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Resonant modes of a bottle-shaped cavity and their effects in the response of finite
and infinite gratings

Ricardo A. Depine* and Diana C. Skigin†

Grupo de Electromagnetismo Aplicado, Departamento de Fı´sica, Facultad de Ciencias Exactas y Naturales,
Universidad de Buenos Aires, Ciudad Universitaria, Pabello´n I, 1428 Buenos Aires, Argentina

~Received 28 September 1999!

The resonant frequencies of a one-dimensional bottle-shaped cavity embedded in a ground plane are calcu-
lated using a modal approach fors andp polarizations. The same formalism is used to solve the problem of
scattering from a surface with a finite number of cavities and from an infinite periodic grating. We show
numerical results where the resonant behavior is evidenced as dips in the curve of intensity specularly reflected
from a surface with one or several bottle-shaped grooves. The surface shape resonances of a single cavity are
also shown to have a great influence on the efficiency distribution of the diffracted orders from infinite gratings
made of bottle-shaped cavities. The excitation of even and odd modes is analyzed for both polarizations.

PACS number~s!: 42.25.Fx, 42.25.Bs
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I. INTRODUCTION

The excitation of surface shape resonances and its rela
with intensification phenomena such as backscattering
hancement have attracted many studies in recent year
addition, it is known that an interface between air and
perfect conductor can supportp- ~and nots-! polarized sur-
face waves. It was found that these waves can be excite
adding roughness to the surface@1#. However, the resonan
behavior of infinitely periodic gratings of lamellar profile ha
also been studied by many authors, in particular fors polar-
ization @2–4#. Numerical evidence of a close relationship b
tweens resonances and the excitation ofs-polarized surface
waves was given@5#.

The resonant features of an isolated cavity or groove h
also been investigated by means of different implementat
of two basic approaches: integral and modal methods@6–9#.
The results show that for ans-polarized electromagneti
field, a strong intensification inside the cavity is found f
certain wavelengths when its profile is described by a biv
ued function of the coordinates, such as a slotted cylinde
a bottle-shaped groove@8,9#. This suggests that it might b
possible to excites-polarized surface waves in metallic stru
tures with bivalued cavities, and this constitutes one of
motivations of the present paper.

The modal formalism, employed here to solve the hom
geneous problem, the scattering problem from a plane
face with several cavities, and the diffraction problem fro
an infinite grating, was first formulated to deal with simp
geometries of the grooves such as rectangular@3#, triangular
@10#, or semicircular@11#. Later it was generalized for arbi
trary shapes of the grooves@12,13#. In the present paper, w
take advantage of the rectangular geometry of the bo
shaped cavity and the implementation of the modal met
results in a simple and efficient way to calculate the fiel
without the need of any sophisticated algorithm. In additi
this particular shape allows us to vary independently the g
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metrical parameters~widths and depths! to analyze the de-
pendence of the resonant phenomenon with each one.

The purpose of the present paper is to study the reso
characteristics of a bottle-shaped cavity, and the effects
these resonances produce in the scattering pattern from fi
and infinite gratings. A deep understanding of this pheno
enon might provide us with a key to explore the existence
s-polarized surface waves in metallic surfaces with bivalu
corrugations.

The paper is organized as follows. In Sec. II we solve
homogeneous problem of a cavity in a ground plane, and
resonant wavelengths of the groove for both modes of po
ization using a modal approach. The same formalism is u
to solve the scattering problem of a Gaussian beam imp
ing on a surface with a finite number of grooves, as well
the diffraction problem of a plane wave on an infinite gra
ing. In Sec. III we first give numerical results that valida
the procedure followed to find the resonant depths of a c
ity. Then some interesting examples are shown fors and p
polarizations. Curves of specularly reflected intensity a
diffracted efficiency as a function of the depth are a
shown, where the resonant behavior of the cavity is stron
marked. The final comments and conclusions are given
Sec. IV.

II. EIGENMODES OF A SINGLE CAVITY

To find resonant wavelengths associated with the g
metrical characteristics of a single cavity, we solve the h
mogeneous problem for a bottle-shaped cavity of widthsc1
andc2 and heightsh1 andh2 ~see Fig. 1! on a ground plane.
The groove is along theẑ direction, and due to the symmetr
of the problem it can be separated into basic modes of
larizations ~electric field parallel to the groove! andp ~mag-
netic field parallel to the groove!. Each polarization case al
lows a scalar treatment.

We divide the space into three regions: region 1~inside
the cavity!, region 2~the neck of the cavity!, and region 3
~the upper half-space, as shown in Fig. 1!. In what follows
we unify the notation and denoteEz(x,y) by f s(x,y) in thes
case andHz(x,y) by f p(x,y) in the p case. In regions 1 and
2 ~the subscriptj 51 and 2 denotes the region!, the fields are
4479 © 2000 The American Physical Society
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4480 PRE 61RICARDO A. DEPINE AND DIANA C. SKIGIN
expanded in their modal eigenfunctions:

f j
q~x,y!5 (

m50

`

ujm
q ~x!wjm

q ~y!, j 51,2 ~1!

where

u1m
q ~x!5H sinFmp

c1
~x2x1!G for q5s

cosFmp

c1
~x2x1!G for q5p,

~2!

w1m
q ~y!5H Am

s sin@mm1~y1h!# for q5s

Am
p cos@mm1~y1h!# for q5p,

~3!

u2m
q ~x!5H sinFmpx

c2
G for q5s

cosFmpx

c2
G for q5p,

~4!

w2m
q ~y!5@am

q sin~mm2y!1bm
q cos~mm2y!#, q5s,p,

~5!

mm j55Ak22Fmp

cj
G2

if k2.Fmp

cj
G2

iAFmp

cj
G2

2k2 if k2,Fmp

cj
G2

.

~6!

k5ukW u5v/c, and Am
q , am

q , and bm
q are unknown complex

amplitudes. Notice thatuj 0
s (x)50, and then the sum in Eq

~1! starts fromm51 in the s case. The functionsu1m
q (x)

satisfy the appropriate boundary conditions atx5x1 and at
x5x11c1, the functionsu2m

q (x) satisfy the boundary condi
tions atx50 and atx5c2, and the functions w1m

q (y) satisfy
the boundary condition aty52h, according to the case o
polarization. Since we are interested in finding the surf
shape resonances, the total field in region 3 is an outgo
field, and can be represented by a continuum of outgo
plane waves,

FIG. 1. The structure under study: a bottle-shaped groove a
the z direction, on a ground plane. The cavity has total depthh
5h11h2, and the maximum and minimum widths arec1 andc2.
e
g
g

f 3
q~x,y!5E

2`

`

R q~a!ei (ax1by)da, ~7!

where

b5HAk22a2 if k2.a2

iAa22k2 if k2,a2,
~8!

andR q(a) is an unknown function.
To solve the problem, the fields in regions 1 and 2 a

matched at the interfacey52h2 and the fields in regions 2
and 3 are matched aty50. This generates fourx-dependent
equations for each polarization, that are projected in con
nient bases~for the explicit form of these equations, see A
pendix A!. Then, after several substitutions, we obtain a h
mogeneous matrix equation for the vector of mod
amplitudesAq (q5s,p):

MqAq50, q5s,p. ~9!

The explicit expressions of the matrix elements are given
Appendix B. The final equation can be obtained in many d
ferent ways. For instance, we could have derived a ma
equation for the amplitudes in the neck of the grooveam

q or
bm

q . However, since we are interested in finding the wa
lengths at which the field within the widest part of the cav
is enhanced, it is convenient to express all the unknown
terms of the modal amplitudes in region 1, to obtain Eq.~9!.
Then the resonant wavelengths of the groove (l res) are those
at which the determinant of the matrixMq vanishes. Or,
conversely, for a fixed wavelength the resonant depthsh1 are
those at which the determinant vanishes. The solutions
det@Mq#50 are complex: the real part is associated with
resonant parameter~wavelength, depth!, whereas the imagi-
nary part is related to the quality of the resonance. To fi
the resonant values we have numerically evaluated the fu
tion udet@Mq#u22, and, then, plotting this function against th
corresponding variable, we find peaks centered at the
parts of the resonant values@14,15,7#.

III. SCATTERING PROBLEM

The resonant effects occuring in a single cavity are
pected to show up somehow in the scattering pattern o
surface with one or more identical grooves. Then we solv
the scattering problem of a surface with a finite number
bottle-shaped grooves illuminated by a limited beam, a
also the diffraction problem of a plane wave incident up
an infinite grating. These situations are considered in S
III A and III B.

A. Finite grating

The scattering problem from a perfectly conducting s
face withN localized bottle-shaped cavities is solved by t
modal approach@9#. We consider the general case where t
widthsc1 andc2 and the depthsh1 andh2 of each cavity can
vary. The procedure to find the solution is essentially
same as that used for the homogeneous problem, but in
case it is necessary to find the field expansions in each on
the cavities. Then the fields in regions 1 and 2 are written

g
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f j
q~x,y!5 (

m50

`

ujm
ql ~x!wjm

ql ~y!rectS x2xj
l

cj
l D , j 51,2

~10!

where the explicit expressions of the functionsujm
ql (x) and

wjm
ql (y) are given in Appendix C. In region 3, the total field

the sum of the incident field—a limited Gaussian beam—a
the scattered field given by Eq.~7!:

f 3
q~x,y!5E

2k

k

A~a!ei (ax2by)da1E
2`

`

R q~a!ei (ax1by)da,

~11!

where

A~a!5
w

2Ap
expH 2~a2a0!2S w

2 D 2J exp@ i ~a2a0!b#,

~12!

b5
b0

k
x0 . ~13!

w is the spatial width of the beam,x0 is thex coordinate on
the surface where the center of the beam impinges upon
structure, b is defined in Eq. ~8!, a05k sinu0, b0
5k cosu0, andu0 is the angle of incidence measured fro
the normal to the mean surface.

We discretize and truncate the integrals in Eq.~11!, and
proceed as in Sec. II to obtain, in this case, an inhomo
neous matrix equation. However, since we are now intere
in calculating the scattered intensity which is proportional
uR q(an)u2, it is more convenient to derive a matrix equatio
for the unknown Rayleigh amplitudesR q(an)5R n

q rather
than for the coefficientsAm

q . Then we combine the equation
resulting from the projections of the boundary conditions
such a way to obtainMqR q5Vq. The matrix and the inde
pendent vector elements fors and p polarizations are given
in Appendix D.

B. Infinite grating

Due to the pseudoperiodicity condition, the solution of t
infinite grating problem is reduced to the solution of t
problem in a single period~d! of the grating only, in which
we have a bottle-shaped cavity. The space is divided into
same three regions described in Fig. 1. In regions 1 and 2
keep the same expressions of the field inside the cavity u
in Sec. II @Eq. ~1!#, but in region 3 we express the total fie
as the sum of the incident plane wave plus the field diffrac
in the directions given by the grating equation,

f 3
q~x,y!5ei (a0x2b0y)1 (

n52`

`

Rn
qei (anx1bny), ~14!

wherea0 andb0 are defined in Sec. III A,

an5k sinun5a01n
2p

d
~15!

and
d

he

e-
ed

e
e

ed

d

bn5k cosun5Ak22an
2. ~16!

Now we proceed as in the finite grating problem, but us
Eq. ~14! instead of Eq.~11!. In the infinite grating case we
are interested in calculating the efficiencies of the diffract
orders, which are given by

en5uRn
qu2bn /b0 , ~17!

so we derive a matrix equation for the Rayleigh amplitud
Rn

q . Combining the equations that result from appropria
projections of the boundary conditions, we obtain a mat
equationMqRq5Vq. The matrix and the independent vect
elements for both polarizations are given in Appendix E.

IV. RESULTS AND DISCUSSION

As stated above, the purpose of this paper is to study
resonant behavior of bottle-shaped cavities, and its influe
in the scattering patterns produced by a surface with oneN,
or infinite identical cavities. In a previous paper we provid
numerical evidence of a resonant enhancement of the
within a groove of this shape@9#. We found that for a surface
with one groove, the curves of intensity scattered in
specular direction vs wavelength exhibit dips at cert
wavelengths for both polarization modes. These waveleng
were associated with the resonant wavelengths of the ca
since a strong enhacement of the field within the groove w
found at those wavelengths. In addition, the calculated v
ues are in agreement with the limit case of a rectangu
waveguide. However, no independent calculation had b
done for this particular profile to prove that these wav
lengths correspond to surface shape resonances, i.e., to
nances associated with a local perturbation on an otherw
planar surface.

In Sec. IV A we give some numerical examples that sh
the surface shape resonant modes in the structure of Fi
for both polarizations. Then, in Sec. IV B we show that tho
modes become apparent in the far field scattered from fi
and infinite gratings made of identical cavities.

A. Eigenmodes of the cavity

As explained in Sec. II, to find the resonant waveleng
of an open cavity implies finding the zeros of the equat
det@Mq#50. However, instead of dealing with the som
times difficult task of finding the complex roots of a comple
determinant, another way of locating the resona
parameters—already used for other profiles of the surfac
Refs.@14,15,7# is used here. It consists in evaluating nume
cally the function udet@Mq(l,h)#u22, and the plot of this
function versus the real part of the resonant wavelength~or
the resonant depth! consists of a series of Lorentzian pea
of the form

udet@Mq~h!#u22'
B

@~h2hR!21hI
2#

, ~18!

whereh5hR1 ihI is the complex root of det@Mq(h)#.
In Figs. 2–5 we plotudet@Mq#u22 versus the depthh1 of

the cavity, for a fixed wavelength. To check the validity
the results we first considered the case of a cavity wit
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FIG. 2. udet(Ms)u22 as a function of the depthh1 /l for a bottle-shaped cavity ofh150.9h ands polarization:~a! c150.828l andc2

50.092l, ~b! c151.764l andc250.196l (m51), and~c! c151.764l andc250.196l (m52).
ul ge
the

iven
narrow neck, so as to simulate the limit case of a rectang
waveguide of depthh1 ~Figs. 2 and 3!. Figure 2 corresponds
to s polarization, and Fig. 3 top polarization. In Fig. 2~a!,
corresponding to a cavity withc150.828l, c250.092l, and
arh510h1/9, we observe three well-defined peaks in the ran
of h1 considered. These peaks are located very close to
resonant depths of a rectangular waveguide, which are g
by
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FIG. 3. udet(M p)u22 as a function of the depthh1 /l for a bottle-shaped cavity ofh150.9h and p polarization.c150.828l and c2

50.092l.
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, ~19!

whose first three real values~corresponding tom51) are
h1 /l50.625, 1.254, and 1.876. We considered only eig
modes withm51, since the geometry of this cavity is suc
that there is only one real value ofmm ~which corresponds to
m51) and the other values ofmm ~with m.1) are purely
imaginary. Then, the main contribution to the field inside t
cavity comes from the first mode in the modal representa
~1!. Consequently, the curves obtained using only the fi
mode or using several modes have exactly the same peak
expected. In the case considered in Figs. 2~b! and 2~c!, the
wavelength was decreased so as to have two real value
mm , and then the parameters of the groove arec1
51.764l, c250.196l, andh510h1/9. If we only keep the
-

n
t

, as

of

first mode in the modal expansion, we obtain the curve
Fig. 2~b!, which exhibits peaks associated with the reson
values ofh1 corresponding tom51 in Eq.~19!. However, if
we keep two or more modes in the representation, we ob
the curve in Fig. 2~c!, which in addition to the peaks in Fig
2~b! has new peaks corresponding to resonant depths o
second mode. The resonant values ofh1 corresponding to the
rectangular waveguide of these parameters were calcul
using Eq.~19!, and are listed in Table I. It can be noted fro
a comparison of Table I with the plot in Fig. 2~c! that the
positions of the peaks agree very well with the predic
limit values. Forp polarization~Fig. 3! we consider a cavity
with the same parameters as those in Fig. 2~a!. However,
since the term withm50 in Eq. ~1! gives a nonzero contri-
bution to the field inside the cavity, and it is in fact th
fundamental mode of the cavity, in thep case there are two
real values ofmm . Hence we must consider at least the fi
two terms in the modal expansion to perform the curve
Fig. 3, where it is easy to associate the peaks with the
FIG. 4. udet(Ms)u22 as a function of the depthh1 /l for a bottle-shaped cavity ofh150.9h and s polarization.c150.828l and c2

50.368l.
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FIG. 5. udet(M p)u22 as a function of the depthh1 /l for a bottle-shaped cavity ofh150.9h andp polarization:~a! c150.828l andc2

50.368l, and~b! c150.828l andc250.552l.
II.
are

ith
han

s
ne
ferent resonant values corresponding tom50 and 1, by com-
paring their positions with the limit values listed in Table

In Fig. 4 we consider a cavity with a wider neck,c1
50.828l and c250.368l, for s polarization. It can be no-
ticed that now the peaks are wider than those in Fig. 2~a!,

TABLE I. Resonant values of the depthh/l for a rectangular
waveguide of widthc/l51.764 ins polarization.

num 1 2

1 0.519 0.605
2 1.041 1.211
3 1.562 1.819
4 2.084 2.425
5 2.605 3.033
6 3.127 3.639
7 3.649 4.247
8 4.170 4.852
9 4.692 5.460
10 5.196 6.066
indicating that the quality factors of these resonances
smaller. The same cavity but in thep case is considered in
Fig. 5~a!, where the peaks corresponding to the modes w
m50 and 1 are identified. These peaks are also wider t
those in Fig. 3, and for a cavity withc250.552l the peaks
become even wider@see Fig. 5~b!#. The positions of the
peaks also change if the widthc2 is changed, and sometime
two peaks can merge one into the other, forming only o
peak, as can be observed in Fig. 5~b!, near h1 /l'1.9.

TABLE II. Resonant values of the depthh/l for a rectangular
waveguide of widthc/l50.828 inp polarization.

num 0 1

1 0.5 0.627
2 1.0 1.254
3 1.5 1.881
4 2.0 2.509
5 2.5 3.136
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FIG. 6. Intensity scattered in the specular direction (uR s(a0)u2) as a function of the depthh1 /l, for a normally incidents-polarized
Gaussian beam of widthw59.2l illuminating a surface with a single groove ofc150.828l, c250.368l, andh150.9h.
ed
tt

-
e
u
t
en
he
de
fa
tr
in
t
.
su

a
th
b

de

ak
th
s
e

in
s

o

es
d
ig
m

5,
ity

le-
of
nd a

on
e of
ave-
des
ted
the
n

e
and
e

t
ost
not
ces.

in
s, as

by
tri-
es.

t
f

in
that
of

e
nite
ith
B. Scattering from finite and infinite gratings

In the following figures we illustrate the effects produc
by the surface shape resonances in the scattering pa
from finite and infinite gratings. In Fig. 6 we consider ans-
polarized Gaussian beam of widthw59.2l normally inci-
dent on a surface with a single cavity ofc150.828l, c2
50.368l, andh150.9h. The plot of specularly reflected in
tensity versush1 /l exhibits three dips at positions very clos
to those corresponding to the peaks in Fig. 4. This fact s
gests that in resonant conditions the power scattered ou
the specular direction increases. For the parameters chos
this example, the main contribution to the field inside t
cavity comes from the first mode, which is an even mo
and then the effects of the resonant behavior of the sur
can be observed for normal incidence, i.e., for a symme
configuration. If the number of cavities in the surface is
creased, the dips become more pronounced but stay a
same positions~not shown!. Thep case is considered in Fig
7, where we plot the specularly reflected intensity ver
h1 /l for a surface with cavities of the same parameters
those in Fig. 6. We consider the particular case where all
cavities are identical and equally spaced, the distance
tween their centers beingd50.92l. Comparing Figs. 7~a!
and 5~a!, it can be noted that the position of the dips coinci
with the peaks identified with them50 mode in Fig. 5~a!.
As stated above, an increase in the number of grooves m
the dips deeper, but the position is not altered. Since
normal illumination imposes the symmetry on the field
only the even modes are excited in this situation. Howev
the second mode~which is an odd mode! also contributes
significantly to the field inside the cavity, but its effects
the reflected intensity can only be appreciated by mean
an oblique illumination. In Fig. 7~b! we plot the intensity
reflected in the specular direction for a beam impinging up
the surface with an angleu0545°. In this case, not only the
dips corresponding to the even modes but also the r
nances associated with the modem51 appear as sharp an
well-defined dips, located at the positions of the peaks in F
5~a!. These resonances seem to be more sensitive to a s
change inh1, and have better quality.
ern
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all

From the comparison of Figs. 6 and 7 with Figs. 4 and
we conclude that the occurrence of dips in the field intens
specularly reflected from finite gratings made of bott
shaped grooves is intimately connected with the excitation
surface shape resonances inside the cavities. This result a
similar result obtained for cavities with circular cross secti
@16#, suggest that this effect appears whenever the profil
the groove is double valued. In such cases, at certain w
lengths the electromagnetic field couples to the eigenmo
of the cavity and produces a spreading out of the reflec
power. The existence of dips in the intensity reflected in
specular direction~in the examples presented this directio
coincides with the normal direction! at the surface shap
resonances of the structure is consistent with the results
discussion in Ref.@7#. In that paper the authors show that th
differential reflection coefficient~DRC! for scattering angles
far from the specularexhibit dips at certain wavelengths a
which the perfect conductor boundary conditions are alm
restored at the top of the surface. These minima should
be attributed to the excitation of surface shape resonan
However, it was shown in Fig. 3 of Ref.@7# that for scatter-
ing angles close to the specular direction the dips found
the DRC are associated with surface shape resonance
predicted by the results of the homogeneous problem.

The last set of figures illustrates the effects produced
the resonant behavior of the cavities in the efficiency dis
bution of an infinite grating made of bottle-shaped groov
In Fig. 8~a! we consider an infinite grating ofc1 /d50.9,
c2 /d50.4, l/d51.0871, andh150.9h, whered is the grat-
ing period, illuminated by ans-polarized plane wave inciden
with an angleu0545°. It can be noted that the efficiency o
the zero order has minima~and the efficiency of the21
order has maxima! at the depths predicted by the peaks
Fig. 4. Even though the power conservation law imposes
the sum of the reflected efficiencies be 1, the distribution
energy among the diffraction orders~in this case only the 0
and21 are propagating orders! reveals a strong dependenc
on the surface shape resonances. The behavior of the infi
grating is in agreement with that observed for a surface w
a single groove and normal incidence~Fig. 6!, which shows
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FIG. 7. Intensity scattered in the specular direction (uR p(a0)u2) as a function of the depthh1 /l, for an incidentp-polarized Gaussian
beam of widthw59.2l illuminating different surfaces with one, two, three, and four cavities ofc150.828l, c250.368l, andh150.9h,
separated a distanced50.92l: ~a! u050°, and~b! u0545° ~for a surface with a single cavity!.
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that the resonant depths do not depend on the angle of
dence, as expected. In Fig. 8~b!, which corresponds to a gra
ing with the same parameters as in Fig. 8~a! but with a nar-
rower mouse of the cavities (c2 /d50.1), the effect of a
resonant depth is clearly present in the 0 order efficie
curve ath1 /d50.68, where the curve in Fig. 2~a! has a peak.
Since this resonance has a higher quality than those in
8~a!, the effect in the efficiency curve is more localized.
Fig. 9 we show efficiency curves for the same grating of F
8~a! but underp-polarized illumination. According to wha
was observed for the finite grating@Fig. 7~b!#, the efficiency
reflected in the specular direction~order 0! has minima at the
resonant depths@Fig. 9~a!#. These minima are zeros for th
resonances corresponding tom50, showing that for these
resonant depths there is no energy reflected in the spe
direction and all the power goes into the only other direct
allowed: the21 order. However, them51 resonances ap
pear as sharper peaks revealing a more sensitive phe
enon@see Fig. 9~b!#. The minima in the zero order efficienc
curve are compensated for by maxima in the21 order effi-
ci-

y

ig.

.

lar
n

m-

ciency curve, as required by the perfect conductor bound
conditions.

The results in Figs. 8 and 9 confirm that the distribution
reflected power is significantly modified at the resona
wavelengths of the cavity, even for infinite gratings. T
anomalies in the reflected efficiency could be used to de
surface shape resonances in the far field.

V. CONCLUSION

In this paper we have calculated the surface shape r
nances associated with a bottle-shaped cavity on a perfe
conducting plane for boths andp polarizations. We used a
modal approach to solve the homogeneous problem as
as to solve the scattering problem from finite and infin
gratings. We found the resonant wavelengths~or depths! of
the cavity by numerically evaluating the determinant of t
scattering matrix. We checked the resonant depths by c
paring them in the limit case of a rectangular waveguide, a
obtained a very good agreement between them. It was sh
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FIG. 8. Efficiency of the zero and21 diffraction orders as a function of the depthh1 /d, from an infinite grating with a bottle-shape
cavity in a period.c150.9d, l51.087155743d, h150.9h, u0545°, ands polarization.~a! c250.4d. ~b! c250.1d.
ip
t

.
o
d

s
p
ra
r

s
g
ch

o
-
es
that the intensity scattered from a finite grating exhibits d
at the resonant depths of the cavity. Examples revealing
excitation of even and odd modes have been addressed
also investigated the influence of the resonant excitation
the efficiencies of an infinitely periodic grating, and foun
that at the resonant depths the distribution of efficiencie
significantly modified. The examples presented in this pa
exhibit polarization dependent features that could be att
tive in several applications such as filters and polarize
From a theoretical point of view, this study also constitute
first step in the investigation of the possibility of excitin
s-polarized surface waves in metallic infinite gratings, whi
will be the subject of future research.
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APPENDIX A: PROJECTED EQUATIONS
FOR BOTH POLARIZATIONS

s polarization

Am
s sin~mm1h1!

c1

2
5 (

n51

`

I nm
s @2an

s sin~mn2h2!

1bn
s cos~mn2h2!#, ~A1!

(
n51

`

An
smn1cos~mn1h1!I mn

s 5
c2

2
mm2@am

s cos~mm2h2!

1bm
s sin~mm2h2!#, ~A2!

2pR~a!5 (
n51

`

bn
sJn

s~2a!, ~A3!
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FIG. 9. Efficiency of the diffraction orders as a function of the depthh1 /d, from an infinite grating with a bottle-shaped cavity in
period.c150.9d, c250.4d, l51.087155743d, h150.9h, u0545°, andp polarization.~a! order 0.~b! order21.
i E
2`

`

bR~a!Jm
s ~a!da5mm2am

s c2

2
, ~A4!

where

I nm
s 5E

0

c2
sinFnpx

c2
GsinFmp

c1
~x2x1!Gdx ~A5!

and

Jn
s~a!5E

0

c2
sinFnpx

c2
Gexp~ iax!dx. ~A6!

p polarization
2Am
p sin~mm1h1!mm1c1m5 (

n50

`

I nm
p mn2@an

p cos~mn2h2!

1bn
p sin~mn2h2!#, ~A7!

(
n50

`

An
p cos~mn1h1!I mn

p 5c2m@2am
p sin~mm2h2!

1bm
p cos~mm2h2!#, ~A8!

2p ibR~a!5 (
n50

`

an
pmn2Jn

p~2a!, ~A9!

E
2`

`

R~a!Jm
p ~a!da5bm

p c2m , ~A10!
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where

I nm
p 5E

0

c2
cosFnpx

c2
GcosFmp

c1
~x2x1!Gdx, ~A11!

Jn
p~a!5E

0

c2
cosFnpx

c2
Gexp~ iax!dx, ~A12!

and

cjm5H cj if m50

cj /2 if mÞ0
j 51,2. ~A13!

APPENDIX B: EXPLICIT EXPRESSIONS
OF THE MATRIX ELEMENTS IN EQ. „9…

s polarization

Mmn
s 5mn1cos~mn1h1!(

j 51

`

I jn
s (

k51

`

~Bs!k j
21(

q51

`

Cqk
s I qm

s

2
c1

2
sin~mm1h1!dmn , ~B1!

where

Bk j
s 5mk2

c2

2
@Ak j

s cos~mk2h2!1sin~mk2h2!dk j#, ~B2!

Ck j
s 52Ak j

s sin~mk2h2!1cos~mk2h2!dk j , ~B3!

and

Ak j
s 5

i

p

1

mk2c2
E

2`

`

bJk
s~a!Jj

s~2a!da. ~B4!

p polarization

Mmn
p 5cos~mn1h1!(

j 50

`

I jn
p (

k50

`

~Bp!k j
21(

q50

`

mq2I qm
p Cqk

p

1mm1c1m sin~mm1h1!dmn , ~B5!

Bk j
p 5c2k@Ak j

p cos~mk2h2!2sin~mk2h2!dk j#, ~B6!

Ck j
p 5Ak j

p sin~mk2h2!1cos~mk2h2!dk j , ~B7!

and

Ak j
p 5

m j 2

2p ic2k
E

2`

` 1

b
Jk

p~a!Jj
p~2a!da. ~B8!
APPENDIX C: MODAL FUNCTIONS
IN REGIONS 1 AND 2

u1m
ql ~x!55 sinFmp

c1
l

~x2x1
l !G for q5s

cosFmp

c1
l

~x2x1
l !G for q5p,

~C1!

w1m
ql ~y!5H Am

sl sin@mm1
l ~y1h!# for q5s

Am
pl cos@mm1

l ~y1h!# for q5p,
~C2!

u2m
ql ~x!55 sinFmp

c2
l

~x2x2
l !G for q5s

cosFmp

c2
l

~x2x2
l !G for q5p,

~C3!

w2m
ql ~y!5@am

ql sin~mm2
l y!1bm

ql cos~mm2
l y!#, q5s,p,

~C4!

mm j
l 55Ak22Fmp

cj
l G 2

if k2.Fmp

cj
l G 2

iAFmp

cj
l G 2

2k2 if k2,Fmp

cj
l G 2

,

~C5!

rect~s!5H 1 0,s,1

0 otherwise.
~C6!

Am
ql , am

ql , and bm
ql are the unknown modal amplitudes, th

superscriptl denotes the groove, andx1
l andx2

l are the start-
ing x coordinates of the lower and upper parts of thel th
groove, respectively.

APPENDIX D: MATRIX AND INDEPENDENT VECTOR
ELEMENTS FOR THE FINITE GRATING PROBLEM

Mmn
s 5 iDabn(

l 51

N
ei (an2am)x2

l

c2
l (

k51

`

(
j 51

`
1

mk2
l

Jj
sl~am!* Jk

sl~an!

3@~Psl!21Qsl# jk2pdmn , ~D1!

Vm
s 5 iDa (

n51

`

bnAn(
l 51

N
ei (an2am)x2

l

c2
l

3 (
k51

`

(
j 51

`
1

mk2
l

Jj
sl~am!* Jk

sl~an!@~Psl!21Qsl!] jk

1pAm , ~D2!

Mmn
p 52Da(

l 51

N

ei (an2am)x2
l

(
k50

`

(
j 50

` m j 2
l

c2k
l

Jj
pl~am!* Jk

pl~an!

3@~Ppl!21Qpl# jk12p ibmdmn , ~D3!
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Vm
p 5Da (

n51

`

An(
l 51

N

ei (an2am)x2
l

3 (
k50

`

(
j 50

` m j 2
l

c2k
l

Jj
pl~am!* Jk

pl~an!@~Ppl!21Qpl# jk

12p ibmAm , ~D4!

whereAm5A(am),

Pjk
sl5 (

m51

` 4mm1
l cot~mm1

l h1!cos~mk2
l h2!

c1
l c2

l m j 2
l cos~m j 2

l h2!
Dm j

sl Dmk
sl

2tan~m j 2
l h2!d jk , ~D5!

Qjk
sl5 (

m51

` 4mm1
l cot~mm1

l h1!sin~mk2
l h2!

c1
l c2

l m j 2
l cos~m j 2

l h2!
Dm j

sl Dmk
sl 1d jk ,

~D6!

Pjk
pl52 (

m50

` mk2
l cot~m j 1

l h1!cos~mk2
l h2!

c1m
l c2 j

l mm1
l cos~m j 2

l h2!
Dm j

pl Dmk
pl

1tan~m j 2
l h2!d jk , ~D7!

Qjk
pl5 (

m50

` mk2
l cot~mm1

l h1!sin~mk2
l h2!

c1m
l c2 j

l mm1
l cos~m j 2

l h2!
Dm j

pl Dmk
pl 1d jk .

~D8!

Dm j
sl 5E

x2
l

x2
l
1c2

l

sinF j p

c2
l

~x2x2
l !GsinFmp

c1
l

~x2x1
l !Gdx,

~D9!

Dm j
pl 5E

x2
l

x2
l
1c2

l

cosF j p

c2
l

~x2x2
l !GcosFmp

c1
l

~x2x1
l !Gdx,

~D10!
z,

as

t.
andJk
ql(an) are defined in Eqs.~A6! and~A12! by substitut-

ing c2 by c2
l .

APPENDIX E: MATRIX AND INDEPENDENT
VECTOR ELEMENTS FOR THE INFINITE

GRATING PROBLEM

s polarization

Mmn
s 5

2i

c2
(
k51

`

(
j 51

`
bn

mk2
Jj

s~am!* Jk
s~an!~P(s)21Qs! jk2ddmn ,

~E1!

Vm
s 5

2ib0

c2
(
k51

`

(
j 51

`
1

mk2
Jj

s~am!* Jk
s~a0!~P(s)21Qs! jk

1ddm0 . ~E2!

p polarization

Mmn
p 5 (

k50

`

(
j 50

`
m j 2

c2~k!
Jj

p~am!* Jk
p~an!~P(p)21Qp! jk

2 ibmddmn , ~E3!

Vm
p 52 (

k50

`

(
j 50

`
m j 2

c2~k!
Jj

p~am!* Jk
p~a0!~P(p)21Qp! jk

2 ib0ddm0 , ~E4!

where the matricesPq andQq are given by Eqs.~D5!, ~D6!,
~D7!, and~D8! by suppressing the superscriptl.
pt.
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