar to that of the
concentric cylinders. The exact energy is given by [5, 23]

Ecs
12 =

1
πa

∑

l≥1

ν

∫ ∞

0
dy ln[(1− FTE

ν )(1− FTM
ν )] , (14)

where
FTE

ν =
Iν(y)Kν(αy)
Iν(αy)Kν(y)

, (15)
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FTM
ν =

(Iν(y) + 2yI ′ν(y))(Kν(αy) + 2αyK ′
ν(αy))

(Iν(αy) + 2αyI ′ν(αy))(Kν(y) + 2yK ′
ν(y))

, (16)

and ν = l + 1/2.
As far as we know, this energy has not been studied in detail before, so we analyze the

opposite limits α → 1 and α →∞ . In order to obtain an analytic expression in the proximity
limit α → 1, it is useful to perform the change of variables y → νy in the integral appearing in
Eq.(14), so we can use the uniform expansion for the Bessel functions. For example we have

Kν(ναy)
Kν(νy)

=
√

1 + y2

√
1 + α2y2

(1− u(tα)
ν )

(1− u(t1)
ν )

eν[η(αy)−η(y)], (17)

where

η(y) =
√

1 + y2 + ln
y

1 +
√

1 + y2
; u(t) =

3t− 5t3

24
; tα =

1√
1 + α2y2

, (18)

and similar expressions for the functions Iν , I
′
ν , and K ′

ν . Inserting these asymptotic expansions
in Eqs.(15) and (16), one can show that

FTE
ν ' FTM

ν ' e−2ν∆η(y)(1 + O(
α− 1

ν
)), (19)

where

∆η(y) = η(αy)− η(y) ' (α− 1)
√

1 + y2 − (α− 1)2

2
√

1 + y2
. (20)

The term proportional to (α − 1)/ν will not contribute to the leading and NTLO, so we will
neglect it in what follows.

Using these expressions, we can write the interaction energy as

Ecs
12 ' − 2

πa

∫ ∞

0
dy

∑

k≥1

1
k

∑

l≥1

ν2e−2νk∆η(y). (21)

The sum over l can be easily computed and gives

∑
l≥1 ν2e−2νk∆η(y) =

1
4k3∆η3

+ O(∆η)

=
1

4k3(α− 1)3(1 + y2)3/2

(
1 +

3(α− 1)
1 + y2

+ O((α− 1)2)
)

. (22)

Inserting Eq.(22) into Eq.(21), computing first the sum over k and then the remaining integral
we finally obtain

Ecs
12 = Ecs

PFA

{
1 + (α− 1) + O((α− 1)2)

}
. (23)

Here

Ecs
PFA = − π2

720(b− a)3
4πa2 = − π3

180a(α− 1)3
, (24)

is the Casimir energy computed with the PFA using the area of the inner surface. We have
confirmed the analytic approximation given in Eq.(23) through a numerical evaluation of the
exact energy given Eq.(14). The results are shown in Fig. 1.

There are some interesting properties, similar to those of the previous section, that are worth
noticing. On the one hand, TE and TM modes give the same contribution to both the leading
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Figure 1. Numerical evaluation of the Casimir interaction energy for the configuration of
concentric spheres, near the proximity limit. A simple fit f(x) = a + bx of the numerical data
gives, for the TM-modes a = 0.97, b = 1.09, and a = 0.98, b = 0.97 for TE-modes

and next to leading orders. On the other hand, if the PFA approximation is computed with the
geometric mean area of the inner and outer spheres, the resulting expression

Ecs
PFA = − π3α

180a(α− 1)3
= − π3

180a(α− 1)3
{1 + (α− 1)} , (25)

reproduces not only the leading term of the exact interaction energy but also the NTLO.
One can also study the opposite limit, in which a ¿ b. In this case, the Casimir interaction

energy is dominated by the l = 1 modes. Keeping only this contribution in the exact expression
Eq.(14), and after the change of variables αy = x we obtain

Ecs,TE
12 ≈ 3

2πaα

∫ ∞

0
dx ln

(
1− K3/2(x)I3/2(x/α)

I3/2(x)K3/2(xα)

)
. (26)

Expanding the logarithm up to the leading order in 1/α we get

Ecs,TE
12 ≈ − 1

π2aα4

∫ ∞

0
dxx3 K3/2(x)

I3/2(x)
≈ −0.745

aα4
. (27)

A similar analysis can be carried out for the TM modes. The result is

Ecs,TM
12 ≈ −1.011

aα4
. (28)

It is interesting to note that, unlike the case of concentric cylinders, both TE and TM modes
contribute with the same order of magnitude to the Casimir energy in the large α limit. Moreover
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Figure 2. Large α behaviour of the Casimir interaction energy for concentric spheres. A simple
fit of the form f(x) = a/xb gives a = −1.05, b = −4.01 for TE modes, and a = −0.82, b = −4.02
for TM modes.

the interaction energy vanishes as a3 as the radius of the sphere tends to zero. We have checked
these analytic results with numerical evaluations of the exact formula, as shown in Fig.2. A fit of
the form f(x) = a/xb gives a = −1.05, b = −4.01 for TM modes, and a = −0.82, b = −4.02 for
TE modes. Moreover, performing a fit with g(x) = a/x4, we obtain a = −1.03 and a = −0.78
for TM and TE modes respectively.

Let us now compare the PFA in Casimir physics with the textbook electrostatic example.
The electrostatic energy contained between the spherical shells is given by

U cs
12 = 2πε0V

2 ba

b− a
, (29)

where V is the potential difference. A trivial application of the PFA, based on the inner sphere,
gives

U cs
PFA = 2πε0V

2 a2

b− a
, (30)

so
U cs

12 = U cs
PFA

b

a
= U cs

PFA {1 + (α− 1)} . (31)

We see that, as for the case of concentric cylinders, the next to leading order correction to PFA
has the same numerical coefficient in electrostatic and Casimir energies. Moreover, in this case,
the choice of the geometric mean area gives the exact result for the electrostatic energy. As we
will see in the next sections, these are peculiarities of the geometries considered so far.
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4. A cylinder in front of a plane
We consider now a perfectly conducting cylinder of length L and radius a (with L À a to
neglect border effects). The cylinder is parallel to a perfectly conducting planar surface of area
A À a2, and the minimum distance between the two surfaces is denoted by d. This configuration
is of experimental interest: being intermediate between the sphere-plane and the plane-plane
geometries, it can shed some light on the longstanding controversy about thermal corrections to
the Casimir force. Keeping the two plates parallel has proved very difficult, while the sphere and
plate configuration avoids this problem, the force is not extensive. In the case of the cylinder-
plane configuration, it is easier to hold the cylinder parallel and the force results extensive in its
length. There is an ongoing experiment to measure the Casimir force for this configuration [26].

The Casimir energy for this configuration was first evaluated in the PFA in Ref.[27]. The
exact formula has been derived in Refs.[16, 28], and has the same structure than Eq.(5), where

Ecp
12 =

L

4πa2

∫ ∞

0
dβ β

[
ln(MTE(β)) + ln(MTM(β))

]

= ETE
12 + ETM

12 , (32)

where MTM(β) = det[δnp−ATM,CP
n,p ] and MTE(β) = det[δnp−ATE,CP

n,p ]. Here β is a dimensionless
integration variable and n, p are arbitrary integers. The matrix elements are given by [16, 28]

ATE,CP
n,p =− I ′n(β)

K ′
n(β)

Kn+p(2βH/a), (33)

and

ATM,CP
n,p =

In(β)
Kn(β)

Kn+p(2βH/a). (34)

Note that the evaluation of the Casimir energy for this configuration involves the computation
of the determinant of an infinite, non-diagonal matrix. Once more, the exact formula can be
derived from the general formula for eccentric cylinders [8].

In the following we will numerically evaluate the cylinder-plane Casimir interaction energy
for small distances, in order to discuss the leading correction to the PFA. In Figs.3, 4, and 5
we present the Casimir interaction energy for the cylinder-plane configuration. For the runs,
we used a matrix of dimension (101,101) to reach the proximity limit (d → 0). It must be
mentioned that for smaller values of d, we need to increase the dimension of the A matrix and
the integration range of β in Eq.(32). This fact becomes our major limitation to reach yet
smaller values of d.

This problem has been considered from an analytical point of view in Ref.[28]. Using the
uniform expansions for the Bessel functions appearing in the matrix elements ATE,CP

n,p and
ATE,CP

n,p , and after complex calculations, it can be shown that, in the proximity limit:

Ecp,TM
12 = − 1

2π

√
a

d5

3ζ(4)
32
√

2

(
1 + 0.1944

d

a
+ ...

)
, (35)

Ecp,TE
12 = − 1

2π

√
a

d5

3ζ(4)
32
√

2

(
1− 1.1565

d

a
+ ...

)
, (36)

where we have written separately the contributions of TM and TE modes.

60 Years of the Casimir Effect IOP Publishing
Journal of Physics: Conference Series 161 (2009) 012015 doi:10.1088/1742-6596/161/1/012015

8



 0.99

 1

 1.01

 1.02

 1.03

 1.04

 1.05

 1.06

 1.07

 1.08

 1.09

 1.1

 0  0.1  0.2  0.3  0.4  0.5

E
C

P
T

M
/E

P
F

A

d/a

numerical
f1(x)
f2(x)
f3(x)

Figure 3. Numerical result for the TM modes for the cylinder-plane configuration, and the
corresponding fits presented in Table 1. A simple linear fit f(x) = a + bx of the numerical data
in the interval 0.04 ≤ d/a ≤ 0.07 gives a = 0.9999 and b = 0.1900. The theoretical values are
a = 1 and b = 0.1944.

d/a f1(x) = 1 + bx f2(x) = 1 + b ∗ x + c ∗ x2 f3(x) = 1 + b ∗ x + c ∗ x2 ∗ log(x)
[0.04 : 0.15] b = 0.1864 b = 0.1922, c = −0.0601 b = 0.1961, c = 0.0438
[0.04 : 0.20] b = 0.1849 b = 0.1923, c = −0.0613 b = 0.1983, c = 0.0540
[0.04 : 0.25] b = 0.1829 b = 0.1922, c = −0.0601 b = 0.2003, c = 0.0634
[0.04 : 0.30] b = 0.1811 b = 0.1920, c = −0.0586 b = 0.2022, c = 0.0716
[0.04 : 0.35] b = 0.1794 b = 0.1918, c = −0.0572 b = 0.2045, c = 0.0810
[0.04 : 0.40] b = 0.1771 b = 0.1914, c = −0.0549 b = 0.2076, c = 0.0935

Table 1. Different fits for the numerical results of Fig. 3 (TM modes). We fix fi(0) = 1 since
the numerical data agree this value with high precision.

We will discuss the first order corrections to PFA for TM and TE modes separately. In Fig.3,
we show our numerical results for the TM modes. The fit of the numerical results depends of
course on the interval chosen for d/a. There is an obvious compromise: on the one hand, as
already mentioned, we cannot consider very small values for d/a because of numerical limitations.
On the other hand, the expansion in powers of d/a are expected to be valid only for d/a ¿ 1.
In any case, as can be seen from Table 1, the different fits for the numerical results are stable,
and confirm both the PFA to leading and next to leading orders. Indeed, the results are fully
compatible with the analytic results given in Eq.(35), considering both linear and quadratic fits
of the numerical results. Moreover, a simple linear fit in a smaller range of d/a gives a = 0.9999
and b = 0.1900 and already reproduces the analytical results [28] with high accuracy (see also
numerical findings in [29]).

60 Years of the Casimir Effect IOP Publishing
Journal of Physics: Conference Series 161 (2009) 012015 doi:10.1088/1742-6596/161/1/012015

9



 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0  0.1  0.2  0.3  0.4  0.5

E
C

P
T

E
/E

P
F

A

d/a

numerical
f1(x)
f2(x)
f3(x)

Figure 4. Numerical result for the TE modes for the cylinder-plane configuration, and the
corresponding fits presented in Table 2. A simple linear fit f(x) = a + bx of the numerical data
in the interval 0.04 ≤ d/a ≤ 0.07 gives a = 0.9940 and b = −0.7808. The theoretical values are
a = 1 and b = −1.1565.

d/a f1(x) = 1 + bx f2(x) = 1 + b ∗ x + c ∗ x2 f3(x) = 1 + b ∗ x + c ∗ x2 ∗ log(x)
[0.04 : 0.15] b = −0.8301 b = −0.9704, c = 1.4499 b = −1.0711, c = −1.0852
[0.04 : 0.20] b = −0.8013 b = −0.9509, c = 1.2326 b = −1.0772, c = −1.1141
[0.04 : 0.25] b = −0.7683 b = −0.9349, c = 1.0794 b = −1.0890, c = −1.1674
[0.04 : 0.30] b = −0.7399 b = −0.9222, c = 0.9772 b = −1.1037, c = −1.2306
[0.04 : 0.35] b = −0.7158 b = −0.9091, c = 0.8879 b = −1.1232, c = −1.3115
[0.04 : 0.40] b = −0.6851 b = −0.8943, c = 0.7999 b = −1.1534, c = −1.4360

Table 2. Different fits for the numerical results of Fig. 4 (TE modes). We fix fi(0) = 1 since
the numerical data agree this value with high precision.

In Fig.4, we show our results for the Neumann modes, and we include in Table 2 different fits
of the numerical data. In this case, the value obtained for the linear correction to PFA depends
strongly on the assumption about the next non trivial correction. This is not surprising: as
we cannot consider extremely small values for d/a, the non linear corrections may have a non
negligible contribution in the intervals chosen for the fits. For example, a simple linear fit gives
a = 0.994 and b = −0.7808 which does not coincide with the result in Eq.(36). However, based
on the discussion about the slower convergence of the Neumann corrections presented in Ref.[28],
we have allowed the possibility of non linear corrections proportional to (d/a)2 ln(d/a) in our
fits. Remarkably, when this non linear corrections are taken into account, the coefficient of the
linear correction gets closer to the analytic prediction in Eq.(36), that we reproduce with an
error less than 7%. Note that, as can be seen in Fig.3, this is not the case for TM modes, since
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Figure 5. A numerical fit of the results for the TE modes including cubic corrections
f(x) = 1 + bx + cx2 log x + dx3. The coefficients are b = −1.0478, c = −0.9485, and d = 0.6708.

the best fit of the numerical data contains a quadratic term without a logarithm. In Fig.5 we
show a fit of the numerical data for TM modes that includes a cubic correction (d/a)3. With
this additional term, the fit reproduces the numerical data up to d/a = 0.5.

To summarize our results, the fits of the numerical data clearly confirm the analytic prediction
for the TM modes, and suggest that the next non trivial correction for the TE modes is not
quadratic but proportional to (d/a)2 ln(d/a).

As in the previous sections, we consider the electrostatic interaction. Let us assume that
the conducting cylinder is kept at a fixed electrostatic potential V , while the planar surface is
grounded. For this geometry, the exact electrostatic interaction energy given by

U cp
12 =

πLε0V
2

arccosh
(
1 + d

a

) . (37)

In the limit of d/a ¿ 1 it is simple to show that the electrostatic energy reduces to the PFA
result

U cp
PFA =

Lπε0V
2

√
2

√
a

d
. (38)

As it was done before, we can compare the exact electrostatic energy (expanded in powers of
d/a) with the PFA result, and extract from it the next to leading correction, i.e.,

U cp
12

U cp
PFA

= 1 +
1
12

d

a
. (39)
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As in the previous examples, the exact electrostatic result shows a linear NTLO correction
to PFA. However, the numerical value of the linear correction is different from that of Casimir
energy.

Finally, we also point out that, in the large distance limit d À a, the electrostatic interaction
becomes

U cp
12 =

πLε0V
2

ln(d
a)

. (40)

As for the Casimir energy [16], it vanishes logarithmically with as a → 0.

5. A sphere in front of a plane
The sphere-plane geometry is, up to now, the most important geometry that have been used to
measure precisely the Casimir forces. From the theoretical point of view, the evaluation of the
Casimir energy in the electromagnetic case has been performed very recently in Refs. [17, 18],
while the evaluation for scalar fields has been previously reported in Ref.[11]. See also [30] for
asymptotic expansions in the scalar field case near the proximity limit.

For the sake of completeness, we quote here the results obtained in Refs.[17, 18] regarding
the behaviour of the Casimir energy for this configuration. Denoting by a the radius of the
sphere, and by d the minimum distance between the plane and the sphere, numerical fits in both
references give

Esp
12 ' Esp

PFA

{
1− 1.4

d

a

}
. (41)

The next to leading order correction is again linear, as in the previous cases. Both fits were
performed by assuming that the next to NTLO is quadratic in d/a.

There is still no analytic prediction for the NTLO correction in the electromagnetic case.
However, one can compare the results of the numerical calculations [17] and the asymptotic
expansions in the scalar case [30]. Although the scalar results for TE and TM modes do not
reproduce the electromagnetic result (this geometry does not allow this decomposition), there
is an interesting similarity with the results described in the previous section. The theoretical
asymptotic expansions, for scalar fields satisfying Dirichlet and Neumann boundary conditions
read, respectively,

Esp,D
12 'Esp

PFA

{
1 +

1
3

d

a

}
,

Esp,N
12 'Esp

PFA

{
1 + (

1
3
− 10

π2
)
d

a

}
. (42)

The numerical fits for the scalar case [17] give 0.33 and −2.43, for the Dirichlet and Neumann
case, respectively.

While the agreement for Dirichlet modes is remarkable, for Neumann modes there is a strong
discrepancy. So, based on the discussion for the cylinder-plane geometry, one can argue that
also in this case the second order corrections could contain logarithmic factors.

The electrostatic problem can also be solved exactly, and it is relevant for the initial
calibration in the measurements of the Casimir force. If the potential difference between the
plane and the sphere is V , the electrostatic energy is given by [31]

U sp
12 = 2πε0aV 2 sinhβ

∑

n≥1

1
sinh(nβ)

, (43)
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where coshβ = 1 + d/a. In order to obtain an analytic expression in the limit β → 0 we write

S ≡
∑

n≥1

1
sinh(nβ)

= S −
∫ ∞

1

dn

sinh(nβ)
+

1
β

ln(cothβ)

=
γ

β
+

1
β

ln(cothβ) + O(β), (44)

where γ = 0.5772. Replacing this expression into Eq.(43) and expanding the result for small
d/a we obtain

U sp
12 = U sp

PFA

{
1 +

1
3

d

a
+ O

(
d/a

ln(d/a)

)}
, (45)

where
U sp

PFA = −πε0aV 2 ln(2d/a) . (46)

In Eq.(45) we omited an irrelevant constant term. It is interesting to remark that the next to
NTLO correction in the electrostatic force is not quadratic but proportional to d/(a log(d/a)).

6. Final remarks
We have presented a brief review of the calculations of the Casimir energy for different geometries
involving perfect conductors, paying particular attention to the NTLO corrections to the PFA.
In all cases considered, the first corrections to the PFA are linear, with a coefficient of order
one. So, generically, the PFA results agree with the exact energies within 1% when L/d < 10−2.
The situation for the next to NTLO is more complex. For concentric cylinders this correction is
quadratic [22, 25], and it can be shown that this is also the case for concentric spheres. However,
in the cylinder-plane configuration additional logarithmic factors could arise [22, 28]. This is
probably also the case for a sphere in front of a plane.

We have compared validity of the PFA for the Casimir interaction energy with the same
approximation in electrostatic examples, in each geometry considered. In all cases, the general
result is also valid: the NTLO corrections to PFA are always linear. Moreover, for concentric
spheres and cylinders, the next to leading order corrections to PFA have the same numerical
coefficients for electrostatic and Casimir energies, and can be obtained from the PFA using a
particular area, i.e. the geometric mean of the areas of both surfaces. This is certainly a property
of this particular geometries, in which the distance between surfaces is constant and the normal
to both surfaces are parallel at each point.

There is another property of the Casimir interaction energy that has its counterpart in
electrostatics. In the case of concentric cylinders or cylinder-plane geometries, the Casimir
energy vanishes only logarithmically as the radius a → 0. This is also the case for the analogous
electrostatic problems. Once more, this is a property of geometries involving cylinders, and the
situation is different for geometries involving spheres, as we have shown in Section 3.

The analogies between the Casimir energy and the electrostatic energy could be useful to
suggest and/or understand the behaviour of the vacuum forces in different situations. Let us
consider, instead of perfect conductors, the case of surfaces that separate media with different
electromagnetic properties. For example, consider three media described by different dielectric
constants ε1 > ε2 > ε3, separated by flat surfaces. It is a simple exercise to show that, even
if the interfaces have free electric charges of different sign, the interaction between them may
be repulsive, due to the polarization of the media. This suggests that the same situation may
happen for the vacuum fluctuations, and this is indeed the case, as can be easily shown using
Lifshitz formula [32]. Similar electrostatic effects arise for all the geometries considered here.
Therefore, based on this analogy, one can argue that repulsive Casimir forces can take place in
all of these geometries, if the boundaries become interfaces between different media. This should
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be valid even beyond the obvious situation in which one uses the PFA starting from Lifshitz
formula. There is a concrete example that has been recently analyzed, the repulsive interaction
between eccentric cylinders [33]. According to the electrostatic analogy this property should be
valid as long as the radii of the cylinders and the dielectric constants satisfy certain relations.
It would be interesting to check if this is also the case for the Casimir interaction. Work on this
issue is in progress.
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