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Abstract

Given a set of functions F = {f1, . . . , fm} ⊂ L2(Rd), we study the problem of finding the shift-invariant space V with n

generators {ϕ1, . . . , ϕn} that is “closest” to the functions of F in the sense that

V = arg min
V ′∈Vn

m∑
i=1

wi‖fi − PV ′fi‖2,

where wis are positive weights, and Vn is the set of all shift-invariant spaces that can be generated by n or less generators. The
Eckart–Young theorem uses the singular value decomposition to provide a solution to a related problem in finite dimension. We
transform the problem under study into an uncountable set of finite dimensional problems each of which can be solved using an
extension of the Eckart–Young theorem. We prove that the finite dimensional solutions can be patched together and transformed
to obtain the optimal shift-invariant space solution to the original problem, and we produce a Parseval frame for the optimal space.
A typical application is the problem of finding a shift-invariant space model that describes a given class of signals or images (e.g.,
the class of chest X-rays), from the observation of a set of m signals or images f1, . . . , fm, which may be theoretical samples, or
experimental data.
© 2007 Elsevier Inc. All rights reserved.

1. Introduction

In many signal and image processing applications, images and signals are assumed to belong to some shift-invariant
space of the form:

S(Φ) := closureL2 span
{
ϕi(x − k): i = 1, . . . , n, k ∈ Zd

}
, (1.1)
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where Φ = {ϕ1, . . . , ϕn} is a set of functions in L2(Rd). The functions ϕ1, ϕ2, . . . , ϕn are called a set of generators
for the space S = S(Φ) = S(ϕ1, . . . , ϕn) and any such space S is called a finitely generated shift-invariant space
(FSIS) (see, e.g., [1,6]). For example, if n = 1, d = 1 and φ(x) = sinc(x), then the underlying space is the space of
band-limited functions (often used in communications).

Finitely generated shift-invariant spaces, can have different sets of generators. The length of an FSIS S is

L(S) = min
{
� ∈ N: ∃ϕ1, . . . , ϕ� ∈ S with S = S(ϕ1, . . . , ϕ�)

}
.

We will denote by Vn the set of all shift-invariant spaces with length less than or equal to n. That is, an element in Vn

is a shift-invariant space that has a set of s generators with s � n.
In most applications, the shift-invariant space chosen to describe the underlying class of signals is not derived

from experimental data—for example many signal processing applications assume “band-limitedness” of the signal,
which has theoretical advantages, but generally does not necessarily reflect the underlying class of signals accurately.
Furthermore, in applications, the a priori hypothesis that the class of signals belongs to a shift-invariant space with a
known number of generators, may not be satisfied. For example, the class of functions from which the data is drawn
may not be a shift-invariant space. Another example is when the shift-invariant space hypothesis is correct but the
assumptions about the number of generators is wrong. A third example is when the a priori hypothesis is correct but
the data is corrupted by noise. In addition, for computational considerations, a shift-invariant space of length m could
be modeled by a shift-invariant model space with length n much smaller than m. For example, in learning theory, the
problem of reducing the number of generators for a subspace of a reproducing kernel Hilbert space is also important
for improving the efficiency and sparsity of learning algorithms (see [16]). In order to model classes of signals or
images by FSIS in realistic cases, or to model a very large data set by a computationally manageable shift-invariant
space, we consider the following problem:

Problem 1. Given a large set of experimental data F = {f1, f2, . . . , fm} ⊂ L2(Rd), we wish to determine a shift-
invariant space V ∈ Vn (where typically n is chosen to be small compared to m) that models the signals in “some”
best way. For this purpose, we consider the following least squares problem:

V = arg min
V ′∈Vn

m∑
i=1

wi‖fi − PV ′fi‖2 (1.2)

where wi are positive weights and where PV ′ is the orthogonal projection on V ′.

A space V satisfying (1.2) will be said to solve Problem 1 for (F ,w,n).
The weights wi can be chosen to normalize or to reflect our confidence about the data. For example we can choose

wi = ‖fi‖−2 to place the data on a sphere or we can choose a small weight wi for a given fi if—due to noise or
other factors—our confidence about the accuracy of fi is low. The goal is to see if we can perform operations on
the observed data F = {f1, f2, . . . , fm} to construct (if it exists) a shift-invariant space S(Φ) whose length does not
exceed a small number n, that minimizes the error with our data F .

Problem 1 can be viewed as non-linear infinite dimensional constrained minimization problem. It may also be
viewed in light of the recent learning theory developed in [2,5,15], and estimates of model fit in terms of noise and
approximation space may be derived. Beside the fundamental question of existence of an optimal space, it will be
important for applications to have a way to construct the generators of the optimal space if it exists, and to estimate
the error E(F ,w,n) = ∑m

i=1 wi‖fi − PV fi‖2, where V ∈ Vn is an optimal space for F ,w and n.
Typical applications involve large data sets (for example consider the problem of finding a shift-invariant space

model for the collection of chest X-rays using data collected by a hospital during the last 10 years). The space S(F)

generated by a set of experimental data contains all the data as possible signals, but it is too large to be an appropriate
model for use in applications. A space with a “small” number of generators is more suitable, since if the space is
chosen correctly, it would reduce noise, and would give a computationally manageable model for a given application.

Least squares problems of the form above in finite dimensional spaces can be solved using the singular value de-
composition (SVD). Shift-invariant spaces are infinite dimensional and the SVD cannot be applied directly. However,
due to the special structure of shift-invariant spaces, the Fourier transform converts Problem 1 into finite dimensional
least square problems at each frequency as will be discussed in Section 4.1.
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2. Main theorems

In this paper we will sometimes deal with the standard Hilbert space CN . Elements of this vector space are column
vectors with N coordinates. We will use the notation At and A∗ to denote the transpose and the conjugate transpose
respectively of a complex matrix A. We will say that a vector y ∈ CN is a left eigenvector of the matrix A associated
to the eigenvalue λ, if ytA = λyt .

For clarity in the exposition, we will consider the unweighted case (wi = 1, i = 1, . . . ,m). The general case
can be derived by simply applying the results of the unweighted case to the set of normalized observations F =
{f1/w

2
1, . . . , fm/w2

m}.
The first theorem establishes the existence of an optimal space V . It also establishes that V can always be chosen

to be a subspace of the shift-invariant space S(F) generated by the totality of the data. This optimal space V may
not be unique. However, under additional assumptions that are often satisfied in practice, there is only one optimal
space V , as stated in Theorem 2.4.

Theorem 2.1. Let F = {f1, . . . , fm} be a set of functions in L2(Rd). Then

(1) There exists V ∈ Vn such that

m∑
i=1

‖fi − PV fi‖2 �
m∑

i=1

‖fi − PV ′fi‖2, ∀V ′ ∈ Vn. (2.1)

(2) The optimal shift-invariant space V in (2.1) can be chosen such that V ⊂ S(F).

Remarks. (i) Although we do not make the assumption that n � m, if n > m, then S(F) is an optimal space that
belongs to Vn. Thus, we will always assume that n � m for the remainder of this paper.

(ii) In practice it will often be the case that n is chosen (or found) to be much smaller than m.

We still need to explicitly find an optimal space V and estimate the error

E(F , n) = min
V ′∈Vn

m∑
i=1

‖fi − PV ′fi‖2. (2.2)

To compute the error E(F , n) we need to consider the Gramian matrix GF of F = {f1, . . . , fm}. Specifically, the
Gramian GΦ of a set of functions Φ = {ϕ1, . . . , ϕn} with elements in L2(Rd) is defined to be the n × n matrix of
Zd -periodic functions[

GΦ(ω)
]
i,j

=
∑
k∈Zd

ϕ̂i (ω + k)ϕ̂j (ω + k), ω ∈ Rd , (2.3)

where ϕ̂i denotes the Fourier transform of ϕi , and where ¯̂ϕi denotes the complex conjugate of ϕ̂i . It is known that GΦ

is Zd -periodic non-negative and self-adjoint for almost every ω. In this paper, we use the following definition for the
Fourier transform of a function φ ∈ L2(Rd):

φ̂(ω) :=
∫
Rd

φ(x)e−i2πxtω dx, ω ∈ Rd , (2.4)

where dx denotes Lebesgue measure on Rd .
If V = {v1, . . . , vn} is a set of vectors in a Hilbert space H, we will denote by G(V ) = G(v1, . . . , vn) the matrix[

G(V )
]
i,j

= 〈vi, vj 〉H, i, j = 1, . . . , n. (2.5)

Our next theorem produces a generator for an optimal space V and provides a formula for the exact value of the
error, but we first recall the definition and some properties of frames used in its statement (see for example [4,9,11]).
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Definition 2.2. Let H be a Hilbert space and {ui}i∈I a countable subset of H. The set {ui}i∈I is said to form a frame
for H if there exist q,Q > 0 such that

q‖f ‖2 �
∑
i∈I

∣∣〈f,ui〉
∣∣2 � Q‖f ‖2, ∀f ∈ H.

If q = Q, then {ui}i∈I is called a tight frame, and it is called a Parseval frame if q = Q = 1.

If {ui}i∈I is a Parseval frame for a subspace W of a Hilbert space H, and if a ∈ H, then the orthogonal projection
of a onto W is given by

PW(a) =
∑
i∈I

〈a,ui〉ui. (2.6)

Thus, a Parseval frames acts as if it were an orthonormal basis of W , even though it may not be one.

Theorem 2.3. Under the same assumptions as in Theorem 2.1, let λ1(ω) � λ2(ω) � · · · � λm(ω) be the eigenvalues
of the Gramian GF (ω). Then

(1) The eigenvalues λi(ω), 1 � i � m are Zd -periodic, measurable functions in L2([0,1]d) and

E(F , n) =
m∑

i=n+1

∫
[0,1]d

λi(ω)dω. (2.7)

(2) Let Ei := {ω: λi(ω) �= 0}, and define σ̃i (ω) = λ
−1/2
i (ω) on Ei and σ̃i (ω) = 0 on Ec

i . Then, there exists a choice
of measurable left eigenvectors y1(ω), . . . , yn(ω) with yi = (yi1, . . . , yim)t , i = 1, . . . , n, associated with the first
n largest eigenvalues of GF (ω) such that the functions defined by

ϕ̂i (ω) = σ̃i (ω)

m∑
j=1

yij (ω)f̂j (ω), i = 1, . . . , n, ω ∈ Rd (2.8)

are in L2(Rd). Furthermore, the corresponding set of functions Φ = {ϕ1, . . . , ϕn} is a generator for an optimal
space V and the set {ϕi(· − k), k ∈ Zd , i = 1, . . . , n} is a Parseval frame for V .

The following example shows that the optimal space V does not need to be unique. Let m = 2, n = 1, and let f1, f2
be two orthonormal functions. For this situation, GF (ω) is the 2 × 2 identity matrix for almost all ω ∈ Rd . It follows
that any function ϕ = c1f1 + c2f2 with c = (c1, c2) a unit vector in R2 generates an optimal space and E(F ,1) = 1.
Obviously, in this particular case there are infinitely many optimal spaces. However, under some mild assumptions,
there exists a unique optimal space V as described in the following theorem:

Theorem 2.4. Let F = {f1, . . . , fm} functions in L2(Rd) be given. If λn(ω) > λn+1(ω) for almost all ω, then the
optimal space V in (2.1) is unique. In this case, n � rmin = minω∈[0,1]d rankGF (ω) and the set {ϕ(·− k), k ∈ Zd, i =
1, . . . , n} in part (2) of Theorem 2.3 is an orthonormal basis for V .

Remarks.

(i) In case that n = L(S(f1, . . . , fm)), Theorem 2.3 gives a proof of the known result that every FSIS has a set of
generators forming a Parseval frame.

(ii) It will be clear from the proofs of Theorems 2.1 and 2.3 that the optimal space V can be decomposed as V =
S(ϕ1)

⊕ · · ·⊕S(ϕ�) where � = L(V ), the direct sum is orthogonal and each ϕi is a Parseval frame generator of
S(ϕi).

(iii) Theorem 2.4 can only be used when n < m. When n = m then S(F) is an optimal space and it is the unique
optimal space if and only if L(S(F)) = m.
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(iv) Obviously, if n = m then the error between the model and the observation is null. However, by plotting the error
in (2.7) in terms of the number of generators, an optimal number n may be heuristically derived. Alternatively,
one may choose n so that a cost functional (depending on the error and on n) is optimized as in other dimension
reduction schemes.

2.1. From theory to practice

In this section we briefly discuss some of the implementation issues that may arise in applications.
In order to find the generators of an optimal space described by Theorem 2.3, we need to find the eigenvalues of

GF and corresponding left eigenvectors for all ω ∈ [0,1]d which, in practice, is not always possible. However, under
some restriction on the data set F , often assumed in practice, the optimal space can be approximated as closely as we
wish.

For example, if F is a subset of the Wiener amalgam space W 1 of bounded functions with sufficient decay (specif-
ically, f ∈ W 1 if ‖f ‖ = ∑

k ess sup{|f (x + k)|: x ∈ [0,1]d} < ∞), then it can be shown that GF is a continuous
matrix function of ω (see [1]). For this case, we can approximate GF by the piecewise constant matrix function

G�
F (ω) =

∑
k

GF (ωk)χIk
(ω),

where ωk = 1
�
k for k ∈ Zd and Ik = ωk + [0,1/�]d . Continuity of GF implies that G�

F converges to GF uniformly
as � → ∞. We can compute the eigenvalues λ�

i = ∑
k λi(ωk)χIk

and eigenvectors y�
i = ∑

k yi(ωk)χIk
. (Note that

because GF is a Zd -periodic function, only a finite number of eigenvalues and eigenvectors need to be calculated in
the approximation.)

For the case of interest when the number of generators n is less than the number of samples m, it is generically
the case that the n eigenvalues λi are distinct and uniformly positive. Thus, for the generic case, the eigenvalues are
continuous functions of ω and for each ω the eigenspaces are one dimensional and the eigenvectors can be chosen to
be continuous in ω [13, p. 110]. Therefore, λ�

i and y�
i can be used in formula (2.8) of Theorem 2.3 to obtain a basis

Φ� that approaches Φ (in the L2 sense, using that y� converges uniformly to y) as � approaches infinity.
If the functions fi have compact support, then the entries of GF are trigonometric polynomials. The construction

formula (2.8) of Theorem 2.3 shows that the elements of the optimal basis {ϕ1, . . . , ϕn}, generating the function space,
are linear combinations of the functions fj ∈ F . We also know that the coefficients of these linear combination are �2

sequences and hence decay to zero. Thus we can truncate these coefficients and obtain compactly supported generators
{ϕc

1, . . . , ϕ
c
n}.

3. Preliminaries on finitely generated shift-invariant spaces

In this section we state some known results about finitely generated shift-invariant spaces that we will need later.
See for example [3,6,7,10,14].

We need first to introduce some definitions.
Given f ∈ L2(Rd) and x ∈ Rd the fiber of f at x is the sequence Γxf = {f (x + k): k ∈ Zd}.
If V is a FSIS (recall Definition (1.1)) and ω ∈ [0,1]d we set Vω = {Γωf̂ ;f ∈ V } the fiber space associated to V

and ω.
If M is a closed subspace of a Hilbert space H, throughout this article we will denote by PM the orthogonal

projection operator in H onto M.
With this notation we have:

Lemma 3.1. If f ∈ L2(Rd), then

(1) The sequence (Γωf̂ )k = (f̂ (ω + k)) is a well-defined sequence in �2(Z
d) a.e. ω ∈ Rd ; and

(2) ‖Γωf̂ ‖�2 is a measurable function of ω and ‖f ‖2 = ‖f̂ ‖2 = ∫
[0,1]d ‖Γωf̂ ‖2

�2
dω.

Lemma 3.2. Let V be a FSIS in L2(Rd). Then we have:
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(i) Vω is a closed subspace of �2(Z
d) for almost all ω ∈ [0,1]d .

(ii) V = {f ∈ L2(Rd): Γωf̂ ∈ Vω for almost all ω ∈ [0,1]d}.
(iii) For each f ∈ L2(Rd) we have that ‖Γω(P̂V f )‖�2 is a measurable function of the variable ω and Γω(P̂V f ) =

ΓωP
V̂
f̂ = PVω(Γωf̂ ).

(iv) Let ϕ1, . . . , ϕr ∈ L2(Rd). We have that
(a) {ϕ1, . . . , ϕr} is a set of generators of V, if and only if the fibers Γωϕ̂1, . . . ,Γωϕ̂r span Vω for almost all

ω ∈ [0,1]d ,
(b) the integer translates of ϕ1, . . . , ϕr are a frame of V, if and only if Γωϕ̂1, . . . ,Γωϕ̂r are a frame of Vω with

the same frame bounds, for almost all ω ∈ [0,1]d .

Lemma 3.3. Let F = {f1, . . . , fm} be functions in L2(Rd) and let A(ω) be the infinite matrix Akj (ω) = (Γωf̂j )(k) =
f̂j (ω + k), j = 1, . . . ,m, k ∈ Zd , and ω ∈ Rd . Then GF (ω) = At(ω)A(ω), and rankGF (ω) = rankA(ω) =
rankA∗(ω), a.e. ω ∈ Rd . In particular, GF (ω) = G(Γωf̂1, . . . ,Γωf̂m).

4. Proofs

To prove the theorems in Section 2, we proceed in several steps. First we reduce the optimization problem into an
uncountable set of finite dimensional problems in the Hilbert space H = �2(Z

d). We then apply the Eckart–Young
theorem to prove that the reduced problems have solutions. Finally, we construct the generators of the optimal space
patching together the solutions of the reduced problems to obtain the solution to the original problem.

4.1. Reduction

In this section, we reduce Problem 1 to a set of finite dimensional problems. To see this let us first consider the
following:

Problem 2. Let H be a Hilbert space, n, m positive integers and A = {a1, . . . , am} a set of vectors in H. We want to
find a closed subspace S of H with dim(S) � n that satisfies

m∑
i=1

‖ai − PSai‖2 �
m∑

i=1

‖ai − PS′ai‖2 (4.1)

for every subspace S′ ⊂ H with dim(S′) � n.

If such an S exists, we say that S solves Problem 2 for the data (A,n).
If B = {b1, . . . , br} is a set of vectors from H with S = span(B) we will say that the vectors in B solve Problem 2

for the data (A,n). The error for Problem 2 is

E(A,n) = min
dim(S′)�n

m∑
i=1

‖ai − PS′ai‖2.

Note that in Problem 2 we take the minimum over all subspaces of dimension less than n, while in Problem 1 the
minimization is taken over a particular class of infinite dimensional subspaces, so the two problems are essentially
different.

In the next section we state and prove an extension of the Eckart–Young theorem. We conclude from this extension
that Problem 2 always has a solution for any set of data (A,n) in an arbitrary Hilbert space. That is, given A and n

there always exists a subspace S with dim(S) � n satisfying (4.1). We will also see that a solution S can be chosen in
such a way that S ⊂ span(A) when n � dim(span(A)).

Before proving these results let us see how Problem 2 helps our original question.
Let F = {f1, . . . , fm} ⊂ L2(Rd). We want to find out if there exists V ∈ Vn such that V minimizes

∑m
i=1 ‖fi −

PV fi‖2. Using Lemma 3.1 we obtain that for any V ∈ Vn,
m∑

i=1

‖fi − PV fi‖2 =
m∑

i=1

∫
d

‖Γωf̂i − ΓωP̂V fi‖2
�2

dω =
∫

d

m∑
i=1

‖Γωf̂i − ΓωP̂V fi‖2
�2

dω. (4.2)
[0,1] [0,1]
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By Lemma 3.2(iii), ΓωP̂V fi = PVωΓωf̂i . So from (4.2) we conclude that,
m∑

i=1

‖fi − PV fi‖2 =
∫

[0,1]d

m∑
i=1

‖Γωf̂i − PVωΓωf̂i‖2
�2

dω. (4.3)

The sum inside the integral on the right-hand side of (4.3) is of the same type than the sum that is involved in
Problem 2 in the case that H = �2(Z

d) and S = Vω. Since we are assuming that Problem 2 always has a solution, we
know that for almost each ω ∈ [0,1]d there exists a subspace Sω ⊂ �2(Z

d) that solves Problem 2 for the data (Fω,n)

where Fω = {Γωf̂1, . . . ,Γωf̂m}. Note that the subspace Sω does not need to be related with the fiber space of any
FSIS. If the function ω �→ ∑m

i=1 ‖Γωf̂i − PSωΓωf̂i‖2
�2

, were a measurable function of ω then we would have∫
[0,1]d

m∑
i=1

‖Γωf̂i − PSωΓωf̂i‖2
�2

dω �
m∑

i=1

‖fi − PV ′fi‖2 (4.4)

for every V ′ ∈ Vn.
Therefore, in case that there exists a FSIS V ∈ Vn such that Vω = Sω a.e. ω ∈ [0,1]d , then by Lemmas 3.1 and 3.2

the above function would be measurable and V necessarily will be a solution to Problem 1, since

m∑
i=1

‖fi − PV fi‖2 =
∫

[0,1]d

m∑
i=1

‖Γωf̂i − PSωΓωf̂i‖2
�2

dω �
∫

[0,1]d

m∑
i=1

‖Γωf̂i − PV ′
ω
Γωf̂i‖2

�2
dω

=
m∑

i=1

‖fi − PV ′fi‖2 (4.5)

for every V ′ ∈ Vn.
We will see later that such a FSIS indeed exists. More precisely we will construct a set of generators such that its

integer translates form a frame of the optimal FSIS. We will do that by patching together the fibers of the generators
of each of the optimal subspaces Sω.

4.2. Solution to Problem 2

We now prove that Problem 2 always has a solution.

Theorem 4.1. Let H be an infinite dimensional Hilbert space, F = {f1, . . . , fm} ⊂ H, X = span{f1, . . . , fm}, λ1 �
· · · � λm the eigenvalues of the matrix G(F) defined as in (2.5) and y1, . . . , ym ∈ Cm, with yi = (yi1, . . . , yim)t

orthonormal left eigenvectors associated to the eigenvalues λ1, . . . , λm. Let r = dimX = rankG(F).
Define the vectors q1, . . . , qn ∈H by

qi = σ̃i

m∑
j=1

yijfj , i = 1, . . . , n, (4.6)

where σ̃i = λ
−1/2
i if λi �= 0, and σ̃i = 0 otherwise. Then {q1, . . . , qn} is a Parseval frame of W = span{q1, . . . , qn} and

the subspace W is optimal in the sense that

E(F , n) =
m∑

i=1

‖fi − PWfi‖2 �
m∑

i=1

‖fi − PW ′fi‖2, ∀ subspace W ′, dimW ′ � n.

Furthermore we have the following formula for the error

E(F , n) =
m∑

i=n+1

λi. (4.7)

Remark. If r is small (i.e. r � n) then all the vectors qr+1, . . . , qn are null and {q1, . . . , qr} is an orthonormal set.
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One could also choose qr+1, . . . , qn to be any orthonormal set in the orthogonal complement of X and so obtain
an orthonormal set of n elements and the formula for the error would still hold.

If H is finite dimensional and n � r , then Theorem 4.1 is a consequence of the Eckart–Young theorem (see Ap-
pendix A). To prove Theorem 4.1 we will reduce it to the finite dimensional case and then use the Eckart–Young
result.

We first need the following lemma:

Lemma 4.2. Let H be a Hilbert space, {f1, . . . , fm} ⊂ H, X = span{f1, . . . , fm}. Assume that there exists M ⊂ H
with dimM � n such that

m∑
i=1

‖fi − PMfi‖2 �
m∑

i=1

‖fi − PM ′fi‖2

for any subspace M ′ ⊂ H with dimM ′ � n, then there exists W ⊂ X , with dimW � n, such that
m∑

i=1

‖fi − PWfi‖2 =
m∑

i=1

‖fi − PMfi‖2.

Proof. Define the subspace W = PXM as the orthogonal projection of M onto X . By construction, W ⊂ X , and
dimW � n.

Let f ∈X , then we have

‖f − PWf ‖2 = inf
{‖f − g‖2: g ∈ W

}
� ‖f − PXPMf ‖2 = ‖PX f − PXPMf ‖2 � ‖f − PMf ‖2. �

This lemma shows that, in a possibly infinite dimensional Hilbert space H, the problem of finding a finite dimen-
sional subspace M ⊂ H with dimM � n that “best approximates” m vectors {f1, . . . , fm}, can always be reduced to
a search in the finite dimensional space X = span{f1, . . . , fm}.

We now prove Theorem 4.1.

Proof of Theorem 4.1. Let τ :X → Cm be an isometric isomorphism with its image. Set bi = τ(fi), and let B be the
matrix having the vectors bi as columns. So, r = dimX = rank(B) and BtB coincides with G(F) = {〈fi, fj 〉H}i,j .

Choose orthonormal left eigenvectors y1, . . . , ym ∈ Cm, with yi = (yi1, . . . , yim)t associated to the eigenvalues
λ1 � · · · � λm of BtB , and define the vectors

ui = σ̃i

m∑
j=1

yij bj , i = 1, . . . , n, (4.8)

where as before σ̃i = λ
−1/2
i if λi �= 0, and σ̃i = 0 otherwise.

Then, if n � r by Theorem 4.6 in Appendix A, the subspace M ⊂ Cm,M = span{u1, . . . , un} satisfies:
m∑

i=1

‖bi − PMbi‖2 �
m∑

i=1

‖bi − PM ′bi‖2 (4.9)

for every subspace M ′ ⊂ Cm with dim M ′ � n.
If however, n � r then the left side of (4.9) is 0 and therefore the inequality is also satisfied.
Setting W = τ−1(M) and noting that PMτ = τPW we have from (4.9)

E(B,n) = E(F , n) =
m∑

i=1

‖fi − PWfi‖2 �
m∑

i=1

‖fi − PW ′fi‖2 (4.10)

for every subspace W ′ ⊂ H with dimW ′ � n. So, W ⊂ H is optimal for (F , n) and qi = τ−1(ui), i = 1, . . . , n is a
Parseval frame for W . Furthermore, the formula (4.7) also holds. �
Remarks. (i) If n > m the optimal space W is not unique since any space W ′ of dimension n containing
span{a1, . . . , am} will be optimal. The same argument also shows that the space W is not unique if n > r = dimX .

(ii) If n � r , the vectors ui and yi are related by
√

λiui = Ayi as described in Appendix A.
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4.3. Solution to Problem 1

In order to solve Problem 1, we need the following technical proposition concerning the measurability of the
eigenvalues and the existence of measurable eigenvectors of a non-negative matrix with measurable entries (cf. [14,
Lemma 2.3.5]).

Lemma 4.3. Let G = G(ω) be an m × m self-adjoint matrix of measurable functions defined on a measurable subset
E ⊂ Rd with eigenvalues λ1(ω) � λ2(ω) � · · · � λm(ω). Then the eigenvalues λi , i = 1, . . . ,m, are measurable on E

and there exists an m × m matrix of measurable functions U = U(ω) on E such that U(ω)U∗(ω) = I a.e. ω ∈ E and
such that

G(ω) = U(ω)Λ(ω)U∗(ω) a.e. ω ∈ E, (4.11)

where Λ(ω) := diag(λ1(ω), . . . , λm(ω)).

Proof of Theorems 2.1 and 2.3. In what follows we will apply Theorem 4.1 to find the solution to Problem 1.
As before, let F = {f1, . . . , fm} ⊂ L2(Rd) and for ω ∈ [0,1]d let GF (ω) be the associated Gramian matrix with
eigenvalues λ1(ω) � · · · � λm(ω) � 0. Let U(ω) be a measurable m × m matrix as in Lemma 4.3. Since GF (ω) is
Zd -periodic on Rd , we can choose U(ω) to be Zd -periodic as well. Let Ui(ω) denote the ith row of U(ω). Multiplying
(4.11) on the left by U∗(ω) shows that yi(ω) := Ui(ω)∗ is a left-eigenvector of G(ω) with eigenvalue λi(ω) for
i = 1, . . . ,m. Furthermore, the left eigenvectors yi(ω) = (yi1(ω), . . . , yim(ω))t , i = 1, . . . ,m, form an orthonormal
basis of Cm.

For each fixed ω ∈ [0,1]d , we consider Problem 2 in the space �2(Z
d) for the data (Fω,n) with Fω =

{Γωf̂1, . . . ,Γωf̂m}. Define q1(ω), . . . , qn(ω) ∈ �2(Z
d) by

qi(ω) = σ̃i (ω)

m∑
j=1

yij (ω)Γωf̂j , i = 1, . . . , n, (4.12)

where σ̃i (ω) = λ
−1/2
i (ω) if λi(ω) �= 0, and σ̃i (ω) = 0 otherwise. Since GF (ω) = G(Fω) (see Lemma 3.3),

Theorem 4.1 shows that the space Sω := span{q1(ω), . . . , qn(ω)} optimizes Problem 2. Moreover, the vectors
{q1(ω), . . . , qn(ω)} form a Parseval frame for Sω and we have the following formula for the error:

E(Fω,n) =
m∑

i=n+1

λi(ω). (4.13)

Define now the functions hi : Rd → C, i = 1, . . . ,m,

hi(ω) = σ̃i (ω)

m∑
j=1

yij (ω)f̂j (ω). (4.14)

Since σ̃i and yi are measurable functions of ω, then hi is also measurable. Moreover, hi is in L2(Rd) as the
following simple argument shows. Since∣∣hi(ω)

∣∣2 = hi(ω)h̄i(ω) = σ̃i (ω)2
m∑

j,s=1

yij (ω)f̂j (ω)
¯̂

f s(ω)yis(ω)

we have (using that if yi is a left eigenvector of the self-adjoint matrix GF , then ȳi is a right eigenvector for that
matrix associated to the same eigenvalue),∑

k∈Zd

∣∣hi(ω + k)
∣∣2 = σ̃i (ω)2

m∑
j=1

yij (ω)

m∑
s=1

[
GF (ω)

]
js

yis(ω)

= σ̃i (ω)2λi(ω)

m∑
yij (ω)yij (ω) = σ̃i (ω)2λi(ω). (4.15)
j=1
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If λi(ω) �= 0 then the product in (4.15) is one, otherwise it is zero. That is
∑

k∈Zd |hi(ω + k)|2 = 1{ω: λi(ω)>0} and by
Lemma 3.1, ‖hi‖ � 1.

Now define functions ϕ1, . . . , ϕn in L2(Rd) by

ϕ̂i (ω) = hi(ω), i = 1, . . . , n,

and let V = S(ϕ1, . . . , ϕn). The space V is a shift-invariant space of length no bigger than n. So V ∈ Vn. Furthermore,
by Lemma 3.2 (iv-a), the space Vω is spanned by Γωϕ̂i , i = 1, . . . , n.

Since (Γωϕ̂i)(k) = hi(ω + k) = qi(ω)(k), k ∈ Zd, i = 1, . . . , n a.e., then Vω = Sω (the optimal space for the data
(Fω,n)) in �2(Z

d).
By Eq. (4.5) and the comment before, V is optimal, that is V solves Problem 1 for the data (F , n).
Now, since {Γωϕ̂1, . . . ,Γωϕ̂n} is a Parseval frame of Sω for a.e. ω ∈ [0,1]d then by Lemma 3.2 (iv-b) the integer

translates of ϕ1, . . . , ϕn form a Parseval frame of V . On the other hand, formula (4.3) says that

E(F , n) =
∫

[0,1]d
E(Fω,n)dω. (4.16)

Thus using (4.13) we have that E(F , n) = ∑m
i=n+1

∫
[0,1]d λi(ω)dω. �

Proof of Theorem 2.4. Under the hypothesis of Theorem 2.4, Theorem 4.1 and the Remark after it guarantee the
uniqueness of the optimal spaces Sω associated to the data (Fω,n) for almost all ω. Since these fiber spaces charac-
terize the optimal space V , then the theorem follows. �
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Appendix A

A.1. Best linear approximation and the SVD

Here we review the singular value decomposition (SVD) of a matrix and its relation to finite dimensional least-
squares problems. For an overview see [18], and for a very detailed treatment see for example [12].

We start with the following proposition.

Proposition 4.4 (SVD). Let A = [a1, a2, . . . , am] be the matrix with columns ai ∈ CN , m � N . Let r :=
dim span{a1, . . . , am}. Then there are m numbers λ1 � λ2 � · · ·λr > λr+1 = · · · = λm = 0, an orthonormal collection
of m (column) vectors y1, . . . , ym ∈ Cm, and an orthonormal collection of m (column) vectors u1, . . . , um ∈ CN such
that

A =
m∑

k=1

√
λkuky

∗
k = UΛ1/2Y ∗, (4.17)

where U ∈ CN×m is the matrix U = [u1, . . . , um],Λ1/2 = diag(λ
1/2
1 , . . . , λ

1/2
m ), and Y = [y1, . . . , ym] ∈ Cm×m with

U∗U = Im = Y ∗Y = YY ∗.
The representation of A given in (4.17) is called the singular value decomposition (SVD) of A.

The SVD of a matrix A can be obtained as follows. Consider the matrix A∗A ∈ Cm×m. Since A∗A is self-adjoint
and positive semi-definite, its eigenvalues λ1 � λ2 � · · · � λm are non-negative and the associated eigenvectors
y1, . . . , ym can be chosen to form an orthonormal basis of Cm. Note that the rank r of A corresponds to the largest
index i such that λi > 0. The left singular vectors u1, . . . , ur can then be obtained from√

λiui = Ayi, that is ui = λ
−1/2
i

m∑
yij aj (1 � i � r).
j=1
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Here yi = (yi1, . . . , yim)t . The remaining left singular vectors ur+1, . . . , um can be chosen to be any orthonormal
collection of m − r vectors in CN that are perpendicular to span{a1, . . . , am}. One may then readily verify that (4.17)
holds.

The Frobenius norm of a matrix X = [x1, . . . , xm] ∈ CN×m is ‖X‖F = tr(X∗X), where tr denotes the trace of a
matrix.

Now, the following approximation theorem of Schmidt (cf. [17]) and later rediscovered by Eckart and Young [8]
shows that the SVD can be used to find the subspace of dimension n that is closest to a given finite numbers of vectors.

Theorem 4.5. Let {a1, . . . , am}, be a set of vectors in CN , such that r = dim(span{a1, . . . , am}), and suppose A =
[a1, . . . , am], has SVD A = UΛ1/2Y ∗ with 0 < n � r . Then An := ∑n

j=1

√
λjujy

∗
j satisfies

‖A − An‖F = min
rankB�n

‖A − B‖F =
(

r∑
j=n+1

λj

)1/2

.

If λn+1 �= λn, then An is the unique such matrix of rank at most n.

Equivalently,

Theorem 4.6. Let {a1, . . . , am}, be a set of vectors in CN such that r = dim(span{a1, . . . , am}), and suppose A =
[a1, . . . , am], has SVD A = UΛ1/2Y ∗ and that 0 < n � r . If W = span{u1, . . . , un}, then

{PWa1, . . . ,PWam} =
n∑

i=1

√
λiuiy

∗
i = An

and
m∑

i=1

‖ai − PWai‖2
2 �

m∑
i=1

‖ai − PMai‖2
2, ∀M, dimM � n, (4.18)

and the space W is unique if λn+1 �= λn.
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