
Finite Fields and Their Applications 12 (2006) 155–185
http://www.elsevier.com/locate/ffa

Improved explicit estimates on the number of
solutions of equations over a finite field�

Antonio Cafurea,b, Guillermo Materab,c,∗
aDepartamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires,

Ciudad Universitaria, Pabellón I (1428), Buenos Aires, Argentina
bInstituto de Desarrollo Humano, Universidad Nacional de General Sarmiento, J.M. Gutiérrez 1150

(1613), Los Polvorines, Buenos Aires, Argentina
cConsejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Argentina

Received 12 May 2004; revised 18 February 2005

Communicated by Gary L. Mullen

Available online 3 May 2005

Abstract

We show explicit estimates on the number of q-ratinoal points of an Fq -definable affine

absolutely irreducible variety of F
n
q . Our estimates for a hypersurface significantly improve

previous estimates of W. Schmidt and M.-D. Huang and Y.-C. Wong, while in the case of a
variety our estimates improve those of S. Ghorpade and G. Lachaud in several important cases.
Our proofs rely on elementary methods of effective elimination theory and suitable effective
versions of the first Bertini theorem.
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1. Introduction

Let p be a prime number, let q := pk , let Fq denote the finite field of q elements
and let Fq denote the algebraic closure of the field Fq . Let be given a finite set of
polynomials F1, . . . , Fm ∈ Fq [X1, . . . , Xn] and let V denote the affine subvariety of
F

n

q defined by F1, . . . , Fm. Counting or estimating the number of q-rational points
x ∈ Fn

q of V is an important subject of mathematics and computer science, with many
applications.

In a fundamental work [Wei48], Weil showed that for any Fq -definable absolutely
irreducible plane curve C of degree � and genus g, the following estimate holds:

|#(C ∩ F2
q )− q|�2gq1/2 + �+ 1.

Taking into account the well-known inequality 2g�(�−1)(�−2), we have the estimate

|#(C ∩ F2
q )− q|�(�− 1)(�− 2)q1/2 + �+ 1, (1)

which is optimal in the general case. The proof of this result was based on sophisticated
techniques of algebraic geometry.

Weil’s estimate (1) was generalized to higher dimensional varieties by Lang and
Weil [LW54]. Their result may be rephrased as follows: for any Fq -definable absolutely
irreducible subvariety V of F

n

q of dimension r > 0 and degree �, we have the estimate

|#(V ∩ Fn
q )− qr |�(�− 1)(�− 2)qr−1/2 + Cqr−1, (2)

where C is a universal constant, depending only on n, r and �, which was not explicitly
estimated.

Ghorpade and Lachaud [GL02a,GL02b] found an explicit estimate on the constant
C of (2). More precisely, in [GL02a, Remark 11.3] (see also [GL02b, Theorem 4.1])
the following estimate is shown

|#(V ∩ Fn
q )− qr |�(�− 1)(�− 2)qr−1/2 + 6 · 2s(sd + 3)n+1qr−1, (3)

where s is the number of equations defining the variety V and d is an upper bound of
the degrees of these equations. Observe that in the case of a hypersurface H, estimate
(3) gives

|#(H ∩ Fn
q )− qn−1|�(�− 1)(�− 2)qn−3/2 + 12(�+ 3)n+1qn−2. (4)
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The proof of this result is based on a sophisticated method relying on a generalization
of the Weak Lefschetz Theorem to singular varieties and estimates of the Betti numbers
of suitable spaces of étale �-adic cohomology.

On the other hand, the first general estimate obtained by elementary means was
given by Schmidt [Sch73] (see also [Sch76,Bom74,LN83]). Generalizing a method of
Stepanov [Ste71], Schmidt obtained the estimate

|#(C ∩ F2
q )− q|�√2�5/2q1/2,

where C ⊂ F
2
q is an absolutely irreducible Fq -definable plane curve of degree � and the

regularity condition q > 250�5 holds.
Later on, using an adaptation of Stepanov’s method to the hypersurface case Schmidt

[Sch74] showed the following nontrivial lower bound for any absolutely irreducible Fq -
definable hypersurface H of degree �

#(H ∩ Fn
q ) > qn−1 − (�− 1)(�− 2)qn−3/2 − (5�2 + �+ 1)qn−2, (5)

provided that the regularity condition q > cn3�5 log3 � holds for a certain universal
constant c > 0. Let us remark that, up to now, this was the best explicit lower bound
known for an arbitrary absolutely irreducible Fq -hypersurface. He also obtained the
following explicit estimate [Sch76]:

|#(H ∩ Fn
q )− qn−1|�(�− 1)(�− 2)qn−3/2 + 6�2�2�

qn−2

with � := (�+ 1)�/2.
Finally, combining (5) with Schmidt’s [Sch76] method and Kaltofen’s effective ver-

sion of the first Bertini theorem [Kal95], Huang and Wong [HW98] obtained

|#(H ∩ Fn
q )− qn−1|�(�− 1)(�− 2)qn−3/2 + (�2 + 2�5)qn−2 + 2�7qn−5/2, (6)

provided that the regularity condition q > cn3�5 log3 � holds.
From the point of view of practical applications it is important to improve as much

as possible the regularity condition underlying (5) and (6). Furthermore, estimate (6)
may grow large in concrete cases due to the powers of � arising in the right-hand side
of (6). This is also the case of (3) and (4), whose right-hand sides include terms which
depend exponentially on n and the number s of equations.

In this article, combining techniques of Schmidt [Sch74,Sch76] and Kaltofen [Kal95]
we obtain improved explicit estimates on the number of q-rational points of an Fq -
definable affine absolutely irreducible variety V of F

n

q . Our estimates in the case of
a hypersurface significantly improve the regularity of (5) and extend it, providing a
corresponding upper bound. Further, we improve both the regularity and the right-
hand side of (6) and exponentially improve (4). Finally, in the case of an absolutely
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irreducible variety, the worst case of our estimates improve (3) in several important
cases, such as those of low codimension (for example 2r �n − 1) and those of low
degree (for example d �2(n− r)).

Our methods rely on elementary arguments of effective elimination theory (see
Sections 2 and 6). In particular, we obtain upper bounds on the number of q-rational
points of certain Fq -definable affine varieties which improve [Sch74,Sch76,CR96] (see
Section 2).

Our estimate for a hypersurface is obtained by a combination of ideas of Schmidt
[Sch74] with an effective version of the first Bertini theorem due to Kaltofen [Kal95].
Kaltofen’s result is based on the analysis of an algorithm that decides whether a given
bivariate polynomial with coefficients in a field is absolutely irreducible. In Section 3,
we adapt Kaltofen’s algorithm in order to determine the existence of irreducible factors
of a given degree of the restriction of a multivariate absolutely irreducible polynomial
to a plane. This allows us to obtain suitable upper bounds on the genericity condition
underlying the choice of a restriction having no irreducible factors of a given degree
(Theorem 3.3). In Section 4, we combine this result with a combinatorial approach
inspired in [Sch74] in order to estimate the number of restrictions of a given absolutely
irreducible polynomial f ∈ Fq [X1, . . . , Xn] to affine planes having a fixed number of
absolutely irreducible factors over Fq .

In Section 5, applying the estimates of the preceding section and adapting the methods
of Schmidt [Sch76], we obtain the following estimate for an absolutely irreducible Fq -
hypersurface H ⊂ F

n

q of degree � (see Theorem 5.2), which holds without any regularity
condition

|#(H ∩ Fn
q )− qn−1|�(�− 1)(�− 2)qn−3/2 + 5�

13
3 qn−2.

Furthermore, using the lower bound underlying the previous estimate we obtain the

following estimate (see Theorem 5.3): for q > 15�
13
3 we have

|#(H ∩ Fn
q )− qn−1|�(�− 1)(�− 2)qn−3/2 + (5�2 + �+ 1)qn−2.

Finally, in Section 6 we combine these estimates with elementary methods of effective
elimination theory (see Propositions 6.1 and 6.3) in order to obtain estimates for an
affine Fq -definable variety (see Theorems 5.7, 7.1 and 7.5). As an illustration of these
results, we have the following estimate for an Fq -definable absolutely irreducible variety
V ⊂ F

n

q of dimension r > 0 and degree �: for q > 2(r + 1)�2, there holds

|#(V ∩ Fn
q )− qr |�(�− 1)(�− 2)qr−1/2 + 5�

13
3 qr−1.

2. Notions and notations

We use standard notions and notations of commutative algebra and algebraic geom-
etry as can be found in e.g. [Kun85,Sha84,Mat80].



A. Cafure, G. Matera / Finite Fields and Their Applications 12 (2006) 155–185 159

For a given m ∈ N, we denote by Am = Am(Fq) the m-dimensional affine space F
m

q

endowed with the Zariski topology.
Let X1, . . . , Xn be indeterminates over Fq and let Fq [X1, . . . , Xn] be the ring of

n-variate polynomials in the indeterminates X1, . . . , Xn and coefficients in Fq . Let V
be an Fq -definable affine subvariety V of An (an Fq -variety for short). We shall denote
by I (V ) ⊂ Fq [X1, . . . , Xn] its defining ideal and by Fq [V ] its coordinate ring, namely,
the quotient ring Fq [V ] := Fq [X1, . . . , Xn]/I (V ).

If V is irreducible as an Fq -variety (Fq -irreducible for short), we define its dimension
dim(V ) as the transcendence degree of the quotient field Fq(V ) of Fq [V ] over Fq ,
and its degree deg(V ) as the maximum number of points lying in the intersection of
V with an affine linear subspace L of An of codimension dim(V ) for which #(V ∩
L) < ∞ holds. More generally, if V = C1 ∪ · · · ∪ Ch is the decomposition of V into
irreducible Fq -components, we define the dimension and the degree of V as dim(V ) :=
max1� i �h dim(Ci) and deg(V ) :=∑h

i=1 deg(Ci) (cf. [Hei83]). In the sequel we shall
make use of the following Bézout inequality (see [Hei83,Ful84]): if V and W are Fq -
subvarieties of An, then

deg(V ∩W)� deg V deg W. (7)

An Fq -variety V ⊂ An is absolutely irreducible if it is irreducible as Fq -variety.

2.1. Some elementary upper bounds

In this section we exhibit upper bounds on the number of q-rational points of certain
Fq -varieties using elementary arguments of effective elimination theory and the Bézout
inequality (7). The purpose of this section is to illustrate how these arguments signif-
icantly simplify the previous combinatorial proofs (cf. [LN83,Sch74,Sch76]), yielding
also better estimates than the usual ones in some cases. We start with the following
well-known result:

Lemma 2.1. Let V ⊂ An be an Fq -variety of dimension r �0 and degree �. Then the
inequality #(V ∩ Fn

q )��qr holds.

Proof. For 1� i�n, let Wi ⊂ An be the Fq -hypersurface defined by X
q
i − Xi . Then

we have V ∩ Fn
q = V ∩W1 ∩ · · · ∩Wn. Therefore, applying [HS82, Proposition 2.3] we

obtain the inequality #(V ∩ W1 ∩ · · · ∩ Wn) = deg(V ∩ W1 ∩ · · · ∩ Wn)��qr , which
finishes the proof. �

We observe that when r = n − 1, i.e. when V is a hypersurface defined by a
polynomial f ∈ Fq [X1, . . . , Xn] of degree �, the lemma implies that the number of
q-rational zeros of f is at most �qn−1.

Lemma 2.2. Let f1, . . . , fs ∈ Fq [X1, . . . , Xn] (s�2) be nonzero polynomials of degree
at most � > 0 without a common factor in Fq [X1, . . . , Xn], and let V ⊂ An be the
Fq -variety defined by f1, . . . , fs . Then #(V ∩ Fn

q )��2qn−2.
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Proof. Since f1, f2 have no common factors in Fq [X1, . . . , Xn], we have that V (f1, f2)

is an Fq -variety of dimension n− 2. From the Bézout inequality (7) we conclude that
deg V (f1, f2)��2 holds. Then Lemma 2.1 shows that #

(
V (f1, f2)∩Fn

q

)
��2qn−2 holds.

This implies #(V ∩ Fn
q )��2qn−2. �

Let us remark that the upper bound of Lemma 2.2 improves the upper bounds
2n�3qn−2 of Schmidt [Sch74, Lemma 4] and �3qn−2 of Schmidt [Sch76, Lemma
IV.3D].

Lemma 2.3. Let V ⊂ An be an Fq -irreducible variety of dimension r �0 and degree
� which is not absolutely irreducible. Then the inequality #(V ∩ Fn

q )��2qr−1/4 holds.

Proof. Let V = V1 ∪ · · · ∪ Vs be the decomposition of V into Fq -irreducible com-
ponents and let �i denote the degree of Vi for i = 1, . . . , s. Our hypotheses im-
ply s�2. Since every q-rational point of V belongs to Vi for 1� i�s, we see that
V ∩ Fn

q ⊂ V1 ∩ V2 ∩ Fn
q holds. Therefore, applying Lemma 2.1 we have #(V1 ∩ V2 ∩

Fn
q )��1�2q

r−1 ��2qr−1/4. �

If V is an Fq -hypersurface irreducible but not absolutely irreducible, our estimate
gives #(V ∩ Fn

q )��2qn−2/4, which improves the upper bound �qn−1 − (�− 1)qn−2 of
Cherdieu and Rolland [CR96, Theorem 3.1], obtained assuming that 1 < � < q − 1
holds. Indeed, our upper bound is valid without any restriction on q, and for ��q we
have �2qn−2/4 < �qn−1 − (�− 1)qn−2.

3. On the effective first Bertini theorem

Let be given an absolutely irreducible polynomial f ∈ Fq [X1, . . . , Xn] of degree �
and let H ⊂ An be the affine Fq -hypersurface defined by f. Our estimates on the number
of q-rational points of H rely on an analysis of the varieties obtained by intersecting H
with an affine linear Fq -variety of dimension 2 (Fq -plane for short). For this purpose,
we need an estimate on the number of Fq -planes L for which H ∩L has an absolutely
irreducible Fq -component of degree at most D, for a given 1�D��− 1.

Following [Kal95], we analyze the genericity condition underlying the nonexistence
of irreducible components of H ∩L of degree at most D. In order to do this, in the next
section we introduce an algorithm which, given a bivariate polynomial f ∈ K[X, Y ],
finds the irreducible factors of f over K of degree at most D. Then, in Section 3.2 we
obtain a suitable upper bound on the genericity condition we are considering.

3.1. An algorithm computing the irreducible factors of degree at most D of a
bivariate polynomial over a field K

The algorithm we exhibit in this section is a variant of the corresponding algorithm
of Kaltofen [Kal95].
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Algorithm. Factorization over the Coefficient Field of degree at most D:
Input: A polynomial f ∈ K[X, Y ] monic in X of degree at most �, where K is an

arbitrary field, such that the resultant ResX(f (X, 0), �f (X, 0)/�X) 	= 0, and an integer
D with 1�D��− 1.

Output: Either the algorithm returns the list of irreducible factors of f defined over
K of degree at most D, or f will not have irreducible factors in K[X, Y ] of degree at
most D.

Set the maximum order of approximation needed: �max ← 2D�.
For all roots �i ∈ K of f (X, 0) ∈ K[X] Do steps N and L.
Step N: Let Ki := K(�i ). Set the initial points for the Newton iteration

�i,0 ← �i ∈ Ki, �i,0 ← (�f/�X)(�i,0, 0)
−1 ∈ Ki.

(Now we perform Newton iteration)
For j ← 0, . . . , �log2(�max)� Do

�i,j+1 ← (�i,j − �i,j f (�i,j , Y ))(mod Y 2j+1
)

�i,j+1 ←
(

2�i,j − (�f/�X)(�i,j+1, Y )�2
i,j

)
(mod Y 2j+1

).

(Observe that �i,j+1, �i,j+1 are polynomials of Ki[Y ] satisfying f (�i,j+1, Y ) ≡
0 (mod Y 2j+1

), �i,j+1 · (�f/�x)(�i,j+1, Y ) ≡ 1 (mod Y 2j+1
).)

Set the approximate root:

�i ← �i,�log2(�max)�+1 (mod Y �max+1) ∈ Ki[Y ].

(Next, we compute the powers of �i .)
For �← 0, . . . , �− 1 Do

�max∑
k=0

a
(�)

i,k Y k ← ��
i (mod Y �max+1) with a

(�)

i,k ∈ Ki.

Step L: We find the lowest degree polynomial in K[X, Y ] whose root is �i .
For m← 1, . . . , D Do
We fix the order of approximation: � ← 2m�. (We examine if the equation �m

i +∑m−1
�=0 hi,�(Y )��

i ≡ 0 (mod Y �+1) has a solution for hi,�(Y ) ∈ K[Y ] with deg(hi,�)�
m−�. Writing hi,�(Y ) =∑m−�

�=0 ui,�,�Y
�, with ui,�,� ∈ K , and collecting the coefficients

of Y k we are led to the following problem.)
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For 0�k��, solve the following linear system over K in the variables ui,�,� (0���
m− 1, 0���m− �):

a
(m)
i,k +

m−1∑
�=0

m−�∑
�=0

a
(�)

i,k−�ui,�,� = 0 (where a
(�)

i,� = 0 for � < 0), (8)

(Since deg hi,� �m − � holds, for every � we have m − � + 1 indeterminates, which
implies that the system has (m+ 1)(m+ 2)/2− 1 indeterminates.)

If (8) has a solution then

fi(X, Y )← Xm +
m−1∑
�=0

m−�∑
�=0

ui,�,�Y
�X�.

(The polynomial fi(X, Y ) is an irreducible factor of f (X, Y ) of degree D or some
factor of it is an irreducible factor of degree less than D.)

Check if fi has been produced by a root �l with l < i. If not, add fi to the list of
irreducible factors of degree less than D.

If (8) has no solution for all i = 1, . . . , � and m = 1, . . . , D, then f has no irreducible
factors in K[X, Y ] of degree at most D.

The next lemma proves the correctness of this algorithm:

Lemma 3.1. The polynomial f (X, Y ) has an irreducible factor over K of degree
at most D if and only if at least one of the D� linear systems (8) has a solution
in K.

Proof. Suppose that (8) has a solution in K, i.e. there exists 1� i�� and a polynomial
gi(X, Y ) ∈ K[X, Y ] of degree 1�m�D such that g(�i , Y ) ≡ 0 (mod Y 2m�+1). Let
	 ∈ K[Y ] denote the resultant 	(Y ) := ResX(f, g). Evaluating 	 at X = �i we
conclude that 	(Y ) ≡ 0 (mod Y 2m�+1). Since 	 is a polynomial of degree at most 2m�,
we conclude that 	 = 0 holds. Hence f and g have a nontrivial common factor in
K[X, Y ], and therefore f has a factor of degree at most D.

Now, suppose that f (X, Y ) has an irreducible factor g(X, Y ) ∈ K[X, Y ] of degree
at most D�1. Then there exists a nontrivial factorization f (X, Y ) = g(X, Y )h(X, Y )

over K[X, Y ]. Let 1� i�d be an integer for which g(�i,0, 0) = 0. Then h(�i,0, 0) 	= 0,
which implies h(�i,0, Y ) /≡ 0 (mod Y ) and thus h(�i,j , Y ) /≡ 0 (mod Y ) for 1�j �
�log2(�max)� + 1. Therefore, we have h(�i , Y ) /≡ 0 (mod Y ), which combined with
f (�i , Y ) ≡ 0 (mod Y 2D�+1) shows that g(�i , Y ) ≡ 0 (mod Y 2D�+1) holds. We conclude
that the coefficients of g, considered as polynomial of K[Y ][X], furnish a solution to
at least one of the D� linear systems (8). This completes the proof. �
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3.2. The genericity condition underlying the existence of irreducible components of a
given degree

The estimates on the number of q-rational points of a given absolutely irreducible
(n − r)-dimensional Fq -variety V ⊂ An of e.g. [Sch76,HW98,CM02] depend strongly
on a suitable effective version of the first Bertini theorem. As it is well-known, the
first Bertini theorem (see e.g. [Sha94, §II.6.1, Theorem 1]) asserts that the intersection
V ∩ L of V with a generic affine linear variety L ⊂ An of dimension r + 1 is an
absolutely irreducible curve. An effective version of the first Bertini theorem aims at
estimating the number of planes L for which V ∩ L is not an absolutely irreducible
curve, and is usually achieved by analyzing the genericity condition underlying the
choice of L. The estimates for hypersurfaces we shall present in the next sections
rely on a variant of the effective first Bertini theorem, which estimates the number of
planes L whose intersection with a given absolutely irreducible Fq -hypersurface H has
absolutely irreducible Fq -components of degree at most D for a given 1�D��− 1.

For this purpose, let f ∈ K[X1, . . . , Xn] be an absolutely irreducible polynomial of
degree � and let be given 1�D��− 1. For �1, . . . , �n, 
2, . . . ,
n ∈ K , we consider
the polynomial

�(X, Y, Z2, . . . , Zn) := f (X + �1, 
2X + Z2Y + �2, . . . ,
nX + ZnY + �n)

as an element of K[X, Y, Z2, . . . , Zn]. Following [Kal95, Lemmas 4 and 5], there exists
a nonzero polynomial � ∈ K[V1, . . . , Vn, W2, . . . , Wn] of degree at most 2�2 such that
for any �1, . . . , �n, 
2, . . . ,
n ∈ K with

�(�1, . . . , �n, 
2, . . . ,
n) 	= 0 (9)

the following conditions are satisfied:

• the leading coefficient of � with respect to X is a nonzero element of K ,
• the discriminant of �(X, 0, Z2, . . . , Zn) with respect to X is nonzero,
• � is an irreducible element of K[X, Y, Z2, . . . , Zn].

Under the assumption of condition (9), Kaltofen proves a crucial fact for his effec-
tive version of the first Bertini theorem [Kal95, Theorem 5]: he shows the existence
of a polynomial � ∈ K[Z2, . . . , Zn] of degree at most 3�4/2 − 2�3 + �2/2 such

that for any � := (�2, . . . , �n) ∈ K
n−1

with �(�) 	= 0, the bivariate polynomial
�(X, Y, �2, . . . , �n) ∈ K[X, Y ] is absolutely irreducible.

Hence, for � := �(V1, . . . , Vn, W2, . . . , Wn)�(Z2, . . . , Zn) we have deg ��3�4/2−
2�3 + 5�2/2 and for any (�, 
, �) := (�1, . . . , �n, 
2, . . . ,
n, �2, . . . , �n) ∈ K

3n−2

with �(�, 
, �) 	= 0, the polynomial �(X, Y, �2, . . . , �n) := f (X + �1, 
2X + �2Y +
�2, . . . ,
nX+ �nY + �n) is absolutely irreducible. In particular, for K = Fq we deduce
the following corollary:
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Corollary 3.2. Let f ∈ Fq [X1, . . . , Xn] be absolutely irreducible of degree �. Then
there exists at most (3�4/2− 2�3 + 5�2/2)q3n−3 elements (�, 
, �) ∈ F3n−2

q for which
�(X, Y, �) is not absolutely irreducible.

Our goal is to obtain a degree estimate, similar to that of deg �, on the genericity con-
dition underlying the nonexistence of absolutely irreducible factors of �(X, Y, �2, . . . ,

�n) of degree at most D for a given 1�D�� − 1. Our next theorem, a variant of
Kaltofen [Kal95, Theorem 5], will be a crucial point for our estimates of the following
sections.

Theorem 3.3. Let 1�D�� − 1 and suppose that �1, . . . , �n, 
2, . . . ,
n satisfy con-
dition (9). Then there exists a nonzero polynomial �D ∈ K[Z2, . . . , Zn] of degree

deg �D �D�2(D + 1)(D + 2)− (D2 + 3D)(D2 + 3D + 2)�/8

such that for any � := (�2, . . . , �n) ∈ K
n−1

with �D(�) 	= 0, the polynomial �(X, Y, �)

:= f (X+�1, 
2X+�2Y+�2, . . . ,
nX+�nY+�n) has no irreducible factors of degree
at most D in K[X, Y ].

Proof. Since by assumption � is irreducible over K[Z2, . . . , Zn][X, Y ], Gauss Lemma
implies that � is irreducible over K(Z2, . . . , Zn)[X, Y ]. Therefore, applying algorithm
Factorization over the Coefficient Field of degree at most D to the polynomial � :=
l−1� ∈ K(Z2, . . . , Zn)[X, Y ], where l ∈ K is the leading coefficient of �, since
�(X, 0) ∈ K[X], the root �i used to construct the field Ki := K(�i ) of the algo-
rithm is actually an element of K for 1� i��. Then the irreducibility of � over
K(Z2, . . . , Zn)[X, Y ] implies that the linear system (8) derived in step L has no so-
lution in the field Ki for 1�m�D and 1� i��. This implies that for m = D and
1� i��, the augmented matrix of the system, M̃

(i)
D (Z2, . . . , Zn), has rank greater than

that of the matrix of the coefficients M
(i)
D (Z2, . . . , Zn). Since ��(X, 0)/�X ∈ K , all

the denominators used in the construction of this system are elements of K . Let �(i)
D ∈

K[Z2, . . . , Zn] be a maximal nonzero minor of the augmented matrix M̃
(i)
D (Z2, . . . , Zn)

and let � := (�2, . . . , �n) ∈ K
n−1

satisfy
∏�

i=1 �(i)
D (�) 	= 0. Then the specialized sys-

tem (8) has no solutions for i = 1, . . . , �, which implies that �(X, Y, �2, . . . , �n) has no
irreducible factors over K[X, Y ] of degree at most D, because algorithm Factorization
over the Coefficient Field of degree at most D fails to find such a factor of �(X, Y, �)

over K . Therefore, �D :=∏�
i=1 �i

D is the polynomial we are looking for.
Now we show that the degree estimate for �D holds. The degree estimate essentially

follows from the proof of Kaltofen [Kal95, Theorem 5], taking into account that we
have a different number of indeterminates and a different order of approximation.
Indeed, for every root �i of �(x, 0), the corresponding linear system for m = D has
(D+1)(D+2)/2−1 indeterminates. Hence, any maximal nonzero minor �(i)

D satisfies
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the following degree estimate:

degZ2,...,Zn
�(i)

D �
(D+1)(D+2)/2−1∑

j=0

(�max − j)

� 2D�(D + 1)(D + 2)/2− (D2 + 3D)(D2 + 3D + 2)/8.

This immediately implies the degree estimate for �D of the theorem. �

Since Theorem 3.3 is valid under the assumption of condition (9), if we define

�D := �(V1, . . . , Vn, W2, . . . , Wn)�D(Z2, . . . , Zn),

then �D is a polynomial in 3n − 2 indeterminates with coefficients in K of degree
bounded by

deg �D �D3�2 −D4�/8− 3D3�/4+ 3D2�2 − 11D2�/8+ 2D�2 − 3D�/4+ 2�2,

which satisfies the following property: for every (�, 
, �) ∈ K
3n−2

with �D(�, 
, �) 	=
0, the polynomial �(X, Y, �2, . . . , �n) has no irreducible factors over K of degree at
most D. Therefore, for K = Fq we have the following corollary:

Corollary 3.4. Let f ∈ Fq [X1, . . . , Xn] be an absolutely irreducible polynomial of
degree ��2 and let be given an integer D with 1�D��− 1. Then there are at most
(D3�2−D4d/8− 3D3�/4+ 3D2�2− 11D2�/8+ 2D�2− 3D�/4+ 2�2)q3n−3 elements
(�, 
, �) ∈ F3n−2

q for which �(X, Y, �2, . . . , �n) has an irreducible factor over Fq [X, Y ]
of degree at most D.

4. On the intersection of an absolutely irreducible Fq -hypersurface with an
Fq -plane

Following [Sch74], in this section we estimate, for a given polynomial f, the number
of planes L for which the restriction of f to L has a fixed number of absolutely
irreducible Fq -factors. For this purpose, we shall consider the results from the previous
section from a geometric point of view. We shall work with the field K := Fq and
every nonzero (�, 
, �) ∈ F3n−2

q shall be considered as providing a parametrization of
a linear affine Fq -variety of An of dimension 2.

More precisely, let be given a polynomial f ∈ Fq [X1, . . . , Xn] of degree � > 0.
For an affine linear Fq -variety L ⊂ An of dimension 2 (an Fq -plane for short), we
represent the restriction of f to L as a bivariate polynomial fL ∈ Fq [X, Y ], where X, Y

are the parameters of a given parametrization of L. Let us remark that for every such
L, the polynomial fL is univocally defined up to an Fq -definable affine linear change
of coordinates. Therefore, its degree and number of absolutely irreducible components
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do not depend on the particular parametrization of L we choose to represent L (cf.
[Sch76, V.§4]).

In particular, we shall be concerned with the Fq -planes of An which have an Fq -
definable parametrization of the following type:

X1 = �1 +X, Xi = �i + 
iX + �iY (2� i�n). (10)

Let M
(2)
T denote the set of all Fq -planes of An and let M(2) denote the subset formed

by the elements of M
(2)
T having a parametrization as in (10).

Our purpose is to analyze the number of absolutely irreducible factors of fL for
a given Fq -plane L ⊂ An. Hence, for a plane L ∈ M(2) on which f does not vanish
identically, we denote by �(L) the number of absolutely irreducible Fq -factors of fL.
Then 0��(L)�� if f does not vanish identically on L and we define �(L) := q

otherwise. Further, let �j be the set of planes L with |�(L)− 1| = j . Thus, �1 is the
set of planes L with 0 or 2 absolutely irreducible Fq -factors, �j is the set of planes L
for which fL has j + 1 absolutely irreducible Fq -factors for j = 0, 2, . . . , � − 1, and
�q−1 is the set of planes L for which fL vanishes identically.

Observe that if L ∈ �j for a given j = 0, . . . , � − 1 then fL has an absolutely
irreducible factor of degree at most Dj := ��/(j + 1)�. Theorem 3.3 asserts that for
any plane L ∈ M(2) having an Fq -parametrization as in (10) with �Dj

(�, 
, �) 	= 0, the

polynomial fL has no irreducible factors over Fq of degree at most Dj . Therefore, for
every such (�, 
, �) ∈ F3n−2

q , fL has at most j irreducible factors over Fq , which in
particular implies that L /∈ �j ∪ · · · ∪��−1 holds. Hence any L ∈ �j ∪ · · ·��−1 has
a parmetrization as in (10) with

{(�, 
, �) ∈ F3n−2
q : �Dj

(�, 
, �) = 0}.

Taking into account that every plane of M(2) has q3(q − 1) Fq -parametrizations as in
(10), from Lemma 2.1 we deduce the following estimate:

#(�j )+ · · · + #(��−1)� deg �Dj

q3n−3

q3(q − 1)
.

Therefore, from Corollary 3.4 we obtain

�−1∑
k=j

#(�k) �
(

�5
(

1

j3
− 1

8j4

)
+ 3�4

(
1

j2
− 1

4j3

)
+ �3

(
2

j
− 11

8j2

)

−3

4

�2

j
+ 2�2

)
q3n−6

(q − 1)
. (11)
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The following proposition is crucial for our estimates for an absolutely irreducible Fq -
hypersurface of the next section. It yields a better estimate than that obtained by a
straightforward application of Corollary 3.2.

Proposition 4.1. Let f ∈ Fq [X1, . . . , Xn] be a polynomial of degree � > 1. Then the
following estimate holds:

�−1∑
j=1

j#(�j )�(2�
13
3 + 3�

11
3 )

q3n−3

q3(q − 1)
.

Proof. For � = 2 the expression
∑�−1

j=1 j#(�j ) consists of only one term, namely �1,
and therefore Corollary 3.2 yields

#(�1)�
(

3

2
�4 − 2�3 + 5

2
�2
)

q3n−6

(q − 1)
� 3

2
�4 q3n−6

(q − 1)
. (12)

Hence, we may assume without loss of generality ��3. Let r be a real number, to
be fixed below, lying in the open real interval (1, �− 1). We have

�−1∑
j=1

j#(�j ) =
�r�∑
j=1

j#(�j )+
�−1∑

j=�r�+1

j#(�j )

� �r�
�−1∑
j=1

#(�j )+
�−1∑

j=�r�+1

(j − �r�)#(�j ).

By Corollary 3.2 we have

�r�
�−1∑
j=1

#(�j )�r

(
3

2
�4 − 2�3 + 5

2
�2
)

q3n−6

(q − 1)
. (13)

On the other hand, by inequality (11) we have

�−1∑
j=�r�+1

(j − �r�)#(�j ) =
�−1∑

j=�r�+1

(#(�j )+ · · · + #(��−1))

�
(

�5c1+3�4c2+�3c3−3

4
�2c4+2�2

)
q3n−6

(q−1)
, (14)
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where c1, c2, c3, c4 are the following numbers:

c1 :=
�−1∑

j=�r�+1

1

j3
− 1

8j4
, c2 :=

�−1∑
j=�r�+1

1

j2
− 1

4j3
,

c3 :=
�−1∑

j=�r�+1

2

j
− 11

8j2
, c4 :=

�−1∑
j=�r�+1

1

j
.

We observe that any decreasing positive real function g satisfies the inequality∑�−1
j=�r�+1 g(j)�

∫ �−1
r

g(x) dx. Let r := �
1
3 . Using the fact that 1 < �/(� − 1)� 3

2
holds for ��3, we have the following inequalities:

�5c1 � �5
(

1
2 (�

1
3 )−2 − 1

24 (�
1
3 )−3 − 1

2 (�− 1)−2 + 1
24 (�− 1)−3

)
� 1

2�
13
3 − 1

24�4 − 1
2�3 + 9

64�2,

3�4c2 � 3�4
(
�−

1
3 − 1

8 (�
1
3 )−2 − (�− 1)−1 + 1

8 (�− 1)−2
)

� 3�
11
3 − 3

8�
10
3 − 3�3 + 27

32�2,

�3c3 � �3(2 ln(�− 1)+ 11
8 (�− 1)−1 − 2 ln �

1
3 − 11

8 �−
1
3 )

� 4
3�3 ln �+ 33

16�2 − 11
8 �

8
3 .

This implies that the following estimate holds:

�5c1 + 3�4c2 + �3c3 − 3
4�2c4 + 2�2

� 1
2�

13
3 − 1

24�4 + 3�
11
3 − 3

8�
10
3 + 4

3�3 ln �− 7
2�3 − 11

8 �
8
3 + 323

64 �2. (15)

Now, putting together (13)–(15), and taking into account that 4
3�3 ln ��3�3+ 1/3 holds

for ��3, we obtain

�−1∑
j=1

j#(�j ) � 2�
13
3 − 1

24�4 + 3�
11
3 + 5

8�
10
3 − 7

2�3 − 11
8 �

8
3 + 5

2�
7
3 + 323

64 �2

� 2�
13
3 + 3�

11
3

for ��3. This proves the proposition. �
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5. Estimates for an absolutely irreducible Fq -hypersurface

In this section, we obtain different types of estimates on the number of q-rational
points of a given absolutely irreducible Fq -hypersurface. First, we exhibit an estimate
which holds without any regularity condition and improves (4) and (6). Then, we show
an estimate which improves both the right-hand side and the regularity condition of
the lower bound (5), providing also a corresponding upper bound. Finally, we extend
these estimates to the case of an arbitrary Fq -hypersurface.

For this purpose, we shall follow an approach that combines both ideas of Schmidt
[Sch74,Sch76] with the estimate of the previous section. This approach is based on
estimating the number of q-rational points lying in the intersection of a given absolutely
irreducible Fq -hypersurface with all the Fq -planes of An.

5.1. An estimate without any regularity condition

In what follows, we shall apply the following lemma from [Sch74].

Lemma 5.1 ([Sch74, Lemma 5]). Let f ∈ Fq [X, Y ] be a polynomial of degree � > 0
and let � be the number of distinct absolutely irreducible Fq -factors of f. Then the
number N of zeros of f in F2

q satisfies

|N − �q|�
(q, �)+ �2,

where 
(q, �) := (�− 1)(�− 2)q1/2 + �+ 1.

Let be given an absolutely irreducible polynomial f ∈ Fq [X1, . . . , Xn] of degree

� > 0. Recall that M
(2)
T and M(2) denote the set of Fq -planes of An and the set of

Fq -planes with a parametrization as in (10), respectively. Further, for j = 0, 2, . . . , �−1
let �j be the set of Fq -planes L ∈ M(2) for which the restriction fL of f to L has j+1
absolutely irreducible Fq -definable factors, let �1 be the set of Fq -planes L ∈ M(2) for
which fL has 0 or 2 absolutely irreducible Fq -factors, and let �q−1 denote the set of
Fq -planes L ∈ M(2) for which fL vanishes identically. Let us introduce the following
quantities:

A := # M(2), B :=
�−1∑
j=1

j#(�j ), C := #(�q−1), D := #M
(2)
T − #M(2).

Let E denote the number of elements of M
(2)
T containing a given point of Fn

q .

We recall that any element of M(2) is represented by D′ := q3(q − 1)

different parametrizations of type (10). Therefore, taking into account that there are
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q2n−1(qn−1 − 1) different parametrizations of type (10), we conclude that

A = q2n−1(qn−1 − 1)

q3(q − 1)
(16)

holds. By Proposition 4.1 we have B �(2�
13
3 + 3�

11
3 )

q3n−3

q3(q−1)
, which implies

B

A
�
(

2�
13
3 + 3�

11
3

) qn−2

qn−1 − 1
. (17)

By a simple recursive argument we may assume without loss of generality that f cannot
be expressed as a polynomial in n−2 variables (see e.g. [Sch76]). Let us fix c ∈ Fn−2

q for
which f (c, Xn−1, Xn) vanishes identically. Let us write f =∑�∈J f�X

�1
n−1X

�2
n , where

J ⊂ (Z�0)
2 is a suitable finite set and f� ∈ Fq [X1, . . . , Xn−2] for any � = (�1, �2) ∈

J . Since f is not a polynomial of Fq [X1, . . . , Xn−2], it follows that f�(c) = 0 for any
� ∈ J . By the absolute irreducibility of f we have that the set of polynomials {f� : � ∈
J } ⊂ Fq [X1, . . . , Xn−2] does not have nontrivial common factors in Fq [X1, . . . , Xn−2].
Then Lemma 2.2 implies that there exist at most �2qn−4 elements c ∈ Fn−2

q for which

f (c, Xn−1, Xn) = 0 holds, and hence there exist at most �2qn−4 linear varieties L of
M2 parallel to X1 = 0, . . . , Xn−2 = 0 for which fL = 0 holds. Let A0 denote the
number of different subspaces belonging to M(2). Repeating this argument for all the
subspaces of M(2) we obtain

C

A
� �2qn−4A0

qn−2A0
= �2

q2
. (18)

Let us observe that #M
(2)
T = qn(qn− 1)(qn− q)/

(
q2(q2− 1)(q2− q)

)
. Combining this

observation with (16) we have

D

A
= 1

A
(#M

(2)
T − A) = 1

A

qn(qn−1 − 1)(qn−1 − q)

q2(q2 − 1)(q2 − q)
� 4

3q2
. (19)

Let us fix a point x ∈ Fn
q . Then there are E = (qn − 1)(qn − q)/

(
(q2 − 1)(q2 − q)

)
varieties L ∈ M

(2)
T passing through x. This implies

A

E
�qn−2. (20)

Now we are ready to state our estimate for hypersurfaces without any regularity
condition.
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Theorem 5.2. For an absolutely irreducible Fq -hypersurface H of An of degree � the
following estimate holds:

|#(H ∩ Fn
q )− qn−1|�(�− 1)(�− 2)qn−3/2 + 5�

13
3 qn−2.

Proof. First we observe that the theorem is obviously true if � = 1. Therefore, we
may assume without loss of generality ��2.

Let N := #(H ∩ Fn
q ). With the notations introduced before, we have

|N − qn−1|� 1

E

⎛⎜⎝ ∑
L∈M(2)

|N(fL)− q| +
∑

L∈M(2)
T \M(2)

|N(fL)− q|
⎞⎟⎠ . (21)

In order to estimate the first term of the right-hand side of (21), for a plane L ∈ �j

with j ∈ {0, . . . , �− 1}, Lemma 5.1 implies |N(fL)− q|� |N(fL)− �(L)q| + |�(L)−
1|q �
(q, �)+ �2 + jq. Therefore, we have:

∑
L∈M(2)

|N(fL)− q| �
�−1∑
j=0

⎛⎝∑
L∈�j

(

(q, �)+ �2 + jq

)⎞⎠+ ∑
L∈�q−1

(q2 − q)

�

⎛⎝�−1∑
j=0

#(�j )

⎞⎠(
(q, �)+ �2)+ q

q−1∑
j=1

j#(�j )

� A(
(q, �)+ �2)+ Bq + Cq(q − 1).

Replacing this inequality in (21) and taking into account (17)–(20) we obtain for ��3

|N − qn−1| � 1

E

(
A(
(q, �)+ �2)+ Bq + Cq(q − 1)+Dq2)

� A

E

(

(q, �)+ �2 + B

A
q + C

A
q(q − 1)+ D

A
q2
)

� qn−2(
(q, �)+ �2 + (2�
13
3 + 3�

11
3 ) 4

3 + �2 + 4
3

)
� (�− 1)(�− 2)qn−3/2 + 5�

13
3 qn−2. (22)

For � = 2, combining (21) with estimate (12) of the proof of Proposition 4.1, we
obtain

|N − qn−1| � qn−2(
(q, �)+ �2 + ( 3
2�4 − 2�3 + 5

2�2) 4
3 + �2 + 4

3

)
� (�− 1)(�− 2)qn−3/2 + (2�4 + 3�)qn−2

� (�− 1)(�− 2)qn−3/2 + 5�
13
3 qn−2. (23)

This finishes the proof of the theorem. �
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Observe that our estimate holds with no restriction on q and clearly improves the
previous record estimate (up to the authors knowledge), due to [HW98], which is only
valid for q > cn3�5 log3 �:

|#(H ∩ Fn
q )− qn−1|�(�− 1)(�− 2)qn−3/2 + (2�5 + �2)qn−2 + 2�7qn−5/2.

Moreover, we also improve the estimate of Ghorpade and Lachaud [GL02a,GL02b].
We recall that in the case of a hypersurface the estimate is

|#(H ∩ Fn
q )− qn−1|�(�− 1)(�− 2)qn−3/2 + 12(�+ 3)n+1qn−2.

In [CR96], the authors show that for q sufficiently large the following assertions hold
(see [CR96, Theorem 3.2 and 3.4]) for any polynomial f ∈ Fq [X1, . . . , Xn] of degree
� > 1:

(i) if f is absolutely irreducible, then #
(
V (f ) ∩ Fn

q

)
< �qn−1 − (�− 1)qn−2,

(ii) if f has an absolutely irreducible nonlinear Fq -definable factor, then #
(
V (f )∩Fn

q

)
<

�qn−1 − (�− 1)qn−2.

Further, they ask whether the previous assertions hold for any q. Although we are
not able to answer this question, our estimates provide explicit values q0 = q0(�) and
q1 = q1(�) such that (i) holds for q �q0 and (ii) holds for q �q1. Indeed, Theorem

5.2 implies that we may choose q0 := 13�
10
3 and q1 := 9�

13
3 .

5.2. An improved estimate with regularity condition

In this section, we are going to exhibit an estimate on the number of q-rational
points of an absolutely irreducible Fq -variety which improves that of Theorem 5.2 but
is only valid under a certain regularity condition.

Theorem 5.3. Let q > 15�
13
3 and let H ⊂ An be an absolutely irreducible Fq -

hypersurface of degree �. Then the following estimate holds:

|#(H ∩ Fn
q )− qn−1|�(�− 1)(�− 2)qn−3/2 + (5�2 + �+ 1)qn−2.

Proof. Let N := #(H ∩ Fn
q ). Since the statement of the theorem is obviously true for

� = 1, we may assume without loss of generality that ��2 holds.
With notations as before, for a plane L ∈ �j with j > 0 it follows by Lemma 5.1

that |N(fL)− q| < jq + 
(q, �)+ �2 holds. Therefore, we have

|N(fL)−Nq2−n| � |N(fL)− q| − q2−n|N − qn−1|
� jq − 
(q, �)− �2 − 
(q, �)− 5�

13
3

� 1
2jq,
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where the last inequality is valid if and only if 1
2jq �2q1/2(�− 1)(�− 2)+ 2(�+ 1)+

�2 + 5�
13
3 holds. Hence, our assumption on q implies the validity of the inequality.

From [Sch74, Lemma 6] we have 1
4q2∑q−1

j=1 j2#(�j )��Eqn−1, which implies∑q−1
j=1 j#(�j )�4�Eqn−3. Hence,

|N − qn−1| = 1

E

∣∣∣∣∣∣∣
∑

L∈M(2)
T

(
N(fL)− q

)∣∣∣∣∣∣∣ � 1

E

∑
L∈M(2)

T

|(N(fL)− q)|

� 1

E

⎛⎝(A+D)
(

(q, �)+ �2)+ q−1∑

j=1

2jq#(�j )

⎞⎠
� qn−2(
(q, �)+ �2 + 8�

)
� qn−2(
(q, �)+ 5�2).

This finishes the proof of the theorem. �

From this estimate we deduce the following (nontrivial) lower bound: for q > 15�
13
3 ,

we have

N > qn−1 − (�− 1)(�− 2)qn− 3
2 − (5�2 + �+ 1)qn−2.

Therefore, our estimate significantly improves the regularity condition q > 104n3�5ϑ3

([4 log �]) of Schmidt [Sch74], where [ ] denotes integer part and ϑ(j) is the jth prime,
and also provides a corresponding upper bound, not given in [Sch74].

Let us observe that, in the setting of polynomial equation solving over finite fields,
lower bounds on the number of q-rational points of a given absolutely irreducible
Fq -hypersurface H, such as those underlying Theorems 5.2 and 5.3 or [Sch74], are
typically required in order to assure the existence of a q-rational point of H (see e.g.
[HW98,HW99,CM03]). Indeed, from [Sch74] one deduces that an absolutely irreducible
Fq -hypersurface of degree � has a q-rational point for q > 104n3�5ϑ3([4 log �]). Further-

more, from Theorem 5.2 we conclude that this condition can be improved to q > 9�
13
3 .

Nevertheless, the following simple argument allows us to significantly improve the latter
(compare [CM03, Section 6.1]):

Theorem 5.4. For q > 2�4, any absolutely irreducible Fq -hypersurface of degree � has
a q-rational point.

Proof. Let H ⊂ An be an absolutely irreducible Fq -hypersurface of degree �, and let
f ∈ Fq [X1, . . . , Xn] be the defining polynomial of H. Since q > 2�4, from Corollary 3.2
we conclude that there exists (�, 
, �) ∈ F3n−2

q for which �(X, Y ) := f (X+ �1, 
2X+
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�2Y + �2, . . . ,
nX+ �nY + �n) is absolutely irreducible of degree �. Therefore, Weil’s

estimate (1) shows that � has at least q−(�−1)(�−2)q
1
2 −�−1 q-rational zeros. Since

this quantity is a strictly positive real number for q > 2�4, we conclude that � has at
least one q-rational zero, which implies that H has at least one q-rational point. �

Finally, we observe that in the case that the characteristic p of the field Fq is large
enough, the estimates of Theorems 5.2 and 5.3 can be further improved, using an effec-
tive version of the first Bertini theorem due to Gao [Gao03]. From [Gao03, Theorem
5.1] we deduce the following result:

Corollary 5.5. Suppose that the characteristic p of Fq satisfies the condition p > 2�2.
Let f ∈ Fq [X1, . . . , Xn] be an absolutely irreducible polynomial of degree � > 1. Then

there are at most 3
2�3 q3n−3

q3(q−1)
Fq -planes L ⊂ An such that the restriction fL of f to L

is not absolutely irreducible.

With the notations of Section 5.1, from Corollary 5.5 we obtain

B

A
:= 1

A

�−1∑
j=1

j#�j � �

A

�−1∑
j=1

#�j � 3

2

�4

A

q3n−3

q3(q − 1)
� 3

2
�4 qn−2

qn−1 − 1
.

Combining this estimate with (22) of the proof of Theorem 5.2, we obtain the following
estimate on the number N of q-rational points of any absolutely irreducible hypersurface
H ⊂ An of degree �

|N − qn−1|�(�− 1)(�− 2)qn−3/2 + 3�4qn−2.

Furthermore, replacing in the proof of Theorem 5.3 the lower bound obtained from
Theorem 5.2 by the one arising from the above estimate, we obtain for q > 27�4

|N − qn−1|�(�− 1)(�− 2)qn−3/2 + (5�2 + �+ 1)qn−2.

Summarizing, we have

Corollary 5.6. Suppose that p > 2�2 holds, and let H ⊂ An be an absolutely irre-
ducible Fq -hypersurface of degree � > 1. Then the following estimate holds:

|N − qn−1|�(�− 1)(�− 2)qn−3/2 + 3�4qn−2.

Furthermore, if in addition we have q > 27�4, then

|N − qn−1|�(�− 1)(�− 2)qn−3/2 + (5�2 + �+ 1)qn−2.
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These estimates certainly improve those of Theorems 5.2 and 5.3 for p > 2�2, but
fail to improve the existence result of Theorem 5.4. Indeed, Corollary 5.6 does not
yield a nontrivial lower bound on the number of q-rational points of H for q �4�4.
In fact, taking into account that estimates like of those of Theorems 5.2 and 5.3 and
Corollary 5.6 will fail to provide nontrivial lower bounds for q �(�− 1)2(�− 2)2, we
conclude that our existence result of Theorem 5.4 comes quite close to this optimal
value.

5.3. An estimate for an arbitrary Fq -hypersurface

We finish our discussion on estimates on the number of q-rational points of an Fq -
hypersurface by considering the case of an arbitrary Fq -hypersurface. Nevertheless, it
must be remarked that our estimate in the case of an Fq -hypersurface without absolutely
irreducible Fq -definable components reduces essentially to Lemma 2.3.

Theorem 5.7. Let H ⊂ An (n�2) be an Fq -hypersurface of degree �. Let H =
H1∪· · ·∪H∪H+1∪· · ·∪Hm be the decomposition of H into Fq -irreducible components,
where H1, . . . , H are absolutely irreducible and H+1, . . . , Hm are not absolutely
irreducible. Let �i := deg Hi for 1� i�m and let � := ∑

i=1 �i . Then we have the
estimate

|#(H ∩ Fn
q )− qn−1|�sign()(�− 1)(�− 2)qn− 3

2 + (5�
13
3 + �2/2)qn−2,

where sign() := 0 for  = 0 and sign() := 1 otherwise.

Proof. Let N := #(H ∩ Fn
q ) and Ni := #(Hi ∩ Fn

q ) for 1� i�m. We have

|N − qn−1|�
∣∣∣∣∣N −

∑
i=1

Ni

∣∣∣∣∣+
∑

i=1

|Ni − qn−1|.

For  + 1� i�m we have that Hi is an Fq -irreducible hypersurface which is not
absolutely irreducible. Therefore, Lemma 2.3 implies

N −
∑

i=1

Ni �
m∑

i=+1

Ni < qn−2
m∑

i=+1

�2
i /4�qn−2�2/4. (24)

On the other hand, we have

∑
i=1

Ni −N �
∑

1� i<j �

#(Hi ∩Hj ∩ Fn
q )�qn−2

∑
1� i<j �

�i�j �qn−2�2/2. (25)
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From (24) and (25) we conclude that the following estimate holds:

∣∣∣∣∣N −
∑

i=1

Ni

∣∣∣∣∣ �qn−2�2/2. (26)

Since Hi is an absolutely irreducible Fq -hypersurface of An for 1� i�, applying
Theorem 5.2 we obtain

∑
i=1

|Ni − qn−1| � qn−2
∑

i=1

(
(�i − 1)(�i − 2)q1/2 + 5�

13
3

i

)
� sign()(�− 1)(�− 2)qn− 3

2 + 5�
13
3 qn−2.

Combining this estimate with (26) finishes the proof of the theorem. �

6. From hypersurfaces to varieties

Let V be an equidimensional Fq -variety of dimension r > 0 and degree �. In this
section we are going to exhibit a reduction of the problem of estimating the number of
q-rational points of V to the hypersurface case. It is a well-known fact that a generic
linear projection morphism � : An→ Ar+1 induces a birational morphism which maps
V into a hypersurface of Ar+1. Our next result yields an upper bound on the degree
of the genericity condition underlying the choice of the projection morphism �.

Proposition 6.1. Let � := (�ij )1� i � r+1,1� j �n be an (r + 1) × n-matrix of inde-
terminates, let �(i) := (�i,1, . . . ,�i,n) for 1� i�r + 1, and let � := (�1, . . . ,�r+1)

be an (r + 1)-dimensional vector of indeterminates. Let X := (X1, . . . , Xn) and let
Ỹ := �X+�. Then there exists a nonzero polynomial G ∈ Fq [�, �] of degree at most
2(r + 1)�2 such that for any (�, �) ∈ A(r+1)n ×Ar+1 with G(�, �) 	= 0 the following
conditions are satisfied:

(i) Let Y := �X + � := (Y1, . . . , Yr+1). Then the projection morphism � : V → Ar

defined by Y1, . . . , Yr is a finite morphism.
(ii) The linear form Yr+1 induces a primitive element of the integral ring extension

Fq [Y1, . . . , Yr ] ↪→ Fq [V ], i.e. the degree of its minimal integral dependence equation
in Fq [Y1, . . . , Yr ] equals the rank of Fq [V ] as (free) Fq [Y1, . . . , Yr ]-module.

Proof. Let us consider the following morphism of algebraic varieties:

� : A(r+1)n ×Ar+1 × V → A(r+1)n ×Ar+1 ×Ar+1,

(�, �, x) �→ (�, �, �x + �).
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Using standard facts about Chow forms (see e.g. [Sha84,KPS01]), we conclude that
Im(�) is a hypersurface of A(r+1)n × Ar+1 × Ar+1, defined by a polynomial P ∈
Fq [�, �, Ỹ1, . . . , Ỹr+1] which satisfies the following estimates:

• degỸ1,...,Ỹr+1
P = degỸr+1

P = �,
• deg�(i),�i

P �� for 1� i�r + 1.

Let G1 ∈ Fq [�, �] be the (nonzero) coefficient of the monomial Ỹ �
r+1 in the polyno-

mial P, considering P as an element of Fq [�, �][Ỹ1, . . . , Ỹr+1]. We have deg G1 �(r +
1)�. Let G̃1 ∈ Fq [�(i), �i : 1� i�r] be the coefficient of a nonzero monomial of
the polynomial G1, considering G1 as an element of Fq [�(i), �i : 1� i�r][�(r+1),

�r+1].
Let (�∗, �∗) ∈ Arn × Ar be any point satisfying the condition G̃1(�

∗, �∗) 	= 0
and let Y := (Y1, . . . , Yr ) := �∗X + �∗. We claim that condition (i) of the state-
ment of Proposition 6.1 holds. Indeed, since G∗1 := G1(�

∗, �∗, �(r+1), �r+1) is a
nonzero element of Fq [�(r+1), �r+1], we deduce that there exist n Fq -linearly inde-
pendent vectors w1, . . . , wn ∈ F

n

q and a1, . . . , an ∈ Fq such that G∗1(wk, ak) 	= 0
holds for 1�k�n. Let �k := wkX + ak for 1�k�n. By construction, for 1�k�n

the polynomial P(�∗, �∗, wk, ak, Y1, . . . , Yr , �k) induces an integral dependence equa-
tion over Fq [Y1, . . . , Yr ] for the coordinate function of Fq [V ] defined by �k . Since
Fq [�1, . . . , �n] = Fq [X1, . . . , Xn] we conclude that condition (i) holds.

Furthermore, since Fq [�, �, Ỹ1, . . . , Ỹr+1]/(P ) is a reduced Fq -algebra and Fq is
a perfect field, using [Mat80, Proposition 27.G] we see that the (zero-dimensional)
Fq(�, �, Ỹ1, . . . , Ỹr )-algebra Fq(�, �, Ỹ1, . . . , Ỹr )[Ỹr+1]/(P ) is reduced. This implies
that P is a separable element of Fq(�, �, Ỹ1, . . . , Ỹr )[Ỹr+1], and hence P and �P/�Ỹr+1

are coprime in Fq(�, �, Ỹ1, . . . , Ỹr )[Ỹr+1]. Then the discriminant 	 := ResỸr+1
(P, �P

/�Ỹr+1) of P with respect to Ỹr+1 is a nonzero element of Fq [�, �, Ỹ1, . . . , Ỹr ] which
satisfies the following degree estimates:

• degỸ1,...,Ỹr
	�(2�− 1)�,

• deg�(i),�i
	�(2�− 1)� for 1� i�r + 1.

Let 	1 ∈ Fq [�, �] be a (nonzero) coefficient of a monomial of 	, considering 	 as an
element of Fq [�, �][Ỹ1, . . . , Ỹr ] and let G := 	1 G̃1. Observe that deg G�2(r + 1)�2

holds.
Let (�, �) ∈ A(r+1)n×Ar+1 satisfy the condition G(�, �) 	= 0, let (�∗, �∗) ∈ Arn×Ar

be the first r rows of (�, �) and let Y := (Y1, . . . , Yr+1) = �X + �. It is clear that
condition (i) holds.

We are going to prove that condition (ii) holds. For this purpose, let 	∗ be the
polynomial obtained from 	 by specializing �(i), �i (1� i�r) into the value (�∗, �∗).
Then 	∗ is a nonzero polynomial of Fq [�(r+1), �r+1, Y1, . . . , Yr ] which equals the
discriminant of P(�∗, �(r+1), �∗, �r+1, Y1, . . . , Yr , Ỹr+1) with respect to Ỹr+1.

Let �1, . . . , �n be the coordinate functions of V induced by X1, . . . , Xn, let �i :=∑n
j=1 �i,j�j for 1� i�r and let Ŷr+1 := ∑n

j=1 �r+1,j�j . From the properties of the
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Chow form of V we conclude that the identity

0 = P(�∗, �(r+1), �∗, �r+1, �1, . . . , �r , Ŷr+1)

= P(�∗, �(r+1), �∗, �r+1, �1, . . . , �r , �r+1,1�1 + · · · + �r+1,n�n)
(27)

holds in Fq [�(r+1), �r+1] ⊗Fq
Fq [V ]. Following e.g. [ABRW96] or [Rou97], from (27)

one deduces that for 1�k�n the identity

(�P/�Ỹr+1)(�
∗, �(r+1), �∗, �r+1, �1, . . . , �r , Ŷr+1)�k

+(�P/��r+1, k)(�
∗, �(r+1), �∗, �r+1, �1, . . . , �r , Ŷr+1) = 0

(28)

holds in Fq [�(r+1), �r+1] ⊗Fq
Fq [V ]. Since 	∗(�(r+1), �r+1, Y1, . . . , Yr ) is the discrim-

inant of P(�∗, �(r+1), �∗, �r+1, Y1, . . . , Yr , Ỹr+1) with respect to Ỹr+1, it can be ex-
pressed as a linear combination of P(�∗, �(r+1), �∗, �r+1, Y1, . . . , Yr , Ỹr+1) and (�P/

�Ỹr+1)(�
∗, �(r+1), �∗, �r+1, Y1, . . . , Yr , Ỹr+1). Combining this observation with (27)

and (28) we conclude that

	∗(�(r+1), �r+1, �1, . . . , �r )�k + Pk(�
(r+1), �r+1, �1, . . . , �r , Ŷr+1) = 0 (29)

holds, where Pk is a nonzero element of Fq [�(r+1), �r+1, Z1, . . . , Zr+1] for 1� i�n.
Specializing identity (29) into the values �r+1,j := �r+1,j (1�j �n) and �r+1 = �r+1

for 1�k�n we conclude that Yr+1 induces a primitive element of the Fq -algebra
extension Fq(Y1, . . . , Yr ) ↪→ Fq(Y1, . . . , Yr )⊗Fq

Fq [V ].
Condition (i) implies that Fq [V ] is a finite free Fq [Y1, . . . , Yr ]-module and hence

Fq(Y1, . . . , Yr ) ⊗Fq
Fq [V ] is a finite-dimensional Fq(Y1, . . . , Yr )-vector space. Further-

more, the dimension of Fq(Y1, . . . , Yr )⊗Fq
Fq [V ] as Fq(Y1, . . . , Yr )-vector space equals

the rank of Fq [V ] as Fq [Y1, . . . , Yr ]-module. On the other hand, since Fq [Y1, . . . , Yr ]
is integrally closed we have that the minimal dependence equation of any element
of f ∈ Fq [V ] over Fq(Y1, . . . , Yr ) equals the minimal integral dependence of f over
Fq [Y1, . . . , Yr ] (see e.g. [Kun85, Lemma II.2.15]). Combining this remark with the fact
that Yr+1 induces a primitive element of the Fq -algebra extension Fq(Y1, . . . , Yr ) ↪→
Fq(Y1, . . . , Yr )⊗Fq

Fq [V ] we conclude that Yr+1 also induces a primitive element of the

Fq -algebra extension Fq [Y1, . . . , Yr ] ↪→ Fq [V ]. This shows condition (ii) and finishes the
proof of the proposition. �

From Proposition 6.1 we easily deduce that V is birationally equivalent to an Fq -
hypersurface H ⊂ Ar+1 of degree �, namely the image of V under the projection
defined by linear forms Y := (Y1, . . . , Yr+1) = �X + � with G(�, �) 	= 0, where G is
the polynomial of the statement of Proposition 6.1 (compare Proposition 6.3 below).
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We would like to estimate the number of q-rational points of the variety V in terms
of that of the hypersurface H, but “good” estimates on the number of q-rational points
of H are not available if H is not an Fq -variety. Let us observe that H is an Fq -variety if
the linear forms Y1, . . . , Yr+1 belong to Fq [X1, . . . , Xn] (see e.g. [Kun85]). In order to
ensure that there exist linear forms Y1, . . . , Yr+1 ∈ Fq [X1, . . . , Xn] satisfying conditions
(i) and (ii) of Proposition 6.1 we have the following result:

Corollary 6.2. Let notations and assumptions be as in Proposition 6.1. If q > 2(r +
1)�2, there exists an element (�, �) ∈ F

(r+1)×n
q ×Fr+1

q satisfying the condition G(�, �) 	=
0, where G is the polynomial of the statement of Proposition 6.1.

Proof. Let V (G) := {(�, �) ∈ A(r+1)n ×Ar+1 : G(�, �) = 0}. Taking into account the
upper bound of Lemma 2.1

#
(
V (G) ∩ (F(r+1)n

q × Fr+1
q )

)
�2(r + 1)�2q(r+1)(n+1)−1,

we immediately deduce the statement of Corollary 6.2. �

From now on, we shall assume that the condition q > 2(r + 1)�2 holds. Let (�, �) ∈
F

(r+1)n
q ×Fr+1

q satisfy G(�, �) 	= 0, let Y = (Y1, . . . , Yr+1) := �Y+� and let us consider
the following Fq -definable morphism of Fq -varieties:

� : V → Ar+1,

x �→ (
Y1(x), . . . , Yr+1(x)

)
.

Then the set W := �(V ) is an Fq -hypersurface. This hypersurface is defined by a
polynomial h ∈ Fq [Y1, . . . , Yr+1], which is a separable monic element of the polynomial
ring Fq [Y1, . . . , Yr ][Yr+1] of degree deg h = degYr+1

h = �.

Let V1 ⊂ An and W1 ⊂ Ar+1 be the following Fq -varieties:

V1 := {x ∈ An : (�h/�Yr+1)(Y1(x), . . . , Yr+1(x)) = 0},
W1 := {y ∈ Ar+1 : (�h/�Yr+1)(y) = 0}.

Our following result shows that the variety V is birationally equivalent to the hyper-
surface W ⊂ Ar+1.

Proposition 6.3. Let q > 2(r+1)�2. Then �|V \V1 : V \V1 → W\W1 is an isomorphism
of Fq -Zariski open sets.

Proof. Let us observe that �(V \V1) ⊂ W\W1. Then �|V \V1 : V \V1 → W\W1 is a
well-defined Fq -definable morphism.

We claim that � is an injective mapping. Indeed, specializing identity (28) of the
proof of Proposition 6.1 into the values �r+1,j := �r+1,j (1�j �n) and �r+1 = �r+1
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we deduce that there exist polynomials v1, . . . , vn ∈ Fq [Y1, . . . , Yr+1] such that for
1� i�n the following identity holds:

vi(Y1, . . . , Yr+1)−Xi · (�h/�Yr+1)(Y1, . . . , Yr+1) ≡ 0 mod I (V ). (30)

Let x := (x1, . . . , xn), x
′ := (x′1, . . . , x′n) ∈ V \V1 satisfy �(x) = �(x′). We have

Yi(x) = Yi(x
′) for 1� i�r + 1. Then from (30) we conclude that xi = x′i for 1� i�n,

which shows our claim.
Now we show that �|V \V1 : V \V1 → W\W1 is a surjective mapping. Let h0 :=

�h/�Yr+1. Let be given an arbitrary element y := (y1, . . . , yr+1) of W\W1, and let

x := ((v1/h0)(y), . . . , (vn/h0)(y)
)
.

We claim that x belongs to V \V1. Indeed, let f be an arbitrary element of the ideal
I (V ) and let f̃ := (h0(Y1, . . . , Yr+1))

N f , where N := deg f . Then there exists
g ∈ Fq [Z1, . . . , Zn+1] such that f̃ = g(h0X1, . . . , h0Xn, h0) holds. Since f̃ ∈ I (V ),
for any z ∈ V we have f̃ (z) = 0 and hence from identity (30) we conclude that
g(v1, . . . , vn, h0)

(
Y1(z), . . . , Yr+1(z)

) = 0 holds. This shows that h divides f̂ :=
g(v1, . . . , vn, h0) in Fq [Y1, . . . , Yr+1] and therefore f̂ (y) = h0(y)Nf (x) = 0 holds.
Taking into account that h0(y) 	= 0 we conclude that f (x) = 0 holds, i.e. x ∈ V \V1.

In order to finish the proof of the surjectivity of � there remains to prove that
�(x) = y holds. For this purpose, we observe that identity (30) shows that any z ∈ V

satisfies

Yi(z)h0
(
Y1(z), . . . , Yr+1(z)

)− n∑
j=1

�i, j vj

(
Y1(z), . . . , Yr+1(z)

) = 0

for 1� i�r+1. Then h divides the polynomial Yih0−∑n
j=1 �i,j vj in Fq [Y1, . . . Yr+1],

which implies yi =∑n
j=1 �i, j (vj /h0)(y) =∑n

j=1 �i, j xj for 1� i�r + 1. This proves
that �(x) = y holds.

Finally we show that �|V \V1 : V \V1 → W\W1 is an isomorphism. Let

� : W\W1 → V \V1,

y �→ (
(v1/h0)(y), . . . , (vn/h0)(y)

)
.

Our previous discussion shows that � is a well-defined Fq -definable morphism and �◦�
is the identity mapping of W\W1. This finishes the proof of the proposition. �

From Proposition 6.3 we immediately conclude that the Fq -Zariski open sets V \V1
and W\W1 have the same number of q-rational points.
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7. Estimates for an Fq -variety

In this section we exhibit explicit estimates on the number of q-rational points of an
Fq -variety. For this purpose, we are going to apply the reduction to the hypersurface
case of Section 6, together with the estimates for hypersurfaces of Section 5. We start
with the case of an absolutely irreducible Fq -variety.

Theorem 7.1. Let V ⊂ An be an absolutely irreducible Fq -variety of dimension r > 0
and degree �. If q > 2(r + 1)�2, then the following estimate holds:

|#(V ∩ Fq
n)− qr |�(�− 1)(�− 2)qr− 1

2 + 5�
13
3 qr−1. (31)

Proof. First we observe that the theorem is obviously true in the cases n = 1 or � = 1,
and follows from Weil’s estimate (1) in the case n = 2. Therefore, we may assume
without loss of generality that n�3 and ��2 hold.

Since the condition q > 2(r + 1)�2 holds, from Corollary 6.2 we deduce that there
exist linear forms Y1, . . . , Yr+1 ∈ Fq [X1, . . . , Xn] satisfying conditions (i) and (ii) of
the statement of Proposition 6.1. Therefore, from Proposition 6.3 we have

|#(V ∩ Fn
q )− qr |� |#(W ∩ Fr+1

q )− qr | + #(V ∩ V1 ∩ Fn
q )+ #(W ∩W1 ∩ Fr+1

q ),

where V1 ⊂ An, W ⊂ Ar+1 and W1 ⊂ Ar+1 are the Fq -hypersurfaces defined by the
polynomials (�h/�Yr+1)

(
Y1(X), . . . , Yr+1(X)

) ∈ Fq [X1, . . . , Xn], h ∈ Fq [Y1, . . . , Yr+1]
and (�h/�Yr+1) ∈ Fq [Y1, . . . , Yr+1], respectively.

From the Bézout inequality (7) and Lemma 2.1 we deduce the upper bounds:

#(V ∩ V1 ∩ Fn
q ) � �(�− 1)qr−1,

#(W ∩W1 ∩ Fr+1
q ) � �(�− 1)qr−1.

(32)

On the other hand, we observe that W is an absolutely irreducible Fq -variety of dimen-
sion r > 0 and degree � > 0. Therefore, applying the estimate in the third line of (22)
we obtain

|#(W ∩ Fr+1
q )− qr |�(�− 1)(�− 2)qr− 1

2 +
(

8
3�

13
3 + 4�

11
3 + 2�2 + �+ 7

3

)
qr−1.

This estimate, together with (32), immediately implies the statement of the theorem for
��3. For � = 2 we combine the above estimate with (32) and the second line of (23),
which yields the estimate of the statement of the theorem. This finishes the proof. �

Furthermore, if we estimate |#(W∩Fr+1
q )−qr | using Theorem 5.3 instead of Theorem

5.2, we obtain the following result:
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Corollary 7.2. Let V ⊂ An be an absolutely irreducible Fq -variety of dimension r > 0

and degree �. If q > max{2(r + 1)�2, 15�
13
3 }, then the following estimate holds:

|#(V ∩ Fr+1
q )− qr |�(�− 1)(�− 2)qr− 1

2 + 7�2qr−1.

Finally, if the characteristic p of Fq is greater than 2�2, from Corollary 5.6 we obtain:

Corollary 7.3. Let V ⊂ An be an absolutely irreducible Fq -variety of dimension r > 0
and degree �. If p > 2�2 and q > 2(r + 1)�2 we have

|#(V ∩ Fr+1
q )− qr |�(�− 1)(�− 2)qr− 1

2 + 4�4qr−1.

If in addition q > 27�4, then the following estimate holds:

|#(V ∩ Fr+1
q )− qr |�(�− 1)(�− 2)qr− 1

2 + 7�2qr−1.

The estimate of Theorem 7.1 yields a nontrivial lower bound on the number of q-
rational points of an absolutely irreducible Fq -variety V of dimension r > 0 and degree

�, implying thus the existence of a q-rational point of V, for q > max{2(r+1)�2, 9�
13
3 }.

Nevertheless, similarly to Theorem 5.4, the following simple argument allows us to
obtain the following improved existence result:

Corollary 7.4. For q > max{2(r + 1)�2, 2�4}, any absolutely irreducible Fq -variety V
of dimension r > 0 and degree � has a q-rational point.

Proof. Since q > 2(r + 1)�2 holds, from Corollary 6.2 we conclude that there exist
linear forms Y1, . . . , Yr+1 ∈ Fq [X1, . . . , Xn] satisfying the conditions of Proposition 6.1.
Let h ∈ Fq [Y1, . . . , Yr+1] denote the defining polynomial of the absolutely irreducible
Fq -hypersurface W ⊂ Ar+1 defined by the image of the linear projection of V induced
by Y1, . . . , Yr+1. From the condition q > 2�4 we conclude that there exists an Fq -plane
L ⊂ Ar+1 for which W∩L is an absolutely irreducible Fq -curve of Ar+1. Hence, Weil’s

estimate (1) shows that #(W∩L∩Fr+1
q )�q−(�−1)(�−2)q

1
2−�−1 holds. Furthermore,

from the Bézout inequality we deduce that #(W ∩L∩ V (�h/�Yr+1))��(�− 1) holds,

which implies #
((

W\V (�h/�Yr+1)
) ∩ L ∩ Fr+1

q

)
�q−(�−1)(�−2)q

1
2 −�2−1. Since

this quantity is strictly positive for q > 2�4, it follows that there exists a q-rational
point of W\V (�h/�Yr+1). Combining this with Proposition 6.3 we conclude that there
exists a q-rational point of V. �
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7.1. An estimate for an arbitrary Fq -variety

Now we are going to estimate the number of q-rational points of an arbitrary Fq -
variety V of dimension r > 0 and degree �. Let V = V1∪· · ·∪Vm be the decomposition
of V into Fq -irreducible components and suppose that the numbering is such that Vi

is absolutely irreducible of dimension r > 0 for 1� i�, absolutely irreducible of
dimension at most r−1 for +1� i�	 and not absolutely irreducible for 	+1� i�m.

For 1� i�m, let Ni := #(Vi ∩ Fn
q ) and denote by �i the degree of Vi . Finally, let

� :=∑
i=1 �i and N := #(V ∩ Fn

q ). We have the following result:

Theorem 7.5. With notations and assumptions as above, if q > 2(r + 1)�2 the number
N of q-rational points of the variety V satisfies the following estimate:

|N − qr |�sign()(�− 1)(�− 2)qr−1/2 + (5�
13
3 + �2)qr−1, (33)

where sign() := 0 for  = 0 and sign() := 1 otherwise.

Proof. We have |N − qr |� ∑
i=1 |Ni − qr | + |N −∑

i=1 Ni |.
From Theorem 7.1 we obtain

∑
i=1

|Ni − qr | �
∑

i=1

(
(�i − 1)(�i − 2)qr−1/2 + 5�

13
3

i qr−1)
� sign()(�− 1)(�− 2)qr−1/2 + 5�

13
3 qr−1.

(34)

Now we estimate the term |N−∑
i=1 Ni |. Let +1� i�	. Then Vi is an Fq -variety

of dimension at most r − 1 and degree �i , and Lemma 2.1 implies Ni ��iq
r−1. On

the other hand, for 	 + 1� i�m we have that Vi is Fq -irreducible and not absolutely
irreducible, and Lemma 2.3 shows that Ni ��2

i q
r−1/4 holds. Then we have

N −
∑

i=1

Ni �
m∑

i=+1

Ni �qr−1
m∑

i=+1

�2
i ��2qr−1. (35)

On the other hand, Lemma 2.1 implies

∑
i=1

Ni −N �
∑

1� i<j �

#(Vi ∩ Vj ∩ Fn
q )�qr−1

∑
1� i<j �

�i�j ��2qr−1/2. (36)

From estimates (35) and (36) we conclude that |N −∑
i=1 Ni |��2qr−1 holds. Com-

bining this estimate with (34) finishes the proof of the theorem. �
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