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Abstract

We give a new proof of the NP-hardness of deciding the existence of real roots of an integer univariate polynomial encoded by
a straight line program based on certain properties of the Tchebychev polynomials. These techniques allow us to prove some new
NP-hardness results related to real root approximation for polynomials given by straight line programs.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

One of the main problems in real algebraic geometry is to decide whether a system of multivariate polynomial
equations has a real zero or not. In fact, this problem is equivalent to the one of deciding whether a single polynomial
has a real zero or not. In the general case, this problem is difficult to solve. The next natural step is to consider the
problem for families of polynomials with a particular structure (sparse polynomials or polynomials given by straight
line programs, for instance) and to use this particular structure to get a more efficient algorithm for finding the answer
to the posed question.

In [5], D. Plaisted showed that the problem of deciding if a univariate sparse integer polynomial has a complex
root of modulus 1 is NP-hard (a sparse polynomial is a polynomial codified by a list of exponents including all the
non-zero coefficients, plus the list of the coefficients corresponding to these exponents). Later on, Plaisted’s result was
applied by P. Bürgisser to prove that the problem of deciding whether a univariate integer polynomial codified by a
straight line program has a real root or not is NP-hard (this proof is unpublished and was told to us by P. Bürgisser
himself; for a sketch of the proof see [7, Corollary 1]). The proof is obtained by composing the polynomial with a
Möbius transformation which sends the real axis to the unitary circumference and by using Plaisted’s result after some
little extra work. The same result was obtained by J. Richter-Gebert and U. Kortenkamp in [6, Theorem 5.10] while
proving some results in dynamic geometry.
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Even though the proofs by Bürgisser and in [6] are different, they both rely on a polynomial time reduction of the
NP-complete problem 3-SAT to the problem under consideration. More precisely, for a given instance W of 3-SAT,
each of the methods shows a construction of a polynomial F with the property that the existence of a real root of F is
equivalent to the existence of an interpretation which makes W true. In order to construct this polynomial, they both
use factors of polynomials of the type XM − 1 (for some suitable value of M) to codify all the possible interpretations
of some predicate symbols P1, . . . ,Pn.

In this paper, we give a new proof of the NP-hardness of deciding whether an integer univariate polynomial codified
by a straight line program has a real root or not (see Theorem 7). Our proof is also in the spirit of Plaisted’s reduction,
but instead of using properties of polynomials of the type XM −1, we use Tchebychev polynomials in our codification
of predicate symbol interpretations. A nice consequence of this approach is that all possible roots of the polynomial
we obtain are roots of some Tchebychev polynomial, and this enables us to get a new NP-hardness result concerning
the problem of approximating real roots of an integer univariate polynomial codified by a straight line program (see
Theorem 9).

The paper is organized as follows: Section 2 states some basic definitions and notations. In Section 3 we give a new
proof of the hardness result about the real root existence decision of polynomials codified by straight line programs,
even in bounded intervals. In Section 4 we prove the already stated new hardness result for real root approximation.

2. Preliminaries

2.1. Basic definitions and notation

Throughout this paper, we will consider polynomials in Z[X] and Q[X], that is, univariate polynomials in a vari-
able X with integer or rational coefficients. For any polynomial F ∈ R[X] we will write lc(F ) to denote its leading
coefficient.

We will deal with the representation of polynomials by means of straight line programs over Z. For a polynomial
F ∈ Z[X], this codification consists in a program, each of whose instructions is an addition, subtraction or multipli-
cation of two precalculated elements, which enables us to evaluate the polynomial at any given point. The length of
a straight line program is the number of additions, subtractions and multiplications it performs, even when they just
involve elements in Z. Only the variable X and the elements 1 and −1 ∈ Z may be introduced without increasing the
length of the straight line program. We will write slp as a shorthand for “straight line program”.

The set of positive (resp. non-negative) integers will be denoted by N (resp. N0).
We will call a literal any formula in the language of first order of the type P or ¬P , where P is a predicate symbol.

For n ∈ N, we will call an n-clause a disjunction of n literals.
For the basic notions in complexity theory used in this paper, we refer to [2].

2.2. Tchebychev polynomials

The main objects we will use in our constructions are the Tchebychev polynomials, which can be defined recursively
as follows:

• T0(X) := 1.
• T1(X) := X.
• For k � 2, Tk(X) := 2XTk−1(X) − Tk−2(X).

The following are well known properties of Tchebychev polynomials and can be proved from their recursive
definition (see [4], for example). For every k ∈ N0:

(1) Tk(X) ∈ Z[X] is a polynomial of degree k, and, for k � 1, lc(Tk) = 2k−1.
(2) Tk(x) = cos(k arccos(x)) for x ∈ [−1,1]. In particular, Tk(1) = 1.

As a consequence of these properties, it follows that:
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(3) The roots of Tk are the real numbers cos(tπ/2k) with t an odd integer between 0 and 2k. They all lie in the
interval (−1,1) and they all have multiplicity one.

(4) For every p,q ∈ N, the identity Tp ◦ Tq = Tpq holds.

From the recursive definition of Tchebychev polynomials and item 4 above, we deduce the following result con-
cerning the complexity of the computation of these polynomials:

Lemma 1. For every k ∈ N, the polynomial Tk can be encoded by a straight line program of length O(k). Moreover,
if k = pq for some integers p,q ∈ N, the polynomial Tk = Tpq can be encoded by a straight line program of length
O(p + q).

3. Real roots and straight line programs

This section is devoted to proving the NP-hardness of the problem of deciding the existence of real roots of a
univariate polynomial encoded by a straight line program by using the Tchebychev polynomials. We will show that
the NP-complete problem 3-SAT can be reduced to this decision problem in polynomial time.

Let us recall first Plaisted’s idea in [5] to prove the NP-hardness of deciding if a sparse polynomial has a complex
root of modulus 1. The main point is to consider the regular M-gon Q in the complex plane defined by the set of M th
roots of unity. Then, for any prime number p dividing M , consider the regular polygon formed by taking in Q one
vertex from each p of them (starting from the vertex at the complex number 1 for every p). Given a way of associating
to each predicate symbol in a certain finite set a different prime number dividing M , then each vertex v of Q can be
associated to an interpretation I (v) of these predicate symbols in the following way: I (v) makes predicate symbol
Pi true if and only if v is a vertex of the polygon associated to prime pi . All possible combinations of truth values
are realized at the vertices of Q. The main achievement in Plaisted’s proof is to assign to any instance W of 3-SAT
(and to compute in polynomial time) a sparse polynomial with the property that its only complex roots with modulus
1 (if any) are exactly those vertices of Q for which its associated interpretation of the predicate symbols makes W

true.
Here, we will adapt this construction to a purely real setting. To do so, we will consider a regular polygon with

some a priori non-necessary extra vertices, then keep only the upper half of this polygon and consider the projections
of the vertices to the real axis. To these real numbers we will associate interpretations of the predicate symbols as
explained before.

3.1. Associating a polynomial to a given formula

For M ∈ N, let us call d(M) the set {1,3, . . . ,2M − 1}, i.e., the set of odd integers between 0 and 2M . For each
t ∈ d(M) we define rM(t) = cos(tπ/2M). Notice that for a fixed M , as t ranges over all the elements in d(M), rM(t)

ranges over all roots of the M th Tchebychev polynomial TM and that rM is 1–1 with its image. Conversely, for each
root r of TM , we denote tM(r) the unique integer t ∈ d(M) such that r = rM(t).

Let qj be the j th odd prime number (q1 = 3, q2 = 5, . . .). Let W be a well-formed formula of the propositional
calculus obtained from predicate symbols Pj , j = 1, . . . , n, using Boolean connectives (including negation). As ex-
plained before, to each root r of TM we associate an interpretation IM(r) of the predicate symbols {Pj | qj divides M}.
The interpretation IM(r) makes the predicate symbol Pj true if and only if r is a root of TM/qj

, and this happens if
and only if qj divides tM(r).

For every interpretation J of {Pj | qj divides M} there exists at least one root r of TM such that IM(r) = J , namely
r = rM(

∏
j∈KJ

qj ) where KJ = {j | J makes predicate symbol Pj true}. As it suffices for our purpose, let us suppose
from now on that M is square-free. Then, the set {t ∈ d(M) | IM(rM(t)) = J } equals the set {t ∈ d(M) | gcd(t,M) =∏

j∈KJ
qj }. In this way, each interpretation can be associated with an odd factor d = ∏

j∈KJ
qj of M , and with the set

of roots which leads us to that interpretation. We will write α(J ) := d .
Now, we can define the analogue of PolyM(W) (as defined in [5]), which will be the main tool in our construction.

Definition 2. Let M be a square-free integer and W a well-formed formula of the propositional calculus such that for
every j ∈ N, if the predicate symbol Pj occurs in W , then qj divides M . We define the polynomial PolySM(W) ∈
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R[X] as the monic polynomial having as simple roots the roots r of TM such that W is true in the interpretation
IM(r).

We will see later that for every well-formed formula W , PolySM(W) ∈ Q[X]. Before we continue explaining our
reduction, we will need some other definitions and properties.

Let us define an analogue of the cyclotomic polynomials in the following way:

Ĉ�(X) =
∏

t∈d(�), gcd(t :�)=1

(
X − cos

(
t

2�
π

))
.

Then, deg Ĉ� = φ(2�), where φ is the Euler function. With this definition, it is easy to see that if � �= �′, then Ĉ�(X)

and Ĉ�′(X) are relatively prime polynomials.

Lemma 3. Let W be a well-formed formula of the propositional calculus involving the predicate symbols P1, . . . ,Pn.
Suppose M := ∏n

i=1 qi or M := 2
∏n

i=1 qi and let J1, . . . , Jk be the list of the interpretations of the predicate symbols
that make W true. Then PolySM(W) = ∏k

i=1 ĈM/α(Ji ).

Proof. Let us show that both polynomials have the same roots. For 1 � i � k, the roots of ĈM/α(Ji) are the num-
bers r = rM/α(Ji)(t) with t ∈ d(M/α(Ji)) such that gcd(t,M/α(Ji)) = 1; but due to the equality t/(M/α(Ji)) =
α(Ji)t/M , these numbers are exactly those r = rM(t ′) with t ′ ∈ d(M) such that IM(rM(t ′)) = Ji , which are the roots
of PolySM(W). �
3.2. Reduction via Tchebychev polynomials

Here, we will do the reduction of 3-SAT to the problem of deciding the existence of real roots of univariate
polynomials codified by slp’s. To achieve this, we will prove the following proposition:

Proposition 4. For any instance W of 3-SAT, it is possible to compute in polynomial time in the size of W a polynomial
F ∈ Z[X] codified by an slp whose length is polynomial in the size of W with the property that F has the same real
roots as PolySM(W) for a suitable value of M , and therefore, F has a real root iff W is satisfiable.

To prove Proposition 4, we will make use of the following lemmas:

Lemma 5. Let W and W ′ be well-formed formulae of the propositional calculus, and let M be a square-free integer
such that if the predicate symbol Pi occurs either in W or in W ′, then qi divides M . Then we have that:

(1) PolySM(Pi1 ∧ Pi2 ∧ · · · ∧ Pil ) = TM/(qi1
qi2

...qil
)

lc(TM/(qi1
qi2

...qil
))

,

(2) W and W ′ are equivalent iff PolySM(W) = PolySM(W ′),
(3) PolySM(¬W) = TM

lc(TM)PolySM(W)
,

(4) PolySM(W ∧ W ′) = gcd(PolySM(W),PolySM(W ′)),
(5) PolySM(W ∨ W ′) = lcm(PolySM(W),PolySM(W ′)).

Proof. To prove the first item, let us notice that the set of roots of PolySM(Pi1 ∧ Pi2 ∧ · · · ∧ Pij ) is the set {rM(t) |
t ∈ d(M) and qi1qi2 . . . qij |t}. This set equals the set {rM/(qi1qi2 ...qij

)(t
′) | t ′ ∈ d(M/(qi1qi2 . . . qij ))}, which is the set

of roots of TM/qi
. Items 2–5 are straightforward. �

Note that as a consequence of this lemma, we have the a priori non-obvious consequence that for every well-formed
formula W and every suitable M , PolySM(W) ∈ Q[X].

To prove Proposition 4, we will also need the following lemma, which will be useful to do the computations:
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Lemma 6. Let W be a well-formed formula of the propositional calculus, and let M be a square-free integer such that
if the predicate symbol Pi occurs in W , then qi divides M . Then we have that:

(1) PolySM(¬Pi1 ∨ ¬Pi2 ∨ ¬Pi3) = TM

lc(TM)PolySM(Pi1 ∧Pi2 ∧Pi3 )
,

(2) PolySM(Pi1 ∨ ¬Pi2 ∨ ¬Pi3) = TM PolySM(Pi1 ∧Pi2 ∧Pi3 )

lc(TM)PolySM(Pi2 ∧Pi3 )
,

(3) PolySM(Pi1 ∨ Pi2 ∨ ¬Pi3) = TM PolySM(Pi1 ∧Pi3 )PolySM(Pi2 ∧Pi3 )

lc(TM)PolySM(Pi3 )PolySM(Pi1 ∧Pi2 ∧Pi3 )
,

(4) PolySM(Pi1 ∨ Pi2 ∨ Pi3) = PolySM(Pi1 )PolySM(Pi2 )PolySM(Pi3 )PolySM(Pi1 ∧Pi2 ∧Pi3 )

PolySM(Pi1 ∧Pi2 )PolySM(Pi1 ∧Pi3 )PolySM(Pi2 ∧Pi3 )
,

(5) if some Pj does not occur in W and qj � M , then PolySMqj
(W) = PolySM(W)◦Tqj

. If M is odd, PolyS2M(W) =
PolySM(W) ◦ T2.

Proof. Items 1–4 are easy and can be proved using the inclusion–exclusion principle. Let us prove the last item. Let
J1, J2, . . . , Jk be the list of all interpretations of all the predicate symbols Pl such that ql divides M which make
W true. For h = 1, . . . , k, let JT

h be the interpretation that extends Jh to the predicate symbol Pj by making it true.
Analogously, we define JF

h . As Pj does not actually occur in W , the list of all interpretations of all the predicate
symbols Pl such that ql divides M plus Pj which make W true is JT

1 , J F
1 , . . . , J T

k , J F
k . Moreover, for h = 1, . . . , k,

α(J T
h ) = qjα(Jh) and α(JF

h ) = α(Jh).
Because of Lemma 3, it is enough to see that for h = 1, . . . , k it is

ĈMqj /α(J T
h )ĈMqj /α(JF

h ) = ĈM/α(Jh) ◦ Tqj

lc(ĈM/α(Jh) ◦ Tqj
)
.

Let us first see that the degrees of both polynomial coincide. The degree of the first polynomial is

φ
(
2Mqj/α

(
J T

h

)) + φ
(
2Mqj/α

(
JF

h

)) = φ
(
2M/α(Jh)

) + φ(qj )φ
(
2M/α(Jh)

) = qjφ
(
2M/α(Jh)

)
,

which is the degree of the second polynomial.
Now, let us take a root r of ĈMqj /α(J T

h )ĈMqj /α(JF
h ). Then one of the following possibilities is possible: either

r = cos(tπ/(2M/α(Jh))) for some t ∈ d(M/α(Jh)) such that gcd(t,M/α(Jh)) = 1 or r = cos(tπ/(2Mqj/α(Jh)))

for some t ∈ d(Mqj/α(Jh)) such that gcd(t,Mqj/α(Jh)) = 1. These two conditions can be summarized as r =
cos(tπ/(2Mqj/α(Jh))) for some t ∈ d(Mqj/α(Jh)) such that gcd(t,Mqj/α(Jh)) = 1 or qj . Let us see now that any
of these values for r is a root of the polynomial on the right hand side of the equality:

ĈM/α(Jh)

(
Tqj

(r)
) = ĈMqj /(qj α(Jh))

(
cos

(
qj arccos

(
cos

(
t

2Mqj/α(Jh)
π

))))

= ĈMqj /(qj α(Jh))

(
cos

(
t

2Mqj/(qjα(Jh))
π

))

= ĈMqj /(qj α(Jh))

(
cos

(
t ′

2Mqj/(qjα(Jh))
π

))
,

for some t ′ ∈ d(Mqj/(qjα(Jh))) such that t ≡ ±t ′(2Mqj/(qjα(Jh))).
If gcd(t,Mqj/α(Jh)) = 1, then gcd(t,Mqj/(qjα(Jh))) = 1. If gcd(t,Mqj/α(Jh)) = qj , as Mqj is square-free,

then again gcd(t,Mqj/(qjα(Jh))) = 1. In any case, we know that gcd(t ′,Mqj/(qjα(Jh))) = 1 and then r is a root of
ĈM/α(Jh) ◦ Tqn .

We have proved then that both polynomials have the same roots and therefore they are equal. For the second
statement, it can be proved similarly that for any satisfying interpretation of the predicate symbols J ,

Ĉ2M/α(J ) = ĈM/α(J ) ◦ T2

lc(ĈM/α(J ) ◦ T2)

and conclude in the same way, using Lemma 3. �
We can now give a proof of Proposition 4:
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Proof. Let Ŵ be a 3-clause involving literals Pi1 , Pi2 and Pi3 , i1 < i2 < i3 � n. Let N := qi1qi2qi3 . Due to the fact
that qi = O(i log i) (see [3, Chapter I]), we know that PolySN(Ŵ ) has degree O(n3 log3 n). Using Lemmas 5 and 6,
we can compute an slp for a scalar multiple in Z[X] of this polynomial using the well-known Strassen’s Vermeidung
von Divisionen (division avoiding) algorithm (see [8]), which computes an slp for the quotient of two polynomials
in the following setting: suppose f1, f2 ∈ Q[X] are codified by slp’s of length O(L); if we know that f2|f1, and we
have a bound d for the degree of the quotient f1

f2
and an element r ∈ Q such that f2(r) �= 0, then we can compute in

polynomial time an slp for f1
f2

with length O(d2(d + L)).
In our case, we have the bound for the degree required, and for each division, we know that the evaluation of the

denominator at 1 gives as result 1. This is so because if we unravel the formulae in Lemma 6 without the leading
coefficients involved (we can do so because we are interested in computing a scalar multiple of the polynomial
PolySN(Ŵ )), we have that the denominator is always a product of Tchebychev polynomials. These facts enable us
to adapt the Vermeidung von Divisionen procedure to the slp setting in Z[X] within the same order of complexity.
Besides, the length of the slp we obtain is O(n9 log9 n).

Let M be
∏n

i=1 qi or 2
∏n

i=1 qi (this second option for M will be useful in the next section). Once we have
computed an slp for PolySN(Ŵ ), because of the last item of the lemma above we can compute an slp for PolySM(Ŵ)

by adding at the beginning of the code for PolySN(Ŵ ) the code for Tqi
for each prime qi different from qi1 , qi2 and

qi3 (which is the same as making the composition with Tqi
) and the code for T2 if needed. This adds O(n2 log(n)) to

the length of our slp. Thus, we can compute in polynomial time an slp for PolySM(Ŵ) with length O(n9 log9(n)).
To end our proof, we proceed in the following way. Given any instance W or 3-SAT, involving predicate symbols

P1, . . . ,Pn, we take M = ∏n
i=1 qi or M = 2

∏n
i=1 qi , and we compute an slp for the sum of the squares of the

polynomials PolySM(Ŵ), where Ŵ ranges over all the 3-clauses appearing in W . We call F the polynomial which is
encoded by this slp. If W is a conjunction of m 3-clauses, then this slp codifying F has length O(mn9 log9(n)), and
F has a real root if and only if there is an interpretation of the predicate symbols which makes W true. �

As a direct corollary of Proposition 4, we have a new proof of the following result:

Theorem 7. Deciding whether a univariate polynomial codified by a straight line program in Z has a real root or not
is NP-hard.

Suppose now that we consider the size of a rational number r/s as log(|r|) + log(s). As the polynomial F we
computed in the proof of Proposition 4 has all its real roots (if any) in the interval (−1,1), it follows that even with
small rational endpoints, it is hard in general to decide the real root existence in a given interval. So, again as a direct
corollary of Proposition 4, we have a new proof of the following theorem:

Theorem 8. Deciding if a univariate polynomial codified by an slp in Z has a root in an interval (a, b) given by
a, b ∈ Q is NP-hard in the strong sense.

4. Approximating real roots is NP-hard

In this section we will use the construction we have done in the previous section to get some new results concerning
the complexity of the problem of approximating real roots of a univariate integer polynomial encoded by a straight
line program. Our main result is:

Theorem 9. The following two search problems are NP-hard (in the sense of [2, Chapter 5]):

• Given a polynomial F ∈ Z[X] encoded by a straight line program, an (open, semiopen or closed) interval I with
endpoints a, b ∈ Q such that F has a root in I , and given ε > 0, find c, d ∈ (I ∪ {a, b}) ∩ Q such that d − c < ε

and F has a root in [c, d] ∩ I .
• Given a polynomial F ∈ Z[X] encoded by a straight line program, an (open, semiopen or closed) interval I with

extremes a, b ∈ Q and given ε > 0, find c, d ∈ (I ∪ {a, b}) ∩ Q such that d − c < ε with the property that if F has
a root in I , then F has a root in [c, d] ∩ I .
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Proof. To prove the first item, we will show a polynomial time reduction from the NP-hard problem F3-SAT.
Let W be an instance of 3-SAT formed by m different 3-clauses on the predicate symbols P1, . . . ,Pn which we

know to be satisfiable. Let M := 2q1 . . . qn and let F be the polynomial computed in the previous section whose
real roots are precisely those of the polynomial PolySM(W). We have already proved that we can compute in poly-
nomial time an slp of length L = O(mn9 log9(n)) encoding F . As W is satisfiable, we know that F has a root
r = rM(t) with r ∈ (−1,1), for some odd integer t ∈ d(M). In fact, the factor 2 in M ensures us that there will be
at least two such roots, one of them lying in the interval (−3/4,3/4): if t � M/2, then M/2 < t + M � 3M/2 and
IM(rM(t)) = IM(rM(t + M)), so we can replace t by t + M ; analogously, if t � 3M/2, then M/2 � t − M < 3M/2
and IM(rM(t)) = IM(rM(t − M)), and we replace t by t − M . In any case, we may assume that t is an odd integer
between M/2 and 3M/2. We conclude that F has a real root rM(t) in the interval [−√

2/2,
√

2/2] ⊂ (−3/4,3/4).
Note that if −3/4 < r1 < r2 < 3/4, with r1 = cos(t1π/2M), r2 = cos(t2π/2M) for some odd integers t1 > t2 in

d(M), then due to the mean value theorem, there exists a real number ξ ∈ (arccos(3/4), arccos(−3/4)) such that

r2 − r1 = cos(t2π/2M) − cos(t1π/2M) = sin(ξ)(t1 − t2)π

2M
�

√
1 − (3/4)2π

M
>

2

M
.

So, any two distinct possible roots of polynomial F in the interval (−3/4,3/4) are separated by a distance of at least
2/M .

As log(M) = Θ(qn) = O(n), where Θ is the Tchebychev function Θ(x) = ∑
p�x,p prime log(p) (see [3, Chap-

ter XXII, Theorem 415]), we can consider ε := 1/2M , which size is polynomial in n, and suppose that we can
find in polynomial time a pair of numbers c, d ∈ [−3/4,3/4] ∩ Q with d − c � ε such that F has a real root in
[c, d] ∩ (−3/4,3/4).

Since d − c is lower than the minimum separation between distinct roots of F , we conclude that there is exactly
one real root r0 = rM(t0) of F in [c, d], and this means that we have an interpretation of the predicate symbols which
makes W true. We just need to prove that we can decide in polynomial time for which t ∈ d(M), the inequalities
c � rM(t) � d hold.

We proceed in several steps. First we use Bailey, Borwein and Plouffe’s formula (see [1]):

π =
∞∑
i=0

1

16i

(
4

8i + 1
− 2

8i + 4
− 1

8i + 5
− 1

8i + 6

)
,

to find an approximation s in Q to the number π such that |s − π | < 1/4M in time polynomial in log(M). Now, for
a given integer t , we can find an estimate s2 in Q for cos(ts/2M) using the Taylor expansion with error bounded by
1/4M , also in time polynomial in log(M). We have that |s2 − cos(tπ/2M)| � |s2 − cos(ts/2M)| + | cos(ts/2M) −
cos(tπ/2M)| � |s2 − cos(ts/2M)| + |tπ/2M − ts/2M| � 1/2M .

Note that if for some value of t ∈ d(M) the approximation s2 to cos(tπ/2M) lies in the interval [c − 1/2M,d +
1/2M], then t = t0, because otherwise |rM(t) − rM(t0)| � |rM(t) − s2| + |s2 − rM(t0)| � 1/2M + 1/M < 2/M ,
which is impossible. Then, using a bisection method in d(M), we compute approximations to cos(tπ/2M) for up to
O(logM) distinct numbers t ∈ d(M) in polynomial time, till we find t0, which is the first (and only) value such that
the approximation lies in [c − 1/2M,d + 1/2M].

In order to prove the second item, we proceed in an analogous way to make a reduction from 3-SAT. If we can
find an interval [c, d] ⊂ I ∪ {a, b} of length at most ε with the property that if F has a root in I , then F has a root
in [c, d] ∩ I , we apply this algorithm to F = PolySM(W) and [a, b] = [−3/4,3/4]. This leads us to the fact that we
just need to evaluate the formula W at one possible interpretation (which can be done in polynomial time) to find a
satisfying interpretation of the predicate symbols, if there is one. This proves the second item. �
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