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Local „in time… maximal Lyapunov exponents of fragmenting drops
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We analyze the dynamics of fragment formation in simulations of exploding three-dimensional Lennard-
Jones hot drops, using the maximum local~in time! Lyapunov exponent~MLLE !. The dependence of this
exponent on the excitation energy of the system displays two different behaviors according to the stage of the
dynamical evolution: one related to the highly collisional stage of the evolution, at early times, and the other
related to the asymptotic state. We show that in the early, highly collisional, stage of the evolution the MLLE
is an increasing function of the energy, as in an infinite-size system. On the other hand, at long times, the
MLLE displays a maximum, depending mainly on the size of the resulting biggest fragment. We compare the
time scale at which the MLLE’s reach their asymptotic values with the characteristic time of fragment forma-
tion in phase space. Moreover, upon calculation of the maximum Lyapunov exponent~MLE! of the resulting
fragments, we show that their dependence with the mass can be traced to bulk effects plus surface corrections.
Using this information the asymptotic behavior of the MLLE can be understood and the fluctuations of the
MLE of the whole system can be easily calculated. These fluctuations display a sudden increase for that
excitation energy which produces a power-law-like asymptotic distribution of fragments.

PACS number~s!: 05.45.2a, 05.70.Jk
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I. INTRODUCTION

The process by which a highly excited finite system d
velops a collective radial flow and disassembles into a se
clusters is called fragmentation.

This kind of phenomenon appears in different areas
physics. Just to mention a few it is found in collisions
highly accelerated clusters with hard surfaces, fullerenes
pacted by high velocity projectiles, intermediate-ener
nuclear collisions, etc.@1#.

In particular in the case of collisions of energetic Ar clu
ters with hard walls it has been shown@2# that a transition
from evaporation to shattering takes place in the range
incident energy which corresponds very closely to the co
sponding boiling temperature.

Also, in recent experiments with energetic hydrogen-
clusters colliding against 60 carbon fullerenes@3# the distri-
bution of the detected largest mass and its variance ve
multiplicity, when properly scaled, closely resemble the
sults obtained in Au-on-Au collisional experiments@4#.

For the case of nucleus-nucleus collisions a rather h
amount of both experimental and theoretical work has b
performed. The essential features of such a process ca
summarized by stating that as the energy of the collid
system is increased the fragment size distribution of the
sulting clusters goes from U shaped to exponentially dec
ing. Somewhere between these two extremes a power
can be detected. This sequence of shapes in the mass d
butions is predicted by the Fisher droplet model@5# and
could be related to a phase transition. Because neither
nuclear interaction potential nor the corresponding equa
of state~EOS! of nuclear matter is known, the possibility o
facing a phase transition has triggered a lot of work in t
area; in particular the determination of the caloric curve a
PRE 621063-651X/2000/62~6!/7848~9!/$15.00
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of the critical exponents has attracted a lot of attention~for
recent reviews see@6,7#!.

The possibility of a phase transition from a solid-like to
liquid-like state for finite systems, is well founded and can
related to the usual solid-liquid phase transition of infin
systems. This can be understood as follows: at low exc
tions small systems are self sustained, hence they h
enough time to develop correlations of the kinetic type@8,9#.
The characterization of the fragmentation process has b
rather elusive, instead. In particular in this case we fac
system out of equilibrium that develops a collective rad
mode and fragments in small clusters. Among recent res
in this area, we would like to mention the calculation of
extended caloric curve that describes the behavior of
temperature of the system at the breakup time with the e
tation energy@10,11# ~hereafter refereed as I!, the calculation
of global Lyapunov exponents@12#, generalized entropies
and fractal dimensions@13#.

In this work we analyze three-dimensional~3D! drops of
147 particles interacting via a 6-12 Lennard-Jones~LJ! po-
tential, which are excited enough to undergo fragmentat
or evaporation.

A way to characterize the dynamics in the phase spac
this process is to calculate the maximum Lyapunov expon
~MLE!. The MLE gives an idea of the velocity at which th
system explores the available phase space.

In I it has already been shown that in the early stages
the evolution of highly excited drops, due to interpartic
collisions, a collective radial motion develops. The em
gence of such an ordered motion has important con
quences, as, for example, it behaves as a heat sink giving
to a constant fragmentation temperature. In this way
competition between ordered motion~collective expansion!
and chaotic motion~interparticle collisions! plays a major
role in the dynamics of fragment formation and therm
7848 ©2000 The American Physical Society
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PRE 62 7849LOCAL ~IN TIME ! MAXIMAL LYAPUNOV EXPONENT S . . .
properties of the system. A way to properly characterize s
a competition is to study the time evolution of the MLE.

Given two very close initial conditions in phase space,
MLE is defined as

l5 lim
t→`

lim
d(0)→0

F1

t
ln

d~ t !

d~0!G ,
whered(t) is the distance in phase space between their
responding trajectories at timet and d(0)5d(t50). The
MLE is positive for chaotic systems.

The MLE has been used to study the solidlike to liqu
like phase transition in LJ clusters@14–16#. It also has been
used to study the problem of fragmentation, analyzing
occurrence of a possible liquid-gas phase transition@12#.

The MLE can be understood as an average, along
different stages of the evolution, of the behavior of the s
tem along an infinite trajectory in phase space. In the cas
fragmentation~as the name indicates! the nature of the sys
tem varies as it irreversibly evolves from a highly excite
unstable, piece of matter into a set of noninteracting, sta
clusters. As such the average over the infinite traject
erases the relevant information, i.e., what happens while
system fragments. In order to avoid this feature we calcu
the local-in-time Lyapunov exponents at a sequence of t
poral intervals of the evolution of the excited drops~see Sec.
IV !, which can be considered as a short path estimate o
MLE. This magnitude has already been used, for example
@17# to study the properties of small Ar clusters, in particu
the evolution of its ergodic properties with energy.

Our calculation allows us to obtain a characteristic tim
@the time at which maximum local~in time! Lyapunov expo-
nent~MLLE ! attains its asymptotic valuetmle] which can be
used to distinguish the two well-differentiated stages in
evolution of the drop:~i! the highly collisional one, at early
times, which is characterized by the absence of strong
lective effects, and~ii ! the asymptotic one, dominated by th
collective radial motion.

We compare this result with other relevant time sca
obtained from analysis of the dynamic process, like the ch
acteristic times for fragment formation in phase space,
emergence of the radial collective motion~see I!, and the one
corresponding to the mean momentum transfer~MMT ! be-
tween particles in the collisional process.

In the asymptotic state the system can be viewed a
mixture of noninteracting free particles and almost sta
fragments of varying sizes. As such, it is not necessary
perform a local analysis~calculating the MLLE! and the
standard MLE approach averaging over a long trajectory
be used.

Nevertheless, during this stage the almost stable clus
might decay via the evaporation of, mainly, free particl
Such a process will induce further cooling of the prima
fragments@18# and this cooling should give rise to mor
regular configurations and thus reduce the effective MLE

In this stage we calculate the dependence of the M
with the mass of the fragments, and using the resulting
formation, we analyze the MLE of the whole system in ter
of the MLE of its fragments. This study shows us that t
MLE of the drop is driven by the size of the biggest fra
ments. In addition, we can calculate the fluctuations of
h

e

r-

-

e

e
-
of

,
e,
y
e

te
-

he
in
r

e

l-

s
r-
e

a
e
to

n

rs
.

E
-

s

e

MLE, and when we plot these fluctuations as a function
the excitation energy, they display a sudden increase at
energy for which a power law asymptotic distribution
fragments is obtained.

This paper is organized as follows. In Sec. II we descr
the model used to simulate the fragmentation process. S
tion III is devoted to the analysis of the properties of t
drop: the mass spectra as function of the energy and
caloric curve. We also discuss the times scales relevan
the fragmentation process and the formation of the ra
collective mode. In Sec. IV we deal with the definition of th
MLE and the different ways to calculate it. In Sec. V w
analyze the results obtained for the MLLE and the behav
of the MLE for the asymptotic state. Finally, in Sec. V
conclusions are drawn.

II. COMPUTER EXPERIMENTS

We study the fragmentation of excited Lennard-Jon
drops. The two-body interaction potential is taken as
truncated Lennard-Jones~6-12! potential:

V~r !5H 4eF S s

r D 12

2S s

r D 6

2S s

r c
D 12

1S s

r c
D 6G , r ,r c ,

0, r>r c .
~1!

We took the cutoff radius asr c53s. Energy and distance
are measured in units of the potential well (e) and the dis-
tance at which the potential changes sign (s), respectively.
The unit of time ist05As2m/48e. We used the velocity
Verlet algorithm to integrate the classical equations of m
tions @19# taking t int50.001t0 as the integration time step
As a result, energy was conserved to an accuracy of 1
per 106.

We simulate explosions ofN5147 particles, closed-she
three-dimensional drops. The initial configurations are c
structed by cutting a spherical drop from a thermalized p
odic Lennard-Jones system withN5512 particles in each
periodic cell. The degree of excitation can be easily co
trolled in this way by varying the density and temperature
the periodic system. The initial state of our drops is mac
scopically characterized by their energy and density~taken as
that of the periodic system!. We studied a broad energ
range which encompasses very different behaviors regar
the fragmentation pattern, going fromE522.8e to E
513.0e. The density was taken asr50.85s23. The tem-
perature of the periodic system used for constructing the
tial configurations is in the range;1.4 to ;4.3e. It can be
seen from the equation of state of the Lennard-Jones sys
@20# that our initial drops are hot and compressed.

III. PROPERTIES OF THE EXCITED DROPS: MASS
SPECTRA, CALORIC CURVE, AND RADIAL

COLLECTIVE MODE

As stated in the Introduction, many systems differi
greatly in size, interaction potential, etc., exhibit fragmen
tion. Thus, a good way to characterize the excitation ene
is according to the asymptotic mass spectra. If the energ
the system is high, it will break into several small fragmen
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The asymptotic mass spectrum will show rapid decay
large masses. On the other hand, for low excitation energ
the systems will evaporate monomers and small clus
while a big drop, comprising most of the mass of the syste
will remain bound. In this case, the mass spectrum is
shaped. A third case is usually found: for a given interme
ate energy, the mass spectrum will show a power law beh
ior. This last case is quite important. Taking into account t
a power law implies scale invariance and that power l
mass spectra are found in second order phase transi
~e.g., percolation at the critical probability@21# or liquid-gas
phase transition at the critical point@5#!, this kind of spec-
trum was associated with the system undergoing a sec
order phase transition@22,23#. This conjecture, however at
tractive, has not been confirmed yet.

The sequence of shapes of the mass spectra is the sa
the one predicted by Fisher’s model of liquid-gas phase tr
sitions. In the latter model, the probability of having a dr
of size A in the vapor is given by Pr(A)

FIG. 1. Asymptotic mass spectra for three different energie
the fragmentation regime:~a! E522.0e, ~b! E510.5e, and
~c! E513.0e.
r
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5Y0A
2te[2(ml2mg)A14pr0s(T)A2/3] where m l and mg are the

chemical potential of the liquid and vapor phases ands is
the surface tension.

In Fig. 1 we show the mass spectra resulting from o
numerical experiments, for three different energies per p
ticle that display the above-mentioned behavior:E5
22.0e, E510.5e, E513.0e ~the ground-state energy fo
this system isE525.8e). For E522.0e @Fig. 1~a!# the
asymptotic spectrum consists of a big fragment of about
particles plus some free particles~U-shaped mass spectra!.
The mass spectra ofE510.5e @Fig. 1~b!# is ‘‘power law
like’’ and the one corresponding toE513.0e @Fig. 1~c!# is
mainly composed of small clusters.

The process by which the drop is disassembled in a se
noninteracting fragments is characterized by the time sc
of fragment formation. In@11# the time scales related to th
time of fragment formation (t f f) and the time of fragmen
emission (t f e) were calculated. The time of fragment form
tion is defined as the time at which the fragments are form
in phase space and the time of fragment emission when
are formed in configurational space. Thet f f ’s obtained goes
from ;20t0 for E51.8e0 to ;75t0 for E520.5e0. The
times scales obtained for fragment emission (t f e) goes from
;40t0 for E51.8e0 to ;100t0 to E520.5e0.

In the Appendix we include a brief description of th
fragment recognition algorithms which allow us to calcula
t f f ’s andt f e’s. ~See I and references therein for details.!

In order to gain insight into the description of the fra
mentation process, we show in Fig. 2 the extended cal
curve calculated in I. The caloric curve is the temperature
fragmentation time (t f f) as a function of the energy of th
system. It displays two well-differentiated regions: the lo
energy one, where the systems is self-sustained, and
high-energy region, where the cluster is in the multifragme
tation regime. In the low-energy region, the temperature ri
with the excitation energy. The drop goes from a solidli
phase to a liquidlike phase and its behavior resembles
one of macroscopic systems, although there are some im
tant differences; see@9#. It is clear that an isolated liquid drop
cannot be heated without limits. Once a certain tempera
is attained, which depends on the size of the system, a
tional energy supplied to the system will evaporate partic
but will not produces an increase of temperature att f f ; the
associated temperature is called the limit temperatureTlim .
For energies higher than that of the evaporating drop,

n

FIG. 2. Extended caloric curveT(E). In regions I, II, and III the
system is self-sustained. In region IV the system is in the fragm
tation regime. Details of the calculation of the temperature can
found in I.
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PRE 62 7851LOCAL ~IN TIME ! MAXIMAL LYAPUNOV EXPONENT S . . .
system undergoes the nonequilibrium process of fragme
tion. In the fragmentation regionE.22.0e the temperature
is approximately constant for a wide range of energies,
creasing slowly for the higher ones. Note that the init
drops in our computer experiments are artificially co
structed hotter than the limit temperature. In its evolution
system cools down, while the expansion builds up, unti
reach its limit temperature.

An important ingredient to understand the dynamical e
lution of system is the collective radial mode of expansio
Because initially the drop is hot and compressed, it expa
developing the collective mode mentioned above. This
been fully analyzed in I and we recall that it was found th
the radial flux is formed att f lux.10t0 for the four energies
analyzed:E51.8e, E50.9e, E50.5e, andE520.5e.

IV. LYAPUNOV EXPONENTS: DEFINITIONS

The maximum Lyapunov exponent, as already mention
is a measure of the sensitivity of the system to initial con
tions and also gives an idea of the velocity at which
system explores the available phase space. Given two
close initial conditions in phase space, the MLEl̂, is given
by the following relation:

l5 lim
t→`

lim
d(0)→0

F1

t
ln

d~ t !

d~0!G .
In order to calculate the MLE, we generate at timet50 a

initial configuration of the system~main point! characterized
by a given energy. We also generate another initial confi
ration ~the ‘‘son’’!, which differs from the main point by a
small amountd0 in momentum space~the velocity of the
particles are slightly different!. Following @12#, the distance
between the trajectory of the main point and the trajectory
the ‘‘son’’ d(t) can be defined as

d~ t !5S (
i 51

N

$a@rm~ t !2r s~ t !#21b@pm~ t !2ps~ t !#2% i D 1/2

,

~2!

wherer andp refer to the positions and momenta ofN par-
ticles at timet. The indicesm ands refer to the two trajec-
tories differing byd0 at t50 ~main and son!. a,b are two
arbitrary parameters which express the fact that the LE’s
independent of the particular metrics in phase space. In
work, when we calculate the MLE, we will choosea50, b
51/m with m the mass of the particles; i.e., we take d
tances in velocity space only. When calculating numerica
the time evolution ofd(t) by solving the classical equation
of motion ~CEOM!, we find an exponential increase fo
lowed by a saturation inv space@12,13#. This saturation
takes place fort@l21 , allowing a reliable calculation ofl.
The saturation distanced` brings information about the ef
fectively explored phase space. This way of calculating
maximum Lyapunov exponent will be referred to as t
‘‘maximum global Lyapunov exponent,’’ because by follow
ing a trajectory, information about the different stages of
evolution will be present in the resulting value ofl ~of
coursel is to be calculated fort,tsat). The characteristic
time at which saturation is achieved istsat;30t0, a time
a-
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shorter than the typical times scale of fragment formation
energies lower thanE50.9e ~see I for details!.

In @24# a method to calculate the MLE which avoids th
above-mentioned saturation was developed. In this meth
after a time stept!tsat , the distanced(t)5d1 is rescaled
to d0 in the maximum growing direction and the quanti
ln@d1 /d0# is saved. Repeating the procedure at every ti
stept, the logarithmic increments ln@di /di21# are collected.
The MLE is defined as

l5 lim
n→`

1

nt (
i 51

n

lnU di

di 21
U. ~3!

The ratiodi /di 21 is a measure of the exponential dive
gence between two initially nearby orbits along the ma
mum growth direction at timei t. In this way, Eq.~3! can be
understood as an average of ‘‘local Lyapunov exponen
along a infinite trajectory, each one measuring the chaoti
~in the sense of divergence of initially nearby orbits in t
phase space! in each time interval, at timesi t. @This local
exponent, as we will define in Eq.~4!, can be considered a
a short-path estimation of the MLE and has been used in@17#
to analyze the evolution of ergodicity of three- and seve
particle Argón’s clusters. Also in@25#, for the same kind of
system, the complete spectrum of local Lyapunov expone
has been used to analyze the dynamics of the system in t
of the local structure of the potential energy surface of
clusters.#

If we use Eq.~3! to calculate the MLE for our case o
interest, i.e., a drop that fragments, we would be averag
over the local behaviors, erasing the information we are
terested in. Because the system is changing quickly in
first stages and we want to follow the evolution with time
the local MLE, we define a maximum local Lyapunov exp
nent associated with thei th interval of size (Nit), beginning
at t i5 i t as

l i85l8~ t i !5
1

Nit
(

j 5 i 11

i 1Ni

lnU dj

dj 21
U5 1

Nit
lnUdi 1Ni

di
U, ~4!

with Ni finite. This is valid for the given main point. Becaus
the system we study is characterized by its macroscopic s
~i.e., the energy!, we average over an ensemble of ma
points at t i corresponding to the set of trajectories mac
scopically equivalent~i.e., with the same energy! at t50.

The MLLE can also be calculated with a slightly differe
method. It consists also in generating a set of initial con
tions that evolve in phase space, but after a period of t
t@l21, one randomly generates a new set of ‘‘sons,’’ er
ing the information about the previous correlations. In th
way we characterize different regions of the phase space
ited by the system with its maximum local Lyapunov exp
nents calculated as

l i5l~ t i !5
1

Nit
ln@d~ t i1Nit!/d~ t i !#. ~5!

Once again an average over macroscopically equiva
main points is performed. We have found that both ways
calculating the MLLE@using Eqs.~4! and ~5!# give equiva-
lent results.
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V. RESULTS OF NUMERICAL COMPUTATIONS

A. MLLE as a function of time and energy

In this work, we calculate the MLLE’s using Eq.~4! ap-
plied to the dynamical evolution of the N5147 Lennard-
Jones excited drops, witht50.01t0 and Ni51000, so we
have a value of the MLLE every 10t0, except for the first
10t0 of the evolution for which we useNi5100 and then
Nit51t0. We calculate the MLLE in a range of energie
from 22.8e to 13.0e. The behavior of the MLLE as a func
tion of the time can be seen in Fig. 3 for the same th
energies analyzed in Fig. 1. The same behavior for the th
energies analyzed can be seen: the MLLE’s decrease sh
in the first 20t0 of the evolution, reaching an almost statio
ary value after this time.

This behavior shows us that we can classify the time e
lution of the system in two well-differentiated stages: t
early one, when the chaoticity of the drop is decreas
quickly, and the asymptotic one, characterized by the sta
ity of the values of the MLLE. We can define a characteris
time tmle as the time at which the MLLE’s reach the
asymptotic values. In this systemtmle520t0.

It can also be seen that the dependence with energ
different at very early times than at asymptotic times.
order to illustrate this, we plot in Fig. 4 the MLLE as fun
tion of the energy at three relevant times. Att52t0, the
MLLE is an increasing function of the energy. This behav
can be understood because the drop has not developed
flux yet; it is still compressed and fragments are not form
yet. Due to the absence of collective radial motion, all
excitation energy goes into ‘‘chaotic motion of the particle
and the system behaves as an infinite one. We can de
this kind of behavior as ‘‘infinite system like.’’ We hav
found that fort>20t0 ~at this time the system is fully in the
asymptotic regime! the MLLE displays a maximum. This
asymptotic behavior depends mainly on the size and the t
perature of the biggest fragment of the fragmented drop
we will see in the next section, but if we look at the ma
spectra in Fig. 1, we can see that at the energy for which

FIG. 3. Maximum local Lyapunov exponent (lL) as a function
of time for the same three energies of Fig. 1: solid circles
E522.0e, solid triangles forE510.5e, and solid diamonds for
E513.0e.
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maximum of the MLLE occurs, the asymptotic biggest fra
ment is as big as the whole system. Moreover, this pea
centered at aboutE522e, which is the value of the excita
tion energy for which the caloric curve reaches its maxim
temperature’s plateau~this temperature is calledTlim ; see
Fig. 1!. As we said in Sec. III, such a plateau signals t
onset of the fragmentation regime. In this case we can
about ‘‘finite-size-like behavior’’: the asymptotic MLLE
brings information about the dominant fragment in t
asymptotic regime.

In the next subsection, we shall calculate the asympt
values of the MLLE of the drop, as a function of the MLE o
its fragments. This calculation will allow us to understa
the role of the biggest fragment in the asymptotic value
MLLE.

According to the dependence with time of the MLLE, w
can infer that the chaoticity of the system is related to
collisional process between particles, which depen
strongly on the radial collective mode. In order to quant
the strength of the interparticle collisions and understand
behavior of the MLLE, we calculate the mean momentu
transfer between particles as a function of the energy
time @C(t)#. It is defined as

C~ t !5
1

Ncon f
(
j 51

Ncon f

(
i 51

N

muvW i~ t1d!2vW i~ t !u, ~6!

where Ncon f is the number of configurations analyzed f
each energy, i.e., an average over the ensemble of in
conditions.

We work in a range of energies fromE525.0e to E
513.0e. The behavior of the MMT is exemplified in Fig.
where we show the time dependence of the MMT for t
same three excitation energies analyzed in Figs. 1 and 3.
find that the MMT behaves in a similar way as the MLLE:
early times the collisions decrease abruptly until they re
their almost stable asymptotic values, and the depende
with the energy in this figure is similar to the one showed
the MLLE in Fig. 3.

r
FIG. 4. Maximum local Lyapunov exponent (lL) as a function

of energy for three different times:t52t0 ~solid diamonds!,
t520t0 ~solid circles!, andt5150t0 ~solid triangles!.
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Moreover, if we look at the behavior of the MMT forE
522.0e, it displays a loop between 5t0 and 15t0. We have
found this behavior for our simulations in the range22.0e
,E,21.3e. This feature can be explained if we study t
behavior of the root mean square radius (Rrms) of the biggest
fragment as a function of the time. In Fig. 6 we can see h
for one of the mentioned energies (E522.0e) theRrms dis-
plays a loop but inverted with respect to the MMT: when t
Rrms rises, the MMT decreases and vice versa. This can
interpreted as follows: first the system expands while eva
rating a few particles, then contracts and heats up, and fin
expands again, reaching the asymptotic state.

To obtain the dependence of the MMT with all the en
gies analyzed for the different stages of the evolution we p
in Fig. 7 the MMT as a function of the energy for thre
relevant times: at very early time (t52t0), at an intermedi-
ate time (t520t0), and at very long time, when the frag
ments are well into their asymptotic regime, i.e.,t5150t0.
At t52t0 the MMT is an increasing function of the excita
tion energy. On the other hand, fort>20t0 the MMT dis-
plays a maximum for energies at which evaporation is
dominating decay mode. This maximum is due to the f
that after evaporation of a few monomers we are left wit
big fragment at the maximum temperature it can sustain~see
I!.

We can also see that fort>20t0 the dependence of MMT
with the energy remains essentially constant. It allows us
define a characteristic time scale, i.e., the time at which
MMT reaches its asymptotic behavior. This time istmmt
.10t0 for almost all the energies except those in the ran
22.0e,E,21.3e ~the range at which theRrms displays a
loop!, for which tmmt.20t0.

In this context, we can see that the MLLE’s are strong
dependent on the collective radial mode: At very early tim
the drop is highly chaotic because all the excitation ene
goes to interparticle collisions~the radial flux is not formed
yet!, but when the system expands the collisions betw

FIG. 5. Mean momentum transfer between particles@C(t)# as a
function of time for the same three energies of Fig. 1: solid circ
for E522.0e, solid triangles forE510.5e, and open diamonds
for E513.0e.
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particles decrease and the system becomes less chaotic
process ends when the radial collective mode is fully form

B. MLE in the asymptotic stage

Our main task in this section is to understand the beha
of the asymptotic MLLE found in the previous section,
terms of the MLE of the constituent fragments of the syste
In order to do that, we calculate the MLE of the whole fra
mented system and the MLE of its fragments at their ma
mum ~limiting! temperatureTlim . We prepare the system i
a broad energy range and solve the CEOM for times lo
enough to be very close to the asymptotic regime; i.e.,
fragments are in long-lived metastable states. We then c
sify the clusters according to mass and calculate the MLE
each size using Eq.~3!. The resulting MLE’s are displayed in
Fig. 8. It can be readily seen that the MLE is very well fitte
by

l5a~12N21/3!, ~7!

with a50.592t0
21.

s

FIG. 6. Root mean square radius of the drop (Rrms) ~a! and
mean momentum transfer@C(t)# ~b! as a function of time for
E522.0e ~solid circles! andE520.5e ~open triangles!.
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This can be expressed asl5a(N2N2/3)/N, where the
first term represents the dependence on the volume of
fragment and the second term the dependence on the sur
In this way, if the size of the system goes to infinity, we a
left with the MLE for an infinite system with temperatur

FIG. 7. Mean momentum transfer between particles@C(t)# as a
function of energy for three different times:t52t0 ~diamonds!,
t520t0 ~circles!, andt5150t0 ~triangles!.
tr
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Tlim . Such a behavior has already been found in other s
tems@26,27#.

We now focus on the whole fragmented system. Follo
ing Eq. ~2!, the expression for the distance between the
jectory of the main point and the trajectory of the ‘‘son’’ i
the velocity space (dv) can be cast in the following way:

FIG. 8. Maximun Lyapunov exponent (l, circles! as a function
of mass of the asymptotic fragments together with the fitting fu
tion ~see text for details!.
dv5A (
j 51

Nclust

(
i 51

nj

@~vxi
(2)2vxi

(1)!21~vyi
(2)2vyi

(1)!21~vzi
(2)2vzi

(1)!2#, ~8!
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with Nclust the number of clusters andnj the number of
particles in clusterj, from which it is immediate that

dv5A (
j 51

Nclust

@d0
j el j t#2, ~9!

which can be further approximated usingd0.cnj ~with c
constant!:

dv5A (
j 51

Nclust

c2~nj !
2e2l j t. ~10!

By using the information of the asymptotic mass spec
~for the values ofnj ) and the values ofl j obtained from Eq.
~7!, we can fit accuratelydv(t) in Eq. ~10! with an exponen-
tial function. So we obtain the MLE of the whole system
terms of the MLE of its fragments. If we compare the resu
of this approximation with the standard calculation of t
asymptotic MLE for the final stable configuration@using Eq.
~3!#, the results agree within 1%. But more information c
be extracted by using our approximation. It allows us to u
derstand the role of the biggest fragments in the final va
of the MLE: as the biggest fragments drive the value of
MLE of the system, the small fragments practically do n
a

s

-
e
e
t

contribute to it. The values of the MLE of the biggest fra
ments obtained from Eq.~7! are very close to the value of th
MLE of the system calculated from Eq.~3! or ~10!.

With this result we can understand that the MLE of t
whole asymptotic system is maximum at the excitation
ergy for which the biggest asymptotic fragment is as la
and hot as possible. And the MLLE will reach its asympto
value when its biggest fragment is almost formed in ph
space.

Using Eq.~10! we can easily calculate the mean valu
and fluctuations of the asymptotic overall MLE’s, in partic
lar, the fluctuations given bŷDl&5A(^l2&2^l&2)/^l&.

In Fig. 9 we show the fluctuations of the overall MLE’s a
a function of the initial energy of the system. It is of spec
interest that this magnitude presents a noticeable chang
slope at precisely the excitation energy at which the sys
displays a power-law-like asymptotic mass spectra.

Taking into account the dependence of the MLE w
mass, it is rather easy to understand this behavior: at
energy we have basically a big fragment and a few v
small fragments, but as we increase the energy the numb
small fragments increases and big fragments are replace
medium-mass ones. Finally at large enough energies the
configurations are mostly light fragments. When this beh
ior is combined with the behavior of the MLE as a functio
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of the mass, the fluctuations are amplified when
asymptotic state of the system is a mixture of fragments
all sizes, i.e., power law mass distribution.

VI. DISCUSSION

In this work we have analyzed the time evolution of fra
menting hot drops in terms of the MLLE. It is found that th
early dynamics is highly collisional and it is characterized
MLLE values which are an increasing function of the ener
as the MMT values are. In this regime the system behave
an infinite system; all the excitation goes into chaotic mot
of particles. For later times, as the system develops its ra
collective mode, this trend is reversed. Rather early in
evolution, even before the fragmentation process is co
pleted in phase space, the MLLE and the MMT attain th
asymptotic behaviors. This can be understood because
system expands and fragments, thus diminishing the effe
collisions. For infinite systems one expects the MLE to be
increasing function of energy@28# but for finite systems with
a free surface that develop a radial expansion this does
happen. In this case the system fragments, giving in
asymptotic regime a set of noninteracting fragments at t
limit temperature (Tlim), and then the only source of trajec
tory divergence comes from interparticle collision of t
constituents of the, not too hot, fragments. The rest of
energy goes into the collective motion which makes no c
tribution to the MLLE.

It is then clear that the system begins in a highly chao
state and ‘‘decays’’ to a more ordered one. In this way, fr
mentation can be viewed as a chaos-to-order transition.

If we now focus on the asymptotic regime, we find th
the value of the MLLE is dominated by the one correspo
ing to the biggest fragment. We also found that the fluct
tions of the asymptotic MLLE display a noticeable jump
the energy for which a power law mass spectra is fou
signaling that in this case we find fragments of all sizes.

FIG. 9. Fluctuations of the maximum Lyapunov exponent of
147-particle system (Dl) as a function of the total energy. Th
arrow signals the energy for which a power law in the mass dis
bution is obtained.
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APPENDIX

In order to study the mechanisms that lead to fragmen
tion it is important to know the time at which the asympto
fragments form and the one at which they are emitted.

In previous papers the main fragment recognition alg
rithms currently in use have been fully analyzed@29#. The
simplest definition of clusters is basically a group of partic
that are close to each other and far away from the rest.
fragment recognition method, known as the minimum sp
ning tree ~MST!, is based on the last idea~I!. In this ap-
proach a cluster is defined in the following way: given a
of particlesi , j ,k, . . . , they belong to a clusterC if

; i PC, j PCzur i2r j u<Rcl , ~A1!

wherer i and r j denote the positions of the particles andRcl
is a parameter usually referred to as the clusterization rad
and is usually related to the range of the interaction poten
In our calculations we tookRcl53s.

On the other hand, the early cluster formation mod
~ECFM! @30# is based on the next definition: clusters a
those that define the most bound partition of the system,
the partition~defined by the set of clusters$Ci%) that mini-
mizes the sum of the energies of each fragment accordin

E$Ci %
5(

i
F (

j PCi

K j
c.m.1 (

j ,kPCi

Vj ,kG , ~A2!

where the first sum is over the clusters of the partition, a
K j

c.m. is the kinetic energy of particlej measured in the
center-of-mass frame of the cluster which contains particlj.
The algorithm@early cluster recognition algorithm~ECRA!#
devised to achieve this goal is based on an optimization p
cedure in the spirit of simulated annealing@30#.

It has long been known that the ECRA algorithm fin
that the asymptotic clusters are formed, in phase space,
before they separate in coordinate space, and become re
nizable with the MST algorithm, i.e., long before they a
emitted @10,11,29,31#. We then associate the time at whic
the ECRA method finds the asymptotic clusters to the fr
ment formation time scalet f f(E) and the one related to th
MST analysis to the fragment emission time scalet f e(E).

An important quantity in this analysis is the microscop
stability of the clusters. In order to achieve this goal t
microscopic persistence coefficient was defined. At a giv
time t the system will be formed by a set of clustersCi(t)
which will become, for long times, the asymptotic fragmen
which we will denoteCi . Let us consider a given cluste
Ci(t) with mass numberni(t); let bi(t)5ni(t)@ni(t)21#/2
be the number of pairs of particles in the cluster. Its const
ent particles might be at the asymptotic time in two or mo
different clusters. We defineai(t) as the number of pairs o

i-
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particles that belong toCi(t) and also are together in a give
asymptotic cluster. We are now able to define the mic
scopic persistence coefficient

P~ t !5
1

Nev
(
ev

1

(
cl

mi~ t !
(
cl

mi~ t !
ai~ t !

bi~ t !
, ~A3!

where the first sum runs over the different events for a gi
energy,Nev is the number of events, and the other two su
-

iv

e

h

-

n
s

run over the clusters at timet. It is clear that the persistenc
coefficient is equal to 1 if the microscopic structure of t
clusters is equal to the asymptotic one. On the other ha
this coefficient approaches 0 when the two partitions un
study bear little similarity. This coefficient can be defined f
ECRA clusters as well as for MST ones.

Then we can define thet f f(E) related to the ECRA par-
tition differing from the asymptotic one by an evaporatio
like process and thet f e related to the MST partition differing
from the asymptotic one by an evaporationlike process.
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