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Abstract

Free algebras with an arbitrary number of free generators in varieties of BL-algebras generated by one
BL-chain that is an ordinal sum of a finite MV-chain Ln and a generalized BL-chain B are described
in terms of weak Boolean products of BL-algebras that are ordinal sums of subalgebras of Ln and free
algebras in the variety of basic hoops generated by B. The Boolean products are taken over the Stone
spaces of the Boolean subalgebras of idempotents of free algebras in the variety of MV-algebras generated
byLn.
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Introduction

Basic Fuzzy Logic (BL for short) was introduced by Hajek (see [19] and the references
given there) to formalize fuzzy logics in which the conjunction is interpreted by a
continuous t-norm on the real segment [0, 1] and the implication by its corresponding
adjoint. He also introduced BL-algebras as the algebraic counterpart of these logics.
BL-algebras form a variety (or equational class) of residuated lattices [19]. More
precisely, they can be characterized as bounded basic hoops [1,7]. Subvarieties of
the variety of BL-algebras are in correspondence with axiomatic extensions of BL.
Important examples of subvarieties of BL-algebras are MV-algebras (that correspond
to Lukasiewicz many-valued logics, see [14]), linear Heyting algebras (that correspond
to the superintuitionistic logic characterized by the axiom (P =» (2) v (G => P),
see [25] for a historical account about this logic), PL-algebras (that correspond to the
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logic determined by the t-norm given by the ordinary product on [0, 1], see [15]), and
also Boolean algebras (that correspond to classical logic).

Since the propositions under BL equivalence form a free BL-algebra, descriptions of
free algebras in terms of functions give concrete representations of these propositions.
Such descriptions are known for some subvarieties of BL-algebras. The best known
example is the representation of classical propositions by Boolean functions. Free
MV-algebras have been described in terms of continuous piecewise linear functions
by McNaughton [22] (see also [14]). Finitely generated free linear Heyting algebras
were described by Horn [20], and a description of finitely generated free PL-algebras
was given in [15]. Linear Heyting algebras and PL-algebras are examples of varieties
of BL-algebras satisfying the Boolean retraction property. Free algebras in these
varieties were completely described in [17].

In [10] the first author described the finitely generated free algebras in the varieties
of BL-algebras generated by a single BL-chain which is an ordinal sum of a finite
MV-chain Ln and a generalized BL-chain B. We call these chains BLn-chains. The
aim of this paper is to extend the results of [10] considering the case of infinitely many
free generators. The results of [10] were heavily based on the fact that the Boolean
subalgebras of finitely generated algebras in the varieties generated by BLn-chains are
finite. Therefore the methods of [10] cannot be applied to the general case.

As a preliminary step we characterize the Boolean algebra of idempotent elements
of a free algebra in A4 Vn, the variety of MV-algebras generated by the finite MV-chain
Ln. It is the free Boolean algebra over a poset which is the cardinal sum of chains of
length n — 1. In the proof of this result a central role is played by the Moisil algebra
reducts of algebras in MVn.

Free algebras in varieties of BL-algebras generated by a single BLn-chain Ln l+J B
are then described in terms of weak Boolean products of BL-algebras that are ordinal
sums of subalgebras of Ln and free algebras in the variety of basic hoops generated
by B. The Boolean products are taken over the Stone spaces of the Boolean algebras
of idempotent elements of free algebras in MVn. An important intermediate step
is the characterization of the variety of generalized BL-algebras generated by B
(Corollary 3.5).

The paper is organized as follows. In the first section we recall, for further reference,
some basic notions on BL-algebras and on the varieties MVn. We also recall some
facts about the representation of free algebras in varieties of BL-algebras as weak
Boolean products. The only new result is given in Theorem 1.5. In Section 2, after
giving the necessary background on Moisil algebra reducts of algebras in MVn, we
characterize the Boolean algebras of idempotent elements of free algebras in MVn.
These results are used in Section 3 to give the mentioned description of free algebras
in the varieties of BL-algebras generated by a BLn-chain. Finally in Section 4 we give
some examples and we compare our results with those of [10] and [17].
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1. Preliminaries

1.1. BL-algebras: basic notions A hoop [7] is an algebra A = (A, *, —>, T) of type
(2, 2, 0), such that {A, *, T) is a commutative monoid and for all x, y, z e ^4:

(1) * - + JC = T,
(2) x * (x -> y) = y * (y - • * ) ,
(3) x -»• (y -> z) = (x * y) ->• z.

A basic /loop [1] or a generalized BL-algebra [18], is a hoop that satisfies the equation

(1.1) ( ( ( * - • > ' ) - • z) * ( ( } ' - • * ) - • z ) ) - > z = T.

It is shown in [1] that generalized BL-algebras can be characterized as algebras
A = (A, A, v, *, -*, T) of type (2 ,2 ,2 ,2 ,0 ) such that

(1) (A, *, T) , is an commutative monoid,
(2) L(A) := (A, A, v, T), is a lattice with greatest element T,
(3) x — x = T,
(4) x -»• (y -> z) = (JC * y) -» z,
(5) j[A)i = jt*(j;->y),

(6) U^y)v(y->;t) = T.

A BL-algebra or bounded basic hoop is a bounded generalized BL-algebra, that
is, it is an algebra A = (A, A, v, *, ->•, _L, T) of type (2, 2, 2, 2, 0, 0) such that
(A, A, v, *, —•, T) is a generalized BL-algebra, and ± is the lower bound of L(A).
In this case, we define the unary operation -> by the equation ->x — x —> ±. The
BL-algebra with only one element, that is, _L = T, is called the trivial BL-algebra.
The varieties of BL-algebras and of generalized BL-algebras will be denoted by BC
and QBC, respectively.

In every generalized BL-algebra A we denote by < the (partial) order defined on A
by the lattice L(A), that is, for a, b e A, a < b if and only if a — a A b if and only if
b = avb. This order is called the natural order of A. When this natural order is total
(that is, for each a,b, e A, a < b or b < a), we say that A is a generalized BL-chain
(BL-chain in case A is a BL-algebra). The following theorem makes obvious the
importance of BL-chains and can be easily derived from [19, Lemma 2.3.16].

THEOREM 1.1. Each BL-algebra is a subdirect product of BL-chains.

In every BL-algebra A we define a binary operation x © y = ->(->x * -• v). For each
positive integer k, the operations xk and k x are inductively defined as follows:

(a) JC' = x and**"1"1 = xk *x,
(b) Ix = x and (k + \)x = (kx) © x.
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MV-algebras, the algebras of Lukasiewicz infinite-valued logic, form a subvariety
of BC, which is characterized by the equation -•-•jc = x (see [19]). The variety of
MV-algebras is denoted by MV. Totally ordered MV-algebras are called MV-chains.
For each BL-algebra A, the set

MV(A) := {x € A :--x = x}

is the universe of a subalgebra MV(A) of A which is an MV-algebra (see [18]).
A PL-algebra is a BL-algebra that satisfies the two axioms:

(1) (-—z * ((x * z) -*• (y * z))) -* (x ->• y) = T,
(2) x A ->x = _L

PL-algebras correspond to product fuzzy logic, see [15] and [19].
It follows from Theorem 1.1 that for each BL-algebra A the lattice L(A) is distrib-

utive. The complemented elements of L(A) form a subalgebra B(A) of A which is a
Boolean algebra. Elements of B(A) are called Boolean elements of A.

1.2. Implicative filters

DEFINITION 1.2. An implicative filter of a BL-algebra A is a subset F c. A satisfy-
ing the conditions

(1) TeF.
(2) If JC € F and x -* y <= F, then y e F.

An implicative filter is called proper provided that F ^ A. If W is a subset of a
BL-algebra A, the implicative filter generated by W will be denoted by (W). If U is
a filter of the Boolean subalgebra B(A), then the implicative filter (U) is called Stone
filter of A. An implicative filter F of a BL-algebra A is called maximal if and only if
it is proper and no proper implicative filter of A strictly contains F.

Implicative filters characterize congruences in BL-algebras. Indeed, if F is an
implicative filter of a BL-algebra A it is well known (see [19, Lemma 2.3.14]), that
the binary relation =F on A defined by

x =F y if and only if x -*• y e F and y —> x € F

is a congruence of A. Moreover, F = {x e A : x ^F T}. Conversely, if = is a
congruence relation on A, then [x € A : x = T} is an implicative filter, and x = y if
and only if x -» y = T and y —> x = T. Therefore, the correspondence F I - » = F is
a bijection from the set of implicative filters of A onto the set of congruences of A.

LEMMA 1.3 (see [17]). Let A be a BL-algebra, and let F be a filter o/B(A).
Then (=F) = {(a, b)€AxA:a/\c = bA c for some c € F] is a congruence
relation on A that coincides with the congruence relation given by the implicative
filter (F) generated by F.
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1.3. MVn-algebras For n > 2, we define:

0 1 2
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n- 1
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The set Ln equipped with the operations x * y = max(0, x + y — 1), x - » y =
min(l, 1 — x + y), and with _L = 0 defines a finite MV-algebra, which shall be
denoted by Ln. Clearly fi(Ln) = {0, 1}.

A BL-algebra A is said to be simple provided it is nontrivial and the only proper
implicative filter of A is the singleton {T}. In [14], it is proved that Ln is a simple
MV-algebra for each integer n.

We shall denote by M.Vn the subvariety of MV generated by hn. The elements
of MVn are called MVn-algebras. A finite MV-chain Lm belongs to MVn if and
only if An — 1 is a divisor of n — 1. Therefore it is not hard to corroborate that every
MVn-algebra is a subdirect product of a family of algebras (Lm. ,i e I) where mt — 1
divides n — 1 for each i e I.

It can be deduced from [14, Corollary 8.2.4 and Theorem 8.5.1] that MVn is the
proper subvariety of M. V characterized by the equations

(«„) =x",

and if n > 4, for every integer p = 2, ..., n - 2 that does not divide n - 1

(A,) (pxp-l)n=nxp.

If A is an MVn-algebra, it is not hard to verify that for each x e A\{T},x" = ±
and for each y e A \ {J_}, ny = T.

1.4. Ordinal sum and decomposition of BL-chains Let R = (R, *R, -^ R , T) and
S = (5, *s, ->s, T) be two hoops such that R D S — {T}. Following [7] we can define
the ordinal sum R W S o f these two hoops as the hoop given by (R U S, *, -» , T)
where the operations (*, —•) are defined as follows:

x * y =

y =

x*Ry if x,yeR,

x *s y if x, y e S,

x if x 6 R \ {T} and y e S,

y if y e R \ [T] and x € S.

T if * € fl\{T}, ye S,

x-+Ry \fx,yeR,

x -> s y if *,)> e S,

y if y € R \ [T] and * 6 5.



424 Manuela Busaniche and Roberto Cignoli [6]

If R fl 5 ^ {T}, R and S can be replaced by isomorphic copies whose intersection
is {T}, thus their ordinal sum can be defined. When R is a generalized BL-chain
and S is a generalized BL-algebra, the hoop resulting from their ordinal sum satisfies
equation (1.1). Thus R l±l S is a generalized BL-algebra. Moreover, if R is a BL-chain,
then R l±) S is a BL-algebra, where ± = -LR. If 5 is totally ordered it is obvious that
the chain R l±l S is subdirectly irreducible if and only if S is subdirectly irreducible.
Notice also that for any generalized BL-algebra S, L2 W S is the BL-algebra that arises
from adjoining a bottom element to S.

Given a BL-algebra A, we can consider the set D(A) := {x € A : ->x = _L}. It is
shown in [18], that D(A) = (D(A), A, v , *,-»-, T) is a generalized BL-algebra.

THEOREM 1.4 (see [10]). For each BL-chain A, we have that A = MV(A) ttlD(A).

THEOREM 1.5. Let Abe a BL-algebra such that MV(A) = L n /or some integer n.
Then A = MV(A) W D(A) = Ln l±) D(A).

PROOF. From Theorem 1.1, we can think of each non trivial BL-algebra A as a
subdirect product of a family (A,, i e I) of non trivial BL-chains, that is, there exists
an embedding e : A —> F]. e / A;, such that 7r,(e(A)) = A, for each i e I, where n,
denotes each projection. We shall identify A with e(A). Then each element of A is a
tuple x and coordinate i is x, 6 At. With this notation we have that for each x € A,
7r, (x) = x,. We will prove the following items:

(1) For each i € /, MV(A,) is isomorphic to Ln.

Since for each ( € /, nt is a homomorphism and 7r,(M V(A)) C A,, we have that
n,(MV(A)) c M V(A,). Then 7r,(MV(A)) is a subalgebra of MV(A,). On the other
hand, given i € / , let x, € MV(A,). Then -•-% = x, and there exists an element
x € A such that 7r,(x) = JC,. Taking y = ->-^x e MV(A) we have that 7r,-(y) = x, and
xt 6 T T , ( M V ( A ) ) . Hence MV(A,) c 7r,(MV(A)).

In conclusion MV(A,) = 7T , (MV(A) ) = 7r,(Ln) = Ln , because Ln is sim-
pie.

(2) Ifx e A, then x € MV(A) U D(A).

Let x e A and let y = n(->x). Ifx, e Ln\ {T}, then ->*,• e Ln\ {J_}. From
equation (an) we obtain that yt = n(-"X,) = T. On the other hand, if ->*,• = J_,
then y, = «(-•*,•) = J_. Now let z = (-•-•x)". Ifx, e Ln\ {T}, then z, = -L, but if
->->Xj = T , then zt = T .

Suppose there exists x 6 A such that x £ M V(A) and x £ D(A). It follows from
Theorem 1.4 that for each / 6 / , A, = MV(A,) W D(A,). Then there exist i, j e / ,
such that x, € MV(A,) \ {T} = Ln \ {T} andxy e D(A7-) \ {T}.

Let y = n(- 'x). Then _y, = T, y} — _L, and yk € {-L, T} for each k e I \ {i, j}.
Now let z = (->->x)". We have that zj — T, z,- = J., and zk e {_L, T} for each
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k e I \ {i, j}. It follows that y and z are elements in the chain MV(A) = Ln, which
are not comparable, and this is a contradiction.

(3) lfx e MV(A) \ {T} andy e D(A), then x < y.

The statement is clear if x,•• e M V(A,) \ {T} for every i G / or if yt = T for each
i G / . Otherwise, suppose JC, = T for some i e I. Since x ^ T, there must exist
j e / such that Xj ^ T. If v, = T for each j e I such that xf = T, then x < y.
If not, let z = x A y. Since operations are coordinatewise, Zj € MV(Aj) \ {T} and
Zt e D(Ai) \ {T}, for some i e I. Hence z £ MV(A) and z ^ D(A), contradicting
the previous item.

(4) lfx e MV(A) \ [T] andy e D(A), then y -> x = xandy * x = x.

Since ->y = _L we have that

y -> x = y ->• -1--X = y ->• ( - * -> 1 ) = --x - ^ (y -> ± )

= --x ->• _L = -•-•x = x,

and

x = y A x = y * ( y — > x) — y *x.

From the previous items it follows that A = MV(A) W D(A) = Ln l±l D(A) . D

1.5. Free algebras in varieties of BL-algebras generated by a BL,,-chain Recall
that an algebra A in a variety JC is said to be free over a set Y if and only if for every
algebra C in K. and every function / : Y —>• C, / can be uniquely extended to a
homomorphism of A into C. Given a variety K, of algebras, we denote by Free*;(X)
the free algebra in /C over X. As mentioned in the introduction, we define a BLn-chain
as a BL-chain that is an ordinal sum of the MV-chain Ln and a generalized BL-chain.
Once we fixed the generalized BL-chain B, we study the free algebra Freey(X),
where V is the variety of BL-algebras generated by the BLn-chain

Tn := Ln W B.

Notice that MV(TB) = Ln and if x £ MV(Tn) \ {T}, then x e D(TH) = B.
Recall that a weak Boolean product of a family (Av, y e Y) of algebras over a

Boolean space Y is a subdirect product A of the given family such that the following
conditions hold:

(1) If a, b e A, then [a = b] — {y e Y : ay = by) is open.
(2) If a, b e A and Z is a clopen in X, then a\z U£|X\z £ A.

Since the variety Z?£ is congruence distributive, it has the Boolean Factor Congru-
ence property. Therefore each nontrivial BL-algebra can be represented as a weak
Boolean product of directly indecomposable BL-algebras (see [5] and [23]). The
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explicit representation of each BL-algebra as a weak Boolean product of directly
indecomposable algebras is given in [17] by the following lemma.

LEMMA 1.6. Let A be a BL-algebra and let SpB(A) be the Boolean space of
ultrafilters of the Boolean algebra B(A). The correspondence

gives an isomorphism of A onto the weak Boolean product of the family

(A/(t/)):C/eSpB(A)

over the Boolean space Sp B(A). This representation is called the Pierce representa-
tion. Any other representation of A as a weak Boolean product of a family of directly
indecomposable algebras is equivalent to the Pierce representation.

Therefore, to describe Freey(A') we need to describe B(Freey(X)) and the quo-
tients Freev(X)/(U) for each U e SpB(Freev(X)).

In Section 2 we obtain a characterization of the Boolean algebra B(Freey(X)).
Once this aim is achieved, we consider the quotients Freev(X)/(f/).

2. B(Freev(A:))

The next two results can be found in [18].

THEOREM 2.1. For each BL-algebra A, B(A) = B(MV(A)).

THEOREM 2.2. For each variety K of BL-algebras and each set X

MV(Free;t(X)) = FneMVnlc(^X).

THEOREM 2.3. V n MV is the variety MVn.

PROOF. Since Ln = MV(Tn) is in V n MV, we have that MVn c V n MV. On
the other hand, let A be an MV-algebra in V n MV. Suppose A is not in MVn. Then
there exists an equation e(x\,..., xp) = T that is satisfied by L,, and is not satisfied
by A, that is, there exist elements ait ..., ap in A such that e{ax,..., ap) £ T. Since
(->->&i,..., -*->bp) is in (Ln)

p, for each tuple (bu ..., bp) in (Tn)
p, the equation

e'{xx,..., xp) = e(->->X\,..., —•—>JCP) = T is satisfied in V. Since A € V n MV,
it f o l l o w s t h a t T = e'(au ... ,ap) = e ( - ^ - > a 1 , . . . , -^^ap) — e(au ... ,ap) £ T , a

contradiction. Hence MVn = V n MV. U

From these results we obtain the following theorem.

THEOREM 2.4. B(Freev(X)) = B(FreeMVn(--^X)).
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2.1. n-valued Moisil algebras Boolean elements of Freely* (~'~1^0 depend on
some operators that can be denned on each MVn-algebra. Such operators provide each
MVn-algebra with an n-valued Moisil algebra structure, in the sense of the following
definition.

DEFINITION 2.5. For each integer n > 2, an n-valued Moisil algebra ([8, 11]) or
n-valued Lukasiewicz algebra ([4, 12, 13]) is an algebra

A = (A,A, v,-i,<71",.. . ,or;_,,0, 1)

of type (2, 2, 1 , . . . , 1, 0, 0) such that (A, A, v, 0, 1) is a distributive lattice with
unit 1 and zero 0, and ->,&",..., o"_x are unary operators denned on A that satisfy
the following conditions:

(1) — x=x,
(2) - .(* v y) = -x A ->y,
(3) a?(xv y)=cr?xva?y,
(4) o?x V -.CT/'JC = 1,

(5) a?ojx = ajx, for i, j = 1, 2 , . . . n - 1,
(6) o i-(-x) = -(orB"_,.Jt),
(7) ofx V cr,"+1jc = a"+lx, for z = 1, 2, . . . , n - 2,
(8) xVaZ_lx=aZ_lx,
(9) (* A -io/jc A cr,"+,;y) v j = y, for i = 1, 2 , . . . , n - 2.

Properties and examples of rc-valued Moisil algebras can be found in [4] and [8].
The variety of n-valued Moisil algebras will be denoted M.n.

THEOREM 2.6 (see [11]). Let A be in Mn. Then x e B(A) if and only if

Furthermore,

a^_}(x) = min{b e B(A) : x < b] and CT,"(X) = max{a € B(A) : a < x}.

DEFINITION 2.7. For each integer n > 2, a Post algebra of order n is a system

A = (A, A, v , - , CT,\ . . . , < _ , , eu ..., «„_,, 0, 1)

such that (A, A, v, - \ cr" , . . . , CT^,, 0, 1) is an n-valued Moisil algebra and e,,
£„_! are constants that satisfy the equations:

(O if i + j <n,
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For every n > 2, we can define one-variable terms <J"(X), ..., o£_x(x) in the
language (-•, -*, T) such that evaluated on the algebras Ln give

\(n - 1)/ [0 if i+ j < n,

for i = 1, . . . , n - 1 (see [13] or [24]). It is easy to check that

M(LB) = (Ln, A, v, - , af, . . . , a;_,, 0, 1)

is a ^-valued Moisil algebra. Since these algebras are defined by equations and Ln

generates the variety MVn, we have that each A € MVn admits a structure of an
«-valued Moisil algebra, denoted by M(A). The chain M(Ln) plays a very important
role in the structure of n -valued Moisil algebras, since each n -valued Moisil algebra
is a subdirect product of subalgebras of M(Ln) (see [4] or [12]). If we add to the
structure M(Ln) the constants e, = i/(n — 1), for i = 1 , . . . , n - 1, then PT(Ln) =
(Ln, A, v, --, a", ..., o^_x, eXl ..., en-\, 0, 1) is a Post algebra.

Not every n-valued Moisil algebra has a structure of MVn-algebra (see [21]). For
example, a subalgebra of M(Ln) may not be a subalgebra of Ln as MVn-algebra. For
instance, the set

,4 ' 4 ' 4 ' 4

is the universe of a subalgebra of M(L5), but not the universe of a subalgebra of L5.
On the other hand, every Post algebra has a structure of MVn-algebra (see [24,
Theorem 10]).

The next example will play an important role in what follows.

EXAMPLE 2.8. Let C = (C, A, V, ->, 0, 1) be a Boolean algebra. We define

C 1 " 1 : = [ z = ( Z l , . . . , zn-i) € C"-] :ziSz2<.-.< Zn-i).

For each z = (zi zn-\) e C1"1, we define

0 = (0, . . . . 0),

1 = 0 l),
a"(z) = (z,•, z,•,..., zi) for i = 1, n-\.

With A and v defined coordinatewise, C1"1 = (C1"1, A, V, --„, erf,..., an"_,, 0, 1)
is an H-valued Moisil algebra (see [8, Chapter 3, Example 1.10]). If we define

f 0 if i < j ,
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then C w = (CM, A, v, -.„, a';,..., a ^ . e i , . . . , en_i, 0, 1) is a Post algebra. Con-
sequently, C'"1 has a structure of MVn-algebra.

It is easy to see that for each MVn-algebra A, B(A) = B(M(A)).
We need to show that the Boolean elements of the MVn-algebra generated by a

set G coincide with the Boolean elements of the n-valued Moisil algebra generated
by the same set. In order to prove this result it is convenient to consider the following
operators on each n-valued Moisil algebra A. For each i — 0, . . . , n — 1,

where a^(x) = 0 and o^{x) = 1. In M(Ln) we have

j

( n - D

LEMMA 2.9. Let Abe an MVn-algebra, and let G C A. If (G)Mv,, is the subalgebra
of A generated by the set G and {G)M,, is the subalgebra o/M(A) generated by G,
thenB((G)MV) =

PROOF. Since (G)»n is always a subalgebra of M({G}MvJ, we have that
B ( ( G ) A O is a subalgebra of B((G)MVJ.

We will see that B((G)MVJ c B((G)MJ- The case G = 0 is clear. Suppose
that G is a finite set of cardinality p > 1. Since MVn-algebras are locally finite (see
[9, Chapter II, Theorem 10.16]), we obtain that {G)Mvn is a finite MVn-algebra. Since
finite MVn-algebras are direct products of simple algebras, there exists a finite k > 1
such that (G) xv n = n,=i Lm,, where each nij — 1 divides n —1, for each/ = l,...,k.
If k = 1, then {G)M,, and (G)MV*

 aTe finite chains whose only Boolean elements are
their extremes. Otherwise, we can think of the elements of (G)MV,, as k-tuples, that
is, if x e (G)MV»> then x = (xu ..., xk). We shall denote by V the k-tuple given by

if i = j ,

It is clear that for each j = 1, . . . , k, V \s in {G)MV.- From this it follows that for
every pair /' j^ j , i, j e {1, . . . , k], there exists an element x e G such that xj ^ x{.
Indeed, suppose on the contrary that there exist /, j < k such that x, = Xj, for every
x e G. Then for every z e (G)MV,

 w e would have Zj = Zi contradicting the fact that
1' is in (G)MVfi.

To see that every Boolean element in (G)MV.
 ls a l s o m

 (G)JU,,, it is enough to
prove that lj is in (G)Ma for every j = 1 , . . . , k. For a fixed j , for each / ^ j ,
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i = 1 , . . . k, we choose x' e G such that x'j j£ x\. Let ;, be the numerator of x'j e Ln.
It is not hard to verify that

k

V = / \ Jh{x').

Therefore V e (G)M, and B((G)MV,) c B({G)Mn).
If G is not finite, let y be a Boolean element in (G)MVn. Hence, there exists a finite

subset Gy of G such that y belongs to the subalgebra of (G)Mv, generated by G r

Therefore, since y is Boolean, y belongs to the subalgebra of {G)M. generated by Gy,
and we conclude that B((G)MvJ Q B({G)MJ for all sets G. •

Given an algebra A in a variety K, a subalgebra S of A, and an element JC e A, we
shall denote by (S, x)/c the subalgebra of A generated by the set 5 U {JC} in K..

LEMMA 2.10. Let C be in Mn and x € C. Let S be a subalgebra ofC such that
o?{x) belongs to B(S) for each i = 1 , . . . , n - 1. Then B((S,x)MJ = B(S).

PROOF. Clearly B(S) is a subalgebra of B((S, x)MJ- It is left to check that
B({S, X)M.) 9 B(S). To achieve this aim, we shall study the form of the elements in
(S, X)M.- We define for each s e S,

a(s) — s A x,

y, (5) = s A or" (*), for / = 1 , . . . « - 1,

8j(s) = s A -CT,"(JC), for j = 1, . . .n - 1.

For all s e S we have that y, (s) and 8, {s) are in 5 for i = 1 , . . . , n — 1. Let

M : = j y = V A ^(5') : /. e {«,/3, y i , 5 , , ... yB_,,5B_,} and s, e S

We shall see that (S, JC)^ , = M = (M, A, V, - , CT,", . . . , < _ , , 0, 1). Indeed, for all
5 € 5, s = y,(s) v5 , ( i ) , and thenS c M. Besides, JC e M because JC = a ( l ) . Lastly,
it is easy to see that M is closed under the operations of H-valued Moisil algebra.
Thus (S, x)M» is a subalgebra of M. From the definition of M, it is obvious that
M c (S, x)M^ and the equality follows.

Now let z e S((S, JC)M,). By Theorem 2.6, <_,(£) = z and z = V*:
=, A,=i /(*.•)

with / € {a, /J, )/|, S | , . . . , yn_i, 5n_i} and s, e 5. Then we have

z = a;_,(Z) = <c, ( V / \ / ( . , ) ) = V/\<-.(/•(*.•)).
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is in B(S) because o-;_, (/,(*,-)) = y t ( C f e ) ) or CT;_,(/;(S,)) = «*(CTB"_,(*,-)), for

some k = I,... ,n — 1. D

THEOREM 2.11. Let C be an MVn-algebra and x € C. Le? S be a subalgebra ofC
such that (T"(X) belongs to B(S)for each i = 1,... ,n — 1. Then

PROOF. ByLemma2.9andLemma2.10weobtainB((S, JC)A1V,,) = B((S, JC)XB) =
B(S). n

2.2. Boolean elements in FreeMVii(Z) Recall that a Boolean algebra B is said to
be free over a poset Y if for each Boolean algebra C and for each non-decreasing
function / : Y -> C, / can be uniquely extended to a homomorphism from B into C.

THEOREM 2.12. B(Free>fv,, (Z)) is the free Boolean algebra over the poset Z' :=
{or,"(z) : z e Z , i = 1 , . . . , I I - 1}.

PROOF. Let S be the subalgebra of B (Freely,, (Z)) generated by Z'. Let C be a
Boolean algebra and let / : Z' —> C be a non-decreasing function. The monotonicity
of / implies that the prescription

defines a function f : Z —*• C1"1. Since C1"1 € AiVn, there is a unique homo-
morphism h' : Freexv. (Z) -> C'"1 such that h'(z) = f'(z) for every z € Z. Let
7r : C1"1 —> C be the projection over the first coordinate. The composition ix oh!
restricted to S is a homomorphism h : S —• C, and for y = <r"(z) € Z' we have

Hence S is the free Boolean algebra over the poset Z'. However, since crj(z) is in S
for all z € Z and y — 1, . . . n — 1, Theorem 2.11 asserts that

for every z e Z. From the fact that S is a subalgebra of B(Free.Mv,r(Z)) we obtain

S = B«S, Z)MVJ = V(FneMv.(Z))

that is, B(Free.v(v,, (Z)) is the free Boolean algebra generated by the poset Z'. •



432 Manuela Busaniche and Roberto Cignoli [14]

From Theorem 2.4 we obtain the follwoing result.

COROLLARY 2.13. B(Freev(X)) is the free Boolean algebra generated by theposet
Y := {or/1 (-.-a) : x € X, i = \,...,n- 1}.

REMARK 2.14. If n — 2, that is, the variety considered V is generated by a BL2-
chain, then o}(x) = x for each x e X. Therefore, in this case, Y = {-"-a : x e X],
and the cardinality of Y equals the cardinality of X. It follows that B(Freev(X)) is
the free Boolean algebra over the set Y.

3. Fre*v(X)/{U)

Following the program established at the end of Section 2, our next aim is to
describe Freev(X)/(U) for each ultrafilter U in the free Boolean algebra generated
by Y = {a"(-'->x) : x e X, i — 1, . . . , n — 1}, where (U) is the BL-filter generated
by the Boolean filter U.

The plan is to prove that MV(Freev(X)/({/)) is a subalgebra of Ln and then,
using Theorem 1.5, decompose each quotient Freev(X)/(U) into an ordinal sum. To
accomplish this we need the following results.

THEOREM 3.1. Let A be a BL-algebra and U e Sp B(A). Then

fi MV(A)).

PROOF. Let V =: (U) n MV(A) and let / : MV(A)/ V -> MV(A/(f/» be given
by/ (a /V) = a/(t/),foreacha 6 MV(A). It is easy to see that / is a homomorphism
into MV(A/(f/». We have that

(1) fis injective.

Let a/{U) = b/(U), with a, b € MV(A). From Lemma 1.3, we know that there
exists u e U such that a A M = b A u. Since U c M V(A), we have that u e V. From
the fact that u is Boolean (see [17, Lemma 2.2]), we have that a *u = a/\u = bAu < b,
thus u < a -> b and similarly u < b —>• a. Then a —> b and b —*• a are in V and this
means that a/V=b/V.

(2) fis surjective.

Leta/((/> e MV(A/((/». Then a/(U) = -<-(a/(U)) = -•-.«/{(/), and since
-^-•a € MV(A) we obtain that / ( — a / V ) = a/(f/). D

By Theorem 2.4, if {/ e SpB(Freev(X)), then U is an ultrafilter in
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Moreover, {U) n MV(Freev(X)) = (U) n Freely,, (^-X) is the Stone ultrafilter of
Freely, (-•-'A') generated by U. From [14, Chapter 6.3], we have that

(£/>n Freely, ( -"X)

is a maximal filter of Freely,, ( - "X) . It follows from [14, Corollary 3.5.4] that the
MV-algebra MV(Freev(X))/((f/) D MV(Freev(X))) is an MV-chain in MVn, thus
from Theorem 3.1 we have the follwoing result.

THEOREM 3.2. MV(Freev(X)/(£/)) = Ls with s - 1 dividing n - 1.

From Theorems 1.5 and 3.2 we obtain the next result.

THEOREM 3.3. For each U £ SpB(Freev(X)), we have that

Freev(X)/(U) = LsVD(Freev(X)/(U))

for some s — 1 dividing n — 1.

In order to complete the description of Freey(X) we have to find a description of
D(Freev(X)/(£/)) for each U 6 SpB(Freev(A:)). This last description depends on
the characterization of the variety W of generalized BL-algebras generated by the
generalized BL-chain B. Therefore, we shall firstly consider such variety.

3.1. The subvariety of QBC generated by B We recall that V is the variety of BL-
algebras generated by the BL-chain Tn = Ln l±l B. Let W be the variety of generalized
BL-algebras generated by the chain B.

Let {en i e 1} be the set of equations that define MVn as a subvariety of B£,
and {dj, j 6 J] be the set of equations that define W as a subvariety of QBC.
For each / e / , let e\ be the equation that results from substituting -<->x for each
variable x in e,, and for each j e J, let d'j be the equation that results from substi-
tuting ->->jt —• x for each variable x in the equation dj. Let V denote the variety
of BL-algebras characterized by the equations of BL-algebras plus the equations

{*;, / € / } u {</;., j ej).

THEOREM 3.4. V c V.

PROOF. Let A be a subdirectly irreducible BL-algebra in V. From Theorem 1.1, A
is a BL-chain, and by Theorem 1.4, A = MV(A)WD(A). Since for each x <= MV(A),
we have ->-<x = x, MV(A) satisfies equations [et, i e I). Then MV(A) is a chain
in MVn, that is, MV(A) = Lv, with s — 1 dividing n — 1. Moreover, since for each
x e D(A), we have -•->.* —• x = x, D(A) satisfies equations {dj, j € J}. Hence
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D(A) = C is a generalized BL-chain in W. Since A is subdirectly irreducible, C
is also subdirectly irreducible, and since QBC is a congruence distributive variety,
we can apply Jonsson's Lemma (see [9]) to conclude that C e HSPU(B). Hence
there is a set J ^ 0 and an ultrafilter U over J such that C is a homomorphic image
of a subalgebra of BJ/U. From the proof of [2, Proposition 3.3] it follows that
(L,, W B)J/U = LJJU l±l BJ/U, and since Ln is finite, VjU = Ln. Now it is easy
to see that A = L, W C e HSPu(Ln W B) c V. •

The next corollary states the main result of this section.

COROLLARY 3.5. The variety W of generalized BL-algebras generated by B con-
sists of the generalized BL-algebras C such that L , W C belongs to V.

PROOF. Given C e W, Ln l±) C € V c V. On the other hand, if C is a generalized
BL-algebra such that Ln ttl C e V, then the elements of C satisfy equations d'j for each
j 6 J and since ->->x —> x = x for each x € C, the elements of C satisfy equations
dj for each j G l Hence C is in W. •

3.2. D(F ree v (^ ) / ( t / ) ) We know that the ultrafilters of a Boolean algebra are
in bijective correspondence with the homomorphisms from the algebra into the two
elements Boolean algebra, 2. Since every upwards closed subset of the poset Y =
{o"(->-'x) : x 6 X,i = 1, . . . , n — 1} is in correspondence with an increasing
function from Y onto 2, and every increasing function from Y can be extended to
a homomorphism from B(Freey(X)) into 2, the ultrafilters of B(Freev(X)) are in
correspondence with the upwards closed subsets of Y. This is summarized in the
following lemma.

LEMMA 3.6. Consider the poset Y = [ol'(->->x) : x € X, i = 1, . . . , n — 1}.
The correspondence that assigns to each upwards closed subset S C Y the Boolean
filter Us generated by the set S U {->y : y € Y \ S}, defines a bijection from the set of
upwards closed subsets ofY onto the ultrafilters o/B(Freey(X)).

We shall refer to each member of Sp B(Freev(X)) by Us making explicit reference
to the upwards closed subset S that corresponds to it.

LEMMA 3.7. Let F s be the subalgebra of the generalized BL-algebra

D(Freev(X)/({/5»

generated by the set Xs :— \x/{Us) : x € X, -.-uc 6 (Us)}- Then

F5 = D(Freev(X)/({/s>).
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PROOF. Freev(X)/{£/s) is the BL-algebra generated by the set Zs = [x/{Us) :
x € X}. From Theorem 3.3, there exists an integer m such that

Freev(X)/(t/s) = Lm W D(Freev(X)/(£/s)).

Hence each element of Zs is either in Lm \ {T} or it is in D(Freey(X)/(i/s))-
If Xs = 0, then Fs = D(Freev(X)/(£/s» = {T}. So let us suppose Xs £ 0. Let

y € D(Freev(X)/(f/s)). Recalling that F s is the generalized BL-algebra generated
by Xs, we will check that y is in Fs. Since y e Freey(X)/(£/s), y is given by a term
on the elements x/(Us) e Zs. By induction on the complexity of y, we have:

• If y is a generator, that is, y = x/(Us) for some x/(Us) € Zs, since y €
D(Freev(X)/(f/s}), we have that T = — y = ->^(x/(Us)) = (-^x)/(Us).
This happens only if ->->JC e (Us).

• Suppose that for each element z e D(Freev(X)/{Us)) of complexity less
than k, z can be written as a term in the variables x/(Us) in Xs. Let y e
Z)(Freev(Ar)/(f/s)) be an element of complexity Ic. The possible cases are
the following:

(1) y = a —> b for some elements a, b of complexity < k. In this case the
possibilities are

(a) a <b. This means a -> ft = T and y can be written as x/(Us) ->•
x/(Us) for any x/(Us) € Xs, and thus y 6 Fs,

(b) a £ b. Since y = a ->• ft is in D(Freev(X)/(f/s)), the only possi-
bility is that a,b € D(Freev(X)/(Us)) and by inductive hypothesis
y is in Fs.

(2) y = a * b for some elements a, ft of complexity < k. In this case
necessarily a, ft e D(Freev(X)/(C/s)) and by inductive hypothesis y is
in F5.

Then for each y e D(Freev(X)/(f/s>), y can be written as a term on the elements
of Xs. Therefore y 6 Fs and we conclude that Fs = D(Freev(X)/(Us)). •

With the notation of the previous lemma, we have the following theorem.

THEOREM 3.8. For each Us in SpB(Freev(X))(

D(Freev(X)/(t/s)) £ Freew(Xs).

PROOF. From Theorem 2.6 and Lemma 3.6 we can deduced that ->->x e (Us) if
and only ifa?(-^-^x) e S if and only if a," (->->x) e S for i = 1 , . . . , n - 1. Hence if
-'-•jr ^ ((/s) there is a j such that o"(->-<x) <£ S. We define, for each x e X,

if — J t e (t/s),

-•x) & S] otherwise.max{j € {1, n - 1 ) :
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Let C 6 W and let C = Ln l±l C. From Theorem 3.5, C is in V. Given a function

/ : Xs —• C, define / : X —> C by the prescriptions:

if — * e

[in — jx — l ) / (« — 1) otherwise.

There is a unique homomorphism h : Freey(X) —> C such that hix) =
for each x e X. We have that Us £ / r ' ({T}) . Indeed, if ->->JC 6 (£/s), then
hia"{—'—'x)) = cj'

1(—>—'(/J(JC)) = <T"(—>—'fixf(Us))) = CT"(T) = T. If —•—>jc ̂  {Us),
then

I -L if ' < jx,

T otherwise.

Hence there is a unique homomorphism hx : Freev(X)/(f/5) -> C such that
hi(a/(Us)) = Ha) for all a e Freev(X). By Lemma 3.7, D(Freev(X)/{f/s)) is
the algebra generated by Xs. Then the restriction h of /z, to D(Freev(A')/({/s)) is a
homomorphism h : D(Freey(X)/({/$)) ->• C, and for each x such that ->->* e (t/s).

h(x/(Us)) = hdx/{Us)) = Hx) = fix) = fix / {Us)).

Therefore we conclude that D(Freev(Ar)/({/s» = FreewtX*;). •

THEOREM 3.9. The free BL-algebra FreeyfXj can be represented as a weak
Boolean product of the family (Freev(X)/(f/5>) : Us € SpB(Freev(X)), where
B(Freey(A')) is the free Boolean algebra over the poset Y = {a"(->->x) : x e X,
i = 1, . . . , « — 1}. Moreover, for each Us € SpB(Freey(X)), there exists m > 2
such that m — 1 divides n — \ and

¥nev(X)/(Us) = Lm W FreewiXs),

whereXs '•= {x/(Us) '• —•~ix e (Us)} andW is the variety of generalized BL-algebras
generated by B.

4. Examples

4.1. PL-algebras Let G be a lattice-ordered abelian group (£-group), and G~ =
{x e G : x < 0} its negative cone. For each pair of elements x, y € G~, we define
the following operators:

x * y = x + y and x-^ y = 0 A iy - x).

Then G~ = (G~, A, V, *, ->, 0) is a generalized BL-algebra. The following result

can be deduced from [3] (see also [6] and [15]).
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THEOREM 4.1. The following conditions are equivalent for a generalized BL-
algebra A:

(1) A is a cancellative hoop.
(2) There is an l-group G such that A ~ G".
(3) A is in the variety of generalized BL-algebras generated by Z~, where Z denotes

the additive group of integers with the usual order.

Let us consider W, the variety of generalized BL-algebras generated by Z", that
is, the variety of cancellative hoops. In [16] a description of Free w (X) is given for
any set X of free generators. Therefore we can have a complete description of free
algebras in varieties of BL-algebras generated by the ordinal sum

P L h = L B W Z - .

Indeed, if we denote by VCn the variety of BL-algebras generated by PL,,, from
Theorem 3.9 we obtain that F r e e ^ C X ) is a weak Boolean product of algebras of
the form Ls l±l Freew(X') with s — 1 dividing n — 1 and some set X' of cardinality
less or equal than X. Therefore, in the present case, the BL-algebra Free-pcA^) c a n

be completely described as a weak Boolean product of ordinal sums of two known
algebras.

From [15, Theorem 2.8], VC2 is the variety of PL-algebras VC. From Remark 2.14,
SpBCFreepcCX)) is the Cantor space 2 m . From Theorem 3.9, the free PL-algebra
over a set X can be describe as a weak Boolean product over the Cantor space 2|X|

of algebras of the form L2 t±l Freew(X') for some set X' of cardinality less or equal
than X.

Given a BL-algebra A, the radical R(\) of A is the intersection of all maximal
implicative filters of A. We have that r(A) = (/?(A), *, —>, A , V, T) is a generalized
BL-algebra. Let

VC = (R : R = r(A) for some A g VC).

VC is a variety of generalized BL-algebras. In [17] a description of Free-p,c(X) is
given. From Example 4.7 and Theorem 5.7 in the mentioned paper we obtain that
FreeP £(X) is the weak Boolean product of the family (L2 l±l FreeVC'(S) : S c 2|Af|)
over the Cantor space 2|X|. In order to check that our description and the one given in
[17] coincide it is only left to check that VC = W. From Corollary 3.5 we have that
W consist on the generalized BL-algebras C such that L2 W C e VC.

THEOREM 4.2. VC = W.

PROOF. LetC g VC. Then there exists a BL-algebra A e VC such that r(A) = C.
It is not hard to check that L2 l±l C is a subalgebra of A, thus L2 W C is in VC. It
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follows that C 6 W. On the other hand, let C e W. Then L2 W C is in VC, and
C e VC. •

4.2. Finitely generated free algebras As we mentioned in the introduction, when
the set of generators X is finite, let us say of cardinality k, the algebra Freev(X) is
described in [10] asadirect product of algebras of the form L(WFreew(X'), withs — 1
that divides n - 1 and some set X' of cardinality less than or equal to the cardinality
of X, where W is again the subvariety of QBC generated by B. The method used to
describe the algebras strongly relies on the fact that the Boolean elements of Freey(X)
form a finite Boolean algebra. Indeed, Freev(X) is a direct product of nk algebras
obtained by taking the quotients by the implicative filters generated by the atoms of
B(Freey(X)). In this case, once you know the form of the atom that generates the
ultrafilter U you also know the number s such that MV((Freev(X))/(£/)) = Ls..

When the set X of generators is finite, of cardinality k, then Y = {a"(-'->x) :
x € X, i — 1, . . . , n — 1} is the cardinal sum of k chains of length n — 1. Therefore
the number of upwards closed subsets of Y is nk. Since weak Boolean products over
discrete finite spaces coincide with direct products, Theorem 3.9 asserts that Freev(X)
is a direct product of nk BL-algebras of the form L, W Freew(K), with s — 1 that
divides n — 1 and some set Y of cardinality less than or equal to k.

Therefore the description given in the present paper coincides with the one in [10].
However, the description given in [10], based on a detailed analysis of the structure of
the atoms of B(Freev(X)) for a finite X, is more precise because it gives the number
of factors of each kind appearing in the direct product representation.
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