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Abstract We investigate a universe filled with interacting
dark matter, holographic dark energy, and dark radiation
for the spatially flat Friedmann–Robertson–Walker (FRW)
spacetime. We use a linear interaction to reconstruct all
the component energy densities in terms of the scale fac-
tor by directly solving the balance’s equations along with
the source equation. We apply the χ2 method to the obser-
vational Hubble data for constraining the cosmic parame-
ters, contrast with the Union 2 sample of supernovae, and
analyze the amount of dark energy in the radiation era. It
turns out that our model exhibits an excess of dark en-
ergy in the recombination era whereas the stringent bound
Ωx(z � 1010) < 0.21 at big-bang nucleosynthesis is ful-
filled. We find that the interaction provides a physical mech-
anism for alleviating the triple cosmic coincidence and this
leads to Ωm0/Ωx0 � Ωr0/Ωx0 � O(1).

1 Introduction

The two main components of the universe are dark matter
and dark energy. The dark matter accounts for 1/3 of the
stuff in the universe and is also inextricably connected with
the formation of galaxies and galaxy clusters. In fact this
new form of matter not only holds galaxies together, but
also is responsible for the large-structure formation in the
universe [1, 2]. The astrophysical evidence for dark matter
come form colliding galaxies, gravitational lensing of mass
distribution or power spectrum of clustered matter [3–5].

The other 2/3 exists as in an even more mysterious form
dubbed as dark energy and is causing the expansion of the
Universe to speed up, rather than slow down. The first seri-
ous observational hints of dark energy in the universe date
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back to the 1990s when astronomers observations of super-
nova were used to trace the expansion history of the uni-
verse [6–8]. Subsequently, the WMAP results suggested that
the aforesaid amount of dark energy could explain both the
flatness of the universe along with the observed accelerated
expansion [9, 10]. Nowadays, there is a growing number of
observational methods for probing the dynamical behavior
of dark energy at different scales; galaxy redshift surveys
allow to obtain the Hubble expansion history by measure-
ment of baryon acoustic oscillation in the galaxy distribu-
tion [1, 2], geometric weak lensing method applied to Hub-
ble space telescope images helps to find tighter constraints
on the dark energy equation of state also [11].

Despite the devoted effort for understanding the nature of
dark matter and dark energy, there was not found a micro-
scopic theory for the dark side of the universe, capable of
unraveling their particles content. On the observational side,
the data of several tests have confirmed some of their plau-
sible properties, such as that it could be the repulsive effect
of dark energy or the clustering action of dark matter.

Another interesting trait to explore is related with the ex-
istence of non-gravitational coupling between dark matter
and dark energy, such exchange of energy could alter the
cosmic history, leaving testable imprints in the universe [12].
It is believed that a coupling between dark energy and dark
matter changes the background evolution of the dark sec-
tor allowing to constrain any type of interaction and giv-
ing rise to a richer cosmological dynamics compared with
non-interacting models [12]. A step forward for constraining
dark matter and dark energy is to use the physics behind re-
combination or big-bang nucleosynthesis epochs by adding
a decoupled radiation term to the dark sector for taking into
account the stringent bounds related to the behavior of dark
energy at early times [13, 14]. The behavior of dark energy
in the recombination era was explored within the framework
of three interacting components also [15].
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Our goal is to consider a model where dark matter and
dark radiation are coupled to holographic dark energy and
explore the cosmic triple coincidence problem related to the
amount of these components at present [16]. We perform a
cosmological constraint using the updated Hubble data [17],
numerically obtain the distance modulus μ(z) for contrast-
ing with the Union 2 compilation of supernovae Ia [18], and
analyze the order of magnitude corresponding to the cosmo-
logical parameter known as transition redshift. In order to
check the feasibility of the model, we also examine the se-
vere bounds for dark energy in the recombination era [19]
or nucleosynthesis epoch [20].

2 The model

We consider a spatially flat homogeneous and isotropic uni-
verse described by FRW spacetime with line element given
by ds2 = −dt2 + a2(t)(dx2 + dy2 + dz2) being a(t) the
scale factor. The universe is filled with three interacting flu-
ids namely, dark radiation, dark matter and modified holo-
graphic Ricci dark energy so that the evolution of the FRW
universe is governed by the Friedmann and conservation
equations, respectively,

3H 2 = ρr + ρm + ρx, (1)

ρ̇ + 3H(ρr + pr + ρm + pm + ρx + px) = 0, (2)

where a is the scale factor and H = ȧ/a stands for the Hub-
ble expansion rate. Here, we will use the holographic prin-
ciple within the cosmological context by associating the in-
frared cutoff L with the dark energy density, thus we take
L−2 in the form of a linear combination of Ḣ and H 2:

ρx = 2

α − β

(
Ḣ + 3α

2
H 2

)
. (3)

Here, α and β are two free constants. In particular, we obtain
ρx ∝ R for α = 4/3, where R = 6(Ḣ + 2H 2) is the Ricci
scalar curvature for a spatially flat FRW space-time.

The use of the variable η = ln(a/a0)
3, where a0 is set as

the value of the scale factor at present and ′ ≡ d/dη, allows
us to rewrite Eqs. (2) and (3) as

ρ′ = −γrρr − γmρm − γxρx, (4)

ρ′ = −αρc − βρx, (5)

ρc = ρr + ρm, (6)

where γi = 1 + pi/ρi denotes the barotropic index, not
necessarily constant, of each component with i = {r,m,x},
γr � 4/3, γm � 1, 0 < γx < 2/3 so that 0 < γx < γm < γr .
Taking into account Eq. (5) along with Eq. (6), we could ex-
tract as a physical hint that the modified holographic dark
energy (3) forces to the dark matter and dark radiation to
have the same bare equation of state.

The holographic dark energy (3) or (5) looks like a “con-
servation equation” for the three dark components with con-
stant coefficients. Therefore, the selected holographic dark
energy (3) or (5) has transformed the original model of
three interacting components into another simpler scheme
of two interacting components having two constant equa-
tions of state. As we have already mentioned above, such de-
generation occurs because the dark radiation and dark mat-
ter have the same equation of state, pr = (α − 1)ρr and
pm = (α − 1)ρm. After comparing the whole conservation
equation (4) with modified conservation equation (5), we
obtain the compatibility relation

γrρr + γmρm + γxρx = α(ρr + ρm) + βρx, (7)

that relates the equation of state of the dark components with
the bare ones. In what follows, we will use Eq. (5) with con-
stant coefficients α and β instead of Eq. (4) with the non-
constant coefficient γx = 1 + px/ρx . In some sense, (4) and
(5) give rise to different representations of the mixture of
two interacting fluids and clearly these descriptions are re-
lated between them by the compatibility relation (7). There-
fore, the holographic dark energy (3) conveniently links a
model of three interacting fluids having variable equations
of state with a model of two interacting fluids with “bare
constant equations of state”.

Solving the system of equations ρ = ρc + ρx and (5) we
get the energy densities of both component as a function of
ρ and its derivative ρ′

ρc = −βρ + ρ′

Δ
, ρx = αρ + ρ′

Δ
, (8)

where Δ = α − β is the determinant of the linear equation
system and we assume that β < α. Now, we introduce en-
ergy transfer between those components by splitting Eq. (5)
into two balance equations

ρ′
c + αρc = −Q, (9)

ρ′
x + βρx = Q, (10)

where we have considered a coupling with a factorized H

dependence 3HQ, being Q the interaction term that gener-
ates the energy transfer between the two fluids. After differ-
entiating the first Eq. (8) and combining with Eq. (9), we
obtain a second order differential equation for the total en-
ergy density (source equation)

ρ′′ + (α + β)ρ′ + αβρ = QΔ. (11)

We will take into account interactions Q for which the
solutions of the evolution equation for the scale factor H =√

ρ/3 includes power law ones, because they play an essen-
tial role for determining the asymptotic behavior of the ef-
fective barotropic index γ = (αρc + βρx)/ρ = −2Ḣ/3H 2.
It describes a universe approaching to a stationary stage γs

associated with the constant solution γ = γs , where 0 < β <
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γs < α and a = t2/3γs . In addition, given a set of initial con-
ditions, if γ tends asymptotically to the constant solution γs ,
then γs becomes an attractor solution [12]. An interaction
satisfying this requirement belongs to the class

Q = (γs − α)(γs − β)

Δ
ρ, (12)

with Q < 0 [12]. Solving the source equation (11) for this
interaction, we obtain the total energy density

ρ = ca−3γs + ba−3(α+β−γs). (13)

Hence, for any initial conditions c, b, and large scale fac-
tor, the energy density behaves as c/a3γs and the power-law
expansion a → t2/3γs becomes asymptotically stable.

The dark densities of coupled components, ρx and ρc, are
given by

ρc = (γs − β)ca−3γs + (α − γs)ba−3(α+β−γs)

Δ
, (14)

ρx = (α − γs)ca
−3γs + (γs − β)ba−3(α+β−γs)

Δ
. (15)

Thus, the ratio r = ρc/ρx tends to rs = (γs − β)/(α − γs),
being rs an attractor.

With the aid of the total energy density (13), we can cal-
culate the explicit form of the interaction term (12) as a func-
tion of the scale factor,

Q = (γs − α)(γs − β)

Δ

[
ca−3γs + ba−3(α+β−γs)

]
. (16)

In turn Eq. (9) can be rewritten as

ρ′
r + ρ′

m + α(ρr + ρm) = −Q. (17)

In order to break the degeneracy of this set of components,
formed by dark radiation and dark matter, we introduce par-
tial interactions into the corresponding balance equation of
both components as follows:

ρ′
r + αρr = Qr, (18)

ρ′
m + αρm = Qm, (19)

where Qr and Qm stand for the exchange of energy between
ρr and ρx , and besides these satisfy the condition

Q + Qm + Qr = 0, (20)

to recover the conservation equation (5) after having
summed all Eqs. (17)–(19). Also we assume that Qr and
Qm are a linear combination of the two terms contained in
the interaction term Q (16), so they read

Qr = c1a
−3γs + b1a

−3(α+β−γs), (21)

Qm = −(c1 + Q0c)a
−3γs − (b1 + Q0b)a−3(α+β−γs), (22)

where Q0 = (γs − α)(γs − β)/Δ, while c1 and b1 are free
parameters of the model. Inserting these interactions into
the evolution equation of the dark radiation and dark mat-
ter (18)–(19) and solving these coupled system of equations
we obtain

ρr = c1a
−3γs

α − γs

− c0a
−3α + b1a

−3(α+β−γs)

γs − β
, (23)

ρm = − (c1 + Q0c)a
−3γs

α − γs

+ c0a
−3α

− (b1 + Q0b)a−3(α+β−γs)

γs − β
, (24)

where the first and third terms in both dark energies densities
are the particular solutions of the evolution equations (18)
and (19) while the second term, in both Eqs. (23) and (24) is
the homogeneous solution of the linear system of Eqs. (18)
and (19). In what follows, we fix c1 = −Q0c/2 > 0 and
b1 = −Q0b/2 > 0 without loss of generality. Using
Eqs. (14), (15), (23), and (24), we find the coefficients c, b,
and c0 in terms of the density parameters and γs . Now, we
only show their expressions for α = 4/3 and α+β −γs = 1:

c = 3H 2
0

[
1 + Ωx0(3γs − 5)

3(γs − 1)

]
, (25)

b = 3H 2
0

[
(5Ωx0 − 4) + 3γs(1 − Ωx0)

3(γs − 1)

]
, (26)

c0 = 3H 2
0

[
1 − Ωx0 − 2Ωm0

2

]
. (27)

Here, Ωi0 stands for the density parameter of each compo-
nent.

3 Observational constraints
on the three interacting model

We will provide a qualitative estimation of the cosmolog-
ical parameters by constraining them with the Hubble data
[21–23] and the strict bounds for the behavior of dark energy
at early times [19]. In the former case, the statistical analy-
sis is based on the χ2-function of the Hubble data which is
constructed as (e.g. [24])

χ2(θ) =
19∑

k=1

[H(θ, zk) − Hobs(zk)]2

σ(zk)2
, (28)

where θ stands for cosmological parameters, Hobs(zk) is
the observational H(z) data at the redshift zk , σ(zk) is the
corresponding 1σ uncertainty, and the summation is over
the 19 observational H(z) data [17]. Using the absolute
ages of passively evolving galaxies observed at different red-
shifts, one obtains the differential ages dz/dt and the func-
tion H(z) can be measured through the relation H(z) =
−(1 + z)−1 dz/dt [21–23]. The data Hobs(zi) and Hobs(zk)

are uncorrelated because they were obtained from the obser-
vations of galaxies at different redshifts.

From Eq. (13) one finds that the Hubble expansion of the
model becomes

H(θ |z) = H0
(

Cx3γs + Bx3(α+β−γs)
) 1

2 , (29)
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where c = 3H 2
0 C , b = 3H 2

0 B as obtained from (25), (26), re-
spectively. Here, we consider θ = {H0, γs,Ωx0} as the inde-
pendent parameters to be constrained for the model encoded
in the Hubble function (29) with the statistical estimator
(28), while α is taken equal to 4/3 to have an early era dom-
inated by radiation. Besides, we will impose α +β − γs = 1
so that the universe exhibits an intermediate stage dominated
by pressureless dark matter. For a given pair of (θ1, θ2),
we are going to perform the statistic analysis by minimiz-
ing the χ2 function to obtain the best fit values of the ran-
dom variables θcrit = {θcrit1, θcrit2}, which correspond to a
minimum of Eq. (28). Then, the best-fit parameters θcrit are
those values where χ2

min(θcrit) leads to the local minimum
of the χ2(θ) distribution. If χ2

d.o.f = χ2
min(θcrit)/(N − n) ≤ 1

the fit is good and the data are consistent with the consid-
ered model H(z; θ). Here, N is the number of data and n

is the number of parameters [24]. The variable χ2 is a ran-
dom variable that depends on N and its probability distri-
bution is a χ2 distribution for N − n degrees of freedom.
Here N = 19 and n = 3, so in principle, we will perform
three minimizations of the χ2 statistical estimator, interpret-
ing the goodness of fit by checking the condition χ2

d.o.f < 1;
as a way to keep the things clear and focus on extracting rel-
evant physical information from this statistical estimation.

The random datasets that satisfy the inequality �χ2 =
χ2(θ)−χ2

min(θcrit) ≤ 2.30 also represent 68.3 % confidence
contours in the 2D plane at 1σ level. It can be shown that
95.4 % confidence contours with a 2σ error bar in the

samples satisfy �χ2 ≤ 6.17. The two-dimensional C.L. ob-
tained with the standard χ2 function for two independent pa-
rameters is shown in Fig. 1, whereas the estimation of these
cosmic parameters is briefly summarized in Table 1.

We obtain γs ≤ 10−3, so these values clearly fulfill the
constraint γs < 2/3, which ensures the existence of an ac-
celerated phase of the universe at late times [Table 1]. We
find the best fit at (H0,Ωx0) = (72.05+2.90

−2.93 km s−1 Mpc−1,

0.637+0.033
−0.038) with χ2

d.o.f = 0.81 by using the prior γs = 10−3.
These findings show, in broad terms, that the estimated val-
ues of H0 and Ωx0 are in agreement with the standard
ones reported by the WMAP-7 project [26]. The value of
Ωx0 is slightly lower than the standard one of 0.7 being
such discrepancy less or equal to 0.1 %. We find that us-
ing the priors H0 = 70.4 km s−1 Mpc−1 the best-fit values
for the present-day density parameters are (Ωx0,Ωr0) =
(0.62,7 × 10−2) along with a larger goodness condition

Table 1 Observational bounds for the 2D C.L. obtained in Fig. 1 by
varying two cosmological parameters. The χ2

d.o.f in all the cases studied
is less the unity; in fact it goes from 0.81 to 0.94

2D Confidence level

Priors Best fits χ2
d.o.f

γs = 10−3 (H0,Ωx0) = (72.05+2.90
−2.93,0.637+0.033

−0.038) 0.81

Ωx0 = 0.67 (H0, γs) = (73.81+5.14
−4.24,0.001+0.404

−0.984) 0.94

H0 = 70.4 (Ωx0, γs) = (0.623+0.038
−0.051,0.001+0.310

−0.732) 0.86

Fig. 1 Two-dimensional C.L.
associated with 1σ , 2σ for
different θ planes
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(χ2
d.o.f = 0.86) [Table 1]. Regarding the amount of dark mat-

ter at present, we have fixed Ωm0 = 0.3 because this value
is consistent with one reported by the WMAP-7 project
[26]. In performing the statistical analysis, we find that
H0 ∈ [70.4,73.81] km s−1 Mpc−1 so the estimated values
are met within 1σ C.L. reported by Riess et al. [25], to
wit, H0 = (72.2 ± 3.6) km s−1 Mpc−1. In order to ensure
that our previous local minimization analysis is correct,
we have performed a global statistical analysis by esti-
mating all the parameters at once. In doing that, we ob-
tain (H0,Ωx0, γs) = (72.05,0.63,10−3) along with χ2

d.o.f =
0.86 < 1 [see Fig. 2]. Figure 2 shows two-dimensional
C.L in the Ωx0–γs plane obtained when the joint proba-
bility P(H0,Ωx0, γs) is marginalized over H0 (see Fig. 2);
then the marginalized best-fit values become (Ωx0, γs) =
(0.619+0.052

−0.023,0.001+0.239
−0.239) with χ2

d.o.f = 0.87 < 1. It must be
stressed that we report for the most relevant minimization
procedures the corresponding marginal 1σ error bars [27],
as can be seen in Table 1.

As is well known, distance indicators can be used for con-
fronting distance measurements to the corresponding model
predictions. Among the most useful ones are those objects of
known intrinsic luminosity such as standard candles, so that
the corresponding comoving distance can be determined.
That way, it is possible to reconstruct the Hubble expansion
rate by searching this sort of object at different redshifts.
The most important class of such indicators is type Ia su-
pernovae. Then, we would like to compare the Hubble data
with the Union 2 compilation of 557 SNe Ia [18] by con-
trasting theoretical distance modulus with the observational
dataset. In order to do that, we note that the apparent magni-
tude of a supernova placed at a given redshift z is related to
the expansion history of the Universe through the distance
modulus

μ ≡ m − M = 5 log
dL(z)

h
+ μ0, (30)

where m and M are the apparent and absolute magni-
tudes, respectively, μ0 = 42.38, h = H0/100 km−1 s−1, and

dL(z) = H0(1 + z)r(z), r(z) being the comoving distance,
given for a FRW metric by

r(z) =
∫ z

0

dz′

H(z′)
. (31)

Using the Union 2 dataset, we will obtain five Hubble di-
agrams and compare each of them with the theoretical dis-
tance modulus curves that represent the best-fit cosmologi-
cal models found with the update Hubble data (see Fig. 3); it
turned out that at low redshift (z < 1.4) there is an excellent
agreement between the theoretical model and the observa-
tional data.

For the sake of completeness, we also report bounds for
other cosmological relevant parameters [see Table 2], such
as the fraction of dark radiation Ωr(z = 0), the effective
equation of state at z = 0 (ωeff0 = γeff0 −1), decelerating pa-
rameter at the present time q0, and the transition redshift (zc)
among many others, all these quantities are derived using the
three best fit values reported in Table 1. We find that the zc

is of the order unity varying over the interval [0.68,0.93],
such values are close to zc = 0.69+0.20

−0.13 reported in [28–32]
quite recently. Moreover, taking into account a χ2-statistical
analysis made in the (ω0, zc)-plane based on the supernova
sample (Union 2) it has been shown that at 2σ C.L. the tran-
sition redshift varies from 0.60 to 1.18 [33]. In order to es-
timate zc as independent parameter using a χ2 method, we
first needed to obtain its generic formula by imposing the
condition (zc + 1)H ′(zc) = H(zc):

zc =
(

3Ωx0(1 − γs) + (4 − 3γs)

(2 − 3γs)[3Ωx0(1 − γs) + 1]
)1/3(1−γs)

− 1. (32)

Hence, placing Eq. (32) into Eq. (29), the Hubble parameter
turns out to be a function of H0, zc , and γs . The global statis-
tical analysis using zc as independent parameter instead of
Ωx0 leads to (H0, zc, γs) = (72.05,0.63,10−3) along with
χ2

d.o.f = 0.86 [see Fig. 4] whereas the marginalized best-fit
values become (zc, γs) = (0.623+0.039

−0.052,0.001+0.313
−0.733) with a

χ2
d.o.f = 0.86 [see Fig. 4]; notice that the marginalized best

fit value of zc is considerably lower than the values reported
in Table 2. Besides, the behavior of decelerating parameter

Fig. 2 (Left panel):
Three-dimensional C.L. for the
H0–γs–Ωx0 plane. (Right
panel): Two-dimensional C.L.
obtained after have performed
the marginalization over H0
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Fig. 3 Hubble diagram for the
Union 2 compilation: the points
are the observational data of
supernovae, the theoretical
curves μ(z) (dashed lines)
represent the best cosmological
model for different cases:
(global estimation):
I (H0,Ωx0, γs) =
(72.05,0.63,0.001),
(marginalizing over H0)
II (Ωx0, γs) =
(0.619+0.052

−0.023,0.001+0.239
−0.239),

III (H0,Ωx0) =
(72.05+2.90

−2.93,0.637+0.033
−0.038),

IV (H0, γs) =
(73.81+5.14

−4.24,0.001+0.404
−0.984),

V (Ωx0, γs) =
(0.623+0.038

−0.051,0.001+0.310
−0.732)

Fig. 4 (Upper panel):
Three-dimensional C.L. for the
H0–γs–zc plane. (Lower panel):
Two-dimensional C.L. obtained
after have performed the
marginalization over H0

Table 2 Derived bounds for cosmic parameters using the best fits value of 2D C.L. obtained in Table 1 by varying two cosmological parameters
in three different cases

Bounds for cosmological parameters

θc zc q(z = 0) ωove(z = 0) ωeffx(z = 0) Ωx(z � 1100) Ωx(z � 1010) Ωm0 Ωr0 Ωm0/Ωx0 Ωr0/Ωx0

I 0.75 −0.59 −0.64 −1.32 0.26 0.26 0.3 0.062 0.47 0.09

II 0.93 −0.67 −0.74 −1.23 0.23 0.23 0.3 0.03 0.44 0.04

III 0.68 −0.55 −0.70 −1.28 0.20 0.20 0.3 0.07 0.48 0.1
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with redshift is shown in Fig. 4, in particular, its present-day
value varies as −0.67 < q0 < −0.55 for the three cases men-
tioned in Table 2, and all these values are in perfect agree-
ment with the one reported by WMAP-7 project [26].

The effective EOS of the mix is given by

ωeff = βΩx + αΩm + αΩr∑
i Ωi

− 1. (33)

The effective equation of state (EOS) for dark energy is ob-
tained from Eq. (10), it reads

ωeffx =
(

γx − Qx

ρx

)
− 1. (34)

In Fig. 5 we plot the effective equation of state as a function
of redshift for the best-fit value shown in Table 1, in general,
we find that ωeff ≥ −1 provided that (1 − 3γs)Ωx + 4(Ωr +
Ωm) ≤ 3, as a matter of fact its present-day values cover the
range [−0.74,−0.64]. On the other hand, the effective EOS
associated to the dark energy evaluated at z = 0, ωeffx(z = 0)

varies over the range [−1.32,−1.23].
In regard to the behavior of density parameters Ωx , Ωm,

and Ωr , we see that very close to z = 0 the dark energy is
the main agent that speeds up the universe, far away from
z = 1 the universe is dominated by the dark matter and at
very early times the radiation component governs the entire
dynamic of the universe around z � 103 [cf. Fig. 5]. In this
point, we would like to present an appealing discussion con-
cerning the triple cosmic coincidence problem (TCC) [16]

related to the amount of dark energy, dark matter, and ra-
diation at present moment. We have proposed a physical
mechanism based on a phenomenological interaction among
the three cosmic components, in fact, since we are working
within the framework of three interacting cosmic compo-
nents the aforesaid scenario seems to be a fertile arena for
studying the TCC. As pointed out by Arkani-Hamed et al. in
their seminal work: “there is an era in the history of the uni-
verse where all three forms of energy, in matter, radiation
and dark energy, become comparable within a few orders
of magnitude” [16]. Here, we have found that interaction
made it possible to have Ωm0/Ωx0 = 0.3/0.62 = 0.48 and
Ωr0/Ωx0 = 0.07/0.62 = 0.11, so Ωm0/Ωx0 � Ωr0/Ωx0 �
O(1), showing that the interaction implemented can be used
for alleviating the TCC [see Table 2].

Now, we explore another kind of constraint, which comes
form the physics at early times because this can be consid-
ered as a complementary tool for testing our model. As is
well known the fraction of dark energy in the recombina-
tion epoch should fulfill the bound Ωede(z � 1100) < 0.1.
Taking into account the best-fit values reported in Table 1,
we find that at early times the dark energy does not change
much with the redshift z over the interval [103,1010], in
fact, the LogΩx in terms of Log z goes from 0.64 to 0.20
[see Fig. 5]. Table 2 shows that around z � 1100 (recom-
bination) Ωx can vary from 0.20 to 0.26. This excess of
dark energy requires further research because some signal

Fig. 5 Plots of Ωx(z), Ωm(z),
Ωr(z), q(z), ωeff(z), ωeffx(z)

using the best-fit values
obtained with the Hubble data
for different θ planes. Plot of
LogΩx in terms of Log z
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could arise from this early dark energy (EDE) models un-
covering the nature of DE as well as their properties to high
redshift, giving an invaluable guide to the physics behind
the recent speed up of the universe [14, 19]. Regarding the
values reached by Ωx around the big bang nucleosynthesis
(BBN) z = 1010, we find that there is a variation from 0.20
to 0.26, so the conventional BBN processes that occurred
at temperature of 1 Mev is not spoiled because the severe
bound reported for early dark energy Ωx(z � 1010) < 0.21
is marginally fulfilled at BBN [20].

As is well known, dark energy dominates the whole dy-
namics of the universe at present and there is an obvious de-
coupling with radiation practically. However, from a theoret-
ical point of view, it is reasonable to expect that dark com-
ponents can interact with other fluids of the universe sub-
stantially in the very beginning of its evolution due to pro-
cesses occurring in the early universe. For instance, dark en-
ergy interacting with neutrinos was investigated in [34]. The
framework of many interacting components could provide a
more natural arena for studying the stringent bounds of dark
energy at recombination epoch. There could be a signal in
favor of having dark matter exchanging energy with dark
energy while radiation is treated as a decoupled component
[13, 14] or the case where dark matter, dark energy, and ra-
diation exchange energy. More precisely, when the universe
is filled with interacting dark sector plus a decoupled radi-
ation term, it was found that Ωx(z � 1100) = 0.01 [13] or
Ωx(z � 1100) = 10−8 [14] but if radiation is coupled to the
dark sector, the amount of dark energy is drastically reduced,
giving Ωx(z � 1100) � O(10−11) [15]. In our model, we
have found that the amount of early dark energy varies in
the range [0.26;0.20], so the behavior of dark energy at
recombination is considerably much smoother than in the
aforesaid cases [13–15]. We expect to include a (decoupled)
neutrino term in the Friedmann equation to examine in more
detail the dark radiation as a signature of dark energy.

4 Conclusion

We have discussed a class of interacting dark matter, dark ra-
diation, and holographic Ricci-like dark energy model for a
spatially flat FRW background. We have coupled those com-
ponents and obtained their energy densities in terms of the
scale factor.

We have examined the previous model by constraining
the cosmological parameters with the Hubble data and the
well-known bounds for dark energy at recombination era. In
the case of two-dimensional (2D) C.L., we have made three
statistical constraints with the Hubble function [see Fig. 1
and Table 1]. We have found that γs ≤ 10−3, so these val-
ues fulfill the constraint γs < 2/3 for getting an accelerated
phase of the universe at late times. We find the best fit at

(H0,Ωx0) = (72.05+2.90
−2.93 km s−1 Mpc−1,0.637+0.033

−0.038) with
χ2

d.o.f = 0.81 by using the prior γs = 10−3. It turned out that
the estimated values of H0 and Ωx0 are in agreement with
the standard ones reported by the WMAP-7 project [26]. Be-
sides, we have found that H0 ∈ [70.4,73.81] km s−1 Mpc−1,
so the estimated values are met within 1σ C.L. reported by
Riess et al. [25], to wit, H0 = (72.2 ± 3.6) km s−1 Mpc−1.
After having marginalized the joint probability P(H0,Ωx0,

γs) over H0 [see Fig. 1], we saw that the marginalized best-
fit values are (Ωx0, γs) = (0.619+0.052

−0.023,0.001+0.239
−0.239) with a

χ2
d.o.f = 0.87 < 1 [see Fig. 2]. Using the best fits mentioned

in Table 1, we have numerically obtained the distance mod-
ulus of the supernova as predicted by the theoretical model
and compare with the Union 2 dataset, finding that at low
redshift (z < 1.4) there is excellent agreement between the
theoretical model and the observational data [see Fig. 3].

Regarding the derived cosmological parameters, for in-
stance, the transition redshift zc turned out to be of the or-
der unity varying over the interval [0.68,0.93], such values
are in agreement with zc = 0.69+0.20

−0.13 reported in [28–32],
and meets within the 2σ C.L obtained with the supernovae
(Union 2) data in [33]. We also have performed a global sta-
tistical analysis using zc as independent parameter instead
of Ωx0, which lead to (H0, zc, γs) = (72.05,0.63,10−3)

along with χ2
d.o.f = 0.86 [see Fig. 4], whereas the marginal-

ized best-fit values are (zc, γs) = (0.623+0.039
−0.052,0.001+0.313

−0.733)

together with a χ2
d.o.f = 0.86 [see Fig. 4]. Besides, with

the decelerating parameters q(z = 0) ∈ [−0.67,−0.55] for
the three cases mentioned in Table 2, all these values are
perfectly in agreement with the one reported by WMAP-7
project [26] [see Fig. 5].

Concerning the effective equation of state, we have found
that ωeff > −1 and its present-day values vary over the
ranges [−0.74,−0.64] [see Table 2 and Fig. 5]. The equa-
tion of state associated with dark energy satisfies the in-
equality ωeffx ≤ −1.

Besides, we have found that the fraction of dark radiation
at present moment, Ωr0, varies in the interval [0.03,0.07]
for the three cases mentioned in Table 2. The dark energy
amount Ωx(z) governs the dynamic of the universe near
z = 0, whereas far away from z = 1 the universe is domi-
nated by the fraction of dark matter Ωm(z) and at very early
times the fraction of radiation Ωr(z) controls the entire dy-
namic of the universe around z � 103 [cf. Fig. 5]. We also
have examined the triple cosmic coincidence problem [16]
within the framework of three interacting cosmic compo-
nents, finding that interaction used in this work provides a
phenomenological mechanism for alleviating TCC, leading
to Ωm0/Ωx0 � Ωr0/Ωx0 � O(1) [see Table 2].

Finally, we have found that at early times the dark energy
does not change much with the redshift z over the interval
[103,1010], in fact, the LogΩx in terms of Log z goes from
0.64 to 0.20 [see Fig. 5]. Table 2 shows that around z � 1100
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(recombination) Ωx can vary from 0.20 to 0.26. The latter
results indicate an excess of dark energy so it requires fur-
ther research [14, 19], in fact it could be related with the
degeneracy presents in the equation of states of dark matter
and dark radiation. In order to explore this issue in more de-
tail, we expect to include an additional (decoupled) neutrino
term in Friedmann equation; thereby, we will seek to distin-
guish the radiation term coupled to dark matter, where both
component share the same bare equation of state, from the
decoupled neutrino term. However, it must be stressed that
the values reached by Ωx around the big-bang nucleosyn-
thesis (BBN) z = 1010 vary from 0.20 to 0.26, so the con-
ventional BBN process is not spoiled because our estima-
tions, in most of the cases mentioned above, fulfill the severe
bound reported for early dark energy: Ωx(z � 1010) < 0.21
[20].
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