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Influence of the aspect ratio of a drop in the spreading process over a horizontal surface
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We study in this paper the influence of the aspect ratio of an axisymmetric drop on the spreading rate. For
very small values of aspect ratio, the spreading rate is proportional to the cube of the aspect ratio as stated by
Tanner’s law. However, as the value of the aspect ratio increases, the proportionality constant shows a weak
dependence on the aspect ratio, first decreasing and then increasing after reaching a minimum. Due to the fact
that the aspect ratio of the drop decreases with time in the spreading drop, its influence decreases as time
increases.@S1063-651X~98!09109-0#

PACS number~s!: 47.15.Gf, 47.55.Dz, 68.10.Cr
al
de
s

h

-

ci
h
m
th
p

ro
p

t
co

t

s

t-

ly
e
m
g

us
ith

han

-
is
be
-

-

i-

s in
-
ate
.

al
f a
I. INTRODUCTION

In Ref. @1# we deduce a simple first-order differenti
equation for the spreading evolution of a drop over or un
a horizontal surface. Both gravity as well the disjoining pre
sure effects were considered. We assumed a fluid wit
positive spreading parameterS5sSG2sSL2s.0, where
sSG, sSL, ands are the solid-gas, solid-liquid, and liquid
gas free energy per unit area, respectively.s is also called
the surface tension. We show how the spreading velo
depends on the ratio of the van der Waals influence lengt
the actual drop size. Due to the changing drop size with ti
the spreading rate also changes with time, modifying
drop size evolution. We also considered very thin dro
~very small aspect ratio of dropsd, d5h/R, whereh is the
thickness of the fluid drop andR is its radius!, with a linear-
ized form of the surface tension pressure gradients.

Using very simple arguments and assuming a small d
shape as a spherical cap, it is possible to derive a very sim
theory for the spreading process@2#. The pressure gradien
generated by surface tension must be balanced by the vis
force, i.e.,mv/h2;sh/R3, wherem is the viscosity of the
fluid andv is the radial velocity of the fluid. It follows tha
mv/s5Ca;d3. For d!1, d;u, whereu is the angle of the
surface profile and Ca is the usual capillary number. Thi
the so-called Tanner’s law@3# written asu5CTCa1/3, where
CT is the Tanner’s constant. Replacingv by dR/dt andh by
V/CVR2 whereV is the volume of the drop andCV a con-
stant of order unity, we obtain from Tanner’s law a firs
order ordinary differential equation forR(t), which gives the
well-known asymptotic behaviorR;t1/10 for t→`. How-
ever, the constantCT is not universal and depends global
on the specific problem@4–8#. In most of the analyses on th
spreading process of small drops, the lubrication approxi
tion has been employed, where the inertial terms are ne
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gibly small compared with the surface tension and visco
terms. This is true if the Reynolds number associated w
the spreading velocity and drop thickness is much lower t
the inverse of the aspect ratio of the drop, Re5rvh/m
!1/d wherer is the fluid density. From the order of mag
nitude written lines above, we know that the fluid velocity
v;sd3/m, therefore the associated Reynolds number will
Re;d4/Oh2, where Oh is the well-known Ohnesorge num
ber defined by Oh5m/ArRs. Thus, the lubrication approxi
mation is still valid for values ofd such asd!Oh2/5. Typical
values for silicon oils are @9# r'841 kg/m3, m
'0.0225 kg/ms, ands'0.035 kg/s2. With these values,
the Ohnesorge number ranges from 0.415 forR51024 m to
0.0415 forR51022 m. Therefore, the lubrication approx
mation is valid ford!0.7 for R51024 m andd!0.3 for
R51022 m.

The main purpose of this paper is to extend the analysi
@1#, considering the full term arising from the Young
Laplace equation for the surface tension in order to evalu
the influence of a small but finite aspect ratio of the drop

II. FORMULATION

Using the lubrication approximation, the nondimension
form of the equation for the evolution of a free surface o
fluid under gravity and capillary forces is given by@2#

S F

GD 4S ]~fG!

]t
2

G

F
h

]f

]h

dF

dt D
52

1

h

]

]hFhf3
]

]hS Df1
«2

f3
2Bf D G , ~1!

whereD is a differential operator given by

Df5
]2f/]h21~1/h!~]f/]h!@11d2~]f/]h!2#

@11d2~]f/]h!2#3/2
,
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d5d0G/F with d05H0 /R0 representing the aspect ratio
the drop at timet50, « is the ratio of the van der Waal
length a5AuAu/6ps to the size of the drop,«5«0F/G2,
which is assumed to be very small compared with unity, w
«05aR0 /H0

2 being its value at timet50. B5rgR2/s cor-
responds to the Bond number, which relates the gravity
the surface tension forces. Here,B5B0F2, with B0 being the
corresponding value at timet50. A is the Hamaker constan
which is negative for a wetting liquid. Here we used t
following nondimensional variables:

f5
h

H~t!
, h5

r

R~t!
, t5

s

3m

H0
3

R0
4

t, ~2!

whereH5H0G(t) andR5R0F(t) are the thickness at th
center of the drop and the macroscopic radius of the d
respectively.H0 andR0 are the corresponding values at tim
t50. In a nondimensional form, the radial averaged veloc
is then

Kr5
3m

s S R0F

H0GD 3

v5f2
]~D2B!f

]h
. ~3!

At the macroscopic edge of the drop, the nondimensio
radial velocityK5K f is therefore

K5S F

GD 3 dF

dt
5 lim

h→1
Ff2

]~D2B!f

]h G , ~4!

where K is related to the usual capillary number byK
53Ca/d0

3, with Ca5v fm/s. The total volume of the drop
that remains invariant during the spreading process is wri
by

V52pR0
2H0F2GI with I 5E

0

1

fhdh. ~5!

To solve Eq.~1! with the corresponding boundary and initi
conditions, we divide the problem in a macroscopic~surface
tension–viscous-gravity! region wheref/«@1, and a thin
region of order« close to the edge of the drop, (12h);«,
where the effect of the van der Waals forces must be con
ered in the analysis. Due to the disparity in the two spa
scales,«→0, the solution in both regions is to be obtain
and properly matched.

A. Macroscopic region †„12h…@«‡

Assuming a quasisteady self-similar solution to the m
roscopic problem~where the effect of the van der Waa
forces can be neglected!, f5f(h), from the overall volume
conservation~5!, it follows thatF2G51 andV52pR0

2H0I .
In this case, the macroscopic equation~3! reduces to

f2
d~D2B!f

dh
5Kh, ~6!

where the averaged radial velocity related to its value at
edge drop is found to increase linearly with the radial co
dinate, Kr5Kh. The nondimensional boundary condition
needed to solve this equation are given by
h

to

p,

y

al

n

d-
l

-

e
-

f~1!→0, f~0!215
df

dh U
0

50, ~7!

together with the result from matching with the precurs
region.

B. Inner or precursor region †„12h…;«‡

At the edge of the drop, wheref is of order«, there is a
very thin region with (12h);«, where the nonretarded va
der Waals forces cannot be neglected. Introducing for
region the following inner variables of order unity,

y5
K1/3f

31/2«
and x5

K2/3~h21!

31/2«
, ~8!

the inner equation takes the nondimensional form

C1y2y-2
y8

y2
215C1

2C2 , ~9!

where

C15
1

11a~y8!2
, C252ay8~yy9!2, a5~dK1/3!2.

~10!

Here y85dy/dx. In the precursor film,y→0 asx→`. To
the left, the boundary conditions are to be properly match
with the macroscopic region.

III. RESULTS

We transform Eq.~6! to a nonlinear equation given by

f2
d

dzS d2f/dz21~1/z!df/dz@11d* 2~df/dz!2#

@11d* 2~df/dz!2#3/2
2B* f D

5z, ~11!

where z5K1/4h, d* is a reduced aspect ratio of the dro
d* 5dK1/4, andB* is a reduced Bond number given byB*
5B/K1/2. The boundary conditions now take the form

FIG. 1. Nondimensional spreading rateK as a function of«, for
different values of the reduced aspect ratio of the dropd* .
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f~K1/4!→0, f~0!215
df

dz U
0

50 ~12!

together with the matching condition to the precursor regi
We integrate numerically Eqs.~11! and ~12! using a fourth-
order Runge-Kutta equation with an initial guess
d2f/dz2u0 until we reach the precursor film withy→0 as
x→`. The appropriate solution is obtained as we get
final condition in the precursor film,y→0 for x→`. We
used a step size ofDh510210 for the macroscopic region
andDx51024 for the inner region. For simplicity, we do no
consider gravity effects here, included in Ref.@1#.

Figure 1 shows the reduced capillary numberK, as a
function of«, for different values of the reduced aspect ra
d* . For very small values ofd* , the reduced spreading ra
K is lower than that corresponding tod* 50. However, there
is a value ofd* around 0.25, where the above tenden
inverts, generating a minimum onK. For relatively large
values ofd* , the solution shows an asymptotic behavior f
«→0 with constantK, not depending on«. The same results
are presented in Fig. 2, but withK plotted as a function of
d* , for different values of«. This figure clearly shows the
minimum ofK and how the gap between the different valu
of « is reduced as the value ofd* increases. Therefore, it i
shown that the spreading rate does not depend on«, for large

FIG. 3. Nondimensional spreading rateK as a function of the
aspect ratio of the dropd, for two different values of«.

FIG. 2. Nondimensional spreading rateK as a function of the
reduced aspect ratio of the dropd* , for different values of«.
.
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values ofd* . In Fig. 3 similar results are plotted for th
normalized spreading rateK/K0 as a function of the aspec
ratio of the dropd, for the two limiting values of« consid-
ered here.K0 corresponds to the value obtained withd50
@1#,

K0.K* @110.01991 ln~«/«* !10.008121 ln2~«/«* !#.
~13!

Here,K* («* ) is a reference value. In our caseK* (10210)
50.13963. In this figure it is clear that the universal behav
represented by the similar minimum value ofK/K0, which
suggests to introduced/«0.063instead ofd as shown in Fig. 4.
A very good correlation forK is given by

K.K0~«!F120.2167
d

«0.063
10.0829S d

«0.063D 2G . ~14!

For large values ofd* , the macroscopic region of th
drop dictates the value ofK without taking care of the pre
cursor layer structure. To study this effect, we plotted in F
5 the drop slope at the surface for different values
d2f/dz2u0, around the value that producesdf/dz50 with
f50 andz5z0, neglecting the disjoining pressure effec
The drop slopes are plotted as a function of (z2z0)/z0 for
different values ofd* . As the value ofd* increases,df/dz

FIG. 4. Universal behavior ofK/K0 as a function of reduced
aspect ratio of the dropd/«0.063.

FIG. 5. Normalized macroscopic drop gradientdf/dz obtained
at the wall as a function of the reduced coordinate (z2z0)/z0, for
different values of the reduced aspect ratio of the dropd* .
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increases also very rapidly, thus indicating that the mac
scopic shape dictates the form that can be managed in
precursor region to reach the appropriate conditiony→0 as
x→`. Finally in Fig. 6 we show the asymptotic behavior
the nondimensional spreading rate as a function ofd, for «
50, without considering the disjoining pressure effects. T
in fact is very similar to that obtained with«510210 in Fig.
3.

In summary, for values ofd!1, the nondimensiona
spreading rate or capillary number can be well represen
by

Ca.K0~«!d3F120.2167
d

«0.063
10.0829S d

«0.063D 2G .

~15!

Replacing Eqs.~13! and ~14! into the definition ofK,K
5F9dF/dt, we obtain the evolution equation for the dro
radius as

F9
dF

dt
.K0~«0!V~F !D~F !, ~16!

where

V~F !5110.01991 ln~F !10.008121 ln2~F !

FIG. 7. Evolution of the nondimensional functionsV andD as
a function of time.

FIG. 6. Nondimensional spreading rateK as a function of the
aspect ratio of the dropd, for «50.
-
he

s

d

measures the effect of changing« in the spreading proces
and

D~F !512
0.2167d0

«0
0.063

1

F3.315
1

0.0829d0
2

«0
0.126

1

F6.630

measures the effect of the aspect ratio of the drop. Equa
~16! must be integrated numerically. For silicon oils, usi
the data reported in@9# for a drop with an initial volume of
0.024 cm3 and an initial aspect ratio of the drop,d050.3,
Eq. ~16! is numerically integrated to giveR5R0F as a func-
tion of time, t5(3mR0 /sd0)t. The results are plotted in
Figs. 7 and 8. Figure 7 shows the values ofV and D as a
function of time. At the beginning, the actual aspect ratio
the drop is relatively large and the influence ofD is strong
compared with the influence of«. As the drop radius in-
creases the actual aspect ratio of the drop decreases, dec
ing its influence in the spreading process. ThereforeD→1
for t→`. The influence of the aspect ratio is negligible f
times larger than 103 s. The contrary occurs with the influ
ence of«, which increases always as the time increases.
asymptotic behavior of the solution fort→` is therefore
almost the same as that without considering the aspect
effects. The solution to Eq.~16! is shown in Fig. 8. This
result is compared with the solution obtained by neglect
any contribution of the aspect ratio of the drop and chang
values of«, that is, withV5D51, given by the classica
form

R5R0F10K0sd0

3mR0
G1/10

. ~17!

Using the log-log plot in Fig. 8 it is difficult to show any big
difference between both curves. However, when plotting
difference between them we see that Eq.~17! underestimates
the solution for the drop radius on 4% at times around
hour. The influence of the initial aspect ratio is negligib
small at large times.
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FIG. 8. Radius of a spreading drop of silicon oil as a function
time, for an initial volume of 0.024 cm3 and initial aspect ratio of
d050.3.
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