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Abstract

Traditionally, on-line problems have been studied under the assumption that there is a unique
sequence of requests that must be served. This approach is common to most general models of on-
line computation, such as Metrical Task Systems. However, there exist on-line problems in which
the requests are organized in more than one independent thread. In this more general framework, at
every moment the first unserved request of each thread is available. Therefore, apart from deciding
how to serve a request, at each stage it is necessary to decide which request to serve among several
possibilities.

In this paper we introduce Multi-threaded Metrical Task Systems, that is, the generalization of
Metrical Task Systems to the case in which there are many threads of tasks. We study the problem
from a competitive analysis point of view, proving lower and upper bounds on the competitiveness
of on-line algorithms. We consider finite and infinite sequences of tasks, as well as deterministic and
randomized algorithms. In this work we present the first steps towards a more general framework for
on-line problems which is not restricted to a sequential flow of information.
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1. Introduction

Traditionally, on-line problems have been studied under the assumption that there is a
unique sequence of requests that must be served. This means that at every moment there
is one outstanding request that can be served, and each request becomes available when
a decision is made on how to serve the preceding request in the sequence. This approach
is common to most general theoretical frameworks for on-line problems, such as Metrical
Task Systems [8] and Request-Answer Games [5].

Although the single-sequence approach is enough to model many on-line problems,
it fails to encompass other interesting on-line situations of two different types. First, in
certain problems there is a notion of real-time that passes while the requests are served,
with the requests arriving over time. We will not deal with that kind of problems in this
paper; for more information see, for example, [2,15]. Second, there exist on-line problems
in which the requests are not totally ordered but organized in more than one thread, as if
they came from more than one source. These problems are called multi-threaded on-line
problems. Problems of this type are usual, for instance, in multi-tasking environments,
where several independent processes may simultaneously present their requirements to
the operating system. In this more general framework, at every moment the first unserved
request of each thread is available. Therefore, apart from deciding how to serve a request,
at each stage it is necessary to decide which request to serve among several possibilities.

The first multi-threaded on-line problem proposed in the literature was Multi-threaded
Paging [11], which is the multi-threaded version of the traditional Paging problem [21,24].
Multi-threaded Paging has been further studied in [13,16,22,25]. More recently, multi-
threaded versions of scheduling [12,19], routing [1] and transportation problems [14,23]
have been proposed.

In this paper we introduce Multi-threaded Metrical Task Systems, that is, the gener-
alization of Metrical Task Systems to the case in which there are many threads of tasks.
We study the problem from a competitive analysis point of view, proving lower and up-
per bounds on the competitiveness of on-line algorithms. We consider finite and infinite
sequences of tasks, as well as deterministic and randomized algorithms. With this work,
we expect to make the first steps towards a more general framework for on-line problems
which is not restricted to a sequential flow of information.

The remainder of this paper is organized as follows: In Section 2 we give basic defi-
nitions and notation. Section 3 is devoted to exploring related work that can be found in
the literature. In Section 4 we present a parameterized algorithm for Multi-threaded Met-
rical Task Systems that achieves a competitive ratio that is essentially the product of the
number of threads and the competitiveness of an algorithm for the corresponding single-
sequence problem. In Section 5 we study an important class of Multi-threaded Metrical
Task Systems, for which a lower bound on the competitive ratio is shown. In addition,
we find concrete problems that have competitive ratios coincident with the lower bound
that we give, and other problems that have competitive ratios coincident with the upper
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bound of Section 4; this means that our lower and upper bounds cannot be improved in
general. In Section 6 we prove a lower bound for deterministic on-line algorithms that deal
with infinite sequences of tasks; this lower bound is optimal up to constant factors. Finally,
Section 7 is dedicated to presenting some remarks.

2. Definitions

A task system is given by a tuple (S, d,T , s0). S is a finite set of states, where the number
of states is |S| = n. To simplify the presentation, we consider that S = {1,2, . . . , n}. d is
a matrix giving the distances between states, i.e., for any two states i and j , d(i, j) ∈
R�0 ∪ {+∞} is the distance from i to j . We assume that the triangle inequality holds,
and that d(i, i) = 0. The maximum and minimum distances are dmax = maxi �=j d(i, j) and
dmin = mini �=j d(i, j), respectively. T is a set of allowed tasks, where a task is a vector
giving the costs of processing the task in the different states. More precisely, if t is a task,
t (i) ∈ R�0 ∪ {+∞} specifies the cost of processing the task t while in the state i. The
initial state is s0.

An algorithm for a task system is presented with a sequence of tasks σ = t1, t2, . . . , t�.
The objective is to determine a state in which to process each task, minimizing the
cost of moving and the cost of processing tasks. An algorithm produces a schedule
π = π1,π2, . . . , π�, where πi ∈ S is the state in which task t i is processed. The cost
of a schedule π on σ is the sum of the cost of moving from state to state, the moving cost,
and the cost of processing tasks, the stationary cost:

Cπ(σ) =
�∑

i=1

d(πi−1,πi) +
�∑

i=1

t i (πi),

where we define π0 = s0. The cost of an algorithm A on input σ , denoted CA(σ), is the
cost of the schedule produced by the algorithm.

An on-line algorithm must decide in which state to process each task without knowl-
edge of future tasks. Only after processing the current task, the next one is revealed. More
formally, while producing a schedule π an on-line algorithm must determine each state πi

as a function only of t1, t2, . . . , t i . On the contrary, an off-line algorithm can decide each
state based on the whole sequence of tasks.

A simple dynamic programming approach suffices to determine an optimal schedule for
a sequence. The optimal off-line algorithm is an algorithm that produces always an optimal
schedule; its cost for an input σ is

COPT(σ ) = min
π

Cπ(σ ).

The theoretical importance of task systems is that they can be used to model a wide
variety of on-line problems. In other words, by appropriately choosing S, d , and T in the
definition of task systems, it is possible to model specific on-line problems [8].

Competitive analysis is a type of worst case analysis where the performance of an algo-
rithm is compared to that of the optimal off-line algorithm. This approach was initiated by
Sleator and Tarjan [24]. The term competitive analysis originates in [18]. The measure of
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performance used in competitive analysis is the competitive ratio. In terms of task systems,
it is defined as follows: An algorithm A for a task system is said to be c-competitive if and
only if there exists a constant E such that for every task sequence σ

CA(σ) − c · COPT(σ ) � E.

If the algorithm A is randomized then CA(σ) is a random variable and we use its expecta-
tion in the above definition. The competitive ratio of algorithm A is the infimum of the set
of values c for which A is c-competitive. The competitive ratio of task system M is the in-
fimum of the competitive ratio of A over all on-line algorithms A for M . We define det(M)

and ran(M) to be the deterministic and randomized competitive ratios of task system M ,
respectively.

If in a task system M the distance matrix d is symmetric, we say that M is a metrical
task system (MTS). In this situation we can assume that for any two states i �= j , 0 <

d(i, j) < +∞, since if d(i, j) = 0 the state i and the state j can be grouped together, and
if d(i, j) = +∞ the state i or the state j cannot be reached from the initial state. Since our
performance measure is the competitive ratio, by scaling the distances and the tasks we can
always assume that dmin = 1.

As we mentioned before, there are on-line problems that can be better modeled with
more than one sequence of tasks. With that goal, we introduce the notion of multi-threaded
task system, which is a tuple (S, d,T , s0,w). The parameters S, d , T and s0 are defined as
in a (single-threaded) task system, while the additional parameter w indicates the number
of threads of tasks. An algorithm for a multi-threaded task system receives as input a w-
tuple Σ = (σ1, σ2, . . . , σw) of sequences of tasks. Given its input, the algorithm produces
a schedule for it. This schedule specifies not only the state in which to process each task,
but the order in which the tasks are served. It may be helpfull to see a multi-threaded task
system as a dynamic process in the following way: At every moment there is just one
outstanding task per thread; the algorithm chooses one of those tasks and a state in which
to process it; each time that the algorithm serves a task of a thread, the next task of that
thread is presented to the algorithm. Notice that at each step distinct algorithms may have
served distinct sets of tasks. However, the tasks of any particular sequence are served in the
same order in which they are presented (although they can be interleaved with tasks from
other sequences).

The cost of a schedule for an input tuple Σ is the sum of the moving cost and the
stationary cost, just as in the single-threaded case. The cost of an algorithm is the cost of
the schedule produced by the algorithm. Again we can distinguish between on-line and
off-line algorithms: while algorithms of the latter type can decide the sequence of states
and the ordering of the tasks based on the entire input, on-line algorithms must decide each
step using only the information of the tasks seen so far.

If M = (S, d,T , s0) is a task system, we use M(w) to denote the multi-threaded task
system (S, d,T , s0,w). We consider two models: finite and infinite. In the finite model the
input Σ is a tuple of finite sequences of tasks, while in the infinite model each sequence
contains an infinite number of tasks. In both models we use CA(Σ,�) to denote the cost
incurred by algorithm A for serving � tasks from the input tuple Σ ; however, in the finite
model we will usually use CA(Σ) instead of CA(Σ, |Σ |).
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In the finite model algorithms are required to serve all tasks of all threads. At that point
their performance is evaluated. An algorithm A is c-competitive in the finite model if and
only if there exists a constant E such that for every input tuple Σ

CA(Σ) − c · COPT(Σ) � E.

If A is a randomized algorithm we replace CA(Σ) for its expected value.
On the other hand, in the infinite model algorithms are required to serve a finite num-

ber � of tasks; the value of � is not known by on-line algorithms. An algorithm A is
c-competitive in the infinite model if and only if there exists a constant E such that for
every input tuple Σ and for every finite number � of tasks

CA(Σ,�) − c · COPT(Σ, �) � E,

where COPT(Σ, �) is the cost incurred by the optimal off-line algorithm for serving � tasks
from Σ . Again we replace CA(Σ,�) for its expectation if the algorithm A is randomized.

In both the finite and infinite models, we define the competitive ratio of an algorithm A

and the competitive ratio of a multi-threaded task system M(w) as in the single-threaded
case. At any stage, a sequence σi whose last task has not been served yet is called active.
The tuple formed by the j th task of each sequence is called the j th row of tasks.

A multi-threaded metrical task system (MT-MTS) is a multi-threaded task system in
which the distance matrix d is symmetric. All of our results are for the metrical case.

Since the competitive ratio is a worst case measure, for the purposes of analysis we
assume that the input sequences are generated by a malicious adversary, who forces on-
line algorithms to perform as badly as possible. Thus, we use the terms optimal off-line
algorithm and adversary interchangeably.

3. Related work

Metrical Task Systems were introduced by Borodin, Linial, and Saks [8] as a gener-
alization of several known single-threaded on-line problems. In that work, it was proved
that if M is any MTS, then det(M) � 2n − 1; it was also proved that this upper bound is
optimal. In contrast to the deterministic case where tight bounds have been attained, devel-
oping tight bounds for randomized algorithms has proven to be much less tractable. The
best randomized lower bound for arbitrary metric spaces is

�

(√
logn

log logn

)
,

which is due to Blum et al. [6]. The best randomized upper bound result is that of Bartal
et al. [3] who proved that if M is any MTS, then ran(M) = O(log6 n). All the aforemen-
tioned results are for the case where all possible tasks are allowed. Burley and Irani [9]
investigated the situation where T is given as part of the input.

So far only a small number of multi-threaded on-line problems have been analyzed.
One of those problems is Multi-threaded Paging (MT-Paging), which is the multi-threaded
version of the very well known Paging problem [21,24]. MT-Paging was developed by
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Feuerstein [11] and Feuerstein and Strejilevich de Loma [16]. In those works, the authors
considered finite and infinite sequences of requests, and they analyzed the problem both
with and without imposing fairness restrictions, deriving deterministic lower and upper
bounds. Further work on MT-Paging was done by Strejilevich de Loma [25], who con-
sidered some interesting particular cases of the fair version; by Feuerstein, Robak and
Strejilevich de Loma [13], who improved some of the results for the finite model; and by
Seiden [22], who gave randomized lower and upper bounds.

Another multi-threaded on-line problem that has been studied is the so-called k-client
problem, due to Alborzi et al. [1]. The problem is the multi-threaded version of the 1-server
problem [20]. In the k-client problem there is a metric space in which a server moves at
constant speed to satisfy requests generated by k independent clients. Each request is sat-
isfied when the server arrives to the location of the request, and then the corresponding
client presents a new request in another place of the metric space. The problem was re-
cently generalized by Seleson [23] and Feuerstein, Seleson and Strejilevich de Loma [14],
who considered requests that consist of two points in the metric space, an origin and a des-
tination; in this case the server must carry some object from the origin to the destination.

Feuerstein, Mydlarz and Stougie [12] have recently studied On-line Multi-threaded
Scheduling, the problem of assigning a set of tasks presented by independent sequential
clients to machines, in order to minimize some objective function such as the makespan or
the latency.

Motivated by the problem of deciding which blocks of data to prefetch in a multi-tasking
environment, Kimbrel [19] has analyzed the sequence interleaving problem. In this prob-
lem there are several sequences of positive and negative numbers. The goal is to interleave
the sequences of numbers minimizing a cost function derived from the original prefetching
problem.

Fiat and Karlin [17] have considered a problem related to MT-Paging, in which the in-
put corresponds to a multi-pointer walk on an access graph [7]. Within that framework, the
multiple threads of requests are merged in one input sequence, corresponding to an inter-
leaved execution of the different threads. The way in which the sequences are interleaved
in [17] is decided in an earlier stage of the process (and is the same for all algorithms).
A similar approach was taken in [4,10] for application-controlled paging. In this prob-
lem, a certain number of applications share a cache. Each application gives a sequence of
requests to pages, and the algorithm must serve an interleaved request sequence.

4. A general upper bound

In this section, we will prove that the competitive ratio of any MT-MTS with w threads
cannot be much worse than w times the competitive ratio of the corresponding single-
threaded problem. In doing so, we will define an algorithm for MT-MTS that uses as a
subroutine an algorithm for the single-threaded case.

Let M be any MTS and let A be any algorithm for M . Based on A we can define an
algorithm for M(w). We call the new algorithm Alternate-and-Restore (AR, for short),
and it is described in Fig. 1. Algorithm AR receives as parameters the algorithm A and
a positive real number g. Algorithm AR(A,g) works in rounds; each round consists of
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r ← 1
While there is at least one task to be served do

% a new round starts
i ← 1
While i � w do

% a new stage starts
Restore the state from the previous time that the ith sequence
was served, or the initial state if the sequence was never
served.
Apply algorithm A to the ith sequence until the optimal off-
line cost in the sequence is at least gr, or till the
sequence is over
i ← i + 1

end While
r ← r + 1

end While.

Fig. 1. Algorithm Alternate-and-Restore(A, g).

applying algorithm A to each thread of the input tuple. The number of tasks of each thread
served in each round depends on the parameter g. Before serving the first unserved task of
any sequence during any round, AR(A,g) moves to the state in which the algorithm was
the last time that the sequence was served. In the finite model the algorithm must check
whether the sequences are exhausted. We will now relate the competitiveness of AR(A,g)

with that of A.

Theorem 1. Let M be any MTS. Let A be any deterministic or randomized c-competitive
algorithm for M . Then for every g > 0 algorithm AR(A,g) is (wc+wdmax/g)-competitive
for M(w) in both the finite and infinite models.

Proof. We will prove the result only for the deterministic case; for the randomized version
the proof is almost the same, using the expectation of the cost.

Let � be the number of tasks to be served (in the finite model, � = |Σ |). Suppose that
after serving � tasks AR(A,g) completed m rounds and is currently in the (m + 1)st round
(so, r = m + 1 in Fig. 1). Note that, ignoring the restoring part, AR(A,g) behaves exactly
like algorithm A on each thread. Then the cost of AR(A,g) for any thread is the cost of A

for that thread plus the restoring cost. Since A is c-competitive its cost in each sequence is
at most cgm + O(1), while the restoring cost for each sequence is at most dmaxm + O(1).
Therefore the cost of AR(A,g) is

CAR(A,g)(Σ, �) � w(cgm + dmaxm) + O(1) =
(

wc + wdmax

g

)
gm + O(1).

Among the sequences in which AR(A,g) completed its mth round (in the infinite model,
all the sequences), there must be at least one sequence for which the adversary served at
least the same number of tasks as AR(A,g) in that sequence. By definition of AR(A,g),
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the optimal off-line cost in that sequence is at least gm, and so

CAR(A,g)(Σ, �) �
(

wc + wdmax

g

)
COPT(Σ, �) + O(1). �

As we can see, an upper bound on the competitive ratio of any MT-MTS follows directly
from the above theorem.

Corollary 2. Let M be any MTS. For every ε > 0 we have

det
(
M(w)

)
� w · det(M) + ε and ran

(
M(w)

)
� w · ran(M) + ε,

in both the finite and infinite models.

Proof. By definition of det(·), there exists a deterministic [det(M) + ε/(2w)]-competitive
on-line algorithm A for M . Let g = 2wdmax/ε. Then, by Theorem 1, algorithm AR(A,g)

is (w det(M) + ε)-competitive for M(w) in both models. For the randomized case, use a
randomized [ran(M) + ε/(2w)]-competitive on-line algorithm. �

5. Forcing tasks

In this section we will restrict our attention to an important class of MTS in which the set
of allowed tasks can only contain forcing tasks [20]. A task t is a forcing task if and only if
for any state i we have that t (i) is either 0 or +∞. This means that to process the task, every
algorithm must change to a state in which the processing cost of the task is 0. Examples
of MTS’s with forcing tasks are the Paging problem [21,24] and its generalization, the
k-server problem [20].

We will see that, for any MTS with forcing tasks, the competitive ratio of the corre-
sponding MT-MTS cannot be better than the competitive ratio with only one thread. After
that, we will show that both the general upper bound of Section 4 and the lower bound
of this section are achievable for some MTS’s with forcing tasks. This could mean that,
to improve any of those bounds, it would be necessary to make assumptions about the
underlying metric space or the set of allowed tasks.

5.1. A lower bound

Theorem 3. Let M be any MTS with forcing tasks. Then we have

det
(
M(w)

)
� det(M) and ran

(
M(w)

)
� ran(M),

in both the finite and infinite models.

Proof. Again we will present the proof only for the deterministic case; in a randomized
setting, use the expectation of the cost. The idea of the proof is that an algorithm faced with
w identical copies of a worst-case input sequence for the single-threaded problem, cannot
behave better than its single-threaded counterpart.
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Let A(w) be any deterministic on-line algorithm for M(w). We can use A(w) to de-
fine an algorithm A for M as follows. Let σ be the input sequence of A. To process σ ,
algorithm A simulates the behavior of A(w) on Σ = (σ,σ, . . . , σ ). Each time that A(w)

moves to any state, so does A; each time that A(w) serves the first task of the mth row of
Σ , algorithm A serves the mth task of σ .

Note that A is well defined because when A(w) has served wm tasks of Σ , algorithm
A(w) must have served the first task of the mth row. That is, if we call rm the number of
tasks served by A(w) just after the algorithm has served the first task of the mth row, we
have that wm � rm. Since the cost is a non decreasing function of the number of served
tasks, we have

CA(w)(Σ,wm) � CA(w)(Σ, rm).

By definition of A, the algorithm behaves almost in the same way as A(w). The only
difference is that when A has served m tasks of σ , it has served a subset of the rm tasks of
Σ served by A(w), and hence

CA(w)(Σ, rm) � CA(σ,m).

Until now we did not use the fact that we are dealing with forcing tasks. We will use
this to upper bound the cost of the adversary on Σ . To serve Σ , the adversary can follow
an optimal off-line algorithm on σ , with the only distinction that each time a task of σ is
served, the adversary serves a complete row of Σ . Since we have forcing tasks the cost of
the adversary does not increase for serving those additional tasks, and so

COPT(Σ,wm) � COPT(σ,m).

Based on the above discussion, we are ready to prove the claim. Let c be a constant
such that 1 � c < det(M), and let E be any constant. By definition of det(·), there exists a
sequence σ and a number of tasks � (in the finite model, � = |σ |) such that

CA(σ, �) − c · COPT(σ, �) > E.

Consider the input tuple Σ = (σ,σ, . . . , σ ). In the infinite model, fix the number of tasks
to serve in w�. In this situation we have

CA(w)(Σ,w�) − c · COPT(Σ,w�) � CA(σ, �) − c · COPT(σ, �) > E,

and the result follows. �
5.2. An MT-MTS that matches the upper bound

We will see now that there exist task systems for which the upper bound of Section 4 is
optimal.

Theorem 4. There exists a metrical task system M for which det(M(w)) = w det(M) in
the infinite model.
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Proof. This was proved in [16] for any MTS corresponding to the Paging problem with at
least w(k + 1) distinct pages, where k is the size of the cache. �

Notice that in [22] it was proved that, up to constant factors, the analogous result is valid
in a randomized setting.

5.3. An MT-MTS that matches the lower bound

We will show now that the other extreme is possible, that there exist non-trivial task
systems where the competitive ratio matches the lower bound of Theorem 3 for any number
of sequences. In other words, for those task systems the competitive ratio is independent
of the number of threads.

Theorem 5. Let M be the MTS corresponding to the Paging problem with the restriction
that the sequences of requests must be formed by at most k + 1 distinct pages, where k is the
size of the cache. Let A be any lazy1 deterministic (randomized) c-competitive algorithm
for M . Then there exists a deterministic (randomized) c-competitive algorithm for M(w)

in both the finite and infinite models.

Proof. Once again we will give the proof only for the deterministic case. Based on A we
will define an algorithm A(w) for M(w). Then we will prove that A(w) is c-competitive.

Algorithm A(w) starts by loading into the cache k different pages that appear in the
input tuple Σ ; this costs k to the algorithm. From that point on, A(w) serves for free any
request to a page that it has in its cache. This means that each time that A(w) faults it is
because the current request of each one of the active sequences is to its only missing page.
To bring the missing page to its cache, A(w) simulates the behavior of A on a request to
that page.

Let � be the number of requests to be served (in the finite model, � = |Σ |). Among the
sequences that were active when A(w) faulted the last time (in the infinite model, all the
sequences) there must be at least one sequence for which the adversary served at least the
same number of requests that A(w) in that sequence. Let σj be such a sequence. Let σj be
the subsequence of σj that contains only the requests in which A(w) had a page fault after
the initial loading of pages. Since σj was active when A(w) faulted the last time, we can
think that A(w) served the � requests just by loading the k different pages at the beginning,
and then serving the requests in σj ; besides, the requests in σj were served by A(w) using
algorithm A, and therefore we have

CA(w)(Σ,�) = k + CA(σ j ).

Being A a c-competitive algorithm, there exists a constant E (independent of σj ) such that

CA(σ j ) � c · COPT(σ j ) + E.

1 An algorithm for Paging is lazy if it only evicts a page on a page fault, and in that case evicts exactly one
page.
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By definition of σj , after serving � requests the adversary has served all the requests in σj ,
and then

COPT(σ j ) � COPT(Σ, �).

Putting the above three expressions together we obtain

CA(w)(Σ,�) = CA(σ j ) + k � c · COPT(σ j ) + E + k � c · COPT(Σ, �) + E + k,

that is, A(w) is c-competitive. �
Corollary 6. There exists a metrical task system M for which det(M(w)) = det(M) and
ran(M(w)) = ran(M) in both the finite and infinite models.

Proof. Let M be the MTS corresponding to the Paging problem with the restriction that
the sequences of requests must be formed by at most k + 1 distinct pages, where k is the
size of the cache. It is well known that there are lazy deterministic and randomized on-line
algorithms for Paging that are optimal. Then the result follows by Theorems 3 and 5. �

6. An additional deterministic lower bound for the infinite model

In this section we will present a deterministic lower bound for the infinite model. The
lower bound only assumes that the set T of allowed tasks contains some particular subset
of tasks.

Theorem 7. Let S be any set of states, with n = |S|. There exists a set of tasks T

such that for every multi-threaded metrical task system M(w) = (S, d,T , s0,w), we have
det(M(w)) � wn in the infinite model.

Proof. Let A be any on-line algorithm for M(w). The adversary picks ε > 0 so that 1 �
wε. In addition, the adversary uses the following strategy: Whenever a task is revealed,
that task charges ε to the current state of A and charges 0 to all other states.

We divide the schedule of A into phases. A phase ends, and a new one begins, whenever
A changes state. Suppose that after serving � tasks A completed m phases and is currently
in the (m + 1)st phase. Let pi be the number of tasks served by A in the ith phase. Note that
during a phase, all revealed tasks charge the current state of A. If A serves a task revealed in
the current phase, it pays ε. Therefore the cost of A for the first phase is εp1, because each
available task charges the initial state and the algorithm has not moved. Consider the ith
phase, with i > 1. During this phase, A can serve at most w tasks from previous phases.
The algorithm moves before the phase ends and pays at least 1 for doing so (recall that
dmin = 1). Then the total cost for the phase is at least 1 + ε(pi − w). Since � = ∑m+1

i=1 pi ,
summing over all phases we get

CA(Σ,�) � εp1 +
m+1∑
i=2

1 + ε(pi − w) = (1 − wε)m + ε� � ε�.
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Let qi be the number of tasks served by A on thread σi . Notice that � = ∑w
i=1 qi . Hence,

there exists an i such that qi � �/w. All tasks on this thread, starting with the (qi + 2)nd
task, charge 0 to all states. The adversary serves only tasks on this thread. Obviously, it pays
nothing after the first qi + 1 tasks. Furthermore, since each of the first qi + 1 tasks charges
exactly one state, there exists a state which is charged at most (qi + 1)/n times. Before
serving any task the adversary moves to this state and pays at most dmax + ε(qi + 1)/n �
dmax + ε/n + ε�/(wn). Putting all these facts together, by simple calculations we obtain

CA(Σ,�)

COPT(Σ, �)
� ε�

dmax + ε/n + ε�/(wn)
= wn

wn(dmax + ε/n)/(ε�) + 1
.

Clearly, this can be made arbitrarily close to wn by choosing sufficiently large �. �
Recall that in [8] it was proved that if M is any MTS, then det(M) � 2n − 1. Then, by

Corollary 2, it follows that for every ε > 0 we have det(M(w)) � w(2n− 1)+ ε = O(wn).
This means that the result of Theorem 7 is tight up to constant factors.

7. Remarks

In this work, we have taken the first steps towards formulating a general model for multi-
threaded on-line problems. Specifically, we have introduced Multi-threaded Metrical Task
Systems, a natural generalization of the task system general model.

A central issue is the dependence of the competitive ratio on the number of threads w.
We have shown that for metrical task systems, the competitive ratio is O(wn). Further,
we have exhibited metrical task systems where this is the best possible, and other metrical
task systems where the competitive ratio is constant in w. An interesting open question is
whether there are natural task systems which are in-between, i.e., metrical task systems for
which the competitive ratio grows with f (w), where f = o(w), and f = ω(1).

Another important issue is as follows: Given a metrical task system M , what is the
natural multi-threaded version of M? The first impulse is to use M(w). However, further
consideration leads us to conclude that this is not entirely satisfactory. For instance, the
most useful model of Multi-threaded Paging might be that where each thread requests its
own set of pages. Given the wide range of problems which can be modeled as metrical task
systems, we are not certain that there is a definitive answer to this question.

References

[1] H. Alborzi, E. Torng, P. Uthaisombut, S. Wagner, The k-client problem, J. Algorithms 41 (2) (2001) 115–
173.

[2] G. Ausiello, E. Feuerstein, S. Leonardi, L. Stougie, M. Talamo, Algorithms for the on-line travelling sales-
man, Algorithmica 29 (4) (2001) 560–581.

[3] Y. Bartal, A. Blum, C. Burch, A. Tomkins, A polylog(n)-competitive algorithm for metrical task systems,
in: Proc. 29th ACM Symposium on Theory of Computing, 1997, pp. 711–719.

[4] R.D. Barve, E.F. Grove, J.S. Vitter, Application-controlled paging for a shared cache, SIAM J. Com-
put. 29 (4) (2000) 1290–1303.



E. Feuerstein et al. / Journal of Discrete Algorithms 4 (2006) 401–413 413
[5] S. Ben-David, A. Borodin, R. Karp, G. Tardos, A. Wigderson, On the power of randomization in on-line
algorithms, Algorithmica 11 (1994) 2–14.

[6] A. Blum, H. Karloff, Y. Rabani, M. Saks, A decomposition theorem for task systems and bounds for ran-
domized server problems, SIAM J. Comput. 30 (5) (2001) 1624–1661.

[7] A. Borodin, S. Irani, P. Raghavan, B. Schieber, Competitive paging with locality of reference, J. Comput.
System Sci. 50 (2) (1995) 244–258.

[8] A. Borodin, N. Linial, M.E. Saks, An optimal on-line algorithm for metrical task system, J. ACM 39 (4)
(1992) 745–763.

[9] W. Burley, S. Irani, On algorithm design for metrical task systems, Algorithmica 18 (4) (1997) 461–485.
[10] P. Cao, E.W. Felten, K. Li, Application-controlled file caching policies, in: Proc. Summer USENIX Confer-

ence, 1994.
[11] E. Feuerstein, On-line paging of structured data and multi-threaded paging, PhD thesis, Università degli

Studi di Roma “La Sapienza”, 1995.
[12] E. Feuerstein, M. Mydlarz, L. Stougie, On-line multi-threaded scheduling, J. Scheduling 6 (2) (2003) 167–

181.
[13] E. Feuerstein, D.G. Robak, A. Strejilevich de Loma, Manuscript, 2000.
[14] E. Feuerstein, M. Seleson, A. Strejilevich de Loma, Manuscript, 2000.
[15] E. Feuerstein, L. Stougie, On-line single-server dial-a-ride problems, Theoret. Comput. Sci. 268 (1) (2001)

91–105.
[16] E. Feuerstein, A. Strejilevich de Loma, On-line multi-threaded paging, Algorithmica 32 (1) (2002) 36–60.
[17] A. Fiat, A.R. Karlin, Randomized and multipointer paging with locality of reference, in: Proc. Twenty-

Seventh Annual ACM Symposium on the Theory of Computing, Las Vegas, 29 May–1 June 1995, pp.
626–634.

[18] A.R. Karlin, M.S. Manasse, L. Rudolph, D.D. Sleator, Competitive snoopy caching, Algorithmica 3 (1988)
79–119.

[19] T. Kimbrel, Interleaved prefetching, Algorithmica 32 (1) (2002) 107–122.
[20] M.S. Manasse, L.A. McGeoch, D.D. Sleator, Competitive algorithms for server problems, J. Algo-

rithms 11 (2) (1990) 208–230.
[21] L.A. McGeoch, D.D. Sleator, A strongly competitive randomized paging algorithm, Algorithmica 6 (6)

(1991) 816–825.
[22] S.S. Seiden, Randomized online multi-threaded paging, Nordic J. Comput. 6 (2) (1999) 148–161.
[23] M. Seleson, On-line multi-threaded dial-a-ride, Master’s thesis, Universidad de Buenos Aires, Departamento

de Computación, July 1999.
[24] D.D. Sleator, R.E. Tarjan, Amortized efficiency of list update and paging rules, Comm. ACM 28 (1985)

202–208.
[25] A. Strejilevich de Loma, New results on fair multi-threaded paging, Electronic J. SADIO 1 (1) (1998) 21–36,

http://www.sadio.org.ar.

http://www.sadio.org.ar

	On Multi-threaded Metrical Task Systems
	Introduction
	Definitions
	Related work
	A general upper bound
	Forcing tasks
	A lower bound
	An MT-MTS that matches the upper bound
	An MT-MTS that matches the lower bound

	An additional deterministic lower bound for the infinite model
	Remarks
	References


