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a b s t r a c t

In this work we study a particular way of dealing with interference in combinatorial
optimization models representing wireless communication networks. In a typical wireless
network, co-channel interference occurswhenever two overlapping antennas use the same
frequency channel, and a less critical interference is generated whenever two overlapping
antennas use adjacent channels. This motivates the formulation of theminimum-adjacency
vertex coloring problem which, given an interference graph G representing the potential
interference between the antennas and a set of prespecified colors/channels, asks for
a vertex coloring of G minimizing the number of edges receiving adjacent colors. We
propose an integer programming model for this problem and present three families of
facet-inducing valid inequalities. Based on these results, we implement a branch-and-cut
algorithm for this problem, and we provide promising computational results.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

In this work, we are interested in a combinatorial optimization problem arising from frequency assignment problems
in wireless communication networks, that was motivated by the types of interference generated in GSM mobile phone
networks [1].

A wireless network employs some portion of the electromagnetic spectrum to establish communications between
the transmitter/receiver network antennas, called TRXs. A certain part of the electromagnetic spectrum is licensed to
the company operating the network and is divided into discrete channels. Each TRX must operate through one channel,
althoughwhenever two TRXs overlap their coverage areas co-channel interference occurs if both are using the same channel,
and communications cannot be established within the common area. Moreover, if these conflicting TRXs are assigned to
adjacent channels, then the so-called adjacent-channel interference occurs, generating in this case a minor interference only.
In a typical scenario, a good channel assignment must avoid co-channel interference and should avoid adjacent-channel
interference.

Several other constraints arise in practical settings as, e.g., blocked channels and separation constraints (see, e.g., [1–4])
but in this work we focus on the basic model as stated in the previous paragraph. We are interested in the polyhedral
structure generated by such a combinatorial optimization problem, which includes a graph coloring structure with
additional considerations on adjacent channels/colors. Based on these observations, we introduce in thiswork theminimum-
adjacency vertex coloring problem, present an initial polyhedral study and, based on these results, implement a branch-and-
cut algorithm for this problem.
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This paper is organized as follows. In Section 2 we formally state the minimum-adjacency vertex coloring problem
and provide an integer programming model for this problem. Section 3 introduces three families of facet-inducing valid
inequalities for this problem. Section 4 describes the implementation details of our branch-and-cut algorithm, and Section 5
provides some computational experiments. The paper closes in Section 6 with some concluding remarks and future
work.

2. Problem formulation and integer programming model

We first introduce the interference graph G = (V , E) associated with an instance, in such a way that V represents the
set of TRXs in the network and, whenever the coverage areas of two TRXs overlap, an edge in E joins the corresponding
vertices. Throughout this work we shall use the notation n = |V | and m = |E|. Let C = {1, . . . , t} be a set of consecutive
colors representing the t available channels. A C-coloring of G is a function c : V → C such that c(i) ≠ c(j) for every ij ∈ E.
Clearly, a C-coloring of G corresponds to a feasible frequency assignment avoiding co-channel interference. Finally, for every
vw ∈ E, we defineψ(vw) ∈ [0, 1] to be the level of interference generated when the vertices v andw are assigned adjacent
colors/channels.
Minimum-adjacency vertex coloring problem. Given an interference graph G = (V , E), a set of consecutive colors C =

{1, . . . , t}, and an interference function ψ : E → [0, 1], find a C-coloring of G minimizing the total adjacent-channel inter-
ference, i.e.,

min
y∈C(G,C)

−
{ψ(vw) : vw ∈ E and |y(v)− y(w)| = 1},

where C(G, C) represents the set of all C-colorings of G.
In the minimum-adjacency vertex coloring problem we ask for a frequency assignment with no co-channel interference

(i.e., a C-coloring ofG)minimizing the less critical adjacent-channel interference. This provides a good compromise between
forbidding both kinds of interference and allowing themwith a penalty term in the objective function. This problem is clearly
N P -hard since it generalizes the classical vertex coloring problem, thus motivating the integer programming approach
started in this work.

In real-world instances, the number of available frequencies may not be enough to cover the whole network with a
co-channel free assignment. This issue can be addressed by allowing co-channel interference between some prespecified
pairs of adjacent vertices, while penalizing such interference in the objective function. For the sake of simplicity we do
not further develop this idea in the current work. When all co-channel interference is allowed, we obtain the minimum
interference frequency assignment problem. We refer to [5] for a complete survey of further variants of frequency assignment
problems. A relaxation of this type of problems using semidefinite programming is studied by Eisenblätter in [6], obtaining
very strong lower bounds.

Throughout this work we shall consider ψ(vw) = 1 for every vw ∈ E, so the minimum-adjacency vertex coloring
problem reduces to finding a C-coloring of Gwhich minimizes the number of edges receiving adjacent colors. Note that the
adjacencies within the color set C are not circular, i.e., the colors 1 and t are not adjacent if t ≥ 3.

In order to state an integer programming formulation for the minimum-adjacency vertex coloring problem, for every
v ∈ V and every c ∈ C we introduce the binary assignment variable xvc representing whether the color c is assigned to the
vertex v or not.We also introduce, for every vw ∈ E, v < w, the binary adjacency variable zvw assertingwhether the vertices
v andw receive adjacent colors or not. With these definitions, a model for theminimum-adjacency vertex coloring problem
is given by:

min
−
vw∈E

ψ(vw) zvw−
c∈C

xvc = 1 ∀v ∈ V (1)

xvc + xwc ≤ 1 ∀vw ∈ E, v < w, ∀c ∈ C (2)
xvc1 + xwc2 ≤ 1 + zvw ∀vw ∈ E, v < w, ∀c1, c2 ∈ C, |c1 − c2| = 1 (3)

xvc ∈ {0, 1} ∀v ∈ V , ∀c ∈ C (4)
zvw ∈ {0, 1} ∀vw ∈ E, v < w. (5)

Constraints (1) ensure that every vertex is assigned exactly one color from C and constraints (2) forbid adjacent vertices to be
assigned the same color. Constraints (3) force adjacent vertices to be assigned nonadjacent colors unless the corresponding
adjacency variable takes the value 1. Finally, constraints (4) and (5) force the variables to be binary. We call this formulation
the stable-set model, which is a straightforward adaptation of the formulation presented in [7,8] for the classical vertex
coloring problem.

Note that the constraints allow feasible solutions to have active adjacency variables evenwhen the corresponding vertices
are not assigned to adjacent colors. We say that y = (x, z) is an undominated solution if zvw = 0 for every vw ∈ E such that
v andw are assigned to nonadjacent colors. Note that any optimal solution is undominated ifψ(vw) > 0 for every vw ∈ E.
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2.1. Alternative formulations

The orientation model for the classical vertex coloring problem [9] can also be adapted to the minimum-adjacency
vertex coloring problem in a straightforward way. In this model, for every vertex v ∈ V we employ an integer variable
xv ∈ {1, . . . , t} containing the color assigned to v (recall that t = |C |). We also have for every vw ∈ E, v < w, binary
orientation variables ovw and owv in such a way that ovw = 1 if and only if xv < xw and, finally, we employ the adjacency
variables as in the stable-set model.

Wehave also considered anew formulation for vertex coloringproblems, namely thedistancemodel, consisting ofdistance
variables xvw ∈ [−t+1, t−1] containing the distance between the colors assigned to v andw, for every v,w ∈ V , v < w.We
also employ in this model the orientation variables and the adjacency variables. This model is, to the best of our knowledge,
a new approach for vertex coloring problems, which can easily be adapted to the classical vertex coloring problem.

We have performed computational experiments in order to compare the performance of these integer programming
formulations with a pure branch-and-bound procedure. In these experiments we resorted to the instances introduced in
Section 5. According to the results, the proposed stable-set model outperforms both the orientation model and the distance
model, hence suggesting that the stable-set model is a good starting point for the implementation of a branch-and-cut
algorithm. In Section 3we start such an approach by studying the polytope associatedwith this integer programmingmodel.

To conclude this section, it is interesting to note that the representatives model introduced in [10] cannot be adapted to
the minimum-adjacency vertex coloring problem in a straightforward way, since it admits no distance notion among the
assigned colors. This notion can be incorporated to the model by explicitly identifying the color assigned to each vertex but,
unfortunately, this addition greatly affects the model structure. It is also interesting to mention that the classical column
generation approach for the vertex coloring problem presented in [11] can be adapted to a frequency assignment setting in
order to take into account the color adjacencies generated by the color assignment, as was performed in [12,13].

3. Polyhedral study

In this section we introduce the polytope associated with the stable-set formulation. We characterize the dimension of
this polytope for |C | > χ(G), and we present three families of facet-inducing valid inequalities.

Definition 1. Given a graph G = (V , E) and a set of colors C , we define PS(G, C) to be the convex hull of the incidence
vectors (x, z) ∈ Rnt+m of feasible solutions to the stable-set model (1)–(5).

Proposition 1. If |C | > χ(G) and E ≠ ∅, then dim(PS(G, C)) = n(t −1)+m, and a minimal equation system is defined by (1).
Proof. Let λ ∈ Rnt+m and λ0 ∈ R such that λy = λ0 for every feasible solution y ∈ PS(G, C). It suffices to show that (λ, λ0)
is a linear combination of the model constraints (1).

Let vw ∈ E, and consider a feasible solution y = (x, z) ∈ PS(G, C) such that the colors assigned to v and w are
nonadjacent and, furthermore, zvw = 0. Such a solution can always be constructed since |C | > χ(G) ≥ 2 (as E ≠ ∅).
Let y′

= (x, z ′) ∈ PS(G, C) be the feasible solution obtained from y by setting z ′
vw = 1 and leaving the remaining variables

unchanged. The solution y′ is clearly feasible and only differs from y in the zvw-variable, hence λzvw = 0.
Let v ∈ V . Since |C | > χ(G), there exists a feasible solution y = (x, z) ∈ PS(G, C) such that at least one color from C is

not used by any vertex. Let c ∈ C be the color assigned to the vertex v by y, and let c ′
∈ C be a color not used in y. Define

y′
= (x′, z ′) ∈ PS(G, C) to be the feasible solution obtained from y by setting x′

vc = 0, x′

vc′ = 1, and leaving the remaining
x-variables unchanged. The solution y′ is feasible as the color c ′ is not used in y and, furthermore, x only differs from x′ in
the x′

vc-and x′

vc′-variables, and possibly some z-variables. Since λz = 0, we conclude λxvc = λxvc′ . By arbitrarily renaming
the colors, we conclude that λxvc = λxvc′ for any c, c ′

∈ C .
By combining these observations, we conclude that λ is a linear combination of the coefficient vectors of the model

constraints (1). Since the coefficient vectors of these constraints are linearly independent, we conclude that (1) is a minimal
equation system for PS(G, C), so dim(PS(G, C)) = n(t − 1)+ m. �

When |C | = χ(G), the dimension of the polytope strongly depends on the graph structure. Unfortunately, we do not have
a complete characterization of dim(PS(G, C)) in this case and, to the best of our knowledge, the same holds for all known
integer programming formulations of graph coloring which explicitly include a prespecified set of colors. Due to this fact,
we are not able in this work to establish facetness results when |C | = χ(G).

If |C | > χ(G), it can be easily proved that the only facet-inducing constraints from the model are the relaxed constraints
0 ≤ zvw and zvw ≤ 1 for every vw ∈ E, and the non-negativity constraints for the assignment variables.

3.1. Consecutive colors clique inequalities

We introduce in this section a family of valid inequalities dominating the model constraints (3), which showed to be
particularly useful in the branch-and-cut algorithm. These inequalities measure the number of adjacencies generated when
some vertices from a clique in G are assigned into a set of consecutive colors. In this work we consider a clique to be a (not
necessarily maximal) set of pairwise adjacent vertices. If v ∈ V , we define N (v) = {w ∈ V : vw ∈ E} to be the set of
neighbors of the vertex v and, if A ⊆ V , we define NA(v) = N (v) ∩ A to be the set of neighbors in A of the vertex v.
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Definition 2 (Consecutive Colors Clique Inequalities). Let K ⊆ V be a clique of G, and let Q = {c1, . . . , cq} ⊆ C be a set of
consecutive colors such that ci+1 = ci + 1, for i = 1, . . . , q− 1. We define the consecutive colors clique inequality associated
with K and Q to be

−
i∈K

xic1 + xicq +

−
c∈Q\{c1,cq}

2xic

 ≤ (q − 1)+

−
i,j∈K

zij. (6)

Note that for every vw ∈ E, if we define K = {v,w} and we use only two adjacent colors, i.e., |Q | = {c1, c2}, then the
resulting consecutive colors clique inequality dominates the constraints (3) corresponding to the edge vw, and the colors c1
and c2.

In order to prove validity of (6), we need the following notation. Given a C-coloring y of G, if Q ⊆ C is a set of consecutive
colors and W ⊆ V is a set of vertices, we say that Q y

1 , . . . ,Q
y
r ⊆ Q is a color distribution of Q in W given by y, if Q y

i ⊆ Q
is a set of consecutive colors for i = 1, . . . , r , and c ∈ Q y

i if and only if xvc = 1 for some v ∈ W . In other words, a color
distribution of Q inW is a partition of the colors from Q assigned toW into sets of consecutive colors. We say that the color
distribution Q y

1 , . . . ,Q
y
r is minimal if Q y

i and Q y
j do not admit consecutive colors, for i, j ∈ {1, . . . , r}, i ≠ j. It is not difficult

to verify that the minimal color distribution of Q in W is unique up to set permutations.
We say that Q

y
1, . . . ,Q

y
r is an inverse color distribution of Q in W given by y, if Q

y
i ⊆ Q is a set of consecutive colors for

i = 1, . . . , r , and c ∈ Q
y
i if and only if xvc = 0 for each v ∈ W . In other words, an inverse color distribution of Q in W is a

partition of the colors from Q not assigned to W into sets of consecutive colors. We say that the inverse color distribution
Q

y
1, . . . ,Q

y
r is minimal if Q

y
i and Q

y
j do not admit consecutive colors, for i, j ∈ {1, . . . , r}, i ≠ j.

If y = (x, z) ∈ PS(G, C) is a feasible solution, we say that the variable xvc is active in y if xvc = 1, for v ∈ V and c ∈ C .
Similarly, we define the variable zvw to be active in y if zvw = 1, for vw ∈ E.

Proposition 2. The consecutive colors clique inequalities (6) are valid for PS(G, C).

Proof. Let y = (x, z) ∈ PS(G, C) be an integer feasible solution and, for j = 1, . . . , q, define δj = 1 if the color cj is assigned
to some vertex of K and δj = 0 otherwise. Let Q y

1 , . . . ,Q
y
r be a minimal color distribution of Q in K given by y. We can state

the LHS of (6) as

−
v∈K

xvc1 + xvcq +

−
c∈Q\{c1,cq}

2xvc

 =


r−

i=1

2|Q y
i |


− δ1 − δq, (7)

since the only active variables among xvc , for v ∈ K and c ∈ Q , are some variables corresponding to colors in Q y
1 , . . . ,Q

y
r ,

and each of these colors is assigned to exactly one vertex in K , since K is a clique. We subtract δ1 resp. δq in the RHS of (7) so
the color c1 resp. cq contributes with one unit (instead of two) to the LHS of (6). On the other hand, we can bound the RHS
of (6) by

(q − 1)+

−
v,w∈K

zvw ≥ (q − 1)+

r−
i=1

(|Q y
i | − 1) = (q − 1)− r +

r−
i=1

|Q y
i |, (8)

since Q y
i generates exactly |Q y

i | − 1 active adjacency variables, for i = 1, . . . , r .
The number of colors from Q assigned to vertices in K is

∑r
i=1 |Q y

i |. Moreover, since the color distribution Q y
1 , . . . ,Q

y
r

is minimal, then no pair of sets Q y
i and Q y

j admit consecutive colors, so there exist at least r − 1 colors in Q \ {c1, cq} not
assigned to vertices in K . Combining these observations, we conclude

r−
i=1

|Q y
i | + (r − 1)+ (1 − δ1)+ (1 − δq) ≤ q, (9)

as (1− δj) = 1 only when the color cj is not assigned to any vertex from K . By adding
∑r

i=1 |Q y
i | to each side of (9) we obtain

r−
i=1

2|Q y
i |


− δ1 − δq ≤ (q − 1)− r +

r−
i=1

|Q y
i |.

By combining (7), (8), and (9), we conclude that (6) holds for y. Since y is an arbitrary feasible solution, the inequality (6) is
valid for PS(G, C). �

We now show that the consecutive colors clique inequalities induce facets of PS(G, C) under suitable hypotheses. We first
state a preliminary lemma characterizing the feasible solutions satisfying these inequalities with equality.
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Lemma 1. If |C | > 2|K | − |Q | + 1, then a feasible solution y ∈ PS(G, C) satisfies (6) with equality if and only if

(i) for each pair {ci, ci+1} of consecutive colors in Q , at least one of them is assigned to some vertex in K ,
(ii) there are no adjacency variables zvw = 1, with v,w ∈ K , such that v or w are assigned colors in C \ Q , and
(iii) there are no adjacency variables zvw = 1, with v,w ∈ K , such that v andw are assigned nonadjacent colors.

Proof. Assume first that the integer feasible solution y = (x, z) ∈ PS(G, C) satisfies (6) with equality. If the condition (iii)
does not hold, then there exists some active-adjacency variable zvw = 1, with v,w ∈ K , such that v or w are assigned
nonadjacent colors. If we set zvw = 0, the resulting solution is still feasible but the RHS of (6) is smaller, hence y does not
satisfy (6) with equality, a contradiction.

If the condition (iii) holds but the condition (ii) does not hold, then there exists some active-adjacency variable zvw = 1,
with v,w ∈ K , such that v or w are assigned colors outside Q . Assume w.l.o.g. that xvc = 1, for c ∈ C \ Q . If all colors in Q
are used by vertices from K , reorder the colors in C \ Q in such a way that no two vertices from K receiving colors outside
Q are assigned adjacent colors. Such a reordering is possible if there are at least 2(|K | − |Q |) + 1 colors in C \ Q , which is
guaranteed by the hypothesis. After this operation we can set zvw = 0, hence decreasing the RHS of (6), which implies that
y does not satisfy (6) with equality, a contradiction.

Now, if there exists some color c ′
∈ Q not assigned to any vertex inK , it is possible to swap the color classes corresponding

to the colors c and c ′. Suppose c ′
= c1 and assume w.l.o.g. that w is not assigned to the color preceding c1 (if it is we can

swap the color classes corresponding to v and w). If we set xvc1 = 1 and zvw = 0, we increase the LHS of (6) by one unit.
Furthermore, the RHS is not increased even if xw′c2 = 1 for some w′

∈ K , since zvw is now equal to 0. The same happens if
c ′

= cq assuming that w is not assigned to the color following cq. Suppose now that c ′
∈ Q \ {c1, cq}, then setting xvc′ = 1

and zvw = 0will increase the LHS of (6) by 2. Furthermore, the RHS increases by atmost one unit even if both adjacent colors
to c ′ are assigned to vertices in K , since zvw is again now equal to 0. After this operation, the difference between the RHS and
the LHS of (6) is reduced (and the obtained solution is feasible), hence y does not satisfy (6) with equality, a contradiction.

Therefore, if the conditions (ii) or (iii) do not hold then y does not satisfy (6) with equality, so assume that (ii) and (iii) are
met. Let Q y

1 , . . . ,Q
y
r be a minimal color distribution of Q in K , and let Q

y
1, . . . ,Q

y
r be a minimal inverse color distribution of

Q in K . Since the only active x-variables in (6) are the variables corresponding to colors in Q y
1 , . . . ,Q

y
r , and each such color

is assigned to exactly one vertex in K , we can rewrite the LHS of (6) as

−
v∈K

xvc1 + xvcq +

−
c∈Q\{c1,cq}

2xvc

 =


r−

i=1

2|Q y
i |


− δ1 − δq, (10)

where δj = 1 if the color cj is assigned to some vertex in K and δj = 0 otherwise. Furthermore, the color distribution
Q y
1 , . . . ,Q

y
r and the inverse color distribution Q

y
1, . . . ,Q

y
r define a partition of Q , thus

|Q | = q =

r−
i=1

|Q y
i | +

r−
j=1

|Q
y
j |. (11)

Finally, by (ii) and (iii) we can assume that zvw = 1 for v,w ∈ K only if v andw are assigned colors from Q , therefore−
v,w∈K

zvw =

r−
i=1

(|Q y
i | − 1). (12)

By replacing (10), (11), and (12) in the expression of the valid inequality (6), we conclude that (6) is satisfied with equality
if and only if

r−
i=1

2|Q y
i |


− δ1 − δq =


r−

i=1

|Q y
i | +

r−
j=1

|Q
y
j |


− 1 +

r−
i=1

(|Q y
i | − 1). (13)

Restating this equation, we obtain

r−
j=1

|Q
y
j | = r + 1 − δ1 − δq = (r − 1)+ (1 − δ1)+ (1 − δq). (14)

Therefore, the number of colors from Q \ {c1, cq} not assigned to vertices in K is exactly r − 1, and this holds if and only if
Q

y
i is a singleton, for i = 1, . . . , r or, equivalently, at least one color from each pair of consecutive colors in Q is assigned to

some vertex in K . �

Theorem 1. If |C | > χ(G), |C | > |Q |, |C | ≥ |K | + 5, |C | ≥ 2|K | − |Q | + 3, and |K | ≥
|Q |

2 + 1, then the consecutive colors
clique inequality (6) induces a facet of PS(G, C).
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(a) Pair of solutions used in Claim 3.

(b) Pair of solutions used in Claim 4.

Fig. 1. Constructions for the proof of Theorem 1.

Proof. Let (π, π0) ∈ Rnt+m+1 be the coefficient vector of (6), and let F be the face of PS(G, C) defined by (6). Let λ ∈ Rnt+m

and λ0 ∈ R such that λy = λ0 for every y ∈ F . We shall verify that λ is a linear combination of π and the coefficient vectors
of the model constraints (1), hence proving that F is a facet of PS(G, C).

Claim 1 (λzvw = 0 for every vw ∈ E(V \ K)). Let y = (x, z) ∈ PS(G, C) be a feasible solution satisfying (6) with equality such
that v andw are not assigned adjacent vertices (such a solution exists as |C | > χ(G)), and construct the solution y′

= (x, z ′) only
differing from y in z ′

vw = 1. This new solution is feasible and satisfies (6) with equality, as zvw does not appear in (6). Therefore,
λy = λ0 = λy′, hence λzvw = 0. �

Claim 2 (λxvc = λxvc′ for every v ∉ K and every c, c ′
∈ C). Since |C | > χ(G) we can construct a feasible solution

y = (x, z) ∈ PS(G, C) satisfying (6)with equality and such that the color c ′ is not assigned to any vertex, and such that xvc = 1.
Let y′

= (x′, z ′) be the feasible solution obtained from y by setting x′

vc′ = 1 and x′
vc = 0, and modifying the variables z ′

vw , for
w ∈ N (v) accordingly. Note that y′ is feasible as c ′ is not assigned to any vertex in y. Since both y and y′ satisfy (6)with equality
and Claim 1 implies λzvw = 0 for w ∈ N (v), the claim follows. �

Claim 3 (λxvc1 = λxvcq = λxvc − λzvw for every v,w ∈ K and c ∉ Q ). Let y = (x, z) ∈ PS(G, C) be a feasible solution
satisfying (6) with equality and such that xvc1 = 1 and xwc2 = 1 for some w ∈ K . Further, we assume that there exists some
color c ∉ Q not used by y, as |C | > χ(G), and that the colors adjacent to c are not assigned to any vertex in K . We need
|C | ≥ 2|K | − |Q | + 3 for this construction, which is guaranteed by the hypotheses. Let y′

= (x′, w′) be the feasible solution
obtained from y by setting x′

vc = 1 and adjusting the adjacency variables accordingly (see Fig. 1 (a) for an illustration of these
solutions, where the symbol ∅K denotes that no vertex from K is assigned the corresponding color). The solution y′ is feasible
by construction and, moreover, by Lemma 1 it also satisfies (6) with equality. The solutions y and y′ only differ in the variables
xvc1 , xvc , zvw , and possibly some adjacency variables with vertices in NV\K (v). Claim 1 implies λzvu = 0 for every u ∈ NV\K (v),
hence λxvc1 + λzvw = λxvc . By repeating the procedure with the colors cq and cq−1 instead of c1 and c2, respectively, we obtain
λxvcq +λzvw = λxvc . By arbitrarily renaming the colors and arbitrarily selecting w, we conclude that λxvc1 = λxvcq = λxvc −λzvw
for every v,w ∈ K and every c ∉ Q . �

Note that Claim 3 implies λxvc = λxvc′ for v ∈ K and c, c ′
∉ Q , and λzvw1

= λzvw2
for all v,w1, w2 ∈ K .

Claim 4 (λxvc = λxvc′ −λzvw1
−λzvw2

for every v ∈ K , c ∈ Q \{c1, cq}, c ′
∉ Q , and everyw1, w2 ∈ K ). Let y = (x, z) ∈ PS(G, C)

be a feasible solution satisfying (6) with equality and such that xvc = 1. We also assume that w1 and w2 are assigned the two
colors adjacent to c. Further, we assume that there exists some color c ′

∉ Q not assigned to any vertex, and that the colors
adjacent to c ′ are not assigned to any vertex from K (see Fig. 1 (b)). This assumption is feasible as |C | ≥ 2|K | − |Q | + 3 by
hypothesis. Let y′

= (x′, z ′) be the feasible solution obtained from y by setting x′

vc′ = 1. Again, the solution y′ is valid since
the color c is not assigned to any vertex in y, and Lemma 1 implies that y′ satisfies (6) with equality. The solutions y and y′ only
differ in the variables xvc , xvc′ , zvw1 , zvw2 , and possibly some additional adjacency variables zvu with u ∉ K for which λzvu = 0.
Hence Claim 1 implies λxvc = λxvc′ − λzvw1

− λzvw2
. By arbitrarily renaming the colors and arbitrarily selecting w1 and w2, we

conclude that λxvc = λxvc′ − λzvw1
− λzvw2

for every v ∈ K , c ∈ Q \ {c1, cq}, c ′
∉ Q , and everyw1, w2 ∈ K. �

Note that Claim 4 implies λxvc = λxvc′′ for all c, c
′′

∈ Q \ {c1, cq}.
Now, for every v ∉ K , we define βv = λxvc , where c ∈ C is an arbitrary color. Note that the definition of βv does not

depend on the particular choice of c , by Claim 2. On the other hand, for every v ∈ K , define βv = λxvc , where c ∈ C \ Q .
Again, the definition of βv does not depend on the choice of c , since Claim 3 implies λxvc = λxvc′ for every v ∈ K and every
c, c ′

∉ Q . Finally, define α = λzvw for some v,w ∈ K , which is well defined as Claim 3 also implies λzv1w1
= λzv2w2

for every
v1, v2, w1, w2 ∈ K .
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Claim 3 implies λxvc1 = λxvcq = βv − α for every v ∈ K which, combined with Claim 4 yields λxvc = βv − 2α for each
v ∈ K and c ∈ Q \ {c1, cq}. These observations imply

λ =

−
v∈V

βvη
(v)

− απ,

where η(v) represents the coefficient vector of the model constraint (1), for v ∈ V . Therefore, the consecutive colors clique
inequality (6) induces a facet of PS(G, C). �

Next we present a large family of valid inequalities generalizing (6).

Definition 3. Let K ⊆ V be a clique of G. Let Q 1
= {c11 , . . . , c

1
q1}, . . . ,Q

p
= {cp1, . . . , c

p
qp} ⊆ C be p disjoint sets of

consecutive colors such that for every h ∈ {1, . . . , p}, chi+1 = chi + 1 for i = 1, . . . , qh − 1. We define the multi-consecutive
colors clique inequality associated with K and Q 1, . . . ,Q p to be

p−
h=1

−
i∈K

xich1 + xichqh
+

−
c∈Q h\{ch1 ,c

h
qh }

2xic

 ≤

p−
h=1

(qh − 1)+

−
i,j∈K

zij. (15)

Note that Q h and Q h+1 may be adjacent sets but in that case the resulting inequality is dominated by the multi-consecutive
colors clique obtained by using Q h

∪ Q h+1 as a unique set. The proof of validity of these inequalities is very similar to the
proof of Proposition 2, and is therefore omitted.

Proposition 3 ([14]). The multi-consecutive colors clique inequalities (15) are valid for PS(G, C).

Note that the multi-consecutive colors clique inequalities are not dominated by the sum of the consecutive colors clique
inequalities associated to Q 1, . . . ,Q p since the sum of the adjacency variables over the edges in K appears only once in
(15). Moreover, computational results obtained using these inequalities outperformed the ones using (6). We conjecture
that these inequalities define facets of PS(G, C), under similar hypothesis as in Theorem 1.

3.2. Consecutive colors inner clique inequalities

In this and the following sectionwe introduce two classes of facet-inducing inequalities for PS(G, C) arising from a clique
K ⊆ V and a distinguished vertex k ∈ K . In these constructions, the clique structure is crucial both for validity and facetness,
suggesting the importance of the cliques of the interference graph for the structure of PS(G, C). The proof of facetness of the
inequalities presented in this and the following section go along the same lines as the proof of Theorem 1, and are therefore
omitted.

Let K ⊆ V be a clique, k ∈ K be some vertex of K , and {c1, c2, c3} ⊆ C be a set of three consecutive colors. If some vertex
v ∈ K \ {k} receives the color c2 then an adjacency with k is generated if the latter receives either c1 or c3. This idea can be
generalized for a set Q = {c1, . . . , cq} ⊆ C of an odd number of consecutive colors; if vertices from K \ {k} are using every
color ci ∈ Q with an odd index i, then any color cj ∈ Q with an even index j generates adjacencies when assigned to k. The
following family of valid inequalities arises from this observation.

Definition 4 (Consecutive Colors Inner Clique Inequality). Let K ⊆ V be a clique of G, and fix a vertex k ∈ K . Let
Q = {c1, . . . , cq} ⊆ C , with an odd q, be a set of consecutive colors such that ci+1 = ci + 1 for i = 1, . . . , q − 1. Let
I = {c1, c3, . . . , cq} and P = {c2, c4, . . . , cq−1}. We define the consecutive colors inner clique inequality associated with K , k
and Q to bexkc1 + xkcq +

−
ci∈I\{c1,cq}

2xkci +
−
cj∈P

xkcj

+

−
v∈K\{k}

−
cj∈P

xvcj ≤
q − 1
2

+

−
v∈K\{k}

zvk. (16)

Note that if Q = {c1, c2, c3}, K = {v,w} and k = v then the resulting consecutive colors inner clique inequality
dominates the constraint (3) corresponding to the edge vw and the colors c1 and c2 (resp. the edge vw and the colors c3
and c2).

Proposition 4. The consecutive colors inner clique inequalities (16) are valid for PS(G, C).

Proof. Let y = (x, z) ∈ PS(G, C) be a feasible solution. For c ∈ C , define δc ∈ {0, 1} to be

δc =

−
v∈K\{k}

xvc,
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i.e., δc = 1 if and only if c is assigned to a vertex from K \ {k}. For any color cj ∈ P , if δcj(xkcj−1 + xkcj+1) = 1, then a color
adjacency exists between k and some vertex from K \ {k}. Since K is a clique, we can bound the RHS of (16) by

q − 1
2

+

−
cj∈P

δcj(xkcj−1 + xkcj+1) ≤
q − 1
2

+

−
v∈K\{k}

zkv. (17)

On the other hand, we can write the LHS of (16) as−
cj∈P

(xkcj−1 + xkcj + xkcj+1)+

−
cj∈P

δcj . (18)

Hence we can prove that (16) holds by showing that (18) is not greater than the LHS of (17). To this end, for every cj ∈ P we
show

(xkcj−1 + xkcj + xkcj+1)+ δcj ≤ 1 + δcj(xkcj−1 + xkcj+1). (19)

If δcj = 0, then (19) holds as (xkcj−1 + xkcj + xkcj+1) ≤ 1. If δcj = 1, then (19) holds only if xkcj = 0, and this is true as δcj = 1
and K is a clique. By summing (19) over cj ∈ P , we obtain that (18) is lesser or equal than the LHS of (17), hence (16) holds.

Since the solution y is arbitrary, the inequality (16) is valid for PS(G, C). �

Theorem 2 ([15]). If |C | > χ(G) and |C | ≥ |K |+5, then the consecutive colors inner clique inequalities (16) are facet-defining
for PS(G, C).

It is interesting to note that we can define the set Q = {c1, . . . , cq} even when c1 resp. cq represents a color outside the
limits of C , i.e., when c2 is the first color resp. cq−1 is the last color from C . The inequalities obtained by omitting the variables
associated to c1 resp. cq are still valid, and they also define facets of PS(G, C).

To conclude this section, note that for any undominated integer solution y = (x, z) ∈ PS(G, C) there are several
consecutive colors inner clique inequalities satisfied with equality by y. To this end, take a vertex k ∈ V and call c the
color assigned to it. If c ≠ 1, t , then by defining Q = {c − 2, c − 1, c, c + 1, c + 2} and taking any clique K such that
k ∈ K , the associated valid inequality is satisfied with equality by y. If c is the first color resp. the last color of C , by defining
Q = {c, c + 1, c + 2} resp. Q = {c − 2, c − 1, c} we again obtain a consecutive colors inner clique inequality satisfied with
equality by y.

3.3. Consecutive colors subset clique inequalities

The class of valid inequalities introduced in this section arises from similar considerations as for the inner clique
inequalities.

Definition 5. Let K ⊆ V be a clique of G, and fix a vertex k ∈ K . Let Q = {c1, . . . , cq} ⊆ C be a set of consecutive colors such
that ci+1 = ci + 1 for i = 1, . . . , q − 1. We define the consecutive colors subset clique inequality associated with K , k and Q
to be 

xkc1 + 2xkc2 +

q−2−
i=3

3xkci + 2xkcq−1 + xkcq


+

−
v∈K\{k}

q−1−
i=2

xvci ≤ (q − 2)+

−
v∈K\{k}

zvk. (20)

Proposition 5. The consecutive colors subset clique inequalities (20) are valid for PS(G, C).

Proof. Let y = (x, z) ∈ PS(G, C) be a feasible solution. For c ∈ C , define δc ∈ {0, 1} to be

δc =

−
v∈K\{k}

xvc,

i.e., δc = 1 if and only if c is assigned to a vertex from K \ {k}. For every i = 2, . . . , q− 1, note that if δci(xkci−1 + xkci+1) = 1,
then a color adjacency exists between k and some vertex from K \ {k}. So, we can bound the RHS of (20) by

(q − 2)+

q−1−
i=2

δci(xkci−1 + xkci+1) ≤ (q − 2)+

−
v∈K\{k}

zkv. (21)

Note that no color adjacency is counted more than once since k receives at most one color from Q . On the other hand, we
can write the LHS of (20) as

q−1−
i=2

(xkci−1 + xkci + xkci+1)+

q−1−
i=2

δci . (22)
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To conclude the proof, we show that (20) holds by verifying that (22) is not greater than the LHS of (21). To this end, note
that

(xkci−1 + xkci + xkci+1)+ δci ≤ 1 + δci(xkci−1 + xkci+1) (23)

for every i = 2, . . . , q − 1. Indeed, if δci = 0, then (23) holds as (xkci−1 + xkci + xkci+1) ≤ 1. If δci = 1, then (23) holds only if
xkci = 0, and this is true as δci = 1. By summing (23) over i = 2, . . . , q− 1, and combining (22) and (21), we get the original
valid inequality (20).

Since the solution y is arbitrary, the inequality (20) is valid for PS(G, C). �

Theorem 3 ([15]). If |C | > χ(G) and |C | ≥ |K | + 5, the consecutive colors subset clique inequalities (20) are facet-defining for
PS(G, C).

As in the consecutive colors inner clique inequalities, the setQ = {c1, . . . , cq} can bedefined evenwhen c1 resp. cq represents
a color outside the limits of C . The inequalities obtained by omitting the variables associated to c1 resp. cq are still valid, and
they also define facets of PS(G, C).

Again, we conclude this section noting that for any undominated integer solution y = (x, z) ∈ PS(G, C) there are several
consecutive colors subset clique inequalities satisfied with equality by y. To this end, take a vertex k ∈ V and call c the
color assigned to it. If c ≠ 1, t , then by defining Q = {c − 2, c − 1, c, c + 1, c + 2} and taking any clique K such that
k ∈ K , the associated valid inequality is satisfied with equality by y. If c is the first color resp. the last color of C , by defining
Q = {c, c + 1, c + 2} resp. Q = {c − 2, c − 1, c} we obtain a consecutive colors subset clique inequality satisfied with
equality by y (these are actually consecutive colors inner clique inequalities).

4. The branch-and-cut algorithm

Webriefly describe in this section the implementation of a branch-and-cut algorithm for theminimum-adjacency vertex
coloring problem, based on the polyhedral results presented in Section 3.

4.1. Formulation and valid inequalities

We start with the stable-set formulation (1)–(5), replacing the inequalities (3) by the dominating consecutive colors
clique inequalities associated with each edge of G and each pair of consecutive colors. In the branch-and-cut algorithm we
also consider the clique inequalities introduced in [7] in a similar context. If K ⊆ V is a clique of G and c ∈ C , the clique
inequality associated with K and c is−

v∈K

xvc ≤ 1. (24)

This inequality is valid and, if K is a maximal clique, then (24) induces a facet of PS(G, C). In our implementation we
dynamically add cuts generated from the following classes of valid inequalities:
• consecutive colors inner clique inequalities (CCIK),
• consecutive colors subset clique inequalities (CCSK),
• multi-consecutive colors clique inequalities (MCCK), and
• clique inequalities (K).

4.2. Separation procedures

We have designed both exact and heuristic separation procedures for each class of valid inequalities, in order to address
the tradeoff between the number of generated cuts and the separation times. As all these classes require a clique in the
interference graph, we resort to generic clique-searching exact and heuristic methods for the CCIK, CCSK, and K inequalities,
and the MCCK inequalities are handled in a slightly different way. We now describe these computational procedures.

Let ŷ = (x̂, ẑ) be the fractional solution after solving the linear relaxation associated with some node in the branch-and-
cut tree, and suppose we want to separate the CCIK inequalities, i.e., we search for a clique K ⊆ V , a vertex k ∈ K and a set
of consecutive colors Q = {c1, . . . , cq} ⊆ C such thatx̂kc1 + x̂kcq +

−
ci∈I\{c1,cq}

2x̂kci +
−
cj∈P

x̂kcj

+

−
v∈K\{k}

−
cj∈P

x̂vcj >
q − 1
2

+

−
v∈K\{k}

ẑvk. (25)

As the number of vertices in G and the number of odd-sized consecutive colors sets are both linear on the instance size, we
search for a clique K ⊆ V satisfying (25) for each possible combination of k and Q . Fix, therefore, some vertex k ∈ V and
some set Q = {c1, . . . , cq} ⊆ C and, for each vertex v ∈ N (k), define the weight in ŷ of v with respect to k as

ωk(v) =

−
cj∈P

x̂vcj

− ẑvk.
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Under this definition, (25) can be written as

−
v∈K\{k}

ωk(v) >
q − 1
2

−

x̂kc1 + x̂kcq +

−
ci∈I\{c1,cq}

2x̂kci +
−
cj∈P

x̂kcj

 = σ̂k

so the separation problem is, in this case, equivalent to searching for a clique K with weight greater than σ̂k. A similar
approach can be performed for the CCSK and the K inequalities, by defining suitable vertex weights as follows:

CCSK : ωk(v) =


q−1−
i=2

x̂vci


− ẑkv

K : ωk(v) = x̂vc .

The exact clique-searching procedure is based on a backtracking algorithm, which searches for all possible cliques in the
neighborhood of the vertex k. At each level in the backtracking tree, a new vertex from N (k) is considered for addition
into/exclusion from the clique under construction. The implemented algorithm can be configured to yield (a) all cliques,
(b) the first N , or (c) the best N cliques generating violated inequalities. As this procedure is clearly exponential, we have
implemented the following additional techniques in order to make the search as efficient as possible:

• Positive weights only. We exclude from the search the vertices in N (k)with negative weights (note that negative weights
are indeed possible in this setting).

• Node limit. We impose a limit on the number of nodes that the backtracking visits in the enumeration tree, in order to
keep the separation times under control.

• Node bounding. At each node a in the backtracking tree, a bounding step is performed as follows. Let K be the partial
clique associated with the node, and let T be the set of vertices not yet visited by the procedure (i.e., corresponding to
the vertices associated with the subtree rooted at the node a). An upper bound of the best possible clique in the subtree
rooted at the node a is given by ω(K) + ω(T ), attained if K ∪ T is indeed a clique. If this bound is smaller than the best
clique found so far, then the node a is closed and its descendants are no further examined. It is interesting to note that
ω(T ) need not be computed at each node, since T corresponds to the last |T | vertices of N (k), thus it only depends on
the level of a within the tree. This way, only |N (k)| − 1 bounds must be precomputed before the backtracking begins.

• Vertex ordering. The backtracking algorithm tests the vertices with larger weights first, in order to construct the first
cliques in a greedy-like way, thus giving the bounding step more chances of succeeding.

These additions to the backtracking procedure allowed to cut significant portions of the enumeration tree, generating shorter
running times without affecting the separation results.

On the other hand, the heuristic separation procedure consists of a standard greedy algorithm for clique searching. The
algorithm starts with an arbitrary vertexw ∈ N (k) defining a singleton clique K = {w} and visits the vertices ofN (k)\{w}

in decreasing order of their weights, greedily adding each vertex v to K if K ∪ {v} is a clique.

4.3. Separation of the MCCK inequalities

The separation procedure for theMCCK inequalities first tries to find a violated consecutive colors clique (CCK) inequality,
and then it tries to extend this inequality in order to find one or more violated MCCK inequalities.

The separation of the CCK inequalities consists in finding a clique K and a set of consecutive colors Q such that the CCK
inequality associated with K and Q is violated. Since the total number of sets with consecutive colors is O(t2), we search for
a clique K for every possible set Q of consecutive colors. Once the set Q is fixed, we define the weight in ŷ = (x̂, ẑ) of v ∈ V
with respect to K as

ωK (v) =

x̂vc1 + x̂vcq +

−
c∈Q\{c1,cq}

2x̂vc

−

−
w∈K

1
2
ẑvw.

Note that, unlike the separation procedures in Section 4.2, in this case theweight depends on the clique K being constructed.
Under this definition, a violated CCK inequality can be written as

∑
v∈K ωK (v) > |Q | − 1. The backtracking procedure is

applied with these weights, but the vertex ordering and the bounding step cannot be applied in this case. To overcome this
difficulty, for each vertex v ∈ N (k), we define the estimated weight to be

ω̃(v) = x̂vc1 + x̂vcq +

−
c∈Q\{c1,cq}

2x̂vc, (26)

and such weights are used for ordering the vertices and perform the bounding step in the backtracking procedure. Note that
these estimated weights do not depend on the clique K under construction. Since ω̃(v) ≥ ωK (v) for every v ∈ N (k), these
estimated weights can be properly used in order to perform the bounding step within the backtracking procedure. These
estimated weights are also used in the greedy separation heuristic for the CCK inequalities.
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Fig. 2. Extension from a CCK to an MCCK inequality.

Once a violated CCK inequality is found, say associated with a clique K ⊆ V and a set of consecutive colors Q ⊆ C ,
we try to extend this inequality to a violated MCCK inequality. To this end, we set Q 1

= Q and we try to find new sets
Q 2, . . . ,Q p

⊆ C defining a violated MCCK inequality.
We first search for a set Q 2

= {c21 , . . . , c
2
q2} nonadjacent to Q 1, as in Fig. 2(a). If the associated MCCK inequality is not

violated, both colors c21 and c2q2 are moved forward, as in Fig. 2(b), until the resulting inequality is violated. Once such an
inequality is found, we try to enlarge the interval Q 2 by moving c2q2 forward as long as the resulting inequality remains
violated. When the inequality is not violated (as in Fig. 2(c)), we fix c2q2 to be the preceding color (i.e., such that the resulting
inequality is violated), so that Q 2 is set as in Fig. 2(d). We repeat this procedure until there are no colors left.

4.4. Additional techniques

Primal heuristic. We implement a standard primal heuristic based on solution rounding, in order to exploit the potential
structure in the fractional solutions at each node in the branch-and-cut tree. Let (x̂, ẑ) be the current (fractional) solution.
We resort to a straightforward constructive heuristic, by selecting at each step a vertex v and a color c such that x̂vc =

max{x̂v′c′ : 0 < x̂v′c′ < 1}, and we set x̂vc = 1, x̂vc′ = 0 for every c ′
∈ C \ {c}, and x̂wc = 0 for every w ∈ N (v).

These selections are performed in an arbitrary order and the LP problem is not resolved after each variable setting. This
procedure is repeated until there are no x-variables with fractional values and, upon termination, the z-variables are given
values accordingly. A feasible solution arises from this procedure if every vertex is assigned exactly one color.
Selection of the branching variable. Since the x-variables define the feasible solution, we branch on these variables only.When
a branching step is performed, a fractional x-variable is selected and two children nodes are created, by setting this variable
to 0 or 1, respectively.
Variable fixing by logical implications. Whenever a variable is fixed by the branching process, we perform the following
straightforward variable fixings in order to reduce the subproblem size. For each v ∈ V and c ∈ C such that xvc is fixed
to 1, we set xvc′ = 0 for every c ′

∈ C \ {c} and xwc = 0 for every w ∈ N (v). Furthermore, for every vw ∈ E and c1, c2 ∈ C
with xvc1 and xwc2 both fixed to 1, we set zvw = 1 if |c1 − c2| = 1 and zvw = 0 otherwise.

5. Computational experiments

We tested the branch-and-cut algorithm on subgraphs from the celar instances set from the euclid calma project [16].
Although these instances do not explicitly define co-channel and adjacent-channel interference properties,we are interested
in their real-world interference graphs. Since we are interested in the running times needed to achieve optimality, we
randomly extract connected induced subgraphs from these instances in order to manage the size and density in our tests.
To this end, we implemented a straightforward algorithm which starts from a random vertex and builds a subgraph by
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Fig. 3. Average (a) execution time in seconds and (b) number of nodes in the branch-and-cut tree for combinations of families of valid inequalities.

randomly selecting neighbors of the already selected vertices. This way we can control the instance size, while keeping
graph structures present in real-world instances. We have considered instances with 14–20 vertices and, for the generated
instances, we use between 9 and 13 channels.

We employed the ABACUS framework [17] to develop the branch-and-cut algorithm, linked to ILOG CPLEX 9.0 [18] for
solving the linear relaxations. The experimentswere performed on an AMDAthlon© 64 PC,with 1.5GHz and a RAMmemory
of 2 GB, and a time limit of 30 min.
Selection of families of inequalities. We executed the branch-and-cut algorithmwith several combinations of families of valid
inequalities alone, resorting to the following separation procedures:

• backtracking procedure with the first 10 option,
• backtracking procedure with the best 10 option,
• backtracking procedure with the all option,
• greedy heuristic returning at most 10 cliques.

None of the considered families alone is able to obtain good resultswithin the imposed time limit. In particular, the algorithm
with just one of each family obtains no optimal solutions for instances with more than 14 vertices.

Theminimal combination of valid inequalities achieving reasonable results is the union of the clique inequalities (K) and
the multi-consecutive colors clique inequalities (MCCK). Using this combination, most instances with up to 20 vertices can
be solved in less than 2 min, so the combination MCCK+K is taken as the base configuration for the following experiments.
It is interesting that the combined action of both inequalities allows for such good results, as the K inequalities enforce the
definition of a proper coloring (since they donot involve the adjacency variables)whereas theMCCK inequalities concentrate
on the proper definition of the variables taking part in the objective function.

Starting with the base configuration, we study the effect of the remaining families in the overall procedure. In particular,
we now report on the results with the following combinations:

• MCCK +K
• MCCK +K +CCIK
• MCCK +K +CCSK.

Fig. 3 reports the average solution time and nodes in the branch-and-cut tree for 30 instances between 16 and 20 vertices. A
remarkable result is that the performance of the greedy separation procedure is not as effective as the backtracking-based
separation for these instances. Both the running times and the number of nodes in the branch-and-cut tree are much larger
when the greedy separation is applied, in spite of the shorter separation times. The best combination turns out to be the
base configuration (MCCK + K inequalities) with a backtracking separation procedure returning the best 10 found cliques.
However, the differences between this configuration and the other combinations of valid inequalities and backtracking
options seem to be small.
Separation parameters. We now refine the experiments with the separation procedures for the MCCK + K inequalities, by
tuning the parameters of the backtracking separation procedure returning the best found cliques. We experiment with the
number N of cliques returned by the procedure ranging between 1 and 34, and with the maximum number of nodes in the
backtracking trees ranging in the set {150, 300, 450, 600}. These experiments aim at assessing the tradeoff between the
number of generated cuts and the separation times.

Fig. 4 reports the average results. The best running times are obtained when the number N of returned cliques ranges
between 12 and 22, and when the backtracking procedure stops after 150 nodes in the backtracking tree. This result is
interesting, as it suggests that the best cuts are obtained within the first branches of the backtracking tree and it is not
worth visiting the remaining nodes in the backtracking algorithm.
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Fig. 4. Average (a) execution time in seconds and (b) number of nodes in the branch-and-cut tree for different combinations of the separation parameters.

Fig. 5. Average (a) execution time in seconds and (b) number of nodes in the branch-and-cut tree for different combinations skip factor and number of
cutting plane rounds.

Parameters of the branch-and-cut algorithm. In this paragraph we consider two key parameters of the branch-and-cut
procedure, namely the skip factor and the number of cutting plane rounds at each node in the branch-and-cut tree. In our
experiments the skip factor ranges within the set {1, . . . , 5} and the number of cutting plane rounds ranges within the set
{1, . . . , 5,∞}.

Fig. 5 reports the average results over 30 instances. It is observed that as the number of cutting plane rounds increases,
the overall performance is better (e.g., with just one cutting plane round and skip factors of 3, 4, and 5, no instance is solved
to optimality), the best value being ‘‘infinite’’. The influence of the skip factor is also remarkable, showing the best results
when the cutting plane phase is applied at every node in the branch-and-cut tree (i.e., with skip factor equal to 1). These
results suggest to give priority to the cutting plane phase over the branching steps, giving a hint that the combinationMCCK
+ K is indeed strong.
Comparison with CPLEX [18]. We tested our implementation with the best parameter setting found in the previous
paragraphs, comparing against the running times obtained by CPLEX 9.0. Table 1 shows the running times in seconds and
the number of nodes in the enumeration tree for our implementation and CPLEX. For the instances that could not be solved
to optimality within the time limit, we also report the final duality gap. For the branch-and-cut algorithm, the number
of K and MCCK generated cuts and the overall separation time are also reported, as well as the dual bound achieved by
the cutting plane phase at the root node of the tree. Note that the reported gap at this column is computed against the
optimal solution for the instance. It is interesting to note that the optimal value of the initial linear relaxation is always
zero.

It is interesting to note that, for the considered instances, both the running times and the number of generated nodes are
much smaller for the branch-and-cut algorithm. Furthermore, only one instance is not solved to optimality by the branch-
and-cut while CPLEX fails to achieve optimality in 80% of the instances. The gap obtained in this unsolved instance is the
same for both algorithmswhile the number of open nodes is significantly smaller in the branch-and-cut. Another interesting
result relates to the dual bounds obtained by applying the cuts at the root node. In particular, in 92.5% of the instances the
dual bound achieved at the root node equals the optimal value (recall that without the cut generation, the linear relaxation
has null optimal value).

These results show that the dynamical generation of the MCCK inequalities and the K inequalities are indeed a good
addition to the basic branch-and-bound algorithm, resulting in much better running times and lower bounds.
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Table 1
Comparison between the branch-and-cut algorithm with the best parameter setting and CPLEX 9. Times are reported in seconds.

|V | Density (%) Branch & Cut CPLEX

K MCCK Sep. time Dual at root/opt. val. (gap (%)) Nodes Time Time Nodes Gap (%)

14

48.35 169 1196 1.02 5/5 (0) 3 1.91 240 465.100
49.45 116 553 0.93 2/2 (0) 5 1.72 16 21.000
49.45 137 676 1.47 5/5 (0) 5 2.42 380 701.800
56.04 242 1139 1.2 9/9 (0) 5 2.61 *** 5.878.200 33
57.14 229 1024 2.38 6/6 (0) 9 4.26 108 124.500
58.24 273 1329 3.39 6/7 (17) 11 6.39 188 210.700
59.34 279 1531 0.73 7/7 (0) 1 2.1 149 118.800
60.44 224 1317 3.64 4/4 (0) 13 7.03 63 59.800
64.84 640 6728 679.89 8/9 (14) 2331 1714.81 1650 1.699.800
65.93 497 7145 662.9 – 2593 ***/9% *** 3.766.100 9

16

55.00 227 1490 2.53 6/6 (0) 5 5.18 *** 3.596.400 58
56.67 156 1477 2.12 6/6 (0) 3 4.09 *** 2.783.800 22
56.67 311 1900 5.39 9/9 (0) 15 12.04 *** 3.273.400 69
60.00 288 1814 1.7 8/8 (0) 1 4.66 *** 1.969.900 45
60.00 288 1814 1.7 8/8 (0) 1 4.63 *** 1.975.800 45
60.00 288 1814 1.75 8/8 (0) 1 4.73 *** 1.978.600 45
60.00 288 1814 1.75 8/8 (0) 1 4.68 *** 1.972.400 45
60.83 453 2641 12.52 8/8 (0) 17 26.81 *** 2.487.200 56
62.50 333 2580 2.2 9/9 (0) 1 10.55 *** 2.081.400 48
70.00 468 2510 5.04 11/11 (0) 3 19.27 *** 1.041.500 61

18

46.41 337 2053 4.95 8/8 (0) 3 8.88 *** 2.674.800 72
47.06 180 1669 4.47 6/6 (0) 3 7.22 *** 2.841.700 67
54.25 312 2133 3.14 6/6 (0) 3 6.53 *** 1.610.200 75
56.21 296 2090 1.76 10/10 (0) 1 6.13 *** 1.645.600 76
57.52 557 2395 2.94 12/12 (0) 1 8.96 *** 1.235.100 75
60.13 378 2803 7.01 10/10 (0) 5 20.15 *** 1.508.400 75
61.44 180 1620 1.44 12/12 (0) 1 5.14 *** 1.250.000 75
64.05 568 4344 11.25 12/12 (0) 5 45.8 *** 1.032.900 75
66.67 452 3653 4.37 11/11 (0) 1 31.51 *** 1.239.600 81
73.86 888 3501 18.13 12/12 (0) 9 53.57 *** 572.100 79

20

38.95 193 2806 7.12 5/5 (0) 11 17.73 *** 3.693.200 75
41.05 265 2952 9.7 5/5 (0) 13 23.02 *** 3.138.800 80
46.84 309 2626 2.09 8/8 (0) 1 7.98 *** 1.897.300 75
47.37 226 1747 3.32 2/2 (0) 3 7.42 *** 1.454.500 50
48.42 224 2594 10.54 6/6 (0) 13 22.65 *** 1.926.700 72
50.00 198 2938 15.13 6/6 (0) 17 34.34 *** 1.329.000 75
53.16 284 2883 12.04 4/4 (0) 9 26.36 *** 885.800 75
53.16 312 2649 8.87 4/4 (0) 7 19.31 *** 800.500 75
54.21 295 2723 9.29 4/4 (0) 11 26.56 *** 957.200 75
68.42 972 5354 10.32 13/13 (0) 1 103.74 *** 572.300 77

6. Conclusions and future work

In this work we studied the minimum-adjacency vertex coloring problem, which captures the combinatorial structure
of a natural way of dealing with interference in many wireless communications networks. We have performed a polyhedral
study of an integer programming formulation for this problem, presenting three facet-inducing families of valid inequalities.
We have designed separation procedures for these families and implemented a branch-and-cut algorithm based on these
results, which obtained competitive results with respect to the existing computational machinery. Although the instances
we are able to solve to optimality are far from being real-size instances, we believe that the results presented in this work
may contribute to future developments for the practical solution of frequency assignment problems.

It would be interesting to search for further families of (facet-inducing) valid inequalities, in order to enhance the
computational results obtained in this work and, in particular, in order to tackle larger problem instances. Our experiments
suggest that not any class of valid inequalities may benefit the overall branch-and-cut algorithm, hence such a polyhedral
study should be accompanied by computational experiments in order to assess the practical contribution of each family in
such an environment.
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