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Abstract

A description of the implementation of the relaxation method with automatic mesh point allocation for immobilized enzyme elec-
trodes is presented. The advantages of this method for the solution of coupled reaction–diffusion problems are discussed. The relaxation
numerical simulation technique is combined with the Simplex fitting algorithm to extract kinetic parameters from experimental data. The
results of the simulations are compared to experimental data from self-assembled multilayered electrodes comprised of glucose oxidase
(GOx) and an Os modified redox mediator and found to be in excellent agreement.
� 2008 Elsevier B.V.
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1. Introduction

For amperometric enzyme electrodes with the enzyme
entrapped in a film, the interplay between diffusion and
kinetics results in highly non-linear differential equations
for which there are no closed form analytical solutions.
Approximate analytical solutions for selected limiting cases
have been derived [1,2]. However, it is very useful to com-
plement these with fast and reliable numerical simulations
which can treat the intermediate cases.

The main advantages of numerical simulation are that it
can be used to calculate the amperometric response over
the whole range of experimental parameters and that it
0022-0728 � 2008 Elsevier B.V.
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gives calculated concentration profiles for the different spe-
cies within the film. In these respects it complements the
approximate analytical treatments available in the litera-
ture that are only valid under certain limiting conditions,
i.e. for limited ranges of the experimental variables.
Numerical techniques are particularly valuable for explor-
ing the behaviour of the system in the regions between the
analytical limiting cases where, typically, two parameters
for the system are comparable and a limiting behaviour is
not well established.

Ideally the most powerful approach is to combine the
use of approximate analytical solutions that provide phys-
ical insight into the nature of the rate limiting processes
and the physical behaviour of the system with numerical
approaches that can be used to fit the full range of experi-
mental data and to extract the best estimates of the control-
ling kinetic parameters. For amperometric enzyme
electrodes this offers the possibility of rational electrode
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Fig. 1. Schematic of a typical enzyme-membrane/electrode showing the
processes considered in the model. Diffusion of mediator (A) and substrate
(S) occurs within the film with diffusion coefficients De� (electron hopping)
and Ds respectively. Partition of substrate between the film and the bulk
solution is described by the partition coefficient Ks. The homogeneous
enzyme kinetics occurs throughout the film from v = 0 to v = 1. The
reduced mediator is reoxidized to produce A at the electrode surface. E1

and E2 are the oxidized and reduced enzyme respectively.
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design where the model is used to predict the amperometric
response of the electrode [3]. It also offers the possibility to
investigate detailed questions about the operation of the
electrode such as the true activity of the immobilised
enzyme or the direct determination of the rate of mediated
electron transfer to the enzyme within the film – issues
which are highly relevant to the optimal design of biosen-
sors and efficient biofuel cell electrodes.

Bartlett and Pratt [1] used numerical simulations to val-
idate their approximate analytical solutions and to investi-
gate the boundary regions between the different limiting
cases in a clear example of how numerical simulations
and approximate analytical techniques can complement
each other in the modelling of a particular physico-chemi-
cal system.

Fitting experimental data to theory, both approximate
analytical treatments and numerical simulations, is essen-
tial both to test the validity of the model and to extract
the relevant kinetic constants such as the various rate, dif-
fusion and partition coefficients. This is most effectively
achieved using non-linear least squares optimization to fit
the experimental data to the theory. To achieve this in a
reasonable time using a numerical model requires a compu-
tationally efficient numerical simulation algorithm since the
simulations will have to be repeated many times during the
iterative fitting of the kinetic parameters.

Several numerical techniques have been used to solve
both the transient and the steady-state situations with var-
ious boundary conditions. For a survey of the early litera-
ture see [3]. More recently, the problem of amperometric
enzyme electrodes, has been analysed by digital simulation
in several papers [1,4–15]. As far as we are aware, Bartlett
and Pratt [1] are the only ones to have used the relaxation
method [16] to treat an electrochemical problem. The
advantage of the relaxation method is that it gives a rapid
and stable solution for the steady-state behaviour of
strongly coupled non-linear differential equations. In their
earlier work Bartlett and Pratt did not describe the imple-
mentation of the technique in detail. However, they found
excellent agreement between their simulations and the cal-
culations from their approximate analytical treatment
although they did not compare their simulations with
experimental.

In this paper, we build on and significantly extend the
work of Bartlett and Pratt. We describe in detail the
relaxation method and its implementation to solve the
coupled non-linear kinetic-diffusion problem for an
amperometric enzyme electrode. We show how the relax-
ation method can be combined with the Simplex method
[16], in order to fit experimental data and extract the rel-
evant kinetic parameters. We show that the simulations
are in good agreement with experimental data from elec-
trostatically self-assembled multilayers of Glucose Oxi-
dase (GOx) and an Os modified polyelectrolyte (PAH-
Os), and we use our combined relaxation simulation
and Simplex optimisation to determine kinetic data for
the system.
This new treatment should be applicable to enzymes
immobilized in modified polymers, in redox polymer films
[17], in redox hydrogels [18], by antigen–antibody interac-
tion (for example avidin–biotin) [19–21], and electrostati-
cally self-assembled systems in general [22,23]. The
treatment is equally valid for both thin monolayers as well
as thick multilayered films and offers an efficient approach
to the treatment of experimental data. The analysis pre-
sented here, together with appropriate approximate analyt-
ical formulae can be used in the design and optimization of
enzyme electrodes for analytical and biofuel cell applica-
tions when the final objective is to obtain a detailed under-
standing of the operation of the electrode and to be able to
predict the response.

2. The model

A general kinetic model for an enzyme-membrane elec-
trode has been described previously [1] and is briefly
reviewed in Fig. 1. For fuller details the reader is referred
to the original paper. The model describes the general situ-
ation of a redox mediated immobilized enzyme electrode.
In principle the redox mediator could be co-immobilized
in the film or it could be present in the bulk solution and
undergo partition into the film. In the latter case, the medi-
ator could be present in the bulk solution either in its oxi-
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dized or reduced form. In the present paper we only con-
sider the situation where the mediator is immobilized
within the film. This is a very common situation exempli-
fied by, for example, the popular and successful approach
of using a redox hydrogel pioneered by Heller and his col-
leagues [24]. The extension of our treatment to either of the
other two situations can be achieved by an analogous
numerical treatment taking account of the appropriate
boundary conditions [3].

The reactions occurring in the film can be written

Aþ E2!
k

Bþ E1 ð1Þ

E1 þ S $KMS
ES!kcat

E2 þ P ð2Þ
and at the electrode
B! Aþ e� ð3Þ
where A and B are the oxidized and reduced forms of medi-
ator, E1 and E2 are the oxidized and reduced forms of en-
zyme, S and P are the substrate and product of the
enzymatic reaction and ES is the complex formed between
enzyme and substrate (see Appendix 1 for a full list of the
symbols used in this work).

The substrate undergoes partition between the bulk
solution and the film (partition coefficient KS) and then dif-
fuses within the film with a diffusion coefficient DS. The
mediator is assumed to be confined within the film. Either
it can physically diffuse within the film described by a dif-
fusion coefficient DA or, if the mediator is covalently bound
within the film, charge propagation occurs by electron hop-
ping self-exchange between the reduced and oxidized
dorms of the mediators described by a diffusion coefficient
De. According to the Dahms–Ruff formalism [25,26] these
two situations are equivalent with DA = De. Michaelis
Menten kinetics are assumed for the enzyme–substrate
reaction. The oxidized mediator regenerates the enzyme
with a mediator–enzyme reoxidation constant k, according
to the conventional ‘‘ping-pong” mechanism [27].

The second-order differential equations describing the
system in the steady-state are

DA

d2½A�
dx2

¼ kkcat½A�½S�½E�TOT

k½A�ðKMS þ ½S�Þ þ kcat½S�
ð4Þ

DS

d2½S�
dx2
¼ kkcat½A�½S�½E�TOT

k½A�ðKMS þ ½S�Þ þ kcat½S�
ð5Þ
The symbols in brackets refer to the concentrations of the
corresponding species. These concentrations vary the posi-
tion within film. Eqs. (4) and (5) are non-linear second or-
der differential equations and have no closed form
analytical solution. In this paper we solve these equations
using the relaxation method.

First we recast the problem in terms of the following
dimensionless variables [1,3]
j ¼ L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k½E�TOT

DA

� �s
ð6Þ

g ¼ DSkKMS

DAkcat

ð7Þ

c ¼ kKA½A�TOTKMS

kcatKS½S�1
ð8Þ

l ¼ KS½S�1
KMS

ð9Þ

a ¼ ½A�
½A�TOT

ð10Þ

s ¼ ½S�
KS½S�1

ð11Þ

v ¼ x
L

ð12Þ
3. Numerical simulations

To analyse the steady-state enzyme electrode response
we need only simulate the steady-state solution to Eqs.
(4) and (5). The high rates of reaction, and thus steep con-
centration gradients which can occur within the immobi-
lized layer at the electrode surface, make simulations
using an explicit finite difference method impractical.
Implicit or semi-implicit methods suffer the drawback that
the complex kinetic scheme cannot be solved directly. Con-
sequently we chose to use a steady-state simulation
method. The obvious choice, the shooting method [16], is
inappropriate in the present case because of the combina-
tion of boundary conditions at the two membrane inter-
faces - the electrode surface and the outer surface of the
film. On the other hand, the relaxation method [16] can
simultaneously solve any number of coupled first order dif-
ferential equations, provided that sufficient boundary con-
ditions are known. Eqs. (4) and (5) contain second order
diffusional terms but this is not a problem since second
(or higher) order differential equations can be expressed
as a combination of first order terms.

In the relaxation method a set of ordinary differential
equations is replaced by a set of approximate finite differ-
ence equations on a grid of points which spans the domain
of interest, in this case, the enzyme layer. The principle
behind the relaxation method is to start with an initial
guess for the concentration profiles within the enzyme
layer. The method then computes the resulting errors at
each grid point and uses these computed errors to make
an improved guess. Hence the name since it could be said
that the algorithm relaxes to the correct solution. However
it is important to note that these intermediate solutions,
generated en route to the final steady-state solution have
no physical significance and that the final solution is inde-
pendent of the initial guess.

To illustrate the method consider the trivial case of a
single equation W in terms of a variable y

WðyÞ ¼ f ðyÞ ¼ 0 ð13Þ
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Fig. 2. Concentration profile showing the regions where a high mesh
density is required. In region A, the concentration profile a is horizontal,
here only a small number of points, i.e. a low mesh density, is sufficient. In
region B, the gradient is high, so a higher mesh density is required. In
region C, the gradient of the concentration profile is changing rapidly.
This also requires a high mesh density.
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We starting with an initial guess for the value of y and this
is adjusted iteratively by a small value Dy. For the correct
solution

Wðyþ DyÞ ¼ 0 ð14Þ
Alternatively this can be written

Wðyþ DyÞ ¼WðyÞ þ VDy ¼ 0 ð15Þ
where

V ¼ oWðyÞ
oy

ð16Þ

Rearranging Eq. (16) therefore gives the value of Dy in
terms of the previous estimate for y:

Dy ¼WðyÞ
V

ð17Þ

When dealing with a large number of coupled equations
and variables V is a matrix containing the differentials of
all equations W with respect to each variable y. Solution
of the equations therefore requires inversion of this matrix.
Further details are given by Press et al. [16].

When performing electrochemical simulations using
finite difference methods a useful reduction in the number
of points required for a given accuracy (and hence increase
in the speed of the simulation) can be achieved by using a
non-linear mesh spacing [28]. This concentrates the compu-
tational effort in those regions where the concentrations
and fluxes change most rapidly. This is normally achieved
by using a high mesh density, i.e. closely spaced points,
where the concentration gradient is steepest. For simple
electrochemical systems such as the ec or the ec0 mecha-
nisms, or where a rotating disc electrode is used, the con-
centration profile is steepest at the electrode surface.
Thus Feldberg [29] used a mesh spacing based on an error
function to give a close point spacing at the electrode, with
the spacing increasing with distance from the electrode in
an appropriate way. This approach, and similar methods,
are widely used. The problem with this type of pre-defined
mesh spacing is that it requires an a priori knowledge of the
approximate shape of the concentration profiles. In the
present case [1], the concentration profiles may be steep
at the electrode surface, at the membrane–solution inter-
face, at both, or even at some point in between depending
on the balance between the different rate processes. It has
also been found that a high mesh density is required where
the concentration gradients are rapidly changing, i.e. where
d2[A]/dx2 or d2[S]/dx2 are large. For concentration profiles
such as those shown if Fig. 2, this requires a higher mesh
density at some region within the film that is not necessary
near the boundaries. The relaxation method allows the
optimum mesh spacing to be achieved automatically [16]
by deriving an equation describing the relationship
between the mesh density and the concentration profiles.
This equation is then solved simultaneously along with
Eqs. (4) and (5).
Figs. 3 and 4 demonstrate the benefits of automated
mesh point allocation. In Fig. 3, as described in the legend,
a linear mesh spacing would not accurately describe the
profile, since the reaction layer only covers approximately
1% of the film, near the electrode surface. A pre-defined
mesh spacing with, for example, mesh density decreasing
exponentially with v, would be better than nothing, but,
since the substrate profile may be steep near v = 1, a high
mesh density would also be required there. This would be
wasteful of points, and computationally inefficient, if the
concentration profiles are only steep at one of the
boundaries.

Fig. 4 shows the effect of making the mesh density
depend on the second differential of the concentration pro-
files, i.e. the rate of change of the gradient. Here a high
mesh density is required at a position away from the
boundaries. Since this may occur anywhere within the film,
a single pre-defined mesh spacing function would not be
useful.

Both the relaxation and Simplex methods and their
implementation are described in detail by Press et al. [16].
In this paper we only describe how these methods are used
to simulate the immobilized enzyme electrode and to ana-
lyse experimental data. This should be sufficient to allow
the reader to adapt the program for other model systems.
Our programs make use of the subroutines published by
Press et al. [16] and are available from the authors on
request.
3.1. Implementation of the relaxation method

3.1.1. Representation of concentration profiles
In our system, four variables are required to describe the

concentration profiles of mediator and substrate
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Fig. 4. Graphs showing the advantages of considering the second order
differentials of the concentration profiles in the mesh density function. The
full concentration profile is shown in graph (ii). The solid line is the
concentration profile of A (=y1), the dashed line that of S (=y2). Graph (i)
shows the mesh density, dq/dv (=h/Dy7). The mesh density is higher near
to the inner boundary than it is near to the outer boundary, due to the
relative gradients of a and s. The peak in the mesh density at v = 0.017 is
due to P4 and P5 in Eq. (25). This gives a high mesh density where the
gradients of the concentration profiles change rapidly, i.e. at the titration
point. The effect of this is shown by graph (iii), which shows the region of
the concentration profile around the titration point. The distance
0.16 6 v 6 0.18 contains 8 points, compared with an average of approx-
imately 4 points over the same distance in the rest of the film. Simulated
for j = 200, c = 0.2, g = 1, l = 0.001, ae = 1, with weighting parameters,
P1 = 50, P2 = 2.5, P3 = 2.5, P4 = 100, P5 = 100.
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Fig. 3. Graphs showing the advantages of automated mesh point
allocation. The full concentration profile is shown in graph (iii). The
solid line is the concentration profile for A (=y1), the dashed line that for S
(=y2). Graph (ii) shows the profile near the electrode surface. The effect of
the automated mesh point allocation is apparent. Of the 200 points
covering the distance 0 6 v 6 1, 42 points are in the region 0 6 v 6 0.01,
i.e. 21% of the points in 1% of the distance. This is also shown by graph (i)
showing the mesh density, dq/dv (=h/Dy7) which varies from 68 at v = 0 to
0.78 for 0.04 6 v 6 1. The average mesh density is 1. If a linear point
spacing were used, of the 200 points only 2 would lie in the region
0 6 v 6 0.01. Simulated for j = 500, c = 10�5, g = 1, l = 0.001, ae = 1,
with weighting parameters, P1 = 50, P2 = 2.5, P3 = 2.5, P4 = 100,
P5 = 100.
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y1 ¼ a ð18Þ
y2 ¼ s ð19Þ

y3 ¼
da
dv

ð20Þ

y4 ¼
ds
dv

ð21Þ

Then d2a
dv2 is represented as the first order differential equa-

tion dy3

dv .

3.1.2. Automated mesh point allocation

The relaxation method uses a grid of N mesh points to
represent the distance 0 6 v 6 1. Each variable yr above
is therefore an array of values where 0 6 n 6 N.
In order to implement an adaptive non-linear mesh
spacing we require three more yr,n arrays:

y5 ¼ Q ð22Þ

y6 ¼
dQ

dq
ð23Þ

y7 ¼ v ð24Þ

where q is equal to the point number n, i.e. it ranges from 1
to N. The variable Q is proportional to q, but does not
have a defined range of values. The relationship between
Q and distance v at any one point is determined by the
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mesh density function U ¼ dQ
dv . A large value of U indicates

that a high mesh density is required, i.e. a large number of
points within a given distance Dv. The definition of U given
by Press et al. [16] is not suitable for concentration profiles,
so a new definition of U was used. A high mesh density is
required where the concentration profiles are steep, U
should therefore be proportional to da/dv and ds/dv, so
that it is large in, for example, region B of Fig. 2.

For our system, it was also found to be necessary to
have a high mesh density where the gradient of the profile
was rapidly changing, i.e. in region C of Fig. 2. If we ana-
lyse what Bartlett and Pratt [1] call the titration case, i.e. a
situation where both mediator and substrate are consumed
within the film resulting in a change from mediator to sub-
strate limited kinetics through the film, there is a very sharp
change in gradient at the titration point, v*.

Taking account of these considerations, we find that a
suitable definition of U is

U ¼ P 1 þ P 2

da
dv

����
����þ P 3

ds
dv

����
����þ P 4

dðda=dvÞ
dq

����
����

þ P 5

dðds=dvÞ
dq

����
���� ð25Þ

which, in terms of the program variables y, becomes:

U ¼ P 1 þ P 2jy3j þ P 3jy4j þ P 4

dy3

dq

����
����þ P 5

dy4

dq

����
���� ð26Þ

The variables P1 to P5 are weighting parameters, the larger
the value the more effect that part of the equation has
on the mesh spacing. The P variables do not need to be
normalised, since the value of Q is automatically adjusted
so that as 1 6 q 6 N then 0 6 v 6 1. Since it is the magni-
tude, and not the sign, of the differentials in Eq. (25) which
determines the mesh spacing, absolute values are used.

With reference to Fig. 2, a high (relative) value of P1

favours a linear point spacing. A high value for P2 favours
a high mesh density in region B. A high value of P4 favours
a high mesh density in region C. P3 and P5 are the equiva-
lents to P2 and P4 but for the substrate concentration
profile.

The reason for using the method shown in Eqs. (25) and
(26) instead of d2a/dv2 and d2s/dv2 for the second differen-
tials, is that the latter would give the following expression

U ¼ P 1 þ P 2jy3j þ P 3jy4j þ P 4

dy3

dy7

����
����þ P 5

dy4

dy7

����
���� ð27Þ

in which the expression for the mesh density, 1/Dy7 (=1/
Dv) occurs in the definition of the mesh density function,
U. Errors in y7 would thus cause divergent behaviour.

The form of U shown in Eqs. (25) and (26) should be
generally suitable for any system of concentration profiles.

3.1.3. Differential equations

As described by Press et al. [16], G variables require G
differential equations W to solve them. Two of these are
given by the relationships between y1 and y3 and y2 and y4
da
dq
¼ da

dv
dv
dq
)

dy1

dq
¼ y3

dy7

dq
ð28Þ

similarly;

dy2

dq
¼ y4

dy7

dq
ð29Þ

Two more are given by Eqs. (4) and (5):

dy3

dq
¼ dy7

dq

j2y1y2

cy1ð1þ ly2Þ þ y2

ð30Þ

dy4

dq
¼ dy7

dq

j2y1y2

cy1ð1þ ly2Þ þ y2

c
g

ð31Þ

From Eq. (22)

dy5

dq
¼ y6 ð32Þ

As described earlier, there is a linear relationship between q
and Q. Therefore

dy6

dq
¼ 0 ð33Þ

The final differential equation is given by the mesh spacing
function U

dy7

dq
¼ y6

U
ð34Þ
3.1.4. Finite difference representation

These seven equations are expressed in finite difference
form as Wg,n, which couples two points n and n � 1, such
that

dyr;n�1=2

dq
� yr;n � yr;n�1 ¼ ym

r ð35Þ

and

yr;n�1=2 �
yr;n þ yr;n�1

2
¼ 1=2yp

r ð36Þ

The abbreviations ym
r and yp

r are used to simplify the
notation.

Using the notation shown to the right of Eqs. (35) and
(36), the seven finite difference equations are therefore:

W1;n ¼ ym
1 � ðym

7 yp
3Þ=2 ð37Þ

W2;n ¼ ym
2 � ðym

7 y
p
4Þ=2 ð38Þ

W3;n ¼ ym
3 �

j2ym
7 yp

1yp
2

2ðcyp
1ð1þ lyp

2Þ þ yp
2Þ

ð39Þ

W4;n ¼ ym
4 �

cj2ym
7 yp

1yp
2

2gðcyp
1ð1þ lyp

2Þ þ yp
2Þ

ð40Þ

W5;n ¼ ym
5 � yp

6h=2 ð41Þ
W6;n ¼ ym

6 ð42Þ

W7;n ¼ ym
7 �

y
p
6h

2ðP 1þ 1=2P 2jyp
3j þ 1=2P 3jyp

4j þ P 4jym
3 j þ P 5jym

4 jÞ
ð43Þ
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where each Wg,n should be equal to zero for the correct
solution. The variable h is equal to 1/(N � 1), i.e. it is the
average point spacing Dv.
3.1.5. Solution of the equations

For the correct solution, all Wg,n should be zero.
Taking all Wg,n, yr,n, and yr,n�1 into consideration, Eqs.

(15) and (16) become [16]:

Wg;nðyr;n þ Dyr;n; yr;n�1 þ Dyr;n�1Þ

�Wg;nðyr;n; yr;n�1Þ þ
XG

r¼1

ðVg;rDyr;n�1 þ Vg;rþGDyr;nÞ ð44Þ

where

Vg;r ¼
oWg;n

oyr;n�1

ð45Þ

Vg;rþG ¼
oWg;n

oyr;n

ð46Þ

in which 1 6 r 6 G, 1 6 g 6 G, 1 6 n 6 N.
Evaluation of all Dyr,n and Dyr,n�1 therefore requires

inversion of the V matrix. This is performed using subrou-
tines published by Press et al. [16] and will not be discussed
further here.

It can be seen from Eqs. (45) and (46) that the simula-
tion requires prior evaluation of the differentials of every
Vg,n with respect to every yr,n and yr,n�1. Thus with seven
equations and seven variables, 98 differential equations
are required. A few of these will be shown here as exam-
ples. For equation W1:

V1;r ¼
dW1;n

dyr;n�1

; 1 6 r 6 7 ð47Þ

For r = 1 we differentiate Eq. (37) with respect to variable
y1 at point n � 1

W1;n ¼ ym
1 � ðym

7 y
p
3Þ=2 ð48Þ

V1;1 ¼
dðy1;n � y1;n�1 � ðym

7 y
p
3Þ=2Þ

dy1;n�1

ð49Þ

) V1;1 ¼ �1 ð50Þ

For r = 2

V1;2 ¼
dðym

1 � ðym
7 y

p
3Þ=2Þ

dy2;n�1

ð51Þ

) V2;1 ¼ 0 ð52Þ

For r = 3

V1;3 ¼
dðym

1 � ðym
7 ðy3;n þ y3;n�1ÞÞ=2Þ

dy3;n�1

ð53Þ

) V1;3 ¼ �ym
7 =2 ð54Þ

The remaining four V1,r differentials are evaluated simi-
larly. V1,r+1 to V1,r+7 are differentiated with respect to y1

at point n
Vg;rþG ¼
oWg;j

oyr;j

; 8 6 r þ G 6 14 ð55Þ

For example, V1,14 is W1,n differentiated with respect to y7,n

V1;14 ¼
dðym

1 � ððy7;n þ y7;n�1Þy
p
3Þ=2Þ

dy7;n

ð56Þ

) V1;14 ¼ �yp
3=2 ð57Þ

Thus we can see that many of the 98 differential equations
are either 0, or yield a fairly simple expression so that the
task is not so arduous as it might first appear.

A few of the equations are slightly more complicated,
for example V3,1 is

V3;1 ¼
d ym

3 �
j2ym

7
y

p
1
y

p
2

2ðcy
p
1
ð1þly

p
2
Þþy

p
2
Þ

� �
dy1;n

ð58Þ

Application of the quotient rule gives

V3;1 ¼ �
j2ym

7 ðy
p
2Þ

2

2ðcyp
1ð1þ lyp

2Þ þ yp
2Þ

2
ð59Þ
3.1.6. Differentiation of absolute values

When determining V7,3, V7,4, V7,10 and V7,11 it is neces-
sary to differentiate absolute values (recall the expression
for W7,n Eq. (43)). The strict mathematical way to do this
is as follows

djf ðxÞj
dx

¼ signðf ðxÞÞ df ðxÞ
dx

ð60Þ

where sign(f(x)) is +1 for f(x) > 0, �1 for f(x) < 0 and 0 if
f(x) = 0. However, in a limited number of cases this caused
numerical problems when it was implemented. After exten-
sive testing we found that by taking

djf ðxÞj
dx

¼ df ðxÞ
dx

ð61Þ

we were able to obtain robust results for all cases (note: the
use of Eq. (61) only affects the automated grid point allo-
cation and it does not introduce any errors into the simu-
lated concentration profiles or current, it only alters the
efficiency of the simulation). Results obtained in this way
are in good agreement with the analytical solutions corre-
sponding to the different limiting cases. The equation used
for V7,3 is therefore

V7;3 ¼
y

p
6hð1=2P 2 � P 4Þ

2ðP 1 þ 1=2P 2jyp
3j þ 1=2P 3jyp

4j þ P 4jym
3 j þ P 5jym

4 jÞ
2

ð62Þ

This deals with the points between the electrode and the
membrane–solution interface, 2 6 n 6 N � 1. We next con-
sider the boundaries.

3.1.7. Boundary conditions

At the boundaries, the technique is similar. Since there is
no n = 0 point, a differential equation for yr,n�1 is not
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required at the inner boundary where n = 1. Similarly, as
there is no N + 1 point, the equation Wg,n is only differen-
tiated with respect to yr,N. Therefore at the inner boundary
v = 0, n = 1:

Vg;rþG ¼
oWg;1

oyr;1

ð63Þ

while at the outer boundary v = 1, n = N:

Vg;rþG ¼
oWg;Nþ1

oyr;N

ð64Þ

where 1 6 r 6 G. Thus there are potentially a total of 2G

boundary conditions.
To solve G equations, G boundary conditions must be

known. There does not necessarily need to be one bound-
ary condition specific to each y array, i.e. some y arrays
may have both boundary conditions known, while others
have none. For our problem, four boundary conditions
are known for y1 to y4. At the inner boundary v = 0, n = 1

a ¼ ae; W7;1 ¼ y1;1 � ae; V7;8 ¼ 1 ð65Þ
ds
dv
¼ 0; W6;1 ¼ y4;1; V6;11 ¼ 1 ð66Þ

At the outer boundary v = 1, n = N:

da
dv
¼ 0; W1;Nþ1 ¼ y3;N ; V1;10 ¼ 1 ð67Þ

The substrate concentration has its bulk value

s ¼ 1; W2;Nþ1 ¼ y2;N�1; V2;9 ¼ 1 ð68Þ

Three more boundary conditions are required, these relate
to the mesh spacing. At the inner boundary

Q ¼ 0; W5;1 ¼ y5;1; V5;12 ¼ 1 ð69Þ
v ¼ 0; W4;1 ¼ y7;1; V4;14 ¼ 1 ð70Þ

At the outer boundary

v ¼ 1; W3;Nþ1 ¼ y7;N�1; V3;14 ¼ 1 ð71Þ

All other Vg,r are zero. Note that the ordering of the index
g in the equations Wg,n is arbitrary. The ordering of the V

values within the matrix is however vitally important. Due
1

1

1

1

column (r - G)

4

5

6

7

3 4 5 7621

row g

(i)

Fig. 5. Diagram showing the structure and position of the pivot elements in
elements containing a ‘1’ are due to the boundary conditions, Eqs. (65)–(71). A
four columns (1 6 r � G 6 4) must contain at least one non-zero element w
arrangement of the columns. It can be seen that columns 2 and 3 contain only z
7 corrects this, as shown in matrix (ii).
to the method used to invert the matrix, the first 4 � 4
block is used for ‘pivoting’ and must not be singular for
the reasons described by Press et al. [16]. What this means
is that each of the first four columns (1 6 r � G 6 4) of the
matrix Vg,r must contain at least one non-zero value within
its four rows (4 6 g 6 7). This is shown diagrammatically
in Fig. 5 and is explained in detail by Press et al. [16].

3.1.8. Fluxes

Once the correct values of the y arrays have been found
by the simulation, the values of the dimensionless mediator
and substrate fluxes are given by

J A ¼ �
da
dv

����
v¼0

¼ �y3;1 ð72Þ

J S ¼ �
g
c

ds
dv

����
v¼1

¼ g
c

y4;Nþ1 ð73Þ

where JA is the dimensionless form of the flux measured at
the electrode.

3.2. Simplex algorithm

The Simplex algorithm [16,30] was used to determine the
parameter values which gave the best fit of the theoretical
function to the experimental data. The algorithm calculates
the goodness of fit using the equation of minimum squares

f2 ¼
XX

i¼1

ðDataexp �DatatheoÞ2 ð74Þ

where X is the number of experimental data points and
then seeks to minimize f2.

This fitting algorithm requires a set of starting values for
the parameters to be fitted. We generate these by fitting of
our experimental data to the approximate analytical
expressions [1] that describe the system. In a subsequent
paper, we will present a full experimental data set and give
a detailed description of the concerted approach used to
analyse all of the data combining the numerical simulation
methods described here with fitting to the approximate
analytical expressions.
(ii)

1

1

1

1

column (r - G)

4

5

6

7

3 4 5 7621

row g

the Sg,r matrix. The pivot elements are indicated by the solid lines. The
ll other elements are equal to zero. For pivoting to work, each of the first

ithin its first four rows (4 6 g 6 7) [16]. The matrix (i) shows the initial
eros in their first four rows. Swapping column 2 with 5, and column 3 with
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3.3. Incorrect solutions

One potential problem with the relaxation method is
that there may be more than one mathematical solution
which satisfies the set of equations and boundary condi-
tions. With a transient simulation method, since it proceeds
stepwise from the initial conditions, it mimics the physical
behaviour of the system. Such a method, correctly imple-
mented, should therefore reach the correct physical solu-
tion to the system. Steady state simulations, however, do
not follow the physical behaviour of the system, and will
converge on the first mathematically correct, or approxi-
mately correct, solution which they encounter. Usually if
mathematically correct solutions other than the required
physical solution exist, these will not correspond to physi-
cally possible solution, for example they may give negative
concentrations or normalized concentrations greater than
1. Such solutions can therefore be rejected, and the simula-
tion repeated using different starting conditions in order to
look for the correct solution. Routines were implemented
in the simulation program to avoid such impossible solu-
tions from occurring. A subroutine operates on y1,n and
y2,n and sets them equal to zero if they become negative,
or sets them to 1 if they exceed 1. A second subroutine
ensures that the distance must always increase from the
electrode surface to the membrane–solution interface. This
prevents Dy7,n from becoming negative during the auto-
mated mesh point allocation, this is achieved by checking
that y7,n is greater than y7,n�1, if this is not true then y7,n

is set equal to y7,n�1. This results in a step in the y7 array,
from which the simulation can recover to give a smooth y7.

For the Simplex method, there also may be more than one
set of parameters that minimizes f2, i.e. there can be various
local minima. It is therefore important to apply sensible con-
straints on the values of the fitting parameters. These con-
strains usually derive from three different origins: (1)
experimental knowledge about a particular system; (2)
approximate values obtained using approximate analytical
solutions to which the experimental results can also be fitted;
(3) comparison of the fitting parameters obtained when dif-
ferent experimental variables are independently modified for
a given system. Therefore, the model is not only simulating
the experimental response but also predicting its evolution.

In practice, it is sometimes very difficult to find physi-
cally meaningful results when trying to fit three or more
parameters at the same time. In these cases it is usually
more convenient to start by fixing, or tightly constraining,
one parameter until approximate fitting results have been
found for the more uncertain ones.

Finally, it is essential to critically evaluate the progress
and results of the fitting to check that the resulting param-
eters are consistent and physically sensible.

3.4. Accuracy and limitations of the simulations

The default values for the weighting parameters used in
most of our simulations (particularly in all the simulations
shown in this paper) are P1 = 50, P2 = P3 = 2.5 and
P4 = P5 = 100. With the correction subroutines described
above and automated mesh point allocation, the
simulation works reliably up to j � 1000, for c/g < 1, or
j/g1/2 � 1000 for c/g > 1. This combination of parameters
covers all of the physically reasonable situations that could
occur for our electrodes. The higher values of j correspond
to films that are much thicker than any we are able to
achieve experimentally. Over this range of j, g, and c the
simulation was in excellent agreement with the approxi-
mate analytical solutions with the largest deviations found
at the case boundaries where the approximate analytical
solutions are least accurate.

Unlike transient simulation methods, the accuracy of
the relaxation method does not suffer when high rates of
reaction, i.e. large j or j/g1/2 are used. The simulation sim-
ply reaches a point at which it can no longer converge.

Calculations were carried out on a Celeron� CPU
2.80 GHz, 448 MB of RAM personal computer using a
program written in FORTRAN 77 and incorporating the
algorithms for the relaxation and Simplex methods given
by Press et al. [16]. For our problem, with a set of seven
ordinary differential equations and 200 grid points, each
iteration takes less than 1 s and typically less than 100 iter-
ations are required to achieve an acceptable solution.

4. Experimental

4.1. Reagents and materials

The following chemicals were used without further puri-
fication: sodium 3-mercapto-1-propanesulfonate (MPS;
Aldrich), glucose (Merck) and TRIZMA base and Tris–
HCl (Sigma). Doubly distilled water was purified with a
Milli-Q� reagent water system (Millipore). Aqueous solu-
tions of glucose oxidase (EC 1.1.3.4), from Aspergillus niger

were prepared from Fluka reagent without further purifica-
tion. The complex [Os(bpy)2Cl(PyCOH)]Cl (where PyCOH
is pyridinecarbaldehyde) was prepared as previously
reported, osmium poly(allylamine) (PAH-Os) was synthe-
sized as described elsewhere [31].

Gold coated silicon (100) substrates were employed as
electrodes with a 20 nm titanium and a 20 nm palladium
adhesion layer and a 200 nm gold layer thermally evapo-
rated using an Edwards Auto 306 vacuum coating system,
at p < 1 � 10�5 mbar. The freshly evaporated gold film
substrates were used once only. To check the quality of
the gold surface, the electrodes were cycled in 2 M sulphu-
ric acid between 0 and 1.6 V at 0.1 V s�1.

Surface modification. An automatic dipping method
(Microm DS50 programmable slide stainner from Zeiss
Inc.) was used to implement the process described by
Hodak et al. [23] to build up layer-by-layer supramolecular
multilayers comprised of GOx and PAH-Os. First, the gold
surface was modified with sulphonate groups by immersion
in a freshly prepared 20 mM 3-mercapto-1-propane sul-
phonic acid (MPS) solution for 30 min followed by rinsing
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Fig. 6. Graph showing experimental data and numerical simulations for
amperometric response in the presence of b-D-glucose for two different
electrodes. Both electrodes were prepared by electrostatic self-assembly of
GOx and PAH-Os on a MPS-modified gold electrode. The numerical
simulations used the relaxation method to solve the differential equations
for the concentrations. A fitting routine using the Simplex algorithm was
used to find the best fitting parameters for [Ewired] and k: (a) MPS/(PAH-
Os/GOx)3 electrode; (b) MPS/(PAH-Os/GOx)4 electrode.
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with Milli-Q� water. After thiol adsorption, the first PAH-
Os layer was formed by immersion of the thiol-modified Au
substrate in a PAH-Os solution for 10 min. The next and
subsequent layers were deposited onto the modified surface
by alternated immersions in a 1 lM GOx solution and
PAH-Os solution respectively for 10 min each, thoroughly
rinsing in Milli-Q� water at the end of each adsorption step.

A standard three-electrode electrochemical cell was
employed with an operational amplifier potentiostat
(TEQ-Argentina). A Ag/AgCl; 3 M KCl reference elec-
trode was used together with a large area platinum gauze
counter electrode. All electrochemical experiments were
carried out in deoxygenated 0.1 M TRIS buffer solutions
(0.2 M ionic strength) of pH 7.4, at room temperature
(25 ± 2) �C. A SENTECH (Berlin, Germany) variable
angle rotating-analyzer automatic ellipsometer (vertical
type, 2000 FT model) equipped with a 632 nm laser as
polarized light source was employed to measure the film
thickness of the electrodes.

5. Comparison of the simulations to experimental data

We chose to test our numerical simulations on electro-
statically self assembled enzyme electrodes. The GOx/
PAH-Os system [22] is a previously well characterized one.
It has been extensively studied by cyclic voltammetry,
quartz-crystal microbalance, ellipsometry, FT-IR and
Raman spectroscopy [32–36]. We know that film thickness,
Os surface concentration and enzyme loading all increase
with the number of adsorption steps and the catalytic cur-
rent varies with the film thickness. It has been established
that the redox charge propagation within the film is by elec-
tron hopping and the diffusion coefficient has been esti-
mated [37]. We know that we can approximate the
substrate partition coefficient between the solution and the
film, Ks, to unity. Finally, we know that, because of the high
water content of the films, the glucose diffusion coefficient
within the film is almost the same as in pure water [35].

The great advantage of electrostatically self-assembled
systems as compared to other enzyme electrodes, such as
hydrogels, is that we can vary the design of our electrodes
at will choosing from a more or less wide spectrum the
thickness, enzyme loading and Os concentration; and, to
a lesser extent, k the enzyme–mediator reoxidation rate
constant. In this way, we are able to test the simulations
on electrodes covering a wide range of parameters, and
not only on one or two specific cases.

There are five adjustable parameters, j, c, g, l, and ae, in
our model (the values P1–P5 which control the automated
grid point allocation are held fixed). Of these five, typically
only two or three will be well determined by the curve fitting
for any given set of experimental data from a single exper-
iment. Which two or three parameters this is will depend on
the case in which the experiment falls. To determine all five
parameters with acceptable accuracy the results from more
than one experiment carried out over a range of conditions
such as film thickness, enzyme loading, mediator concentra-
tion corresponding to different cases would need to be com-
bined. We will return to this point in a subsequent paper.

Fig. 6 compares the results of the numerical simulations
for two different sets of experimental data for the ampero-
metric response as a function of substrate concentration for
two self-assembled electrodes of different thickness. Table 1
summarises the numerical results.

Curve a is data for a MPS/(PAH-Os/GOx)3 electrode.
The film thickness measured by ellipsometry was 141 nm.
By analyzing the concentration profiles (see Supporting
Information) and the ratio of the kinetic constants to the
diffusion coefficients, we know that the data points can
be fitted to the approximate analytical solution for the thin
layer model [1,23]

i ¼ 2FkcatCwe

1þ kcat

k½A�TOT
þ KMS

½S�1

ð75Þ

where i is the current density, F is the Faraday, Cwe is the
wired enzyme surface concentration and the other parame-
ters have been defined above. Fitting to the thin layer mod-
el has been used before to extract k and Cwe from
calibration plots.

This set of data is particularly useful to test the numer-
ical simulations since we can compare the parameters
resulting from the combined relaxation/Simplex fitting to
the parameters obtained from fitting to the approximate
analytical formula that has been previously validated
experimentally [23].

When appropriately constrained, the relaxation/Simplex
fitting gives the same fitting parameters as a non-linear fit-
ting to Eq. (75). We can see from Fig. 6, that the simula-
tions match our experimental data.

Having tested the approach on a data set for which there
is a good analytical approximation we now go on to use it



Table 1
Parameters obtained from the simulations in Fig. 6

Curve in Fig. 6 Thickness/nm k/M�1 s�1 [Ewired]/mM

a 141 562 1.096
b 222 1379 0.863

V. Flexer et al. / Journal of Electroanalytical Chemistry 616 (2008) 87–98 97
to analyse a data set for which the approximate analytical
approach does not work. Curve ‘b’ in Fig. 6 depicts
another set of experimental data for a MPS/(PAH-Os/
GOx)4 electrode. In this case, the film thickness measured
by ellipsometry was 222 nm. When performing the same
analysis as for the data in curve ‘a’ (see Supporting Infor-
mation), we realize that we cannot fit this data to the thin
layer model or any other approximate analytical equation.
This is one particular case where the numerical simulations
could be of great help in trying to find the unknown param-
eters for our experimental system. Again from Fig. 6 we
can see that there is good agreement between our experi-
mental data and our simulations.

If we compare the parameters obtained for the two elec-
trodes (shown in Table 1), we see that [Ewired] for the two
films differs by about 20%, but that the two k values are
quite different. This can be explained if we consider that
in electrostatically assembled multilayer films, the first lay-
ers are more strongly affected by the substrate so that thin-
ner films may be expected to show different behaviour from
their thicker analogs.
6. Conclusions

We have proposed, and described in detail, a new
numerical simulation method to simulating the steady-state
coupled reaction–diffusion problem for immobilized
enzyme electrodes. We have investigated the advantages
of the relaxation method with non-linear automated mesh
spacing over more commonly applied numerical techniques
for problems of this type.

The relaxation method is a very powerful tool that could
be applied to a wide variety of electrochemical systems,
provided that some form of bounded system can be set
up, either in the form of a membrane or by enhanced mass
transport such as convection or use of a microelectrode.

We have combined the relaxation simulation technique
with the Simplex fitting algorithm and used the fitting routine
to simulate the amperometric response of self-assembled
GOx/PAH-Os electrodes to extract the unknown kinetic
parameters from experimental data for the steady-state cur-
rent at different glucose concentrations. The simulated cur-
rents are shown to be in excellent agreement with the
experimental results. One of the data sets allowed us to com-
pare the fitted parameters from our relaxation/Simplex fitting
routine with parameters obtained by fitting the same data to
an approximate analytical formula for the thin layer model.
The two methods where shown to be in good agreement.

For the second set of experimental data, there was no
unique analytical formula valid for all our data points. In
this case, the fitting routine proved useful for finding
unknown parameters that characterize our system.
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Appendix 1. List of symbols used throughout the text
Symbol
 Definition
A (B)
 oxidised (reduced) mediator

S (P)
 substrate (product) of the enzymatic reaction

E
 enzyme

E1 (E2)
 enzyme in oxidized (reduced) state

[A]
 oxidised mediator concentration

[S]
 substrate concentration

[E]TOT
 total enzyme concentration

KMS
 Michaelis constant

kcat
 catalytic rate constant

k
 mediation rate constant

[A]TOT
 total mediator concentration

[S]1
 substrate concentration in bulk solution

Di
 diffusion coefficient for species i
L
 thickness of the film

Ki
 partition coefficient between film and solution

for species i

x
 distance to the electrode

a
 dimensionless oxidised mediator concentration

s
 dimensionless substrate concentration

j, g, c, l
 dimensionless parameters describing a particular

system

v
 dimensionless distance to the electrode surface

y
 variable

W
 differential equation

n
 point number; (1 6 n 6 N)

N
 number of points

g
 variable number (1 6 g 6 G)

r
 equation number; (1 6 r 6 G)

V
 matrix of equations

h
 average point spacing

q
 mesh point coordinate

Q
 variable mesh coordinate

U
 mesh spacing function

P
 weighting parameter

X
 number of data points

Ji
 flux of species i
f
 function minimized by Simplex algorithm

i
 current density

Cwe
 surface concentration of wired enzyme

F
 Faraday
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Appendix 2. Supplementary data
Supplementary data associated with this article can be
found, in the online version, at doi:10.1016/j.jelechem.
2008.01.006.
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