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We investigate an unsteady plane viscous gravity current of silicone oil on a horizontal glass substrate.
Within the lubrication approximation with gravity as the dominant force, this current is described by the
nonlinear diffusion equationf t5(fmfx)x (f is proportional to the liquid thicknessh andm53.0), which
is of interest in many other physical processes. The solutions of this equation display a fine example of the
competition between diffusive smoothening and nonlinear steepening. This work concerns the so-called
waiting-time solutions, whose distinctive character is the presence of an interface or front, separating regions
with hÞ0 andh50, that remains motionless for a finite time intervaltw meanwhile a redistribution ofh takes
place behind the interface. We start the experiments from an initial wedge-shape configuration
@h(x)'a8(x02x)# with a small angle (a8<0.12 rad!. In this situation, the tip of the wedge, situated atx0
from the rear wall~15 cm<x0<75 cm!, waits at least several seconds before moving. During this waiting
stage, a region characterized by a strong variation of the free surface slope~corner layer! develops and
propagates toward the front while it gradually narrows and]2h/]x2 peaks. The stage ends when the corner
layer overtakes the front. At this point, the liquid begins to spread over the uncovered substrate. We measure
the slope of the free surface in a range'10 cm aroundx0 , and, by integration, we determine the fluid
thicknessh(x) there. We find that the flow tends to a self-similar behavior when the corner layer position tends
to x0 ; however, near the end of the waiting stage, it is perturbed by capillarity. Even if some significant effects
are not included in the above equation, the main properties of its solutions are well displayed in the experi-
ments@S1063-651X~96!13309-2#

PACS number~s!: 47.15.Gf, 47.10.1g, 68.10.Cr, 68.45.Gd

I. INTRODUCTION

We consider a nonlinear diffusion equation in plane sym-
metry of the form

]f

]t
5

]

]x S fm
]f

]x D , m.0. ~1!

Equations of this type describe many interesting physical
processes such as heat transport by radiation in partially or
totally ionized gases, or by electrons in plasmas@1#, uncon-
fined ground-water flow and gas percolation through porous
media@2#, electric transmission in cables with resistive coat-
ings, as well as other phenomena@3,4#. In particular, Eq.~1!
with m53 is obtained in the lubrication theory approxima-
tion @5#, and describes viscous liquids flows over smooth
horizontal substrates, also calledcreeping flows@5–7#, which
receive attention because of their environmental interest
@8–11#. Since creeping flows can be studied by means of
simple and cheap experiments, they are well suited to test
some solutions of Eq.~1! in the laboratory, and to investigate
some of their typical features@6,12#.

Let us note that by settingh5fm andt5t/m, Eq.~1! can
be transformed into

]h

]t
5S ]h

]x D 21mh
]2h

]x2
, ~1a!

which displays clearly that the time evolution ofh results
from a combination of nonlinear wave propagation~first
term on the right! and diffusion~second term! @13,14#.

Because of the nonlinearity of the diffusion term of Eq.
~1a!, there are solutions with well-defined fronts or interfaces
@15,16#, separating regions wherefÞ0 andf50. Fronts of
this type are currently observed in creeping flows, where it is
easy to measure with accuracy their propagation@10,17# and
their cross profile@12#. There is also much evidence of their
existence in the other phenomena described by Eq.~1!, much
harder to study experimentally@18,19#. An interesting prop-
erty is displayed by thewaiting-time solutions@4,13,20–24#
which describe an evolution off(x) behind a front at a fixed
position during a finitewaiting time tw . The waiting-time
solutions have aroused a considerable interest among the
mathematicians, but the related phenomenology has not yet
been studied experimentally in a systematical way. Since in
the literature there are few references of observations, mostly
qualitative, of waiting-time creeping flows@4,25#, we believe
it is of interest to report the results of a series of experiments
specifically addressed to investigate a viscous current near a
waiting front.
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Now we briefly recall some properties of waiting-time
solutions to provide a theoretical background. First we men-
tion that the exact evaluation oftw for given initial condi-
tions is still an open problem. Formulas for lower and upper
bounds oftw are known@4,13,14,26,27#. The bounds given
by Aronson and co-workers@14,26# and Vazquez@27# are
particularly relevant to our concern.

In a noteworthy paper, Kath and Cohen@13# considered
the limit m!1, in which the leading term of Eq.~1a! corre-
sponds to a nonlinear first order wave propagation equation.
The solutions, solved by the method of characteristics, may
develop discontinuities of the first derivative]f/]x ~corner
shocks!. The diffusion term included in Eq.~1a! smooths the
changes of]f/]x; therefore, a corner shock becomes acor-
ner layer, i.e., a smallx interval in which ]2f/]x2 has a
peak. By using this analysis Kath and Cohen discussed the
evolution of initial profilesf}ux2x0up near the front (x0 is
the front position!. Then the formation of a corner shock
determines the basic behavior of the waiting-time solutions.
The front can start to move depending upon whether the
corner shock forms just at, or behind the front. They found
the following.

~a! If 0,p,2/m, the front moves immediately (tw50).
~b! If p52/m, the front begins to move after a finite wait-

ing time, and precisely then a corner shock is formed at
x0 ; this is the only case in which there is a formula
@13,14,26# for tw ~that also holds for finitem).

~c! If p.2/m, the front remains at rest for a finite time; at
a certain moment during this interval a corner shock appears
behind the front, and propagates overtaking the front at
t5tw .

The existence of similarity solutions with waiting time
was proved by Lacey, Ockendon, and Tayler@4# using a
phase-plane formalism. They found similarity solutions of
the second kind, valid before and aftertw . They classified
the solutions according to the self-similarity exponent
d(d.1 in a continuous spectrum!, and gave prescriptions for
their construction, but did not discuss their properties. This
type of solution may describe the asymptotic solutions near
the front and close totw of an initial value problem that
displays a waiting-time behavior. The value ofd depends on
the initial conditions of the problem, and its determination
was not addressed by these authors. More recently, Gratton
and Vigo@24# studied in detail the solutions of Lacey, Ock-
endon, and Taylor~their study focused on the casem53, but
the generalization to anym is straightforward! and found that
those solutions corresponding to 1,d, 13

10 display corner
layers during the waiting time. They also numerically solved
the initial value problem for profiles of the formux2x0up.
They obtained a nonvanishingtw only for p. 2

3, with
1,d, 13

10, and observed always the formation of a corner
layer behind the front@as in case~c! above# except forp5
2
3, when a corner shock appears att5tw and x5x0 ; for
p, 2

3 the front moves at once (tw50). Thus the numerical
solutions have extended the validity of the results of Kath
and Cohen@13# beyond the conditionm!1.

The way in which the front begins to move also depends
onp. So, if the waiting time is due to purely local effects, the
interface begins to move smoothly@26#, i.e., the front veloc-
ity does not jump att5tw . Conversely, if nonlocal effects
are dominant, the front starts to move with a finite velocity.

In this work we describe systematic experimental studies
of situations dominated by the waiting front phenomenology.
Specifically, we are concerned with viscous gravity currents
under the conditions that allow us to use the lubrication ap-
proximation. Then the appropriate equation of motion is Eq.
~1! with m53, and the diffusing scalar isf5(g/3n)1/3h,
with g the gravity andn the kinematics viscosity. In the
initial configuration the fluid has a wedgelike shape with an
aspect ratioa5h0 /x0 (h0 is the wedge height!. This shape is
easily prepared by keeping the fluid at rest for a convenient
time inside an inclined rectangular tray, which is then
quickly brought to a horizontal position att50. As initially
h5a(x02x), andp51. 2

3, the flow has a waiting front and
a corner layer is formed fort,tw . For this case, the most
restrictive bounds fortw are given by Vazquez@27# ~see also
@26#!: 0.52,tw /t*,29.87, wheret*5(3n/g)(x0

2/h0
3) is a

characteristic time that results from the nondimensional form
of Eq. ~1!.

We carry out a series of experiments withx0'15, 50, and
75 cm, 0.012<a<0.12 and fluids with viscosityn'7, 10,
20, and 100 cm2 s21. In all the experiments the front moves
only after a long time~10–103 s, depending ona, x0 and
n), with tw /t* well in the above range. A corner layer forms
before tw , as is evident in the]h/]x distribution, which
develops a peak that grows and narrows as it moves toward
the front. The peak becomes increasingly asymmetrical, with
a very steep leading border, followed by a broader rear re-
gion. The position and height of the peak tend to follow
power laws of (tw2t), which suggests the approach to a
self-similar regime. However, when the corner layer comes
very close tox0 , the power law behavior for the amplitude
of the ]h/]x peak breaks down. The leading border of the
peak overtakes the front; then the waiting stage ends and the
liquid spreads beyondx0 . The values ofd observed are very
close to the unity, thus suggesting that the front starts to
move with nonzero velocity.

We address considerable work to study whether the labo-
ratory flows are properly described by Eq.~1!. The main
limitations are due to effects caused by surface forces and
departures from the geometry of the velocity field at the ba-
sis of the lubrication approximation. They will be considered
in Sec. II, and discussed when used for the interpretation of
the results. We also provide numerical solutions of Eq.~1!
with or without the inclusion of a term accounting for the
Laplace pressure. These solutions are obtained through an
adaptation of the Crank-Nicholson method employed by
Diez et al. @28#.

In spite of these limitations, the simple flow studied in
this work clearly displays much of the typical phenomenol-
ogy related to the mathematical properties of Eq.~1!. The
most noticeable feature is the behavior of the]h/]x peak,
whose formation and evolution are deeply associated with
the combination of a nonlinear wave propagation and a dif-
fusion that is typical of nonlinear diffusion. We believe that
the experimental results reported here are good to orient
theoretical formulations and to validate numerical simula-
tions.

II. DESCRIPTION OF THE EXPERIMENTS

A. Experimental setup

We use a rectangular glass tray~width 0.72 m, length 0.98
m, height 0.10 m!, which can rotate about a horizontal axis at
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38 cm from the rear end. The large width of the tray ensures
that the sidewalls do not affect the flow in the central region;
then the magnitudes are independent of the transverse coor-
dinate. After carefully cleaning the spreading surface with
hexane, we introduce the liquid into the tray, previously
tilted by the desired angle respect to the horizontal. Capillary
effects tend to distort the wedge near the front; we reduce
this effect by starting the experiment at the moment when the
fluid has a well defined wedgelike shape. Several hours or
even days may be required to achieve a good initial profile,
depending on the fluid viscosity and on the values ofa and
x0 . To start the experiment, we let the tray fall to the hori-
zontal position~determined by stops!. We use a dashpot to
reduce the vibrations due to the impact of the heavy~weight
'25 kg! glass-fluid system against the stops. We measure
the horizontality of the spreading surface and the aspect ratio
a with an error less than 1024 by means of the deviation of
a laser beam reflected by the tray surface. The flatness de-
partures with respect to a horizontal average ideal plane are
less than 331022 cm. In this way, at t50,
h(x)5a(x02x).

B. Conditions on the experimental parameters

The reported data correspond to 35 experiments which
cover a wide range ofn, a, and x0 . The choice of these
parameters is limited because of the approximation needed to
derive Eq.~1! from the Navier-Stokes equation. The width of
the tray is at least'x0 , since the side walls may affect the
plane geometry. We observe the central region of the spread-
ing in order to detect eventual transverse dependencies of the
front position, thus indicating departures from plane geom-
etry. According to these observations, we can safely affirm
that our results are not significantly affected by the lateral
walls. The inertial term may be neglected ifaR!1 @29#,
whereR>Uh0 /n is the Reynolds number, withU5x0 /t*
the characteristic velocity~we poseR<0.02). In addition,
t* must be larger than the time of fall of the tray, of the order
of some tenths of a second~we poset*>10 s!. On the other
hand, the lubrication approximation requires that
(]h/]x)2!1 everywhere. Initially, this condition is satisfied
if a2!1 @29# ~we posea<0.12). However, as the flow
evolves,]h/]x may become much larger thana in some
regions, so that the above condition does not ensure the
smallness of]h/]x there. Moreover, near the rear wall of the
tray, the adherence of the fluid to the wall may affect
strongly the flow. The possible influence of these local de-
partures from the lubrication approximation on the measured
magnitudes will be discussed in Sec. II C. The conditions on
R and t* are fulfilled by employing polydimethylsiloxanes
~PDMS’s! of high viscosity (n>7, 10, 20, and 100 cm2

s21, r50.975 g cm23), known to behave as Newtonian liq-
uids for n<10 cm2 s21, and for largern within the shear
rates of the experiments (U/h0<1 s21) @30,31#. As we shall
see in Sec. III, flows with equalx0 anda but differentn give
the same results, thus confirming that departures of the New-
tonian behavior are negligible.

The influence of surface forces is of particular interest.
During the waiting stage, they enter through the Laplace
pressure generated by the surface tensiong at the liquid-air
interface (g521.6 dyn cm21 for PDMS!. By assuming

]h/]x!1 consistently with the lubrication approximation,
the term

2
g

3rn

]

]xS h3 ]3h

]x3D , ~2!

should be added to the right hand of Eq.~1! (r is the liquid
density!. By introducing the capillary length
a5(g/rg)1/2 ('0.15 cm for PDMS!, the ratio between the
term ~2! and the right hand of Eq.~1! is given by

a2S ]3h

]x3Y ]h

]xD'
a2

~Dx!2
,

whereDx is the length scale of a slope variation~in our case,
the width of the corner layer!. Thus surface tension is impor-
tant when this scale is of the order or smaller thana, irre-
spectively of the height scale. On the other hand, the width
of the corner layer should scale asx0 . Therefore, the larger
x0 , the smaller the portion of the current where the Laplace
pressure may affect the corner layer and, therefore, the
smaller its effect on the bulk. Note thata does not enter the
problem.

After tw the situation changes, since we deal with a
spreading over an initially uncovered substrate. Equation~1!
must now be solved with a boundary condition appropriated
for a moving contact line. According to usual approaches
@32,33# and considering that PDMS completely wets glass,
this introduces the capillary number
Ca5U/(g/rn)5a3(x0 /a)

2/3 into the problem; specifically,
Ca should be much larger than unity to make surface effects
negligible. As we ought to work with smalla, this condition
is not properly fulfilled in many experiments. Note that now
a enter the problem even within the lubrication approxima-
tion.

We notice that capillarity may also produce a displace-
mentDx of the front in the time 0,t,tw . Its magnitude can
be estimated through the well known Tanner’s law
@28,32,33# ua>4.2 Ca1/3 which relates the apparent contact
angle ua with the advancing front velocityU. By setting
Dx5Utw , ua5a, the requirementDx!x0 yields

0.4
a2

x0
2 !1.

This condition is amply satisfied in our experiments.

C. Measurement techniques

As PDMS’s are very transparent liquids, it is convenient
to observe the free surface through light refraction~refraction
index h>1.40, with a slight dependence on the viscosity!.
We measure the free surface slope by means of the deviation
of a light slice composed of vertical parallel rays, which
forms an angle of 45° with the flow direction (x axis! ~Fig.
1!. The light slicea ~see the inset in Fig. 1! enters the fluid
from below in such a way that part of it (b) goes through the
substrate only, and therefore maintains the vertical direction,
while the remaining part (c) is refracted at the liquid free
surface. The rays of partc are deviated only in thex direc-
tion by amounts that depend on the local surface slope. Parts
b andc produce a bright curve composed by two piecesb8
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and c8 on a semitransparent screen and are recorded by
means of a video camera. The (j,z) coordinates on the
screen corresponding to a point of the curve are related to the
x coordinate of the incident ray and the slope of the free
surface atx, respectively. By supposing that the distanceD
between the fluid surface and the screen is much greater than
h, and with a convenient choice of the origin, these coordi-
nates are

j5z5x for b8;

j5x and z5x1Dtgu for c8,

where the angular deviationu is related with the slope
]h/]x by

]h

]x
5

sinu

h2cosu
'

u

h21
for u!1.

Initially, b8 and c8 are parallel straight segments~as we
show in Fig. 1!, because the liquid free surface has a uniform
slope ~note that immediately after the fall of the tray, the
method gives a measurement ofa which must be consistent
with the value obtained from the laser beam reflection!. As
the flow develops, segmentc8 distorts, portraying the
changes of the slope of the free surface. The range of observ-
able slopes is limited in theory by the internal total reflection
in the liquid-air surface~that sets a bound of]h/]x>0.8 for
PDMS!. In practice, the maximum deviation of the rays col-
lected by our setup isu'0.3 rad (]h/]x'0.67). After image
processing, the indeterminacy of the measurements is less
than 2.1023 for ]h/]x and 0.25 mm for thex coordinate.

As a complement to the previous technique we record
images of the zone near the front by means of a zoom
3100 video camera from a lateral position slightly above the
spreading surface. To keep the front region centered in the
video screen, the camera is manually displaced along a rail
~75-cm length! parallel to the flow direction. By interposing
a partially reflecting surface, we form the virtual image of a
fixed reference scale, which therefore appears superimposed
on the current image. The current is illuminated by a diffuse
light source placed at the side of the tray opposite to the
camera, slightly below the surface. The positionxc of the

leading border of the corner layer is given by the foremost
edge of a dark band due to the strong deviation of the rays
traversing the large slope region~note that, neartw , xc is
very close to the coordinatexm of the point of maximum
slope!. The technique gives alsox0 , the waiting timetw , and
the positionxf of the most advanced part of the moving front
after tw . The positions are measured within'0.1 mm, i.e.,
with precision higher than in the light slice method. Since
part of the information (tw , xc , and xf) is given by both
techniques, the consistency of the results strengthens their
reliability.

III. RESULTS

A. Global aspects. Waiting-time measurement

In all the experiments there is a waiting stage, during
which the front remains at rest within the accuracy of the
detection systems ('1023x0). In this stage, the flow always
displays the same qualitative behavior. The initial triangular
profile becomes increasingly curved, and two distinct regions
become recognizable. In a first region, extending from the
rear wall (x50) to a certain intermediate position
xi(,x0), the profile strongly departs from the initial condi-
tion; except near the rear wall, the slope increases monotoni-
cally from almost zero~for x'0) to values considerably
steeper thana at xi . This region is followed by another
which extends fromxi up to x0 ; in this domain the initial
profile remains practically unchanged. The transition be-
tween these regions moves towardx0 and becomes progres-
sively sharper, gradually acquiring the characteristics of a
corner layer. Figure 2 shows the evolution of]h/]x andh
distributions~the last one is obtained by integrating the first
curves! vs (x2x0) for a typical current. The slope profiles of
Fig. 2~a! indicate that as the corner layer advances it narrows
and the maximum slope increases. The peak of]h/]x be-
comes increasingly asymmetric as the extreme of]2h/]x2

shifts forward. Looking at Fig. 2, one notices that the distri-
bution of]h/]x ahead to the corner layer remains practically
unchanged. As a result the flow closely resembles a spread-
ing over a fixed wedge profile. However, sensitive measure-
ments based on the reflection of a laser beam show that the
slope in the foremost region varies slightly, but the changes
are too small to be seen in Fig. 2. The waiting stage ends
when the corner layer overtakes the front, which then starts
to move, thus defining the waiting timetw .

In Fig. 3, we showTw5tw /t* as a function ofa for
different values ofx0 andn. The dispersion is because small
errors of thea measurements are magnified by the cubic
dependence oft* on a, and because the viscosity is mea-
sured within 2% accuracy by standard techniques~the value
of n is modified according to the fluid temperature!. The
lubrication theory approximation predicts a unique value for
Tw ; however, we observe thatTw depends slightly~roughly
linearly! on a. The extrapolated value fora→0 is close to
the value~0.963! obtained by numerically solving Eq.~1!
~with g50). Note that they are within the bounds given by
theoretical predictions@14,26,27#.

We ascribe the dependence ofTw on a to a two-
dimensional effect coming from the rear wall of the tray,
which imposes a vertical no slip boundary condition that

FIG. 1. Experimental setup to measure the]h/]x profile.
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cannot be properly treated within the lubrication approxima-
tion. Then the solution of Eq.~1! does not correctly describe
the flow near the rear wall. A heuristic estimate of this effect
can be made by assuming that a slab of fluid of width pro-
portional to h0 adjacent to the rear wall simply does not
participate in the spreading. Hencex0 should be replaced by
an effective length(x02ch0), wherec is a constant of the
order of unity. This leads to acorrectedcharacteristic time

t*>
3n

ga3x0
~11ca!.

ThereforeTw}(11ca), according to the linear dependence
of Fig. 3. The best fit line givesc'2.

We have also examined other possible causes of the
Tw(a) dependency, but they should all be rejected. First, the
variation is too large to be explained by eventual departures
from the lubrication approximation in the bulk of the current.
In fact, ]h/]x is small everywhere except during a time in-
terval much shorter thantw and within a region of size
!x0 . Second, the influence of the capillarity term given by
~2! on Eq.~1! must be ruled out becauseTw does not depend
on x0 . Finally, the data shown in Fig. 3 correspond to ex-
periments with various liquids covering a wide range of vis-
cosity. Therefore, the observed variation ofTw cannot be
ascribed to non-Newtonian effects.

As a consequence, from now on we shall use the effective
length (x02ch0) instead ofx0 . This change, by definition,
yields a modifiedTw that no longer depends ona. It also
cancels small dependencies ona in other experimental vari-
ables thus enlightening the discussions.

B. Evolution of the corner layer and the moving front

In Fig. 4~a! we show XC5(xC2x0)/x0 and
Xf5(xf2x0)/x0 as functions ofT5(t2tw)/tw for different
values ofa andx0>15 cm. Similar results are also obtained
for x0>50 and 75 cm. CurvesXC(T) and Xf(T) join
smoothly acrossT50, so that the front motion appears to be
a natural continuation of the corner layer motion. However,
all the curvesXC(t) are almost coincident, while the curves
Xf(T) differ slightly, opening like a fan. The data for
20.05,T,0 are well approximated by a power law with an
exponentdb51.13 @see Fig. 4~b!#, close to the value~1.07!
obtained in the numerical solution of Eq.~1! without surface
tension. This suggests that the flow nearx0 tends to self-
similarity for t→tw independently ona. For 0,T,0.05 the
curves may also be approximated by power laws with expo-
nentsda close to unity~the numeric value is 0.995!, which

FIG. 2. Sequences of~a! slope profiles and~b! height profiles
for a typical experiment (a50.0229, x0578 cm, andn522.7
cm2 s21).

FIG. 3. Dimensionless waiting time as function of the initial
aspect ratio forh, x0'15 cm;D, x0'50 cm;L, x0'75 cm;d,
numerical value~obtained with a one-dimensional code! for g50.
The best linear fit isTw50.9411.99a.

2632 54B. M. MARINO et al.



agrees with mathematical predictions@26,27#. Nevertheless,
the corresponding prefactors increase whileda slowly de-
creases witha.

When we compare the results for variousx0 and fixeda
~see Fig. 5!, as before we observe that theXC(T) curves
coincide while theXf(T) curves differ slightly.XC(T) is
again well approximated by a unique power law with an
exponentdb close to that obtained for the curves of Fig. 4~b!,
while the Xf(T) curves are fitted by power laws with the
exponents close to unity and prefactors increasing withx0 .

These results indicate that, within the parameter range
covered by our measurements, the motion of the corner layer
is practically independent ofa andx0 ; therefore capillarity
does not significantly affect this motion. This agrees with the

numerical solutions of Eq.~1! including the capillarity term
~2!. We point out that the comparison betweenXC(T) and
the numerical solution is meaningful because the maximum
slope is always small (,0.6) for all values ofXC considered.

On the other hand, the experimental curvesXf(T) depend
on an unseparable combination ofa and x0 , as expected
since the capillary number Ca becomes the relevant param-
eter. As we see in Fig. 6, the data of cases corresponding to
the same Ca but differentx0 anda fall very close to a unique
line. This means that the fanning out of theXf(T) curves is
due to the influence of capillarity on the motion of the
spreading front. This effect should decrease as Ca increases;

FIG. 4. ~a! Dimensionless coordinate of the corner layer
XC(T) and of the frontXf(T) in the casesx0>15 cm (h,
a50.12;s, a50.10;D, a50.09;¹, a50.08;L, a50.065; *,
a50.05; and1, a50.03). Observe the coincidence among the
experimental results forT,0 and the fan-shaped disposition of the
points sequences forT.0. ~b! Log-log representation of the same
cases of~a! for T.20.5.

FIG. 5. Dimensionless coordinate of the corner layerXC(T) and
of the front Xf(T) in the casesa'0.03 (s, x0515 cm; L,
x0550 cm; andh, x0575 cm!. Note the fan-shaped disposition of
the points forT.0.

FIG. 6. Dimensionless coordinate of the corner layerXC(T) and
of the frontXf(T) in cases labeled according to the value of Ca.
Note the coincidence ofXf(T) in the cases with the same Ca.
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we observe that all the best fit power laws practically coin-
cide for Ca.4.

C. Comparison with an analytical self-similar regime

It is noteworthy to compare the corner layer and the front
evolution with the analytical self-similar solution~of the first
kind! of Eq. ~1! corresponding to the fluid concentrated at the
origin at t50 @6,12,15#. This solution is also used by
Vazquez@27# to find an upper bound oftw . Here, the front
position is given by

xf5lS gA33n
t D d

, ~3!

whered50.2, l51.411 . . . , andA is the area of the fluid
lateral cross section. In the inset of Fig. 7 we report with
adequate scales the positions of the corner layer and the
moving front for three cases yet shown in Fig. 4~a! ~symbols!
with the front position given by Eq.~3! ~full line!. An im-
portant point is that the latter reachesx0 at a time
t51.43t* , close to the experimental waiting time. From Fig.
7, it is clear that the velocities of the experimental fronts are
close to the velocity given by the time derivative of Eq.~3!.
In all the cases, we observe a decrease of the corner layer
velocity for t<tw according to an exponentdb.1. The front
starts to move with a finite velocity~that is,da'1), which
corresponds to a sudden increase of velocity in Fig. 7@as
evident in the case Ca55.76 (h)# by a sudden increase at

tw ; this increase becomes less evident as Ca decreases (D
and.). For t@tw andxf@x0 the position of the front agrees
well with Eq. ~3! irrespective of the initial conditions. As this
asymptotic regime has been widely studied in previous work,
we omit further details here.

D. Evolution of the maximum slope

We now discuss the evolution of the maximum slopesm
of the current profile during the waiting stage. The technique
described in Sec. II allows us to measuresm up to a time
quite close totw beforesm becomes too large to be captured
in the screen.

Figure 8 is a log-log plot of the experimental points
Sm5sm/a vs Xm5(x02xm)/x0 , for different values ofa
and n. We also show the results of numerical solutions in-
cluding the capillary term (g521.64 dyn cm21) for
x0515 cm~dashed line! and 75 cm~dash-dot line!. The solid
curve corresponds to the calculation without surface tension,
and tends to a straight line~power law! as the flow evolves
(Xm→0), indicating a self-similar behavior forXm<0.04.
The measurements are in excellent agreement with the cor-
responding numerical curve, but they depart from theg50
solution near the front. As expected, the largerx0 , the nearer
to the front this departure begins; however, even for the larg-

FIG. 7. Dimensionless velocity of the corner layer and the front
obtained by derivation for the three cases reported in Fig. 4~see the
inset!. The solid curve corresponds to the analytical self-similar
solution given by Eq.~3! and the symbols toh, Ca55.76; ¹,
Ca51.71; and., Ca50.42.

FIG. 8. Dimensionless maximum slopeSm(XC)5sm /a as a
function of its coordinateXm . The curves correspond to numerical
values withg50 ~solid line! and g521 dyn/cm2 for x0>15 cm
~dashed line! and 75 cm~dash-dot line!. The symbols correspond to
the following cases:L, a50.065, x0515.3 cm, andn5100.5
cm2 s21; 1, a50.0492, x0515.2 cm, andn5102.5 cm2 s21;
s, a50.0304, x0513.85 cm, and n5101.2 cm2 s21;
¹, a50.0293, x0514.7 cm, and n520.9 cm2 s21;
h, a50.0295, x0514.8 cm, and n58.98 cm2 s21;
., a50.0233, x0577.0 cm, and n520.9 cm2 s21;
l, a50.0205, x0576.5 cm, and n521.6 cm2 s21;
j, a50.017, x0576.74 cm, and n521.3 cm2 s21;
d, a50.0153, x0577.7 cm, and n521.6 cm2 s21; and
D, a50.0126, x0575.5 cm, andn57.49 cm2 s21.
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est x0 the surface tension prevents the development of the
self-similar flow predicted by theg50 solution. Clearly, we
find that~for a givenXm) the cases with smallerx0 produce
smaller values ofSm and broader]h/]x peaks, as must be
expected since capillarity tends to reduce the local curvature
of the profile.

E. Depression preceding the corner layer in the slope profiles

Near the end of the waiting stage, the]h/]x profiles de-
velop a peculiar small depression~dip! preceding the corner
layer ~see Fig. 9!, almost imperceptible in theh(x) profiles.
This unexpected feature appears for largeSm , but still into
the range of our slice light technique. In Fig. 8 we encircle
the points corresponding to profiles where the dip is present.
Note that surface tension strongly affects all these profiles,
which suggests that capillarity plays a role on the formation
of the dip. This guess is enforced by a theoretical model
~with dominant capillary effects! reported by Tanner@32#,
where analogous depressions appear ahead a front advancing
over a thin fluid layer. We leave a more detailed study of this
interesting phenomenon for a future work.

IV. SUMMARY AND CONCLUSIONS

The viscous flows produced by a wedgelike initial profile
(a<0.12,x0>100a) display the main features of the waiting
front phenomenology and can be described with a reasonable
approximation by the solutions of Eq.~1!. Surface tension
effects are less important for long wedges, but cannot be
neglected in experiments; they may be ignored only for natu-
ral phenomena occurring on a much larger scale than the
capillary length. The flow has a long stage with a motionless
front during which the profile changes gradually. The most
noteworthy feature of this stage is the evolution of a thin
transition region~corner layer!, where the slope of the liquid
free surface varies strongly, propagating toward the front.
The existence of this feature has been predicted theoretically,

but its properties have not been investigated in detail previ-
ously. The corner layer separates two regions clearly: one
ahead, almost unperturbed, and another behind, strongly
modified with respect to the initial condition. The front starts
to move precisely when it is overtaken by the corner layer.
As the corner layer approaches the front, its evolution tends
to a self-similar regime (Xm<0.04) in whichXm varies ac-
cording to a power law ofT, independently ofn, a, and
x0 . The self-similar solution of the first kind, which de-
scribes the spreading of the same liquid volume delivered at
t50 andx50, provides very good estimates of some mag-
nitudes. First,tw is close to the time at which, according to
this solution@Eq. ~3!#, the front arrives atx0 ; second, both
the velocities of the corner layer~beforetw) and the moving
front ~after tw) are well given by the front velocity corre-
sponding to this solution~except nearx0). The experimental
waiting-time values are always within the bounds provided
by Aronson and co-workers@14,26# and Vazquez@27#, i.e.,
0.3<tw /t*<` and 0.52<tw /t*<29.87, respectively.

The results not related to the mathematical properties of
Eq. ~1! can be summarized as follows:

~a! The waiting time shows an unexpected slight depen-
dence on the initial aspect ratioa ~Fig. 3!. This effect has a
global character and is related to the experimental boundary
condition at the rear wall, which cannot be adequately repro-
duced within the lubrication theory approximation used in
Eq. ~1!. For a value ofa not too large (,0.12), this effect
can be accounted by using an effective length in the charac-
teristic time t* , slightly less than the actual length of the
wedge.

~b! When the corner layer approaches the front (T→0),
the shape of the]h/]x profile nearSm and the evolution of
the maximum slope~Fig. 8! differ from the solution without
surface tension; this indicates that the flow in the peak region
departs from self-similarity. Associated with this deviation, a
small dip of the]h/]x distribution appears ahead of the peak
~Fig. 9!. These departures are sensitive tox0 but not toa.
Our numerical simulations show that these are local effects
mainly due to capillarity, that prevents the complete devel-
opment of the self-similar regime in the corner layer region.
In our experiments, the influence of surface tension on the
corner layer precedes the two-dimensional effects associated
with the breakdown of the lubrication hypothesis~that occurs
due to]h/]x→` whenxm→x0).

~c! For a value oft larger but close totw , we find that the
front moves with an almost constant velocity~i.e., db'1)
according to the predictions of Aronson, Caffarelli, and
Vazquez@26# and Vazquez@27# for this case. The initial
front velocity scales as (x0 /t* ) f ~Ca! ~Fig. 6!, wheref is an
unknown function which tends to a constant for Ca→`. This
shows that capillarity is also important after the front starts
to move if Ca'1 as in experiments.

This work shows that the waiting-time solutions of Eq.~1!
better describe the evolution of very long and shallow liquid
wedges. The main deviations from pure nonlinear diffusion
are due to capillarity, which affects the flow near the corner
layer close to the end of the waiting stage, and near the front
after it begins to move. These interesting perturbing effects
may deserve more specific studies. In our experiments these
departures are significant, but do not obscure the basic fea-

FIG. 9. Sequence of]h/]x profiles for the casesx0575.5 cm
anda50.0126. The dip preceding the corner layer is clearly vis-
ible.
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tures of the waiting-time phenomenon, whose study is the
main purpose of this paper.

The development and evolution of the corner layer pro-
vide a fine and interesting demonstration of the interplay
between nonlinear propagation, which tends to reduce the
width of the corner layer and to increase the]h/]x peak to
produce a corner shock, and~nonlinear! diffusion, which op-
poses this tendency, smoothing the]h/]x profile and broad-
ening the layer. As the flow evolves and the corner layer
approaches the front~where the thickness of the current is
small! the nonlinear propagation effect prevails. The numeri-
cal solutions of Eq.~1! ~pure nonlinear diffusion! suggest

that the corner layer becomes a corner shock att5tw when it
overtakes the front. Even if in the experiments the corner
layer profile is affected by capillarity and two-dimensional
effects near the end of the waiting stage, this evolution is
clearly displayed as a trend.
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