REGULAR ARTICLE

Electric field effects on nuclear spin-spin coupling tensors and chiral discrimination via NMR spectroscopy

Gabriel I. Pagola · Marta B. Ferraro · Stefano Pelloni · Paolo Lazzeretti · Stephan P. A. Sauer

Received: 29 September 2010/Accepted: 30 October 2010/Published online: 30 November 2010 © Springer-Verlag 2010

Abstract Nuclear magnetic resonance spectrometers presently available are unable to recognize the two mirrorimage forms of a chiral molecule, because in the absence of a chiral solvent, the NMR spectral parameters (chemical shifts and spin–spin coupling constants) are identical for the two enantiomers. This paper discusses how chirality may nevertheless, at least in theory, be recognized in liquid-state NMR spectroscopy by applying strong d.c. electric fields and measuring a pseudoscalar contribution to nuclear spin–spin coupling polarizability. Calculations are reported for medium-size chiral molecules, (2R)-N-methyloxaziridine, (R_a) -1,3-dimethylallene, and (2R)-2-methyloxirane. The very small contributions provided by the pseudoscalar of nuclear spin–spin coupling polarizability

Dedicated to Professor Pekka Pyykkö on the occasion of his 70th birthday and published as part of the Pyykkö Festschrift Issue.

Contribution to honor the scientific work and life of Prof. Pekka Pyykkö.

Electronic supplementary material The online version of this article (doi:10.1007/s00214-010-0851-2) contains supplementary material, which is available to authorized users.

G. I. Pagola · M. B. Ferraro Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and IFIBA, CONICET Ciudad Universitaria, Pabellon 1, 1428 Buenos Aires, Argentina

S. Pelloni · P. Lazzeretti (⊠) Dipartimento di Chimica dell'Università degli Studi di Modena e Reggio Emilia, Via Campi 183, 41124 Modena, Italy e-mail: lazzeret@unimore.it

S. P. A. Sauer

Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark seem rather difficult to detect via NMR experiments in disordered phase.

Keywords Chiral discrimination · Enantiomeric molecules in disordered phase · Nuclear magnetic resonance spectroscopy · Electric dipole polarizability of nuclear spin-spin coupling

1 Introduction

Nuclear magnetic resonance (NMR) spectroscopy cannot be directly used to determine the absolute configuration of chiral molecules in disordered media, as the chemical shifts and spin-spin coupling constants are exactly the same for the two enantiomers of a chiral molecule, if parity violation contributions [1-3] are neglected. Therefore, NMR spectral parameters are not suitable for chiral discrimination, that is, for the recognition of different enantiomers.

However, recent papers suggest that chirality could actually be observable in NMR spectroscopy through application of an electric field. The effect is in principle detectable via especially designed experimental setups [4–8]. The response properties involved are referred to as electric polarizability of the nuclear magnetic shielding and polarizability of the nuclear spin–spin coupling, [4, 5, 9] that is, third-rank tensors even under time-reversal and odd under parity, having components with the same magnitude but opposite sign for D and L enantiomers of a chiral species.

In crystal phase, all polarizability components are possibly observable. In liquid and gas phase, a $\overline{\sigma}_I^{(1)}$ pseudoscalar of the nuclear shielding polarizability of nucleus *I* in a molecule is defined via quantum mechanical methods [4]. As shown in Sect. 2, for two coupled nuclei I and $J, \overline{\mathcal{K}}_{IJ}^{(1)}$ pseudoscalars can also be defined by spatial averaging [10, 11] of these polarizabilities, much in the same way as the optical rotation pseudoscalar G' [12].

Both pseudoscalars vanish in achiral molecules and have equal but opposite values for the two enantiomers of a chiral molecule in disordered media. However, the small magnitude predicted for the ¹³C,¹⁵N, and ¹⁷O pseudoscalars of nuclear magnetic shielding polarizability in some simple systems seems to preclude experimental detection via presently available NMR spectrometers [5–8].

More promising techniques have been suggested by Buckingham and Fischer via measurement of nuclear spinspin coupling polarizability: a possible application could be to induce zero-quantum transitions by a time-dependent electric field $E_{\alpha}(t)$ oscillating at $|\omega(I) - \omega(J)|/2\pi$, that is, the difference of the Larmor precession frequencies of two coupled nuclei *I* and *J* [5].

The present preliminary investigation is aimed at estimating quantitatively the effect of a static homogeneous electric field on the average nuclear coupling constant in disordered phase for (2R)-2-methyloxirane, (R_a)-1,3-dimethylallene, and (2R)-*N*-methyloxaziridine. The paper is organized as follows: electric dipole polarizabilities of nuclear spin–spin coupling are defined in Sect. 2, the Ramsey Hamiltonians [13, 14] are reported in Sect. 3, and a computational procedure is outlined in Sect. 4. Details on calculation are given in Sect. 5, and the results are discussed in Sect. 6 in view of further investigations.

2 Electric dipole polarizability of the nuclear spin-spin coupling

Standard tensor notation is employed throughout this article, e.g., the Einstein convention of implicit summation over two repeated Greek subscripts is in force. The total energy of a molecule in the presence of intramolecular perturbations, i.e., the permanent magnetic dipoles $\mathbf{m}_I = \gamma_I \hbar \mathbf{I}_I$ and $\mathbf{m}_J = \gamma_J \hbar \mathbf{I}_J$, expressed via the magnetogyric ratios γ_I and γ_J and spins $\hbar \mathbf{I}_I$ and $\hbar \mathbf{I}_J$ of two nuclei *I* and *J*, and an external time-independent, spatially uniform electric field **E**, is

$$W = W^{(0)} + m_{I_{\alpha}} \mathcal{K}^{I_{\alpha} J_{\beta}} m_{J_{\beta}} + m_{I_{\alpha}} \mathcal{K}^{I_{\alpha} J_{\beta}} m_{J_{\beta}} E_{\gamma} + \cdots, \qquad (1)$$

where

$$\mathcal{K}^{I_{x}J_{\beta}} = \frac{\partial^{2}W}{\partial m_{I_{x}}\partial m_{J_{\beta}}}\Big|_{\mathbf{m}_{I},\mathbf{m}_{J},\mathbf{E}\to\mathbf{0}}$$
(2)

is the reduced nuclear spin–spin coupling, represented by a second-rank tensor. The polarizability of nuclear spin–spin

coupling is a third-rank tensor, obtained as the third derivative of the energy, Eq. 1,

$$\mathcal{K}_{\gamma}^{I_{\alpha}J_{\beta}} = \frac{\partial^{3}W}{\partial m_{I_{\alpha}}\partial m_{J_{\beta}}\partial E_{\gamma}}\Big|_{\mathbf{m}_{I},\mathbf{m}_{J},\mathbf{E}\to\mathbf{0}}.$$
(3)

Three response properties are defined via the coupling tensor, Eq. 2 and the polarizability, Eq. 3. The magnetic field induced at the I-th nucleus is

$$\mathcal{B}_{I_{\alpha}}^{n} = -\frac{\partial W}{\partial m_{I_{\alpha}}} = -\mathcal{K}^{I_{\alpha}J_{\beta}}m_{J_{\beta}} - \mathcal{K}_{\gamma}^{I_{\alpha}J_{\beta}}m_{J_{\beta}}E_{\gamma} + \cdots, \qquad (4)$$

the electric dipole moment induced in the electron cloud is

$$\mathcal{M}_{\gamma} = -\frac{\partial W}{\partial E_{\gamma}} = -\mathcal{K}_{\gamma}^{I_{\alpha}J_{\beta}} m_{I_{\alpha}} m_{J_{\beta}} + \cdots, \qquad (5)$$

and the electric-field-induced contribution to the spin-spin coupling is, to first order in E_{α} ,

$$\mathcal{K}^{I_{\alpha}J_{\beta}(1)} = \mathcal{K}^{I_{\alpha}J_{\beta}}_{\gamma}E_{\gamma}.$$
(6)

In non-ordered media, it is convenient to introduce the average coupling constant $\mathcal{K}_{IJ} = (1/3)\mathcal{K}^{I_{\alpha}J_{\alpha}}$, and a pseudoscalar

$$\overline{\mathcal{K}}_{IJ}^{(1)} = \frac{1}{6} \epsilon_{\alpha\beta\gamma} \mathcal{K}_{\gamma}^{I_{\alpha}J_{\beta}},\tag{7}$$

where $\varepsilon_{\alpha\beta\gamma}$ is the skew-symmetric Levi–Civita tensor. Therefore, $\mathcal{K}_{\gamma}^{I_{\alpha}J_{\beta}}$ has a chirally sensitive isotropic part $\epsilon_{\alpha\beta\gamma}\overline{\mathcal{K}}_{IJ}^{(1)}$. For an isotropic medium, one obtains

$$\boldsymbol{\mathcal{B}}_{I}^{n} = -\mathcal{K}_{IJ}\mathbf{m}_{J} - \overline{\mathcal{K}}_{IJ}^{(1)}\mathbf{m}_{J} \times \mathbf{E}, \qquad (8)$$

$$\mathcal{M} = -\overline{\mathcal{K}}_{IJ}^{(1)} \mathbf{m}_I \times \mathbf{m}_J, \qquad (9)$$

for the magnetic field induced at nucleus *I* and the electric dipole induced in the electrons, respectively.

Equations 7–9 are strictly valid only for freely tumbling non-dipolar molecules in the presence of weak electric fields. Alignment with **E** occurring for chiral systems which possess an intrinsic electric dipole moment $\mathcal{M}^{(0)}$ would require a different theoretical approach pursued in future investigations.

3 The Ramsey Hamiltonian

The notation adopted in Refs. [15–17] is used. For a molecule with *n* electrons and *N* nuclei, charge, mass, position, canonical, and angular momentum of the *i*-th electron are indicated by $-e, m_e, \mathbf{r}_i, \hat{\mathbf{p}}_i, \hat{\mathbf{l}}_i = \mathbf{r}_i \times \hat{\mathbf{p}}_i, i = 1, 2...n$. Analogous quantities for nucleus *I* are Z_Ie, M_I, \mathbf{R}_I , etc. *N'* nuclei are endowed with an intrinsic magnetic

dipole $\mathbf{m}_{I} = \gamma_{I}\hbar\mathbf{I}_{I}$. The distance of electron *i* from nucleus *I* is $\mathbf{r}_{iI} \equiv \mathbf{r}_{i} - \mathbf{R}_{I}$, $\hat{\sigma}_{i\alpha}$ is a Pauli matrix, and $\mu_{B} = e\hbar/2m_{e}$ is the Bohr magneton. Capital letters are used for collective electronic operators, e.g., $\hat{\mathbf{R}} = \sum_{i=1}^{n} \mathbf{r}_{i}$, $\hat{\mathbf{P}} = \sum_{i=1}^{n} \hat{\mathbf{p}}_{i}$. SI units [18] are employed.

The non-relativistic Ramsey Hamiltonian accounts for the diamagnetic nuclear spin-electron orbit, paramagnetic nuclear spin-electron orbit, spin-dipolar, and Fermi contact terms [13, 14],

$$\hat{H}_{\rm DSO} = \left(\frac{\mu_0}{4\pi}\right)^2 \frac{e^2}{2m_e} \sum_{I,J\neq I}^{N'} m_{I_a} \hat{\mathcal{U}}^n_{I_a J_\beta} m_{J_\beta}, \tag{10}$$

$$\hat{H}_{\rm PSO} = -\sum_{I=1}^{N'} m_{I_{\alpha}} \hat{B}_{I_{\alpha}}^{n} = \frac{\mu_{0}}{4\pi} \frac{e}{m_{e}} \sum_{I=1}^{N'} m_{I_{\alpha}} \hat{M}_{I_{\alpha}}^{n}, \tag{11}$$

$$\hat{H}_{\rm SD} = \frac{\mu_0}{4\pi} \mu_B \sum_{I}^{N'} m_{I_x} \hat{\mathcal{T}}^n_{I_x}, \qquad (12)$$

$$\hat{H}_{\rm FC} = \frac{2}{3} \mu_0 \mu_B \sum_{l=1}^{N'} m_{l_x} \hat{\mathcal{F}}_{l_x}^n, \tag{13}$$

where we have introduced the operators

$$\hat{\mathcal{U}}^{n}_{I_{z}J_{\beta}} = \sum_{i=1}^{n} r_{il}^{-3} r_{iJ}^{-3} (r_{iI_{\gamma}} r_{iJ_{\gamma}} \delta_{\alpha\beta} - r_{iJ_{\alpha}} r_{iI_{\beta}}), \qquad (14)$$

$$\hat{\mathbf{M}}_{I}^{n} = \sum_{i=1}^{n} \frac{\mathbf{r}_{iI}}{r_{iI}^{3}} \times \hat{\mathbf{p}}_{i},\tag{15}$$

$$\hat{\mathcal{T}}^n_{I_\alpha} = \sum_{i=1}^n [(3r_{iI\alpha}r_{iI\beta} - r_{iI}^2\delta_{\alpha\beta})r_{iI}^{-5}]\hat{\sigma}_{i\beta},$$
(16)

$$\hat{\mathcal{F}}^{n}_{I_{\alpha}} = \sum_{i=1}^{n} \delta(\mathbf{r}_{iI})\hat{\sigma}_{i\alpha}$$
(17)

and where the operator for the magnetic field acting on the I-th nucleus by the orbital motion of n electrons is written as

$$\hat{\mathbf{B}}_{I}^{n} = -\frac{\mu_{0}}{4\pi} \frac{e}{m_{e}} \hat{\mathbf{M}}_{I}^{n}.$$
(18)

It is important to recall that recently Pyykkö published a short paper entitled "*Perspective on Norman Ramseys theories of NMR chemical shifts and nuclear spin–spin couplings*", where a concise and interesting assessment of the early development of the theory of high-resolution NMR parameters is given [14].

Within the Rayleigh–Schrödinger perturbation theory, the expressions for the contributions to the energy of a molecule in the reference electronic state $|a\rangle \equiv \Psi_a^{(0)}$ through third order are

$$W_{a}^{(1)} = \left\langle a | \hat{H}^{(1)} | a \right\rangle, \tag{19}$$
$$W_{a}^{(2)} = \left\langle a | \hat{H}^{(2)} | a \right\rangle - \frac{1}{\tau} \sum \omega_{ia}^{-1} \left\langle a | \hat{H}^{(1)} | i \right\rangle \left\langle i | \hat{H}^{(1)} | a \right\rangle,$$

$$V_{a}^{*} = \langle a|H^{*}|a\rangle - \frac{1}{\hbar} \sum_{i \neq a} \omega_{ia} \langle a|H^{*}|l\rangle \langle l|H^{*}|a\rangle,$$
(20)

$$W_{a}^{(3)} = \frac{1}{\hbar^{2}} \sum_{i \neq a} \sum_{j \neq a} \omega_{ia}^{-1} \omega_{ja}^{-1} \left\langle a | \hat{H}^{(1)} | i \right\rangle \left\langle i | \hat{H}^{(1)} | j \right\rangle \left\langle j | \hat{H}^{(1)} | a \right\rangle$$
$$- \frac{2}{\hbar} \sum_{i \neq a} \omega_{ia}^{-1} \Re \left\{ \left\langle a | \hat{H}^{(1)} | i \right\rangle \left\langle i | \hat{H}^{(2)} | a \right\rangle \right\},$$
(21)

defining overlined fluctuation operators, e.g.,

$$\overline{\hat{H}^{(1)}} \equiv \hat{H}^{(1)} - \left\langle a | \hat{H}^{(1)} | a \right\rangle.$$
(22)

In the present paper, $\hat{H}^{(0)}$ is the Born–Oppenheimer unperturbed electronic Hamiltonian of a molecule, so that

$$\hat{H}^{(0)}|j
angle = W^{(0)}_j|j
angle$$

and

$$\omega_{ia} = (W_i^{(0)} - W_a^{(0)})/\hbar$$

the first-order perturbed Hamiltonian $\hat{H}^{(1)}$ corresponds to those in Eqs. 11–13, and the second-order Hamiltonian corresponds to Eq. 10. Molecular response properties can be described introducing the following general definitions for the propagators [19–21]

$$\{\hat{A},\hat{B}\}_{-1} = \frac{2}{\hbar} \sum_{i \neq a} \omega_{ia}^{-1} \Re\{\langle a | \hat{A} | i \rangle \langle i | \hat{B} | a \rangle\} \equiv -\langle \langle A; B \rangle \rangle_{\omega=0},$$
(23)

$$\begin{aligned} \left\{ \hat{A}, \hat{B}, \hat{C} \right\}_{-2} &= \mathbf{S} \left(\hat{A}, \hat{B}, \hat{C} \right) \\ &\times \left(\frac{1}{\hbar^2} \sum_{j \neq a} \sum_{k \neq a} \omega_{ja}^{-1} \omega_{ka}^{-1} \langle a | \hat{A} | j \rangle \left\langle j | \overline{\hat{B}} | k \right\rangle \langle k | \hat{C} | a \rangle \right) \\ &\equiv \left\langle \langle A; B, C \rangle \right\rangle_{\omega, \omega' = 0}. \end{aligned} \tag{24}$$

The symbol S(...) implies a summation of the six terms arising on permuting the operators within brackets.

4 Computational scheme

The present paper is aimed at developing a computational procedure for calculating all components of nuclear spin-spin coupling polarizabilities, with particular emphasis on the $\overline{\mathcal{K}}_{IJ}^{(1)}$ pseudoscalar, Eq. 7, allowing for the relationships (Eqs. 19–24) within the framework of the Ramsey theory [13].

For computational purposes, it is expedient to rewrite the total electronic Hamiltonian for a molecule in the presence of an external electric field **E** and nuclear intrinsic magnetic dipoles, see Eqs. 10-13, in the form

$$\hat{H} = \hat{H}^{(0)} + \hat{H}^{E_{\alpha}} E_{\alpha} + \hat{H}^{m_{I_{\alpha}}} m_{I_{\alpha}}, \qquad (25)$$

where first-order reduced Hamiltonians are specified by polar

$$\hat{H}^{E_{\alpha}} = e\hat{R}_{\alpha},\tag{26}$$

and axial vector components

$$\hat{H}^{m_{l_{\alpha}}} = \hat{H}^{(1a)}_{\alpha} + \hat{H}^{(1b)}_{\alpha} + \hat{H}^{(2)}_{\alpha} + \hat{H}^{(3)}_{\alpha},$$
(27)

so that the operators for the magnetic field of the electrons at the I-th nucleus are

$$\hat{\mathcal{B}}^{n}_{I_{x}} = -\frac{\partial \hat{H}}{\partial m_{I_{x}}} = \hat{\mathcal{B}}^{(1a)n}_{I_{x}} + \hat{\mathcal{B}}^{(1b)n}_{I_{x}} + \hat{\mathcal{B}}^{(2)n}_{I_{x}} + \hat{\mathcal{B}}^{(3)n}_{I_{x}}.$$
 (28)

Employing relationships (14)–(17) and the established nomenclature of Ramsey [13] and Pyykkö [14], the perturbing first-order Hamiltonians in Eq. 27 are specified by the operators

$$\hat{H}_{\alpha}^{(1a)} = \left(\frac{\mu_0}{4\pi}\right)^2 \frac{e^2}{m_e} \sum_{J \neq I}^{N'} \hat{\mathcal{U}}_{I_x J_\beta}^n m_{J_\beta} \equiv -\hat{\mathcal{B}}_{I_\alpha}^{(1a)n},$$
(29)

$$\hat{H}_{\alpha}^{(1b)} = -\hat{B}_{I_{\alpha}}^{n} \equiv -\hat{\mathcal{B}}_{I_{\alpha}}^{(1b)n},$$
(30)

$$\hat{H}_{\alpha}^{(2)} = \frac{\mu_0}{4\pi} \mu_B \hat{\mathcal{T}}_{I_{\alpha}}^n \equiv -\hat{\mathcal{B}}_{I_{\alpha}}^{(2)n}, \tag{31}$$

$$\hat{H}_{\alpha}^{(3)} = \frac{2}{3} \mu_0 \mu_B \hat{\mathcal{F}}_{I_{\alpha}}^n \equiv -\hat{\mathcal{B}}_{I_{\alpha}}^{(3)n}, \qquad (32)$$

which are related respectively to the diamagnetic nuclear spin- electron orbit, paramagnetic nuclear spin-electron orbit, spin-dipolar, and Fermi contact terms [13].

Allowing for Eqs. 1, 2, 19, 20, 23, and 29–32, the contributions to the reduced coupling tensors can be recast in the form

$$\mathcal{K}^{(1a)I_{\alpha}J_{\beta}} = \left(\frac{\mu_0}{4\pi}\right)^2 \frac{e^2}{m_e} \Big\langle a | \hat{\mathcal{U}}^n_{I_{\alpha}J_{\beta}} | a \Big\rangle, \tag{33}$$

$$\mathcal{K}^{(1b)I_{x}J_{\beta}} = -\left(\frac{\mu_{0}}{4\pi}\right)^{2} \left(\frac{e}{m_{e}}\right)^{2} \left\{\hat{M}_{I_{x}}^{n}, \hat{M}_{J_{\beta}}^{n}\right\}_{-1},$$
(34)

$$\mathcal{K}^{(2)I_{\alpha}J_{\beta}} = -\left(\frac{\mu_0}{4\pi}\right)^2 \mu_B^2 \left\{\hat{\mathcal{T}}_{I_{\alpha}}^n, \hat{\mathcal{T}}_{J_{\beta}}^n\right\}_{-1},\tag{35}$$

$$\mathcal{K}^{(3)I_{\alpha}J_{\beta}} = -\left(\frac{2\mu_{0}\mu_{B}}{3}\right)^{2} \left\{\hat{\mathcal{F}}_{I_{\alpha}}^{n}, \hat{\mathcal{F}}_{J_{\beta}}^{n}\right\}_{-1},\tag{36}$$

$$\mathcal{K}^{(4)I_{\alpha}J_{\beta}} = -\frac{\mu_{0}^{2}\mu_{B}^{2}}{6\pi} \Big(\Big\{ \hat{T}_{I_{\alpha}}^{n}, \hat{\mathcal{F}}_{J_{\beta}}^{n} \Big\}_{-1} + \Big\{ \hat{\mathcal{F}}_{I_{\alpha}}^{n}, \hat{T}_{J_{\beta}}^{n} \Big\}_{-1} \Big).$$
(37)

From Eqs. 3, 21, and 24, the contribution of the DSO, PSO,

SD, Fermi, and Fermi/spin-dipolar cross terms to the polarizability are, respectively,

$$\mathcal{K}_{\gamma}^{(1a)I_{x}J_{\beta}} = -\left(\frac{\mu_{0}}{4\pi}\right)^{2} \frac{e^{5}}{m_{e}} \left\{\hat{\mathcal{U}}_{I_{x}J_{\beta}}^{n}, \hat{R}_{\gamma}\right\}_{-1}$$
(38)

$$\mathcal{K}_{\gamma}^{(1b)I_{\alpha}J_{\beta}} = \left(\frac{\mu_{0}}{4\pi}\right)^{2} \frac{e^{3}}{m_{e}^{2}} \Big\{ \hat{M}_{I_{\alpha}}^{n}, \hat{M}_{J_{\beta}}^{n}, \hat{R}_{\gamma} \Big\}_{-2}, \tag{39}$$

$$\mathcal{K}_{\gamma}^{(2)I_{x}J_{\beta}} = \left(\frac{\mu_{0}}{4\pi}\right)^{2} \mu_{B}^{2} e \left\{ \hat{T}_{I_{x}}^{\hat{n}}, \hat{T}_{J_{\beta}}^{\hat{n}}, \hat{R}_{\gamma} \right\}_{-2}, \tag{40}$$

$$\mathcal{K}_{\gamma}^{(3)I_{a}J_{\beta}} = \left(\frac{2\mu_{0}\mu_{B}}{3}\right)^{2} e\left\{\hat{F}_{I_{a}}^{n}, \hat{F}_{J_{\beta}}^{n}, \hat{R}_{\gamma}\right\}_{-2},\tag{41}$$

$$\mathcal{K}_{\gamma}^{(4)I_{a}J_{\beta}} = \frac{\mu_{0}^{2}\mu_{B}^{2}e}{6\pi} \left(\left\{ \hat{\mathcal{T}}_{I_{a}}^{n}, \hat{\mathcal{F}}_{J_{\beta}}^{n}, \hat{R}_{\gamma} \right\}_{-2} + \left\{ \hat{\mathcal{F}}_{I_{a}}^{n}, \hat{\mathcal{T}}_{J_{\beta}}^{n}, \hat{R}_{\gamma} \right\}_{-2} \right).$$
(42)

The Fermi contribution is isotropic and the Fermi/spindipolar cross contribution is symmetric in the indices α and β , as it is evident from Eqs. 36 and 37. Whereas spin–spin coupling polarizability tensor components can be defined for all the Ramsey mechanisms, only the terms Eqs. 38, 39, and 40 contribute to the pseudoscalar $\overline{\mathcal{K}}_{IJ}^{(1)}$ defined via Eq. 7.

The reduced coupling constants are related to the $J^{I_{\alpha}J_{\beta}}$ tensor and to the average value $J^{IJ} = (1/3)J^{I_{\alpha}J_{\alpha}}$ commonly expressed in hertz by

$$\mathcal{K}^{I_x J_\beta} = 4\pi^2 \frac{J^{I_x J_\beta}}{h \gamma_I \gamma_J}.$$
(43)

Analogous relationships hold for the coupling polarizability

$$\mathcal{K}_{\gamma}^{I_{a}J_{\beta}} = 4\pi^{2} \frac{J_{\gamma}^{I_{a}J_{\beta}}}{h\gamma_{I}\gamma_{J}},\tag{44}$$

and for the $\overline{\mathcal{K}}_{IJ}^{(1)}$ pseudoscalar Eq. 7,

$$\overline{\mathcal{K}}_{IJ}^{(1)} = 4\pi^2 \frac{\overline{\mathcal{J}}_{IJ}^{(1)}}{h\gamma_I \gamma_J}.$$
(45)

5 Details of calculation

The B3LYP [22–25], KT3 [26, 27] and PBE [28] functionals of density functional theory (DFT) implemented in the DALTON code [29] were used in the calculations on three molecules, (R_a)-1,3-dimethylallene, (2R)-2-methyloxirane, and (2R)-*N*-methyloxaziridine, whose nuclear magnetic shielding polarizabilities had previously been estimated theoretically [6].

Molecular geometries were optimized at the B3LYP/6-31G** level of theory by the GAUSSIAN03 code [30]. Response tensors were calculated using four basis sets of Gaussian functions: $B1 \equiv 6-31G^{**}$ available in GAUSS-IAN03; [30] B2, from Sadlej; [31] $B3 \equiv$ aug-cc-pVTZ from Dunning and Woon [32, 33]. The uncontracted (13s/8p// 10s) substratum of the B4 basis set taken from the van Duijneveldt compilation [34] for C,O,N//H was augmented with two s functions and four 3d functions on the heavier atoms, and three 2p functions on H, see Supplementary Information Available (SIA) for details useful to reproduce our calculations.

B2 basis sets have been developed for accurate theoretical estimates of electric polarizabilities [31]. Their value for calculating also nuclear magnetic shielding polarizabilities and corresponding pseudoscalars has been recognized in a recent paper [6], proving that a good description of molecular tail regions via diffuse polarization functions is a fundamental requirement. B3 aug-ccpVTZ basis sets [32, 33] are explicitly meant to account for electron correlation effects. The extended B4 basis sets have also been successfully tested to predict near Hartree-Fock values of nuclear magnetic shielding pseudoscalars [6]. Since we are only interested in the $\overline{\mathcal{J}}_{U}^{(1)}$ pseudoscalars that have no contribution from the Fermi contact term, we do not need to employ basis sets optimized for the calculation of the Fermi contact term such as the aug-cc-pVTZ-J, pcJ-n, or ccJ-pVXZ series of basis sets [35–41].

6 Discussion of results, concluding remarks, and outlook

Calculated nuclear spin–spin coupling constants $J^{II} = (1/3)J^{I_sJ_{\alpha}}$, expressed in hertz, and pseudoscalars $\overline{\mathcal{J}}_{II}^{(1)}$, expressed in hertz a.u., see relationships Eqs. 7, and 43–45, are reported in Tables 1, 2, 3, 4, 5 and 6. Allowing for the CODATA compilation [18], 1 a.u. of electric field $E_h/ea_0 = 5.142\ 206\ 42(44) \times 10^{11}\ V\ m^{-1}$, the conversion factor from hertz a.u. to SI units is 1.944 690 51 × 10⁻¹² m V⁻¹.

As recalled in Sect. 4, only Ramsey's DSO, PSO, and SD terms contribute to the $\overline{\mathcal{J}}_{IJ}^{1}$ pseudoscalars. It can be observed from computed values in Tables 1, 2, 3, 4, 5, 6 that (a) the PSO contributions to the $\overline{\mathcal{J}}_{IJ}^{(1)}$ are in general bigger than DSO and SD, (b) contributions from different mechanisms have sometimes different signs.

The dependence of calculated $\overline{\mathcal{J}}_{IJ}^{(1)}$ pseudoscalars on basis set quality was preliminarily tested for (2R)-*N*-methyloxaziridine, using B1–B4 basis sets. The B1 \equiv 6-31G** is insufficiently flexible to evaluate the PSO contributions, as can be seen in Table 1, showing a wrong sign for the pseudoscalar of the C₁–O₁ coupling (-0.47 Hz a.u.) and a calculated value (1.42 Hz a.u.) for the pseudoscalar of the C_1-N_1 coupling smaller than that obtained by basis sets B2– B4. The results from these basis sets ($\approx 2.2-2.5$ Hz a.u.) are very close to one another and probably close to the limit of the B3LYP level of accuracy. A similar conclusion is obtained for the SD contributions for the C_1-O_1 and C_1-N_1 couplings.

Analogous tests were carried out for the (R_a) -1,3-dimethylallene, and (2R)-2-Methyloxirane molecules using only bigger-size basis sets B2–B4, see Tables 2 and 3, respectively. Calculated $\overline{\mathcal{J}}_{IJ}^{(1)}$ values from B3 and B4 basis sets are fairly stable and arguably close to the limit attainable at the B3LYP level. However, the smaller-sized B2 Sadlej basis set, developed ad hoc for polarizabilities

Table 1 Calculated B3LYP contributions to the $\overline{\mathcal{J}}_{IJ}^{(1)}$ pseudoscalar in (2R)-*N*-methyloxaziridine from four basis sets

Nuclei ^a	Contribution	B1	B2	B3	B4
C ₁ -C ₂	DSO	0.00	0.00	0.00	0.00
	PSO	-0.64	-0.68	-0.87	-0.88
	SD	-0.05	-0.02	-0.02	-0.03
C1O1	DSO	0.00	0.00	0.00	0.00
	PSO	-0.47	0.57	0.69	0.74
	SD	-0.50	-0.40	-0.42	-0.43
C ₁ -N ₁	DSO	0.00	0.0	0.00	0.00
	PSO	1.42	2.18	2.40	2.50
	SD	-0.33	-0.43	-0.46	-0.48

In Hz au. Conversion factor to SI units: $1.9\overline{44\ 690\ 51 \times 10^{-12}}$ m V⁻¹ ^a See Fig. 1 for the labels of the nuclei

Fig. 1 (R_a)-1,3-dimethylallene, (2R)-2-methyloxirane, and (2R)-*N*-methyloxaziridine

Table 2 Calculated B3LYP contributions to the $\overline{\mathcal{J}}_{IJ}^{(1)}$ pseudoscalar in (R_a) -1,3-dimethylallene from three basis sets

Nuclei ^a	Contribution	B2	B3	B4
C ₁ -C ₃	DSO	0.00	0.00	0.00
	PSO	0.01	0.00	0.00
	SD	0.00	0.00	0.00
C1-C5	DSO	0.00	0.00	0.00
	PSO	-0.37	-0.40	-0.42
	SD	0.03	0.03	0.03
C ₃ -C ₅	DSO	0.00	0.00	0.00
	PSO	0.04	0.05	0.05
	SD	-0.02	-0.01	-0.01

In Hz au. See Table 1 for the conversion factor to SI units

^a See Fig. 1 for the labels of the nuclei

Table 3 Calculated B3LYP contributions to the $\overline{\mathcal{J}}_{IJ}^{(1)}$ pseudoscalar in (2R)-2-Methyloxirane from three basis sets

Nuclei ^a	Contribution	B2	B3	B4
C ₁ -C ₂	DSO	0.00	0.00	0.00
	PSO	-1.62	-1.76	-1.81
	SD	0.21	0.27	0.26
C1-O4	DSO	0.00	0.00	0.00
	PSO	1.54	1.67	1.72
	SD	0.23	0.23	0.23
$C_1 - C_3$	DSO	0.00	0.00	0.00
	PSO	-1.07	-1.29	-1.31
	SD	0.10	0.13	0.08

In Hz au. See Table 1 for the conversion factor to SI units

^a See Fig. 1 for the labels of the nuclei

[31], yields pseudoscalar values of the same magnitude as B3 and B4, and it seems to offer the best compromise between quality of results and computer expense. Its use in further calculations on bigger molecules is recommended.

The sensitivity of calculated $\overline{\mathcal{J}}_{IJ}^{(1)}$ values to the type of DFT functional was studied for the Sadlej basis set [31]. The results are reported in Tables 4, 5 and 6. It can be observed that the SD contributions to the pseudoscalar arrived at via B3LYP, KT3, and PBE functionals are very close to one another. PSO contributions are slightly more affected, as illustrated by the results for the C₁–O₁ coupling in Table 4.

The largest value $\overline{\mathcal{J}}_{IJ}^{(1)} \approx -5.2$ Hz au, obtained by summing DSO and PSO contributions (reported in Table 4) via the B3LYP calculation for the O–N coupling in (2R)-*N*methyloxaziridine, corresponds to $\approx \pm 1.0 \times 10^{-11}$ Hz m V⁻¹ for the *D* and *L* enantiomers. Therefore, a huge static homogeneous electric field, as big as $\approx 1.0 \times 10^9$ V m⁻¹,

Table 4 Co	ntributions to the J ^{IJ} isotropic nuclear spin–spin coupling
constants ar	d to the $\overline{\mathcal{J}}_{IJ}^{(1)}$ pseudoscalars of (2R)- <i>N</i> -methyloxaziridine
calculated b	y the B2 basis set via three DFT functionals

Nuclei ^a	Contribution	$J^{IJ}{}^{\mathrm{b}}$	$\overline{\mathcal{I}}_{\mu}^{(1)c}$	$J^{IJ}{}^{\mathrm{b}}$	$\overline{\mathcal{T}}_{\mu}^{(1)c}$	$J^{IJ}{}^{\mathrm{b}}$	$\overline{\mathcal{T}}_{\mu}^{(1)}$
DFT method		B3LYP	B3LYP	KT3	кт3	PBE	PBE
C ₁ -C ₂	DSO	-0.04	0.00	-0.04	0.00	-0.04	0.00
	PSO	-0.20	-0.68	-0.19	-0.51	- 0.20	-0.66
	SD	-0.03	-0.02	-0.02	-0.02	-0.03	-0.02
	FC	-1.89	-	-2.80	-	-2.55	-
$C_1 - O_1$	DSO	-0.10	0.00	-0.10	0.00	-0.10	0.00
	PSO	0.43	0.57	0.35	1.15	0.26	0.91
	SD	0.05	-0.40	0.09	-0.42	0.09	-0.51
	FC	27.26	-	28.13	-	28.00	-
$C_1 - N_1$	DSO	-0.09	0.00	-0.09	0.003	-0.09	0.00
	PSO	0.58	2.18	0.50	1.78	0.48	2.19
	SD	0.27	-0.43	0.28	-0.39	0.29	-0.42
	FC	4.88	-	7.09	-	5.95	-
O ₁ -N ₂	DSO	0.04	0.00	0.04	0.00	0.04	0.00
	PSO	4.97	-4.47	4.33	-4.47	4.63	-4.46
	SD	2.08	-0.68	2.06	-0.95	2.00	-0.75
	FC	-16.04	-	-14.59	-	-16.71	-

^a See Fig. 1 for the labels of the nuclei

^b In Hz

° In Hz au

Table 5 Contributions to the J^{II} isotropic nuclear spin-spin coupling constants and to the $\overline{\mathcal{J}}_{II}^{(1)}$ pseudoscalars of (R_a) -1,3-dimethylallene calculated by the B2 basis set via three DFT functionals

Nuclei ^a	Contribution	$J^{IJ}{}^{\mathrm{b}}$	$\overline{\mathcal{T}}_{u}^{(1)e}$	$J^{IJ^{\mathrm{b}}}$	$\overline{\mathcal{I}}_{u}^{(1)c}$	$J^{IJ^{\mathrm{b}}}$	$\overline{\mathcal{J}}_{u}^{(1)}$
DFT method		B3LYP	B3LYP	KT3	KT3	PBE	PBE
C ₁ -C ₃	DSO	0.17	0.00	0.17	0.00	0.18	0.00
	PSO	-0.85	0.01	-0.85	-0.02	-0.86	-0.02
	SD	0.69	0.00	0.61	0.02	0.62	0.01
	FC	46.61	-	38.62	-	44.44	-
C3-C5	DSO	0.18	0.01	0.18	0.01	0.18	0.01
	PSO	-7.76	0.04	-7.00	-0.06	-7.39	0.06
	SD	3.53	-0.02	3.19	-0.02	3.54	-0.02
	FC	118.5	-	106.6	-	115.9	-
$C_1 - C_5$	DSO	-0.04	0.00	-0.04	0.00	-0.04	0.00
	PSO	-0.13	-0.37	-0.14	-0.37	-0.14	-0.37
	SD	0.04	0.03	0.05	0.03	0.07	0.03
	FC	-0.08	-	-0.38	-	-1.83	-
H ₆ -C ₃	DSO	0.82	-0.01	0.82	-0.02	0.83	-0.02
	PSO	0.38	-0.09	0.34	-0.11	0.40	-0.11
	SD	0.14	-0.05	0.20	-0.06	0.22	-0.05
	FC	153.6	-	158.1	-	155.6	-

^a See Fig. 1 for the labels of the nuclei

^b In Hz

° In Hz au

should be applied to observe a change with magnitude $\approx 1.0 \times 10^{-2}$ Hz in the coupling constant between the oxygen and nitrogen nuclei in (2R)-*N*-methyloxaziridine.

Table 6 Contributions to the J^{IJ} isotropic nuclear spin–spin coupling constants (in hertz) and to the $\overline{\mathcal{J}}_{IJ}^{(1)}$ pseudoscalars (in hertz a.u.) of (2R)-2-Methyloxirane calculated by the B2 basis set via three DFT functionals

Nuclei ^a	Contribution	$J^{IJ}{}^{\mathrm{b}}$	$\overline{\mathcal{T}}^{(1)_{c}}$	$J^{IJ^{\mathrm{b}}}$	$\overline{\mathcal{T}}^{(1)}_{\mathbf{u}}$	$J^{IJ^{\mathrm{b}}}$	$\overline{\mathcal{T}}^{(1)}_{\mathbf{r}}$
DFT method		B3LYP	B3LYP	KT3	КТ3	PBE	PBE
C ₁ C ₂	DSO	0.22	0.00	0.22	0.00	0.22	0.00
	PSO	-0.68	-1.62	-0.63	-1.46	-0.60	-1.63
	SD	-0.51	0.21	-0.49	0.19	-0.52	0.21
	FC	30.05	-	23.54	-	28.48	-
C ₃ -C ₁	DSO	-0.04	0.00	-0.04	0.00	-0.04	0.00
	PSO	-0.09	- 1.07	-0.09	-1.00	- 0.09	-1.13
	SD	-0.01	0.10	-0.01	0.10	-0.02	0.12
	FC	-0.21	-	-0.51	-	-0.74	-
C2C3	DSO	0.22	0.00	0.22	0.00	0.22	0.00
	PSO	-0.97	-0.04	-0.98	-0.01	-1.00	-0.05
	SD	0.81	-0.11	0.72	-0.03	0.76	0.12
	FC	45.78	-	36.61	-	42.87	-
C_1-C_4	DSO	-0.09	0.00	-0.09	0.00	-0.09	0.00
	PSO	-0.72	1.54	-0.74	1.68	-0.81	1.63
	SD	-0.29	0.23	- 0.27	0.16	- 0.26	0.19
	FC	29.39	-	30.29	-	30.61	-
H_1-C_2	DSO	1.09	0.00	1.09	0.00	1.11	0.00
	PSO	-0.34	0.04	-0.39	0.04	-0.35	0.05
	SD	0.07	0.01	0.11	-0.01	0.15	-0.01
	FC	163.7	-	167.9	-	165.0	-
H ₁ -C ₃	DSO	0.68	0.00	0.67	0.00	0.69	0.00
	PSO	0.78	-0.03	0.69	-0.03	0.80	-0.03
	SD	-0.02	0.00	0.01	0.00	0.03	0.00
	FC	120.9	-	120.28	-	121.1	-

^a See Fig. 1 for the labels of the nuclei

^b In Hz

^c In Hz au

Such an experiment is far beyond the present capabilities of a laboratory for the molecules considered. On the other hand, application of very strong electric fields would align polar molecules, which makes inappropriate the procedure based on the isotropic average Eqs. 7 and 45.

Although the effect may possibly be detected in other chiral systems with ad hoc characteristics, e.g., bigger-size, low-lying states, large amplitude of excited states (observe in relationships Eqs. 20 and 21 the ω_{ja} in the denominator), the present study suggests that the static $\overline{\mathcal{J}}_{IJ}^{(1)}$ pseudoscalar is not suitable for routine chiral discrimination via NMR spectroscopy in non-ordered phase.

It was found that calculated pseudoscalars are generally smaller, and sometimes much smaller, than the six individual components of the coupling polarizability tensor from which they have been obtained by contraction with the Levi–Civita antisymmetric tensor, according to the definition, Eq. 7. The terms of this sum have different sign, typically three positive and three negative, so that partial cancelation takes place. For instance, the components of the PSO contribution to the N–O coupling polarizability in (2R)-*N*-methyloxaziridine from the B3LYP calculation, in Hz a.u., are xyz = 6.125, xzy = 27.466, yzx = 13.121, yxz = 0.889, zxy = 17.973, zyx = 35.711, and then the PSO contribution to the pseudoscalar is (1/6)(xyz - xzy + yzx - yxz + zxy - zyx) = -4.475.

This behavior resembles that usually observed in the calculation of the optical rotatory power tensor (characterized by small trace and big diagonal components of different sign) [42]. A similar case is that of the pseudoscalar of nuclear shielding polarizability [6].

Therefore, chiral discrimination may preferably be attempted by NMR spectroscopy in ordered (crystal) and partially ordered (liquid crystal) phase, by measuring the electric-field-induced change of individual components of nuclear coupling polarizability. Candidates characterized by big $\mathcal{K}_{\mathcal{Y}}^{I_g J_{\beta}}$ components are presently being sought.

An alternative means of observing chiral effects in NMR for a probe in the presence of a.c. electric fields oscillating at $|\omega(I) - \omega(J)|/2\pi$, i.e., the difference of the Larmor frequencies of the coupled nuclei *I* and *J*, suggested by Buckingham [4], will be investigated in a future study.

Acknowledgments Financial support (UBACYT X079 from the University of Buenos Aires and PIP0369 from CONICET) is gratefully acknowledged. SPAS acknowledges support from the Danish Center for Scientific Computing (DCSC) and the financial support from the Carlsberg Foundation and from the Danish Natural Science Research Council/The Danish Councils for Independent Research (grant number 272-08-0486).

References

- 1. Barra AL, Robert JB (1996) Mol Phys 88:875-886
- 2. Laubender G, Berger R (2003) Chem Phys Chem 4:395-399
- 3. Soncini A, Faglioni F, Lazzeretti P (2003) Phys Rev A 68:0334021-4
- 4. Buckingham AD (2004) Chem Phys Lett 398:1-5
- 5. Buckingham AD, Fischer P (2006) Chem Phys 324:111-116
- 6. Zanasi R, Pelloni S, Lazzeretti P (2007) J Comput Chem 28:2159–2163
- 7. Pelloni S, Lazzeretti P, Zanasi R (2007) J Chem Theor Comput 3:1691–1698
- 8. Lazzeretti P, Soncini A, Zanasi R (2008) Theor Chem Acc 119:99–106
- 9. Grayson M (2003) Int J Mol Sci 4:218-230
- 10. Buckingham AD, Pople JA (1955) Proc Phys Soc A 68:905-909
- Barron LD (1982) Molecular light scattering and optical activity. Cambridge University Press, Cambridge
- 12. Buckingham AD (1967) Adv Chem Phys 12:107-142
- 13. Ramsey NF (1953) Phys Rev 91:303-307
- 14. Pyykkö P (2000) Theor Chem Acc 103:214–216
- 15. Lazzeretti P (1989) Chem Phys 134:269–278
- 16. Lazzeretti P (1987) Adv Chem Phys 75:507-549
- 17. Lazzeretti P (2003) Electric and magnetic properties of molecules. In: Handbook of molecular physics and quantum chemistry, vol 3, Part 1, Chapter 3, Wiley, Chichester

- 18. Mohr PJ, Taylor BN (2005) Rev Mod Phys 77:1-107
- Linderberg J, Öhrn Y (1973) Propagators in quantum chemistry. Academic Press, London
- Oddershede J, Jørgensen P, Yaeger DL (1984) Computer Phys Rep 2:33–92
- 21. Olsen J, Jorgensen P (1985) J Chem Phys 82:3235-3264
- 22. Becke AD (1993) J Chem Phys 98:5648-5652
- 23. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785-789
- 24. Vosko SH, Wilk L, Nusair M (1980) Can J Phys 58:1200-1211
- Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) J Phys Chem 98:11623–11627
- 26. Keal W, Tozer DJ (2003) J Chem Phys 119:3015-3024
- 27. Keal W, Tozer DJ (2004) J Chem Phys 121:5654-5660
- 28. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865–3868
- 29. DALTON, An electronic structure program, Release 2.0; 2005. http://www.kjemi.uio.no/software/dalton/
- 30. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA,

Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 2003, Revision C.02. Gaussian, Inc., Wallingford, CT

- 31. Sadlej AJ (1988) Collect Czech Chem Commun 53:1995-2016
- 32. Dunning TH Jr (1989) J Chem Phys 90:1007-1023
- 33. Woon DE, Dunning TH Jr (1995) J Chem Phys 103:4572-4585
- van Duijneveldt FB (1971) Gaussian basis sets for the atoms H-Ne for use in molecular calculations. Res Report RJ 945, IBM
- Enevoldsen T, Oddershede J, Sauer SPA (1998) Theor Chem Acc 100:275–284
- 36. Provasi PF, Aucar GA, Sauer SPA (2001) J Chem Phys 115:1324–1334
- Barone V, Provasi PF, Peralta JE, Snyder JP, Sauer SPA, Contreras RH (2003) J Phys Chem A 107:4748–4754
- Rusakov YY, Krivdin LB, Sauer SPA, Levanova EP, Levkovskaya GG (2010) Magn Res Chem 48:633–637
- 39. Provasi PF, Sauer SPA (2010) J Chem Phys 133:54308
- 40. Jensen F (2006) J Chem Theory Comput 2:1360-1369
- 41. Benedikt U, Auer AA, Jensen F (2008) J Chem Phys 129:64111
- 42. Giorgio E, Viglione RG, Zanasi R, Rosini C (2004) J Am Chem Soc 126:2968