PHYSICAL REVIEW E VOLUME 62, NUMBER 6 DECEMBER 2000

Local (in time) maximal Lyapunov exponents of fragmenting drops

P. Balenzueld,C. A. Bonaserg,and C. O. Dorsb?
!Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellon I, Ciudad Universitaria,
Nunez 1428 Buenos Aires, Argentina
2Laboratorio Nazionale del Sud, Istituto Nazionale di Fisica Nucleare, via Santa Sofia 44, 1-95123 Catania, Italy
(Received 2 September 1999; revised manuscript received 14 March 2000

We analyze the dynamics of fragment formation in simulations of exploding three-dimensional Lennard-
Jones hot drops, using the maximum logal time) Lyapunov exponenfMLLE). The dependence of this
exponent on the excitation energy of the system displays two different behaviors according to the stage of the
dynamical evolution: one related to the highly collisional stage of the evolution, at early times, and the other
related to the asymptotic state. We show that in the early, highly collisional, stage of the evolution the MLLE
is an increasing function of the energy, as in an infinite-size system. On the other hand, at long times, the
MLLE displays a maximum, depending mainly on the size of the resulting biggest fragment. We compare the
time scale at which the MLLE’s reach their asymptotic values with the characteristic time of fragment forma-
tion in phase space. Moreover, upon calculation of the maximum Lyapunov expdfie) of the resulting
fragments, we show that their dependence with the mass can be traced to bulk effects plus surface corrections.
Using this information the asymptotic behavior of the MLLE can be understood and the fluctuations of the
MLE of the whole system can be easily calculated. These fluctuations display a sudden increase for that
excitation energy which produces a power-law-like asymptotic distribution of fragments.

PACS numbds): 05.45-a, 05.70.Jk

[. INTRODUCTION of the critical exponents has attracted a lot of attention
recent reviews segs,7)).

The process by which a highly excited finite system de- The possibility of a phase transition from a solid-like to a
velops a collective radial flow and disassembles into a set diquid-like state for finite systems, is well founded and can be
clusters is called fragmentation. related to the usual solid-liquid phase transition of infinite

This kind of phenomenon appears in different areas ofystems. This can be understood as follows: at low excita-
physics. Just to mention a few it is found in collisions of tions small systems are self sustained, hence they have
highly accelerated clusters with hard surfaces, fullerenes imenough time to develop correlations of the kinetic tygg)].
pacted by high velocity projectiles, intermediate-energyThe characterization of the fragmentation process has been
nuclear collisions, etd.1]. rather elusive, instead. In particular in this case we face a

In particular in the case of collisions of energetic Ar clus- System out of equilibrium that develops a collective radial
ters with hard walls it has been shoy2] that a transition mode and fragments in small clusters. Among recent results

from evaporation to shattering takes place in the range in this area, we would like to mention the calculation of an

incident energy which corresponds very closely to the corre€Xtended caloric curve that describes the behavior of the
; e temperature of the system at the breakup time with the exci-
sponding boiling temperature. . .
tation energy10,11] (hereafter refereed ag the calculation

Also, in recent experiments with energetic hydrogen-ion ¢ alobal L 2] lized entroni
clusters colliding against 60 carbon fullereri8$ the distri- of giobal Lyapunov exponen » generaiized entropies,
and fractal dimensiongL3].

but:tqnllolft the r(]jetected Iellrgestlmdassl an? s vanzTthversus In this work we analyze three-dimensiori@D) drops of
muttiplicity, when properly scaled, closely resemble the ré-y ;5 particles interacting via a 6-12 Lennard-Jofie® po-

sults obtained in Au-on-Au collisional ex_pgnmerﬁté. tential, which are excited enough to undergo fragmentation
For the case of nucleus-nucleus collisions a rather hugg, evaporation.
amount of both experimental and theoretical work has been A way to characterize the dynamics in the phase space of
performed. The essential features of such a process can g process is to calculate the maximum Lyapunov exponent
summarized by stating that as the energy of the colliding\MLE). The MLE gives an idea of the velocity at which the
system is increased the fragment size distribution of the resystem explores the available phase space.
sulting clusters goes from U shaped to exponentially decay- In | it has already been shown that in the early stages of
ing. Somewhere between these two extremes a power lawe evolution of highly excited drops, due to interparticle
can be detected. This sequence of shapes in the mass distollisions, a collective radial motion develops. The emer-
butions is predicted by the Fisher droplet modi8] and gence of such an ordered motion has important conse-
could be related to a phase transition. Because neither thguences, as, for example, it behaves as a heat sink giving rise
nuclear interaction potential nor the corresponding equatioto a constant fragmentation temperature. In this way the
of state(EOS of nuclear matter is known, the possibility of competition between ordered motidoollective expansion
facing a phase transition has triggered a lot of work in thisand chaotic motion(interparticle collisions plays a major
area; in particular the determination of the caloric curve andole in the dynamics of fragment formation and thermal
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properties of the system. A way to properly characterize sucMLE, and when we plot these fluctuations as a function of
a competition is to study the time evolution of the MLE.  the excitation energy, they display a sudden increase at the
Given two very close initial conditions in phase space, theenergy for which a power law asymptotic distribution of

MLE is defined as fragments is obtained.
This paper is organized as follows. In Sec. Il we describe
o . 1 d(t) the model used to simulate the fragmentation process. Sec-
)‘_tlm d(l(;?lo ?Inm ' tion Il is devoted to the analysis of the properties of the

drop: the mass spectra as function of the energy and the

whered(t) is the distance in phase space between their Corgaloric curve. We also discuss the times scales relevant for
responding trajectories at timeand d(0)=d(t=0). The the fragmentation process and the formation of the radial
MLE is positive for chaotic systems ' collective mode. In Sec. IV we deal with the definition of the

The MLE has been used to study the solidlike to quuid-'vILE and the different ways to calculate it. In Sec. V we
like phase transition in LJ clustef$4—14. It also has been analyze the results obtained fc_)r the MLLE and 'ghe behavior
used to study the problem of fragmentation, analyzing thepf the MLE for the asymptotic state. Finally, in Sec. VI
occurrence of a possible liquid-gas phase transitid. conclusions are drawn.

The MLE can be understood as an average, along the
different stages of the evolution, of the behavior of the sys- Il. COMPUTER EXPERIMENTS
tem along an infinite trajectory in phase space. In the case of
fragmen_tation(a}s .the nar_r:j(T indiclat)amfe natur(re]_o;‘]lthe Sys- d drops. The two-body interaction potential is taken as the
tem varies as it irreversibly evolves from a highly excited,, = .4 Lennard-Jonés-12) potential:
unstable, piece of matter into a set of noninteracting, stable,

We study the fragmentation of excited Lennard-Jones

clusters. As such the average over the infinite trajectory 12 6 12 6

. . . . g g g g
erases the relevant information, i.e., what happens while the —) - <—) - (—) + (—> , r<re,
system fragments. In order to avoid this feature we calculate V(r)= r r Fe Fe
the local-in-time Lyapunov exponents at a sequence of tem- 0, r=re.
poral intervals of the evolution of the excited drggee Sec. @

IV), which can be considered as a short path estimate of the
MLE. This magnitude has already been used, for example, in We took the cutoff radius ag=3c. Energy and distance
[17] to study the properties of small Ar clusters, in particularare measured in units of the potential wed)) (and the dis-
the evolution of its ergodic properties with energy. tance at which the potential changes sigr,(respectively.
Our calculation allows us to obtain a characteristic timeThe unit of time isty=\/o?m/48e. We used the velocity
[the time at which maximum locdin time) Lyapunov expo-  Verlet algorithm to integrate the classical equations of mo-
nent(MLLE) attains its asymptotic value,,,] which can be tions[19] taking t;,;=0.00%, as the integration time step.
used to distinguish the two well-differentiated stages in theAs a result, energy was conserved to an accuracy of 1 part
evolution of the dropfi) the highly collisional one, at early per 16.
times, which is characterized by the absence of strong col- We simulate explosions dfi=147 particles, closed-shell
lective effects, andii) the asymptotic one, dominated by the three-dimensional drops. The initial configurations are con-
collective radial motion. structed by cutting a spherical drop from a thermalized peri-
We compare this result with other relevant time scalewdic Lennard-Jones system withi=512 particles in each
obtained from analysis of the dynamic process, like the charperiodic cell. The degree of excitation can be easily con-
acteristic times for fragment formation in phase space, thérolled in this way by varying the density and temperature of
emergence of the radial collective motitsee ), and the one the periodic system. The initial state of our drops is macro-
corresponding to the mean momentum tranéf@MT) be-  scopically characterized by their energy and dersitigen as
tween particles in the collisional process. that of the periodic systemWe studied a broad energy
In the asymptotic state the system can be viewed as eange which encompasses very different behaviors regarding
mixture of noninteracting free particles and almost stablehe fragmentation pattern, going frolE=—-2.8¢ to E
fragments of varying sizes. As such, it is not necessary te= +3.0e. The density was taken gs=0.85 3. The tem-
perform a local analysigcalculating the MLLE and the perature of the periodic system used for constructing the ini-
standard MLE approach averaging over a long trajectory catial configurations is in the range 1.4 to ~4.3¢. It can be
be used. seen from the equation of state of the Lennard-Jones system
Nevertheless, during this stage the almost stable cluste{g0] that our initial drops are hot and compressed.
might decay via the evaporation of, mainly, free particles.
Such a process will induce further cooling of the primary |, bROPERTIES OF THE EXCITED DROPS: MASS

fragments[l_s] anq this cooling should give rise to more SPECTRA, CALORIC CURVE, AND RADIAL
regular configurations and thus reduce the effective MLE. COLLECTIVE MODE

In this stage we calculate the dependence of the MLE
with the mass of the fragments, and using the resulting in- As stated in the Introduction, many systems differing
formation, we analyze the MLE of the whole system in termsgreatly in size, interaction potential, etc., exhibit fragmenta-
of the MLE of its fragments. This study shows us that thetion. Thus, a good way to characterize the excitation energy
MLE of the drop is driven by the size of the biggest frag- is according to the asymptotic mass spectra. If the energy of
ments. In addition, we can calculate the fluctuations of thehe system is high, it will break into several small fragments.
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mass number system is self-sustained. In region IV the system is in the fragmen-
10° tation regime. Details of the calculation of the temperature can be
2 o found in I.
10 L . (b) _§ (= )AL A2/3]‘
Ao f . ] =YA el rgAt4moo(T) where w4, and ug are the
10" ¢ e 3 chemical potential of the liquid and vapor phases ants
2 i *Ceus, E the surface tension.
210° & ""-.-p-._-‘,.,. 3 In Fig. 1 we show the mass spectra resulting from our
v L F Tevae ] numerical experiments, for three different energies per par-
10 cme ticle that display the above-mentioned behavidt=
8 L ] —2.0e, E=+0.5¢, E= +3.0e (the ground-state energy for
1 10 100 this system isE=—5.8¢). For E=—2.0e [Fig. 1(@] the
mass number asymptotic spectrum consists of a big fragment of about 130
particles plus some free particlég-shaped mass spectra
10° ¢ —— g The mass spectra &= +0.5¢ [Fig. 1(b)] is “power law
E ] like” and the one corresponding =+ 3.0e [Fig. 1(c)] is
10 L . ©) ] mainly composed of small clusters.
A 2 . E The process by which the drop is disassembled in a set of
S .. 1 noninteracting fragments is characterized by the time scales
S10° °. 3 of fragment formation. 1rf11] the time scales related to the
g . °e ] time of fragment formation %¢;) and the time of fragment
v 10° L 4 emission (s,) were calculated. The time of fragment forma-
: . tion is defined as the time at which the fragments are formed
T in phase space and the time of fragment emission when they
1 10 100 are formed in configurational space. Thg's obtained goes
mass number from ~20ty for E=1.8¢; to ~75t; for E=—0.5¢5. The

, ) . times scales obtained for fragment emissief,) goes from
FIG. 1. Asymptotic mass spectra for three different energies in

. . _ _ "‘4(10 fOI’ E: 1860 to "’10(10 to E: _056'0
EZfEfLaErS%:tat'on regime(@) E=—2.0e, () E=+0.5, and In the Appendix we include a brief description of the

fragment recognition algorithms which allow us to calculate
The asymptotic mass spectrum will show rapid decay forrs;'s and 7¢.'s. (See | and references therein for details.
large masses. On the other hand, for low excitation energies, In order to gain insight into the description of the frag-
the systems will evaporate monomers and small clustergientation process, we show in Fig. 2 the extended caloric
while a big drop, comprising most of the mass of the systemgurve calculated in I. The caloric curve is the temperature at
will remain bound. In this case, the mass spectrum is Uragmentation time 1) as a function of the energy of the
shaped. A third case is usually found: for a given intermedi-system. It displays two well-differentiated regions: the low-
ate energy, the mass spectrum will show a power law behawenergy one, where the systems is self-sustained, and the
ior. This last case is quite important. Taking into account thahigh-energy region, where the cluster is in the multifragmen-
a power law implies scale invariance and that power lawtation regime. In the low-energy region, the temperature rises
mass spectra are found in second order phase transitiomgth the excitation energy. The drop goes from a solidlike
(e.g., percolation at the critical probabilif21] or liquid-gas  phase to a liquidlike phase and its behavior resembles the
phase transition at the critical poiff]), this kind of spec- one of macroscopic systems, although there are some impor-
trum was associated with the system undergoing a secon¢gnt differences; sd@]. It is clear that an isolated liquid drop
order phase transitiof22,23. This conjecture, however at- cannot be heated without limits. Once a certain temperature
tractive, has not been confirmed yet. is attained, which depends on the size of the system, addi-
The sequence of shapes of the mass spectra is the sametianial energy supplied to the system will evaporate particles
the one predicted by Fisher’'s model of liquid-gas phase tranbut will not produces an increase of temperaturesat the
sitions. In the latter model, the probability of having a dropassociated temperature is called the limit temperaligfg.
of size A in the wvapor is given by P,(A) For energies higher than that of the evaporating drop, the
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system undergoes the nonequilibrium process of fragmentahorter than the typical times scale of fragment formation for
tion. In the fragmentation regioB> — 2.0e the temperature energies lower thak= 0.9 (see | for details
is approximately constant for a wide range of energies, de- In [24] a method to calculate the MLE which avoids the
creasing slowly for the higher ones. Note that the initialabove-mentioned saturation was developed. In this method,
drops in our computer experiments are artificially con-after a time stepr<<7g,;, the distanceld(7)=d; is rescaled
structed hotter than the limit temperature. In its evolution theto dy in the maximum growing direction and the quantity
system cools down, while the expansion builds up, until itin[d,/d,] is saved. Repeating the procedure at every time
reach its limit temperature. step 7, the logarithmic increments [Id,/d;_;] are collected.
An important ingredient to understand the dynamical evo-The MLE is defined as
lution of system is the collective radial mode of expansion.
Because initially the drop is hot and compressed, it expands, o1
developing the collective mode mentioned above. This has A=lim —— Z«l In
been fully analyzed in | and we recall that it was found that S
the radial flux is formed aty,x=10t, for the four energies The ratiod; /d;_, is a measure of the exponential diver-
analyzedE=1.8¢, E=0.9, E=0.5, andE=—0.%. gence between two initially nearby orbits along the maxi-
mum growth direction at timer. In this way, Eq.(3) can be
IV. LYAPUNOV EXPONENTS: DEFINITIONS understood as an average of “local Lyapunov exponents”
Oalong a infinite trajectory, each one measuring the chaoticity
(in the sense of divergence of initially nearby orbits in the

. (3

di
di_1

The maximum Lyapunov exponent, as already mentione

is a measure of the sensitivity of the system to initial condi- h 96l h i it |, at timesr. [This local
tions and also gives an idea of the velocity at which theP1@S€ spagan each time interval, at imesr. IS loca

; : onent, as we will define in E¢4), can be considered as
system explores the available phase space. ?lven two Vegfs%ort-path ostimation of the MLqé)and has been uséiih
close initial conditions in phase space, the MAEIs given ¢, anajyze the evolution of ergodicity of three- and seven-

by the following relation: particle Argan’s clusters. Also if25], for the same kind of
system, the complete spectrum of local Lyapunov exponents

A=Ilim lim —|nﬂ ) has been used to analyze the dynamics of the system in terms
te d(0)—ol d(0) of the local structure of the potential energy surface of the
clusters]
In order to calculate the MLE, we generate at titae0 a If we use Eq.(3) to calculate the MLE for our case of

initial configuration of the systertmain poin} characterized interest, i.e., a drop that fragments, we would be averaging
by a given energy. We also generate another initial configupyer the local behaviors, erasing the information we are in-
ration (the “son”), which differs from the main point by a terested in. Because the system is changing quickly in the
small amountd, in momentum spacéthe velocity of the  first stages and we want to follow the evolution with time of
particles are slightly different Following [12], the distance the local MLE, we define a maximum local Lyapunov expo-
between the trajectory of the main point and the trajectory ohent associated with thi¢h interval of size N;7), beginning

the “son” d(t) can be defined as attj=ir as
N 1/2 i+ N
1 ! d 1 |disn,
d(t)= a[rm(t) —ro(t)12+b[pm(t) —ps(t) 12 | PN (1) = —— = '
(t) 21{ [rm(t) =rs(t)]°+ b pm(t) = ps(t) 17 N =N() NiTj;rl ndj_1 Nirln a (4

2

N with N; finite. This is valid for the given main point. Because
wherer andp refer to the positions and momentafpar-  the system we study is characterized by its macroscopic state
tories differing byd, att=0 (main and soh a,b are two  points att; corresponding to the set of trajectories macro-
arbitrary parameters which express the fact that the LE’s argcopically equivalenti.e., with the same eneryat t=0.
independent of the particular metrics in phase space. In thiS The MLLE can also be calculated with a slightly different
work, when we calculate the MLE, we will choose=0, b method. It consists also in generating a set of initial condi-
=1/m with m the mass of the particles; i.e., we take dis-tions that evolve in phase space, but after a period of time
tances in velocity space only. When calculating numerically;s \ -1 one randomly generates a new set of “sons,” eras-
the time evolution ofi(t) by solving the classical equations jng the information about the previous correlations. In this
of motion (CEOM), we find an exponential increase fol- \ay we characterize different regions of the phase space vis-

lowed by a saturation i space[12,13. This saturation ijted by the system with its maximum local Lyapunov expo-
takes place fot>\ "1, allowing a reliable calculation of. nents calculated as

The saturation distanag, brings information about the ef-

fectively explored phase space. This way of calculating the 1

maximum Lyapunov exponent will be referred to as the M= ()= g Inld(ti+Nin)/d(t) ] ®)
“maximum global Lyapunov exponent,” because by follow- '

ing a trajectory, information about the different stages of the Once again an average over macroscopically equivalent
evolution will be present in the resulting value &f (of  main points is performed. We have found that both ways of
course\ is to be calculated fot<rg,y). The characteristic calculating the MLLE[using Eqgs.(4) and (5)] give equiva-
time at which saturation is achieved 1g,~30ty, a time lent results.
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FIG. 3. Maximum local Lyapunov exponerk () as a function FIG. 4. Maximum local Lyapunov exponen () as a function

of time for the same three energies of Fig. 1: solid circles forof energy for three different timest=2t, (solid diamonds
E=—2.0e, solid triangles forE=+0.5¢, and solid diamonds for t=20t, (solid circleg, andt=15Q, (solid triangle$.

E=+3.0e.

maximum of the MLLE occurs, the asymptotic biggest frag-
ment is as big as the whole system. Moreover, this peak is
A. MLLE as a function of time and energy centered at abolE= — 2¢, which is the value of the excita-
tion energy for which the caloric curve reaches its maximum
temperature’s platea(this temperature is called;,,; see
Fig. 1). As we said in Sec. lll, such a plateau signals the
onset of the fragmentation regime. In this case we can talk
about “finite-size-like behavior”: the asymptotic MLLE
brings information about the dominant fragment in the

V. RESULTS OF NUMERICAL COMPUTATIONS

In this work, we calculate the MLLE's using E¢) ap-
plied to the dynamical evolution of the NL47 Lennard-
Jones excited drops, with=0.01t, and N;=1000, so we
have a value of the MLLE every 1§ except for the first
10ty of the evolution for which we us®&;=100 and then
N;7=1t,. We calculate the MLLE in a range of energies

from —2.8¢ to +3.0e. The behavior of the MLLE as a func- asymptotic regime. .
. ) - In the next subsection, we shall calculate the asymptotic
tion of the time can be seen in Fig. 3 for the same three

. - . values of the MLLE of the drop, as a function of the MLE of
energies analyzed in Fig. 1. The same behavior for the thre . : ;
ifs fragments. This calculation will allow us to understand

energies analyzed can be seen: the MLLE s decrease s_harq e role of the biggest fragment in the asymptotic value of
in the first 2@, of the evolution, reaching an almost station- MLLE

ary vglue afte_r this time. . . According to the dependence with time of the MLLE, we
This behavior shows us that we can classify the time evo-_ - .
. : ) . : can infer that the chaoticity of the system is related to the
lution of the system in two well-differentiated stages: the

collisional process between particles, which depends

early one, when the chaoticity of the drop is decreasin . . .
quickly, and the asymptotic one, characterized by the Stabi%trongly on the radial collective mode. In order to quantify

) . .. the strength of the interparticle collisions and understand the
'Fy of the values of t.he MLLE. We can deflne,a CharaCte”S.t'Cbehavior of the MLLE, we calculate the mean momentum
time 7, as the time at which the MLLE'’s reach their

asymptotic values. In this system,.= 20k, transfer between particles as a function of the energy and

It can also be seen that the dependence with energy |I|Sme[C(t)]. Itis defined as

different at very early times than at asymptotic times. In Neon N
order to illustrate this, we plot in Fig. 4 the MLLE as func- C(t) = > > moi(t+ &) —uvi(t)], (6)
tion of the energy at three relevant times. ¥t 2t,, the conf j=1 i=1

MLLE is an increasing function of the energy. This behavior

can be understood because the drop has not developed radigdiere N¢on¢ is the number of configurations analyzed for
flux yet; it is still compressed and fragments are not formedeach energy, i.e., an average over the ensemble of initial
yet. Due to the absence of collective radial motion, all theconditions.

excitation energy goes into “chaotic motion of the particles” We work in a range of energies frofi=—5.0e to E

and the system behaves as an infinite one. We can denote+ 3.0e. The behavior of the MMT is exemplified in Fig. 5
this kind of behavior as “infinite system like.” We have where we show the time dependence of the MMT for the
found that fort=20t, (at this time the system is fully in the same three excitation energies analyzed in Figs. 1 and 3. We
asymptotic regimethe MLLE displays a maximum. This find that the MMT behaves in a similar way as the MLLE: at
asymptotic behavior depends mainly on the size and the tengarly times the collisions decrease abruptly until they reach
perature of the biggest fragment of the fragmented drop, atheir almost stable asymptotic values, and the dependence
we will see in the next section, but if we look at the masswith the energy in this figure is similar to the one showed by
spectra in Fig. 1, we can see that at the energy for which ththe MLLE in Fig. 3.
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FIG. 5. Mean momentum transfer between parti§l@ét)] as a 8.0
function of time for the same three energies of Fig. 1: solid circles
for E=—2.0e, solid triangles forE= +0.5¢, and open diamonds 7.0
for E=+3.0e.
6.0
Moreover, if we look at the behavior of the MMT fd& 5.0
= —2.0e, it displays a loop betweentand 1%,. We have =
found this behavior for our simulations in the range.0e % 4.0
&)

<E< —1.3e. This feature can be explained if we study the
behavior of the root mean square radi&s(s) of the biggest
fragment as a function of the time. In Fig. 6 we can see how
for one of the mentioned energieB € — 2.0¢) the R, ¢ dis- I ]
plays a loop but inverted with respect to the MMT: whenthe 7o i
R;ms rises, the MMT decreases and vice versa. This can be
interpreted as follows: first the system expands while evapo- 0.0, — 15.0 : 2('7'0 : 3('10 : 4&0 200
rating a few particles, then contracts and heats up, and finally time (1)

expands again, reaching the asymptotic state.

To obtain the dependence of the MMT with all the ener-  FIG. 6. Root mean square radius of the drdp{J) () and
gies analyzed for the different stages of the evolution we plof?®a@n momentum transféiC(t)] (b) as a function of time for
in Fig. 7 the MMT as a function of the energy for three E= 2.0 (solid circles andE=—0.5 (open triangles
relevant times: at very early time= 2t,), at an intermedi-
ate time (=20ty), and at very long time, when the frag-
ments are well into their asymptotic regime, i.es15Q.
At t=2t, the MMT is an increasing function of the excita-
tion energy. On the other hand, for20t, the MMT dis- B. MLE in the asymptotic stage
plays a maximum for energies at which evaporation is the Our main task in this section is to understand the behavior
dominating decay mode. This maximum is due to the fackf the asymptotic MLLE found in the previous section, in
that after evaporation of a few monomers we are left with aerms of the MLE of the constituent fragments of the system.
big fragment at the maximum temperature it can sus#@  |n order to do that, we calculate the MLE of the whole frag-
). mented system and the MLE of its fragments at their maxi-

We can also see that for 20t, the dependence of MMT  mum (limiting) temperatureT,;,,,. We prepare the system in
with the energy remains essentially constant. It allows us t& proad energy range and solve the CEOM for times long
define a characteristic time scale, i.e., the time at which th@nough to be very close to the asymptotic regime; i.e., the
MMT reaches its asymptotic behavior. This time 43m:  fragments are in long-lived metastable states. We then clas-
=10, for almost all the energies except those in the rangssify the clusters according to mass and calculate the MLE for
—2.0e<E<—1.3¢ (the range at which th& s displays a  each size using E¢3). The resulting MLE’s are displayed in
loop), for which 7,5, 20t,. Fig. 8. It can be readily seen that the MLE is very well fitted

In this context, we can see that the MLLE’s are stronglyby
dependent on the collective radial mode: At very early times,
the drop is highly chaotic because all the excitation energy A=a(1-N"3), (7)
goes to interparticle collisionghe radial flux is not formed
yet), but when the system expands the collisions betweewith a=0.59251.

3.0

2.0

particles decrease and the system becomes less chaotic. This
process ends when the radial collective mode is fully formed.



7854 P. BALENZUELA, C. A. BONASERA, AND C. O. DORSO PRE 62

12.0 T T T T T
//
100 | S 0.50
*
*
80 | // 0.40
/ *—e t=20t,
- 0—0t=2tn
- /./ ——at=150, -
£ ol Ve i ' 030
= <
5]
0.20
4.0 | Sy
7 \
™~ 0.10
20 E
N%q 0.00 . . . . .
0.0 L L L L . L . . " 0.0 25.0 50.0 75.0 100.0 126.0 150.0
60 -50 -40 -30 -20 -10 00 10 20 30 40 mass number

energy ()

FIG. 8. Maximun Lyapunov exponenk ( circles as a function
of mass of the asymptotic fragments together with the fitting func-
tion (see text for details

FIG. 7. Mean momentum transfer between parti€léét) ] as a
function of energy for three different time$=2t, (diamondg,
t=20t, (circles, andt=15Q, (triangles.

Tim - Such a behavior has already been found in other sys-
This can be expressed as=a(N—N?%3/N, where the tems[26,27.
first term represents the dependence on the volume of the We now focus on the whole fragmented system. Follow-
fragment and the second term the dependence on the surfadeg Eg. (2), the expression for the distance between the tra-
In this way, if the size of the system goes to infinity, we arejectory of the main point and the trajectory of the “son” in
left with the MLE for an infinite system with temperature the velocity spaced,) can be cast in the following way:

Nejust n]

2 Z (0@ =0 D)2+ (@ —p D)2+ (@ —pB)2], )

with N¢jys¢ the number of clusters and; the number of contribute to it. The values of the MLE of the biggest frag-

particles in clustef, from which it is immediate that ments obtained from E§7) are very close to the value of the
MLE of the system calculated from E(B) or (10).
Netust With this result we can understand that the MLE of the
jZl [dberi']?, (99 whole asymptotic system is maximum at the excitation en-

ergy for which the biggest asymptotic fragment is as large
and hot as possible. And the MLLE will reach its asymptotic
value when its biggest fragment is almost formed in phase
space.
Nooo: Using Eq.(10) we can easily calculate the mean values
2 c?(n.)2e?Mit, (10) and fluctuations of the asymptotic overall MLE’s, in particu-
' ! lar, the fluctuations given byAN) = ((AZ)—(X)D)/(N).
In Fig. 9 we show the fluctuations of the overall MLE’s as
By using the information of the asymptotic mass spectraa function of the initial energy of the system. It is of special
(for the values of;) and the values of; obtained from Eq. interest that this magnitude presents a noticeable change in
(7), we can fit accurateld, (t) in Eqg. (10) with an exponen- slope at precisely the excitation energy at which the system
tial function. So we obtain the MLE of the whole system in displays a power-law-like asymptotic mass spectra.
terms of the MLE of its fragments. If we compare the results Taking into account the dependence of the MLE with
of this approximation with the standard calculation of themass, it is rather easy to understand this behavior: at low
asymptotic MLE for the final stable configuratipnsing Eq.  energy we have basically a big fragment and a few very
(3)], the results agree within 1%. But more information cansmall fragments, but as we increase the energy the number of
be extracted by using our approximation. It allows us to un-small fragments increases and big fragments are replaced by
derstand the role of the biggest fragments in the final valuenedium-mass ones. Finally at large enough energies the final
of the MLE: as the biggest fragments drive the value of theconfigurations are mostly light fragments. When this behav-
MLE of the system, the small fragments practically do notior is combined with the behavior of the MLE as a function

which can be further approximated usidg=cn; (with c
constank
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APPENDIX

In order to study the mechanisms that lead to fragmenta-
tion it is important to know the time at which the asymptotic
fragments form and the one at which they are emitted.

In previous papers the main fragment recognition algo-
rithms currently in use have been fully analyZ&9]. The

%0 0 20 S0 00 10 20 30 40 simplest definition of clusters is basically a group of particles
energy (€) that are close to each other and far away from the rest. The
fragment recognition method, known as the minimum span-

147-particle systemX\) as a function of the total energy. The NiNg tree(MST), is based on the last ide@). In this ap-

arrow signals the energy for which a power law in the mass distri{Proach a cluster is defined in the following way: given a set
bution is obtained. of particlesi,j kK, ..., they belong to a clustet if

0.00 . e

FIG. 9. Fluctuations of the maximum Lyapunov exponent of the

_ - VieC, jeC|ri—rj|<Rq, (A1)
of the mass, the fluctuations are amplified when the
asymptotic state of the system is a mixture of fragments ofvherer; andr; denote the positions of the particles &Rg
all sizes, i.e., power law mass distribution. is a parameter usually referred to as the clusterization radius,
and is usually related to the range of the interaction potential.
In our calculations we tooR;=30.
VI. DISCUSSION On the other hand, the early cluster formation model
(ECFM) [30] is based on the next definition: clusters are

In this work we have analyzed the time evolution of frag- those that define the most bound partition of the system, i.e.,
menting hot drops in terms of the MLLE. It is found that the the partition(defined by the set of clustef€;}) that mini-
early dynamics is highly collisional and it is characterized bymizes the sum of the energies of each fragment according to
MLLE values which are an increasing function of the energy
as the MMT values are. In this regime the system behaves as £ _2 2 K
an infinite system; all the excitation goes into chaotic motion G}~ < e
of particles. For later times, as the system develops its radial
collective mode, this trend is reversed. Rather early in thevhere the first sum is over the clusters of the partition, and
evolution, even before the fragmentation process is come'm' is the kinetic energy of particl¢ measured in the
pleted in phase space, the MLLE and the MMT attain theircenter-of-mass frame of the cluster which contains pargicle
asymptotic behaviors. This can be understood because tAge algorithm[early cluster recognition algorithtECRA)]
system expands and fragments, thus diminishing the effect gfevised to achieve this goal is based on an optimization pro-
collisions. For infinite systems one expects the MLE to be arcedure in the spirit of simulated annealif&p].
increasing function of enerdy8] but for finite systems with It has long been known that the ECRA algorithm finds
a free surface that develop a radial expansion this does ndhat the asymptotic clusters are formed, in phase space, long
happen. In this case the system fragments, giving in th&efore they separate in coordinate space, and become recog-
asymptotic regime a set of noninteracting fragments at theipizable with the MST algorithm, i.e., long before they are
limit temperature Tjir,), and then the only source of trajec- emitted[10,11,29,3] We then associate the time at which
tory divergence comes from interparticle collision of thethe ECRA method finds the asymptotic clusters to the frag-
constituents of the, not too hot, fragments. The rest of thénent formation time scale(E) and the one related to the
energy goes into the collective motion which makes no conMST analysis to the fragment emission time scglgE).
tribution to the MLLE. An important quantity in this analysis is the microscopic

It is then clear that the system begins in a highly chaoticstability of the clusters. In order to achieve this goal the
state and “decays” to a more ordered one. In this way, frag-microscopic persistence coefficient was defined. At a given
mentation can be viewed as a chaos-to-order transition. time t the system will be formed by a set of clustérgt)

If we now focus on the asymptotic regime, we find thatwhich will become, for long times, the asymptotic fragments
the value of the MLLE is dominated by the one correspondwhich we will denoteC;. Let us consider a given cluster
ing to the biggest fragment. We also found that the fluctua<C;(t) with mass numben;(t); let b;(t) =n;(t)[n;(t)—1]/2
tions of the asymptotic MLLE display a noticeable jump atbe the number of pairs of particles in the cluster. Its constitu-
the energy for which a power law mass spectra is foundent particles might be at the asymptotic time in two or more
signaling that in this case we find fragments of all sizes. different clusters. We defina;(t) as the number of pairs of

M > Vil (A2)
J,kECi
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particles that belong t€,(t) and also are together in a given run over the clusters at time |t is clear that the persistence
asymptotic cluster. We are now able to define the microcoefficient is equal to 1 if the microscopic structure of the

scopic persistence coefficient clusters is equal to the asymptotic one. On the other hand,
1 ® this coefficient approaches 0 when the two partitions under
g study bear little similarity. This coefficient can be defined for
P(t)= — 2 mi(t)——, (A3
© Ney % D %" i( )bi(t) (A3) ECRA clusters as well as for MST ones.
5 m;(t) Then we can define the;(E) related to the ECRA par-

tition differing from the asymptotic one by an evaporation
where the first sum runs over the different events for a giverike process and the;, related to the MST partition differing
energy,N, is the number of events, and the other two sumsrom the asymptotic one by an evaporationlike process.
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