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Effect of compressibility on the stability of a vortex sheet in an ideal magnetofluid

S. Duhau and J. Gratton

Departamento de Fisica, Facultad de Ciencias Exacias v Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina

(Received 1 May 1972)

The hydromagnetic stability of a vortex sheet with respect to all modulations is examined. A domain of
absolute stability not previously noted is found for high compressibility. Stability criteria are given. Onset
of instability is related to radiation of hydromagnetic waves.

The hydromagnetic Kelvin-Helmholtz problem has
been investigated by several authors,)— and some
applications to the interaction between the solar wind
and the earth’s magnetosphere have been attempted.*®
Recently, satellite observations have provided evidence
of Kelvin-Helmholtz instability in the solar wind-
magnetosphere boundary, as discussed by Dungey and
Southwood.®

Notwithstanding the fact that this problem has been
widely studied, some important features that deserve
further discussion have so far escaped attention. It is
generally believed that the flow is unstable for relative
velocities greater than a certain critical value which
decreases as the compressibility is increased.! We shall
presently show that the effect of compressibility is
more complicated. Indeed, when the compressibility
is high enough, so that the sound velocity is smaller
than the Alfvén velocity, we find two intervals of values
of the streaming velocity in which the flow is stable
with respect to all modes.

Let us consider two semi-infinite, compressible, per-
fectly conducting, inviscid fluids, separated by a vortex
sheet that lies in the (x, z) plane. The fluids are flowing
along a uniform magnetic field B, with velocities #ca
(y>0) and —uca {y<0) (ca’= B*/4wp). The x axis will
be taken in the direction of the field. The density p and
the pressure p are assumed to be uniform in all space.

Any small arbitrary perturbation of the system can
be expressed in terms of Fourier components of the form

Q(y) exp(—iwt+ik x+ik,z).

Here, %;) and %, are the parallel and normal components
(with respect to B) of the wavenumber which charac-
terizes the modulation of the interface, and w is the

frequency. We shall take
Q(y) =exp(—Kyy),

= exp(—{—sz) )

y>0
Re(Ki2)#0, (1)

y<0;

in order to ensure boundedness. When Kj,» are purely
imaginary, their signs in (1) will be chosen according
to radiation criteria. K; and K, are determined by the
dispersion relation of the slow and fast hydromagnetic
waves:

(m,2—1) (1,8~ ¢?)

(14+¢) (n,2—$?)

Kl,22=kJ.2_k||2 (2)
Here,
c=(vp/pca®)™?,  s=c/(14+)'72,
are (in units of c4) the velocity of sound, and the limit-
ing value of the parallel component of the phase
velocity of the slow wave for propagation almost per-
pendicular to the field. Also
91,0= 0k, v=w/k||Ca,

denote the parallel component of the phase velocity
of the perturbation with respect to the media and to
the observer. The dispersion relation for the oscillations
of the interface is' then

L (v?— 1)/K1]:i:|:(922—1)/K2]=0- (3)

In Eq. (3), the + sign must be taken if Re(K},q)#=O0.
Otherwise, the sign must be chosen according to
radiation conditions.

When Eq. (3) is rationalized, one obtains [after
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factoring out the stable trivial roots (v«)2=0] a fourth-
degree polynomial in #?:

P(‘U2, u?, ‘12) =0, = (1+62) kl/kll- (4)
The values of # corresponding to marginal stability
must be associated with the double root of Eq. (4).
[Not all roots of Eq. (4) are roots of the dispersion
relation (3), since the rationalization process introduces
spurious roots, so that the solutions of Eq. (4) must
be checked for consistency with Eq. (3).] These critical
values of # will depend on ¢, that is, on the obliqueness
of the modulation of the interface. Therefore, in order
to find the domains of absolute stability, that is,
stability to all modes, one must look for the extremes
of the critical values. These are determined by the
conditions

opP
P=0, =

—=0, =-=0. (5)

The system (5) can be solved exactly for %, », ¢. For
brevity, we omit details of the analysis. One finds that
minimum values of # giving rise to double roots occur
for g=0. These are

u’=u1=%(1+s)s

v=3(1-3), (6a)

and

w=wuy=1, =0, (6b)
It can easily be shown by expanding the dispersion
relation in series that for a slightly oblique modulation
(¢*<1) the double root (6a) leads to an overstability
(v complex) of the system for #>u;, and that the
double root (6b) lends to a monotonic instability
(v purely imaginary) for #>1 when ¢< 1, and for #<1
when ¢>1, In passing, we mention that hesides #; and
o, there are, for ¢> 1, other significant solutions of the
system (5) which occur for ¢=0. They are related to
other unstable modes. However, these other extreme
values of # are always greater than ;. We shall not
bother with them, since we are concerned omly in
finding the domains of stability with respect to all
modes.
There is also a maximum value of #, given by
w=u=3(14+sV2), (7

for
g=L[(1—c")/c1(c+5V2),
corresponding to the double root

2=3(1—sv2).

This is the only extreme which occurs for ¢g=<0.
Besides, one can readily verify that in the special
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case =1 (g arbitrary) the polynomial (4) always has
a zero root. Then, by straightforward, but tedious,
algebra, it is possible to show that the remaining third
degree equation always has, provided ¢<1, three dif-
ferent positive roots 2>0.

From the above considerations one concludes that:

(i) The system will be absolutely stable (within the
model) for

2w <y, (8)
in agreement with the result obtained by Fejer.!

(ii) The system will be also stable with respect to all
modes provided

<1, sy <2< o, (9)

(ifi) When % and ¢ do not satisfy conditions (8) and
(9), the system is unstahle with respect to modes cor-
responding to some finite interval of g.

The present results are illustrated in Figs. 1 and 2.

The fact that the system is stable in the range (9) of
sub-Alfvénic velocities when the compressibility is high
was not hitherto recognized. On the contrary, other
workers'® apparently deny that the system might be
stable (to all modes) for any relative velocity greater
than 2.

We would like to point out that the critical relative
velocities 2wy, 2u, that lead to the onset of instability
for almost parallel modulation are just the minimum
relative velocities required for the radiation of a pair
of hydromagnetic waves from theinterface. When u=1,,
¢<1, the pair consists of a fast hydromagnetic wave

unstable
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F1c. 1. Domains of stability with respect to all modes. The
sha.detc)ll regions correspond to situations in which the system is
unstable.
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Fic. 2. Stability of the modes for ¢=0.6. The diagram is a
polar plot of # vs 6, the angle which gives the direction of the
modulation of the interface. The system is absolutely stable in
the intervals #<w; and %, <u <#,.

traveling along the field lines in the half-space y<0,
and a slow wave nearly perpendicular to the interface
for y>0. When #=1u,, but ¢>1, both are slow waves;
that in >0 is almost normal to the interface while the
other propagates parallel to the magnetic field. When
u=1uy, ¢<1, both are fast hydromagnetic waves and
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travel along the field.” In each case one of the waves
(the one in y>0) carries negative energy. (All the
present considerations are for positive v; if 9<0 the
situation is similar except for an exchange in the
roles of both half-spaces.)

The radiation of waves from the boundary between
two media in relative motion has been noted by several
authors,®® and is one of the usual features of the
Kelvin—-Helmholtz problem.5” It has been shown®:!
that the radiation of waves and the Kelvin-Helmholtz
instability are closely related.

It is our belief that this relationship will be useful
in the search for stability criteria in more complicated
problems of the same family.

This research was supported by the Comisién
Nacional de Estudios Geo-Heliofisicos and by the
University of Buenos Aires under a grant from the
Fondo Especial para la Investigacién Cientifica.

17, A. Fejer, Phys. Fluids 7, 499 (1964).

2 A. K. Sen, Phys. Fluids 7, 1293 (1964).

3 D. ]J. Southwood, Planet. Space Sci. 16, 587 (1968).

4 A. K. Sen, Planet. Space Sci. 13, 131 (1965).

5 J. F. McKenzie, Planet. Space Sci. 18, 1 (1970).
(1;;6)“" Dungey and D. J. Southwood, Space Sci. Rev. 10, 672

7 Radiation of a pair of slow waves, both almost normal to the
interface, occurs for 2u>s. This situation corresponds to the
trivial zero root of Eq. (3) and, of course, does not lead to in-
stability.

8 J. W. Miles, J. Acoust. Soc. Am. 29, 226 (1957).

? J. A. Fejer, Phys. Fluids 6, 508 (1963).

10See for example F. Gratton, J. Gratton, and J. Sénchez,
Nucl. Fusion 11, 25 (1971); J. Gratton and F. Gratton, Plasma
Phys. 13, 567 (1971); S. Duhau, F. Gratton, and J. Gratton,
Phys. Fluids 14, 2067 (1971).
( ‘917F ) Gratton, and J. Gratton, Bull. Am. Phys. Soc. 17, 495

1972).

NUMBER 1 JANUARY 1973

Pressure limitation in a simple model of a tokamak
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The simple model of a tokamak studied by Strauss is reinvestigated. By defining poloidal 3 to be the ratio
of the integrated pressure to the square of the toroidal current, it is shown that this quantity is bounded.

As a result of the encouraging studies made on
tokamaks!? it is of interest to determine the theoretical
upper limit (if any) to the pressure which may be
confined. More precisely, we require the evaluation of
the limit on the poloidal 8, 8;. This is usually defined

to be?
Br=8xI2[p dS, (1)

where 7 is the toroidal component of current and the
integral is taken over the minor cross-sectional area of
the plasma.

Most studies of magnetohydrodynamic equilibria in
tokamaks have been made in terms of the inverse

aspect ratio ¢, where e<1. For 8;~1,3% the analysis can
be carried through for an arbitrary pressure distribu-
tion. To investigate systems with Br~e7%, it is necessary
to prescribe simple models for the pressure and toroidal
current distribution.t7:8 A feature common to all this
work Is that the confined pressure is limited by the
appearance of a second magnetic axis, the upper limit

to Br being
Br=Ae, (2)

where 4 is a number of order one and depends on the
precise forms of pressure and current distribution, as
well as on the shape of the plasma cross section.?



