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The classical invariants of a Hamiltonian system are expected to be derivable from the respective quantum
spectrum. In fact, semiclassical expressions relate periodic orbits with eigenfunctions and eigenenergies of
classical chaotic systems. Based on trace formulas, we construct smooth functions highly localized in the
neighborhood of periodic orbits using only quantum information. Those functions show how classical hyper-
bolic structures emerge from quantum mechanics in chaotic systems. Finally, we discuss the proper quantum-
classical link.

PACS numbe(s): 05.45.Mt, 03.65.Ge, 03.65.Sq

For more than 20 years a lot of effort has been done in  Our starting point is the Gutzwiller trace formdl&]. This
order to clarify the interplay between quantum and classicalormula evaluates the quantal spectrum of energy of a
behavior in chaotic systems. Periodic orbit theory shows théounded system in terms of the classical spectrum of peri-
important role that classical invariants play in quantum me-odic orbits. We are going to consider billiard systems where
chanics. For example, the Gutzwiller trace formula relateghe classical motion is described by straight lines between
the quantum spectral density with classical periodic orbitsonsecutive bounces with the boundary. The incoming and
[1]. outgoing trajectories at a bounce satisfy specular reflection.

Less is known about the interplay between the neighbor® Periodic orbité is characterized by the length;, and the
hood of periodic orbitgthe stable and unstable manifoids Maslov indexw;. The quantum mechanics is given by the
and quantum mechanics. The first step was given by Bogdset of eigen-wave-numberk, and eigenfunctionsg,(r)
molny [2], who found the semiclassical contribution of peri- Which are defined by the Helmholtz equationV¥(
odic orbits and their vicinities to wave functions smoothed in+ kﬁ) ¢n(F)=O, with Dirichlet boundary conditions. For
energy and position. Advances in this issue contributethese systems, the trace formula repgls
among others, to the study of the morphologies of wave .
functions of chaotic systems. Especially, this gives new in- L = —ikL
sights to the debated problem, the scarring phenom&ha zn: otk=kn)=p(k)+ 2 Efs: Ase T @)
an anomalous localization of quantum probability density
along unstable periodic orbits in classically chaotic systemsWith
For example, Kaplan and Hellg4] proposed test states con-

structed by coherent wave-packet sums centered on a peri- A L se'7em2 @
odic orbit. The constructed wave function lives not only on 2 [de(M s—1)[’

the periodic orbit, but also along the linearized invariant
manifolds. On the other hand, Vergini and Cd#g6] devel- andM ;s is the monodromy matrix of the orb&. p(k) is the
oped a semiclassical construction of wave functions on perimean level density.
odic orbits and their neighborhoodthe stable and unstable ~ The Fourier transform of Eq1) gives the classical spec-
manifoldg which are highly localized in energy. To re- trum in terms of the quantal or{@],
semble the classical hyperbolic structure, these constructions )
use the orbit and the linearized dynamics around it. The ¢ )= S gl _Z(1 )= Assink(L—Ly)]
question that naturally arises is if the classical hyperbolic K=k 2m(L—Ly)
structure is present in quantum mechanics. An important
contribution in this direction was given by Nonnenmacherin particular, f(L 5)=kAs27 and|f(L)|? has peaks at the
and Vorog 7]. They studied the eigenstates structures arountength of the periodic orbits. Figure 1 show&L)|? ob-
a hyperbolic point in a one dimensional system. tained from the eigen-wave-numbers upke 264 for the

In this Rapid Communication, we address that questiordlesymmetrized stadium billiard, a classical chaotic system
by constructing smoothed functions living on the periodic[10]. The position of the peaks agrees with the length of the
orbit and their manifolds and we use only the quantum in-orbits within an error (X) given by the used window. The
formation (the eigenvalues and eigenfunctipresf the sys-  height of the peaks and the phases are also well reproduced.
tem. This clearly will show the skeleton on which the quan- Phase coherent contributions occurs in Eg). when L
tum mechanics is built. Moreover, some features of these=L ;. The major contribution to the peaks is provided by the
smoothed functions confirm predictions by Bogomolny andeigen-wave-numbers close to the Bohr-Sommerfeld quanti-
are well understood with the semiclassical construction okation rule,k~2x/L,(n+ »/4), wheren is an integer. That
Ref. [5]. is, the eigen-wave-number distribution is not random and has

()
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FIG. 1. |f(L)|? evaluated from the first 9910 eigenvalues of the £
desymmetrized stadium billiard with radins=1 and straight line 100
of lengtha=1. The labels over some of the peaks indicate the
corresponding periodic orbits shown in the inset.
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information of the periodic orbits of the systeff]. The y

same behavior is expected for wave functions. Then, we pro-

pose the following spectral function for the orldit FIG. 3. Spectral function of the orhi8) and(2) of Fig. 1 evalu-

ated over the transversal section to the orbits showed in the insets.
N . The transversal coordinate ys with y=0 on the orbit.
£o(N= 2 (N> codkol ;—imrvyl2). (4
Kn=k the characteristics of the orbit but they were not specified.
They come out clearly by comparison with the semiclassical
construction given in Ref[5]. From that viewpoint, these
functions are a combination of the square of the scar func-
tions with even and odd transversal excitations. When the
classical transversal motion is hyperbolic with reflection, the

: . odd scar function quantize at the anti-Bohr energies. Then,
< . oo :
sponding to G-k<264). These spectral functions are Shownthe contribution of the odd scar functions to Ed) change

In Fig. 2. A Gaussian smoothing with standard deviation their sign, producing other mixing with the even scar func-
=0.02 was applied in order to avoid the background randon) an. p 9 9

fluctuations. Moreover, with this amount of eigenfunctions,tlons e, qrblts(l) and(3)]. - .
. o . Another important characteristic observed in the spectral
the spectral functions of all the periodic orbits uplte-14

are well reproduced functions (also predicted in Ref[2]) is their behavior near
P ' self-focal points of the orbit. There, the function is enhanced

These smoothed functions are clearly localized in the : .
y and the transversal width becomes smaller. An extra increase

neighborhood of th_e orbits and some Important features A8+ the function was also observed at self-crossing points of
observed. We notice that the spectral functions localize

transversely to the orbits in two different ways. For orlits

and (3) of Fig. 1, the maximum of the transversal localiza-
tion occurs at some distance from the orbit. Two peaks are
observed at each side of the orfsiee Fig. 8a)]. On the other
hand, for orbits(2) and(4) of Fig. 1, the two peaks are less
clear and the functiod is high on the orbit itselfsee Fig.
3(b)]. According to Bogomolny?2] these features depend on

We expect this function will retain the relevant features of
the orbit contained in the eigenfunctions. In order to verify
this point, we computed the spectral functidie. (4)] for
the orbits shown in the inset of Fig. 1 using the first 9910
eigenfunctions of the desymmetrized stadium billiGzdrre-

FIG. 4. Phase space representation of the spectral function for
orbit (1) using the first 150, 500, 2000, and 6500 eigenfunctions of
FIG. 2. Spectral functiofEqg. (3)] corresponding to the orbits the desymmetrized stadium billiard. The stable and unstable mani-
(1)—(4) (from upper left to bottom rightshown in the inset of Fig. folds are plotted with points. The coordinajes the arc length at
1. Equation(4) was evaluated for the first 9910 eigenfunctions of the boundary normalized by the perimeter of the billiard pigithe
the desymmetrized stadium billiard. fraction of tangential momentum
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the orbit and in the vicinity of reflections with the boundary peaks increases exponentially with ~exphL)/L]. On the
(see Fig. 2 In a self-focal point the linearized stable or other hand, in order to recover the quantum spectrum with
unstable manifold lies along the direction of the transversathe trace formuldEq. (1)], we need all the periodic orbits
momentum. This shows that the spectral functions have th@ith length up to the Heisenberg length,=kA (with A the
imprint of the unstable classical moti¢]. area of the billiardl In this way, we arrive at an asymmetri-
The last point should be clarified; therefore, we have calzy| situation where the classical information obtained from
culated a phase space representation of the spectral functigs quantum spectrum is wholly insufficient to recover the
using the Husimi distributiofi11] of the wave function in-  jnitial quantum information. This apparent contradiction re-
stead of|¢(r)|? in Eq. (4). As usual, we have used the cently showed up with the development of a semiclassical
Birkhoff coordinates. In the bottom right panel of Fig. 4 thetheory of short periodic orbit§6]. In it, the length of the
phase space representation of the spectral function of orbikquired periodic orbitéto obtain the eigenvalues and eigen-
(1) is showed. The stable and unstable manifolds of the orbif,nctions up tk) is lower thanL <In(L.h)/h=In(kAR/h. So,
are also plotted. It is observed clearly that the spectral funcyq -gn go from quantum mechanics to classical one and vice

tion lives glong the manifolds. F_urthermore, itis intere_stingversa without loss of information, and the quantum-classical
to determine how this hyperbolic structure emerges in th(?

iclassical limit. This fimit M0 oF ks eo ink is properly established.
semiclassical fimit. 1S fimit occurs whei— U or k-—cc. In conclusion, we have constructed highly localized func-
Figure 4 shows the phase space representation of the spect{l%lns in the vicinity of periodic orbits using only quantum
function of orbit(1) using the first 150, 500, 2000, and 6500 .

: . . pformation. With this evidence, we have shown that the
eigenfunctions of the system. Increasing the number o : : o o
classical hyperbolic structure of unstable periodic orbits is

eigenfuntions, as we are going to the semiclassical limit, th%onta'ned i1 the eigenfunctions of the svstem
functions become more localized over the manifolds. : ! Igentu y '

Finally, there is an important point to be considered. A We are grateful to G. Carlo, M. Saraceno, and F. Simo-
remarkable aspect of EQ3) [or Eq. (4)] is that it only per- notti for fruitful discussions. D.A.W. acknowledges the sup-
mits to obtain periodic orbits with length satisfing port from CONICET. This work was partially supported by
<In(kL)/h (with h the topological entropy This is because UBACYT (TW35), APCT PICT97 03-00050-01015, and
the width of the defined peaks is1/k and the density of SECYT-ECOS.
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