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Waiting-time solutions of a nonlinear diffusion equation:
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We investigate an unsteady plane viscous gravity current of silicone oil on a horizontal glass substrate.
Within the lubrication approximation with gravity as the dominant force, this current is described by the
nonlinear diffusion equatiok,= ($"®,)« (¢ is proportional to the liquid thickneds andm=3>>0), which
is of interest in many other physical processes. The solutions of this equation display a fine example of the
competition between diffusive smoothening and nonlinear steepening. This work concerns the so-called
waiting-time solutionswhose distinctive character is the presence of an interface or front, separating regions
with h#0 andh=0, that remains motionless for a finite time intertgimeanwhile a redistribution df takes
place behind the interface. We start the experiments from an initial wedge-shape configuration
[h(xX)=~a'(xg—x)] with a small angle ¢ <0.12 rad. In this situation, the tip of the wedge, situatedxgt
from the rear wall(15 cm<x,<75 cm), waits at least several seconds before moving. During this waiting
stage, a region characterized by a strong variation of the free surface (soper laye) develops and
propagates toward the front while it gradually narrows afl/ 9x> peaks. The stage ends when the corner
layer overtakes the front. At this point, the liquid begins to spread over the uncovered substrate. We measure
the slope of the free surface in a rangel0 cm aroundx,, and, by integration, we determine the fluid
thicknessh(x) there. We find that the flow tends to a self-similar behavior when the corner layer position tends
to Xo ; however, near the end of the waiting stage, it is perturbed by capillarity. Even if some significant effects
are not included in the above equation, the main properties of its solutions are well displayed in the experi-
ments[S1063-651X96)13309-7

PACS numbds): 47.15.Gf, 47.10t+g, 68.10.Cr, 68.45.Gd
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We consider a nonlinear diffusion equation in plane sym-

metry of the form
which displays clearly that the time evolution @f results
from a combination of nonlinear wave propagatidfirst
ap _d ([ 0P ¢> term on the rightand diffusion(second term[13,14.
ot o9x ¢ m>0. (1) Because of the nonlinearity of the diffusion term of Eq.
(1a), there are solutions with well-defined fronts or interfaces
[15,16, separating regions wherg# 0 and¢=0. Fronts of
Equations of this type describe many interesting physicathis type are currently observed in creeping flows, where it is
processes such as heat transport by radiation in partially @rasy to measure with accuracy their propagaftidh17 and
totally ionized gases, or by electrons in plasrill uncon-  their cross profild12]. There is also much evidence of their
fined ground-water flow and gas percolation through porougxistence in the other phenomena described byBgmuch
media[2], electric transmission in cables with resistive coat-harder to study experimentall{t8,19. An interesting prop-
ings, as well as other phenomeii®&d4]. In particular, Eq(1) erty is displayed by thevaiting-time solution$4,13,20-24
with m=3 is obtained in the lubrication theory approxima- which describe an evolution @(x) behind a front at a fixed
tion [5], and describes viscous liquids flows over smoothposition during a finitewaiting time {,. The waiting-time
horizontal substrates, also calleceping flow$5-7], which  solutions have aroused a considerable interest among the
receive attention because of their environmental interesnathematicians, but the related phenomenology has not yet
[8-11]. Since creeping flows can be studied by means obeen studied experimentally in a systematical way. Since in
simple and cheap experiments, they are well suited to teshe literature there are few references of observations, mostly
some solutions of Eq1) in the laboratory, and to investigate qualitative, of waiting-time creeping flowd,25|, we believe

some of their typical featurd$,12). it is of interest to report the results of a series of experiments
Let us note that by setting= ¢™ andr=t/m, Eq.(1) can  specifically addressed to investigate a viscous current near a
be transformed into waiting front.
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Now we briefly recall some properties of waiting-time  In this work we describe systematic experimental studies
solutions to provide a theoretical background. First we meneof situations dominated by the waiting front phenomenology.
tion that the exact evaluation of, for given initial condi-  Specifically, we are concerned with viscous gravity currents
tions is still an open problem. Formulas for lower and upperunder the conditions that allow us to use the lubrication ap-
bounds oft,, are known[4,13,14,26,2]. The bounds given Proximation. Then the appropriate equation of motion is Eqg.
by Aronson and co-workerkl4,26 and VazqueA27] are (1) with m=3, and the diffusing scalar ig=(g/3v)"*h,
particularly relevant to our concern. with g the gravity andv the kinematics viscosity. In the

In a noteworthy paper, Kath and Cohft8] considered iNitial configuration the fluid has a wedgelike shape with an
the limit m<1, in which the leading term of Eqla) corre- ~ aSPect ratiar=hq /X, (N, is the wedge heightThis shape is

sponds to a nonlinear first order wave propagation equatior£2Sily Prepared by keeping the fluid at rest for a convenient

- - me inside an inclined rectangular tray, which is then
The solutions, solved by the method of characteristics, mag]uickly brought to a horizontal position & 0. As initially

develop discontinuities of the first derivativeb/ dx (corner 2 o

e . ; h=a(xy—X), andp=1> 3, the flow has a waiting front and
SEOCk$ Thg d/'gu_siﬂn tefrm included in Ec{ls)bsmooths the a corner layer is formed for<t,,. For this case, the most
changes o ¢/ dx; there Ore, a corner shoc 5 ecozmesom- restrictive bounds fot,, are given by Vazque27] (see also
ner layer, i.e., a smallx interval in which d-¢/dx~ has a 26]): 0.52<t,, /t* <29.87, where* = (3v/g)(x,2/hy%) is a

. . . . - - W . 1

peak. By using this analysis Kath and Cohen discussed thg,aracteristic time that results from the nondimensional form
evolution of initial profiles¢=|x—X,|P near the front Xy is  f Eq. (1).

the front position. Then the formation of a corner shock e carry out a series of experiments witg~ 15, 50, and
determines the basic behavior of the waiting-time solutionsys ¢m, 0.01Z «<0.12 and fluids with viscosity~7, 10,
The front can start to move depending upon whether theg, and 100 cris™ 2. In all the experiments the front moves
corner shock forms just at, or behind the front. They foundonly after a long time(10-10° s, depending on, x, and
the following. v), with t,,/t* well in the above range. A corner layer forms
(@ If 0<p<2/m, the front moves immediatelyt,(=0). beforet,,, as is evident in thedh/dx distribution, which
(b) If p=2/m, the front begins to move after a finite wait- develops a peak that grows and narrows as it moves toward
ing time, and precisely then a corner shock is formed athe front. The peak becomes increasingly asymmetrical, with
Xo; this is the only case in which there is a formula a very steep leading border, followed by a broader rear re-
[13,14,26 for t,, (that also holds for finiten). gion. The position and height of the peak tend to follow
(c) If p>2/m, the front remains at rest for a finite time; at Power laws of {,—t), which suggests the approach to a
a certain moment during this interval a corner shock appeargelf-similar regime. However, when the corner layer comes

behind the front, and propagates overtaking the front a¥ery close tox,, the power law behavior for the amplitude
t=t,,. of the gh/dx peak breaks down. The leading border of the

The existence of similarity solutions with waiting time peak overtakes the front; then the waiting stage ends and the
was proved by Lacey, Ockendon, and Taylét using a liquid spreads beyonxl,. The values of5 observed are very

phase-plane formalism. They found similarity solutions ofclose to the unity, thus suggesting that the front starts to
the second kind, valid before and afty. They classified mo%iﬁﬁ%rgzngorgs\ﬁggg)(é work to study whether the labo-
the solutions according to the self-similarity exponent y

. . - ratory flows are properly described by Ed.). The main
5(5.>l ina contmuous slpectrl)rmnd gave prescnpﬂqns for' limitations are due to effects caused by surface forces and
their construction, but did not discuss their properties. Thi

; £ soluti d ibe th ot Ui Sdepartures from the geometry of the velocity field at the ba-
ype of solution may describe th€ asymptolic SOIUNoNS Neag; ¢ e yprication approximation. They will be considered
the front and close td,, of an initial value problem that

. L . in Sec. I, and di d wh d for the int tati f
displays a waiting-time behavior. The value®fepends on n Sec. 1, aNc dISCUSSed when Used Tor the INISTPretanon o

A - X >~ the results. We also provide numerical solutions of &g.
the initial conditions of the problem, and its determination b Bl

dd d by th h M v G with or without the inclusion of a term accounting for the
was not addressed by these authors. More recently, r""ttq_naplace pressure. These solutions are obtained through an
and Vigo[24] studied in detail the solutions of Lacey, Ock-

adaptation of the Crank-Nicholson method employed b
endon, and Tayloftheir study focused on the case=3, but Diefet Ial [28] ! ploy y

the generalization to any is straightforwargland found that
those solutions corresponding to<®<i3 display corner
layers during the waiting time. They also numerically solved

the initial value problem for profiles of the forx—xo|”. ot noticeable feature is the behavior of ttedx peak,
They obtained a nonvanishing, only for p>35, with  \yhose formation and evolution are deeply associated with
1<é<1;, and observed always the formation of a comerie compination of a nonlinear wave propagation and a dif-

Izayer behind the fronfas in casdc) above except forp=" f,sion that is typical of nonlinear diffusion. We believe that

5 when a corner shock appears tatt, andx=xo; for — he experimental results reported here are good to orient
p<3 the front moves at oncet=0). Thus the numerical thepretical formulations and to validate numerical simula-
solutions have extended the validity of the results of Kathyjgns.

and Coher{13] beyond the conditiom<<1.

The way in which the front begins to move also depends II. DESCRIPTION OF THE EXPERIMENTS
onp. So, if the waiting time is due to purely local effects, the
interface begins to move smootHIg6], i.e., the front veloc-
ity does not jump at=t,,. Conversely, if nonlocal effects We use a rectangular glass trayidth 0.72 m, length 0.98
are dominant, the front starts to move with a finite velocity.m, height 0.10 iy which can rotate about a horizontal axis at

In spite of these limitations, the simple flow studied in
this work clearly displays much of the typical phenomenol-
ogy related to the mathematical properties of EL. The

A. Experimental setup
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38 cm from the rear end. The large width of the tray ensuregh/dx<1 consistently with the lubrication approximation,
that the sidewalls do not affect the flow in the central regionthe term

then the magnitudes are independent of the transverse coor- 3
dinate. After carefully cleaning the spreading surface with _ Li( 3@) 2
hexane, we introduce the liquid into the tray, previously 3pw ax| - ax®)’

tilted by the desired angle respect to the horizontal. Capillary , , -
effects tend to distort the wedge near the front; we reduc hould be added to the right hand of Ef) (p is the liquid

. ) . ensity. By introducing the capillary length
this effect by starting the experiment at the moment when thg_ 2y .
fluid has a well defined wedgelike shape. Several hours g=(v/pg)"* (~0.15 cm for PDMS, the ratio between the

or ; o
even days may be required to achieve a good initial profile'ferm (2) and the right hand of Ed1) is given by

depending on the fluid viscosity and on the valuesradnd a3h ah a?
Xg - To start the experiment, we let the tray fall to the hori- az(m/ 5) ~ (A—x)2

zontal position(determined by stopsWe use a dashpot to

reduce the vibrations due to the impact of the heavgight  whereAx is the length scale of a slope variatitin our case,
~25 kg glass-fluid system against the stops. We measuréhe width of the corner lay&rThus surface tension is impor-
the horizontality of the spreading surface and the aspect ratigant when this scale is of the order or smaller tkaarirre-

a with an error less than I¢ by means of the deviation of spectively of the height scale. On the other hand, the width
a laser beam reflected by the tray surface. The flatness def the corner layer should scale &g. Therefore, the larger
partures with respect to a horizontal average ideal plane arg , the smaller the portion of the current where the Laplace
less than X102 cm. In this way, at t=0, pressure may affect the comer layer and, therefore, the

h(x) = a(Xo—X). smaller its effect on the bulk. Note thatdoes not enter the
problem.
B. Conditions on the experimental parameters After t,, the situation changes, since we deal with a

I§preading over an initially uncovered substrate. Equatipn

must now be solved with a boundary condition appropriated
r a moving contact line. According to usual approaches
2,33 and considering that PDMS completely wets glass,

The reported data correspond to 35 experiments whic
cover a wide range ob, «, andX,. The choice of these
parameters is limited because of the approximation needed
derive Eq.(1) from the Navier-Stokes equation. The width of thi introd h il b
the tray is at least=X,, since the side walls may affect the 'S_ in ro_uc3es 2 e capl ary' numuer
plane geometry. We observe the central region of the spreag%a_ U/(ylpv)=a”(X/a)"/3 into the problem; specifically,

ing in order to detect eventual transverse dependencies of t a should be much larger than unity to make surface effects

front position, thus indicating departures from plane geom_negligible. As we QUQhF to work with s_maii, this condition
s not properly fulfilled in many experiments. Note that now

etry. According to these observations, we can safely affirni h bl ithin the lubricati .
that our results are not significantly affected by the latera® enter the problem even within the lubrication approxima-

walls. The inertial term may be neglected dR<1 [29], tion. . . .
whereR=Uh, /v is the Reynolds number, withl = x, /t* We notice that cgplllamy may also produce a displace-
the characteristic velocitywe poseR=0.02). In addition, mentAx of the front in the time &xt<1,,. Its magnitude can

. be estimated through the well known Tanner's law
t* must be larger than the time of fall of the tray, of the order .
of some tenthg of a secorfde poset* =10 3. O?’/] the other [28,32,33 0,=4.2 C&" which relates the apparent contact

hand, the lubrication approximation requires thatangle 9, with the advanci_ng front velocit_yJ. By setting
(9hlax)2<1 everywhere. Initially, this condition is satisfied 2X~Ylw: fo= a. the requiremenfx<x, yields

if a?<1 [29] (we posea<0.12). However, as the flow a2
evolves, dh/9x may become much larger tham in some O.4p<1.
0

regions, so that the above condition does not ensure the
smallness ofh/dx there. Moreovgr, near the rear wall of the 1.5 <ondition is amply satisfied in our experiments.
tray, the adherence of the fluid to the wall may affect
strongly the flow. The possible influence of these local de-
partures from the lubrication approximation on the measured
magnitudes will be discussed in Sec. Il C. The conditions on As PDMS’s are very transparent liquids, it is convenient
R andt* are fulfilled by employing polydimethylsiloxanes to observe the free surface through light refracticiraction
(PDMS’9 of high viscosity =7, 10, 20, and 100 cf/ index »=1.40, with a slight dependence on the viscosity
s, p=0.975 g cm %), known to behave as Newtonian lig- We measure the free surface slope by means of the deviation
uids for <10 cm? s, and for largerv within the shear of a light slice composed of vertical parallel rays, which
rates of the experiments)(ho=<1 s~ 1) [30,31]. As we shall  forms an angle of 45° with the flow directiox @xis) (Fig.
see in Sec. I, flows with equal, anda but differenty give  1). The light slicea (see the inset in Fig.)lenters the fluid
the same results, thus confirming that departures of the Newrom below in such a way that part of ibf goes through the
tonian behavior are negligible. substrate only, and therefore maintains the vertical direction,
The influence of surface forces is of particular interest.while the remaining partd) is refracted at the liquid free
During the waiting stage, they enter through the Laplacesurface. The rays of pad are deviated only in th& direc-
pressure generated by the surface tensiat the liquid-air  tion by amounts that depend on the local surface slope. Parts
interface (y=21.6 dyncm ! for PDMS). By assuming b andc produce a bright curve composed by two piebés

C. Measurement techniques
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leading border of the corner layer is given by the foremost
edge of a dark band due to the strong deviation of the rays
traversing the large slope regidnote that, neat,,, x; is

very close to the coordinate,, of the point of maximum
slope. The technique gives alsg, the waiting timet,,, and

the positionx; of the most advanced part of the moving front
aftert,,. The positions are measured within0.1 mm, i.e.,

with precision higher than in the light slice method. Since
part of the information t{,, X., andx;) is given by both
techniques, the consistency of the results strengthens their

Video
Camera

Screen reliability.
/ | Expander T ll. RESULTS
light slice division o
Laser gt shice AVt A. Global aspects. Waiting-time measurement

In all the experiments there is a waiting stage, during
which the front remains at rest within the accuracy of the
tection systems~10 3x,). In this stage, the flow always
isplays the same qualitative behavior. The initial triangular

screen corresponding to a point of the curve are related to t ofile becomes increasingly curved, and two distinct regions

x coordinate of the incident ray and the slope of the free ecome recognizable. In a fII’St.I‘eg.IOFI, exte.ndmg ”0.”.‘ the
rear wall k=0) to a certain intermediate position

éﬁﬁ(<xo), the profile strongly departs from the initial condi-

tion; except near the rear wall, the slope increases monotoni-

h, and with a convenient choice of the origin, these coordi- '
9 cally from almost zerofor x~0) to values considerably

FIG. 1. Experimental setup to measure e dx profile.

and ¢’ on a semitransparent screen and are recorded b
means of a video camera. Th&,{) coordinates on the

nates are steeper thamy at x;. This region is followed by another
E=¢=x for b’; which extends fronk; up to Xq; in this domain the initial
profile remains practically unchanged. The transition be-
&=x and {=x+Dtgé for c’, tween these regions moves towaggdand becomes progres-

sively sharper, gradually acquiring the characteristics of a
where the angular deviatio® is related with the slope corner layer. Figure 2 shows the evolution &f/dx andh
ahlox by distributions(the last one is obtained by integrating the first

curves vs (X—Xg) for a typical current. The slope profiles of

dh sing 7} Fig. 2(a) indicate that as the corner layer advances it narrows
X p—cod -1 for 6<1. and the maximum slope increases. The peakilofix be-
comes increasingly asymmetric as the extreme)af/ ix>
Initially, b’ and ¢’ are parallel straight segmentas we shifts forward. Looking at Fig. 2, one notices that the distri-
show in Fig. 3, because the liquid free surface has a uniformbution of Jh/9x ahead to the corner layer remains practically
slope (note that immediately after the fall of the tray, the unchanged. As a result the flow closely resembles a spread-
method gives a measurement®fvhich must be consistent ing over a fixed wedge profile. However, sensitive measure-
with the value obtained from the laser beam refledtigks ~ ments based on the reflection of a laser beam show that the
the flow develops, segment’ distorts, portraying the slope in the foremost region varies slightly, but the changes
changes of the slope of the free surface. The range of obser@re too small to be seen in Fig. 2. The waiting stage ends
able slopes is limited in theory by the internal total reflectionwhen the corner layer overtakes the front, which then starts
in the liquid-air surfacdthat sets a bound ath/9x=0.8 for ~ to move, thus defining the waiting tintg, .
PDMS). In practice, the maximum deviation of the rays col- In Fig. 3, we showT,=t,/t* as a function ofa for
lected by our setup i8~0.3 rad gh/dx~0.67). Afterimage different values ok, andv. The dispersion is because small
processing, the indeterminacy of the measurements is lessrors of thea measurements are magnified by the cubic
than 2.10°3 for gh/ax and 0.25 mm for thex coordinate. dependence of* on «, and because the viscosity is mea-
As a complement to the previous technique we recorgured within 2% accuracy by standard technig(the value
images of the zone near the front by means of a zoonef v is modified according to the fluid temperatur&he
X 100 video camera from a lateral position slightly above thdubrication theory approximation predicts a unique value for
spreading surface. To keep the front region centered in th&, ; however, we observe that, depends slightlyroughly
video screen, the camera is manually displaced along a rdinearly) on «. The extrapolated value fae—0 is close to
(75-cm length parallel to the flow direction. By interposing the value(0.963 obtained by numerically solving Ed1)
a partially reflecting surface, we form the virtual image of a(with y=0). Note that they are within the bounds given by
fixed reference scale, which therefore appears superimposéieoretical prediction§14,26,27.
on the current image. The current is illuminated by a diffuse We ascribe the dependence @f, on « to a two-
light source placed at the side of the tray opposite to thalimensional effect coming from the rear wall of the tray,
camera, slightly below the surface. The positiqnof the  which imposes a vertical no slip boundary condition that
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FIG. 3. Dimensionless waiting time as function of the initial
aspect ratio fof, xo~15 cm;A, xo~50 cm; &, Xg=75 cm; @,
numerical valugobtained with a one-dimensional coder y=0.
The best linear fit id,,=0.94+ 1.99%.

0.6

We have also examined other possible causes of the
T (@) dependency, but they should all be rejected. First, the
variation is too large to be explained by eventual departures
from the lubrication approximation in the bulk of the current.
In fact, oh/dx is small everywhere except during a time in-
terval much shorter tham, and within a region of size
<Xg. Second, the influence of the capillarity term given by
(2) on Eg.(1) must be ruled out becau3g, does not depend
on Xq. Finally, the data shown in Fig. 3 correspond to ex-
periments with various liquids covering a wide range of vis-
cosity. Therefore, the observed variation Bf cannot be
ascribed to non-Newtonian effects.

As a consequence, from now on we shall use the effective
length xo—chy) instead ofxy. This change, by definition,
yields a modifiedT,, that no longer depends am. It also
cancels small dependencies @rin other experimental vari-
ables thus enlightening the discussions.

04

h (cm)

0.2

0.0

() (x-x,) [cm]

FIG. 2. Sequences dB) slope profiles andb) height profiles
chiTr]zas}%/)plcal experiment ¢=0.0229, xo=78 cm, andv=22.7 B. Evolution of the corner layer and the moving front
In Fig. 4@ we show Xc=(Xc—Xg)/X, and
cannot be properly treated within the lubrication approxima-X:= (X;—Xo)/Xo as functions ofT = (t—t,)/t,, for different
tion. Then the solution of Eq1) does not correctly describe Values ofe andxy=15 cm. Similar results are also obtained
the flow near the rear wall. A heuristic estimate of this effectfor Xo=50 and 75 cm. CurveXc(T) and X¢(T) join
can be made by assuming that a slab of fluid of width pro-smoothly acros§ =0, so that the front motion appears to be
portional to h, adjacent to the rear wall simply does not @ natural continuation of the corner layer motion. However,
participate in the spreading. Hengg should be replaced by all the curvesX(t) are almost coincident, while the curves
an effective length(x,—ch,), wherec is a constant of the X;(T) differ slightly, opening like a fan. The data for
order of unity. This leads to eorrectedcharacteristic ime ~ —0.05<T<0 are well approximated by a power law with an
exponents,=1.13[see Fig. 4b)], close to the valué¢1.07)
he (1+ca) obtained in the numerical solution of E(.) without surface
- ga§X0 : tension. This suggests that the flow negrtends to self-
similarity for t—t,, independently orx. For 0<T<0.05 the
ThereforeT,,«(1+ ca), according to the linear dependence curves may also be approximated by power laws with expo-
of Fig. 3. The best fit line gives~2. nents s, close to unity(the numeric value is 0.995which
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FIG. 4. (a) Dimensionless coordinate of the corner layer
Xc(T) and of the frontX;(T) in the casesxo=15 cm (d,
a=0.12;0, «=0.10;A, «=0.09;V, «=0.08; ¢, «=0.065; *,
a=0.05; and+, «=0.03). Observe the coincidence among the
experimental results fof <0 and the fan-shaped disposition of the
points sequences far>0. (b) Log-log representation of the same
cases of(a) for T>—0.5.

agrees with mathematical predictiof26,27]. Nevertheless,
the corresponding prefactors increase whilgslowly de-
creases withx.

When we compare the results for variaysand fixeda
(see Fig. 3 as before we observe that th&.(T) curves
coincide while theX;(T) curves differ slightly.Xc(T) is
again well approximated by a unique power law with an
exponents, close to that obtained for the curves of Fighy
while the X¢(T) curves are fitted by power laws with the
exponents close to unity and prefactors increasing wjth

These results indicate that, within the parameter range

0.06

2633

0.024

0.06

0.0 02 04 06

FIG. 5. Dimensionless coordinate of the corner laxg(T) and
of the front X;(T) in the casesa~0.03 (O, Xo=15 cm; <,
Xo=50 cm; and], xo="75 cm). Note the fan-shaped disposition of
the points forT>0.

numerical solutions of Eq1) including the capillarity term
(2). We point out that the comparison betwe¥g(T) and
the numerical solution is meaningful because the maximum
slope is always small€0.6) for all values o considered.

On the other hand, the experimental cur¥gé6T) depend
on an unseparable combination afand x,, as expected
since the capillary number Ca becomes the relevant param-
eter. As we see in Fig. 6, the data of cases corresponding to
the same Ca but differemt) and « fall very close to a unique
line. This means that the fanning out of tkg(T) curves is
due to the influence of capillarity on the motion of the
spreading front. This effect should decrease as Ca increases;

0.02

0.00+

-0.024

covered by our measurements, the motion of the corner layer FiG. 6. Dimensionless coordinate of the corner lag¢T) and

is practically independent ot andx,; therefore capillarity

of the front X;(T) in cases labeled according to the value of Ca.

does not significantly affect this motion. This agrees with theNote the coincidence ok;(T) in the cases with the same Ca.
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FIG. 8. Dimensionless maximum slof&,(Xc)=s,/a as a
T T function of its coordinateX,,,. The curves correspond to numerical
values withy=0 (solid line) and y=21 dyn/cn? for x,=15 cm
tt* (dashed lingand 75 cm(dash-dot ling The symbols correspond to
the following cases:¢, a=0.065, x,=15.3 cm, andv=100.5

cm?s™ %+, @=0.0492, x,=15.2 cm, andv=102.5 cnf s~ %;
FIG. 7. Dimensionless velocity of the corner layer and the frontO, «=0.0304, x,=13.85 cm, and »=101.2 cnfs %

obtained by derivation for the three cases reported in Figed the V, «=0.0293, x,=14.7 cm, and »=20.9 cnfs %
insed. The solid curve corresponds to the analytical self-similar], «=0.0295, x,=14.8 cm, and v=898 cnfs %
solution given by Eq.(3) and the symbols td1, Ca=5.76; V, *, a=0.0233,x=77.0 cm, and v»=20.9 cnfs’}
Ca=1.71; and%, Ca=0.42. ¢, «=0.0205,%x,=765 cm, and »=216 cnfs %

B, «=0.017,x,=76.74 cm, and v=213 cnfs %
we observe that all the best fit power laws practically coin-®, «=0.0153, x,=77.7 cm, and »=21.6 cnfs !; and

cide for Ca>4. A, «=0.0126, x,=75.5 cm, andv=7.49 cnf s 1.

0.0 T T T T

C. Comparison with an analytical self-similar regime tw; this increase becomes less evident as Ca decreases (

It is noteworthy to compare the corner layer and the fron@nd%). Fort>t,, andx;>x, the position of the front agrees
evolution with the analytical self-similar solutidof the first ~ Well with Eq. (3) irrespective of the initial conditions. As this
kind) of Eq. (1) corresponding to the fluid concentrated at the@Symptotic regime has been widely studied in previous work,
origin at t=0 [6,12,19. This solution is also used by We omitfurther details here.

Vazquez[27] to find an upper bound df,. Here, the front
position is given by D. Evolution of the maximum slope
gA3 \? We now discuss the evolution of the maximum slape
XFR(@") : (3 of the current profile during the waiting stage. The technique
described in Sec. Il allows us to measg up to a time
where §=0.2,A=1.411. .., andA is the area of the fluid quite close td,, befores,, becomes too large to be captured
lateral cross section. In the inset of Fig. 7 we report within the screen.
adequate scales the positions of the corner layer and the Figure 8 is a log-log plot of the experimental points
moving front for three cases yet shown in Figad(symbolg Sn=Sm/a Vs X,,=(Xo—Xm)/Xq, for different values ofa
with the front position given by Eq3) (full line). An im-  and». We also show the results of numerical solutions in-
portant point is that the latter reaches at a time cluding the capillary term ¥=21.64 dyncm?) for
t=1.43*, close to the experimental waiting time. From Fig. Xo=15 cm(dashed lingand 75 cm(dash-dot ling The solid
7, it is clear that the velocities of the experimental fronts arecurve corresponds to the calculation without surface tension,
close to the velocity given by the time derivative of E§). and tends to a straight lingpower law as the flow evolves
In all the cases, we observe a decrease of the corner layéX,,—0), indicating a self-similar behavior fox,,<0.04.
velocity fort<t,, according to an exponeid,>1. The front The measurements are in excellent agreement with the cor-
starts to move with a finite velocitfthat is, 5,~1), which  responding numerical curve, but they depart from {he0
corresponds to a sudden increase of velocity in Fijag solution near the front. As expected, the larggr the nearer
evident in the case Ga5.76 ()] by a sudden increase at to the front this departure begins; however, even for the larg-
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but its properties have not been investigated in detail previ-
ously. The corner layer separates two regions clearly: one
ahead, almost unperturbed, and another behind, strongly
modified with respect to the initial condition. The front starts
to move precisely when it is overtaken by the corner layer.
As the corner layer approaches the front, its evolution tends
to a self-similar regime X,,=<0.04) in whichX,, varies ac-
cording to a power law ofT, independently ofv, «, and
Xg. The self-similar solution of the first kind, which de-
scribes the spreading of the same liquid volume delivered at
t=0 andx=0, provides very good estimates of some mag-
nitudes. Firstt,, is close to the time at which, according to
this solution[Eq. (3)], the front arrives ak,; second, both
the velocities of the corner layébeforet,,) and the moving
front (after t,,) are well given by the front velocity corre-
-0.01 : L . : L ' sponding to this solutiofexcept neax,). The experimental
30 25 20 -15 -0 -05 00 L o :
, waiting-time values are always within the bounds provided
(x-x,) [cm] by Aronson and co-workerigl4,26| and Vazque£27], i.e.,
0.3<t,,/t* <« and 0.5&<t,,/t* <29.87, respectively.
FIG. 9. Sequence ofh/dx profiles for the cases,=75.5 cm The results not related to the mathematical properties of
and «=0.0126. The dip preceding the corner layer is clearly vis-EQ. (1) can be summarized as follows:
ible. (a) The waiting time shows an unexpected slight depen-
dence on the initial aspect ratio (Fig. 3). This effect has a
estx, the surface tension prevents the development of thelobal character and is related to the experimental boundary
self-similar flow predicted by the=0 solution. Clearly, we condition at the rear wall, which cannot be adequately repro-
find that(for a givenXp,) the cases with smallefy produce  duced within the lubrication theory approximation used in
smaller values of5;, and broadewh/dx peaks, as must be Eq.(1). For a value ofa not too large €0.12), this effect
expected since Capillarity tends to reduce the local curvaturean be accounted by using an effective |ength in the charac-

0.03

0.02 -

ahiax>°' T

0.00

of the profile. teristic timet*, slightly less than the actual length of the
wedge.
E. Depression preceding the corner layer in the slope profiles (b) When the corner layer approaches the froht{0),

Near the end of the waiting stage, thie/ox profiles de- € shape of theh/ox profile nearSy, and the evolution of
velop a peculiar small depressiéip) preceding the corner the maximum slopeFig. 8) differ from the solution without
layer (see Fig. 9 almost imperceptible in the(x) profiles. surface tension; this indicates that the flow in the peak region
This unexpected feature appears for lage but still into departs from self-similarity. Associated with this deviation, a
the range of our slice light technique. In Fig. 8 we encirclesma” dip of thegh/ax distribution appears ahead of the peak
the points corresponding to profiles where the dip is presenﬂ:'g' 9. Th.ese c_lepartyres are sensitivexgobut not toa.
Note that surface tension strongly affects all these profiles?Ur Numerical simulations show that these are local effects
which suggests that capillarity plays a role on the formation"&inly due to capillarity, that prevents the complete devel-
of the dip. This guess is enforced by a theoretical modePPMent of the self-similar regime in the corner layer region.
(with dominant capillary effecisreported by Tannef32] In our experiments, the influence of surface tension on the
where analogous depressions appear ahead a front advanc ner layer precedes the two.—dimensional effects associated
over a thin fluid layer. We leave a more detailed study of this/Vth the breakdown of the lubrication hypothegtisat occurs

interesting phenomenon for a future work. due togh/gx— o0 whenxm—Xo). _
(c) For a value ot larger but close td,,, we find that the

front moves with an almost constant velocifye., 5,~1)
according to the predictions of Aronson, Caffarelli, and
The viscous flows produced by a wedgelike initial profile Vazquez[26] and VazqueZ27] for this case. The initial
(a=<0.12x,=100a) display the main features of the waiting front velocity scales asxg/t*)f(Ca) (Fig. 6), wheref is an
front phenomenology and can be described with a reasonablaknown function which tends to a constant for-€&. This
approximation by the solutions of E@l). Surface tension shows that capillarity is also important after the front starts
effects are less important for long wedges, but cannot b& move if Ca=1 as in experiments.
neglected in experiments; they may be ignored only for natu- This work shows that the waiting-time solutions of Ed).
ral phenomena occurring on a much larger scale than thketter describe the evolution of very long and shallow liquid
capillary length. The flow has a long stage with a motionlessvedges. The main deviations from pure nonlinear diffusion
front during which the profile changes gradually. The mostare due to capillarity, which affects the flow near the corner
noteworthy feature of this stage is the evolution of a thinlayer close to the end of the waiting stage, and near the front
transition regioncorner layey, where the slope of the liquid after it begins to move. These interesting perturbing effects
free surface varies strongly, propagating toward the frontmay deserve more specific studies. In our experiments these
The existence of this feature has been predicted theoreticallgepartures are significant, but do not obscure the basic fea-

IV. SUMMARY AND CONCLUSIONS
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tures of the waiting-time phenomenon, whose study is thehat the corner layer becomes a corner shodk=d}, when it

main purpose of this paper.

overtakes the front. Even if in the experiments the corner

The development and evolution of the corner layer prodayer profile is affected by capillarity and two-dimensional
vide a fine and interesting demonstration of the interplayeffects near the end of the waiting stage, this evolution is
between nonlinear propagation, which tends to reduce thelearly displayed as a trend.

width of the corner layer and to increase it# dx peak to
produce a corner shock, afwonlineaj diffusion, which op-
poses this tendency, smoothing W& gx profile and broad-

ening the layer. As the flow evolves and the corner layer

approaches the fror{ivhere the thickness of the current is
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