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Asymptotic analysis of axisymmetric drop spreading
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We study in this paper the time evolution of the spreading process of a small drop in contact with a flat dry
surface, using asymptotic techniques. We reduced the problem by solving a quasisteady self-similar macro-
scopic problem and matched with the precursor region solution, where the van der Waals forces are important.
A final nonlinear third-order ordinary differential equation has been solved numerically using shooting meth-
ods based on the fourth-order Runge-Kutta techniques. We obtained how the capillary number changes when
the drop size decreases with time. The evolution process then diverges slightly from that obtained using the
spherical cap approximation. The influence of gravity is also considered for both hanging and sitting drops.
@S1063-651X~98!09409-4#

PACS number~s!: 47.15.Gf, 47.55.Dz, 68.10.Cr
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I. INTRODUCTION

The spreading process of relatively small drops ove
solid surface is very important from both the practical
well as the theoretical points of view@1#. Many experimental
works have been published in the literature in the past th
decades. General reviews in this subject can be found e
where@2,3#. Most experiments have been made with wetti
fluids, i.e., with a positive spreading parameterS5sSG
2sSL2s.0, wheresSG, sSL , and s are the solid-gas
solid-liquid, and liquid-gas free energy per unit area, resp
tively. s is also called the surface tension. In most of t
experiments, the drop radiusR(t) is measured using photo
lithographic techniques, while in others the authors used
terferometers. Experimentally it is found that the drop rad
increases with time in the formR;Ctm, where different val-
ues form ~close to 0.1) have been deduced@4–6#. Using a
carefully designed experimental setup, Tanner@7# obtained
for silicon oils, m50.105. For small drops where gravity
not relevant, the macroscopic shape of the drop is foun
be very close to a spherical cap@1#. However, this small
difference between the real shape and the spherical ca
very important in determining the time evolution of the dr
spread. Even with small drops, gravity effects tend to
important as the drop radius increases with time.

Another controversial issue in this problem is related w
the constantC. Using very simple arguments assuming
small drop shape as a spherical cap, it is possible to deri
very simple theory for the spreading process@8#. The surface
tension generated pressure gradient must be balanced b
viscous force, i.e.,mv/h2;sh/R3, wherem is the viscosity
of the fluid,v is the radial velocity of the fluid, andh is the
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thickness of the fluid drop. It follows thatmv/s5Ca
;(h/R)3;u3. Hereu is the angle of the surface profile a
sumed to be very small compared with unity and Ca is
usual capillary number. This is the so-called Tanner’s l
@7,9,10# written asu5CTCa1/3, where CT is the Tanner’s
constant. Replacingv by dR/dt andh by V/CVR2 whereV
is the volume of the drop andCV a constant of order unity
we obtain from Tanner’s law a first order ordinary differe
tial equation for R(t), which gives the well known
asymptotic behaviorR;t1/10 for t→`. However, the con-
stantCT is not universal and depends globally on the spec
problem@11#. Friz @12# obtained values forCT close to 3.4,
Chen and Wada@13# obtained values forCT close to 3.6,
while Diez et al. @5# obtained values around 3.8. Kalliadas
and Chang@14# obtained a value of 7.48 for the case of a
advancing gas-liquid meniscus. Although Tanner’s law
universal, the constant depends strongly on the physical c
figuration. Therefore the value of the constant obtained
the drop spread~close to 3! is very different from that ob-
tained for an advancing meniscus. We anticipate here
our problem has an inflection point close to the edge of
drop, which does not appear in the configuration studied
@14#. In the case of a spreading drop, the macroscopic reg
is governed by a nonlinear third order differential equati
while in the meniscus problem the macroscopic problem
represented by an algebraic equation. In this paper we s
how CT depends on the ratio of the van der Waals influen
lengtha to be defined later to the actual drop size. Due to
changing drop size with time,CT also changes with time
modifying the drop size evolution.

From the analytical point of view, the spreading proce
including the disjoining pressure effects~van der Waals
forces! has been studied by Starovet al. @15# and Chebbi and
Selim @16#. They used a quasisteady similarity solutio
Starov employed the spherical cap approximation wh
4478 © 1998 The American Physical Society
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Chebbi and Selim obtained numerically the appropriate d
shape. In both cases, matching conditions are assumed
at the inflection point. Gravity effects have not been includ
in the above-mentioned works. Brenner and Bertozzi@11#
studied the stability of the quasisteady solution, deducin
simple criterion for the transition to gravity induced sprea
using the experimental data obtained by@4#. López et al.
@17#, Ehrhard@18#, Voinov @20# and Chebbi and Selim@19#
studied the spreading process with gravity. The disjoin
pressure effects were not considered here.

The main purpose of this paper is to obtain the time e
lution of the drop radius and the constantCT for the para-
metric set of interest, retaining the disjoining pressure a
gravity effects.

II. FORMULATION

Using the lubrication approximation, the equation for t
evolution of a free surface of a fluid under gravity and ca
illary forces is given by@8#

]h

]t
52

1

r

]

]r F s

3m
rh3

]

]r S ]2h

]r 2
1

1

r

]h

]r
1

a2

h3
2

rgh

s D G
for 0<r<R~ t !, ~1!

where r is the radial coordinate for the assumed axisy
metrical drop,r is the fluid density,g is the gravity accel-
eration,a5AuAu/6ps is the characteristic length of the non
retarded van der Waals force, which is only a fraction of
angstrom andA is the Hamaker constant, which is negati
for a wetting liquid. A positive value ofg indicates that the
spreading process is taking place over the solid surfa
Within this formulation, the averaged radial fluid velocity
then given by

v~r ,t !5
s

3m
h2

]

]r S ]2h

]r 2
1

1

r

]h

]r
2

rgh

s D . ~2!

We introduce the following nondimensional variables:

f5
h

H~t!
, h5

r

R~t!
, t5

s

3m

H0
3

R0
4

t, ~3!

whereH5H0G(t) andR5R0F(t) are the thickness at th
center of the drop and the macroscopic radius of the d
with H0 and R0 being the corresponding values at timet
50. Using these nondimensional variables, the evolut
equation~1! then transforms to

S F

GD 4S ]~fG!

]t
2

G

F
h

]f

]h

dF

dt D
52

1

h

]

]hFhf3
]

]hS ]2f

]h2
1

1

h

]f

]h
1

«2

f3
2Bf D G , ~4!

where« is the ratio of the van der Waals length to the size
the drop,«5«0F/G2, which is assumed to be very sma
compared with unity, with«05aR0 /H0

2 being its value at
time t50. B5rgR2/s corresponds to the Bond numbe
which relates the gravity to the surface tension forces. H
p
be

d

a
,

g

-

d

-

-

n

e.

p,

n

f

e,

B5B0F2, with B0 being the corresponding value at timet
50. In nondimensional form, the radial averaged velocity
then

Kr5
3m

s S R0F

H0GD 3

v5f2
]

]hS ]2f

]h2
1

1

h

]f

]h
2Bf D . ~5!

At the macroscopic edge of the drop, the nondimensio
radial velocityK5K f is therefore

K5S F

GD 3 dF

dt
5 lim

h→1
Ff2

]

]hS ]2f

]h2
1

1

h

]f

]h
2Bf D G , ~6!

where K is related to the usual capillary number byK
53Ca(R0 /H0)3, with Ca5v fm/s. The total volume of the
drop that remains invariant during the spreading proces
written as

V52pR0
2H0F2GI with I 5E

0

1

fhdh. ~7!

To solve Eq.~4! with the corresponding boundary and initi
conditions, we divide the problem in a macroscopic~surface
tension– viscous-gravity! region wheref/«@1, and a thin
region of order« close to the edge of the drop, (12h);«,
where the effect of the van der Waals forces must be con
ered in the analysis. Due to the disparity in the two spa
scales,«→0, the solution in both regions is to be obtaine
and properly matched.

A. Macroscopic region †„12h…@«…‡

Assuming a quasisteady self-similar solution to the m
roscopic problem~where the effect of the van der Waa
forces can be neglected!, f5f(h), from the overall volume
conservation~7! it follows that F2G51 andV52pR0

2H0I .
In this case, the macroscopic equation~4! reduces to

1

h

d

dhFhf3
d

dhS d2f

dh2
1

1

h

df

dh
2Bf D G2KS 2f1h

df

dh D50,

~8!

to be solved with the boundary conditions

f~1!→0, f~0!215
df

dhU
0

5
d3f

dh3U
0

50. ~9!

A first integration of Eq.~8! gives

f2
d

dhS d2f

dh2
1

1

h

df

dh
2Bf D

5K
1

hfE0

hS 2f1s
df

dsD sds5Kh, ~10!

to be solved with the first three boundary conditions in E
~9!. From Eq.~5! it follows that the averaged radial velocit
related to its value at the edge drop increases linearly w
the radial coordinate,Kr5Kh. There is a family of solutions
for any value ofK(B,«). However, there is only one value o
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K that satisfies the additional boundary condition aris
from matching with the inner solution of the precursor r
gion. This in fact represents a well posed eigenvalue pr
lem.

B. Inner or precursor region †„12h…;«‡

At the edge of the drop, wheref is of order«, there is a
very thin region with (12h);«, where the nonretarded va
der Waals forces cannot be neglected. We introduce for
region the following inner variables of order unity:

y5
K1/3f

31/2«
and x5

K2/3~h21!

31/2«
. ~11!

The inner equation takes the universal form

y2y-2
y8

y2
2150. ~12!

Herey85dy/dx. Matching requires that@1#

y→2x@3 ln~2x!#1/3 for x→2`, ~13!

in order to assure that in the precursor filmy→0 asx→`. In
terms of the outer variables, this matching condition tra
forms to

f;K1/3~12h!F3 lnS K2/3~12h!

A3«
D G 1/3

for 1@~12h!@«. ~14!

III. RESULTS

Due to the appropriate matching condition, Eq.~14!, we
note that the eigenvalueK depends on« andB and is there-
fore a function of time, because the thickness of the d
related to the van der Waals length decreases with ti
However, this relationship is weak as we show below. W
transform Eq.~10! to a parameter-free nonlinear equati
given by

f2
d

dzS d2f

dz2
1

1

z

df

dz
2B* f D 5z, ~15!

wherez5K1/4h andB* is a reduced Bond number given b
B* 5B/K1/2. The boundary conditions now take the form

f~K1/4!→0, f~0!215
df

dz U
0

50 ~16!

together with the matching condition~14!. We integrate nu-
merically Eqs.~15! and ~16! using a fourth-order Runge
Kutta equation with an initial guess ofd2f/dz2u0 until the
matching condition is fulfilled. Instead of using matchin
condition ~14!, we continued the numerical integration in
the inner region given by Eq.~12!, as the macroscopic valu
of f reached 100«. The appropriate solution is obtained
we get the final condition in the precursor film,y→0 for x
g
-
b-

is

-

p
e.
e

→`. We used a step size ofDh510210 for the macroscopic
region andDx51023 for the inner region.

Figure 1 shows the eigenvalue or reduced capillary nu
ber K, as a function of«, for three different values of the
reduced Bond numberB* . Note the very weak dependenc
with «, doubling the value ofK in four decades in«. Due to
the fact that«5«0F5(t) and B5B0F2, then K is also a
function of time. The lower curve, represented by so
squares, corresponds to the case of a spreading hanging
with B* 525, while the upper curve, represented by so
triangles, corresponds to the case ofB* 55. The middle
curve neglects the effect of gravity. In this figure it is show
how gravity enhances the spreading rate over a solid. Fig
2 shows the volume integralI as a function of«, obtained
numerically. ForB50, we can see thatI is almost a con-
stant, changing only in the third digit as« changes in four
decades. The value ofI is very close to 0.25, which repre
sents the shape of a spherical cap. A similar behavior
B* Þ0 is obtained. Therefore, in both cases, it shows thaf
depends mainly onh with ]f/]t→0, thus justifying a qua-
sisteady self-similar solution to the macroscopic Eq.~8! by
neglecting]f/]t in Eq. ~4!. For B* !1, we use the fact tha
f can be written by the spherical cap shape plus a sm
perturbation in the form@20#

FIG. 1. EigenvalueK as a function of« for three different
values of the reduced Bond numbersB* .

FIG. 2. IntegralI as a function of« for three different values of
B* , using the numerical approach~solid symbols! and the approxi-
mation given by Eq.~20!. The spherical cap solution is also plotte
for comparison.



-

b
ith
f

o

n
e

o

r

op

he

act
of

he

that

ase.
lues
he
re-
on-

ius

PRE 58 4481ASYMPTOTIC ANALYSIS OF AXISYMMETRIC DROP . . .
f;12h21Kg1~h!1B* g2~K,h!1•••, ~17!

with g2;1 and g1!1, but udmg1 /dhmu for m>1, could
have values very large compared with unity. Here,gi( i
51,2) vanishes ath50 andh51. Neglecting the effect of
gi(h) in f2 in Eq. ~10!, we obtain a very good approxima
tive solution forgi as

g1.2
1

4F E
0

h ln~12s2!

s
ds1

p2

12
h2G , ~18!

g2.
h2

4 H 3

4
24KF0.009052

p2

768S 12
h2

4 D G J 2
K

4
L~h!

~19!

with

L~h!5E
0

h1

uF E
0

u

wS E
0

wln~12s2!

s
dsD dwGdu.

However, with this approximation we are still unable to o
tain in closed form the appropriate matching condition w
the inner region, because we cannot neglect the effect og1
in f2 close to the edge of the drop. Close toh→1, 12h2

;2(12h), while g1;(12h)ln(12h). Nevertheless, we
can extract useful information within this approximation. F
B50, the integralI can be solved in closed form as

I 5E
0

1

fhdh.0.2520.01109K, ~20!

which is also plotted in Fig. 2. This approximation forf,
given by Eqs.~17! and ~18!, also shows the existence of a
inflection point close to the edge of the drop, where the s
ond derivative off vanishes. Althoughf does not change
appreciably with time, the gradients change in a very imp
tant way with «. Figure 3 shows the drop shape for«
510210. ForB50, it is impossible to note any difference fo
the drop shape for any other value of« or that obtained using
Eq. ~17!. The influence of gravity is weak regarding the dr
shape. Figure 4 shows the gradientsdf/dh for the macro-
scopic region, as a function of«. This value is given at the
inflection point and also close to the wall, indicating t

FIG. 3. Normalized drop shapef(h) for «510210 for three
different values ofB* .
-

r

c-

r-

existence of two different macroscopic apparent cont
angles. Figure 4~a! shows these gradients for the case
vanishing gravity. The solution for the gradient off at the
inflection point obtained from Eq.~17! is also plotted in this
figure, showing a high accuracy of this approximation. T
macroscopic angle at the inflection point decreases with«,
while the angle close to the wall increases. This shows
the inflection point moves closer to the wall as« increases.
For B* 55, Fig. 4~b! shows that for increasing values of«,
the corresponding gradients at the inflection point decre
This behavior is the opposite to the case with negative va
of B* . In all cases, the inflection point moves closer to t
wall as« increases. For the axisymmetric geometry, our
sults are different from that obtained using the matching c
dition at the inflection point.

We write the dependence ofK on « and B as K
5K0V(F5)G(B0F2), with K05K(«0 ,B0) and V(1)
5G(1)51. Introducing the following variables,

C5F5 and j510K0t, ~21!

the nondimensional evolution equation for the drop rad
takes the form

FIG. 4. Normalized macroscopic drop gradient]f/]h obtained
at the inflection point~circle! and close to the wall~triangle!. At the
inflection point the approximative solution obtained from Eq.~17!
is plotted:~a! B* 50 and~b! B* Þ0.
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dC2

dj
5V~C!G~C!, ~22!

to be solved with the initial conditionC(0)51. Figure 5~a!
showsV as a function ofC for two different values of«0. In
all cases a good correlation of the formV.11b ln C
1c ln2C can be constructed. For«0510210, we obtainedb
50.01991 andc50.008121. Figure 5~b! shows similarlyG
as a function ofC also for two different values of«0. Sur-
prisingly there is not a big difference between both curv
which can be very well correlated byG.11aB0C2/5, for all
values of«. In our casea.0.17. For comparison with pre
vious results, forB50, Eq. ~22! can be readily numerically
solved, showing the results in Fig. 6. The well known so
tion, considering a constant«,C5(11j)1/2, is also plotted,
showing a small but noticeable discrepancy asj increases.
For j→`, the asymptotic solution givesC;jn with n plot-
ted in Fig. 7. In physical units, the asymptotic behavior
the drop radius is given by

R~ t !;R0F 10sV3K0

3m@2p~0.2520.01109K0!#3R0
10

tG n/5

for t→`. ~23!

When including the effect of gravity, the asymptotic b
havior of C, for large values of nondimensional timej, is
given by solving numerically the integral

FIG. 5. ~a! V as a function ofC5«/«0 for two different values
of «0. ~b! G as a function ofB for two different values of«0.
,

-

f

EC s3/5ds

ln2~s!
;B0j for j→`.

The transition from surface tension induced spread to gra
induced spread can be obtained by solving numerically
~22!. However, this transition can be well visualized by a
suming a constant« in the spreading process. In this cas
Eq. ~22! reduces to

dC2

dj
5110.17B0C2/5, ~24!

to be solved with the initial conditionC(0)51. The solution
can be readily obtained by

j5
5

B0̃
5H lnS 11B0̃C2/5

11B0̃
D 2B0̃~C2/521!1

B0̃
2

2
~C4/521!

2
B0̃

3

3
~C6/521!1

B0̃
4

4
~C8/521!J , ~25!

FIG. 6. Numerical solution of the drop shape evolution given
Eq. ~22! for «0510210. The simple solution obtained by conside
ing that«5«05const,C5A11j is also plotted.

FIG. 7. Evolution of the exponentn from the numerical solution
to Eq. ~22! for «0510210.
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whereB0̃ is a reduced Bond numberB0̃50.17B0. In the limit
of B0̃→0 andC;1, the asymptotic solution gives

j;
5

B0̃
5H B0̃

5

5
~C10/521!J or C;A11j, ~26!

which represents the classical solution for the surface ten
induced spread. However, for values ofC@B0̃

25/2, the
asymptotic solution is found to be

j;
5

B0̃
5H B0̃

4

4
C8/5J or C;S 4B0̃

5
j D 5/8

, ~27!

which is the well known behavior of gravity induced spre
(F;t1/8). One possible criterion for the transition could b
that the second term at the right-hand side of Eq.~24! be of
order unity, that is,C;(1/0.17B0)5/2. This would corre-
spond to an actual Bond number ofB5B0C2/555.8824.
However, due to the very low exponent ofC,2/5, the influ-
ence of gravity is felt long before. This means that the tr
sition from surface tension induced spread to gravity indu
spread is not sharp enough, as pointed out in@6#. A very
simple criterion is then whenB5B0C2/551 or C;B0

25/2,
that is, when the radius of the drop equals the capill
length. Figure 8 shows the transition for the case ofB0
50.2. In this figure, the actual Bond numberB5B0F2,
which is the same as the ratio of the drop radius to the c
illary length, is plotted as a function of the nondimension
time j. The surface tension induced spread approxima
given by Eq.~26! as well as the gravity induced spread a
ymptote, Eq.~27!, are also plotted. Equation~26! gives a
better approximation for values ofB<7, that is, after six
decades in the time coordinate counted after reaching a li
profile in the log-log plot (j;102). Experimental results re
ported elsewhere@4,6# show the data for only three decad
in time. Therefore, it is not possible to show the full tran
tion from surface tension to gravity induced spread with
published data.

The quasisteady self-similar approach is also justified
small values compared with unity, of the ratio of the tran

FIG. 8. Transition from surface tension to gravity induc
spread for an initial Bond number ofB050.2 as a function of the
nondimensional timej. The asymptotic approximations given b
Eq. ~26! and Eq.~27! are also plotted.
on
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r
t

time, t t;R/v, to the evolution time,te;K0 /(dK/dt) or te
;B0 /(dB/dt). Using the above results, these ratios can
written as

t t

te
;

b

C2
!1 or

t t

te
;

1

C8/5
!1. ~28!

Therefore, in both cases the quasisteady behavior is f
satisfied due to the fact thatC.1. Only at early times (C
;1) the quasisteady approximation fails.

It is also possible to obtain the constant of the Tanne
law, CT5u/Ca1/3, which in our notation can be written a
CT5(3/K)1/3df/dh. This law is rather universal and relate
the local macroscopic contact angle with its velocity of
fluid interface, except for the constant, which must be o
tained from the global problem. Due to the existence of t
different macroscopic angles of the drop, we also plot
Tanner’s constant as a function of«, using both angles and
given in Fig. 9. When using the macroscopic angle close
the wall we note that the Tanner’s constant does not cha
appreciably with«, and is very close to 3.0, for all values o
B. However, when using the macroscopic angle at the infl
tion point, it changes practically from 5.28 at«510210 to

FIG. 10. Temporal evolution of the drop radius of a spread
drop of oil.

FIG. 9. Tanner’s constantCT as a function of« for different
values ofB* , obtained using the macroscopic angle at the inflect
point ~triangles! and the macroscopic angle close to the w
~circles!.
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3.39 at«51024. The reported values are between the t
curves, showing the difficulty associated with the measur
techniques of the appropriate macroscopic angle.

By way of illustration we computed the evolution Eq.~22!
for a typical oil with the following data @21#: r
'841 kg/m3, m'0.0225 kg/ms ands'0.035 kg/s2. The
initial volume of the drop isV50.024 cm3. Under these
conditions, the initial Bond number is close to 1.45 and
initial radius of the drop is 0.248 cm. Figure 10 shows t
numerical results for the drop radius as a function of tim
For comparison we also plot the classical solutionF5(1
1j)1/10 in physical units. We can see in this figure that t
influence of gravity is extremely important for estimating t
evolution process.

In this paper we obtained, using asymptotic techniqu
the evolution equation for the spread of a small drop o
wetting fluid over a dry surface. Using the disparity of t
spatial scales between the drop size and the van der W
ids

lu
g

e

.

s,
a

als

length, it is possible to reduce the problem by solving
quasisteady self-similar macroscopic problem and matc
with the precursor region solution, where the van der Wa
forces are important. A final nonlinear third-order ordina
differential equation has been solved numerically us
shooting methods based on the fourth-order Runge-K
techniques. We obtained that the averaged film velocity
creases linearly with the radial coordinate and the radius
the drop increases asymptotically with time in the formR
;tm with m slightly larger than 1/10 and changing ve
slowly with time.
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