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We investigate classical Hamiltonian models for particles interacting with steep differential repul-
sive barriers both in coordinate and momentum space. The final aim is to define a classical system
of many particles behaving as fermions in many respects. In this paper we examine the appear-
ance of the phase portrait of one- or two-particle systems to skim the essential features that would
later be transcribed to the basic rules of a molecular dynamics algorithm. One of the remarkable
properties of the phase portrait is the flow from states that start far away with a wide range of mo-
mentum towards a narrow region in momentum—a virtual locking of momentum—in the vicinity of
the steepest part of the barrier in momentum space. The central ideas are developed through two

examples in one and two dimensions.

PACS number(s): 03.65.Sq, 05.30.Fk, 05.90.4+m
I. INTRODUCTION

The ancient distinction between theoretical and exper-
imental physics traditionally furnished the unique sce-
nario to locate the objects of research in this science.
This frame is no longer unique in view of the increas-
ing importance awarded to computational physics. In
particular, experiments on molecular dynamics or Monte
Carlo simulations of many-particle systems considerably
enlarge the field of many-body physics; lying halfway be-
tween laboratory experiments and analytic theories, nu-
merical experiments are capable of describing both quali-
tative and quantitatively the phenomenology of a variety
of large physical objects, making room for comprehension
of the detailed microscopic events responsible for observ-
able effects.

Since computational facilities may severely constrain
the possibilities to invest efforts in numerical experiments
for systems with many degrees of freedom, simplified
models involving, for example, two-dimensional fluids to-
gether with a discrete dynamical map deserve special
recognition. In particular, the dynamics of particles sub-
ject to piecewise constant potentials—bare hard disks in
the simplest version—can be dealt with numerically by
means of a nondifferential, event driven algorithm that
allows an excellent computational performance [1]. The
phenomenology covered by N hard disk systems ranges
from hydrodynamic instabilities to nucleation phenom-
ena, through transport processes and dynamical response
[2]. In spite of the considerable power of this approach,
systems of indistinguishable particles described by fully
symmetrized or antisymmetrized state vectors are not
amenable, in principle, to a molecular dynamics experi-
ment [3].

Attempts to submit an N-fermion system to a dynam-
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ical simulation have been put forward by nuclear physi-
cists aiming at descriptions of the evolution of excited
and compressed nuclear matter. On the one hand, the
fermionic molecular dynamics developed by Feldmeier [4]
is a semiclassical map of the actual N-fermion motion
on the manifold of Slater determinants of single-particle
wave packets and includes the antisymmetrization effects
both in the exchange matrix elements of the interaction
and in the matrix of the symplectic metrics. It gives
an interesting qualitative description of many phenom-
ena occurring in nuclear reactions [5]; however, since the
method relies on a mean field variational approach, it
may be subject to the short-time regime as indicated
by several authors (see, for example, [6] and references
cited therein). On the other hand, the quantum molec-
ular dynamics [3,8,9] together with the Vlasov-Uehling-
Uhlenbeck or Boltzmann-Uehling-Uhlenbeck [10,11] ap-
proaches represent serious advances in this direction;
the fermions are regarded as classical particles under-
going Hamiltonian motion in an effective, i.e., density-
dependent, mean field and may participate in two-body
collision events controlled by typical scattering cross sec-
tions, together with a criterion to rule out those processes
forbidden by Pauli exclusion. Another useful viewpoint
[12-15] intends to mimic the antisymmetric character of
the many-fermion wave function allowing the particles to
repel each other according to a potential that depends
on the relative momentum of the interacting pair. The
momentum dependent potential may be parametrized so
as to account for the equation of state of nuclear mat-
ter at zero temperature predicted by variational Monte
Carlo methods [16]. It is worthwhile recalling that the
first investigation of high energy nuclear dynamics, i.e.,
above 300-500 MeV per particle, was carried by Bodmer
et al. [7]. In this work, a momentum dependent interac-
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tion was considered, however, as an artifact to reproduce
the asymptotic two-body trajectory or deflection func-
tion since exclusion effects are not relevant at the given
energies.

Although the momentum potential models have proven
to work satisfactorily to describe many interesting phe-
nomena in nuclear dynamics, such as fragmentation of
hot compressed nuclear matter [17], several questions
may be raised concerning the validation of this philos-
ophy. To the best of our knowledge, the Hamiltonian dy-
namics induced by these potential models has not been
investigated beyond the examples of phase space trajec-
tories presented in Refs. [12,14]. It is consequently in-
teresting to examine them, referring to simple dynamical
systems in order to ascertain whether they account for
exclusion effects. It seems appropriate then to examine
the basic features of the dynamics of systems of particles
that repel each other in momentum space according to
a simple momentum-dependent potential. The most rel-
evant aspects of such dynamics may then be translated
into simple collision rules to be inserted into an event
driven algorithm such as the one in Ref. [1]. A simple
justification for the use of these potentials may rely on
the fact that in a real quantum liquid, exchange correla-
tions manifest themselves in the total energy by means
of nonlocal matrix elements of the pair interaction; this
nonlocality in turn gives rise to inertial effects, namely, to
renormalization of the bare mass into an effective, mo-
mentum dependent, mass. These effects can be taken
care of by momentum-dependent interaction terms. This
view could give support to the choice of momentum de-
pendent potentials to face an approach to the dynamics
of a quantum liquid with classical particles.

The purpose of this work is to advance the understand-
ing of the virtues and capabilities of momentum depen-
dent potentials to provide some of the features of fermion
repulsion. The final goal is the formulation of collision
rules for molecular dynamics simulations of hard particle
fluids, aiming at future descriptions of quantum liquids.
This task will be the subject of a forthcoming paper.

The present article will be mostly concerned with mo-
mentum dependent fields that prevent particles from
reaching a given set of momentum values; we then investi-
gate a selection of continuous potential models such that
in each of them, the hard disk repulsion is softened and
represented by a barrier with smooth edges. For the sake
of completeness, in Sec. IT we discuss a one-dimensional
model with quadratic coordinate and momentum poten-
tials in a finite region of phase space, which can be tackled
analytically. In Sec. III a one-dimensional model for soft
disk repulsion together with a smooth momentum barrier
or well is presented and discussed. One- and two-particle
systems in two dimensions, resembling closely the hard
disk problem, are examined in Sec. IV and a full discus-
sion is the subject of Sec. V.

II. EXACTLY SOLVABLE ONE-DIMENSIONAL
MODEL

In this section we present and discuss a simple one-
dimensional model for a particle moving in the presence
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of two short range potentials in both coordinate and mo-
mentum space. These potentials are of the form

o ={ G

0 otherwise

lyl <1 (2.1)

for y = z or p. The two-dimensional phase space then
splits into four different regions, namely, (i) the four
force-free domains |z| > 1 and |p| > 1; (ii) the verti-
cal strips || < 1, and |p| > 1 where only the acceler-
ating force is present; (iii) the horizontal strips |z| > 1,
and |p| < 1 where the momentum field is nonvanishing;
and (iv) the unit square where both potentials are ac-
tive. The specific orbits in regions (i)—(iv) are described
in what follows.

Region (i). The phase flow consists of horizontal
straight lines corresponding to uniform motion with ve-
locity € = p.

Region (ii). The particle Hamiltonian is

> B
H=2—+72(1—w2). (2.2)

2
Accordingly, the phase trajectories are either hyperbolas
for the repulsive barrier or ellipses for the attractive well.
In the former situation, two separatrices show up at p =
++ E,, corresponding to an energy E = FE,.
Region (iii). With
Ep

2
H=%+2201-p),

: (2.3)

the orbits are straight lines. The only effect of the mo-

mentum dependent potential is to renormalize the parti-

cle mass according to the velocity equation
z=p(l1—Ep). (2.4)

It is then clear that for a repulsive barrier, the effective

mass changes sign if E, > 1, causing the velocity to lie

antiparallel to the momentum.

Region (iv). The Hamiltonian can be written as

E’+E”+ (1-Ep)
2 2

H = p> — E, 2.

(2.5)

In this case the orbits present several possibilities accord-
ing to the sign of E—(E,+E,)/2 for each energy F and to
the signs of E,, E,, their shapes being either hyperbolas
or ellipses.

In this model, the full features of the phase portrait
for each choice of signs and magnitudes of the potential
parameters can be explicitly worked out. In particular,
fixed points and separatrices can be located; it is easy to
realize that the Hamiltonian flow is structurally unsta-
ble since the character of the (0,0) fixed point changes
according to the parameter set, from a saddle to a sta-
ble elliptic point, the latter appearing when E, (1 — E,)
is positive. In Fig. 1 we illustrate the phase diagrams
for the four possible sign combinations and indicate the
characteristic lines. The appearance of the orbits within
the unit square depends also on the relative sizes of the
strengths E, and E,.
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The most interesting outcome of this study is the ex-
istence of librations even in the case of purely repulsive
barriers both in coordinate and in momentum space as
shown in Fig. 1. It is worth noting that bound periodic
motion takes place for positive E, larger than unity; since
the effective particle mass is negative under such condi-
tions, the velocity antiparallel to the momentum prevents
the particle from escaping downhill the two-dimensional
barrier on the energy surface. This effect is intrinsic to
energy surfaces with other than purely kinetic, i.e., p?
momentum dependence, and has been thoroughly illus-
trated for systems with spectrum generating algebras of
the su(2) or su(1,1) type (see, for example, Refs. [18-20]
and references therein).

III. SMOOTHED SQUARE POTENTIALS

In the following we discuss the phase portraits for a
kind of particle Hamiltonians involving soft sphere repul-
sion and a momentum dependent field. These potentials
are selected in such a way that their limiting form is a
square well or barrier. The analytic form chosen for the
current investigation is

J
1.0 J\ 7 N\ 417x10°8

0.0

-20 .
-20 -1.0 0.0 1.0 20

Ey

i) = e (3.1)
for y = z,p. Infinitely large values of either parameter
b, give rise to a perfect square barrier or well, whose
strength can also be adjusted controlling the correspond-

ing intensity E,. The particle Hamiltonian is then

2
H="2 +V.(2) + V;(p) (3:2)
everywhere. We shall consider only positive E, and both
signs for F,.

Typical energy surfaces and contour plots are shown
in Figs. 2—-4. In Fig. 2 (a) we display the energy surface
corresponding to equal strengths E, = E, = 3 (repulsive
momentum barrier) and core widths b, = b, = 10. The
nature of the fixed points can be better appreciated in
Fig. 2(b), where the phase portrait is plotted; it can be
noticed that the flow here shown is equivalent to that in
Fig. 1(b), while different choices of the model parameters
give rise to contour plots equivalent to those in Figs. 1(a),
1(c) or 1(d). In the present case, we realize that five fixed
points appear along the p axis, namely, a saddle point at
the origin of phase space at an energy equal to the sum

FIG. 1. Phase diagrams for the quadratic Hamiltonian in Sec. II (see the text for details). All variables and contour labels
are dimensionless. (a) B, = E, = 3; (b) Ez = —E, = —3; (c) E; = E, = —3; (d) —E. = E, = 3.
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FIG. 2. Smoothed square potential Hamiltonian given in
Eq. (3.2) for E; = E, = 3,b, = b, = 10. (a) Energy surface
(arbitrary units as E. and E.); (b) phase diagram.

of both barrier heights, two hyperbolic points symmetri-
cally located at a value of |p| sligthly above unity, and two
symmetric stable elliptic points within the unit square.
Notice as well that the phase trajectory through the ori-
gin is a separatrix corresponding to the borders of the
basins of attraction of the symmetric stable points. The
constant p lines across these fixed points are zero velocity
lines; their precise locations are given by the solutions of
the equation

2 E. ebp(P*—1)
(i3=p<1—[1 pi:2_1)2
+ e (P ]

=0, (3.3)

As one solves Eq. (3.3), one soon realizes that the val-
ues of the solutions are ruled by the product E,b,. In-
sofar as this product is larger than 2, the energy surface
and phase portrait are similar to the ones in Fig. 2.
If E,b, = 2, the hyperbolic points outside the square
radius collapse on p = =1, while for smaller values
of this product, no real fixed points exist other than
the origin. This is illustrated in Fig. 3, where for
E, = E, =0.2,b, = b, = 10 we observe that the closed
orbits and the separatrix through p = +1 have already
disappeared. The role of the phase trajectory through the
origin now is to separate the pure scattering trajectories
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FIG. 3. Same as in Fig. 2, but with E; = E, = 0.2.

where the particle bounces at the coordinate potential
barrier from those where the incoming energy is enough
to overcome the repulsion and allow crossing to the neg-
ative x region. In addition, it is easy to verify that the
fixed point at p = 0 changes character from hyperbolic
to elliptic as F, b, increases above the value 1+ cosh(b);
it is convenient to keep in mind that very intense fields
(large E,) together with hard walls (large b,) constitute
our desirable scenario for future dynamical simulations
of N-particle systems.

In Fig. 4 we show the same surfaces and contour lines
as in Fig. 2, but for a momentum well with E, = —3.
The phase portrait is quite similar to that in Fig. 3;
indeed, in this case one can analytically show that the
origin of phase space is the only fixed (hyperbolic) point
for this dynamics.

We end this section presenting an example that may
bear some relevance to classical models of fermi-like par-
ticles, as it will be discussed in further detail in Sec. IV.
The model corresponds to a localized momentum poten-
tial well of the form

Ep

‘/I’(p) = 1+ ebrl(P—po)2—1]° (34)

and a typical phase diagram is displayed in Fig. 5. Apart
from the symmetry break induced by the shift in the
variable of the momentum dependent potential, we can
appreciate that the negative p region of this diagram pre-
serves most of the characteristics of the case pp = 0 shown
in Fig. 4, namely, the presence of a separatrix through



51 MOMENTUM-DEPENDENT POTENTIALS: TOWARDS THE . . . 2577

‘-““\\\ “‘ \\ \\\\\_
’ A \\\\\ \“\‘\\\\‘\
"\“ \\\\\\\\\\\\\\\\\\\\\\‘}m\“ ‘
/. il

“‘ \\‘

ENERGY

(b)

-1.0 00 1.0
FIG. 4. Same as Fig. 2, but with E, = —E, = 3.

the origin, an elliptic fixed point between p = 0 and
p = —1, and a saddle node for p < —1. In this case, the
critical points are given by the equation

2E,b,V(1 -V
P = Do p.p( = ) (3.5)
2Eb,V(1—-V) -1

.0 L n
-20 -1.0 0.0 1.0 20
X

FIG. 5. Phase diagram for a Hamiltonian with a smoothed
potential barrier plus the localized momentum dependent po-
tential given in Eq. (3.4) for B, = —E, = 3,b, = b, = 10,
and po = —2.

with V,(p) = E,V. Equation (3.5) may be rewritten in
terms of the displaced variable u? = (p — po)?

2 _ P%
[2Epb,V(u2)(1 - V(u2)) — 12

(3.6)

The solutions of the zero velocity equation can be ob-
tained numerically; however, a close examination shows
that if

Epb, — 2 = +2po, (3.7)
a saddle node bifurcaton takes place with an unstable
point u? = 1. For |Epb, — 2| > 2po, the latter bifurcates
into a stable point u? < 1 and an unstable one u?> > 1. On
the other hand, we can observe in Eq. (3.6) that u? ~ p2,
i.e., p = 0, unless the denominator, which is precisely
the bracket in Eq. (3.3), vanishes. For the displaced
momentum well, the bifurcation set (3.7) generalizes the
condition Eyb, =

An important feature of this pattern is the fact that
the scattering orbits |z| > 1, and p < —1 accumulate
in the vicinity of the edge p = —1 of the momentum
well. The related dynamical picture for a particle shot
towards the barrier with an initial negative momentum
inside the well corresponds to a final momentum locked
on the hillside. As a consequence, when the particle lies
sufficiently far from the barrier on its way back, its kinetic
energy is lower than the initial one. This dynamics is also
encountered in the strips |p| > 1 and |z| > 1 of the phase
diagram in Fig. 2(b).

IV. HIGHER-DIMENSIONAL MODELS

We now examine two particular models devised to un-
derstand the competition between a smooth potential
barrier in coordinate space and the effective mass effects
induced by the momentum dependent field for (a) one
particle moving in a plane and (b) two particles mutu-
ally repelling on a plane, each of them immersed in a
localized momentum dependent well. The former exam-
ple can be regarded as a model for a particle outside
the Fermi sphere of an N-fermion system (momentum
barrier) or as a model for a particle blocked inside the
Fermi sea, its momentum thus confined to the cell al-
lowed by the boundary conditions and the macroscopic,
i.e., density and temperature, regime (momentum well).
The second example corresponds rather to a blocked two
fermion system, as discussed below.

A. Particle on a plane

Let us consider a Hamiltonian of the form (3.2) in two
dimensions. The particle can now approach the scat-
tering center at the origin with a nonvanishing impact
parameter. In the absence of mass renormalization, the
trajectories in coordinate space would resemble the re-
flection by a hard disk whenever the impact parameter
is smaller than unity, the amount of curvature at the
bounce depending upon the size of the smoothing pa-
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rameter b,. In Fig. 6 we illustrate this situation for the
choice E, = E, = 3,b, = b, = 10 (a) in coordinate space
and (b) in momentum space. The initial position and mo-
mentum have been fixed at zop = 2,pz0 = —2,pyo = 0.
The outstanding feature in Fig. 6(a) is the significant
deviation of the low impact parameter trajectories with
respect to the reflection expected for a hard disk scat-
tering center. Indeed, for y < 0.5 the particle acquires a
negative y velocity. Even for an impact parameter equal
to unity, the particle is deflected forward, revealing the
existence of a nonvanishing repulsion within the finite
surface width of the potential barrier. The trajectories
are no longer deviated for impact parameters larger than
1.1.

This analysis can be complemented regarding Fig.
6(b). In the following we show that for the lowest im-
pact parameters, the two-dimensional momentum be-
comes frozen at the surface of the momentum dependent
barrier. This behavior is consistent with the feature en-
countered in the one-dimensional model discussed in Sec.
III [cf. Figs. 2(b) and 5], namely, the fact that scattering
trajectories impinging on the barrier lock the outcom-
ing momentum at the edge of the momentum dependent
field. A similar morphology is apparent for negative E,’s
and will be discussed in the next subsection in the con-
text of a localized momentum well.

B. Two interacting particles on a plane

We now consider a two-particle system with a smooth
barrier interaction of the form

204

A

(a)

(b)

FIG. 6. Two-dimensional trajectories (a) in coordinate
space and (b) in momentum space, for a two-dimensional par-
ticle subject to the Hamiltonian (3.2).
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E,

V(M 72) = T e e w1 (4.1)
Furthermore, we choose the Hamiltonian
22 | =2
+ - -, _,
H = 20 P L Vo7, 1) + V() + Vo(B2), (42)
with V,(p) given by
E.
Va(#) - ; (3

B 1+ ebp[(Pz—p,0)2+p§_1] .

This Hamiltonian has been devised to mimic two parti-
cles immersed in the Fermi sphere characterizing a many-
fermion system at low temperature; each particle mo-
mentum is thus allowed to vary within a narrow cell in
momentum space. The well (4.3) simulates this situation
for cells of average diameter equal to unity with a small
border width b,. The magnitude of this width, rather
than the size of the cell, takes into account the relative
washing out of Pauli blocking due to an increase in tem-
perature. For the sake of an illustration, we consider a ge-
ometrically symmetric configuration where the particles
are initially located with opposite position and momen-
tum vectors. The eight-dimensional system of Hamilton’s
equations of motion reduces then to the four-dimensional
one for a single particle. The problem then resembles
that depicted in Fig. 6—a particle hitting a repulsive
barrier—however, with the effective mass characteristics
of the example in Fig. 5. We show some spatial one-
particle trajectories in Fig. 7, for the parameter choice
E, = —3,pz0 = —2, and pyo = 0, for the particle under
consideration, the remaining parameters remaining the
same as in Fig. 6. We now see that the effect of the
repulsive barrier at the origin is preserved to the same
extent; however, the bounce at the barrier surface does
not correspond to a perfect reflection. One also verifies
that after the particle has scattered its momentum sat-
urates with modulus |p| = 1, consistent with the phase
trajectories indicated in Fig. 5.

An interesting feature of the flow in these models is
the fact that for some initial momentum values, incoming
particles may bounce twice on the soft disk barrier. An
example of this situation is shown in Fig. 8(a) [Fig. 8(b)]

20
Yy
1 /
»
0l —A
[
ZZ
0.0 : r . .
0.0 10 20

X

FIG. 7. Same as Fig. 6(a), but for two particles subject to
the Hamiltonian in Eq. (4.2). The particles are assumed to
be symmetrically located in both space and momentum space
at ¢ =0.
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FIG. 8. Two-dimensional trajectory of one particle for the
orbit with initial momentum (—2.7,0) under the conditions
of Fig. 7.

for the (z,y) [(pe,py)] Projection of a phase space orbit
with initial momentum (—2.7,0) for a two-dimensional
particle with the potential parameters of Figs. 6 and 7.
This phenomenon has been observed with other versions
of momentum dependent potentials, more specifically, for
two different choices with the relative momentum as the
variable [12,14]. Doubly bouncing orbits such as the one
depicted in Fig. 8 are the two-dimensional versions of
phase trajectories through two zero velocity lines, such as
those appearing in Figs. 2(b) and 5 in the neighborhood
of (£1,—1) and in the region of localized phase orbits
with |z| < 1.

V. DISCUSSION

As stated in the Introduction, the current motivation
to tackle a study of momentum dependent potentials is
to establish the extent to which they are able to simu-
late the quantum behavior of indistinguishable particles.
The majority of the potentials proposed here serve this
purpose for fermionlike particles: while barriers inhibit a
finite momentum domain, wells explicitly allow a finite
momentum region excluding the remaining space. The
surface width of the barriers or wells is a control param-
eter whose vanishing gives rise to a steep potential step.

One of the predominant characteristics of Hamilto-
nian flows of one-dimensional systems is the peculiar role
played by the inflection point of the momentum field
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(chosen as unity in the displayed examples). In fact,
one can see that the density of horizontal flow lines is
high in the neighbourhood of these points. As already
mentioned in Sec. III, this means that phase trajectories
starting in a field-free region but pointing towards the
repulsive, soft disk barrier accumulate near the above-
mentioned inflection point after the bounce. The price to
be paid on dynamical grounds is a lowering of the kinetic
energy, which could be attributed to an increase in the
effective mass that took place near the scattering center.
A similar effect is encountered in the two-dimensional
systems discussed in Sec. IV upon examination of the
trajectories in either configuration or momentum space.
It is also worthwhile mentioning that the Gaussian mo-
mentum fields employed in nuclear dynamics calculations
[14] possess this feature as well.

This picture suggests that, for example, a projectile
hitting a Fermi sphere with whose particles it interacts,
on the average, through a soft repulsion, becomes cap-
tured on the surface of the sphere. On the other hand, if
a particle is blocked inside the Fermi sea within a narrow
allowed momentum cell, whose edges furnish a nonvan-
ishing contribution to the particle velocity via the deriva-
tive of a smoothed stepwise momentum field, soft disk
scattering events tend to lock the particle momentum on
the boundary of its cell.

In spite of its simplicity, we believe that the mod-
els presented in this article encourage further research
along these lines, destined to carry, for example, classi-
cal molecular dynamical experiments in two dimensions
and to compare the bulk properties and both the thermal
and the dynamical responses of the many body system
obtained by these means with the predictions of some
quantum many body theory—e.g., a mean field theory—
where antisymmetrization effects have been fully taken
care of. This work is presently in progress and the cor-
responding results will be presented elsewhere.

ACKNOWLEDGMENTS

This work was partially supported by FONDECYT,
Chile, through Project No. 1931105, and by CONICET,
Argentina, through Grant No. PID 1993. One of us (E.
S. H.) is pleased to acknowledge the Comisién Nacional
de Investigaciones Cientificas y Técnicas (CONICYT),
Chile and the University of Chile for financial support
and hospitality while this work was being done.

[1] M. Marin, D. Risso, and P. Cordero, J. Comput. Phys.
109, 306 (1993).

[2] D. Risso, Ph.D. dissertation, Universidad de Chile, 1994;
D. Risso and P. Cordero, in Instabilities and Nonequi-
librium Structures IV, edited by E. Tirapegui and W.
Zeller (Kluwer Academic, Dordrecht, 1993); in Con-
densed Matter Theories, edited by A.N. Proto and J.
Aliaga (Plenum, New York, 1991).

[3] J. Aichelin, C. Hartnack, A. Bohnet, L. Zhixia, G. Peil-
ert, and H. Stocker, Phys. Lett. B 224, 34 (1989).

[4] H. Feldmeier, Nucl. Phys. A 515, 147 (1990).

[5] H. Feldmeier and J. Schnack, in Dynamical Features of
Nuclei and Finite Fermi Systems, edited by X. Vinas, M.
Pi, and A. Ramos (World Scientific, Singapore, 1994).

[6] H. G. Solari and E. S. Herndndez, Phys. Rev. C 26, 2310
(1982).

[7] A. R. Bodmer, C. N. Panos, and A. D. MacKellar, Phys.
Rev. C 22, 1025 (1980).

(8] J. Aichelin and H. Stocker, Phys. Lett. B 176, 14 (1986).

[9] J. Aichelin, Phys. Rep. 202, 233 (1991).



2580 P. CORDERO AND E. S. HERNANDEZ 51

[10] H. Kruse, B. V. Jacak, and H. Stocker, Phys. Rev. Lett.
54, 289 (1985).

[11] C. Gregoire, B. Remaud, F. Sebille, L. Vinet, and Y.
Raffray, Nucl. Phys. A 468, 321 (1987).

[12] L. Wilets, E. M. Henley, M. Kraft, and A. D. Mackellar,
Nucl. Phys. A 282, 350 (1977).

[13] L. Wilets, Y. Yariv, and R. Chestnut, Nucl. Phys. A 301,
359 (1978).

[14] C. O. Dorso, S. Duarte, and J. Randrup, Phys. Lett. B
188, 287 (1987).

[15] C. Dorso and J. Randrup, Phys. Lett. B 215, 611 (1988).

[16] B. Friedman and V. R. Pandharipande, Nucl. Phys. A
361, 502 (1981).

[17] C. O. Dorso and J. Randrup, Phys. Lett. B 232, 29
(1989); 301, 328 (1993).

[18] H. S. Solari and E. S. Hernandez , Phys. Rev. C 28, 2472
(1983).

[19] D. M. Jezek, E. S. Herndndez, and H. G. Solari, Phys.
Rev. C 34, 297 (1986).

[20] D. M. Jezek and E. S. Hernandez, Phys. Rev. A 42, 96
(1990).



