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Abstract. We calculate the exact Casimir interaction energy between two
perfectly conducting, very long, eccentric cylindrical shells using a mode
summation technique. Several limiting cases of the exact formula for the Casimir
energy corresponding to this configuration are studied both analytically and
numerically. These include concentric cylinders, cylinder-plane and eccentric
cylinders, for small and large separations between the surfaces. For small
separations we recover the proximity approximation, while for large separations
we find a weak logarithmic decay of the Casimir interaction energy, typical of
cylindrical geometries.
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1. Introduction

Almost 60 years ago [1], Casimir discovered an interesting macroscopic consequence of the
zero-point fluctuations of the electromagnetic field: an attractive force between uncharged
parallel conducting plates. Since then, the dependence of the Casimir force with the geometry
of the conducting surfaces has been the subject of several studies [2]. For many years, the
only practical way to compute the Casimir energy for non planar configurations was the so-
called proximity force approximation (PFA) [3]. This approximation is valid for surfaces whose
separation is much smaller than typical local curvatures. Due to the high precision experiments
performed since 1997 [4], there has been a renewed interest in the geometry dependence of
the Casimir force, and in particular in the calculations of the corrections to the proximity
approximation.

In previous years, there have been a number of attempts to compute the Casimir forces
beyond the PFA, using for example semiclassical [5, 6] and optical [7] approximations, and
numerical path-integral methods [8]. Large deviations from PFA for corrugated plates have
been reported [9], and in recent months the Casimir energy has been computed exactly for
several configurations of experimental interest, as the case of a sphere in front of a plane, and
a cylinder in front of a plane [10]–[13]. As first suggested in [14], the latter configuration is
intermediate between the sphere–plane and the plane–plane geometries, and may shed light on
the longstanding controversy about thermal corrections to the Casimir force. There is an ongoing
experiment to measure precisely the Casimir force for this geometry [15].

The configuration of two eccentric cylinders is of experimental relevance too [14, 16,
17]. Although parallelism is as difficult as for the plane–plane configuration, the fact that the
concentric configuration is an unstable equilibrium position opens the possibility of measuring the
derivative of the force using null experiments. Up to now, the Casimir interaction energy between
two cylindrical shells has been computed semiclassically and exactly in the concentric case [6,
18], and using the proximity approximation in the eccentric situation [14, 16]. In principle, one
could consider experimental configurations in which a very thin metallic wire is placed inside a
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larger hollow cylinder. In this case, a more accurate determination of the Casimir force is needed.
The aim of this paper is to describe in detail the derivation of the exact Casimir interaction energy
for eccentric cylinders, initially reported by us in [17], and to compute analytically different
limiting cases of relevance for Casimir force measurements in this configuration. To this end, we
will use the mode summation technique combined with the argument theorem in order to write
the Casimir energy as a contour integral in the complex plane, see for example [19].

The paper is organized as follows. In section 2, we derive an expression for the Casimir
interaction energy for any configuration invariant under translations in one of the spatial
dimensions. When properly subtracted, this expression reduces to an integral over the imaginary
axis, and is similar to expressions for the Casimir energy derived using path integrals or scattering
methods. In section 3, we derive the exact formula for the interaction energy between eccentric
cylinders and we analyse some particular cases of the exact formula. We first show the known
results for the concentric case obtained from the exact formulation, and that it is possible to derive
the interaction energy for the cylinder–plane configuration in the appropriate limit. In section 4,
we consider the exact formula in the limit of quasi concentric cylinders of arbitrary radii. We
discuss two opposite limits of this exact formula: large and small separations between the metallic
surfaces. In the first limit, we find that the Casimir energy between a thin wire contained in a
hollow cylinder has a weak logarithmic decay as the ratio between the outer and inner radii
becomes very large. In the second limit, we recover previous results obtained using PFA for
quasi concentric cylinders. Finally, section 5 contains the conclusions of our study.

2. Casimir energy as a contour integral

The Casimir energy for a system of conducting shells can be written as

Ec = 1

2

∑
p

(wp − w̃p), (1)

where wp are the eigenfrequencies of the electromagnetic field satisfying perfect conductor
boundary conditions on the surfaces of the conductors, and w̃p are those corresponding to the
reference vacuum (conductors at infinite separation). Throughout this paper, we use units h̄ =
c = 1. The subindex p denotes the set of quantum numbers associated to each eigenfrequency.
Introducing a cutoff for high frequency modes Ec(σ) = 1

2

∑
p(e

−σwpwp − e−σw̃pw̃p), the Casimir
energy Ec is the limit of Ec(σ) as σ → 0. For simplicity, we choose an exponential cutoff,
although the explicit form is not relevant.

Let us consider a general geometry with translational invariance along the z-axis (as for
example very long and parallel waveguides of arbitrary sections). The transverse electric (TE)
and transverse magnetic (TM) modes can be described in terms of two scalar fields with adequate
boundary conditions. In cylindrical coordinates, the modes of each scalar field will be of the form
hn,kz

(t, r, θ, z) = e(−iwn,kz t+ikzz)Rn(r, θ), where the eigenfrequencies are wn,kz
= √

k2
z + λ2

n, and λn

are the eigenvalues of the two dimensional (2D) Laplacian(
∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂θ2
+ λ2

n

)
Rn(r, θ) = 0. (2)
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Figure 1. Geometrical configuration studied in this paper. Two perfectly
conducting eccentric cylinders of radii a < b, length L, and eccentricity ε interact
via the Casimir force. The figure on the right hand side shows the polar coordinates
(r, θ) and (ρ, ϕ) of any point P between the eccentric cylinders used for the
determination of the classical eigenvalues for this configuration.

The set of quantum numbers p is given by (n, kz). For very long cylinders of length L, we can
replace the sum over kz by an integral. The result is

Ec(σ) = L

2

∫ ∞

−∞

dkz

2π

∑
n

(√
k2

z + λ2
ne−σ

√
k2
z +λ2

n −
√

k2
z + λ̃2

ne−σ
√

k2
z +λ̃2

n

)
. (3)

From the argument theorem, it follows that

1

2πi

∫
C

dλ λ e−σλ d

dλ
ln f(λ) =

∑
i

λi e−σλi, (4)

where f(λ) is an analytic function in the complex λ plane within the closed contour C, with
simple zeros at λ1, λ2, . . . within C. We use this result to replace the sum over n in Equation (3)
by a contour integral

Ec(σ) = L

4πi

∫ ∞

−∞

dkz

2π

∫
C

dλ

√
k2

z + λ2e−σ
√

k2
z +λ2 d

dλ
ln

(
F

F∞

)
, (5)

where F is a function that vanishes at λn for all n (and F∞ vanishes at λ̃n).
In the rest of this section, we will consider the particular configuration of two eccentric

cylinders with circular sections of radii a and b, respectively. We will denote the eccentricity of
the configuration by ε (see figure 1). The geometrical dimensionless parameters α ≡ b/a and
δ ≡ ε/a fully characterize the eccentric cylinder configuration. It is worth emphasizing that the
results of this section can be trivially extended to more general configurations, as long as they are
translationally invariant along one spatial dimension. It is convenient to compute the difference
between the energy of the system of two eccentric cylinders and the energy of two isolated
cylindrical shells of radii a and b,

E12(σ) = Ec(σ) − E1(σ, a) − E1(σ, b), (6)
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Γ

φ
CΓ

x x x

Figure 2. Contour for the integration in the complex plane.

where

E1(σ, a) = L

4πi

∫ ∞

−∞

dkz

2π

∫
C

dλ

√
k2

z + λ2e−σ
√

k2
z +λ2 d

dλ
ln

(
F1cyl(a)

F1cyl(∞)

)
. (7)

Here, F1cyl(a) is a function that vanishes at the eigenfrequencies of an isolated cylindrical shell
of radius a. Therefore

E12(σ) = L

4πi

∫ ∞

−∞

dkz

2π

∫
C

dλ

√
k2

z + λ2e−σ
√

k2
z +λ2 d

dλ
ln M(λ), (8)

where

M = F

F∞

F1cyl(∞)2

F1cyl(a)F1cyl(b)
. (9)

To proceed, we must choose a contour for the integration in the complex plane. In order to
compute Ec(σ), E1(σ, a) and E1(σ, b) separately, an adequate contour is a circular segment C�

and two straight line segments forming an angle φ and π − φ with respect to the imaginary axis
(see figure 2). The nonzero angle φ is needed to show that the contribution of C� vanishes in the
limit � → ∞ when σ > 0. For the rest of the contour, the divergences in Ec(σ) are cancelled out
by those of E1(σ, a) and E1(σ, b), as in the case of concentric cylinders [6]. Therefore, in order
to compute E12(σ), we can set φ = 0 and σ = 0, and the contour integral reduces to an integral
on the imaginary axis. We find

E12 = − L

2π

∫ ∞

−∞

dkz

2π
Im

{∫ ∞

0
dy

√
k2

z − y2
d

dy
ln M(iy)

}
. (10)
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As we will see, M(iy) is a real function—hence, the integral over y in equation (10) is restricted
to y > kz. After some straightforward steps, one can re-write this equation as

E12 = L

4π

∫ ∞

0
dy y ln M(iy). (11)

As we have already mentioned, a similar expression can be derived for conductors of arbitrary
shape, as long as there is translational invariance along the z-axis. It is worth noting that the
structure of this expression is similar to the ones derived recently for the cylinder–plane geometry
using path integrals [11, 12], and for the sphere–plane geometry using the Krein formula [10].

3. The exact formula

In this section, we derive the exact formula for the Casimir energy between eccentric cylinders.
We proceed in two steps: we first find the function F with zeroes at the eigenfrequencies for
the geometric configuration. Then, we obtain an explicit expression for the function M, which
involves a definition of the Casimir energy as a difference between the energy of the actual
configuration and a configuration with very large and separated conductors.

3.1. The classical eigenvalues

The solution of the Helmholtz equation in the annular region between eccentric cylinders has been
considered in the framework of classical electrodynamics, fluid dynamics, and reactor physics,
among others [20, 21]. The eigenvalues have been computed using different approaches, as for
instance conformal transformations that map the eccentric annulus on to a concentric one. As the
2D Helmholtz equation is not conformally invariant, the transformed equation has coordinate-
dependent coefficients and has to be solved numerically [22]. As is well known, it is very difficult
to compute the Casimir energy from the numerical eigenfrequencies. It is more efficient to use
the procedure outlined in section 2, that only needs a function F with zeroes at the eigenvalues.
Although for the eccentric annulus this function has been previously found in the literature [20,
21], for the benefit of the reader, we include here a derivation of this result.

The electromagnetic field inside an eccentric waveguide can be described in terms of TM
and TE modes. The TM modes are characterized by a vanishing z component of the magnetic
field, Bz = 0. The other components of the electromagnetic field can be derived from the z

component of the electric field, Ez(r, θ, z, t) = E(r, θ)e−iωt+izkz , with

E(r, θ) =
∑

m

[AmJm(λr) + BmNm(λr)]eimθ, (12)

where w2 = k2
z + λ2, and (r, θ) are polar coordinates with origin at the centre of the outer cylinder

(see figure 1). One can also describe the z component of the electric field using polar coordinates
(ρ, ϕ) with origin at the centre of the inner cylinder (see figure 1),

Ē(ρ, ϕ) =
∑

n

[ĀnJn(λρ) + B̄nNn(λρ)]einϕ. (13)
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The perfect conductor boundary conditions imply that the z component of the electric field must
vanish on the cylindrical shells

AmJm(λb) + BmNm(λb) = 0, ĀnJn(λa) + B̄nNn(λa) = 0, (14)

i.e., the functions E and Ē satisfy Dirichlet boundary conditions on the surfaces. The coefficients
of the series in equations (12) and (13) can be related to one another using the addition theorem
for Bessel functions

eimϕCm(λρ) =
∑

p

eipθCp(λr)Jp−m(λε), (15)

where Cm denotes either Jm or Nm. Indeed, as at any point P in the annulus region one must have
E(P) = Ē(P), it is possible to show that

Ān =
∑

m

AmJn−m(λε), B̄n =
∑

m

BmJn−m(λε). (16)

Combining equations (14) and (16), one obtains the linear, homogeneous system of equations

∑
m

Am

[
Jn(λa)

Nn(λa)
− Jm(λb)

Nm(λb)

]
Jn−m(λε) = 0. (17)

The solution of this linear system of equations is non trivial only if det[QTM
mn ] = 0, where

QTM
mn (a, b, ε) = [Jn(λa)Nm(λb) − Jm(λb)Nn(λa)]Jn−m(λε). (18)

This equation defines the allowed values for λ, and therefore defines the eigenfrequencies of the
TM modes.

The TE modes can be treated in the same fashion. For these modes, the z component of the
electric field vanishes in the annulus region, Ez = 0. The perfect conductor boundary conditions
imply that the normal component of the magnetic field should vanish on the conducting shells,
so now we must impose Neumann boundary conditions on the surfaces. The eigenvalues λ for
the TE modes are the solutions of det[QTE

mn] = 0, where

QTE
mn(a, b, ε) = [J ′

n(λa)N ′
m(λb) − J ′

m(λb)N ′
n(λa)]Jn−m(λε). (19)

In the concentric limit ε = 0, we have Jn−m(0) = δnm, the two matrices QTE
mn and QTM

mn

become diagonal, and the equations for the eigenvalues are those of the concentric case [6]. In
what follows, we will use these matrices to define the function M that enters in equation (11).

3.2. The function M

Roughly speaking, the function M that determines the Casimir energy through equation (11) is
the ratio of the function associated to the actual geometric configuration and the one associated
to a configuration in which the conducting surfaces are very far away from each other. As the
last configuration is not univocally defined, we will use this freedom to choose a particular
one that simplifies the calculation. It turns to be convenient to subtract a configuration of two
cylinders with very large (and very different) radii, but with the same eccentricity as that of the
configuration of interest.
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We start considering the Dirichlet modes. To compute F1cyl(a) in equation (9), we note that
the eigenfrequencies λ for the geometry of a single cylinder of radius a surrounded by a larger
one of radius R are defined by the equations

Jn(λa) = 0, Jn(λa)Nn(λR) − Jn(λR)Nn(λa) = 0. (20)

The first equation defines the eigenfrequencies in the region r < a and the second one gives
the eigenfrequencies of the modes in the region a < r < R. F1cyl(a) is the product of these two
relations for all values of n, evaluated on the imaginary axis (λ = iy ≡ iβ/a). Namely,

F1cyl(a) =
∏

n

Jn(λa)[Jn(λa)Nn(λR) − Jn(λR)Nn(λa)] ≡ J(a)det[QTM(a, R, 0)], (21)

where we have introduced the notation J(a) ≡ ∏
n Jn(λa) to simplify the formulae below. The

function F1cyl(∞) has the same expression, but replacing a by R1, with R1 very large but smaller
than R. Using the asymptotic expansion of the modified Bessel functions, it is easy to prove that
F1cyl(a)/F1cyl(∞) � 2βIn(β)Kn(β)R1/a. The functions F and F∞ in equation (9) are given by

F = J(a)det[QTM(a, b, ε)]det[QTM(b, R, 0)] = J(a)

J(b)
det[QTM(a, b, ε)]F1cyl(b), (22)

F∞ = J(R1)

J(R2)
det[QTM(R1, R2, ε)]F1cyl(∞), (23)

where R1 < R2 < R. As we already stressed, in order to define F∞, we consider a configuration
of two eccentric cylinders of large radii R1 < R2 and with the same eccentricity ε of the original
configuration. Evaluating the determinant in equation (22) on the imaginary axis, one obtains

det[QTM(a, b, ε)] = det

[
2

π
In−m

(
β

ε

a

)
[Kn(β)Im(αβ) − (−1)m+nIn(β)Km(αβ)]

]
. (24)

Using again the asymptotic expansions of the Bessel functions, one gets det[QTM(R1, R2, ε)] ∝
aIn−m(βε/a) eβ(R2−R1)/a

2
√

R1R2β
. The equations above can be combined to obtain

MTM(β) = det

[
In−m(βε/a)

Im(αβ)

In(αβ)

[
1 − (−1)m+n In(β)Km(αβ)

Kn(β)Im(αβ)

]]
detI−1

nm

(
β

ε

a

)
, (25)

where I−1
nm(βε/a) denotes the inverse matrix of In−m(βε/a) and α ≡ b/a. Computing explicitly

the determinant, one can show that the factor Im(αβ)/In(αβ) cancels out. Moreover, writing MTM

as a single determinant we get

MTM(β) = det[δnp − ATM
np ], (26)

with

ATM
np = (−1)n In(β)

Kn(β)

∑
m

(−1)m Km(αβ)

Im(αβ)
In−m

(
β

ε

a

)
I−1
mp

(
β

ε

a

)
. (27)
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The addition theorem for the modified Bessel functions, Cm(u ± v) = ∑
p Cm∓p(u)Jp(v),4

implies that I−1
mp(βε/a) = (−1)m−pIm−p(βε/a). Finally, the elements of the matrix ATM read

ATM
np = In(β)

Kn(β)

∑
m

Km(αβ)

Im(αβ)
In−m

(
β

ε

a

)
Ip−m

(
β

ε

a

)
, (28)

where we omitted a global factor (−1)n+p because it does not contribute to the determinant.
The analysis for the TE modes is straightforward, the main difference being that QTE(a, b, ε)

contains derivatives of those Bessel functions that do not depend on the eccentricity. Therefore,
following similar steps it is possible to show that

MTE(β) = det[δnp − ATE
np ], (29)

where

ATE
np = I ′

n(β)

K′
n(β)

∑
m

K′
m(αβ)

I ′
m(αβ)

In−m

(
β

ε

a

)
Ip−m

(
β

ε

a

)
. (30)

The function M for the electromagnetic field is the product M = MTEMTM, and therefore the
interaction energy is the sum of the TE and TM contributions

E12 = L

4πa2

∫ ∞

0
dβ β ln M(β) = L

4πa2

∫ ∞

0
dβ β ln MTE(β)

+
L

4πa2

∫ ∞

0
dβ β ln MTM(β) = ETE + ETM. (31)

In order to calculate the exact Casimir interaction energy, one needs to perform a numerical
evaluation of the determinants. We find that as α approaches smaller values, larger matrices
are needed for ensuring convergence. Moreover, for increasing values of the eccentricity ε it
is necessary to include more terms in the series defining the coefficients ATE,TM

np . In figure 3,
we plot the interaction energy difference �E = E12 − Ecc

12 between the eccentric (E12) and the
concentric (Ecc

12) configurations as a function of α for different values of δ. As we will show
below, these numerical results interpolate between the PFA and the asymptotic behaviour for
large α. Figure 4 shows the complementary information, with the Casimir energy as a function of
δ for various values of α, showing explicitly that the concentric equilibrium position is unstable.

3.3. Concentric cylinders

The exact Casimir interaction between concentric cylinders [6] can be obtained as a particular
case of the exact formulae (28) and (30). In the concentric limit ε = 0, the matrices that appear
in the definition of MTE and MTM become diagonal and the Casimir energy reads [6]

Ecc
12 = L

4πa2

∫ ∞

0
dβ β ln Mcc(β), (32)

4 This is a particular case of equation (15), valid for |v| < |u|.
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1 5 10 15 20 25 30 35 40 45 50
α

1×10
–9

1×10
–8

1×10
–7

1×10
–6

1×10
–5

1×10
–4

1×10
–3

1×10
–2

1×10
–1

1×10
0

|∆
E

|
δ = 0.3
δ = 0.5
δ = 1.0

Figure 3. Exact Casimir interaction energy difference |�E|between the eccentric
and concentric configurations as a function of α = b/a for different values of
δ = ε/a. Here, �E = E12 − Ecc

12. Energies are measured in units of L/4πa2.
These results interpolate between the (α − 1)−5 behaviour for α → 1, and the
(α4 log α)−1 behaviour for α 	 1.

where

Mcc(β) =
∏

n

[
1 − In(β)Kn(αβ)

In(αβ)Kn(β)

] [
1 − I ′

n(β)K′
n(αβ)

I ′
n(αβ)K′

n(β)

]
. (33)

The first factor corresponds to Dirichlet (TM) modes and the second one to Neumann
(TE) modes.

The proximity limit α − 1 
 1 has already been analysed for the concentric case [6]. In
order to compute the concentric Casimir interaction energy in this limit, it was necessary to
perform the summation over all values of n. As expected, the resulting value is equal to the one
obtained via the proximity approximation, namely

E
TE,cc
12,PFA = E

TM,cc
12,PFA = 1

2
E

EM,cc
12,PFA = − π3L

720a2

1

(α − 1)3
. (34)

Here, EEM,cc denotes the full electromagnetic Casimir interaction energy in the concentric
configuration.

In the large α limit, one can show that only the n = 0 term contributes to the interaction
energy

Ecc
12 ≈ L

4πb2

∫ ∞

0
dx x

[
ln

(
1 − I0(

x

α
)K0(x)

I0(x)K0(
x

α
)

)
+ ln

(
1 − I ′

0(
x

α
)K′

0(x)

I ′
0(x)K′

0(
x

α
)

)]
. (35)
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Figure 4. Exact Casimir interaction energy difference �E between the eccentric
and concentric configurations as a function of δ = ε/a for different values of
α = b/a. Energies are measured in units of L/4πa2. The maximum at δ = 0
shows the instability of the concentric equilibrium position.

Using the small argument behaviour of the Bessel functions it is easy to prove that, in the limit
α 	 1, the TM mode contribution dominates, giving

Ecc
12 ≈ − L

4πb2 ln α

∫ ∞

0
dx x

K0(x)

I0(x)
≈ − 1.26L

8πb2 ln α
. (36)

Note that the modulus of the energy decreases logarithmically with α. Figure 5 depicts the
exact Casimir interaction energy between concentric cylinders as a function of α, for values that
interpolate between the above mentioned limiting cases.

It is worth noticing that, while for small values of α both TM and TE modes contribute with
the same weight to the interaction energy, the TM modes dominate in the large α limit.

3.4. A cylinder in front of a plane

It is interesting to see how the Casimir energy for the cylinder–plane configuration is contained
as a particular case of the exact formula derived in subsection 3.2. To do that let us consider
a cylinder of radius a in front of an infinite plane, and let us denote by H the distance
between the centre of the cylinder and the plane. The eccentric cylinders formula should
reproduce the cylinder–plane Casimir energy in the limit b, ε → ∞ keeping H = b − ε fixed
(see figure 1).
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Figure 5. Modulus of the Casimir interaction energy in the concentric case as
a function of α = b/a. Energies are measured in units of L/4πa2. These results
interpolate between the (α − 1)−3 behaviour for α → 1, and the (α2 log α)−1

behavior for α 	 1.

We note that for x 	 h > 1, the ratio of Bessel functions appearing in equation (28) can be
approximated by

Im−n(x)Im−p(x)

Im(x + h)
� Im−n−p(x − h). (37)

This is trivially true for fixed m and large values of x, as can be seen from the large argument
expansion of the Bessel functions. Moreover, using the uniform expansion of the Bessel functions,
it can be shown that equation (37) is also valid in the large m limit, for all values of x. Therefore
we approximate

∑
m

Km(x + h)

Im(x + h)
Im−n(x)Im−p(x) �

∑
m

Km(x + h)Im−p−n(x − h) = Kn+p(2h), (38)

where in the last equality, we used the addition theorem of Bessel functions. Inserting this result
(with x ≡ βε/a and h ≡ βH/a) in equation (28), we get

ATM
np � In(β)

Kn(β)
Kn+p(2βH/a) ≡ ATM,c−p

np , (39)
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which coincides with the known result for the Dirichlet matrix elements for the cylinder–plane
geometry [11, 12]. The TE modes can be analysed in the same fashion. Using that for large x

K′
m(x)Im(x)

Km(x)I ′
m(x)

� −1, (40)

one can prove that

∑
m

K′
m(x + h)

I ′
m(x + h)

Im−n(x)Im−p(x) � −
∑

m

Km(x + h)Im−p−n(x − h) = −Kn+p(2h). (41)

Therefore, from equation (30) we obtain

ATE
np � − I ′

n(β)

K′
n(β)

Kn+p(2βH/a) ≡ ATE,c−p
np , (42)

which is the result for the TE modes in the cylinder–plane geometry [11, 12].

4. Quasi-concentric cylinders

We will now consider a situation in which the eccentricity of the configuration is much smaller
than the radius of the inner cylinder, i.e., δ = ε/a 
 1. As discussed in [14], this configuration
may be relevant for performing null experiments to look for extra gravitational forces. Note that,
we do not assume that the radius of the inner and outer cylinder are similar, so the proximity
approximation is in general not valid for this configuration.

As described in the previous section, when ε = 0 the matrix defining the eigenfrequencies
is diagonal. When considering a small non-vanishing eccentricity, the behaviour of the Bessel
functions for small arguments Im−n(βδ) ∼ (βδ)n−m suggests that one only needs to use matrix
elements near the diagonal. Using this idea, we will approximate the Casimir interaction energy
by keeping only terms proportional to I0, I1 and I2

1 . In this approximation, the matrices δnp − ATM
np

and δnp − ATE
np become tridiagonal matrices, and the ε−dependent part of the Casimir energy will

be quadratic in the eccentricity.
We will describe in detail the case of the Dirichlet modes; the treatment of Neumann modes

is similar. To order O(δ2), the only non-vanishing elements of the matrix ATM
np are

ATM
n,n � In(β)

Kn(β)

[
Kn(αβ)

In(αβ)
I2

0 (δβ) +
Kn−1(αβ)

In−1(αβ)
I2

1 (δβ) +
Kn+1(αβ)

In+1(αβ)
I2

1 (δβ)

]
,

ATM
n,n+1 � In(β)

Kn(β)

[
Kn(αβ)

In(αβ)
+

Kn+1(αβ)

In+1(αβ)

]
I0(δβ)I1(δβ),

ATM
n+1,n � In+1(β)

Kn+1(β)

[
Kn(αβ)

In(αβ)
+

Kn+1(αβ)

In+1(αβ)

]
I0(δβ)I1(δβ). (43)

We split the matrix ATM into three terms, ATM = DTM,cc + DTM + N TM, where DTM,cc is
the diagonal matrix corresponding to the concentric case, DTM the diagonal part of the matrix
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that depends on δ, and N TM is the non-diagonal part of the matrix. The non-vanishing matrix
elements are

DTM,cc
n,n = In(β)

Kn(β)

Kn(αβ)

In(αβ)
, DTM

n,n = ATM
n,n − DTM,cc

n,n ,

N TM
n,n+1 = ATM

n,n+1, N TM
n+1,n = ATM

n+1,n. (44)

Note that although DTM = O(δ2) and N TM = O(δ), both give quadratic contributions the
determinant. Up to this order we have

ln det[1 − ATM] � ln det[1 − DTM,cc] + ln det

[
1 − DTM

1 − DTM,cc

]
+ ln det

[
1 − N TM

1 − DTM,cc

]
.

(45)

The first term is associated to the interaction energy between concentric cylinders Ecc
12, studied

in subsection 3.3, and being δ-independent does not contribute to the force between eccentric
cylinders. The second term can be easily evaluated

ln det

[
1 − DTM

1 − DTM,cc

]
� ln

(
1 − tr

DTM

1 − DTM,cc

)
� −

∑
n

DTM
n,n

1 − DTM,cc
n,n

. (46)

To compute the last term in equation (45), we use that the determinant of an arbitrary
tridiagonal matrix T of dimension p can be calculated using the recursive relation det[T{p}] =
Tp,pdet[T{p−1}] − Tp,p−1Tp−1,p det[T{p−2}], where T{k} denotes the submatrix formed by the first
k rows and columns of T . Up to quadratic order in δ, we obtain

ln det

[
1 − N TM

1 − DTM,cc

]
� ln

(
1 −

∑
n

ATM
n,n+1 ATM

n+1,n

(1 − DTM,cc
n,n )(1 − DTM,cc

n+1,n+1)

)

� −
∑

n

ATM
n,n+1 ATM

n+1,n

(1 − DTM,cc
n,n )(1 − DTM,cc

n+1,n+1)
. (47)

Putting all together, the TM part of the Casimir interaction energy between quasi-concentric
cylinders can be written as

ETM
12 = E

TM,cc
12 − Lε2

4πa4

∑
n

∫ ∞

0
dβ β3 1

1 − DTM,cc
n,n

[
DTM

n +
N TM

n

1 − DTM,cc
n+1,n+1

]
. (48)

Here,

DTM
n ≡ DTM,cc

n,n

2
+

In(β)

4Kn(β)

[
Kn−1(αβ)

In−1(αβ)
+

Kn+1(αβ)

In+1(αβ)

]
,

N TM
n ≡ In(β)In+1(β)

4Kn(β)Kn+1(β)

[
Kn(αβ)

In(αβ)
+

Kn+1(αβ)

In+1(αβ)

]2

. (49)

The corresponding formulae for the TE modes can be obtained from these ones by replacing the
Bessel functions by their derivatives with respect to the argument.
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The expression for the Casimir energy for quasi-concentric cylinders derived in this section
is far simpler than the exact formulae (28) and (30). It is very useful for the analytical and
numerical evaluation of the Casimir energy in the different limiting cases, we will study below:
the large distance limit (a 
 b), for which one obtains a logarithmic decay of the energy, and
the small distance limit (a � b), where the proximity approximation holds. The first case is very
simple to handle because the energy is dominated by the lowest modes, while the second case is
much more involved.

4.1. Large distances: logarithmic decay

When the ratio of the outer and the inner radii α = b/a is much larger than one, the exact Casimir
energy is dominated by the lowest term n = 0 in the summation. Moreover, it can be shown that
the contribution of the Dirichlet modes is much larger than the contribution of the Neumann
modes. Therefore, from equation (31) we get, in the limit α → ∞,

E∞
12 � L

4πa2

∫ ∞

0
dβ β ln(1 − ATM

00 (β)) � − L

4πa2α2

∫ ∞

0
dx x ATM

00

(x

α

)
, (50)

where

ATM
00

(x

α

)
� I0(

x

α
)

K0(
x

α
)

[
K0(x)

I0(x)
I2

0

(
δx

α

)
+ 2

K1(x)

I1(x)
I2

1

(
δx

α

)]
. (51)

Using the small argument expansion of the Bessel functions, it is easy to see that

ATM
00

(x

α

)
� 1

ln α

[
K0(x)

I0(x)
+

δ2x2

2α2

(
K0(x)

I0(x)
+

K1(x)

I1(x)

)]
. (52)

In this expression, valid when a, ε 
 b, we kept the leading terms proportional to (α2 ln α)−1 and
only the sub-leading terms that depend on the eccentricity. Inserting equation (52) into equation
(50) and computing numerically the integrals we find

E∞
12 � − L

8πb2 ln α

(
1.26 + 3.33

ε2

b2

)
, (53)

where the first term is the concentric contribution E
∞,cc
12 derived before (see equation (36)).

It is worth to note that equations (52) and (53) have been derived under the assumption
ln α 	 1, and therefore are valid for extremely large values of α. For intermediate values
α 	 1, ln α = O(1), the interaction energy is also dominated by the Dirichlet n = 0 term. The
final result is still of the form given in equation (53), with numerical coefficients that depend
logarithmically on α. In figure 6, we plot the ratio between the exact Casimir interaction energy
difference �E ≡ E12 − Ecc

12 and its asymptotic expression �E∞ ≡ E∞
12 − E

∞,cc
12 as a function

of α. As mentioned, extremely large values of α are needed in order for the ratio of energies to
asymptotically approach 1. From equation (53), we see that the force between cylinders in the
limit a, ε 
 b is proportional to Lε/b4 ln(b/a). The weak logarithmic dependence on the ratio
b/a is characteristic of the cylindrical geometry (see also [11, 12]), and it is also found in the
electrostatic counterpart of the Casimir energy, that we briefly analyse next.
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Figure 6. Ratio of the exact �E and asymptotic �E∞ Casimir energy differences
in the limit of small eccentricity ε 
 a. In the α → ∞ limit, the Casimir
energy difference between eccentric and concentric configurations decays
logarithmically as (α4 log α)−1.

The electrostatic capacity for the system of two eccentric cylinders is given by

C = 2πε0L

ln [Y +
√

Y 2 − 1]
, (54)

where Y = (a2 + b2 − ε2)/2ab, and ε0 is the permittivity of vacuum. Therefore, the electrostatic
force between cylinders kept at a fixed potential difference V is

Felec = ε

ab

πε0V
2L√

Y 2 − 1 ln2 [Y +
√

Y 2 − 1]
. (55)

In the quasi-concentric case, we can set ε = 0 in the definition of Y . In the large α limit we get

Felec � Lε

b2 log2
(

b

a

) . (56)

Just as in the Casimir case, in the limit a 
 b the Coulomb force decays logarithmically with
the ratio a/b.
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4.2. Small distances: the proximity approximation

The proximity limit for concentric cylinders has been reviewed in subsection 3.3; the case of a
cylinder in front of a plane has been considered in detail in [12]. In this subsection, we extend
these results to the case of quasi-concentric cylinders.

We will concentrate on calculating the Casimir interaction energy difference �E ≡ E12 −
Ecc

12 between the eccentric (E12) and the concentric (Ecc
12) configurations. As the small distance

limit is dominated by the large-n modes, the key point in the derivation of the PFA from the
exact expression of the Casimir energy is the use of the uniform approximation for the Bessel
functions. In the large n limit, and to leading order in α − 1, one has

In(β)

Kn(β)

Kn(αβ)

In(αβ)
� e−2n(α−1)h(x),

In(β)

Kn(β)

Kn±1(αβ)

In±1(αβ)
� e−2n(α−1)h(x)

[
1 + h(x)

x

]±2

, (57)

where β = nx and h(x) = √
1 + x2. Inserting these approximations in equation (49), we get

DTM
n (nx) = e−2n(α−1)h(x)

2

[
1 +

1

2

(
1 + h(x)

x

)2

+
1

2

(
1 + h(x)

x

)−2
]

. (58)

The contribution to the interaction energy coming from the diagonal part of the matrix can
be written as (see equation (48))

�ETM
D = − Lδ2

2πa2

∑
n,k �1

∫ ∞

0
dβ β3 DTM

n (DTM,cc
n,n )k−1, (59)

where we replaced the sum over all integers n by twice the sum over the positive integers (the
term n = 0 gives a subleading contribution for small α − 1). Inserting the uniform expansions
into equation (59) and changing variables in the integral, we obtain

�ETM
D = − Lδ2

4πa2

∑
n,k �1

n4

∫ ∞

0
dx x3 e−2n(α−1)h(x)k

[
1 +

1

2

(
1 + h(x)

x

)2

+
1

2

(
1 + h(x)

x

)−2
]

.

(60)

To leading order in α − 1, the sum over n gives
∑

n n4e−2n(α−1)h(x) � 24/[2h(x)(α − 1)k]5. Next
we perform first the sum over k and then the integral over x. We get

�ETM
D = −3

8

Lδ2ζ(5)

πa2(α − 1)5
, (61)

where ζ(x) is the Riemann zeta function.
The evaluation of the non diagonal contribution to the Casimir energy can be done using

similar steps, starting from equation (47). In the proximity limit, we can approximate DTM,cc
n+1,n+1
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by DTM,cc
n,n in the denominator of that equation. Therefore, using equation (48), we write the non

diagonal contribution to the energy as

�ETM
ND � − Lδ2

2πa2

∫ ∞

0
dβ β3

∑
n,k �1

N TM
n k(DTM,cc

n,n )k−1. (62)

Now we use the uniform expansion for the Bessel functions in equation (49) to obtain

N TM
n � e−4n(α−1)h(x)

2

[
1 +

1

2

(
1 + h(x)

x

)2

+
1

2

(
1 + h(x)

x

)−2
]

. (63)

Replacing equation (63) into equation (62) we get

�ETM
ND = − Lδ2

8πa2

∑
n,k �1

n4

∫ ∞

0
dx x3 e−2n(k+1)(α−1)h(x) k

×
[

2 +

(
1 + h(x)

x

)2

+

(
1 + h(x)

x

)−2
]

. (64)

As before, we first compute the sum over n, and expand the result to leading order in α − 1.
The sum over k can be calculated using that

∑
k �1

k

(k+1)5 = ζ(4) − ζ(5). Finally, we compute
analytically the remaining integrals to get

�ETM
ND = −3

8

Lδ2

πa2(α − 1)5
(ζ(4) − ζ(5)). (65)

The contribution of the Dirichlet modes to the Casimir interaction energy in the limit α → 1
is therefore

�ETM = �ETM
D + �ETM

ND = − Lδ2

a2(α − 1)5

π3

240
. (66)

It can be shown that the contribution of the TE modes to the interaction energy in the short
distance limit is equal to that of the TM modes, as expected from the parallel plate configuration.
Indeed, the uniform expansion for the ratio of Bessel functions is equal to the expansion for the
derivatives, i.e.,

I ′
n(β)

K′
n(β)

K′
n(αβ)

I ′
n(αβ)

� e−2n(α−1)h(x),

I ′
n(β)

K′
n(β)

K′
n±1(αβ)

I ′
n±1(αβ)

� e−2n(α−1)h(x)

[
1 + h(x)

x

]±2

, (67)

and therefore all calculations can be repeated without changes.
The final result for the Casimir interaction energy difference in the small distance

approximation is

�ETE
PFA = �ETM

PFA = 1

2
�EEM

PFA = − π3Lε2

240a4(α − 1)5
, (68)
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Figure 7. Ratio of the exact and PFA Casimir interaction energy differences
�E = E12 − Ecc

12 between eccentric (E12) and concentric (Ecc
12) cylinders in the

limit of small eccentricity ε 
 a. The curve EM denotes the full electromagnetic
Casimir energy.

where �EEM denotes the full electromagnetic Casimir energy difference between eccentric and
concentric configurations. Figure 7 depicts the ratio of the exact Casimir energy difference �E

and the PFA limit for the almost concentric cylinders configuration. As evident from the figure,
PFA agrees with the exact result at a few percent level only for α close to unity, and then it
noticeably departs from the PFA prediction. The resulting PFA expression for the attractive
Casimir force between quasi-concentric cylinders reads

F PFA = π3

60

εL

a4(α − 1)5
, (69)

that reproduces the result previously obtained in [14].

5. Conclusions

We have derived an exact formula for the Casimir interaction energy between eccentric cylinders
using a mode summation technique. This formula is written as an integral of the determinant
of an infinite dimensional matrix, and it reproduces as a particular case the interaction energy
between concentric cylinders, and as a limiting case the energy in the cylinder–plane geometry. In
the quasi-concentric case, the infinite dimensional matrix becomes tridiagonal, and hence much
easier to deal with than the exact formula when performing analytic and numerical calculations.
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We have carried out the numerical evaluation of the Casimir interaction energy using both the
exact and tridiagonal formulae, and studied different limiting cases of relevance for Casimir
force measurements.

The large and small distance limits were analysed. In the former case, the Casimir energy is
dominated by the lowest modes, and shows a weak logarithmic decay, typical of cylindrical
geometries. In the latter case, the Casimir energy is dominated by the highest modes, and
the exact formula reproduces the proximity approximation. We found that the first order
correction (α − 1 
 1) to PFA for the quasi-concentric cylinders has the form �E/�EPFA =
1 + s(α − 1) + O((α − 1)2), where the coefficient of the linear curvature correction is positive,
s > 0, both for TE and TM modes. This contrasts with the first order corrections to PFA in the
cylinder–plane configuration, where the linear curvature correction to TM modes is positive,
while the one for TE modes is negative [12].

The exact Casimir force computed in this paper, in particular for the quasi-concentric
configuration, offers a qualitatively different approach for implementing new experiments to
measure the Casimir force and to search for extra-gravitational forces in the micrometer and
nanometer scales, since it opens the possibility of measuring the derivative of the force using
(Cavendish-like) null experiments.
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