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Resonant modes of a bottle-shaped cavity and their effects in the response of finite
and infinite gratings
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The resonant frequencies of a one-dimensional bottle-shaped cavity embedded in a ground plane are calcu-
lated using a modal approach feandp polarizations. The same formalism is used to solve the problem of
scattering from a surface with a finite number of cavities and from an infinite periodic grating. We show
numerical results where the resonant behavior is evidenced as dips in the curve of intensity specularly reflected
from a surface with one or several bottle-shaped grooves. The surface shape resonances of a single cavity are
also shown to have a great influence on the efficiency distribution of the diffracted orders from infinite gratings
made of bottle-shaped cavities. The excitation of even and odd modes is analyzed for both polarizations.

PACS numbd(s): 42.25.Fx, 42.25.Bs

[. INTRODUCTION metrical parameteréwidths and depthsto analyze the de-
pendence of the resonant phenomenon with each one.

The excitation of surface shape resonances and its relation The purpose of the present paper is to study the resonant
with intensification phenomena such as backscattering er¢haracteristics of a bottle-shaped cavity, and the effects that
hancement have attracted many studies in recent years. iiese resonances produce in the scattering pattern from finite
addition, it is known that an interface between air and a@nd infinite gratings. A deep understanding of this phenom-
perfect conductor can suppgi (and nots-) polarized sur- €non might provide us With_a key to_ explore the E_zxist_ence of
face waves. It was found that these waves can be excited tfypolanz_ed surface waves in metallic surfaces with bivalued
adding roughness to the surfad. However, the resonant corrugations.

behavior of infinitely periodic gratings of lamellar profile has h The paper is or%?nize? as fo_ItIO\{vs. In Secall Ivve SOWZ Eh%
also been studied by many authors, in particularsfpolar- omogeneous problem of a cavity In a ground piane, and fin

ization[2—4]. Numerical evidence of a close relationship be_resonant wavelengths of the groove for both modes of polar-

tweens resonances and the excitationspolarized surface ization using a modal approach. The same formalism is used
. to solve the scattering problem of a Gaussian beam imping-
waves was givefs].

. . ing on a surface with a finite number of grooves, as well as
The resonant features of an isolated cavity or groove haVﬁ,]e diffraction problem of a plane wave on an infinite grat-

also been investigated by means of different implementationg,; | sec. 111 we first give numerical results that validate
of two basic approaches: integral and modal met6es)].  the procedure followed to find the resonant depths of a cav-
The results show that for as-polarized electromagnetic ity. Then some interesting examples are shownsfand p
field, a strong intensification inside the cavity is found for pojarizations. Curves of specularly reflected intensity and
certain wavelengths when its profile is described by a bivaldiffracted efficiency as a function of the depth are also
ued function of the coordinates, such as a slotted cylinder ogshown, where the resonant behavior of the cavity is strongly
a bottle-shaped groovs,9]. This suggests that it might be marked. The final comments and conclusions are given in
possible to excits-polarized surface waves in metallic struc- Sec. IV.

tures with bivalued cavities, and this constitutes one of the

motivations of the present paper. Il. EIGENMODES OF A SINGLE CAVITY

The modal formalism, employed here to solve the homo- . ) )
geneous problem, the scattering problem from a plane sur- 10 find resonant wavelengths associated with the geo-

face with several cavities, and the diffraction problem fromMetrical characteristics of a single cavity, we solve the ho-
an infinite grating, was first formulated to deal with simple Mogeneous problem for a bottle-shaped cavity of widths
geometries of the grooves such as rectangirtriangular ~ @ndc; and heightd1; andh; (see Fig. 1 on a ground plane.
[10], or semicirculaf11]. Later it was generalized for arbi- The groove is along thedirection, and due to the symmetry
trary shapes of the groovg$2,13. In the present paper, we of the problem it can be separated into basic modes of po-
take advantage of the rectangular geometry of the bottlelarizations (electric field parallel to the grooyandp (mag-
shaped cavity and the implementation of the modal methodetic field parallel to the grooyeEach polarization case al-
results in a simple and efficient way to calculate the fieldsJows a scalar treatment.
without the need of any sophisticated algorithm. In addition, We divide the space into three regions: regiofiriside
this particular shape allows us to vary independently the gedhe cavity, region 2(the neck of the cavily and region 3
(the upper half-space, as shown in Fig. th what follows
we unify the notation and denoEg,(x,y) by f5(x,y) in thes
*Electronic address: rdep@df.uba.ar case anH,(x,y) by fP(x,y) in thep case. In regions 1 and
"Electronic address: dcs@df.uba.ar 2 (the subscripf =1 and 2 denotes the regipithe fields are
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FIG. 1. The structure under study: a bottle-shaped groove alon
the z direction, on a ground plane. The cavity has total depth

=h,;+h,, and the maximum and minimum widths argandc,.

expanded in their modal eigenfunctions:

o

f?(x,y>=mE:O ud oWt (y), j=1.2 (1)
where
mar
sir{c—(x—xl) for q=s
1
U?m(X)= mar (2
cog—(x—x,)| for g=p,
C1
ArsiMumi(y+h)]  for g=s
Amcoiﬂml(ydl'h)] for a=p,
sin for g=s
U (X) = : (4)
2m {mwx
co for q=p,
Co
ng(y)=[a?nsin(um2y)+bﬁ]cos{,umzy)], gq=s,p, ( )
5
2 m 2
kz—[m} if k2>[—w}
Cj Cj
2 (6)

mar

j

Mmj= . mar . ,
| C_ —k2 if ko<

J

k=|k|=w/c, and A%, a% andbd are unknown complex
m m m

amplitudes. Notice thanl-so(x)zo, and then the sum in Eq.

(1) starts fromm=1 in the s case. The functions{ ,(x)
satisfy the appropriate boundary conditionsxatx; and at
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fg(x,y)=J R a)e @A g, @)
where
JkZi=a? if K®>a?
= 8
B iva?—K? if k?’<a?, ®

andR % «) is an unknown function.

To solve the problem, the fields in regions 1 and 2 are
matched at the interface= —h, and the fields in regions 2
and 3 are matched gt=0. This generates fourdependent
equations for each polarization, that are projected in conve-
nient basesfor the explicit form of these equations, see Ap-

endix A). Then, after several substitutions, we obtain a ho-

ogeneous matrix equation for the vector of modal
amplitudesAY (q=s,p):

M9A9=0, g=s,p. (9)

The explicit expressions of the matrix elements are given in
Appendix B. The final equation can be obtained in many dif-
ferent ways. For instance, we could have derived a matrix
equation for the amplitudes in the neck of the groayeor
by . However, since we are interested in finding the wave-
lengths at which the field within the widest part of the cavity
is enhanced, it is convenient to express all the unknowns in
terms of the modal amplitudes in region 1, to obtain &x.
Then the resonant wavelengths of the groavgd are those
at which the determinant of the matriM® vanishes. Or,
conversely, for a fixed wavelength the resonant depthere
those at which the determinant vanishes. The solutions of
defM9]=0 are complex: the real part is associated with the
resonant parametéwavelength, depth whereas the imagi-
nary part is related to the quality of the resonance. To find
the resonant values we have numerically evaluated the func-
tion |defM9]| ~2, and, then, plotting this function against the
corresponding variable, we find peaks centered at the real
parts of the resonant valug$4,15,7.

Ill. SCATTERING PROBLEM

The resonant effects occuring in a single cavity are ex-
pected to show up somehow in the scattering pattern of a
surface with one or more identical grooves. Then we solved
the scattering problem of a surface with a finite number of
bottle-shaped grooves illuminated by a limited beam, and
also the diffraction problem of a plane wave incident upon
an infinite grating. These situations are considered in Secs.
A and Il B.

A. Finite grating
The scattering problem from a perfectly conducting sur-

X=X+ ¢y, the functionsu3; (x) satisfy the boundary condi- face withN localized bottle-shaped cavities is solved by the

tions atx=0 and atx=c,, and the functions {,(y) satisfy

modal approach9]. We consider the general case where the

the boundary condition at=—h, according to the case of widthsc, andc, and the depthk; andh, of each cavity can
polarization. Since we are interested in finding the surfacerary. The procedure to find the solution is essentially the
shape resonances, the total field in region 3 is an outgoingame as that used for the homogeneous problem, but in this
field, and can be represented by a continuum of outgoingase it is necessary to find the field expansions in each one of
plane waves, the cavities. Then the fields in regions 1 and 2 are written as
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S | X—X| . Bn=k cosb,=k?—a?. (16)
Hooy)= 2 ubhoowh(yrect ——= |, j=1.2 _ N . _
m=0 Y Now we proceed as in the finite grating problem, but using

(10

where the explicit expressions of the functianﬁq(x) and

wﬂi](y) are given in Appendix C. In region 3, the total field is
the sum of the incident field—a limited Gaussian beam—and

the scattered field given by E7):

k _ - A

fg(X,y)zf A(a)e'(“x_ﬁy)da+f RQ(a,)el(axﬂ;y)da,
—k e

11

where

— w Z(W)Z H b
A(a)—mex —(a—ap) > exdi(a—ag)b],
(12

13

w is the spatial width of the bearyy is thex coordinate on

Eqg. (14) instead of Eq(11). In the infinite grating case we
are interested in calculating the efficiencies of the diffraction
orders, which are given by

en:|Rﬁ|zﬂn/B0a (17)

so we derive a matrix equation for the Rayleigh amplitudes
RY. Combining the equations that result from appropriate
projections of the boundary conditions, we obtain a matrix
equationM 9R9=V49, The matrix and the independent vector

elements for both polarizations are given in Appendix E.

IV. RESULTS AND DISCUSSION

As stated above, the purpose of this paper is to study the
resonant behavior of bottle-shaped cavities, and its influence
in the scattering patterns produced by a surface with Npe,
or infinite identical cavities. In a previous paper we provided
numerical evidence of a resonant enhancement of the field
within a groove of this shapg@]. We found that for a surface
with one groove, the curves of intensity scattered in the
specular direction vs wavelength exhibit dips at certain

the surface where the center of the beam impinges upon thgayelengths for both polarization modes. These wavelengths

structure, B8 is defined in Eq. (8), ap=ksinf,, Bo

were associated with the resonant wavelengths of the cavity,

=k cosfp, and 6, is the angle of incidence measured from gjnce a strong enhacement of the field within the groove was

the normal to the mean surface.
We discretize and truncate the integrals in Ebl), and

found at those wavelengths. In addition, the calculated val-
ues are in agreement with the limit case of a rectangular

proceed as in Sec. Il to obtain, in this case, an inhomogeyayveguide. However, no independent calculation had been
neous matrix equa“on. HOWeVer, Since we are n0W|ntereStegone for this particu|ar prof”e to prove that these wave-

in calculating the scattered intensity which is proportional t0jengths correspond to surface shape resonances, i.e., to reso-
|R9(an)|?, it is more convenient to derive a matrix equation nances associated with a local perturbation on an otherwise

for the unknown Rayleigh amplitude® 9(a,,) =R I rather

than for the coefficientd . Then we combine the equations

planar surface.
In Sec. IV A we give some numerical examples that show

resulting from the projections of the boundary conditions inthe surface shape resonant modes in the structure of Fig. 1,
such a way to obtaivM 9R 9=V9. The matrix and the inde- for both polarizations. Then, in Sec. IV B we show that those
pendent vector elements ferand p polarizations are given modes become apparent in the far field scattered from finite

in Appendix D.

B. Infinite grating

and infinite gratings made of identical cavities.

A. Eigenmodes of the cavity

Due to the pseudoperiodicity condition, the solution of the  As explained in Sec. I, to find the resonant wavelengths
infinite grating problem is reduced to the solution of theof an open cavity implies finding the zeros of the equation
problem in a single period) of the grating only, in which defM%]=0. However, instead of dealing with the some-
we have a bottle-shaped cavity. The space is divided into thémes difficult task of finding the complex roots of a complex

same three regions described in Fig. 1. In regions 1 and 2 wdeterminant,

another way of locating the resonant

keep the same expressions of the field inside the cavity usqehrameters—already used for other profiles of the surface in
in Sec. lI[Eqg. (1)], but in region 3 we express the total field Refs.[14,15,7 is used here. It consists in evaluating numeri-
as the sum of the incident plane wave plus the field diffractedally the function|defM9\,h)]| 2, and the plot of this

in the directions given by the grating equation,

©

fixy)=elerfns > Riglewim, (14
n=—ow
where ay and 8, are defined in Sec. Il A,
. 2
apn=Kksin6,=ap+n— (15

d

and

function versus the real part of the resonant wavelefigth
the resonant depticonsists of a series of Lorentzian peaks
of the form

|[defMA(h)]| 2~ (18

[(h—hg)2+h?]’

whereh=hg+ih, is the complex root of dgM9(h)].

In Figs. 2—5 we plotdefMY]| 2 versus the depth, of
the cavity, for a fixed wavelength. To check the validity of
the results we first considered the case of a cavity with a
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FIG. 2. |det(M®)| 2 as a function of the depth, /\ for a bottle-shaped cavity df;=0.%h ands polarization:(a) ¢c;=0.828\ andc,
=0.092\, (b) c;=1.764 andc,=0.196\ (m=1), and(c) c;=1.76A andc,=0.196\ (m=2).

narrow neck, so as to simulate the limit case of a rectangulai= 10h,/9, we observe three well-defined peaks in the range
waveguide of depth (Figs. 2 and R Figure 2 corresponds of h; considered. These peaks are located very close to the

to s polarization, and Fig. 3 t@ polarization. In Fig. 2a), resonant depths of a rectangular waveguide, which are given
corresponding to a cavity with; =0.828\, ¢c,=0.092, and by
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FIG. 3. |det(MP)|~2 as a function of the depth,/\ for a bottle-shaped cavity di;=0.%h and p polarization.c;=0.828\ andc,
=0.092.

h, n first mode in the modal expansion, we obtain the curve in
B — (19 Fig. 2(b), which exhibits peaks associated with the resonant
A mx | 2 values ofh; corresponding ton=1 in Eq.(19). However, if
4- c_) we keep two or more modes in the representation, we obtain
1

the curve in Fig. &), which in addition to the peaks in Fig.
2(b) has new peaks corresponding to resonant depths of the
whose first three real valuggorresponding tan=1) are  second mode. The resonant value ptorresponding to the
h;/N=0.625, 1.254, and 1.876. We considered only eigenrectangular waveguide of these parameters were calculated
modes withm=1, since the geometry of this cavity is such using Eq.(19), and are listed in Table I. It can be noted from
that there is only one real value pf;, (which corresponds to a comparison of Table | with the plot in Fig(d that the
m=1) and the other values qf,, (with m>1) are purely positions of the peaks agree very well with the predicted
imaginary. Then, the main contribution to the field inside thelimit values. Forp polarization(Fig. 3) we consider a cavity
cavity comes from the first mode in the modal representationvith the same parameters as those in Fig).2However,

(1). Consequently, the curves obtained using only the firssince the term witm=0 in Eq. (1) gives a nonzero contri-
mode or using several modes have exactly the same peaks, agion to the field inside the cavity, and it is in fact the
expected. In the case considered in Figd) 2ind Zc), the  fundamental mode of the cavity, in tipecase there are two
wavelength was decreased so as to have two real values @fal values ofu,,. Hence we must consider at least the first
Mm, and then the parameters of the groove arg two terms in the modal expansion to perform the curve in
=1.764\, c,=0.196\, andh=10h,/9. If we only keep the Fig. 3, where it is easy to associate the peaks with the dif-
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FIG. 4. |det(M®)|2 as a function of the depth, /\ for a bottle-shaped cavity di;=0.% ands polarization.c;=0.828 andc,
=0.368\.
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FIG. 5. |det(MP)| 2 as a function of the depth, /\ for a bottle-shaped cavity df;=0.%h andp polarization:(a) ¢c;=0.828\ andc,

=0.368\, and(b) c;=0.828\ andc,=0.552\.

ferent resonant values correspondingrts 0 and 1, by com-
paring their positions with the limit values listed in Table II.
In Fig. 4 we consider a cavity with a wider nec&;
=0.828 andc,=0.368\, for s polarization. It can be no-
ticed that now the peaks are wider than those in Fi@),2

TABLE I. Resonant values of the deplii\ for a rectangular

waveguide of widthc/A=1.764 ins polarization.

njm 1 2
1 0.519 0.605
2 1.041 1.211
3 1.562 1.819
4 2.084 2.425
5 2.605 3.033
6 3.127 3.639
7 3.649 4.247
8 4.170 4.852
9 4.692 5.460
10 5.196 6.066

indicating that the quality factors of these resonances are
smaller. The same cavity but in thpecase is considered in
Fig. 5(a), where the peaks corresponding to the modes with
m=0 and 1 are identified. These peaks are also wider than
those in Fig. 3, and for a cavity witb,=0.552\ the peaks
become even widefsee Fig. ¥)]. The positions of the
peaks also change if the width is changed, and sometimes
two peaks can merge one into the other, forming only one
peak, as can be observed in Figb§k near h;/A~1.9.

TABLE Il. Resonant values of the deptiix for a rectangular
waveguide of widthc/\ =0.828 inp polarization.

njm 0 1
1 0.5 0.627
2 1.0 1.254
3 15 1.881
4 2.0 2.509
5 2.5 3.136
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FIG. 6. Intensity scattered in the specular directiéR {(«o)|?) as a function of the depth, /\, for a normally incidents-polarized
Gaussian beam of widtlv=9.2\ illuminating a surface with a single groove of=0.828\, ¢c,=0.368, andh,;=0.%.

B. Scattering from finite and infinite gratings From the comparison of Figs. 6 and 7 with Figs. 4 and 5,

In the following figures we illustrate the effects produced Ve conclude that the occurrence of dips in the field intensity

by the surface shape resonances in the scattering pattefRecularly reflected from finite gratings made of bottle-
from finite and infinite gratings. In Fig. 6 we consider an shaped grooves is intimately connected with the excitation of

polarized Gaussian beam of width=9.2\ normally inci-  surface shape resonances inside the cavities. This result and a
dent on a surface with a single cavity of=0.828\, c,  Similar result obtained for cavities with circular cross section
=0.368\, andh;=0.%h. The plot of specularly reflected in- [16], suggest that this effect appears whenever the profile of
tensity versus, /\ exhibits three dips at positions very close the groove is double valued. In such cases, at certain wave-
to those corresponding to the peaks in Fig. 4. This fact suglengths the electromagnetic field couples to the eigenmodes
gests that in resonant conditions the power scattered out of the cavity and produces a spreading out of the reflected
the specular direction increases. For the parameters chosenpgawer. The existence of dips in the intensity reflected in the
this example, the main contribution to the field inside thespecular directior(in the examples presented this direction
cavity comes from the first mode, which is an even modegoincides with the normal directiprat the surface shape
and then the effects of the resonant behavior of the surfacesonances of the structure is consistent with the results and
can be observed for normal incidence, i.e., for a symmetrieliscussion in Ref.7]. In that paper the authors show that the
configuration. If the number of cavities in the surface is in-differential reflection coefficienfDRC) for scattering angles
creased, the dips become more pronounced but stay at tifier from the speculaexhibit dips at certain wavelengths at
same positiongnot shown. Thep case is considered in Fig. which the perfect conductor boundary conditions are almost
7, where we plot the specularly reflected intensity versusestored at the top of the surface. These minima should not
h,/\ for a surface with cavities of the same parameters abe attributed to the excitation of surface shape resonances.
those in Fig. 6. We consider the particular case where all thélowever, it was shown in Fig. 3 of R€f7] that for scatter-
cavities are identical and equally spaced, the distance béag angles close to the specular direction the dips found in
tween their centers beind=0.92\. Comparing Figs. @  the DRC are associated with surface shape resonances, as
and Fa), it can be noted that the position of the dips coincidepredicted by the results of the homogeneous problem.

with the peaks identified with thex=0 mode in Fig. Ba). The last set of figures illustrates the effects produced by
As stated above, an increase in the number of grooves maké#3e resonant behavior of the cavities in the efficiency distri-
the dips deeper, but the position is not altered. Since thbution of an infinite grating made of bottle-shaped grooves.
normal illumination imposes the symmetry on the fields,In Fig. 8@ we consider an infinite grating af,/d=0.9,

only the even modes are excited in this situation. Howeverg,/d=0.4, \/d=1.0871, anch;=0.%, whered is the grat-

the second modéwhich is an odd modealso contributes ing period, illuminated by as-polarized plane wave incident
significantly to the field inside the cavity, but its effects in with an anglefd,=45°. It can be noted that the efficiency of
the reflected intensity can only be appreciated by means dhe zero order has miniménd the efficiency of the-1

an obligue illumination. In Fig. (b) we plot the intensity order has maximaat the depths predicted by the peaks in
reflected in the specular direction for a beam impinging uporFig. 4. Even though the power conservation law imposes that
the surface with an anglé,=45°. In this case, not only the the sum of the reflected efficiencies be 1, the distribution of
dips corresponding to the even modes but also the res@nergy among the diffraction ordefis this case only the 0
nances associated with the made=1 appear as sharp and and—1 are propagating ordgreeveals a strong dependence
well-defined dips, located at the positions of the peaks in Figon the surface shape resonances. The behavior of the infinite
5(a). These resonances seem to be more sensitive to a smghliating is in agreement with that observed for a surface with
change inh4, and have better quality. a single groove and normal inciden@&g. 6), which shows
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FIG. 7. Intensity scattered in the specular directifR ¥(a,)|2) as a function of the depth, /\, for an incidentp-polarized Gaussian
beam of widthw=29.2\ illuminating different surfaces with one, two, three, and four cavities;6f0.828., ¢,=0.368\, andh;=0.%,
separated a distanee=0.92\: (8) 6,=0°, and(b) 6,=45° (for a surface with a single cavity

that the resonant depths do not depend on the angle of inctiency curve, as required by the perfect conductor boundary
dence, as expected. In Figb3 which corresponds to a grat- conditions.

ing with the same parameters as in Figg)&ut with a nar- The results in Figs. 8 and 9 confirm that the distribution of

rower mouse of the cavitiescf/d=0.1), the effect of a reflected power is significantly modified at the resonant

resonant depth is clearly present in the O order efficiencyvavelengths of the cavity, even for infinite gratings. The

curve ath; /d=0.68, where the curve in Fig(@ has a peak. anomalies in the reflected efficiency could be used to detect

8(a), the effect in the efficiency curve is more localized. In
Fig. 9 we show efficiency curves for the same grating of Fig.
8(a) but underp-polarized illumination. According to what
was observed for the finite gratingig. 7(b)], the efficiency In this paper we have calculated the surface shape reso-
reflected in the specular directi¢arder O has minima at the nances associated with a bottle-shaped cavity on a perfectly
resonant depthEFig. (a)]. These minima are zeros for the conducting plane for botls and p polarizations. We used a
resonances corresponding o=0, showing that for these modal approach to solve the homogeneous problem as well
resonant depths there is no energy reflected in the speculas to solve the scattering problem from finite and infinite
direction and all the power goes into the only other directiongratings. We found the resonant wavelengthisdepth$ of
allowed: the—1 order. However, then=1 resonances ap- the cavity by numerically evaluating the determinant of the
pear as sharper peaks revealing a more sensitive phenomeattering matrix. We checked the resonant depths by com-
enon[see Fig. ®)]. The minima in the zero order efficiency paring them in the limit case of a rectangular waveguide, and
curve are compensated for by maxima in thé order effi-  obtained a very good agreement between them. It was shown

V. CONCLUSION
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FIG. 8. Efficiency of the zero ane 1 diffraction orders as a function of the degth/d, from an infinite grating with a bottle-shaped
cavity in a periodc;=0.9d, A\ =1.087155748, h;=0.%, 6,=45°, ands polarization.(a) c,=0.4d. (b) c,=0.1d.

that the intensity scattered from a finite grating exhibits dips APPENDIX A: PROJECTED EQUATIONS
at the resonant depths of the cavity. Examples revealing the FOR BOTH POLARIZATIONS
excitation of even and odd modes have been addressed. We
also investigated the influence of the resonant excitation on
the efficiencies of an infinitely periodic grating, and found

s polarization

that at the resonant depths the distribution of efficiencies is s . C; — s s .

significantly modified. The examples presented in this paper Am S'Wﬂmlhl)jznzl Iaml —@n Sin(n2hy)
exhibit polarization dependent features that could be attrac- -

tive in several applications such as filters and polarizers. + b} coq mnoh)1, (A1)

From a theoretical point of view, this study also constitutes a
first step in the investigation of the possibility of exciting
s-polarized surface waves in metallic infinite gratings, which
will be the subject of future research.

[

o ¢
nzl Aﬁ:““nlcos(lu«nlhl) I ﬁwn:EMmZ[a; €O umahy)
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FIG. 9. Efficiency of the diffraction orders as a function of the delpitid, from an infinite grating with a bottle-shaped cavity in a
period.c;=0.9d, ¢c,=0.4d, A=1.087155748, h;=0.%, 6,=45°, andp polarization.(a) order 0.(b) order —1.

[

[ Cy
If BR(Q)J;(Q)da:MmZa’S“E’ (Ad) 7APnSin(Mmlhl):U~m1Clm:z I hmitnal @f COS 1n2hs)
- n=0
where +bfi sin(un2hy) ], (A7)
c nmX mar p | —aP gj
ﬁm:f ZSi ——|sin —(x—xy) |dx (A5) ngo An Coiﬂnlhl)lmn CZm[ amsm(:“mZhZ)
0 Ca C1
+bpcog umhz)],  (A8)
and
o [nmx] 2mi BR(@)= 2, ahunadf(~ @), (A9)
Jﬁ(a):f Si exp(i ax)dx. (AB)
0 C2
L f R(a)IP(a)da=bPcom, (A10)
p polarization —
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where
C2 nmxX m
|ﬁm:f COS{— cos{—(x—xl) dx, (Al1)
0 C2 C1
C2 nmXx .
Jﬁ(a)=f cos{ exp(iax)dx (A12)
0
and
Cj if m=0
Cm=lcr2 it meo 1TF (A13)

APPENDIX B: EXPLICIT EXPRESSIONS
OF THE MATRIX ELEMENTS IN EQ. (9)

s polarization

M= Mnlcos{ﬂnlhl)jzl Ijsnkgl (Bs)l:jlqzl Cak am

c
5 SiN pa1) S, (BY)
where
S C2 S .
Bkj:Msz[AkJ cog upohy) +sin( uohy) 61, (B2)
Ckj= — A% Sin( izh) + cod wyoh) 8 (B3)
and
ARi=— _— cf BI(@)I(—a)da (B4)

p polarization

MB=cos mnthy) 2 15,2 (BP)" X gzl §uChi
j=0 k=0 q=0
+ m1Cim SIN(m1N1) Smn, (B5)
BR;j= Caul AL COS iohp) — sin(uiohy) 61, (B6)
CR;=AR; sin( uzhy) + cog wyohy) y; (B7)
and

AP.— Mij2
A= 27ic,

(64 p (64 .
fﬁJ(m )d (B8)
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APPENDIX C: MODAL FUNCTIONS
IN REGIONS 1 AND 2

m
sin—lﬂ(x—x'l) for g=s
Cy
udm()= - (CY
a
cos{—l(x—x'l) for q=p,
Cy
“ ) Anmsinl wm(y+h)]  for g=s -
W e
imY) = AR cog uhy(y+h)] for q=p,
m
sin{—lw(x—x'z) for q=s
C2
Udm(X) = - (C3
v
coz{—l(x—x'z) for g=p,
C2
Win(y) =[af Sin say) + b COK ) 1, q=s,p(, )
C4
m 2 m7T2
ar
R I
- i I (C5)
’umj m77'2 m71'2
i | ki<
C| o
1 0O<s<1
rects)= 0 otherwise. (C6)

A% ad, andb? are the unknown modal amplitudes, the
superscript denotes the groove, anq andx'2 are the start-
ing x coordinates of the lower and upper parts of tiie
groove, respectively.

APPENDIX D: MATRIX AND INDEPENDENT VECTOR
ELEMENTS FOR THE FINITE GRATING PROBLEM

) e'(an ap)x, * 0~ 1 | |
mn=iAaB, >, — > > N an)* I ()
=1 c, K=17=1 pyo
X[(P)1Q k= mSmn, (D1)
N |(an am)xz

v;ziAanZl B A 2

><E E —JS'<am)*

=1j= 1Mk2

+ 7 Ay, (D2)

I (an) (P 7MQ] i

=—Aa2 '<“n—“m>X22 2 ”‘2J9'< W* I (a)
k

2
X[(Ppl)ilQpl]jk"'27Ti,8m5mnv (D3)
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* N | andJE'(an) are defined in EqgA6) and(A12) by substitut-
V?n:AanZl Anz,l gl(an—amx ing ¢, by c.
> 2 2 Jpl(am)*J (@) [(PP)"1QP']; APPENDIX E: MATRIX AND INDEPENDENT

VECTOR ELEMENTS FOR THE INFINITE

. GRATING PROBLEM
+ 271 BnAm. (D4)
s polarization
where A,,= A(ap),

4 COM 1) COS iy h) 2 @ < B
PR=3 — D Dik e 2 S I ) I ) (PO 1QY) o= b,
m=1 C1Co/{2C09 1j2h3) 2 k=1[=1 M2 o
—tan(uj,h,) Sik (D5)
 4ulcot i hy)sin(ulohy) 2B w w 1 B
Q= M I TP TR 2 el DSk 6 Vam o 2 2 Y lam R ao) (POTIQ
m=1 C1Co/j5C08 johy) S
(D6) +dé,p. (E2)
P_pk|:_§ iz COY 1h1) CO i o) DP DP!, .
m m
T clchphcos s P polarizaion
+tan( o) Sy (D7) .
_ Mhn= 2 2 IP(am)* IR (PP 71QP)
ol Mz €O g 1) SIN i 5N) bl pl M k=0 j= k e
Qjk= 0 | Dm Dkt S - )
m=0  C3CojMUm1COS 1j2h2) —iBmdSmn, (E3)
(D8)
L ]7T _' mar cz )
D = sz+czsm —(x—x5) | sin — (x—x}) [dx, pP—_ Ki2 p (M-10Pp).
L N e e et Va=— 2 2 o Wam* a0 (PO Q0
(D9)

—iBodbmo, (E4

pl X+ i | - mw |
Dmi= |, cog —(X—Xz) |cO —|(X_X1) dx, ] i
Xb | Co ] () where the matriceP? andQY are given by Eqs(D5), (D6),

(D10) (D7), and(D8) by suppressing the superscrlipt
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