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In a previous paper �R. González, L. G. Sarasua, and A. Costa, “Kelvin waves with helical Beltrami
flow structure,” Phys. Fluids 20, 024106 �2008�� we analyzed the formation of Kelvin waves with
a Beltrami flow structure in an ideal fluid. Here, taking into account the results of this paper, the
topological analogy between the role of the magnetic field in Woltjer’s theorem �L. Woltjer, “A
theorem on force-free magnetic fields,” Proc. Natl. Acad. Sci. U.S.A. 44, 489 �1958�� and the role
of the vorticity in the equivalent theorem is revisited. Via this analogy we identify the force-free
equilibrium of the magnetohydrodynamics with the Beltrami flow equilibrium of the hydrodynamic.
The stability of the last one is studied applying Arnold’s theorem. We analyze the role of the
enstrophy in the determination of the equilibrium and its stability. We show examples where the
Beltrami flow equilibrium is stable under perturbations of the Beltrami flow type with the same
eigenvalue as the basic flow one. The enstrophy variation results invariant with respect to a uniform
rotating and translational frame and the stability is conserved when the flow experiences a transition
from a Beltrami axisymmetric flow to a helical one of the same eigenvalue. These results are
discussed in comparison with that given by Moffatt in 1986 �H. K. Moffatt, “Magnetostatic
equilibria and analogous Euler flows of arbitrarily complex topology. Part 2. Stability
considerations,” J. Fluid Mech. 166, 359 �1986��. © 2010 American Institute of Physics.
�doi:10.1063/1.3460297�

I. INTRODUCTION

In a previous paper,1 hereafter Paper I, we analyzed the
dynamics of an inviscid axisymmetric Rankine flow which
experiences a soft expansion from an initial radius b0 to a
larger one. For given values of the Rossby number �
=U0 /�b0 �� and U0, the Rankine rotating and translational
speeds, respectively�, we showed that the downstream result-
ing flow can be expressed as the addition of a Rankine vortex
and a Beltrami flow, i.e., �B=��vB=�vB, �=2� /U0.

Woltjer2 has formulated a variational principle for force-
free magnetic fields in ideal magnetohydrodynamics �MHD�.
The force-free magnetic equilibrium equation is ��B=�B,
being B the magnetic field and � the eigenvalue. In a closed
system of volume D the principle states that the force-free
field with constant eigenvalue is the state of minimum mag-
netic energy. He demonstrated that in D, the helicity is
conserved,

�
D

A · BdV = const, �1�

being A the potential vector and ��A=B. When the mag-
netic energy is minimized under constraint �1�, the magnetic

field of the resulting equilibrium state is inhibited to produce
movement, which is equivalent to the cancellation of the
Lorentz force, i.e., a force-free equilibrium.

It was shown in literature3 that if similar boundary con-
ditions are satisfied, i.e., if for a field C �where C replaces
the magnetic field or the velocity field� that accomplishes
� ·C=0 in the closed domain D, we have n̂ ·C=0 on the
contour �D, then an identification between the ideal hydro-
dynamic �HD� and the ideal MHD equilibria is possible, in
the sense explained in Sec. II.

The identification of the ideal HD Beltrami flow equilib-
rium with the MHD force-free one is a particular case of the
general one. This suggests that a variational principle, analo-
gous to Woljter’s principle, could be obtained for the Bel-
trami flow. In order to determine to what extent the analogy
proposed is valid, we study the similarities and differences
between the properties that lead to the equilibria and we
compare the stabilities of these particular HD and MHD
equilibria. To this end we specially focus in the common
topological properties of the HD and MHD.

The concept of helicity in fluids, defined as �v .�dV,
which expresses topological properties of the flow, was first
introduced by Moffatt.4,5 He demonstrated the conservation
of the ideal fluid helicity in two cases: when the vorticity
vanishes at the boundaries or when the vorticity is perpen-
dicular to the surface of the fluid.

On the other hand, a direct consequence of Kelvin’s cir-
culation conservation law is that the vorticity lines are “fro-
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zen” to the fluid. Due to the induction equation, this is also a
property of the ideal MHD magnetic field lines.

The conservation of the helicity �in the HD and MHD
cases� and the frozen character of the magnetic �B� and the
vorticity ��� fields are both topological and dynamical prop-
erties. Woljter used these properties, which are satisfied in
the ideal case �see Paper I�, to demonstrate his theorem. In
addition, we identify the enstrophy, defined by �� 1

2��2dV,
as the topological analog of the magnetic energy
M = 1

2�B2dV, through the association B↔�. Extremizing the
enstrophy, subject to the conservation of the helicity
constraint, we obtain a Beltrami flow �see the Appendix of
Paper I�,

		1

2
� �2 − �� v . �
dV = 0 ⇒ � = �v . �2�

However, this identification cannot be extended to the
stability of the equilibrium. Contrary to the force-free stabil-
ity case, which is determined by the minimum character of
the magnetic energy, stability is not derived from Eq. �2�.
Thus, the physical meaning and the role of the enstrophy in
the equilibrium state determination remain unclear.

The starting point of this work is a result of Paper I. We
showed that an axisymmetric Beltrami flow, in a uniform
rotating and translating frame, has a marginal stability under
helical Beltrami flow perturbations with the same eigenvalue
as the basic flow. In fact, a conjecture of Paper I is that this
equal eigenvalue condition is a sufficient condition for the
Beltrami flow stability.

The paper is organized as follows. In Sec. II, we trace
the HD-MHD analogies that we are considering. In Sec. III,
we use Arnold’s variational stability principle to study the
stability of the Beltrami flow and we show its application to
the transition from an axisymmetric flow to a helical one. In
Sec. IV, we discuss the physical meaning and the role of the
enstrophy in both the equilibrium and stability determina-
tion. Section V is devoted to the conclusions. Detailed cal-
culations are relegated to Appendices A and B, in order not
to deviate the text from the principal line of reasoning.

II. ANALOGY BETWEEN THE IDEAL MHD AND HD:
STATIC AND DYNAMIC CASES

Assuming the following identifications: �1� the magnetic
field and the speed of the fluid B↔v, �2� the current and the
vorticity vector j↔�, and �3� minus the pressure with the
total head −p↔h, the following MHD and HD equilibrium
equations are equivalent provided similar boundary condi-
tions are satisfied,

j � B = �p, j = � � B, � · B = 0 in D ,

�3�
n̂ · B = 0 on � D ,

and

� � v = − �h, � = � � v, � · v = 0 in D ,

�4�
n̂ · v = 0 on � D .

We note that a force-free equilibrium with j=�B corre-
sponds to a Beltrami flow type equilibrium, i.e., �=�v.
However, the stability is not covered by the analogy
because—via this identification—there is no correspondence
between the dynamic equations,

�B

�t
= � � �v � B� �5�

and

��

�t
= � � �v � �� . �6�

We now consider the analogy that results from the iden-
tification B↔� based on dynamical topological properties.
First, we consider the analogy associated with Eqs. �5� and
�6� that express the frozen in condition to the ideal fluid of
the magnetic field and of the vorticity, respectively. Second,
we take into account the invariance of the dynamic helicities,
defined as

HB =� A . BdV in D �7�

for the MHD case, and as

H� =� v . �dV in D �8�

for the HD case. These invariances are also manifestations of
topological properties, such as the linkage of the magnetic
field lines and the vorticity lines.4

Woltjer2 showed that a minimum of the magnetic energy,
M = 1

2�B2dV, subject to the conservation of HB, is obtained
when the equilibrium field is of the force-free type. That is,

� � B = �B, � = const. �9�

Moffatt4 has demonstrated that H� is a constant for ideal
fluids when n̂ .�=0 on �D.

Based on common topological properties, this identifica-
tion implies that the magnetic energy corresponds to the
enstrophy,

� =
1

2
� �2dV . �10�

In Paper I, we showed that the enstrophy is an
extreme—with the condition that the HD helicity is
constant—when the hydrodynamic equilibrium is a Beltrami
flow,

� � v = �v, � = const, �11�

equivalent to �see Paper I�,

� � � = ��, � = const, �12�

with the boundary conditions considered.
As was already mentioned, this result does not assure

stability due to the fact that canceling ��v does not have
the same physical meaning as the cancellation of the Lorentz
force in the force-free case.

074102-2 González, Costa, and Santini Phys. Fluids 22, 074102 �2010�
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In comparison with the magnetic energy role in Woljter’s
theorem, one of our aims is to determine the role of the
enstrophy, both in the equilibrium and the stability determi-
nation. Thus, we establish our comparison defining a topo-
logical analogy which identifies �i� the dynamical properties:
the frozen character �Eqs. �5� and �6��, the topological prop-
erties of the helicities �Eqs. �7� and �8��, and �ii� the force-
free and Beltrami flow equilibria �Eqs. �9� and �12�� which,
subject to the conservation of the helicities, are extremes of
the magnetic energy and of the enstrophy, respectively.

III. THE STABILITY OF THE BELTRAMI FLOW

To study the stability of the Beltrami equilibrium flow
we apply Arnold’s variational principle for steady inviscid
circulation-preserving flows.6–8 Following the usual proce-
dure we perturb the equilibrium with a virtual incompress-
ible displacement � that follows the dynamics �Eq. �6��, that
is,

	� = � � �� � �E�, 	v = �� � �E�, �E = �vE,

�13�
� · � = 0, in D, n̂ · � = 0, in � D ,

where �E represents the Beltrami flow equilibrium. The ki-
netic energy K= 1

2�v2dV is stationary at the equilibrium, i.e.,
	K=�vE ·	vdV=0. The second variation of the kinetic en-
ergy is9

	2K =
1

2
� ��	v�2 + �vE � �� · 	��dV , �14�

thus, according to Arnold’s variational principle, the equilib-
rium is stable if 	2K has a definite sign.

If we replace 	v and 	� in Eq. �14� by the expressions
given in Eq. �13�, the second variation of the kinetic energy
is

	2K =
1

2
� ��� � �E�2 + �vE � �� · � � �� � �E��dV ,

�15�

using �E=�vE and changing the order of the factors in the
cross product vE��, we obtain

	2K =
1

2
� ��� � �vE�2 − �� � vE� · � � �� � �vE��dV ,

�16�

which can be written in a compact form as

	2K =
1

2
� ����2 −

1

�
� · �� � ���dV,

with � � �� � vE. �17�

A particular virtual disturbance which satisfies the
Beltrami flow condition, with eigenvalue 
=const,10 is

� � � = 
� . �18�

Following this procedure, Moffatt3 showed that if

��, being � the eigenvalue of the Beltrami flow equilib-

rium, defined as in Eq. �13�, the perturbation is generally
unstable. Moreover, our conjecture states that if 
=� the
stability is guaranteed.

In order to determine up to what extent our conjecture is
valid, we now apply Eq. �17� to the important flow transition
where a cylindrical axisymmetric Beltrami flow results in a
Beltrami flow with helical symmetry,1,11–13 i.e., the transition
of the flow from the m=0 mode to the m=1 mode. The
Beltrami flow equilibrium chosen is

vr
E = 0, v�

E = �AJ1��r�, vz
E = �AJ0��r� , �19�

where A=const and, as a perturbation with helical Beltrami
flow structure with eigenvalue 
=�, we take1,11–13

� = �0
f�r�,g�r�,h�r��
cos 
,sin 
� , �20�

where �0=const and 
=�−kz is the helical coordinate with
k=const. The helix pass is defined as �=2� /k, i.e., the
change of z when the angle 
 varies 2�. Also, f�r� ,g�r� ,h�r�
are given by

f�r� = ��

k
J1���r� −

�

k2r
J1��r�� , �21�

g�r� = � 1

kr
J1��r� −

��

k2 J1���r�� , �22�

h�r� =
�2

k2 J1��r� , �23�

where

�2 = �2 − k2. �24�

These flows are present in tubes11 of radius b0, consid-
ering frames with rotational speed � and translational speed
U0. They also appear as Kelvin waves in tubes with a soft
expansion,1 e.g., from b0 to another radius b. As Beltrami
flows are characteristic of Kelvin waves, it is convenient to
obtain dimensionless variables using the magnitudes �, U0,
and b0. Thus, the flow is characterized by the Rossby num-
ber: �=U0 /�b0. On the other hand, as we are leading with a
Beltrami eigenvalue of a Beltrami flow, generated by the
expansion of a Rankine vortex1,14 and given by �=2� /U0,
this expression can be written as �̃=2 /� �where �̃��b0�,
i.e., a dimensionless quantity.

Note that, if we define �̃��b0 and k̃�kb0, Eq. �24� can

be rewritten as �̃2= �2 /��2− k̃2. So, if the flows represented
by Eqs. �19�–�24� are replaced as �→2 /�, �2→ �2 /��2

− k̃2, the variable r and the amplitudes A ,�0 are replaced by

the dimensionless quantities r̃�r /b0, Ã�A /U0b0, and �0˜

��0 /b0, respectively. From now onward all the relevant
quantities of the analysis, i.e., kinetic energy and its varia-
tions, are dimensionless.

Taking into account that a characteristic longitude of the
Beltrami flow variation is �−1=� /2, the integral of Eq. �17�
can be performed varying 
 between 0 and 2� and averag-
ing radially over �−1. From Eq. �17� we obtain 	2K as a
function with dependence on the variables � and k, related

074102-3 On a variational principle for Beltrami flows Phys. Fluids 22, 074102 �2010�
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with the helix pass. For a fixed value of �, the k values vary
in the range k�2 /� where the functions, Eqs. �21�–�23�, are
defined.

In Paper I we were able to show that the transition de-
fined by Eqs. �19�–�24� is associated with the marginal sta-
bility of the Beltrami axisymmetric flow against Beltrami
flow type perturbations with equal eigenvalues: 
=�. In fact,
Eqs. �21�–�23� represent the most general form of the
Beltrami flow type perturbations allowed with this symmetry
�i.e., the helical symmetry with m=1�. We then apply Eq.
�17� to transition equations �19�–�24� and we obtain Fig. 1.
The figure shows 	2K as a function of k using quantities
defined in Eqs. �19�–�24� for different values of the Rossby
number. As we can see 	2K is positive, in agreement with the
stability found in Paper I.

As noted previously Moffatt3 has also restricted the ap-
plication of Arnold’s theorem to an ABC Beltrami flow with
eigenvalue � and a Beltrami flow perturbations of the type
Eq. �18�, with eigenvalue 
. In general, 
�� and in this
case 	2K is not sign definite. However, if in Moffatt’s work
we restrict the general case to the class of disturbances with

=� the sign of 	2K is definite, in agreement with our
conjecture.

IV. THE ENSTROPHY ROLE

We now turn to the role of the enstrophy in the stability
and equilibrium determination. We showed that Eq. �2� leads
to a Beltrami flow type equilibrium. Following an inviscid
circulation-preserving flow dynamics �	�=�� ����E��,
the enstrophy first order variation for the equilibrium is

	� =� �E · 	�dV

=� �E · � � �� � �E�dV

=� ��� � �E� · � � �E − � · ��E � �� � �E���dV ,

�25�

where the last term can be written as

� �� · ��E � �� � �E���dV

=� ��n̂ · ����E�2 − �n̂ · �E��� · �E��dS = 0. �26�

For a Beltrami flow type equilibrium with ���E=��E,

	� =� ��� � �E� · � � �E�dV

=� ��� � �E� · ��E�dV = 0, �27�

so the enstrophy is stationary for this type of equilibrium.
We are now interested in the second order variation of

the enstrophy and its relation with stability. Consider the
evolution equation of the enstrophy,15

d�

dt
= − �� ��� � ��2�dV +� �� · �� · ��v�dV . �28�

For the inviscid case the enstrophy is conserved if the second
term of Eq. �28� vanishes. This is true for the two dimen-
sional cases but is not assured for the three dimensional
ones.15 However, note that in the Beltrami flow case
��= �v, �=const�, the term vanishes in accordance with the
boundary conditions considered here. In fact,

� �� · �� · ��v�dV =� �1

�
� · �� · ����dV

=� � 1

2�
� · ���2��dV

=� � 1

2�
��� · n̂��2��dS = 0 �29�

because

� · �� · ��� = � · � 1
2 � �2 − � � � � ��

= � · � 1
2 � �2 − � � ���

= � · ���2� − �2 � · � = � · ���2� .

Hence, � is an invariant proportional to the kinetic
energy,16 and their behavior is the same, i.e., they reach their
extremes simultaneously; the second order variations have
the same sign so the stability of the equilibrium is estab-
lished by this second order quantity. Note that the second
order variation of the enstrophy for the case studied in Sec.
III, with the equilibrium and the virtual displacement defined
in Eq. �13�, is

	2� =� ��� � ��2 −
1

�
� · �� � ���dV,

with � = �� � vE. �30�

Figure 2 shows the result of applying last formula, for
	2�, to the transition defined by Eqs. �19� and �20� of Sec.
III. Within scalar factors, note that the figure is the same as
Fig. 1 showing the symmetric role played by the kinetic en-
ergy and the enstrophy in this transition.

��0.3��1.0

1 2 3 4 5 6
k

0.05

0.10

0.15

Δ 2K

FIG. 1. �Color online� Second variation of the kinetic energy divided by the
square product of the amplitudes �A�0�2 using quantities defined in transi-
tion equations �19�–�24�, as a function of k for the Rossby numbers
�=0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0.
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V. DISCUSSION AND CONCLUSIONS

We can now summarize our results.

�1� Considering the topological analogy between the HD
and the MHD, we showed that the enstrophy plays the
same role as in the magnetic energy in Woljter’s
theorem, in the sense that the Beltrami flow equilibrium
with constant eigenvalue is obtained when the enstrophy
is extremized with the constraint that the helicity is
conserved.

�2� For the Beltrami flow equilibrium, the enstrophy is
stationary.

�3� The stability of the Beltrami flow equilibrium is not a
direct consequence of the process given in Sec. II. This
is a difference with Woljter’s theorem, where a mini-
mum of the magnetic energy is obtained for a force-free
equilibrium with constant �.

�4� The variation of � is defined irrespective of a uniform
rotation and uniform translation that can be thought of as
a surface integral, which can be eliminated through
boundary conditions �Appendix A�. Then, in Eq. �2� the
enstrophy makes these frames to appear as the natural
ones, in the sense that some variational principles hold
in these systems.17

�5� Using Arnold’s theorem stability principle, we showed
�Sec. III� that a Beltrami axisymmetric flow is stable
under helical perturbations with m=1 and with the same
eigenvalue that the basic flow. In agreement with Paper I
results, where we showed its marginal stability, Moffatt
has applied the same procedure to study the stability of a
Beltrami flow of the ABC type. A point in accordance
with our conjecture is that in Moffatt’s work 	2K has a
definite sign if the perturbations are Beltrami flow per-
turbations with the same eigenvalue that the basic flow.

�6� In Paper I �Eq. �10��, we showed that the addition of a
Rankine and a Beltrami axisymmetric flow, similar to
that described in Sec. III, is marginally stable under Bel-
trami helical perturbations with the same eigenvalue. On
the other hand, in Appendix B, we showed that a Rank-
ine flow plus a Beltrami flow satisfies the Euler equation
on a system that rotates uniformly. Thus, the Beltrami
flow can be considered as a m=0 perturbation not re-
stricted to small amplitudes, i.e., it can be considered as

a finite amplitude perturbation of the Rankine.
Batchelor14 and Chandrasekhar18 have shown that finite
amplitude plane or axisymmetric waves, propagating in
a rotating fluid, are possible. It can be verified that in
both cases the flow is of the Rankine flow plus Beltrami
flow type.

�7� We have verified that an analog to Fig. 1 is obtained
applying Arnold’s theorem to a basic flow subject to a
Beltrami flow m=1 helical perturbation as the one given
in Eq. �10� of Paper I. Then, this basic flow is formally
stable. The formal stability such as that considered in
Arnold’s theorem is a stronger condition than the linear
stability one, but it is weaker than the nonlinear
stability8 condition.

�8� In the special case of a Beltrami flow with the boundary
conditions here considered, the enstrophy is a dynamic
invariant. Moreover, the second order variation of the
enstrophy, 	2�, coincides with the second order varia-
tion of the kinetic energy, 	2K, and thus they have a
symmetric role in the determination of the stability of
the Beltrami flow equilibrium.

Finally, how can we then interpret the perturbation pro-
cess of a Beltrami basic flow by another Beltrami flow, of
equal eigenvalue? Supposing a Beltrami axisymmetric flow
of eigenvalue � plus a Rankine one, the theorem presented in
Appendix B indicates that a finite amplitude is allowed if we
consider the axisymmetric Beltrami flow as the perturbation
of the Rankine. So, as suggested by Batchelor,14 finite am-
plitude rotating axisymmetric waves are possible. Consider
the axisymmetric Beltrami flow in a rotating frame as the
basic flow and an infinitesimal helical perturbation of the
Beltrami flow type with the same � eigenvalue. We know
that stability is marginal �Paper I�. If m=1, when the Rossby
� reaches the �cc �Ref. 19� value, the basic flow subject to
finite perturbations of this type is unstable. A Hopf bifurca-
tion occurs leading to a final rotating Beltrami flow wave
state of helical symmetry and equal � eigenvalue. A symme-
try breaking transition has occurred. In Sec. III we see that
the basic flow is formally stable upon perturbations of the
same type.

In Paper I �Eq. �28�� we saw that the Beltrami flow can
be expanded in a Chandrasekhar–Kendall20 basis, each term
being of a Beltrami flow type of the same eigenvalue �.
Appendix B theorem shows that the expansion coefficients
can be of finite amplitude. Thus, we can take the addition of
the m=0 and m=1 modes as the basic flow and m=2 mode
as the Beltrami flow type perturbation of the same � eigen-
value. Hence, we can consider that we have a process of
successive bifurcations with increasing angular speed or de-
creasing Rossby number �. The formal stability of the
flow upon perturbations could be an indication of a new
equilibrium state reached due to the finite amplitude of the
perturbation.

An important issue is to understand the way transitions
between Beltrami flows of the same eigenvalue � occur. This
will be a subject of further research work.

1 2 3 4 5 6
k

0.5

1

1.5

2

Δ 2�

��0.3��1.0

FIG. 2. Second variation of the enstrophy divided by the square product
amplitudes �A�0�2, applied to transition equations �19�–�24�, as a function of
k for the Rossby numbers �=0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0.
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APPENDIX A: ENSTROPHY VARIATION
WITH RESPECT TO A UNIFORM ROTATION
AND TRANSLATION

In a frame with rotational velocity � and translational
velocity U0, the variation of the enstrophy is given by

	� �� � �v + U0� + ��2dV

=� 2�� + �� · 	�dV

= 	� + � ·� ���n · �� − ��n · v��dS , �A1�

where

	� = � � �� � �� , �A2�

was used. The surface term in Eq. �A1� vanishes due to the
boundary conditions.

APPENDIX B: ADDITION OF A RANKINE FLOW
AND A BELTRAMI FLOW

If vR is the relative velocity field of a Rankine vortex

�the rotating frame turning with �̃=�̃ez� and vB is a
Beltrami flow defined as �B=��vB=�vB, then the com-
posed flow v=vB+vR satisfies the Euler equation,

� � �v + 2�̃ez� = − �H , �B1�

with

H =
P

�
+

�v2 − r2�̃2�
2

. �B2�

The Beltrami flow pressure PB satisfies

�PB = − ��vB . ��vB. �B3�

Choosing H as

H = HB + HR +
�P − PR − PB�

�
+ vR . vB �B4�

and

HR =
PR

�
+

�vR
2 − r2�̃2�

2
, HB =

PB

�
+

�vB
2�

2
, �B5�

and

�PR = − ��vR . ��vR − �̃ � ��̃ � r� − 2�̃ � vR, �B6�

where HR and HB are the Bernoulli functions for vR and vB,
respectively, being PR the Rankine pressure.

Since the Rankine vortex obeys the Euler equation, Eq.
�B1�, and the Beltrami flow satisfies the same equation with

�̃=0, being

�B � vB = 0 �B7�

�so the relation �HB=0 holds�, we obtain

�H = vR � �R + �� �P − PR − PB�
�

+ vR . vB� , �B8�

where �R=2�Rez is the Rankine vorticity measured from the
laboratory frame. Following the procedure to obtain Eq. �B6�
for the Rankine flow, using the Euler equation, it results

�v . ��v = −
�P

�
− �̃ � ��̃ � r� − 2�̃ � v . �B9�

From this equation, Eq. �B3�, and the vectorial identity

��vR . vB� = vR � �� � vB� + vB � �� � vR�

+ �vR . ��vB + �vB . ��vR, �B10�

we obtain

− �B � vR − �R � vB = �� �P − PR − PB�
�

+ vR . vB� .

�B11�

Therefore, using Eqs. �B11�, �B7�, and �B8�, we prove that v
satisfies the Euler equation, Eq. �B1�.
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