
Electronic Notes in Theoretical Computer Science 68 No. 4 (2002)
URL: http://www.elsevier.nl/locate/entcs/volume68.html 20 pages

Zeus: A Distributed Timed Model-Checker
Based on Kronos

V. Braberman a,1,4, A. Olivero b,2,5, F. Schapachnik a,3

a Computer Science Department, FCEyN,
Universidad de Buenos Aires, Buenos Aires, Argentina

b Department of Information Technology, FIyCE,
Universidad Argentina de la Empresa, Buenos Aires, Argentina

Abstract

In this work we present Zeus, a Distributed Model-Checker that evolves from the
tool Kronos [8] and that currently can handle backwards computation of TCTL-
reachability properties [1] over timed-automata [2].

Zeus was developed following a software architecture centric approach. It intro-
duces some interesting features such as a priori graph partitioning, a sophisticated
machinery to reach optimum performance (communication piggybacking and de-
layed messaging) and dead-time utilization, where every processor uses time inter-
vals of inactivity to perform auxiliary, time-consuming tasks that will later speed
up the rest of the computation.

Although some good results have been obtained, early experiments pinpointed
the difficulties of getting speedups using a parallel asynchronous version. We also
propose some paths to overcome those obstacles.

1 Introduction

Research in Model-Checking is focused on increasing the size of the problems
tools can deal with. The ultimate wave has been the use of Distributed-
Computing, where a cluster of computers work together to solve the prob-
lem [16,4,20].

The usefulness of a distributed strategy is often measured by the “speedup”
gained. Speedup with n processors is computed as t1

tn
where ti is the time it

1 Research supported by UBACyT grants X156 and X094.
2 Research supported by UADE grant PSI.2.2002.
3 Email: fschapac@dc.uba.ar
4 Email: vbraber@dc.uba.ar
5 Email: aolivero@uade.edu.ar

c©2002 Published by Elsevier Science B. V. Open access under CC BY-NC-ND license.

http://creativecommons.org/licenses/by-nc-nd/3.0/


Braberman, Olivero and Schapachnik

takes to finish the verification with i processors. The goal is usually to get lin-
ear speedups, although verifying cases where the sequential version exhausted
its memory is also considered a success.

Much successful work has been done to distribute untimed model check-
ers [20,16,3,11,18,5,12,14], etc. However, except for the work of Behrmann,
Hune and Vaandrager on a distributed version of UPPAAL [4], not much have
been done about parallelizing or distributing Timed Model-Checkers.

In this work we present Zeus, a Distributed Model-Checker that evolves
from the tool Kronos [8] and that currently can handle backwards compu-
tation of TCTL-reachability properties [1] over timed-automata [2].

The rest of the paper is organized as follows: in section 2 we describe the
Kronos tools from which ours evolves. Section 3 presents the most interesting
points of our Distributed Model Checker. Section 4 shows the performance
on a couple of configurations for a version of the Train-Gate-Controller case
study and section 5 presents the lessons learned, as well as paths to be taken
in research to be.

2 The Kronos tool

The tool Kronos [8] formally checks whether a real-time system meets its
requirements. It is founded on the theory of timed automata [2] and timed
temporal logics, like TCTL [1].

Although being successfully used in real world applications [17,21,9] it
fails to cope with the same state explosion problem that harvest most of
the other tools. Main problems are storage exhaustion and inability to use
multiprocessor equipment when available.

Even though a deep technical knowledge of Kronos formalisms and algo-
rithms is not required to understand this paper, we will introduce the main
concepts and will refer the interested reader to the ample field’s literature
(e.g., [2,8], etc.).

Timed automata is a real-time formalism that incorporates positive real
valued clocks to automata notation. Clocks record the time elapsed between
events. All clocks are synchronized, that is, they all advance at the same pace.
When a transition is taken, clocks are allowed to be reset to zero. Transitions
are associated with a guard which is a predicate over the clocks. The guard
determines when a transition can be taken.

The inclusion of clocks generates an infinite state space (control locations
plus clock valuations). Fortunately, this does not imply undecidability of
many interesting problems such us reachability. To deal with infinite state
manipulation, tools like Kronos represent convex sets of clock valuations as
conjunctions of inequalities involving one clock or the difference between two
clocks (e.g., 1 ≤ x ≤ 5∧x− y > 8). A data structure called Difference Bound
Matrices (DBM) [10] is typically used to manipulate such kind information.
Non-convex sets are represented as union of convex sets. Kronos performs

2



Braberman, Olivero and Schapachnik

D

: Fix Point

Engine

: Regions’ storage

Fig. 1. Kronos architecture.

reachability queries as a backwards propagation of non-convex sets over the
graph of control locations. This propagation is a fix point calculation of the
appropriate precedence operators that starts from target states. The final
answer is whether or not the initial states belong to the computed fix point.

Full TCTL verification is mainly based on the previously explained algo-
rithm [13].

In Kronos jargon, each convex set is called a zone, and a union of convex
sets is called a region (not to be confused with the region graph of [2]).

From a conceptual standpoint, its architecture can be seen as a fix-point
engine that reads and writes its non-convex sets into a regions’ storage com-
ponent, as depicted in figure 1.

3 Distributing Kronos: Zeus

To obtain a Distributed Timed Model-Checker a number of issues must be
dealt with. As sine qua non requirement, the resulting architecture must be
provable correct. A sketch of the correctness proof can be found in section
3.1.

On the performance side, a delicate balance should be established. On
one hand maximum distribution is desired. On the other, minimum commu-
nication between processors should be required. The rationale for requiring
minimum communication should not be thought as network latency, as com-
monly referred in the literature, but as context switching. This is because the
processor has to temporarily stop the profitable fix-point calculation to take
care of the unavoidable message passing, often involving hardware interrupts
and context switching at the operating system level.

While extending Kronos we preserve the explicit representation of control
graph and a symbolic representation of clock values. While most work in the
area uses an on-the-fly construction of the control graph and a hashing function
for its nodes (locations) that tries to balance the load between processing
nodes, we introduce an a priori control graph partitioning which in the first
version is based on the tool METIS [15]. If m is the number of edges, METIS

3



Braberman, Olivero and Schapachnik

uses an O(m) heuristic approach to deal with the NP-complete problem of
finding the minimum cut.

Though an on-the-fly construction of control graph is more appealing, par-
ticularly when reachable nodes are a small subset of the control locations or
when error locations are in fact reachable, we believe that working with the
whole control graph may offer advantages over on-the-fly construction when-
ever feasible 6 :

• It establishes a suitable testbed to experiment different graph partitioning
strategies. The current version considerably reduces the number of edges
that cross processor boundaries, thus minimizing communication require-
ments and consequently context switching.

• It establishes a suitable framework for dynamic node redistribution when
load balance is compromised due to huge differences on the number of sym-
bolic regions that the processors are handling. Although the current version
does not has the ability to migrate locations between processors, it is seen
as a very promising research path (more about this on section 5).

• Extensions to full TCTL are easy to achieve following Kronos algorithms.

• Distribution partition and configuration reuse is possible whenever only
time constraints of the model are changed.

Two other strategies were put in place to help reduce the message ex-
change between processing nodes. An important decision that can largely
affect performance is the use of either a push schema, where nodes send each
other regions that they will need, or a polling schema, where nodes explicitly
request regions as they need them. Our first decision was to use a mixed strat-
egy based on message piggybacking. Processing nodes basically behave as in
the polling schema, but when a processor A needs a region located in another
processor B, it will request all B’s regions that are of interest to A –not just
the one needed right now– and it will send all its regions that B needs. This
mechanisms should reduce communication overhead, because fewer messages
are exchanged.

To further reduce communication, a state machine determines if a process-
ing nodes really needs to ask for regions. It has three possible modes:

“Low regions-demand, busy processing node” In this state the proces-
sor is busy with the fix-point calculation and can go along without request-
ing newer regions from another processing node, thus leaving the chance
that a future request will bring a larger region, due to the monotonicity of
the calculus.

“High regions-demand, idle processing node” In this state the process-
ing node has reached a temporary fix-point, so it is idle and its requests are
immediately delivered.

6 I.e., when the graph of control locations is not huge compared to the involved DBMs’
quantity.

4



Braberman, Olivero and Schapachnik

: Storage

C/D

D

: Fix Point

Engine

: Local regions’

storage

: Coordinator

: Iterator

: Helper

C C

D

: Delta

accumulator

: Connector

*

D

*

C/D

: Load

Assessor

D

: Router

D

D

: Remote regions’

storage

: Embassys

*

D

D

D

C/
D

: Connector

D

k

Capsule Capsule

Fig. 2. Zeus architecture.

“High regions-demand, busy processing node” This state serves the pur-
pose of predicting the previous one. The processing node is not yet idle, but
an heuristic 7 predicts that it will be soon, so its requests are send without
delay.

To handle all this design considerations, an architecture as shown in figure
2 was built. Its apparent complexity obeys to a key design decision: separation
of concerns. The architecture should serve as a testbed for experimenting with
a family of design decisions concerning synchronization, region communication
and load balance. Thus, we aimed at a loosely coupled solution where issues
like fixed point calculation and the use of polling or push schema remains as
independent as possible. This strategy lead us to the identification of some
aspects that were mapped into different components.

From an architectural point of view, a capsule is a set of components and
connectors associated to a processing node. Each partition is assigned to a
processing node.

The Fix-Point Engine of a capsule is in charge of computing, for the as-
sociated partition, the set of states that can reach the target states. A key
idea behind the architecture is to conceal from the Fix-Point Engine the fact
that there is distribution. In order to achieve that, a storage component is
refined into several pieces: a router component is in charge of hiding which

7 The heuristic is the determination that the number of regions changed per iteration is
decreasing below certain threshold.

5



Braberman, Olivero and Schapachnik

capsule each location is assigned to. During fix-point computation if the Fix-
Point Engine needs to read a region assigned to the same capsule, the router
will direct the petition to the local regions’ storage component. If the loca-
tion resides in another capsule, its associated regions will be requested to the
corresponding embassy .

Within each capsule there is an embassy for each neighbor capsule. When
requested for a region, they immediately answer back if they have some “new”
regions to provide 8 . When no new information has arrived, they forward
the request to the connector , asking it to send a network message to the
corresponding capsule. When the new regions arrive they became visible to
the Fix-Point Engine at the next iteration.

A capsule A has a connectorA,B iff there is at least one edge between a
location in A and a location in B. Connectors handle network communica-
tion, but are also responsible for deciding when petitions are actually sent out
to the network, thus implementing the delayed messaging strategy. To make
that decision, they query the load assessor component and ignore the petition
if the capsule is in “Low regions-demand” state. In fact, request forwarding
happens only when the capsule is in “High regions-demand” and there is no
answer pending. In this case, piggybacking has to take place, so the con-
nector attaches every unsent region that is of interest to the target capsule
to the request (delta accumulator take a role in this, as explained later on).
The receiving connectors immediately answer requests, regardless of their own
capsule regions-demand.

The delta accumulators serve as a repository of all new regions that are
produced by the Fix-Point Engine and that must be eventually be visible to
other capsules. Again, the Fix-Point Engine is not aware of the existence of
the delta accumulators; it is the router ’s job to guarantee that written local
regions also get there. Obviously, the load assessor component is in charge of
determining whether the capsule is idle or not and whether its regions-demand
is high or low.

The helper performs data representation compression (i.e., representing
regions with less number of DBMs if possible) whenever the Fix-Point Engine
reaches a temporary local fix-point. Compression is applied in the local repos-
itory and the delta accumulator . This leads to a “semantically harmless” dead
time utilization that hopefully will make future computations and messaging
lighter.

It is the iterator responsibility to determine whether the control flow will
be at the Fix-Point Engine component or at the helper component.

The coordinator is in charge of starting the verification, including par-
tition management and distribution of work among capsules. During the
model-checking phase, the coordinator sporadically receives from the capsules

8 For technical reasons special care is taken to exhibit the same information to every request
belonging to the same Fix-Point Engine iteration.

6



Braberman, Olivero and Schapachnik

information about the existence of local fix-points and data to estimate the
number of messages flowing through the network. Hence, the coordinator is
the component that detects that fix-point or initial states have been reached.

For the interested reader, a more detailed description of the architecture
is offered as appendix 5.

3.1 Sketch of a correctness proof.

To avoid a big step, instead of straightly proving the correctness of Zeus we
have incrementally proved correctness of intermediate versions that resemble
more to Kronos architecture (see figure 3). Two of them are of special in-
terest: the first one is what we called “näıve distribution”, which introduces
distribution with very simple synchronous access to remote information, and
the second consists in the introduction of sophisticated machinery like con-
nectors, high/low regions-demand, piggybacking, etc. (see figure 3(e)). To
prove them correct we follow a common strategy in proofs of distributed algo-
rithm by splitting the demo into two parts: (a) the semialgorithm described
converges to the minimum fix-point, and (b) the coordinator will eventually
detect fix-point when it happens.

To address the first issue we resort to the concept of “asynchronous itera-
tions”, due to Cousot [7].

Definition 3.1 Asynchronous Iterations

Let (P,�) be a complete lattice, n a positive integer and F : P n → P n a
monotonic operator.

Let 〈cδ : δ ∈ Ord〉 be a sequence of elements of INn = {1, . . . , n} such that:

a) (∀δ ∈ Ord)(∀i ∈ INn)((∃α ≥ δ)(i = cα))

Let 〈τ δ : δ ∈ Ord〉 be a sequence of elements of Ordn such that:

b) (∀i ∈ INn)(∀δ ∈ Ord)(τ δ
i < δ)

c) (∀δ ∈ Ord)(∀i ∈ INn)(∃β ≥ δ)((∀α ≥ β)(δ ≤ τα
i )))

d) (∀β, δ ∈ Ord)((β is a limit ordinal ∧ β < δ) =⇒ ((∀i ∈ INn)(β ≤ τ δ
i )))

An Asynchronous Iteration of the operator F and the sequences 〈cδ : δ ∈
Ord〉 and 〈τ δ : δ ∈ Ord〉, starting from D ∈ P n, is defined as follows:

x0 = D

xδ
i = xδ−1

i ∀ successor ordinal δ ∧ ∀i �= cδ

xδ
i = Fi(x

τδ
1

1 , . . . , x
τδ
n

n ) ∀ successor ordinal δ ∧ ∀i = cδ

xδ
i =

⊔
δ′≤δ xδ′

i ∀ limit ordinal δ

In [7] it is proven that asynchronous iterations are stationary sequences
and their limit is indeed the least fix point of operator F starting from D.

7



Braberman, Olivero and Schapachnik

D

: Fix Point

Engine

: Regions’ storage

(a) Step 0 (Kronos).

C/DC/D

D

: Fix Point

Engine

: Regions’ storage

D

: Fix Point

Engine

: Regions’ storage

D D

: Coordinator

(b) Step 1 (“näıve distri-
bution”).

C/DC/D

D

: Fix Point

Engine

: Regions’ storage

: Coordinator

: Iterator

: Helper

C C

D D

: Fix Point

Engine

: Regions’ storage

: Iterator

: Helper

C C

D

(c) Step 2.

C/D

D

: Fix Point

Engine

: Regions’ storage

: Coordinator

: Iterator

: Helper

C C

D

: Delta

accumulator

: Connector

D

*

D
*

D

C/D

: Connector

D

(d) Step 3.

C/D

D

: Fix Point

Engine

: Local regions’

storage

: Coordinator

: Iterator

: Helper

C C

D

: Delta

accumulator

: Connector

*

D

*

C/D

: Load

assessor

D

: Router

D

D

: Remote regions’

storage

: Embassys

*D

D

D

C/
D

: Connector

D

(e) Step 4.

Fig. 3. Architecture evolution.

That is, asynchronous iterations provide a model of iterative computing
that guarantees that if some hypothesis are met, then the minimum fix-point
will be reached even if the computation does not follow the standard order of
fix-point iterative calculus. In particular, during the computation described by
this model, data from different past instants might be used. This is the kind of
phenomenon that arises in distributed computation, where remote data used
in a given calculus may have changed at the original site. Of course, some
other hypothesis should hold, like fairness of computation (3.1.a). Among
the non-trivial ones, roughly speaking, is the requirement that information
produced in a given point in time at a given processing node will eventually
be available to any other remote calculus that relies on it (3.1.c).

For instance, to prove that these requirements hold for Zeus, we showed
that (a) local fix points are bound to happen, (b) consequently “high regions-
demand” mode is entered, then (c) request will eventually be made, and thus
(d) updated info will return as answers. Full proof of correctness can be found
in [19].

8



Braberman, Olivero and Schapachnik

3.2 Implementation notes

Zeus’ is written in about 7000 lines of modular ANSI C code. It uses TCP/IP
sockets for interprocess communication, wrapped in a communication library.

It relies on Kronos and METIS libraries for DBM computation and for
location distribution, respectively.

It runs on most Unix platforms.

4 Preliminary experimental results

The example we take as our guiding case study is a version of the Train Gate
Controller common in literature. The controller registers the status of trains
and actuates over the gate accordingly. The property to assess (expressed as
a reachability problem over an observer) is whether or not a train can access
the railway crossing while the gate is up or has just gone down.

Table 1: Size of TGC case study.

#Automaton #Locations #Transitions #Clocks

Each train 3 3 1

Gate 4 10 1

Controller (5 trains) 18 205 1

Controller (6 trains) 21 280 1

Observer 5 22 1

Composition (5 trains) 4764 27850 8

Composition (6 trains) 14388 90262 9

We defined ttx as the total wall-clock time of a verification run with x
processors, tcx as the time it takes to copy the automata and related info
to all the processors, and tix as the total idle time (over all the participant
capsules). We make a distinction because the copying process is suboptimal
and can be enhanced. The Speedup function Sx is defined as follows:

fx = (ttx−tcx)
t1

Sx = 1
fx

fx represents the fraction of time the run takes to finish with x processors,
compared to just one processor. As can be seen, we consider a linear speedup
as ideal.

In our very first experiments, done on an Intel cluster composed by 10

9



Braberman, Olivero and Schapachnik

Example Environment #procs ttx (sec) tcx (sec) fx × 100% Sx

TGC5, Darwin 1 405 0 100% 1

reachable 2 77 24 13.09% 7.64

target state 3 130 48 20.25% 4.94

Speedy 1 248 0 100% 1

2 25 1 9.68% 10.33

3 129 1 51.61% 1.94

4 37 3 13.71% 7.29

5 202 3 80.24% 1.25

6 28 5 9.27% 10.78

TGC5, Darwin 1 889 0 100% 1

unreachable 2 5155 25 577.07% 0.17

target state 3 3625 49 402.25% 0.25

TGC6, Darwin 1 ∞ N/A N/A N/A

reachable 2 ∞ N/A N/A N/A

target state 3 320 146 N/A N/A

Speedy 1 ∞ N/A N/A N/A

2 ∞ N/A N/A N/A

3 ∞ N/A N/A N/A

4 9199 74 100% 4

5 1607 77 16.63% 6.01

6 1659 103 16.91% 5.91

Table 2
Results for TGC.

nodes 9 , and on a Silicon Graphics IP27 with four 270 Mhz processors 10 and
1 Gb RAM running IRIX64 6.5, we were indeed able to deal with bigger
problems than the single processor version. Moreover, in many cases we also
obtained important speedups (see table 2).

However, in several cases the performance dropped when we increased the
number of processors. Concerned by these unsatisfactory results we decided
to refocus the experimental analysis. The flexibility of Zeus allowed us to
quickly code different communication strategies:

• The original pseudo-polling schema, where capsules request information
when they have a “high-regions demand”, and that features communica-
tion piggybacking.

• A push schema, where nodes send the regions they produce to others that

9 All of them with 64 Mb of memory, Linux 2.2.15-4mdk kernel and 5 with Pentium III
733 Mhz processor and the other 5 with AMD Athlon 940 Mhz connected through an 100
Mbps Ethernet network. Only six of them were available. Due to different processor speeds
on the cluster, faster processors where used first, seeking to avoid assigning a speedup to
certain configuration when that would have been caused because of the introduction of a
faster processor.
10 Only three of them were available.

10



Braberman, Olivero and Schapachnik

need them without delay. This model is similar to the one used in dis-
tributed on-the-fly reachability graph exploration [20].

• A subscription schema. This is a variation of the pseudo-polling schema
that eliminates many unneeded messages. When two consecutive requests
from a capsule fail to bring back information, a subscription between the
source of the petition and target capsule takes place. This means that no
new requests are issued, to avoid flooding the target. When the target
generates new regions, it sends them to the subscribed requester, as in the
push schema.

We also used several partition strategies to improve load balance:

• Minimal Cut: using METIS, as described earlier.

• TL-Weighted Minimal Cut: using METIS features to add weight information
to locations. Locations with the property to be reached weight ten times
the normal weight 11 .

• OpL-Weighted Minimal Cut: using METIS features to add weight infor-
mation to locations. That information comes from the metrics about the
number of convexes that are operated in each location 12 during a previous
verification on a monoprocessor (see below). The idea is to see how an
supposedly good distribution influences verification times.

• Random Distribution: an uniform distribution of control nodes with no
locality preservation.

The goal of the new set of experiments was getting answers about how some
identified key issues affect total times: distribution of locations among cap-
sules , communication strategy and symbolic state space representation frag-
mentation.

We recorded several metrics, the most meaningful ones being: idle time of
each capsule, time spent at I/O at each capsule, time spent at the Fix-Point
Engine (referred as “Time at fpe” in the tables), the number of interruptions
that each capsule receives (referred as “#req. rcvd.” in the tables). As a
metric to measure the load balance we took a time-demanding operation such
as the difference between symbolic states (see line 10 of algorithm 1). Then we
accumulate for each node the product of the number of convexes that represent
the symbolic states to be operated (it makes sense because, for a given set of
clocks, this product approximately determines the computational complexity
of the operation). We refer to this metric as “#ops.” in the tables.

Looking at experimental data, there was a particularly bad case, which
showed up on two processors and in which 90% of the work seems to fall into
one capsule. No doubt there is a problem in balance, but one would expect
times to be similar to the single processor version, yet they were up to almost
seven times worse. Early experiments revealed the main problem was not

11 TL stands for Target Locations.
12 OpL stands for Operations per Location.

11



Braberman, Olivero and Schapachnik

I/O, as can be seen in table 4. We decided to run the experiments over the
Silicon Graphics machine to easily reason and pinpoint what was going on each
capsule. These experiments are not meant to be conclusive since we are using
just a single example and a low number of processors. Nevertheless, some
phenomena might warn about challenges that make a good parallelization of
backwards computation a non-trivial task.

The following results were obtained over TGC5 with unreachable “ER-
ROR” state; this means that all the state space that reaches the target loca-
tions is generated (and the initial state doesn’t belong to that set).

We observed that the subscription schema always performed a little better
than the original pseudo-polling one, so we choose to only report on that one
and on the push strategy. On the other hand, we do not report new results
based on pure minimal cut since the weighted versions seems to perform better.
Also, as expected, random distribution of locations performed extremely bad
and examples did not finish in 4 hours of wall-clock time. Unfortunately, the
current version of the tool logs metrics only after finishing, so we can not
exhibit data. Let us add that the I/O time for capsule 0 also includes the
I/O of coordinator , since in the current version the coordinator resides in that
capsule.

We structured the data per partition strategy. Along with each table, we
provide partial conclusions on how different versions performed.

Table 3: Results for TGC5, unreachable target state, single processor version.

1 processor

tt (s) tc (s) ti (s)

888 0 0

Idle time (s) Time at fpe (s) I/O (s) #req. rcvd #ops.

Cap. 0 0 868 0 0 3273740

TL-Weighted Minimal Cut

The partitioning is clearly unsatisfactory in terms of workload distribution.
Though subscription performs better than push, the drop of performance wrt.
the monoprocessor version is remarkable due to a (probable) fragmentation
problem. As it was reported by [6] and [4], changing the evaluation order
during fix point calculation may exacerbate the fragmentation in the repre-
sentation of regions (i.e., the number of convexes needed to represent a region).
Note that the number of operations increased and I/O time had little impact.
See table 4.

All the runs seems to indicate that the push strategy has some problem
that is not captured by our current metrics, except for the total wall-clock
time.

12



Braberman, Olivero and Schapachnik

Table 4: Results for TGC5, unreachable target state, TL-Weighted Minimal Cut partition-
ing.

Comm.
strate-
gie

2 processors 3 processors

Sub-
scrip-
tion

tt (s) tc (s) ti (s) tt (s) tc (s) ti

2962 24 2914 2041 49 3944

Idle
time

(s)

Time
at fpe

(s)

I/O
(s)

#req.
rcvd

#ops. Idle
time

(s)

Time
at fpe

(s)

I/O
(s)

#req.
rcvd

#ops.

Cap. 0 2914 3 75 1 25734 1971 3 55 6 67793

Cap. 1 0 2916 0 2 8596123 0 1994 1 17 7905481

Cap. 2 1973 0 53 3 942

Push tt (s) tc (s) ti (s) tt (s) tc (s) ti

5271 24 5222 2194 49 4244

Idle
time

(s)

Time
at fpe

(s)

I/O
(s)

#req.
rcvd 13

#ops. Idle
time

(s)

Time
at fpe

(s)

I/O
(s)

#req.
rcvd

#ops.

Cap. 0 5222 3 146 55 25734 2118 3 74 132 69306

Cap. 1 0 5225 0 748 8567574 0 2149 0 384 8303893

Cap. 2 2126 0 74 2 942

OpL-Weighted Minimal Cut

In this case we obtained better results in terms of workload distribution,
as we expected. As a consequence, the interchange of information increased.
Fragmentation still exists, and explains why time is not reduced wrt. the
monoprocessor version. An unpleasant fact is that neither the subscription
schema, neither the push schema finished with 3 processors. A possible expla-
nation is an exacerbation of the fragmentation problem. See table 5.

Table 5: Results for TGC5, unreachable target state, OpL-Weighted Minimal Cut parti-
tioning.

Comm.
strate-
gie

2 processors 3 processors

Sub-
scrip-
tion

tt (s) tc (s) ti (s) tt (s) tc (s) ti

1650 24 1111 ∞ N/A N/A

Idle
time

(s)

Time
at fpe

(s)

I/O
(s)

#req.
rcvd

#ops. Idle
time

(s)

Time
at fpe

(s)

I/O
(s)

#req.
rcvd

#ops.

Cap. 0 1110 494 102 3 2293082

Cap. 1 1 1558 55 12 2949683

Cap. 2

Push tt (s) tc (s) ti (s) tt (s) tc (s) ti

4252 24 4077 ∞ N/A N/A

Idle
time

(s)

Time
at fpe

(s)

I/O
(s)

#req.
rcvd

#ops. Idle
time

(s)

Time
at fpe

(s)

I/O
(s)

#req.
rcvd

#ops.

Cap. 0 4077 116 91 748 704244

Cap. 1 0 4207 0 666 3962755

Cap. 2

13 Please note that when using a push strategy “#req. rcvd” are really messages containing
regions received, as there are no requests.

13



Braberman, Olivero and Schapachnik

As can be seen in tables 4 and 5, communication strategies did not influence
the outcome of the experiments, maybe because the example is small and
because hardware interrupts are not involved when communicating on a single
machine. It must be noted that there seems to be a direct relationship between
the previously mentioned metric (number of operations per location) and the
time results.

In order to mitigate the fragmentation problem, we decided to apply a
conservative abstraction which consists in applying convex hull when a region
is going to be transported to another capsule. In what follows we report on a
couple of experiments using this idea.

OpL-Weighted Minimal Cut, using convex hull

Transmitting just one convex per region reduces the wall-clock time for the
subscription schema but there is still too much idle time. The push schema
performance is far from being satisfactory, and we have no explanation for the
phenomenon using the metrics proposed. See table 6.

Table 6: Results for TGC5, unreachable target state, OpL-Weighted Minimal Cut parti-
tioning, using convex-hull.

Comm.
strate-
gie

2 processors 3 processors

Sub-
scrip-
tion

tt (s) tc (s) ti (s) tt (s) tc (s) ti

932 24 893 992 49 1673

Idle
time

(s)

Time
at fpe

(s)

I/O
(s)

#req.
rcvd

#ops. Idle
time

(s)

Time
at fpe

(s)

I/O
(s)

#req.
rcvd

#ops.

Cap. 0 494 394 1 7 1056302 763 162 12 26 313815

Cap. 1 399 488 3 4 815933 910 38 14 6 147286

Cap. 2 0 923 0 45 1204280

Push tt (s) tc (s) ti (s) tt (s) tc (s) ti

3602 24 3288 730 49 1152

Idle
time

(s)

Time
at fpe

(s)

I/O
(s)

#req.
rcvd

#ops. Idle
time

(s)

Time
at fpe

(s)

I/O
(s)

#req.
rcvd

#ops.

Cap. 0 3288 271 67 730 753880 474 189 11 485 246701

Cap. 1 0 3557 0 673 2743298 678 8 13 709 151443

Cap. 2 0 661 0 480 1021703

TL-Weighted Minimal Cut, using convex hull

In this case we have very good results for the case of three processors, and,
surprisingly enough, have a poor performance on two. This shows that the
fragmentation problem is not solved by the strategy of sending simpler regions
between capsules or improving workload distribution. The phenomenon seems
more complex and might depend on arrival times of regions or characteristics
of partition strategies we have not yet identified. See table 7.

13 Didn’t finish in 4 wall-clock hours.
13 Also didn’t finish in 4 wall-clock hours.

14



Braberman, Olivero and Schapachnik

Table 7: Results for TGC5, unreachable target state, TL-Weighted Minimal Cut partition-
ing, using convex hull.

Comm.
strat-
egy

2 processors 3 processors

Sub-
scrip-
tion

tt (s) tc (s) ti (s) tt (s) tc (s) ti

4861 24 4815 452 49 766

Idle
time

(s)

Time
at fpe

(s)

I/O
(s)

#req.
rcvd

#ops. Idle
time

(s)

Time
at fpe

(s)

I/O
(s)

#req.
rcvd

#ops.

Cap. 0 4815 3 120 1 25734 382 2 10 4 21662

Cap. 1 0 4816 0 2 11105518 0 407 0 15 2310121

Cap. 2 384 0 10 3 942

Push tt (s) tc (s) ti (s) tt (s) tc (s) ti

4833 24 4789 527 49 913

Idle
time

(s)

Time
at fpe

(s)

I/O
(s)

#req.
rcvd

#ops. Idle
time

(s)

Time
at fpe

(s)

I/O
(s)

#req.
rcvd

#ops.

Cap. 0 4798 3 136 1 25734 456 2 14 121 22121

Cap. 1 0 4799 0 33 11105518 0 480 0 363 2510605

Cap. 2 457 0 17 2 942

5 Conclusions and future work

Zeus is a Distributed Timed Model Checker based on the Kronos tool that
was described and proved correct using software architectures. To the au-
thors knowledge, it is the first Distributed Model Checker for timed systems
based on backwards reachability calculation. It was conceived as a testbed
for a wide range of design decisions such as communication schema or type of
synchronization. Our preliminary results for asynchronous versions, although
showing promising speedups in some cases, were surprisingly counterintuitive
but justified the need for an open architecture to test alternative concepts.

The irregular behavior seen in some cases might be associated to the sen-
sitivity of the data structures to the ordering of operations. On one hand, it
would desirable to do as much local work at a capsule as possible, without com-
municating with the rest. Intuition told us that the pros of this asynchronous
strategy are: (a) good use of parallel processing resources, (b) avoidance of
an early propagation of regions that will eventually be included into another,
thus reducing the number of propagations. On the other hand, when com-
munication takes place this may lead to operations between “mature” regions
with a large number of convexes. Also, breadth-first traversal is not honored
(which is reported as a good strategy to avoid fragmentation [4]).

More research should be done to gain insight on these phenomena and
propose solutions for the parallel setting. This might require the development
of ad hoc visualization techniques, something we are currently working on. A
future direction to explore is improving the representation of regions in the
sense of the number of convexes required to represent a given region.

Another line of research we are currently exploring is the development of
a synchronous version of Zeus, trying to mimic the order in which Kronos
applies the operators in the sequential version. More precisely, this version

15



Braberman, Olivero and Schapachnik

would apply synchronically every fix point iteration at each capsule. Thought
it looses potential parallelism, it may be possible to keep the number of zone
operations close to what Kronos performs on a monoprocessor. Therefore,
if good load balance is achieved, this strategy may redound in important
speedups.

We also believe that dynamic balance could eventually be applied for a
better usage of distributed resources. Fortunately, Zeus architecture seems
to be an appealing starting point for location migration between neighbor
capsules looking for a better load balance. This can be done as an architecture
reconfiguration were new links are established between processing capsules.

A natural next step is the extension of Zeus to deal with full TCTL,
mainly by adapting Kronos strategies to the distributed setting. Besides,
forward calculation can be easily incorporated in this scenario, if required.
Obtaining counterexample traces is also a relevant area or research (e.g., [4]).

Acknowledgments

We would like to thank Sergio Yovine for making Kronos libraries avail-
able to us.

References

[1] Alur, R., C. Courcoubetis and D. L. Dill, Model-checking in dense real-time,
Information and Computation 104 (1993), pp. 2–34.
URL http://citeseer.nj.nec.com/alur93modelchecking.html

[2] Alur, R. and D. L. Dill, A theory of timed automata, Theoretical Computer
Science 126 (1994), pp. 183–235.
URL http://citeseer.nj.nec.com/alur94theory.html

[3] Barnat, J., L. Brim and J. Stŕıbřná, Distributed LTL model-checking in SPIN,
in: SPIN, 2001, pp. 200–216.
URL http:
//citeseer.nj.nec.com/article/barnat00distributed.html

[4] Behrmann, G., T. Hune and F. W. Vaandrager, Distributing timed model
checking - how the search order matters, in: Computer Aided Verification, LNCS
1855 (2000), pp. 216–231.
URL
http://citeseer.nj.nec.com/behrmann00distributing.html

[5] Ben-David, S., T. Heyman, O. Grumberg and A. Schuster, Scalable distributed
on-the-fly symbolic model checking, in: Formal Methods in Computer-Aided
Design, 2000, pp. 390–404.
URL http://citeseer.nj.nec.com/326863.html

[6] Braberman, V., C. López Pombo and A. Olivero, On improving backwards
verification for timed automata, in: TPTS 2002, satellite event for the Joint

16



Braberman, Olivero and Schapachnik

European Conference on Theory and Practice of Software, ETAPS 2002,
ENTCS 65 (2002).
URL http://www.elsevier.com/locate/entcs/volume65.html

[7] Cousot, P., “Methodes Iteratives de Construction et D’Aproximation de
Points Fixes D’Operateurs Monotones sur un Treillis, Analyse Semantique des
Programmes,” Ph d. thesis, Université Scientifique et Médicale de Grenoble,
Institut National Polytechnique de Grenoble (1978).

[8] Daws, C., A. Olivero, S. Tripakis and S. Yovine, The Tool KRONOS, in:
Proceedings of Hybrid Systems III, LNCS 1066 (1996), pp. 208–219.

[9] Daws, C. and S. Yovine, Two examples of verification of multirate timed
automata with kronos, in: Proceedings of the 16th IEEE Real-Time Systems
Symposium (RTSS’95) (1995), pp. 66–75.
URL http://citeseer.nj.nec.com/daws95two.html

[10] Dill, D. L., Timing assumptions and verification of finite-state concurrent
systems., in: International Workshop of Automatic Verification Methods for
Finite State Systems, LNCS 407 (1990), pp. 197–212.

[11] Garavel, H., R. Mateescu and I. M. Smarandache, Parallel state space
construction for model-checking, in: M. B. Dwyer, editor, Proc. of the 8th

International SPIN Workshop, Toronto, Canada, 2001, pp. 217–234.
URL http://citeseer.nj.nec.com/474094.html

[12] Grumberg, O., T. Heyman and A. Schuster, Distributed symbolic model checking
for µ-calculus, in: Computer Aided Verification, 2001, pp. 350–362.
URL http://citeseer.nj.nec.com/473825.html

[13] Henzinger, T. A., X. Nicollin, J. Sifakis and S. Yovine, Symbolic Model Checking
for Real-Time Systems, Information and Computation 111 (1994), pp. 193–244.

[14] Heyman, T., D. Geist, O. Grumberg and A. Schuster, Achieving scalability in
parallel reachability analysis of very large circuits, in: O. Grumberg, editor,
Computer Aided Verification, 12th International Conference, LNCS 1855
(2000), pp. 20–35.
URL http://citeseer.nj.nec.com/heyman00achieving.html

[15] Karypis, G. and V. Kumar, Parallel multilevel k-way partitioning scheme for
irregular graphs, Technical report, University of Minnesota, Department of
Computer Science / US Army HPC Research Center. Minneapolis, USA. (1998).

[16] Lerda, F. and R. Sisto, Distributed-memory model checking with SPIN, in: Proc.
of the 5th International SPIN Workshop, LNCS 1680 (1999).
URL http://citeseer.nj.nec.com/lerda99distributedmemory.
html

[17] M. Bozga, O. Maler, A. Pnueli and S. Yovine, Some progress in the symbolic
verification of timed automata, in: O. Grumberg, editor, Proceedings of the
9th International Conference on Computer Aided Verification (CAV’97), LNCS
1254 (1997), pp. 179–190.
URL http://citeseer.nj.nec.com/bozga97some.html

17



Braberman, Olivero and Schapachnik

[18] Ranjan, R., J. Sanghavi, R. Brayton and A. Sangiovanni-Vincentelli, Binary
decision diagrams on network of workstations, in: International Conference on
Computer Design, 1996, pp. 358–364.
URL http://citeseer.nj.nec.com/ranjan96binary.html

[19] Schapachnik, F., “Distributed and Parallel Verification of Real-Time Systems,”
Degree thesis, Departamento de Computación, Facultad de Ciencias Exactas y
Naturales, Universidad de Buenos Aires (2002).
URL http://www.cvi.com.ar/zeus/tesis_schapachnik.ps.gz

[20] Stern, U. and D. L. Dill, Parallelizing the Murϕ verifier, in: Computer Aided
Verification, LNCS 1254 (1997), pp. 256–278.
URL http://citeseer.nj.nec.com/stern97parallelizing.html

[21] Tripakis, S. and S. Yovine, Verification of the fast reservation protocol with
delayed transmission using the tool kronos, in: Proceedings of the 4th IEEE
Real-Time Technology and Applications Symposium (RTAS’98) (1998), pp. 165–
170.
URL http://citeseer.nj.nec.com/186425.html

Appendix A - Architecture description

Each processor working in a distributed Zeus computation is called a capsule.
We also call capsule to the processes running inside the processors and their
associated data structures and components.

Zeus architecture description can be more easily understood centering at
the Fix-Point Engine. This is the component that runs the fix-point calcula-
tion, much as it does in Kronos (shown as algorithm 1). It reads and writes
regions to the storage component. Each region belongs to a control location
that might be assigned either to the current capsule or to some other. Because
the Fix-Point Engine is unaware of such distribution, it makes no difference
between local and remote locations, except for the fact that it iterates writing
only over the local ones. This is why there is a router component inside the
storage.

Upon reception of a read petition from the Fix-Point Engine, the router
delivers regions from the local regions’ storage, if their location is local, or
from the remote regions’ storage, if they are remote. In case of receiving a
write request –which only happen for local regions– it stores them in the local
regions’ storage and in a delta accumulator . There is a delta accumulator for
each local control location that should be visible from a remote capsule. The
rationale for the existence of delta accumulators is that regions difference is
very expensive, so it makes sense to duplicate what needs to be sent instead of
having them in one place and wasting a lot of time for each transmission, actu-
ally computing the difference. Delta accumulators are emptied when regions
are sent to other capsules.

As well as there are delta accumulator to benefit the sending phase of a
regions’ exchange, there are embassys to benefit the receiving phase. They

18



Braberman, Olivero and Schapachnik

function Fix Point Engine.iterate(): nat

1: #changes := 0
2: for all s ∈ storage.local discrete states() do
3: Rs := storage.get region(s)
4: PredE := ∅
5: for all suc discrete successor of s do
6: Rsuc := storage.get dif region(suc)
7: PredE := PredE ∪ prede(Rsuc, inv(suc), reset clocks(suc))
8: end for
9: PredT := predt(PredE)

10: ∆Rs := PredT − Rs

11: if ¬∅?(∆Rs) then
12: #changes + +
13: storage.set dif region(s, ∆Rs)
14: storage.set region(s, Rs ∪ PredT )
15: end if
16: end for
17: storage.iteration ended()
18: return #changes

Algorithm 1: Distributed reachability algorithm (runs inside the Fix-Point
Engine).

are contained inside the remote regions’ storage. One can think that there is
an embassy at the other end of every delta accumulator . They not only store
the regions that arrive through the network, but they also posses a small state
machine that controls if the remote capsule needs to be asked for a region
–i.e., if the embassy is asked for a region but is currently empty– or whether
the maximum possible region for a location has already been produced, thus
avoiding extra requests. It is also responsible of showing the same content to
every request during an iteration.

When an embassy needs new regions from the remote capsule, it contacts
the appropriate connector . Given two capsules, A and B, there might be many
edges in the control graph going from locations assigned to A to locations
assigned to B, call it k. Although A can have up to k delta accumulators and
k embassys , it has only one connector handling bi-directional communication
to B. The same happens at B.

In a näıve approach, a connector merely proxies request from a capsule
to the other. However, a few twists were made for performance, i.e., for
minimizing interruptions to the fix-point calculation at the other end. First,
connectors do piggybacking : instead of asking for a particular locations’ region,
they ask for the regions of the full set of locations they represent; also, to
“compensate” the other capsule for the interruption, they send the regions of
the full set of locations that are of interest to the capsule receiving the request.
These regions come from the corresponding delta accumulators. It should be

19



Braberman, Olivero and Schapachnik

noted that, except for the piggybacking taking place, this is a polling schema,
thus the name of pseudo-polling. Connectors perform another function also,
that needs the description of the load assessor component to be explained.

Load assessor establishes not only if the capsule is idle or working, but also
how bad it needs new regions. It is a key component for the communication
model. Its full details were explained on section 3.

When requested to send a petition, the connectors check with the load
assessor to see if there is a “high regions-demand”, in which case they proceed,
as explained before. However, if there is a “low regions-demand”, they will
silently drop the request.

As was noted before, a capsule can be idle, meaning that global fix-point
is not yet reached because there is still work going on at other capsules, but
a local fix-point was established anyway. To take advantage of the idle time,
a new component, the helper , is introduced. It performs auxiliary task, such
as representation compaction of the regions at the delta accumulators and at
the local regions’ storage.

Finally, an iterator , is responsible of deciding to run either the Fix-Point
Engine or the helper based on the readings of the load assessor , and also of
sending statistics to the coordinator .

The coordinator starts the process, partitions the graph, distributes the
workload and established whether global fix-point has been reached or not.
It also collects statistics. It receives information from the iterators on the
capsules to make decisions.

A more detailed description of the architecture including state machines
and transducers can be found in [19].

20


