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Classical invariants and the quantum-classical link
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The classical invariants of a Hamiltonian system are expected to be derivable from the respective quantum
spectrum. In fact, semiclassical expressions relate periodic orbits with eigenfunctions and eigenenergies of
classical chaotic systems. Based on trace formulas, we construct smooth functions highly localized in the
neighborhood of periodic orbits using only quantum information. Those functions show how classical hyper-
bolic structures emerge from quantum mechanics in chaotic systems. Finally, we discuss the proper quantum-
classical link.

PACS number~s!: 05.45.Mt, 03.65.Ge, 03.65.Sq
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For more than 20 years a lot of effort has been done
order to clarify the interplay between quantum and class
behavior in chaotic systems. Periodic orbit theory shows
important role that classical invariants play in quantum m
chanics. For example, the Gutzwiller trace formula rela
the quantum spectral density with classical periodic orb
@1#.

Less is known about the interplay between the neighb
hood of periodic orbits~the stable and unstable manifold!
and quantum mechanics. The first step was given by Bo
molny @2#, who found the semiclassical contribution of pe
odic orbits and their vicinities to wave functions smoothed
energy and position. Advances in this issue contribu
among others, to the study of the morphologies of wa
functions of chaotic systems. Especially, this gives new
sights to the debated problem, the scarring phenomena@3#,
an anomalous localization of quantum probability dens
along unstable periodic orbits in classically chaotic syste
For example, Kaplan and Heller@4# proposed test states con
structed by coherent wave-packet sums centered on a
odic orbit. The constructed wave function lives not only
the periodic orbit, but also along the linearized invaria
manifolds. On the other hand, Vergini and Carlo@5,6# devel-
oped a semiclassical construction of wave functions on p
odic orbits and their neighborhoods~the stable and unstabl
manifolds! which are highly localized in energy. To re
semble the classical hyperbolic structure, these construct
use the orbit and the linearized dynamics around it. T
question that naturally arises is if the classical hyperbo
structure is present in quantum mechanics. An import
contribution in this direction was given by Nonnenmach
and Voros@7#. They studied the eigenstates structures aro
a hyperbolic point in a one dimensional system.

In this Rapid Communication, we address that quest
by constructing smoothed functions living on the period
orbit and their manifolds and we use only the quantum
formation ~the eigenvalues and eigenfunctions! of the sys-
tem. This clearly will show the skeleton on which the qua
tum mechanics is built. Moreover, some features of th
smoothed functions confirm predictions by Bogomolny a
are well understood with the semiclassical construction
Ref. @5#.
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Our starting point is the Gutzwiller trace formula@1#. This
formula evaluates the quantal spectrum of energy o
bounded system in terms of the classical spectrum of p
odic orbits. We are going to consider billiard systems wh
the classical motion is described by straight lines betw
consecutive bounces with the boundary. The incoming
outgoing trajectories at a bounce satisfy specular reflect
A periodic orbitd is characterized by the lengthLd , and the
Maslov indexnd . The quantum mechanics is given by th
set of eigen-wave-numberskn and eigenfunctionsfn(rW)
which are defined by the Helmholtz equation (¹2

1kn
2)fn(rW)50, with Dirichlet boundary conditions. Fo

these systems, the trace formula reads@8#

(
n

d~k2kn!5r~k!1
1

2p (
d

Ade2 ikLd, ~1!

with

Ad5
Ldeindp/2

Audet~M d2I !u
, ~2!

andM d is the monodromy matrix of the orbitd. r(k) is the
mean level density.

The Fourier transform of Eq.~1! gives the classical spec
trum in terms of the quantal one@9#,

f ~L ![ (
kn,k

eiknL2 r̃~L !5(
d

Ad sin@k~L2Ld!#

2p~L2Ld!
. ~3!

In particular, f (Ld).kAd/2p and u f (L)u2 has peaks at the
length of the periodic orbits. Figure 1 showsu f (L)u2 ob-
tained from the eigen-wave-numbers up tok5264 for the
desymmetrized stadium billiard, a classical chaotic syst
@10#. The position of the peaks agrees with the length of
orbits within an error (1/k) given by the used window. The
height of the peaks and the phases are also well reprodu

Phase coherent contributions occurs in Eq.~3! when L
5Ld . The major contribution to the peaks is provided by t
eigen-wave-numbers close to the Bohr-Sommerfeld qua
zation rule,k'2p/Ln(n1n/4), wheren is an integer. That
is, the eigen-wave-number distribution is not random and
R4513 ©2000 The American Physical Society
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information of the periodic orbits of the system@9#. The
same behavior is expected for wave functions. Then, we
pose the following spectral function for the orbitd,

zd~rW ![ (
kn,k

ufn~rW !u2 cos~knLd2 ipnd/2!. ~4!

We expect this function will retain the relevant features
the orbit contained in the eigenfunctions. In order to ver
this point, we computed the spectral functions@Eq. ~4!# for
the orbits shown in the inset of Fig. 1 using the first 99
eigenfunctions of the desymmetrized stadium billiard~corre-
sponding to 0,k,264). These spectral functions are show
in Fig. 2. A Gaussian smoothing with standard deviations
50.02 was applied in order to avoid the background rand
fluctuations. Moreover, with this amount of eigenfunction
the spectral functions of all the periodic orbits up toL;14
are well reproduced.

These smoothed functions are clearly localized in
neighborhood of the orbits and some important features
observed. We notice that the spectral functions loca
transversely to the orbits in two different ways. For orbits~1!
and ~3! of Fig. 1, the maximum of the transversal localiz
tion occurs at some distance from the orbit. Two peaks
observed at each side of the orbit@see Fig. 3~a!#. On the other
hand, for orbits~2! and ~4! of Fig. 1, the two peaks are les
clear and the functionz is high on the orbit itself@see Fig.
3~b!#. According to Bogomolny@2# these features depend o

FIG. 1. u f (L)u2 evaluated from the first 9910 eigenvalues of t
desymmetrized stadium billiard with radiusr 51 and straight line
of length a51. The labels over some of the peaks indicate
corresponding periodic orbits shown in the inset.

FIG. 2. Spectral function@Eq. ~3!# corresponding to the orbits
~1!–~4! ~from upper left to bottom right! shown in the inset of Fig.
1. Equation~4! was evaluated for the first 9910 eigenfunctions
the desymmetrized stadium billiard.
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the characteristics of the orbit but they were not specifi
They come out clearly by comparison with the semiclass
construction given in Ref.@5#. From that viewpoint, these
functions are a combination of the square of the scar fu
tions with even and odd transversal excitations. When
classical transversal motion is hyperbolic with reflection, t
odd scar function quantize at the anti-Bohr energies. Th
the contribution of the odd scar functions to Eq.~4! change
their sign, producing other mixing with the even scar fun
tions @e.g., orbits~1! and ~3!#.

Another important characteristic observed in the spec
functions ~also predicted in Ref.@2#! is their behavior near
self-focal points of the orbit. There, the function is enhanc
and the transversal width becomes smaller. An extra incre
of the function was also observed at self-crossing points

FIG. 4. Phase space representation of the spectral function
orbit ~1! using the first 150, 500, 2000, and 6500 eigenfunctions
the desymmetrized stadium billiard. The stable and unstable m
folds are plotted with points. The coordinateq is the arc length at
the boundary normalized by the perimeter of the billiard andp is the
fraction of tangential momentump.

e

f

FIG. 3. Spectral function of the orbit~3! and~2! of Fig. 1 evalu-
ated over the transversal section to the orbits showed in the in
The transversal coordinate isy, with y50 on the orbit.



ry
r
sa
th

a
ct

e
e
r
rb
n
ng
th

ec
0
o

th

A

ith

i-
m

he
e-
ical

n-

vice
ical

c-

he
is

o-
p-
y
d

RAPID COMMUNICATIONS

PRE 62 R4515CLASSICAL INVARIANTS AND THE QUANTUM- . . .
the orbit and in the vicinity of reflections with the bounda
~see Fig. 2!. In a self-focal point the linearized stable o
unstable manifold lies along the direction of the transver
momentum. This shows that the spectral functions have
imprint of the unstable classical motion@7#.

The last point should be clarified; therefore, we have c
culated a phase space representation of the spectral fun
using the Husimi distribution@11# of the wave function in-
stead of uf(rW)u2 in Eq. ~4!. As usual, we have used th
Birkhoff coordinates. In the bottom right panel of Fig. 4 th
phase space representation of the spectral function of o
~1! is showed. The stable and unstable manifolds of the o
are also plotted. It is observed clearly that the spectral fu
tion lives along the manifolds. Furthermore, it is interesti
to determine how this hyperbolic structure emerges in
semiclassical limit. This limit occurs when\→0 or k→`.
Figure 4 shows the phase space representation of the sp
function of orbit~1! using the first 150, 500, 2000, and 650
eigenfunctions of the system. Increasing the number
eigenfuntions, as we are going to the semiclassical limit,
functions become more localized over the manifolds.

Finally, there is an important point to be considered.
remarkable aspect of Eq.~3! @or Eq. ~4!# is that it only per-
mits to obtain periodic orbits with length satisfingL
< ln(kL)/h ~with h the topological entropy!. This is because
the width of the defined peaks is;1/k and the density of
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peaks increases exponentially withL @;exp(hL)/L#. On the
other hand, in order to recover the quantum spectrum w
the trace formula@Eq. ~1!#, we need all the periodic orbits
with length up to the Heisenberg lengthLH5kA ~with A the
area of the billiard!. In this way, we arrive at an asymmetr
cal situation where the classical information obtained fro
the quantum spectrum is wholly insufficient to recover t
initial quantum information. This apparent contradiction r
cently showed up with the development of a semiclass
theory of short periodic orbits@6#. In it, the length of the
required periodic orbits~to obtain the eigenvalues and eige
functions up tok) is lower thanL< ln(LHh)/h5ln(kAh)/h. So,
we can go from quantum mechanics to classical one and
versa without loss of information, and the quantum-class
link is properly established.

In conclusion, we have constructed highly localized fun
tions in the vicinity of periodic orbits using only quantum
information. With this evidence, we have shown that t
classical hyperbolic structure of unstable periodic orbits
contained in the eigenfunctions of the system.
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