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Asymptotic analysis of axisymmetric drop spreading
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We study in this paper the time evolution of the spreading process of a small drop in contact with a flat dry
surface, using asymptotic techniques. We reduced the problem by solving a quasisteady self-similar macro-
scopic problem and matched with the precursor region solution, where the van der Waals forces are important.
A final nonlinear third-order ordinary differential equation has been solved numerically using shooting meth-
ods based on the fourth-order Runge-Kutta techniques. We obtained how the capillary number changes when
the drop size decreases with time. The evolution process then diverges slightly from that obtained using the
spherical cap approximation. The influence of gravity is also considered for both hanging and sitting drops.
[S1063-651%98)09409-4

PACS numbeis): 47.15.Gf, 47.55.Dz, 68.10.Cr

. INTRODUCTION thickness of the fluid drop. It follows thajuv/o=Ca
~(h/R)3~ 6°. Here ¢ is the angle of the surface profile as-
The spreading process of relatively small drops over aumed to be very small compared with unity and Ca is the
solid surface is very important from both the practical asusual capillary number. This is the so-called Tanner’s law
well as the theoretical points of vieM]. Many experimental [7,9,10 written as §=C;Ca®, where C; is the Tanner's
works have been published in the literature in the past thregonstant. Replacing by dR/dt andh by V/C,R? whereV
decades. General reviews in this subject can be found elsg the volume of the drop an@, a constant of order unity,
where[2,3]. Most experiments have been made with wettingwe obtain from Tanner’s law a first order ordinary differen-
fluids, i.e., with a positive spreading parame®+oss tial equation for R(t), which gives the well known
—os —0>0, whereosg, og., and o are the solid-gas, asymptotic behavioR~t¥1° for t—o. However, the con-
solid-liquid, and liquid-gas free energy per unit area, respecstantCy is not universal and depends globally on the specific
tively. o is also called the surface tension. In most of theproblem[11]. Friz [12] obtained values fo€+ close to 3.4,
experiments, the drop radilg(t) is measured using photo- Chen and Wad#13] obtained values fo€; close to 3.6,
lithographic techniques, while in others the authors used inwhile Diez et al. [5] obtained values around 3.8. Kalliadasis
terferometers. Experimentally it is found that the drop radiusand Chand14] obtained a value of 7.48 for the case of an
increases with time in the forlR~ Ct™, where different val-  advancing gas-liquid meniscus. Although Tanner's law is
ues form (close to 0.1) have been dedudeld-6]. Using a  universal, the constant depends strongly on the physical con-
carefully designed experimental setup, Tanfigrobtained figuration. Therefore the value of the constant obtained for
for silicon oils, m=0.105. For small drops where gravity is the drop spreadclose to 3 is very different from that ob-
not relevant, the macroscopic shape of the drop is found teained for an advancing meniscus. We anticipate here that
be very close to a spherical cdf]. However, this small our problem has an inflection point close to the edge of the
difference between the real shape and the spherical cap d#op, which does not appear in the configuration studied in
very important in determining the time evolution of the drop[14]. In the case of a spreading drop, the macroscopic region
spread. Even with small drops, gravity effects tend to bés governed by a nonlinear third order differential equation
important as the drop radius increases with time. while in the meniscus problem the macroscopic problem is
Another controversial issue in this problem is related withrepresented by an algebraic equation. In this paper we show
the constantC. Using very simple arguments assuming ahow C; depends on the ratio of the van der Waals influence
small drop shape as a spherical cap, it is possible to derive|angtha to be defined later to the actual drop size. Due to the
very simple theory for the spreading procé8k The surface changing drop size with timeC also changes with time,
tension generated pressure gradient must be balanced by thdifying the drop size evolution.
viscous force, i.e.uv/h?~oh/R3, wherepu is the viscosity From the analytical point of view, the spreading process
of the fluid, v is the radial velocity of the fluid, and is the  including the disjoining pressure effectsan der Waals
force9 has been studied by Stareval.[15] and Chebbi and
Selim [16]. They used a quasisteady similarity solution.
*Author to whom correspondence should be addressed. Starov employed the spherical cap approximation while
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Chebbi and Selim obtained numerically the appropriate drof=B,F2, with B, being the corresponding value at tirhe
shape. In both cases, matching conditions are assumed to k€0. In nondimensional form, the radial averaged velocity is
at the inflection point. Gravity effects have not been includedhen

in the above-mentioned works. Brenner and BertqZ4i|

studied the stability of the quasisteady solution, deducing a 3u/ RoF |3 , 0[PP 1d¢
simple criterion for the transition to gravity induced spread, Kr__< %) v= an FJF; an Be|. (9
using the experimental data obtained []. Lopez et al. n

[17], Ehrhard[18], Voinov [20] and Chebbi and Selifl9] At the macroscopic edge of the drop, the nondimensional
studied the spreading process with gravity. The disjoining g velocityK =K; is therefore

pressure effects were not considered here.

The main purpose of this paper is to obtain the time evo- F\3dF
lution of the drop radius and the consta®y for the para- KZ(E) =
metric set of interest, retaining the disjoining pressure and
gravity effects.

oa

dF | L0 [Pe 1 )
dr |IT1{¢ &77((9772 7 dn BéJ| ©

n

where K is related to the usual capillary number I

=3Ca(R,/Hy)3, with Ca=v;u/o. The total volume of the

drop that remains invariant during the spreading process is
Using the lubrication approximation, the equation for thewritten as

evolution of a free surface of a fluid under gravity and cap-

. . . 1
illary forces is given by 8] V=27R2HF2GI  with |:f bndy. @
0
oh  1d|lo sa(az_h 1h @& pgh)

IIl. FORMULATION

gt roar a2 rar p o

—r _

3 ar To solve Eq(4) with the corresponding boundary and initial

conditions, we divide the problem in a macroscofsiorface

for O<r<R(t), (1)  tension— viscous-gravilyregion whered/e>1, and a thin

region of ordere close to the edge of the drop, {1y)~«,

wherer is the radial coordinate for the assumed axisym-where the effect of the van der Waals forces must be consid-
metrical drop,p is the fluid densityg is the gravity accel- ered in the analysis. Due to the disparity in the two spatial
eration,a= /|A|/6m is the characteristic length of the non- scales,—0, the solution in both regions is to be obtained
retarded van der Waals force, which is only a fraction of anand properly matched.
angstrom andh is the Hamaker constant, which is negative
for a wetting liquid. A positive value of indicates that the A. Macroscopic region[(1— n)>¢)]
spreading process is taking place over the solid surface.
Within this formulation, the averaged radial fluid velocity is
then given by

Assuming a quasisteady self-similar solution to the mac-
roscopic problemwhere the effect of the van der Waals
forces can be neglectedp= ¢(7), from the overall volume

o a(azh 1 9h pgh) conservation(7) it follows that F’G=1 andV=27R3H,I.

v(r,t)==—h?>— (2) In this case, the macroscopic equatidi reduces to

3u dr\gr2 roor o

2
We introduce the following nondimensional variables: E i 7 31 d_¢ + E d_¢ -Bo | |— K( 2¢+ nd_¢) =0,
ndn dn\d»? mdy dn

h r o H3 (8
T €)

¢_ 3 77: 3 =5 —iL
H(7) R(7) 3p R§ to be solved with the boundary conditions
whereH=HG(7) andR=RyF(7) are the thickness at the do| d%¢
center of the drop and the macroscopic radius of the drop, $(1)—0, ¢(0)—1= Il ~ s =0. 9
with Hy and Ry being the corresponding values at tirhe Mo dn’[,
=0. Using these nondimensional variables, the evolution ) )
equation(1) then transforms to A first integration of Eq(8) gives
F\4/a(¢G) G d¢ dF d[d’¢ 1d¢
s\ = E Sl 2t g, B¢
G T F'onpdr dn\dym? ndy
19 d(d?p 1ap &2 1 (7 do
=———|n¢*—| —+—-—+—=-B . 4 =K—f (2 +s—)sd9K , 10
n&nmban(anz pant g B @ o3 ). 26755 7 (10

wheree is the ratio of the van der Waals length to the size ofto be solved with the first three boundary conditions in Eq.
the drop,s=¢gqF/G?, which is assumed to be very small (9). From Eq.(5) it follows that the averaged radial velocity
compared with unity, withs;=aR,/H2 being its value at related to its value at the edge drop increases linearly with
time t=0. B=pgR?/ o corresponds to the Bond number, the radial coordinatek, =K 5. There is a family of solutions
which relates the gravity to the surface tension forces. Herdpr any value oK (B, ). However, there is only one value of
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K that satisfies the additional boundary condition arising o8sf & o g
from matching with the inner solution of the precursor re- g-gg;
gion. This in fact represents a well posed eigenvalue prob- 575t
lem. 065F _ o p_.
0.60 | = B=5
055F —*— =
B. Inner or precursor region [(1—#5)~¢] 050F _—a _
K 045F
At the edge of the drop, wherg is of ordere, there is a 0.40 |
very thin region with (1 #) ~ &, where the nonretarded van 0.35
der Waals forces cannot be neglected. We introduce for this g:gg b A/‘/ /./ /:
region the following inner variables of order unity: 0.20 k" - " g
05— " :
¥ .
Kl/3¢ K2/3(7]_1) 010 L L 1 L "
y= and Xx=———— (11 10-10 10-9 10-8 10-7 106 105 10-4
31/28 31/28
£
The inner equation takes the universal form FIG. 1. EigenvalueK as a function ofe for three different
values of the reduced Bond numb@&s.
y' . :
y?y"—=—1=0. (120  —. We used a step size af»p= 1010 for the macroscopic
y region andAx= 102 for the inner region.

Figure 1 shows the eigenvalue or reduced capillary num-
ber K, as a function ofe, for three different values of the
(13) reduced Bond numbeB*. Note the very weak dependence
with ¢, doubling the value oK in four decades iz . Due to

. . . — 5 — 2 H
in order to assure that in the precursor fifm:0 asx—o. In  the fact thate=goF>(7) and B=B,F", thenK is also a

terms of the outer variables, this matching condition transfunction of time. The lower curve, represented by solid
forms to squares, corresponds to the case of a spreading hanging drop

with B* = —5, while the upper curve, represented by solid

s triangles, corresponds to the case Bf=5. The middle
curve neglects the effect of gravity. In this figure it is shown
how gravity enhances the spreading rate over a solid. Figure
2 shows the volume integrdl as a function ofe, obtained
numerically. ForB=0, we can see thdt is almost a con-
stant, changing only in the third digit aschanges in four
Hl. RESULTS decades. The value dfis very close to 0.25, which repre-
sents the shape of a spherical cap. A similar behavior for
B* #0 is obtained. Therefore, in both cases, it shows #hat

epends mainly om with d¢/dr— 0, thus justifying a qua-

Herey’ =dy/dx. Matching requires thdtl]

y——x[3In(=x)]*® for x— —oo,

d~K¥3(1—2)[31In

K31 77))
J3e

for 1>(1—7n)>e. (14

Due to the appropriate matching condition, Etg4), we
note that the eigenvalu¢ depends oz andB and is there-

fore a function of time, because the thickness of the drop'. tead if-simil lution to th . b
related to the van der Waals length decreases with times'> eady sefi-similar solution to thé macroscopic E8). by

However, this relationship is weak as we show below. Weneglectingadﬂar in Eq. (4). ForB* <1, we use the fact that

transform Eq.(10) to a parameter-free nonlinear equation ® ¢&n be written by the spherical cap shape plus a small
given by perturbation in the fornj20]

0.266 T . . . .
d(d?¢ 1d¢ 0.264 | a4
2— 2 += -B* ¢ = gl (15) 8%2(23 ;/A/‘/A/A

dfl dgz ¢ d¢ 0.258 |

¢

0.256 = =0
, , 0.254 A =5

wheref=K4y andB* is a reduced Bond number given by 0252} .
B* =B/K¥2. The boundary conditions now take the form ok

| 0246 —_— ]
d¢

0.244
P(KYH—0, ¢(0)—1=—

0.242
=0 16
ac |, (16) 0.240

0.238

|
_/

0.236
together with the matching conditidd4). We integrate nu- giggg
merically Egs.(15) and (16) using a fourth-order Runge- 0230 e o a0
Kutta equation with an initial guess aP¢/dZ?|, until the
matching condition is fulfilled. Instead of using matching
condition (14), we continued the numerical integration into  F|G. 2. Integrall as a function of for three different values of
the inner region given by Eq12), as the macroscopic value B*, using the numerical approa¢solid symbols and the approxi-
of ¢ reached 108. The appropriate solution is obtained as mation given by Eq(20). The spherical cap solution is also plotted

we get the final condition in the precursor filyjy—0 for x  for comparison.

|

£
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FIG. 3. Normalized drop shapeé(#) for e=10"1° for three
different values oB*.

¢~1=7?+Kgy(n)+B*go(K, )+ - -, 17

with g,~1 andg;<1, but |d™g,/d»™| for m=1, could
have values very large compared with unity. Hegg(i
=1,2) vanishes ay=0 and »=1. Neglecting the effect of
gi(n) in ¢? in Eq. (10), we obtain a very good approxima-
tive solution forg; as

1 jnln(l—sz)d w 18
9==gl ), s 9t 7) (18)
I R Pt P | S
92=77 ' 76 4 4"
(19
with
21[ (u win(1—s?)
L(7])=J — J w J —— ds|dw|du.
oUl Jo 0

However, with this approximation we are still unable to ob-
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FIG. 4. Normalized macroscopic drop gradigri/ d» obtained
at the inflection pointcircle) and close to the walltriangle. At the
inflection point the approximative solution obtained from ELj?)
is plotted:(a) B* =0 and(b) B* #0.

existence of two different macroscopic apparent contact
angles. Figure @) shows these gradients for the case of

tain in closed form the appropriate matching condition withV2nishing gravity. The solution for the gradient ¢fat the

the inner region, because we cannot neglect the effegj of
in ¢? close to the edge of the drop. Close#e-1, 1— 7
~2(1-7), while g;~(1—»)In(1—7). Nevertheless, we
can extract useful information within this approximation. For
B=0, the integral can be solved in closed form as

1
|= f $ndy=0.25-0.0110%, (20)
0

which is also plotted in Fig. 2. This approximation fer,
given by Eqgs(17) and (18), also shows the existence of an
inflection point close to the edge of the drop, where the se
ond derivative of¢ vanishes. Althoughp does not change

appreciably with time, the gradients change in a very impor-

tant way with . Figure 3 shows the drop shape fer
=10 1% ForB=0, it is impossible to note any difference for
the drop shape for any other valueeobr that obtained using
Eqg.(17). The influence of gravity is weak regarding the drop
shape. Figure 4 shows the gradiedis/d» for the macro-
scopic region, as a function ef This value is given at the
inflection point and also close to the wall, indicating the

C_

inflection point obtained from Eq17) is also plotted in this
figure, showing a high accuracy of this approximation. The
macroscopic angle at the inflection point decreases with
while the angle close to the wall increases. This shows that
the inflection point moves closer to the wall asncreases.
For B* =5, Fig. 4b) shows that for increasing values of

the corresponding gradients at the inflection point decrease.
This behavior is the opposite to the case with negative values
of B*. In all cases, the inflection point moves closer to the
wall ase increases. For the axisymmetric geometry, our re-
sults are different from that obtained using the matching con-
dition at the inflection point.

We write the dependence o on ¢ and B as K
KoQ(F)I'(BoF?), with Ky=K(gq,Bg) and Q(1)
I'(1)=1. Introducing the following variables,

V=F> and &=10Kq7, (21)

the nondimensional evolution equation for the drop radius
takes the form
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281 B=0 —e— Solution to Eq. (21)
261 —o—¢ =1010 —— P=(1+§)12
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(@) 0 L 4 3
1304 ' ' ' ' ' ' ' ' n] FIG. 6. Numerical solution of the drop shape evolution given by
T /0 Eq. (22) for £o=10 % The simple solution obtained by consider-
1.954 e {010 /o i ing thate =ey=const¥ = {1+ ¢ is also plotted.
J 0 o
4 —o—¢ =106 .
r 1.20 ] © g0 0 //.0/ \PSSISds
1154 % | >~ Boé for é—oo,
: “< In(s)
1 /
1.10 /‘b/ -

1 /4 The transition from surface tension induced spread to gravity
1'05'_/° T induced spread can be obtained by solving numerically Eq.
‘100 (22). However, this transition can be well visualized by as-

00 02 04 06 08 10 12 14 16 18 suming a constant in the spreading process. In this case,

() B Eq. (22) reduces to

FIG. 5. (a) Q as a function of¥ = ¢/¢ for two different values
of £y. (b) " as a function oB for two different values ot,.

2
de

to be solved with the initial conditiod’ (0)=1. Figure %a)
shows() as a function of¥ for two different values og. In
all cases a good correlation of the for@=1+b In¥
+¢In?¥ can be constructed. Fer=10 1 we obtained
=0.01991 anctc=0.008121. Figure ®) shows similarlyl’
as a function of¥ also for two different values of,. Sur-

=Q(P)I'(v), (22

prisingly there is not a big difference between both curves,

which can be very well correlated By=1+aB,¥?", for all
values ofe. In our casea=0.17. For comparison with pre-
vious results, foB=0, Eq.(22) can be readily numerically
solved, showing the results in Fig. 6. The well known solu-
tion, considering a constaet ¥ =(1+ £)*? is also plotted,
showing a small but noticeable discrepancyéamcreases.
For é— o, the asymptotic solution give® ~ £" with n plot-
ted in Fig. 7. In physical units, the asymptotic behavior of
the drop radius is given by

100V3K, o

R(t)~ Ry,
( 3u[27(0.25-0. 01109<o)]3R1°

for t—oo. (23

When including the effect of gravity, the asymptotic be-
havior of ¥, for large values of nondimensional ting is
given by solving numerically the integral

2

_ 2/5
g~ L+01Be?,

(24)

to be solved with the initial conditiod (0)=1. The solution
can be readily obtained by

5 1+Byw2s By?
= | —2— | —By(w¥-1)+ — - (451
505 1+Bg
(qf6’5 1)+ (\1f8’5 1)] (25)
0.516 | .
0515 i
0.514 -
n 0513 ]
0512 | .
I B=0
0.511 | .
0-510 L | | | L | 1211
101 102 103 104 105 108
$

FIG. 7. Evolution of the exponemt from the numerical solution
to Eq. (22) for £,=10"1°,
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104 Solution to transition Eq. (24) i
] —— Surface tension induced spread, Eq. (26) ]
o--- Gravity induced spread, Eq. (27) ] 5.0
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FIG. 8. Transition from surface tension to gravity induced €

spread for an initial Bond number &,=0.2 as a function of the FIG. 9. Tanner's constar€; as a function ofs for different
nondimensional time. The asymptotic approximations given by 5,65 ofg* | obtained using the macroscopic angle at the inflection

Eq. (26) and Eq.(27) are also plotted. point (triangle3 and the macroscopic angle close to the wall

~ — (circles.
whereBy is a reduced Bond numb8;p=0.17B,. In the limit
of Bp—0 and¥~1, the asymptotic solution gives time, t;~R/v, to the evolution timet,~Ky/(dK/dt) or tg
~By/(dB/dt). Using the above results, these ratios can be
5 [By? written as
E~ =l = (V5-1) | or W~\1+E (26
B2l ©
0 tt b t, 1
—~—2<1 or t—~—8/5<1. (28
which represents the classical solution for the surface tension e W e W

induced spread. However, for values 8>B, %2 the

asymptotic solution is found to be Therefore, in both cases the quasisteady behavior is fully

satisfied due to the fact thadt>1. Only at early times¥{¥

5 (B4 45 |58 ~1) the quasisteady approximation fails.
&~ _[_Oq,s/s] or \P~(—O§) 27 It is also possible to obtain the constant of the Tanner’s
~5 4 5 1 — d./3 . . . .
Bg law, Cy= 6/Ca’™, which in our notation can be written as

Cr=(3/K)¥d¢/d 7. This law is rather universal and relates
which is the well known behavior of gravity induced spreadthe local macroscopic contact angle with its velocity of a
(F~78). One possible criterion for the transition could be fluid interface, except for the constant, which must be ob-
that the second term at the right-hand side of @4) be of  tained from the global problem. Due to the existence of two
order unity, that is, ¥ ~(1/0.1B,)%2 This would corre- different macroscopic angles of the drop, we also plotted
spond to an actual Bond number Bf=B,¥?°=5.8824. Tanner's constant as a function of using both angles and
However, due to the very low exponent ¥f,2/5, the influ-  given in Fig. 9. When using the macroscopic angle close to
ence of gravity is felt long before. This means that the tranthe wall we note that the Tanner’s constant does not change
sition from surface tension induced spread to gravity induce@ppreciably withe, and is very close to 3.0, for all values of
spread is not sharp enough, as pointed ouf6h A very  B. However, when using the macroscopic angle at the inflec-
simple criterion is then wheB=B,¥?°=1 or ¥ ~B,>?,  tion point, it changes practically from 5.28 at=10"*° to
that is, when the radius of the drop equals the capillary

length. Figure 8 shows the transition for the caseBgf 1.4 T
=0.2. In this figure, the actual Bond numb8—= BOFZ, 1.2_. —o— Numerical results obtained from Eq. (22)

which is the same as the ratio of the drop radius to the cap- ] —©— Neglecting the influence of B and &

illary length, is plotted as a function of the nondimensional 1.0

time ¢. The surface tension induced spread approximation
given by Eq.(26) as well as the gravity induced spread as-
ymptote, Eq.(27), are also plotted. Equatio(26) gives a
better approximation for values @&=<7, that is, after six
decades in the time coordinate counted after reaching a linear 0.4
profile in the log-log plot £~ 10?). Experimental results re- ]

0.8 1

R (cm)

ported elsewherf4,6] show the data for only three decades 027 : : : : : : i
in time. Therefore, it is not possible to show the full transi- 103 102 101 100 101 102 103
tion from surface tension to gravity induced spread with the t(s)

published data.
The quasisteady self-similar approach is also justified for FIG. 10. Temporal evolution of the drop radius of a spreading
small values compared with unity, of the ratio of the transitdrop of oil.
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3.39 ate=10*. The reported values are between the twolength, it is possible to reduce the problem by solving a
curves, showing the difficulty associated with the measuringjuasisteady self-similar macroscopic problem and matched
techniques of the appropriate macroscopic angle. with the precursor region solution, where the van der Waals

By way of illustration we computed the evolution E§2)  forces are important. A final nonlinear third-order ordinary
for a typical oil with the following data[21]. p differential equation has been solved numerically using
~841 kg/n?, ©~0.0225 kg/ms andr~0.035 kg/é. The shooting methods based on the fourth-order Runge-Kutta
initial volume of the drop isV=0.024 cri. Under these techniques. We obtained that the averaged film velocity in-
conditions, the initial Bond number is close to 1.45 and thecreases linearly with the radial coordinate and the radius of
initial radius of the drop is 0.248 cm. Figure 10 shows thethe drop increases asymptotically with time in the foRn
numerical results for the drop radius as a function of time.~t™ with m slightly larger than 1/10 and changing very
For comparison we also plot the classical solutier(1  slowly with time.
+¢)Y1%n physical units. We can see in this figure that the
|nfluence of gravity is extremely important for estimating the ACKNOWLEDGMENTS
evolution process.

In this paper we obtained, using asymptotic techniques, C.T. acknowledges the Comisiade Investigaciones Ci-
the evolution equation for the spread of a small drop of aenfficas de la Provincia de Buenos Aires and the Facultad de
wetting fluid over a dry surface. Using the disparity of the Ciencias Exactas de la Universidad de Buenos Aires for sup-
spatial scales between the drop size and the van der Wagberting a short visit to Argentina.

[1] P. G. de Gennes, Rev. Mod. Ph¥#, 827 (1985. [12] G. Friz, Z. Angew. Phys19, 374 (1965.

[2] V. E. Dussan, Annu. Rev. Fluid Mechtl, 371(1979. [13] J. D. Chen and N. Wada, J. Colloid Interface Sbi8 207

[3] A. Oron, S. H. Davis, and S. G. Bankoff, Rev. Mod. Ph§8. (1988.
931 (1997. [14] S. Kalliadasis and H-C. Chang, Phys. Flu&jsl2 (1994.

[4] A. M. Cazabat and M. A. Cohen Stuart, J. Phys. Ché@. [15] V. M. Starov, V. V. Kalinin, and J. D. Chen, Adv. Colloid
5845(1986. Interface Sci50, 187 (1994).

[5] J. A. Diez, R. Gratton, L. Thomas, and B. Marino, Phys. Fluids[16] R. Chebbi and M. S. Selim, J. Colloid Interface St95 66
6, 24 (19949). (1997.

[6] R. Gratton, J. A. Diez, L. P. Thomas, B. Marino, and S. Betelu [17] J. Lopez, C. A. Miller, and E. Ruckenstein, J. Colloid Interface
Phys. Rev. B53, 3563(1996. Sci. 56, 460 (1976.

[7] L. H. Tanner, J. Phys. 02, 1473(1979. [18] P. Ehrhard, J. Colloid Interface Sdi68 242 (1994.

[8] S. MiddlemanModeling Axisymmetric FlowgAcademic, San [19] R. Chebbi and M. S. Selim, J. Colloid Interface Str2 14
Diego, 1993, p. 251. (1995.

[9] F. Fairbrother and A. E. Stubbs, J. Chem. Shc527 (1935. [20] O. V. Voinov, J. Appl. Math. Mech59, 735(1995.

[10] F. P. Bretherton, J. Fluid MechO, 166 (1961). [21] E. S. Mickaily, Ph.D. dissertation, University of California,

[11] M. Brenner and A. Bertozzi, Phys. Rev. Lettl, 593 (1993. San Diego(1992.



