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Renormalization group and nonequilibrium action in stochastic field theory

Juan Zanella* and Esteban Calzetta†
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We investigate the renormalization group approach to nonequilibrium field theory. We show that it is
possible to derive nontrivial renormalization group flow from iterative coarse graining of a closed-time-path
action. This renormalization group is different from the usual in quantum field theory textbooks, in that it
describes nontrivial noise and dissipation. We work out a specific example where the variation of the closed-
time-path action leads to the so-called Kardar-Parisi-Zhang equation, and show that the renormalization group
obtained by coarse graining this action, agrees with the dynamical renormalization group derived by directly
coarse graining the equations of motion.
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I. INTRODUCTION

The goal of this paper is to investigate the renormalizat
group~RG! approach to nonequilibrium field theory. We d
rive the renormalization group from iterative coarse grain
of the Schwinger-Keldysh or closed-time-path~CTP! action
@1,2#. We work out a specific example where variation of t
CTP action leads to the so-called Kardar-Parisi-Zhang~KPZ!
equation@3–5#. We show that the renormalization group o
tained from the coarse grained action~CGA!, agrees with the
dynamical RG derived by directly coarse graining the eq
tions of motion@3,4#.

The RG@6–8# is a powerful method by which to analyz
complex physical systems. Given a description of the sys
at some scale, a new description at a lower level of resolu
is derived by coarse graining the former. By analyzing h
the picture of the system changes~or fails to change! with
resolution, important physical information is derived.

A field theory is most often not considered a fundamen
description of a physical system. Its field variables are c
sidered as the relevant degrees of freedom at some degr
resolution. This description is not complete, leaving o
some uncontrolled sector whose interaction with the fi
variables is characterized as noise and dissipation@9,10#. We
would like to associate with each level of description a c
responding action, so that the changes in this action as
change the resolution of our description allow us to defi
the dynamical RG for the theory.

A simple way of implementing this idea is by looking
the CTP generating functional, whose Legendre transfo
yields the CTP effective action~EA!. The generating func-
tional admits a representation as a path integral over fluc
tions in the field variables of the exponential of an acti
functional. By performing a partial integration over som
fluctuations, we obtain a new integrand which may be u
to define the CGA@11#. The change in the CGA as mor
fluctuations are integrated away defines the dynamical R

In equilibrium, there is an efficient way to code a descr
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tion of the system through some adequate thermodyna
potential~the free energy for a system in canonical equil
rium, etc.!. In field theory, the proper thermodynamic pote
tial under canonical equilibrium conditions is the Euclide
action, where the time variable is identified with periodici
b51/T, and T is the temperature. The Euclidean CGA
defined from a partial integration over the field variables;
variation of the Euclidean CGA with scale is given by th
Wegner-Houghton equation@12#, and gives rise to the so
called exact RG@13#.

In dynamical situations, such devices are not forthcomi
and so the dynamical RG is usually formulated at the leve
the equations of motion@6#. Since thermodynamic potential
are most often simpler than equations of motion, the equi
rium RG has been much better developed than the dynam
RG.

In dynamical situations, the Lorentzian EA, which may
used, for example, to deriveS-matrix elements of the field
operators, cannot be used to derive a physically sound e
lution for the background fields@14#. A simple solution lies
in adopting the so-called Schwinger-Keldysh techniqu
@15,16#. In this paper, we show that essentially the sa
ideas can be used to define a convenient CTP action
stochastic field theories@17#. For the heat diffusion equation
near equilibrium this was done in Ref.@18#.

The basic element of the Schwinger-Keldysh or C
method is the doubling of degrees of freedom. For each fi
variable in the original theory, a new mirror variable is i
troduced; accordingly, the number of external sources in
generating functional is also doubled, and the EA is defin
as a Legendre transform with respect toall variables inde-
pendently. The dynamics for the background~also called
classical or mean! fields is obtained by taking the variatio
of the EA, and then~but only then! imposing some constrain
on the mirror variables, in order to eliminate the excess
grees of freedom. The formalism is built in such a way as
make sure that the resulting dynamics is causal and resp
the reality of the background fields.

We wish to point out that there are other implementatio
of the doubling of degrees of freedom idea. The best kno
in this context is possibly the so-called Martin-Rose-Sig
©2002 The American Physical Society34-1
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JUAN ZANELLA AND ESTEBAN CALZETTA PHYSICAL REVIEW E 66, 036134 ~2002!
formalism @19# for stochastic differential equations~SDE!,
which is closely related to the CTP approach@20#.

Since the CTP EA may be used to derive real and ca
equations of motion for the expectation values of field o
erators~and, in an extension of the formalism, also for th
correlations@10,21#! it is natural to define the RG for non
equilibrium field theory from the iterated coarse graining
the CTP action. This approach to the RG has been put
ward in Refs.@1# and@2#. These authors show that, under t
adiabatic approximation, the RG defined from the CTP
tion reduces to the usual~equilibrium! one.

However, nonequilibrium field theories also manifest
regime~called strongly dissipative by Bereraet al. @22#! with
very different properties from equilibrium fields. At the lev
of the CTP EA@23,24#, this regime is characterized by th
EA becoming complex, and also by the entanglement of
original field variables and their doubles, in such a way t
the CTP EA no longer may be written as the difference
two independent action functionals.

These nonseparable terms are associated with dissip
~when they are real! and noise~when they are imaginary!.
The joint presence of noise and dissipation, which is due
the unitarity of the underlying theory, is the dynamical fou
dation of the fluctuation-dissipation relation near equil
rium.

On closer examination, it is not surprising that studies
the nonequilibrium RG in field theory so far have found
evidence of this strongly dissipative regime. The case
analogous to, for example, the situation in thermal fi
theory in four space-time dimensions. An approach to
renormalization group based on the ultraviolet behavior
correlation functions~which is insensitive to temperatur
@25#! will fail to disclose the nontrivial fixed point at very
high temperatures, when the theory becomes effectiv
three dimensional. In the same way, the RG derived un
the adiabatic approximation is insensitive to noise and di
pation, because these are nonadiabatic effects@9#.

In the thermal case, what is needed is an ‘‘environm
tally friendly’’ approach to the RG@26#, where temperature
dependent correlations and coupling constants are u
throughout. In the nonequilibrium case, the starting po
must be a noisy and dissipative CTP action, including n
parameters associated with the nonadiabatic terms.

The stumbling block in the completion of this program
the lack of an efficient parametrization of the nonadiaba
CTP action. Of course, it is possible to start from the ad
batic action~that is, the difference of two Lorentzian action
for the field and mirror variables, respectively! and derive the
nonadiabatic action after coarse graining some of the qu
tum fluctuations. However, the fact that this is necessa
done in some kind of perturbative scheme~which assumes
that the resulting corrections to the action are small! to a
large extent defeats the purpose of the whole exercise. H
ever, the strongly dissipative regime of nonequilibrium fie
theory truly exists, to such extent that most practical ap
cations of nonequilibrium field theory are actually based
stochastic classical field theory, kinetic theory, and even
drodynamics, all of them limiting cases of the strongly d
sipative regime. An interesting example is the slow rolli
03613
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assumption made in inflationary cosmology~see, for ex-
ample, Ref.@27#!. There, the second time derivative of th
inflationary field, which obeys a Klein-Gordon equation,
discarded when compared with the dissipative term.

The goal of this paper is to put forward the essential e
ments of the CTP approach to stochastic dynamics, and
derivation of the dynamical RG therefrom. Rather than
abstract presentation, we have chosen to work on a spe
example. We have chosen a parametrization of the CTP
tion for a scalar field theory whose variation leads to t
noisy KPZ equation in 311 dimensions@3–5#. We have
chosen this example because it is relatively simple, while
manifold applications warrant its physical cogency@5,28–
30#. Related with the KPZ equation is the Burger’s equati
@31# which, among its multiple applications, has been use
in describing problems of structure formation in cosmolo
@32#.

The paper is organized as follows. In the following se
tion, we introduce the basic notions regarding the CTP f
malism; then we proceed to defining the CTP action and
CTP generating functional for SDE, and show the connect
with the usual~single-path! functional formulation for SDE.
We then apply the CTP approach to the KPZ equation, c
culating its associated CTP EA. In Sec. III we introduce t
CG generating functionals and the corresponding action
CGA. In Sec. IV we study the way the CGA runs wit
changing coarse graining, and compare the resulting RG w
the one derived by other means. We show that the resul
RG displays nontrivial running for the noise and dissipati
terms in the action. We conclude with some brief final r
marks in Sec. VI.

In Appendix A it is shown explicitly that the field equa
tions derived from the CTP EA for the KPZ equation repr
duce the right dynamics for the classical~i.e., mean or back-
ground! field. In Appendix B we compute the CGA to secon
order in the nonlinearity. In Appendix C we show that th
effective theory for the modes that survive the coarse gra
ing of the KPZ CTP generating functional, is equivalent
that obtained by coarse graining the equations of motion
the field.

II. CLOSED-TIME-PATH AND STOCHASTIC
DIFFERENTIAL EQUATIONS

After a brief review of CTP formalism, we shall procee
to define the CTP action and the CTP generating functio
for a class of SDE. Next, we shall apply our method to t
specific example of the KPZ equation, computing the C
EA and deriving from it the equation of motion for the cla
sical field.

A. Closed-time-path field theory

In the usual In-Out formulation of the quantum fie
theory, the basic object is the vacuum persistence amplit
Z, which encodes all the dynamical information of the theo
@33#. Suppose we are dealing with a scalar field theory. Th
we define
4-2
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RENORMALIZATION GROUP AND NONEQUILIBRIUM . . . PHYSICAL REVIEW E66, 036134 ~2002!
Z@J#[^OutuIn&J5E DF~x!expS iS@F#1 i E JF D . ~1!

Here S is the action of the fieldF, and J is an external
current coupled linearly to the field.~If not indicate explic-
itly, the integrals are over the entire space-time.! This func-
tional generates matrix elements of operators between In
Out states, rather than proper expectation values referred
single state. Hence, this formulation is useful when one a
questions about scattering problems or rate transitions,
instance. But if we want to deal, in this formalism, with th
time evolution of true expectation values, we must be able
relate two different complete set of states, e.g., via Bog
ubov coefficients, in order to relate the In and Out bas
Instead, we can use the functional integral method develo
by Schwinger and Keldysh, known as CTP formalism@15#.
In the In-Out formulation, when working in the Heisenbe
picture, the vacuum persistence amplitude~1! is also given
by

Z@J#5 K OutUT expF i E d4x J~x!FH~x!GUInL , ~2!

whereT denotes temporal order, andFH is the field operator
in the Heisenberg picture. By contrast, in the CTP formu
tion we define a more symmetric object, namely,

Z@J1,J2#5 J2^InuIn &J1

5K InUT̃ expF2 i E
2`

t*
dt E d3x J2~x!FH~x!G

3T expF i E
2`

t*
dt E d3x J1~x!FH~x!GUInL .

~3!

That is, one compares the final states that result from
evolution of the In state under the influence of two exter
currents,J1 andJ2. HereT̃ means antitemporal order, an
t* is some late time, which in practice it is chosen to be1`.
It is easily seen that the derivatives ofZ@J1,J2# evaluated at
J15J2 generate true expectation values of product of fiel
In terms of path integrals,Z@J1,J2# has the following rep-
resentation

Z@J1,J2#5E
F1(t* )5F2(t* )

DF1~x!DF2~x8!

3expF i S S@F1#2S@F2#

1E J1F12E J2F2 D G . ~4!

The quantityS@F1#2S@F2# is the CTP action orSCTP . In
Eq. ~4! we integrate over historiesF1 and F2 that join at
time t* . As in the In-Out formalism, the classical equatio
of motion are obtained from the variation of the action w
respect to the fields.

We can define a generating functional
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W@J1,J2#52 i ln Z@J1,J2#, ~5!

and classical fields

Fcl
6~x!56

dW@J1,J2#

dJ6~x!
. ~6!

Next, we define the CTP EA as the Legendre transform ofW,
that is,

G@Fcl
1 ,Fcl

2#5W@J1,J2#2E J1Fcl
11E J2Fcl

2 , ~7!

where it is understood that the currents have been expre
as functions of the classical fields, via relations~6!. The
equations of motion for the classical fields can be written
follows:

dG@Fcl
1 ,Fcl

2#

dFcl
6~x!

57J6~x!. ~8!

The common value ofFcl
1 andFcl

2 , whenJ15J2, is real,
because it is a true expectation value. It can be shown f
the definitions above that it obeys a causal equation of m
tion ~see, for example, Ref.@16#!. On the contrary, in the
In-Out formalism the classical field is not necessarily re
nor the equation of motion that it follows is causal, as it
not a proper expectation value, unless the In and Out st
coincide.

It will be convenient to rephrase the CTP formalism
terms off5F12F2 and w5F11F2. The CTP condi-
tion will be given byf(t* )50, and the classical equation
of motion by

dSCTP@f,w#

df~x!
52 j~x!, ~9!

dSCTP@f,w#

dw~x!
52J~x!, ~10!

where

J5
J12J2

2
, j5

J11J2

2
. ~11!

Moreover, we shall have

fcl~x!5
dW@J,j#

d j~x!
, wcl~x!5

dW@J,j#

dJ~x!
. ~12!

We obtain more symmetrical equations of motion

dG

dfcl~x!
@fcl ,wcl#52 j, ~13!

dG

dwcl~x!
@fcl ,wcl#52J. ~14!
4-3
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JUAN ZANELLA AND ESTEBAN CALZETTA PHYSICAL REVIEW E 66, 036134 ~2002!
When J50, the first of these equations gives the physi
equation of motion, and the second one is trivially satisfi

B. CTP approach to stochastic differential equations

The causal and real evolution obtained from the CTP f
malism, suggests that a CTP action that reproduces
Langevin equation for a stochastic theory described b
field w, could as well be used to compute the correlations
the field and to derive the equation of motion for the class
~i.e., mean! field by employing the corresponding CTP EA
In its turn, the defined CTP generating functional can be u
to implement the RG in the same fashion as it is imp
mented at the level of a thermodynamic partition function
systems in equilibrium. In this way, one would find an alte
native route for the usual dynamical RG@1,2#.

Let us consider a stochastic differential equation of
general form

T @w#~x![
]w~x!

]t
2K@w#~x!5h~x!, ~15!

whereK@w# represents a differential operator not includi
time derivatives, and whereh is a zero mean stochastic fun
tion with Gaussian probability distribution. It can be se
that this equation is obtained from the following CTP actio
as explained below:

SCTP@f,w#5cE dx f~x!T @w#~x!

1c2
i

2E dx dx8f~x!N~x,x8!f~x8!.

~16!

Here N(x,x8) is the two point correlation function of th
noise h, and c is a dimensional constant that makes t
action dimensionless. The dimensions ofc will depend on
the physical interpretation we give tow, e.g., the potential in
fluid mechanics, the height function in surface growth. T
CTP generating functional for this action is

ZCTP@J,j#5E Df Dw expH iSCTP@f,w#

1 i E dx@J~x!w~x!1 j~x!f~x!#J . ~17!

@The CTP condition,f(t→`)50, is understood.# To arrive
at Eq. ~15! we observe that the term exp$
2(c2/2)*dxdx8f(x)N(x,x8)f(x8)% in Eq. ~17!, can be writ-
ten as the functional Fourier transform of an auxiliary fun
tional. We find, up to a constant factor,

expH 2
c2

2 E dxdx8f~x!N~x,x8!f~x8!J
5E Dh P@h#expS 2 icE dx h~x!f~x! D , ~18!
03613
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where

P@h#5expH 2
1

2E dx dx8h~x!N21~x,x8!h~x8!J ~19!

is the probability distribution of the noiseh, andN21 means
the inverse matrix ofN. Hence, we can write

ZCTP@J,j#5E Dh Df Dw P@h#

3expH iSCTP@f,w,h#

1 i E dx@J~x!w~x!1 j~x!f~x!#J , ~20!

where

SCTP@f,w,h#5cE $f~x!T @w#~x!2h~x!f~x!%dx.

~21!

The variation of this action with respect tof, leads to Eq.
~15!. This method allows us to relate the imaginary part
the CTP action, quadratic in the fieldf, to stochastic source
@34,2,9,35,36,24#. The constantc can be absorbed by rede
fining f asc21f; thereforef andw will not have, in gen-
eral, the same dimensions. The variation of Eq.~21! with
respect to the fieldw, gives the equation of motion forf.
This equation contains information about the evolution of
response functions for the physical fieldw. This will be clear
in Sec. III, where we use the equation forf in deriving the
Feynman rules for a particular example.

Let us show that the CTP generating functional~17! is, up
to a Jacobian factor, the generating functional usually defi
in the theory of SDE from a probabilistic approach@17,37–
39#, namely,

Z@J#5E Dh P@h#expS i E dx J~x!ws~x;h# D . ~22!

Herews(x;h# is the solution—assumed unique—of Eq.~15!
for a particular realization of the noiseh, whose probability
distribution isP ~19!. The derivatives ofZ with respect to the
external currentJ give the correlation functions of the field
where the average process is referred to the noise probab
distribution. This formulation of the stochastic problem
equivalent to the Martin-Siggia-Rose formalism@19# ~see
Ref. @40#!. We now demonstrate that it is also equivalent to
CTP formulation based on Eq.~17!. Inserting the following
identity in Eq.~22!:

E Dw d@w~x!2ws~x;h##51, ~23!

we obtain
4-4
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RENORMALIZATION GROUP AND NONEQUILIBRIUM . . . PHYSICAL REVIEW E66, 036134 ~2002!
Z@J#5E Dh Dw P@h#d @w~x!2ws~x;h##

3expH i E dx J~x!w~x!J . ~24!

Changing variables in the argument of the delta functio
yields

Z@J#5E Dh Dw P@h#d †T @w#~x!2h~x!‡

3J expH i E dx J~x!w~x!J , ~25!

where

J5detH dT @w#

dw J 5detH ]

]t
2

dK@w#

dw J
is the Jacobian associated with the change of variables in
delta functional. If the operatorK does not contain any time
derivative, the Jacobian, up to a field independent facto
given by @17,40#

J5expH 2
1

2E dx
dK@w#

dw~x! J . ~26!

The next step is to expand the delta functional in Fou
components, that is,

d†T @w#~x!2h~x!‡

5E Df expH i E dx f~x!†T @w#~x!2h~x!‡J ,

~27!

and then replace this expression in Eq.~25!. The integral
over the noise is done explicitly using Eq.~19!, yielding

Z@J#5E Df Dw J expH iSCTP@f,w#1 i E J~x!w~x!J ,

~28!

where the actionSCTP is given by Eq.~16! after absorbing
the constantc into f.

We see that, when the JacobianJ is field independent, the
expression~28! can be identified with the CTP generatin
functional we defined before motivated by more heuris
considerations. This happens for a broad class of SDE@37#,
including the KPZ@41# and Navier-Stokes equation@39#.

It can be seen that Eqs.~9! and~10! are equivalent to the
equations proposed for the physical and the nonphysical
operators, respectively, in the work of Martin, Siggia, a
Rose@19#. To show this, we adopt the notation of that pap
thus
03613
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K@w#~x1![E dx2U2~x1 ,x2!w~x2!

1E dx2dx3U3~x1 ,x2 ,x3!w~x2!w~x3!,

~29!

and U1(x1)[h(x1). Hence, remembering that the nois
term in Eq. ~16! is recovered after Fourier transform th
quadratic term inf, the classical and physical~i.e., J50)
equations of motion derived from the CTP action—Eqs.~9!
and ~10!, will be

dSCTP

df~x1!
5

]w~x1!

]t
2E dx2U2~x1 ,x2!w~x2!

2E dx2dx3U3~x1 ,x2 ,x3!w~x2!w~x3!

5U1~x1!, ~30!

dSCTP

dw~x1!
52

]f~x1!

]t
2E dx2f~x2!U2~x2 ,x1!

22E dx2dx3U3~x2 ,x3 ,x1!f~x2!w~x3!

50. ~31!

These are the same as Eqs.~2.1! and ~3.1b! in Ref. @19#.
To conclude this section we compare the CTP appro

with the single-path approach to SDE of Ref.@17# ~see also
Refs. @37,38,42#!. The difference arises in Eq.~25!. If the
integral over the noise is performed explicitly with the aid
the delta functional, we get

Z@J#5E DwP†T @w#‡JexpH i E dx J~x!w~x!J . ~32!

Using the definition~19!, and leaving apart the JacobianJ,
we obtain the following single-path action:

SSP52
1

2E dx dx8T @w#~x!N21~x,x8!T @w#~x8!. ~33!

While it is a valid representation of the generating fun
tional, this action cannot be used to generate the dynamic
the classical fields. To see this, suppose that the operatorK in
Eq. ~15! is linear inw, and moreover that the Green functio
G, associate with that equation, is causal. The assump
regarding the linearity ofK implies thatSSP@w# is quadratic,
and that the JacobianJ is field independent, so it can b
ignored. BecauseT is a linear operator, the classical fie
associated withSSP will obey the classical equation of mo
tion obtained from the variation ofSSP. So, when an exter-
nal currentJ is coupled to the field we obtain

wcl~x!5E dx1dx2dx3G~x,x1!N~x1 ,x2!G†~x2 ,x3!J~x3!.

~34!
4-5
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Because of causality the Green function verifiesG(x,x1)
}u(t2t1) andG†(x2 ,x3)}u(t32t2), and hence we canno
affirm thatw obeys a causal evolution. Therefore the phy
cal meaning ofwcl is limited, as for the classical fields in th
In-Out formalism of quantum field theory. This problem
related to the fact that operatorT appears twice in Eq.~33!.
As noted in Ref.@37#, the set of solutions associated with th
variation ofSSP in Eq. ~33!, includes not only the solution
of Eq. ~15!, which are causal, but a set of spurious solutio

III. CTP APPROACH TO THE KPZ EQUATION

In this section we apply CTP methods to the KPZ eq
tion @3#,

]w

]t
2n¹2w2

l

2
~“w!25h, ~35!

whereh is the noise term, assumed to have some partic
Gaussian statistics. The KPZ is a well known equation t
belongs to a general class of stochastic nonlinear differen
equations of diffusive type, for which our method can
extended straightforwardly.

There is a large amount of literature regarding the K
equation~see, for example, Ref.@5# and references therein!.
We mention here only a few points concerning it. In t
context of fluid dynamics, the KPZ equation is derived f
the case of free-vorticity, null-pressure fluid,2“w being the
velocity field. When used to describe some phenomena
lated to surface growth@3,5#, the KPZ equation is also de
rived as one of the simplest nonlinear extension of
Edwards-Wilkinson equation,w measuring surface height. I
addition, the KPZ equation is closely related with flame-fro
propagation@28#, dissipative transport@29#, and polymer
physics @30#, to quote some. When derived from Navie
Stokes equation, it is seen that the nonlinear coupling m
be l51, which is not necessarily the case in treating,
example, surface growth. The noiseless KPZ equation is G
ilean invariant, a property which, in the case of a fluid,
inherited from the Navier-Stokes equation, and that in
context of surface growth is related to the rotation symme
of the coordinate system. If the noise is white, and tran
tion invariant, this symmetry is preserved by the noisy K
equation as well. This fact implies a nonperturbative res
concerning the running of the couplingl when the RG is
implemented@4,43#, thus reducing the number of indepe
dent scaling exponents. As in the paper of Forster, Nels
and Stephen for the case of Navier-Stokes equation@44# ~see
also Ref.@45#!, one can derive the RG equations by coa
graining the equation of motion of the fieldw. We want to
apply ideas concerning the CTP formulation of quantum fi
theory in order to implement this RG transformation at t
level of a CTP generating functional.

We begin by defining the CTP action and generating fu
tional for the KPZ equation. The free case is examined
order to implement the perturbative calculation of the EA
the interacting case.
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A. CTP action and generating functional for KPZ equation

As demonstrated in Ref.@41# the JacobianJ associated
with the KPZ equation is field independent, and hence
can define a CTP action for the KPZ equation which d
scribes the stochastic dynamics of the fieldw. In 311 di-
mensions, absorbingc into f Eq. ~16! yields

SCTP@f,w#5E d4xH f~x!Lw~x!2
l

2
f~x!~“w!2~x!J

1
i

2E d4xd4x8f~x!N~x,x8!f~x8!, ~36!

where

L5
]

]t
2n¹2. ~37!

N(x,x8) is the two point correlation function of the noiseh,
assumed Gaussian and having zero mean value. With t
definitions and per the early discussion we see that the K
equation is attained.

B. The free case

If the nonlinearity is absent, i.e., ifl50, we are dealing
with the free case, and the corresponding free action is

S0@f,w#5E d4x f~x!Lw~x!

1
i

2E d4xd4x8f~x!N~x,x8!f~x8!. ~38!

When linear couplings of the fields with external currents
included, the variation of the free action with respect to t
fields, gives the classical equations of motion, namely,

dS0

df~x!
5Lw~x!1E d4x8N~x,x8!f~x8!52 j~x!. ~39!

dS0

dw~x!
52L* f~x!52J~x!, ~40!

where

L* 5
]

]t
1n¹2. ~41!

We can write the solutions to Eqs.~39! and~40! in terms of
the fundamental solutionsG andG* , which satisfy

LxG~x,x8!5Lx* G* ~x,x8!5d4~x2x8!. ~42!

Explicitly ~in 113 dimensions! we have

G~x,x8!5
e2(xW2xW8)2/4n(t2t8)

~4pnut2t8u!3/2
u~ t2t8!, ~43!
4-6
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G* ~x,x8!52
e(xW2xW8)2/4n(t2t8)

~4pnut2t8u!3/2
u~ t82t !. ~44!

Hence,

f~x!5E d4x1G* ~x,x1!J~x1!, ~45!

w~x!52E d4x1G~x,x1!j~x1!

2 i E d4x1d4x2d4x3G~x,x1!

3N~x1 ,x2!G* ~x2 ,x3!J~x3!. ~46!

~There is the freedom on adding some arbitrary solutions
the homogeneous equations. However, the only such solu
which is bounded for all times is identically zero.!

If J50 thenf50, andw is given by

w~x!52E d4x1

e2(xW2xW1)2/4n(t2t1)

~4pnut2t1u!3/2
u~ t2t1!j~x1!. ~47!

This entails a causal evolution.
We define the generating functionalZ0@J,j# for the free

fields

Z0@J,j#5E Df~x!Dw~x!expS iS0@f,w#1 i E ~ jf1Jw! D .

~48!

The mean fields are obtained by differentiating2 i ln Z0 with
respect to the currents. Having in mind that for the free c
the mean fields satisfy the same equations~39! and~40!, we
find ~up to a normalization factor!

Z0@J,j#5exp
i

2E d4x1d4x2H 2J~x1!G~x1 ,x2!j~x2!

1 j~x1!G* ~x1 ,x2!J~x2!2 iJ~x1!

3F E d4x3d4x4G~x1 ,x3!

3N~x3 ,x4!G* ~x4 ,x2!GJ~x2!J . ~49!

The two point correlation functions are given by the seco
derivatives ofZ0, so we have

^f~x!f~x8!&50,

^w~x!w~x8!&

52E d4x1E d4x2G~x,x1!N~x1 ,x2!G* ~x2 ,x8!,

~50!

^f~x!w~x8!&52 iG* ~x,x8!.
03613
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The corresponding functions in the momentum space are

^f~p!f~p8!&50,

^w~p!w~p8!&5
N~p,p8!

@ ip01npW 2#@ ip801npW 82#
, ~51!

^f~p!w~p8!&5
id~p1p8!

@ ip801npW 82#
.

@We indicate the Fourier transformed fields with the sa
name as the original fields, and use the following convent
in d11 dimensions: f (p)5(2p)2(d11)/2*ddxWdx0exp

$2i(p0x02pW•xW)%f(x), wherex05t.#

C. The interacting case

Let us go back to the definition of the generating fun
tional for interacting fields~dropping the CTP subscripts!

Z@J,j#5E DfDwexpS iS@f,w#

1 i E d4x@ j~x!f~x!1J~x!w~x!# D . ~52!

The EA is given by

G@fcl ,wcl#52 i ln Z2E d4x@fcl~x!j~x!1wcl~x!J~x!#.

~53!

and admits the CTP representation

eiG[fcl ,wcl]5E
1PI

Df~x!Dw~x!eiS[fcl1f,wcl1w] , ~54!

where 1PI indicates that only diagrams one particle irred
ible must be included in the diagrammatic evaluation of
functional integrals.

For the KPZ CTP action~36! we have

S@fcl1f,wcl1w#5S@fcl ,wcl#1S0@f,w#

2
l

2E d4x@f~“w!21fcl~“w!2

12f “ w•“ wcl#x

1 linear terms inf and w. ~55!

Taking the logarithm of Eq.~54! and expanding toO(l)2,
it results
4-7
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G@fcl ,wcl#5S@fcl ,wcl#2
l

2E d4x^@f~“w!21fcl~“w!2

12“w•“wcl#x&1
il2

8 E d4xd4x8^@f~“w!2

1fcl~“w!212f“w•“wcl#x

3@f~“w!21fcl~“w!2

12f“w•“wcl#x8&connected, ~56!

where the averaging operation^•••& is defined as

^F@f,w#&[
E DfDweiS0[f,w]F@f,w#

E DfDweiS0[f,w]

. ~57!
03613
Note that the term̂ (f“w•“wcl)x(f“w•“wcl)x8&, which
could give a nontrivial equation of motion forfcl , vanishes,
because it is proportional~up to spatial derivatives! to

^f~x!w~x8!&^f~x8!w~x!&}u~ t82t !u~ t2t8!.

SinceS0 is quadratic, expectation values may be written
products of the two-point correlation functions given in E
~50! and ~51!. Hence, after Fourier transformation of E
~56!, the result is

G@fcl ,wcl#5S@fcl ,wcl#1DS@fcl ,wcl#, ~58!

where
eaning
DS@fcl ,wcl#5
l

8p2E d4p1d4p2D i i ~p12p2 ,p2!fcl~2p1!1
il2

64p2 H E d4p1d4p2

2D i j ~p2 ,2p2!~pW 1! i~pW 11pW 2! j

@2p1
01npW 1

2#@2~p11p2!01n~pW 11pW 2!2#

14i E d4p1d4p2d4p3

D i j ~p2 ,p3!~pW 22pW 1! i~2pW 11pW 21pW 3! j

@~p12p2!01n~pW 12pW 2!2#
fcl~2p1!wcl~p12p22p3!

1E d4p1d4p2d4p3d4p4D i j ~p2 ,p3!D i j ~p12p2 ,p32p4!fcl~2p1!fcl~2p3!J . ~59!

The sum over repeated indices is understood, and

D i j ~p,p8!5
N~p,p8!

@ ip01npW 2#@ ip801npW 82#
pipj8 . ~60!

The equations of motion for the classical fields result from the first variations of the EA. Those with proper physical m
are obtained whenf, J50. Thus, toO(l2),

dG

dfcl~2p!
@fcl50,wcl#5@ ip01npW 2#wcl1

l

8p2E d4p1pW 1•~pW 2pW 1!wcl~p1!wcl~p2p1!1
l

8p2E d4p1D i i ~p2p1 ,p1!

2
l2

16p4E d4p1d4p2

D i j ~p1 ,p2!~pW 12pW ! i~pW 11pW 22pW ! j

@~p2p1!01n~pW 2pW 1!2#
wcl~p2p12p2!52 j~p!. ~61!
he
on

the
c-
es,
al
The equation

dG

dwcl~2p!
@fcl50,wcl#50 ~62!

is automatically satisfied.
In Appendix A we show explicitly that Eq.~61! is also

obtained by averaging the KPZ equation~36!.
IV. COARSE GRAINED CTP ACTION FOR THE KPZ
EQUATION

In order to implement the RG transform, we analyze t
influence that the modes of higher wave number exert
lower ones, by computing the CGA@1,2,11,46#. When we are
only concerned with the lower wave number sector of
theory, we can carry out explicitly, in the generating fun
tional Z, the integration over the higher wave number mod
and the result of this partial integration will be a function
4-8
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of the lower wave number modes only. This functional
indeed a generating functional for the lower modes, in wh
the influence of the higher modes is incorporated as mo
cations of the original action.

This procedure may be seen as a straightforward app
tion of the Feynman-Vernon influence functional techniqu
to this problem@34#, where the low wave number sector
regarded as ‘‘system’’ and the short wave modes as ‘‘bat

To the best of our knowledge this approach has not b
systematically discussed in the literature on SDE. There e
works where the RG is also derived from functional form
lations of the stochastic theory~see, for example, Ref.@40#
for critical dynamics of helium, antiferromagnetics, a
liquid-gas systems; or Refs.@43,47# for the KPZ equation!.
The crucial difference between these works and the pre
paper is that we coarse grain the generating functional
plicitly, imposing an ultraviolet cutoff, while in the cited pa
pers the RG is obtained from the study of the singular ul
violet contributions to the many-points response function

We start with our early definition~52! of the generating
functional for the interacting fields

Z@J,j#5E DfDwexpS iS@f,w#

1 i E d4x@ j~x!f~x!1J~x!w~x!# D . ~63!

Now we split up the field and currents, according a scale
we shall choose below,

w5w.1w, ,

f5f.1f, ,

j5 j.1 j, ,

J5J.1J, .

Here, w. contains the modes of higher wave number,w,

contains the lower ones, and analogously for the other qu
tities. The division will be specified by a cutoffLs ,

w,~x!5E
ukW u,Ls

d4k

~2p!2
ei (k0x02kW•xW )w~k0,kW !, ~64!

w.~x!5E
Ls,ukW u,L

d4k

~2p!2
ei (k0x02kW•xW )w~k0,kW !, ~65!

and so on. Here,w(k) is the Fourier transform of the field
w(x), and L can be identified with a natural cutoff of th
theory.

In any case, the correlations are obtained from the va
tion of Z with respect to the currents, and after that, by s
ting the currents equal to zero. As stated earlier, we just w
to compute correlation functions involving the lower wa
03613
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number modes. That can be accomplished merely by
variation ofZ with respect toj, andJ, . Therefore, it will be
enough if we set, from the beginning,j. ,J.50. The CGA
is achieved by performing explicitly the functional integr
tions over w. and f. . We rewrite the actionS@f,w#
5S@f.1f, ,w.1w,# in the following manageable way
which will be useful to compute the CGA perturbatively,

S@f.1f, ,w.1w,#5S@f, ,w,#1S0@f. ,w.#

1SI@f. ,f, ,w. ,w,#. ~66!

Here,S0 corresponds to the free action of the original theo
Hence, it results

Z@J, ,j,#5E Dw,Df,expS iS@f, ,w,#

1 i E d4x@ j,f,1J,w,#~x! D
3 H E Dw.Df.eiS0[f. ,w.] 1 iSI [f, ,f. ,w. ,w,] J

5E Dw,Df,expS iS@f, ,w,#

1 i E d4x@ j,f,1J,w,#~x! DeiDS[f, ,w,] .

~67!

The CGA is defined as

SCG@f, ,w,#5S@f, ,w,#1DS@f, ,w,#. ~68!

In the present paper we are concerned with the KPZ equa
and with its associated CTP action~36!, which in p space is
given by

S@f,w#5E d4p f~2p!~ ip01npW 2!w~p!

1
l

2E d4p1d4p2d4p3~2p!22d~p11p21p3!

3pW 2•pW 3f~p1!w~p2!w~p3!

1
i

2E d4p1d4p2f~p1!N~2p1 ,2p2!f~p2!.

~69!

Splitting the fields according to wave number yields
4-9
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S@f,w#5E d4p f.~2p!~ ip01npW 2!w.~p!1E d4p f,~2p!~ ip01npW 2!w,~p!

1
i

2E d4p1d4p2f.~p1!N~2p1 ,2p2!f.~p2!1
i

2E d4p1d4p2f,~p1!N~2p1 ,2p2!f,~p2!

1 i E d4p1d4p2f.~p1!N~2p1 ,2p2!f,~p2!1
l

2E d4p1d4p2d4p3~2p!22d~p11p21p3!pW 2•pW 3$f.1w.2w.3

1f,1w.2w.312f,1w.2w,312f.1w.2w,31f.1w,2w,31f,1w,2w,3%. ~70!

We shall assume that the noise is translation invariant~TI!, therefore the term in the third line is zero because of orthogona
Hence, as before, we have

S0@f. ,w.#5E d4p f.~2p!~ ip01npW 2!w.~p!1
i

2E d4p1d4p2f.~p1!N~2p1 ,2p2!f.~p2!, ~71!

and using the definition given in Eq.~66!, we find

SI@f. ,f, ,w. ,w,#5
l

2E d4p1d4p2d4p3~2p!22d~p11p21p3!pW 2•pW 3$f.1w.2w.31f,1w.2w.312f,1w.2w,3

12f.1w.2w,31f.1w,2w,3%. ~72!

Therefore, from Eq.~67!, we obtain

eiDS[f, ,w,]5E Df.Dw.eiS0[f. ,w.]expF il

2 E d4p1d4p2d4p3~2p!22d~p11p21p3!pW 2•pW 3$f.1w.2w.31f,1w.2w.3

12f,1w.2w,312f.1w.2w,31f.1w,2w,3%G . ~73!

When the noise is white, TI, and has no spatial correlations, we have

N~p,p8!52D d~p01p80!d~pW 1pW 8!, ~74!

whereD is the noise amplitude. For this case~see details in Appendix B!,

DS@f, ,w,#52
l

2E d4p~2p!2d~p!F f,~p!1
i

2E d4p f,~2p!2 dDf,~p!

1 il2DE d4qS E d4p

4p2
f,~2p!w,~p2q!A~p,q!D S E d4p

4p2
f,~2p!w,~p1q!A~p,2q!D

12Dl2E d4p f,~2p!w,~p!3pW 2dn~p!2
l2

2 E d4p d4q d4k d4l C~p,q,k,l !f,~2p!w,~q!w,~k!w,~ l !.

~75!
We have defined the tadpole amplitude,

F5E d4q

16p4

2DqW 2M ~q!

@~q0!21n2~qW 2!2#
, ~76!

the noise amplitude correction
03613
2d D52D2l2E d4q

4p2

3
@qW •~pW 2qW !#2M ~q,p2q!

@~q0!21n2~qW 2!2#@~p02q0!21n2$~pW 2qW !2%2#
,

~77!
4-10



,

e

-
b

o
er
rk
a

e
d

n
in
m
e
e

th

e-
n

he
n
b

, d

R

in
hell,

es,
its

ust
e
ou-

sen-
cu-

a
ling
that

rent
an-

the
nal.
ng

n
st

a
e

be
e
dy
ati-
ery
tum
ded
we

m
The
one

enta

the
an-

s,
bles
We

-
at
e,

RENORMALIZATION GROUP AND NONEQUILIBRIUM . . . PHYSICAL REVIEW E66, 036134 ~2002!
the functionA, related to the arising of multiplicative noise

A~p,q!5
~pW 2qW !•qW

~ iq01nqW 2!
M ~q!, ~78!

the viscosity correction

pW 2dn~p!5E d4q

16p4

3
qW •~pW 2qW !pW •~pW 2qW !M ~q,p2q!

~ iq01nqW 2!@~p02q0!21n2$~pW 2qW !2%2#
,

~79!

and thew,
3 -interaction coupling

C~p,q,k,l !5~2p!24d~2p1q1k1 l !

3
qW •~kW1 lW !kW• lW M ~k1 l !

@ i ~k01 l 0!1n~kW1 lW !2#
. ~80!

In its turn,M (p,q, . . . ,k) means that the momenta in the s
$p,q, . . . ,k% are restricted~i.e, must be projected! to the
momentum shellsLs,upW u,L, Ls,uqW u,L, and so on.

In conclusion, when Eq.~63! is coarse grained, the gen
erating functional for the remaining modes is obtained
modifying the original viscosityn and the noise amplitude
D, and by adding some new terms: a tadpole term that c
cerns the homogenous mode only, a multiplicative noise t
~see Appendix B!, and a cubic interaction term. We rema
that the noise terms are read directly from the imaginary p
of the CTP CGA.

V. RENORMALIZATION GROUP FROM CTP CGA

The actionS we started with~36!, is actually a coarse
grained action. The fieldsw andf are assumed to describ
the physical world up to certain degree of resolution, limite
eventually, by a natural cutoffL, as can be the atomic size i
a turbulent fluid or the Compton length of heavy particles
particle physics. When we integrated the higher wave nu
ber modes in the generating functional, we obtained a n
action, suitable for a physical description with a lower d
gree of resolutionLs .

Suppose that we are interested in the behavior of
theory at momentum scales not superior thane2sL, with s
real and positive. In principle, this implies that, in the int
grations we performed in Sec. IV, some linear combinatio
of the momenta must be restricted to the shelle2sL<upW u
<L. Often we are only concerned with the small-p modes,
for which p is near to 0. Hence, we must integrate all t
modes except those very close to the origin, as close as
essary to obtain a leading order result. However, it can
seen that in the case of the KPZ equation, as in others
vergences arise in the limit ofLs→0, indicating that the
perturbative approach fails@3–5#.

What we can do instead, is to implement the so called
formalism @6–8#. The scheme is the following.
03613
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~i! The integration fromL to L→0 is performed not at
once, but in repeated integrations over infinitesimal shells
three-momentum space. In integrating over one such s
the cutoff changes fromL8 to e2sL8'(12ds)L8.

~ii ! After each shell is integrated, the fields, lengths, tim
momenta, etc., must be rescaled to bring the theory to
original aspect. In particular, the rescaling of momenta m
adjust the cutoff to its initial value at the beginning of th
process, and, in addition, some factors can affect the c
pling constants.

When combined and repeated these operations give
sible results. It must be clear that we are not simply cal
lating an integral as the sum of discrete contributions from
partition of the domain, because at each step the coup
constant that measures the perturbation is renormalized,
is, at each step we are perturbating with respect to a diffe
coupling constant; it is an iterative process that gives me
ing to the whole integration betweenL andL→0.

In Sec. IV we have already performed the first step of
RG scheme: the coarse graining of the generating functio
The result was that the generating functional for the lo
modes is obtained from the original one by introducing~i! a
correction to the noise correlation function, given in Eq.~77!
and ~ii ! a correction to the viscositylike coupling, given i
Eq. ~79!, and finally by including a set of new terms: the fir
~tadpole term!, the third~multiplicative noise term!, and the
fifth ~cubic interaction term! in Eq. ~75!. Extra terms
are a common byproduct when one coarse grains
generating functional@6#. Actually, the tadpole term can b
eliminated by a simple transformation,w,(p)→w,(p)
1 i2p2lF]0d(p); thus only the multiplicative noise~MN!
and the cubic interaction~CI! terms remain. At this point, if
we proceed further and repeat the coarse graining, it can
seen that, atO(l2), no others terms arise. The effect of th
MN and that of the CI is just to correct the terms alrea
present in the CGA in a way that can be traced system
cally. Hence, the first time we do the coarse graining is v
special, because the effective viscosity is now a momen
dependent function, new terms arise that were not inclu
in the original action, and no other terms appear when
repeat the coarse graining.

The natural question is why not to include this momentu
dependence and the new terms from the very beginning.
momentum dependence of the viscosity can be ignored if
is interested in thepW→0 limit of the theory only. The MN
and CI terms, because of the constraint that some mom
must be on the shell, involve modes that despite being,,
must lie close to the shell. Hence, if it is assumed that
fields , have support near the origin, these extra terms v
ish. Moreover, under certain assumptions MN and CI term
as more and more shells are integrated and the varia
rescaled, tend to vanish, i.e., they are irrelevant terms.
shall not include them in our treatment of the RG~see be-
low!. In what follows we shall work out in an arbitrary num
ber of spatial dimensionsd, and, furthermore, assume th
initially L51, with the appropriate dimensions. As befor
the noise verifies Eq.~74!.

Let us study the small-p limit of the corrections intro-
duced by the coarse graining. We start with Eq.~77!. There,
4-11
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q andp2q must be on the shell between (12ds)L andL,
and because we shall restrict ourselves to the small-p limit,
we must inspect the behavior of the integral when the ex
nal momentap get close to 0. To lowest order, the effectiv
noise satisfies Eq.~74!, providedD is adjusted by the follow-
ing amount@3–5#:

dD5
l2DKd

4n3
ds, ~81!

whereKd5Sd /(2p)d, andSd is the area of a unit sphere i
d dimensions. A similar conclusion is reached for Eq.~79!
@3–5#; in the small-p limit, we find thatn must be replaced
by n1dn, where

dn52Kd

l2D

n2

d22

4d
ds. ~82!

Hence, when attention is paid to the small-p modes, the CGA
will be given by~eliminating the tadpole, discarding MN an
CI terms, and dropping the subscripts,)

SCG@f,w#5E dd11p f~2p!~ ip01@n1dn#pW 2!w~p!

1
l

8p2E dd11p1dd11p2dd11p3d~p11p21p3!

3pW 2•pW 3f~p1!w~p2!w~p3!

1
i

2E dd11p f~2p!@2D12dD#f~p!. ~83!

Next, we proceed with the rescaling. We takeb511ds, and
define

w~p0,pW !5ba1z1dw̃~p80,pW 8!, ~84!

f~p0,pW !5b2a1zf̃~p80,pW 8!, ~85!

wherep805bzp0 andpW 85b pW . Therefore, we obtain

SCG@f,w#5S̃@f̃,w̃#

5E dd11p f̃~p!~ ip01$bz22@n1dn#%pW 2!w̃~p!

1ba1z22
l

8p2E dd11p1dd11p2dd11p3

3d~p11p21p3!pW 2•pW 3f̃~p1!w̃~p2!w̃~p3!

1
i

2E dd11p f̃~2p!$b22a2d1z

3@2D12dD#%f̃~p!. ~86!

Some remarks are in order. The new variablep is such that
upW u runs up toL, as for the original fields. The expone
03613
r-

a1z1d, which rescales the fieldw(p) in the momentum
representation, matches with an exponent equal toa for the
rescaling ofw(x). The choice of the exponent given forf,
makes the free part of the rescaled CGA form invariant, a
hence, we can iterate the process without further modifi
tions.

In conclusion, after integration and rescaling are p
formed, the action is characterized by a different viscosit

ñ5~11ds!z22@n1dn#, ~87!

by a new coupling constant

l̃5~11ds!a1z22l, ~88!

and by a new noise correlation coefficient

D̃5~11ds!22a2d1z@D1dD#. ~89!

These are general relations, which are valid for every t
consecutive instances of the RG procedure. Finally, we
arrive at a set of differential equations for the running
these quantities, namely,

dn

ds
5nFz222Kd

l2D

n3

d22

4d G , ~90!

dl

ds
5l@a1z22#, ~91!

dD

ds
5DFz2d22a1

l2DKd

4n3 G . ~92!

These are the well know RG equations for the KPZ equat
@3–5#.

In the analysis we made above, we discarded some te
that result from coarse graining the initial generating fun
tional for the KPZ equation, the MN, and the CI terms.
principle, it is not difficult to take into account their effect i
a systematical manner~for the Navier-Stokes equation, se
Ref. @49#!. However, providedd.2 we can see that both th
MN term and the CI are irrelevant in the special case wh
we are near the trivial fixed point. This fixed point is give
by l50, z52, anda512d/2. The MN term rescales a
b(22d), and the CI asb(422d). Hence, ifd is greater than 2
both terms tends to zero exponentially whens→`.

We mention here that the concept of renormalizat
group has also been fruitful in studying differential equatio
within singular perturbation theory@50#. In these papers, the
renormalization is applied to the parameters appearing in
perturbative solutions of the differential equations, and no
the parameters of the differential equations themselves, a
the present work. As pointed out by Kunihiro@51#, the es-
sence of the method pioneered by Goldenfeld, Oono,
their collaborators, is to find an envelope curve for a unip
rameter family of perturbative solutions, locally valid, of th
differential equations, selected among the whole set of s
4-12
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solutions, which depend on a greater number of parame
For an application of this method to field theory see,
example, Ref.@52#.

VI. FINAL REMARKS

In this paper we accomplished the following two thing
~a! With respect to the theory of the nonequilibrium reno

malization group, we showed that it is possible to derive
nontrivial renormalization group flow from a CTP actio
This renormalization group is different from the usual
quantum field theory textbooks~see, for example, Ref.@53#!
in that it describes nontrivial noise and dissipation. This
gime has not been observed in earlier studies of the re
malization group from the CTP effective action@1#. In Ref.
@1#, the starting point was a noiseless, time reversal invar
theory, which was investigated within perturbation theo
But the relevant noise and dissipation effects are essent
nonperturbative@9#. A nontrivial nonequilibrium renormal-
ization group can only be found in an ‘‘environmental
friendly’’ approach@26# where the basic description of th
theory already has noise and dissipation built in.

~b! From the point of view of the renormalization grou
flow in the KPZ equation, we have derived the relevant fl
equations from an analysis that consistently considered
the long wavelength sector of the theory. The usual appro
of deriving these equations from the ultraviolet behavior
response functions@43#, although technically correct, is con
ceptually contrived. Being explicitly dissipative, the KP
equation should not be regarded as fundamental, but ra
as the macroscopic limit of an underlying, unitary fie
theory, even if we lack a full specification of this micro
scopic description. In Ref.@43#, the renormalization group
flow is derived from a regime where the noisy and dissi
tive effective description embodied in the KPZ equati
ceases to be valid, and the underlying unitary theory is
covered. The ultraviolet divergences in this underlyi
theory ought to be idenpendent of temperature, and there
the same as in vacuum, leading to the usual ‘‘textboo
renormalization group@53#; we remark that by ‘‘vacuum’’ we
mean the vacuum of the microscopic, unitary theory. For
reason we believe that the approach in the present pa
where no reference to ultraviolet behavior is made, is c
ceptually simpler, although technically equivalent.

One thing we did not accomplish is to describe in de
the crossover from the high-energy unitary theory to the lo
energy noisy and dissipative effective theory. We bypas
this difficult problem by choosing as low-energy effecti
description a theory with a clear physical content. For
ample, if the high-energy theory leads to hydrodynamics
some regime, then it contains the Burgers and KPZ equa
in the limit in which the pressure is null and the velocity fie
vorticity free. If we consider a theory of a scalar field, f
example, we know this limit exists, because at low tempe
tures the field will behave as a condensate and develo
negative pressure, while at high temperatures the theory
be approximately conformally invariant, thus leading to
radiationlike equation of state. Thus the pressure will
much lower than the energy density at least in some inter
03613
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diate range. The KPZ field, of course, is a collective mo
when described in terms of the fundamental theory. We
pect to continue our research on this issue.

The renormalization group as studied in this paper, i
necessary tool to understand the nature of collective v
ables describing the relevant physics in strongly interact
nonequilibrium systems such as the universe during the
heating period and the gluon fireball in the early stages o
high-energy heavy ion collision. We continue our research
this rewarding problem.
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APPENDIX A: AVERAGE OF THE LANGEVIN KPZ
EQUATION

As a way of comparison with the results of Sec. III C,
this appendix we shall calculate the equation of motion
the mean~i.e., classical! field directly from the noisy KPZ
equation~35!. In momentum space it reads

@ ip01npW 2#w~p!1
l

8p2E d4p1pW 1•~pW 2pW 1!w~p1!

3w~p2p1!5h~p!. ~A1!

We write w̄ for the mean value ofw after averaging out the
noise h, and define the fluctuating fieldc according tow

5w̄1c. Therefore, if we average the KPZ equation, it yiel

@ ip01npW 2#w̄~p!1
l

8p2E d4p1pW 1•~pW 2pW 1!

3@w̄~p1!w̄~p2p1!1^c~p1!c~p2p1!&#50,

~A2!

and thus

@ ip01npW 2#c~p!1
l

8p2E d4p1pW 1•~pW 2pW 1!

3@2c~p1!w̄~p2p1!1c~p1!c~p2p1!

2^c~p1!c~p2p1!&#5h~p!. ~A3!

We shall write the solution forc as a power series inl,

c~p!5c (0)~p!1lc (1)~p!1•••, ~A4!

from which the following expressions result:
4-13
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c (0)~p!5
h~p!

@ ip01npW 2#
, ~A5!

c (1)~p!52
1

4p2@ ip01npW 2#

3E d4p1pW 1•~pW 2pW 1!@2c (0)~p1!w̄~p2p1!

1c (0)~p1!c (0)~p2p1!^c (0)~p1!c (0)~p2p1!&#.

~A6!

Hence,

^c (0)~p!c (0)~p8!&5
N~p,p8!

@ ip01npW 2#@ ip801npW 82#
, ~A7!

^c (1)~p!c (0)~p8!&5
2l

4p2@ ip01npW 2#

3E d4p1pW 1•~pW 2pW 1!

3
N~p1 ,p8!w̄~p2p1!

@ ip1
01npW 1

2#@ ip801npW 82#
.

~A8!
so
i

-

03613
Coming back to Eq.~A2! we find that

@ ip01npW 2#w̄~p!

1
l

8p2E d4p1pW 1•~pW 2pW 1!w̄~p1!w̄~p2p1!

1
l

8p2E d4p1D i j ~p1 ,p2p1!d i j

2
l2

16p4E d4p1d4p2

D i j ~p2 ,p2p1!~pW 12pW 2! i pW 1 j

@ ip1
01npW 1

2#

3w̄~p12p2!50, ~A9!

where D is defined in Eq.~60!. The changep1→2p11p
yields to the same expression we found by computing
CTP EA, Eq.~61!, when j50.

APPENDIX B

In this appendix we evaluate Eq.~73! to order l2. We
start from Eq.~73!. The average of an odd number of.
fields is zero, because of the parity of the free action~71!
when we changew. by 2w. and, simultaneously,f. by
2f. . Hence, up toO(l2), we find
DS@f, ,w,#52 i H il

2 E Df.Dw.eiS0[f. ,w.]F E dp123pW 2•pW 3$f,1w.2w.312f.1w.2w,3%G
2

l2

8 E Df.Dw.eiS0[f. ,w.]F E dp123dq123pW 2•pW 3qW 2•qW 33$f.1w.2w.3f.1̃w.2̃w.3̃

1f,1f,1̃w.2w.3w.2̃w.3̃14f,1w,2f,1̃w,2̃w.3w.3̃14w,3w,3̃f.1w.2f.1̃w.2̃

1w,2w,3w,2̃w,3̃f.1f.1̃14f,1w,2f.1̃w.2̃w.3̃w.312w,2w,3f.1̃w.2̃w.3̃f.1

14f,1w,3̃w.2w.3f.1̃w.2̃14f,1w,2w,2̃w,3̃w.3f.1̃%G J
connected

. ~B1!
us
ll
ent
sed

ing
Here,w, i (w, ĩ ) meansw,(pi) „w,(qi)…; dp123 stands for
d4p1d4p2d4p3d(p11p21p3) and analogously fordq123.
In computing the last expression, as the logarithm of Eq.~73!
is taken, we must discard the disconnected diagrams as
ated with each functional integration. Also, we must have
mind that when some integration variable, sayp1, satisfies

upW 1u,Ls , thenw.(p1) andf.(p1) will vanish; conversely
if upW 1u.Ls . To evaluate Eq.~B1! we can employ the propa
gators given in Eq.~51! with slightly modifications, that is,

^f.~p!f.~p8!&50, ~B2!
ci-
n

^w.~p!w.~p8!&5
N~p,p8!

@ ip01npW 2#@ ip801npW 82#
,

^f.~p!w.~p8!&5
id~p1p8!

@ ip801npW 82#
.

It is understood that if some momentum in the previo
equations lies belowLs , the corresponding propagator wi
be null. In Fig. 1 we give the convention adopted to repres
the propagators listed above. These propagators will be u
as internal lines in Feynman diagrams. When comput
4-14



v
th
.
fre
l t

is

o
a

KPZ

tor

on-
t

ated
r a

m in
-

ar

ac-

RENORMALIZATION GROUP AND NONEQUILIBRIUM . . . PHYSICAL REVIEW E66, 036134 ~2002!
these diagrams, for each vertex there will be an integral o
the three momenta attached to it. After splitting the fields,
propagators quoted in Eq.~50! are not valid any longer
However, because the split is in wavelength and not in
quency, the causal properties of the propagators are stil
same.

Consider the terms of orderl in Eq. ~B1!, the first of
which adds to the action a term that is~functionally! linear in
f, ,

2
l

2E d4p~2p!22d~p!f,~p!

3H E
Ls,uqW u,L

d4q
N~q,2q!

d~0!

qW 2

@~q0!21n2~qW 2!2#
J , ~B3!

where we have assumed that the noise represented byN is
not only TI but also white. Diagrammatically this term
shown in Fig. 2~a!. The external lines take trace of the,
fields that are attached to a given vertex: a double continu
line represents aw, field; a double dashed line is used for

FIG. 1. Vertex and propagators used to calculate the co
grained action for the KPZ equation.
03613
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f, field. The contribution given in Eq.~B3!, in turn, can be
seen as a field-independent term added to the classical
equation~A1!. The remaining term ofO(l), represented in
Fig. 2~b!, is zero. This is because the propaga
^f.(p1)w.(p2)& introduces ad(p11p2). In addition to the
conservation delta,d(p11p21p3), it implies ad(p3). The
product of thisd(p3) with pW 2•pW 3 force the whole integral to
vanish. We now proceed to consider the terms of orderl2 in
Eq. ~B1!.

~a! The first one corresponds to three connected, n
equivalent diagrams@Fig. 3~a!#, and gives a contribution tha
does not depend onw, or f, . However, each of these
diagrams is zero, either because they entail a delta evalu
in a momentum that lies outside the integration domain, o
product of two mutually excludingu ’s. We shall find more of
these cancellations below.

~b! The second term of orderl2 @Fig. 3~b!#, consists on a
closed loop, and has the same structure as the noise ter
the original action. Explicitly, this diagram gives the follow
ing contribution to the CGA action:

se

FIG. 2. Orderl Feynman diagrams for the coarse grained
tion. The external fields are indicated by double lines.
e-
il2

4 E d4p1d4q1f,1f,1̃H E d4p2d4p3d4q2d4q3~2p!24d123d 1̃2̃3̃pW 2•pW 3qW 2•qW 3

3
N~p2 ,q2!N~p3 ,q3!

~ ip2
01npW 2

2!~ iq2
01nqW 2

2!~ ip3
01npW 3

2!~ iq3
01nqW 3

2!
M ~p2 ,p3 ,q2 ,q3!J , ~B4!

where d123 stands ford(p11p21p3) and d 1̃2̃3̃ for d(q11q21q3). M is the product of the projectors over each thre
momentum shell of its arguments, and is inserted to take trace of the proper integration domains, that is,

M ~$pi%!5)
i

u~ upW i u2Ls!u~L2upW i u!. ~B5!
4-15
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Up to this point, we assumed that the noise was zero mean Gaussian, white, and TI. For the sake of simplicity, we now
that the noise represented byN does not have spatial correlations as well, so that it satisfies Eq.~74!. Equation~B4! now reads

i

2E d4p f,~2p!H 2D2l2E d4q

4p2

@qW •~pW 2qW !#2M ~q,p2q!

@~q0!21n2~qW 2!2#@~p02q0!21n2$~pW 2qW !2%2#
J f,~p!. ~B6!

~c! The third term ofO(l2) in Eq. ~B1! adds to the original action a new term, not included previously@Fig. 3~c!#. The
contribution of this term to the exponenciated CGA can be written as

eiDS3rd5expH 2l2DE d4qS E d4p

4p2
f,~2p!w,~p2q!

~pW 2qW !•qW

~ iq01nqW 2!
M ~q!D

3S E d4p

4p2
f,~2p!w,~p1q!

@2~pW 1qW !•qW #

~2 iq01nqW 2!
M ~2q!D J . ~B7!

In turn, we can regard this contribution as coming from a new source of noise, in a sense that will become clear
expresseiDS3rd as the functional Fourier transform of an appropriate expression@34,2,9,35,36,24#. That is,

eiDS3rd5ZE DrexpS 2@4l2D#21E d4q r~q!r~2q! DexpH i ~2p!22E d4q d4p r~q!f,~2p!w,~p2q!
~pW 2qW !•qW

~ iq01nqW 2!
M ~q!J ,

~B8!

whereZ is a normalization factor. Hence,eiDS3rd can be seen as the average of certain new term, according to the proba
distribution of the auxiliary sourcer. This distribution is that of a white, TI, and Gaussian noise, which has a second
momentum equal to 2Dl2. Moreover,r is a multiplicative, rather than an additive noise.

~d! The fourth term of orderl2 in Eq. ~B1!, is represented as a one loop diagram, built up by two propagators^f.w.& @Fig.
3~d!#. When calculating this propagator in the coordinate representation,^f.(x)w.(x8)&, the separation on lower and highe
~spatial! wave numbers modes, does not prevent the arising of au(t82t), as result of integratingp0 in the complex plane
when the Fourier transform of̂f.(p)w.(p8)& is performed in reverse. Thus, the double product^f.(p8)w.(p)&
3^f.(p)w.(p8)& has null-measure support, and the diagram vanishes.~The fifth term is proportional to the propagator o
two fieldsf. , which is zero.!

~e! The sixth term is the sum of two nonequivalent diagrams@Fig. 3~e!#,

il2

2 E d4p1d4p2f,1w,2H E d4p3d4q1d4q2d4q3~2p!24d123d 1̃2̃3̃pW 2•pW 3qW 2•qW 3

3F2
id~q11q2!

~ iq2
01nqW 2

2!

N~p3 ,q3!

~ ip3
01npW 3

2!~ iq3
01nqW 3

2!
1

N~q2 ,q3!

~ iq2
01nqW 2

2!~ iq3
01nqW 3

2!

id~q11p3!

~ ip3
01npW 3

2!
GM ~p3 ,q1 ,q2 ,q3!J , ~B9!

The first delta function in the square brackets gives ad(q3), but qW 3 must be integrated in a shell that does not include
origin, and therefore the contribution of this member vanishes. For similar reasons, becauseN(p,p8)}d(pW 1pW 8), the second
member in the square brackets also vanishes.

~f! The seventh term of orderl2 in Eq. ~B1! is represented by a single diagram@Fig. 3~f!#, which includes a loop formed
by the propagator̂f.1̃w.2̃&}d(q11q2). This delta function and that of conservationd 1̃2̃3̃ , generate ad(q3). Because of the
integration domain, as before, the diagram gives no contributions.

~g! The eighth term@Fig. 3~g!# gives the following contribution to the CGA:

2l2E d4p1f,~2p1!H ~2p!24E d4p3d4q3pW 3•~pW 12pW 3!qW 3•~pW 32qW 3!

3
N~p12p3 ,p32q3!w,~q3!

~ ip3
01npW 3

2!~ i @p12p3#01n@pW 12pW 3#2!~ i @p32q3#01n@pW 32qW 3#2!
M ~p3 ,p12p3 ,p32q3!J . ~B10!
036134-16
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This contribution can be thought of as a momentum dep
dent correction to the viscosity term in Eq.~A1!. When ex-
panded in powers of the external momentump1, the curly
bracket takes the form of an infinite sum of derivative int
actions. We saw in Sec. V that, if the noise satisfies Eq.~74!,
in the limit in which the shell is made of infinitesimal thick
ness, the expression between curly brackets gives, for s

externalp1, a factor proportional topW 1
2. All other contribu-

tions are of higher order inupW 1u.
~h! Finally, the ninth term of orderl2 in Eq. ~B1!, gener-

ates a new vertex~the cubic interaction term!, which couples
threew,’s with onef, @Fig. 3~h!#,

2
l2

2 E d4p1d4p2d4q2d4q3~2p!24d122̃3̃

3
pW 2•~qW 21qW 3!qW 2•qW 3M ~q21q3!

@2 i ~p1
01p2

0!1n~pW 11pW 2!2#
f,1w,2w,2̃w,3̃ .

~B11!

APPENDIX C

In this appendix we compare the results of the preced
section with those obtained by coarse graining the equat
of motion. This is the first step of the transformation asso
ated with the dynamical RG as defined in Ref.@6#, to be
further discussed below.

FIG. 3. Orderl2 Feynman diagrams for the coarse grained
tion.
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1. Definitions

In general, we start from a given stochastic equation

L$w%~p!1N $w%~p!5h~p!, ~C1!

where the operatorL is linear andN collects the nonlinear
terms, and where, to be specific, the noiseh verifies Eq.
~74!. The nonlinearity couples modes of different scales.
exact solution can be attained in few cases only, such as
noiseless Burger’s equation in 111 dimensions@48#. One
could be interested in reducing the number of modes—fo
computational calculation on a discrete lattice@45,49#—or in
studying the scaling properties—in relation with critical ph
nomena@6#. In both cases the elimination of short sca
modes can be accomplished by solving their equations
motion in terms of the long scale modes, adopting, in g
eral, some perturbative scheme. One then feeds back t
solutions in the equations of motion of the long scale mod
obtaining a coupled set of effective equations for the
modes only. One identifies, in these equations, effec
couplings—some of which were zero in the initi
equations—and noise terms, which can be either additive
multiplicative.

Formally, we can define a projectorP over the Fourier
space spanned by modes in the momentum shellLs,upW u
,L, and project the Eq.~C1! to obtain

L$w.%1P N $w.1w,%5h. , ~C2!

L$w,%1~12P!N $w.1w,%5h, . ~C3!

In some way we must solve the first equation forw. to
obtain w.@w, ,h.#. The second equation is then rewritte
as

L$w,%1~12P!N$w,1w.@w, ,h.#%5h, . ~C4!

This will be the effective equation for the long modes, a
the one we expect that reproduces the results obtained
coarse graining the CTP generating functional. Some fluc
ating terms on the left-hand side of Eq.~C4! can be added to
the noiseh, to form an effective noiseh̃, , which will have
an amplitude~or more precisely, a two point correlatio
function characterized by an amplitude! D̃. We remark that
in Eq. ~C4! there is not implicit any kind of averaging pro
cess. The effective noise amplitude can be obtained trivi
from Eq. ~C4! by calculating the correlation ofh̃, .

This situation is different from that addressed, for e
ample, in the paper of Medinaet al. @4#, concerning the KPZ
equation, where the effective noise amplitude is derived fr
the two point correlation function of the fields, or that pr
sented by McComb for the Navier-Stokes equation in R
@45#, where the effective equation is averaged with respec
the short scale noise. For example, the right-hand side of
~9.34! in McComb’s book@45# displays the unrenormalize
external force, while our approach would replace it by t
effective one@see Eqs.~3.11! and ~3.18! of Ref. @44##. This
difference arises because of the way the average is
formed in Eq.~9.16! of Ref. @45#.

We show below the results of applying the coarse grain
procedure to the KPZ equation.

-
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2. Coarse graining of KPZ equation

Starting from Eq.~A1!, we proceed as before, splitting th
field as the sum of two independent fields,w5w.1w, , and
analogously for the noiseh. Thus,

~ ip01npW 2!@w.1w,#~p!

1
l

2E d4q

4p2
qW •~pW 2qW !$w.~q!w.~p2q!

12w.~q!w,~p2q!1w,~q!w,~p2q!%

5@h.1h,#~p!. ~C5!

If upW u.Ls , thenw,(p) andh,(p) are zero, and we obtain

~ ip01npW 2!w.~p!

1
l

2E d4q

4p2
qW •~pW 2qW !$w.~q!w.~p2q!

12w.~q!w,~p2q!1w,~q!w,~p2q!%5h.~p!.

~C6!

This equation can be solved, formally, order by order inl by
setting
on

of

r
q

03613
w.5w.
(0)1lw.

(1)1•••. ~C7!

It yields

w.
(0)~p!5

h.~p!

~ ip01npW 2!
, ~C8!

w.
(1)~p!5

21

2~ ip01npW 2!
E d4q

4p2
qW •~pW 2qW !

3H h.~q!

~ iq01nqW 2!

h.~p2q!

~ i @p2q#01n@pW 2qW #2!

12w,~q!
h.~p2q!

~ i @p2q#01n@pW 2qW #2!

1w,~q!w,~p2q!J . ~C9!

WhenupW u,Ls , w.(p) andh.(p) are zero. For suchp, and
using the expressions given in Eqs.~C8! and~C9!, we find a
closed equation for the fieldw, , namely,
~ ip01npW 2!w,~p!1
l

2E d4q

4p2
qW •~pW 2qW !Fw,~q!w,~p2q!12w,~p2q!

h.~q!

~ iq01nqW 2!
1

h.~q!h.~p2q!

~ iq01nqW 2!~ i @p2q#01n@pW 2qW #2!
G

2
l2

2 E d4qd4k

16p4
qW •~pW 2qW !kW•~qW 2kW !M ~q!Fw,~p2q!w,~k!w,~q2k!

~ iq01nqW 2!
12

w,~p2q!w,~q2k!h.~k!

~ iq01nqW 2!~ ik01nkW2!

1
w,~p2q!h.~k!h.~q2k!

~ iq01nqW 2!~ ik01nkW2!~ i @q2k#01n@qW 2kW #2!
1

w,~k!w,~q2k!h.~p2q!

~ iq01nqW 2!~ i @p2q#01n@pW 2qW #2!

12
w,~q2k!h.~k!h.~p2q!

~ iq01nqW 2!~ i @p2q#01n@pW 2qW #2!~ ik01nkW2!

1
h.~k!h.~q2k!h.~p2q!

~ iq01nqW 2!~ i @p2q#01n@pW 2qW #2!~ ik01nkW2!~ i @q2k#01n@qW 2kW #2!
G5h,~p!. ~C10!
This is the basic result: an effective equation that only c
tains the long modesw, .

We now re-sort things in order to clarify the meaning
each term. The first term ofO(l) is the original nonlinearity.
In the second one,h. acts like a multiplicative noise ove
w, , and can be identified with what we found earlier in E
~B8!. Rewrite the third term ofO(l) in Eq. ~C10! as
-

.

l

2E d4q

4p2
qW •~pW 2qW !F N~q,p2q!.

~ iq01nqW 2!~ i @p2q#01n@pW 2qW #2!

1H h.~q!h.~p2q!2N~q,p2q!.

~ iq01nqW 2!~ i @p2q#01n@pW 2qW #2!
J G . ~C11!
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With N. we have indicated that the functionsN are zero if
their arguments lie outside the momentum shell. In this
pression, the first term gives a field independent contribut
which when the noise is delta correlated reproduces the
sult shown by Eq.~B3!. In its turn, the remaining term in Eq
~C11! is an additive source of noise, and therefore the eff
tive noise term, toO(l), is given by

h,~p!2
l

2E d4q

4p2
qW •~pW 2qW !

3F h.~q!h.~p2q!2N~q,p2q!.

~ iq01nqW 2!~ i @p2q#01n@pW 2qW #2!
G . ~C12!

This noise has zero mean, and its two point correlation fu
tion, assumingh satisfies Eq.~74!, is given by

2D12D2l2E d4q

4p2

3
@qW •~pW 2qW !#2M ~q,p2q!

@~q0!21n2~qW 2!2#@~p02q0!21n2$~pW 2qW !2%2#
.

~C13!

Notice that the correction to the noise two point correlat
introduced above is equal to that given in Eq.~B6!. However,
the third order correlation function is not zero, so we can
say that the effective noise is Gaussian, as was the orig
one.@However, the third order momentum isO(l3)]. To say
something about the higher order correlation functions fi
we must include corrections to the noise coming from hig
. A

el

-
y

03613
-
n,
e-

-

c-

t
al

t
r

order terms in the perturbative expansion we performed
arrive at Eq.~C10!.

Consider theO(l2) terms in Eq.~C10!. The first one is
just the cubic interaction given in Eq.~B11!. The second and
the fourth terms are quadratic interactions subjected to m
tiplicative noise. The third term contains also multiplicativ
noise which, when the noiseh is TI, has zero mean@because
of M (q), and, hence, it does not contribute to the effect
viscosity#. In the CGA all these multiplicative noisy term
appear when the perturbative expansion is extended
O(l4).

The fifth termO(l2) can be written as

2
l2

2 E d4qd4k

16p2
qW •~pW 2qW !kW•~qW 2kW !

3F 2w,~q2k!N~k,p2q!.

~ iq01nqW 2!~ i @p2q#01n@pW 2qW #2!~ ik01nkW2!

1
2w,~q2k!$h.~k!h.~p2q!2N~k,p2q!.%

~ iq01nqW 2!~ i @p2q#01n@pW 2qW #2!~ ik01nkW2!
G .

~C14!

Hence, we can regard the first contribution as the momen
dependent correction to the viscosity we found in Eq.~B10!,
and the second one as another term linear inw, subjected to
multiplicative noise. This term, as with the last one appe
ing in Eq. ~C10!, which contributes to the effective noise,
found at O(l4) in the CGA. We conclude that the coars
grained equation of motion coincides with the equation
motion derived from the CGA.
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