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1. Introduction

Construction of noncommutative solitons and instantons has been a field of intense activity

after the revival of field theories in noncommutative space, in connection with string theory

and brane dynamics (see for example [1] for references on this issue). Not only the non-

commutative counterparts of vortices, monopoles and other localized solutions in ordinary

space were constructed but regular stable solutions which become singular in the com-

mutative limit were also discovered (see for example [2] for a complete list of references).

Concerning static classical solutions of the abelian Higgs model in the noncommutative

plane, both BPS and non BPS vortices have been constructed and its moduli space studied

in detail [3].

In the present work we consider vortex solutions in the abelian Higgs model defined

on the noncommutative torus and then extend the analysis to the case of a U(2) × U(1)

symmetry. This is motivated by the fact that, in commutative space, one can find stable

solutions that correspond to periodic arrays of vortices in theories with gauge field coupled

to Higgs scalars. Moreover, the analysis of such kind of arrays is equivalent to the study of

models defined on the torus. This fact has been exploited in the search of vortex solutions

in the Salam-Weinberg model where the only stable solutions correspond to such type of

arrays [4]. Hence our results can be seen as a first step along this line in its noncommutative

version.

Despite the fact that the 2 dimensional torus is one of the simplest examples of non-

commutative space, no discussion of the BPS equations and their solution for the Maxwell-

Higgs model has been carried out. In this respect, our work fills in this gap and also opens

the possibility of studying non-abelian extensions related to the noncommutative version

of the Salam-Weinberg theory. Bogomolny equations for the abelian Higgs model on a two

dimensional torus have been first considered by Shah and Manton [5]. More recently, Gon-

zalez Arroyo and Ramos [6] have analyzed them in detail and presented a high precision

approximation scheme.
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The paper is organized as follows: we introduce in section 2 the noncommutative

torus T (and noncommutative parameter θ) and discuss periodicity conditions for gauge

and matter fields. We show that consistency of gauge transformations and periodicity

conditions naturally leads to the introduction of a scaled torus T̄ and a θ-depending scaled

gauge charge. Then, in section 3 we discuss the dynamics of the Maxwell-Higgs model

showing that the role of the scaled torus becomes crucial in the definition of gauge invariant

expressions for the energy and magnetic flux as well as for the obtention of covariant BPS

equations. We present a particular solution to these equations and we also discuss the

strategy to obtain general vortex like solutions, analogous to that leading to numerical

solutions in the commutative torus [6]. Finally, in section 4 we extend the discussion to the

case of a U(2) × U(1) lagrangian for which we also write the BPS equations and indicate

how one should look for their solution. We leave for an appendix the derivation of some

results needed to implement periodic boundary conditions on the noncommutative torus.

2. Gauge and matter fields on the noncommutative torus

Let us consider noncommutative 2 + 1 dimensional space-time with coordinates satisfying

[x, y] = iθ , [x, t] = [y, t] = 0 . (2.1)

Our model will be defined on a spatial torus T with periods (L1, L2).

We shall be interested in a U(1) gauge theory with Higgs scalars φ in the fundamental

representation coupled to gauge fields Ai. The fields transform under the U(1) gauge group

according to

Ai → A(V ) = V −1 Ai V +
i

g
V −1 ∂i V (2.2)

Φ → Φ(V ) = V −1 Φ . (2.3)

As in ordinary space, a scalar field on the noncommutative torus can be defined as a

function φ(x, y) which is periodic up to gauge transformations. That is,

φ(x + L1, y) = U1(x, y) φ(x, y) = φU−1

1 (x, y)

φ(x, y + L2) = U2(x, y) φ(x, y) = φU−1

2 (x, y) (2.4)

where U1 and U2 are U(1) gauge transformations. Concerning gauge fields, boundary

conditions are

Ai(x + L1, y) = A
(U−1

1
)

i (x, y) (2.5)

Ai(x, y + L2) = A
(U−1

2
)

i (x, y) (2.6)

Consistency of the precedent equations implies

U2(x + L1, y) U1(x, y) = U1(x, y + L2) U2(x, y) . (2.7)

Note that eq. (2.7) coincides with the well-known consistency condition for the commutative

torus (See for example [7] and references therein).
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A particular solution to eq.(2.7) is

U1(x, y) = ei π ω L1 y , U2(x, y) = e−i π ω L2 x , (2.8)

where

ω =
1

θπ

(

1 −

√

1 +
2πθk

L1L2

)

, k ∈ Z . (2.9)

It should be noted that in the θ → 0 limit, solution (2.8)–(2.9) goes smoothly to the

solution on the commutative torus. One can make easily contact between this result and

the discussion in [8] on pure U(p) Yang-Mills theory on the noncommutative torus (in the

particular p = 1 and zero ’t Hooft twist case).

Since U1 and U2 are translation generators, then for any arbitrary function f(x, y) it

holds that

U1(x, y) f(x, y) U−1
1 (x, y) = f(x + πωL1θ, y)

U2(x, y) f(x, y) U−1
2 (x, y) = f(x, y + πωL2θ) . (2.10)

Periodicity conditions (2.4) and the gauge transformation laws imply the following

transformation laws for the transition functions under gauge transformations

U1(x, y) → U ′
1(x, y) = V (x + L1, y) U1(x, y) V −1(x, y)

U2(x, y) → U ′
2(x, y) = V (x, y + L2) U2(x, y) V −1(x, y) . (2.11)

Now, using property (2.10) we have

U ′
1(x, y) = V (x + L1, y) V −1(x + πωL1θ, y) U1(x, y)

U ′
2(x, y) = V (x, y + L2) V −1(x, y + πωL2θ) U2(x, y) . (2.12)

Then, if the gauge transformation functions are periodic with periods

L̃i = s Li , s = (1 − πωθ) =

√

1 +
2πθk

L1L2
i = 1, 2 (2.13)

the transition functions are invariant. Thus, we will restrict ourselves to gauge transforma-

tions satisfying this property. From now on, we shall call T̃ the scaled torus with periods

(L̃1, L̃2).

The boundary conditions (2.6) together with our choice of transitions functions (2.8)

imply for the gauge field the following equations

A1(x + L1(1 − πωθ), y) = A1(x, y)

A1(x, y + L2(1 − πωθ)) = A1(x, y) −
1

g
πωL2

A2(x + L1(1 − πωθ), y) = A2(x, y) +
1

g
πωL1

A2(x, y + L2(1 − πωθ)) = A2(x, y) (2.14)
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which have as a general solution,

Ai(x, y) = Ãi(x, y) + ai(x, y) . (2.15)

where Ãi is a periodic function in the scaled torus T̃ and ai is defined as

ai = f εijx
j (2.16)

with

f =
1

gθ

(

1 −
1

s

)

(2.17)

(s was defined in eq. (2.13)). The field strength Fij = ∂iAj − ∂jAi − ig [Ai, Aj ] can be

written more conveniently as

Fij =
1

s
F̃ij + fij , (2.18)

where

fij = −εij
2πk

g

1

L̃1L̃2

(2.19)

and

F̃ij = ∂iÃj − ∂jÃi − i g̃ [Ãi, Ãj ] (2.20)

where we have introduced the scaled charge,

g̃ = s g (2.21)

and we have used that

εij [xj , ] = −iθ ∂i . (2.22)

Let see how does the field A transforms under gauge transformations. Applying a gauge

transformation to (2.15) we have

A′
i = V

(

Ãi + ai

)

V +
i

g
V ∂i V

−1

= V Ãi V + g f εij V xj V −1 +
i

g
V ∂i V

−1 . (2.23)

But using (2.22) we can rewrite the middle term as a derivative term plus ai

A′
i = V Ãi V − i θf V ∂i V

−1 + ai +
i

g
V ∂i V

−1

= V Ãi V + i
1 − g θf

g
V ∂i V

−1 + ai

= V Ãi V +
i

g̃
V ∂i V

−1 + ai . (2.24)

Thus a gauge transformation on Ai is equivalent to a gauge transformation on Ãi but with

the scaled charge g̃ (and the field ai untransformed).

– 4 –
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We can summarize these results by stating that a gauge theory on the noncommutative

torus T and with non-trivial boundary conditions (2.5), (2.6) is equivalent to a gauge theory

on the scaled noncommutative torus T̃ , with periodic boundary conditions and with a scaled

charge g̃.

Let us now solve the boundary condition equations for the Higgs field. A field φ(x)

satisfying the boundary conditions (2.4) with the transition functions given in equation

(2.8), can be decomposed as

φ(x, y) = φ0(x, y) η(x, y) , (2.25)

where φ0(x, y) is an arbitrary function periodic in the scaled torus T̃ and η(x, y) satisfy

the same boundary conditions as φ(x, y). Then we just have to find a particular solution of

η(x + L1, y) = U1(x, y) η(x, y)

η(x, y + L2) = U2(x, y) η(x, y) . (2.26)

Inspired in the commutative case [6] let us consider a function h(x, y) of the form

h(x, y) = eiα{z , y} , z = x + iy , (2.27)

where {z , y} = z y + y z and α is determined by the condition

h(x + L1, y) = U1(x, y) h(x, y)

= ei π ω L1 y eiα{z , y}. (2.28)

Since [z, y] = i θ, we can use the result (A.1) of the appendix to obtain

U1(x, y) h(x, y) = eiα{z+c , y} , c =
θπωL1

1 − e−2θα
. (2.29)

Then, equation (2.28) is solved if we chose

α = −
1

2θ
log (1 − πωθ) = −

1

2θ
log s . (2.30)

Now we compute

U2(x, y) h(x, y) = e−i π ω L2 x eiα{z , y} (2.31)

Using several times equations (A.1), (A.20), (A.21) and (A.22) of the appendix we get

U2(x, y) h(x, y) = e−kπL2/L1 eiα{z+iL2 , y−L̃2}

= ekπL2/L1 eiα{z+iL2 , y−L2} e−i2πk z/L1

= h(x, y + L2) ekπL2/L1 e−i2πk z/L1 (2.32)

(we used that ω (1 − πωθ/2) = k/L1L2). Then, η(x, y) can be written as

η(x, y) = h(x, y) Θ(x, y) (2.33)
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with Θ(x, y) satisfying

Θ(x + L1, y) = Θ(x, y)

Θ(x, y + L2) = ekπL2/L1 e−i2πk z/L1 Θ(x, y) . (2.34)

In commutative space, a function that satisfies (2.34) is given by a product of Riemann θ3

functions

Θ(x, y) =
k
∏

n=1

θ3 (π(z + an)/L1|iL1/L2) , (2.35)

where

θ3(z|τ) =
∑

n

eiπτn2+2inz (2.36)

and an are arbitrary complex numbers satisfying

k
∑

n=1

an = 0 (2.37)

(the function Θ(x, y) has k zeros at the points ai + (L1 + iL2)/4).

However, since the theta functions depend only on one variable, we can replace the stan-

dard product with the noncommutative product, as they both coincide. Then, eq. (2.35)

is the solution of (2.34) in noncommutative space. Thus,

η(x, y) = eiα{z , y}
k
∏

n=1

θ3 (π(z + an)/L1|iL1/L2) (2.38)

with

α = −
1

2θ
log s . (2.39)

In the limit θ → 0 this function coincides with the one obtained in the commutative case

(see [6]). For the special case of k = 1 we have

η(x, y) = eiα{z , y} θ3 (πz/L1|iL1/L2) . (2.40)

In order to discuss the dynamics through the introduction of the action and the energy

of our model, we have to define an appropriate trace (or integral) on the noncommutative

torus. Calling Aθ the space of functions defined on T , a generic periodic function f(x, y)

can be written in the form

f(x, y) =
∑

m,n

fmn exp

(

im
x

L1

)

exp

(

in
y

L2

)

(2.41)

and then one can formally define integration in Aθ, which we shall call trace Tr, as follows

Trf(x, y) = f00L1L2 (2.42)

which in turns defines an integral over T . This operation satisfies Tr(fg) = Tr(gf) and

reduces in the commutative limit to the standard integral on T .
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We have defined in (2.42) the integration in the noncommutative torus of strictly

periodic functions f(x, y). However the definition has to be corrected when the integrand

satisfies twisted boundary conditions [9, 10]. We discuss this issue in detail in appendix 3

and here give a brief summary. Consider a function f(x, y) that satisfies twisted boundary

conditions in the adjoint section (as it is the case of Fij for example)

f(x + L1, y) = U1(x, y) f(x, y) U−1
1 (x, y)

f(x, y + L2) = U2(x, y) f(x, y) U−1
2 (x, y) . (2.43)

Then, using (2.10) we see that f(x, y) is in fact periodic in the scaled torus T̃ . So the

natural integration measure for the function f(x, y) is on the scaled torus T̃ , that is

I[f ] = TrT̃ f . (2.44)

It can be shown that this definition is crucial if we want to preserve the cyclic property

of the integral (trace) which is essential in order to derive the equations of motion. Consider

for example two functions φ1(~x) and φ2(~x) that have nontrivial boundary conditions

φi(x + L1, y) = U1(x, y) φi(x, y)

φi(x, y + L2) = U2(x, y) φi(x, y) , i = 1, 2 . (2.45)

Then the product

φ1(~x) φ†
2(~x) (2.46)

is strictly periodic in the torus T , but the transpose product,

φ†
2(~x) φ1(~x) (2.47)

satisfy nontrivial boundary conditions in the adjoint, so it is periodic in the scaled torus

T̃ . Nonetheless, as we show in the appendix, the cyclic property of the integral is still valid

provided we integrate the first function in T and the second one in T̃

TrT

(

φ1(~x) φ†
2(~x)

)

= TrT̃

(

φ†
2(~x) φ1(~x)

)

. (2.48)

That is, the cyclic property is preserved with the above definition.

3. The Maxwell-Higgs model

We shall consider here a U(1) gauge field coupled to a Higgs scalar defined on the noncom-

mutative torus. Dynamics of the model is governed by the lagrangian

L = −
1

4
FµνF

µν + (DµΦ)† (DµΦ) − λ (Φ†Φ − φ2
0)

2 . (3.1)

We are interested in static configurations so that the energy can be written in the form1

E = Tr

(

1

4
FijFij + (DiΦ)† (DiΦ) + λ (Φ†Φ − φ2

0)
2

)

. (3.2)

1In this expression we are mixing covariantly periodic terms (FijFij) with strictly periodic terms,

((DiΦ)† (DiΦ) and (Φ†Φ − φ2

0)
2), so according to the previous discussion on integration, the integrals

have to be defined in their appropriate domains. Note however, that we can convert the periodic terms

into covariantly periodic ones by using property (2.48), and thus, the whole lagrangian or energy have to

be integrated in the same domain, the scaled torus T̃ .

– 7 –
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Here DiΦ = ∂iΦ− igAi Φ is the covariant derivative and Fij is the electromagnetic tensor.

Notice that, via the covariant derivative, we are choosing for definiteness a Higgs-gauge

coupling which corresponds to the fundamental representation (other choices are possible).

As in the commutative case, the energy can be rewritten using the Bogomolny trick

as,

E = Tr

(

1

2
|DiΦ − iγ εij DjΦ|2 +

1

4

(

Fij − γ g εij(Φ Φ† − φ2
0)
)2

+

+

(

λ −
g2

2

)

(

Φ† Φ − φ0

)2
− γ

g

2
φ2

0 εij Fij + total derivative

)

, (3.3)

where γ = ±1

The BPS equation corresponding to a bound of the energy when λ = g2/2,

E ≥ −γ
g

2
φ2

0 TrT̃ εijFij (3.4)

then read,

DiΦ − iγ εij DjΦ = 0 (3.5)

Fij − γ g εij(Φ Φ† − φ2
0) = 0 . (3.6)

Setting for definiteness γ = −1 and using (2.15)–(2.18), we can write the BPS equations as

F̃12 = g̃

(

ΦΦ† −

(

φ2
0 −

2πk

g2L̃1L̃2

))

(3.7)

D̃z̄Φ +
π ω

2
Φ z = 0 , (3.8)

where z = x + iy.

Since the fields Ã are periodic in the scaled torus T̃ , the total flux of F̃ij on T̃ vanishes

(see equation (2.42)) and then we have

Φ = TrT̃ F12 = TrT̃ f12 = −
2πk

g
. (3.9)

Bogomolny equations (3.7)–(3.8) have the particular solution

Ã = Φ = 0 (3.10)

provided the area of the torus and the Higgs vev are related according to

φ2
0 =

2πk

g2L̃1L̃2

. (3.11)

In the θ → 0 commutative limit this solution reproduces the so called Bradlow solution [11]

on the torus. Moreover, as in the commutative case [6], solution (3.10)–(3.11) could then

be used as a starting point to obtain new solutions with non-vanishing Ã and Φ, by an

appropriate expansion.
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In order to search for general solutions to eqs. (3.7)–(3.8) it will be convenient to

parametrize the fields as

Ãz̄ =
i

g̃
M−1∂z̄M + Ã0

z̄ (3.12)

Φ = M−1χ , (3.13)

where M is a complex (non unitary) function periodic in T̃ , Ã0
z̄ is a constant field, and χ

has the same periodicity as Φ. The BPS equation (3.8) then becomes,

∂z̄χ − ig̃Ã0
z̄χ +

π ω

2
χ z = 0 . (3.14)

As we showed previously in equation (2.25), the function χ can be factorized as

χ(x, y) = χ0(x, y) η(x, y) , (3.15)

where η carries the non trivial boundary conditions (see eq. (2.38)) and χ0 is periodic in

T̃ . Replacing (3.15) in (3.14) we get
(

∂z̄χ0 − ig̃Ã0
z̄χ0

)

η + χ0

(

∂z̄η +
π ω

2
z
)

= 0 . (3.16)

To compute ∂z̄η we first use equations (A.21) and (A.22) of the appendix to rewrite

η(x, y) = e−α{z,z̄} eπkz2/2L1L2 Θ(z) , (3.17)

where Θ, given in equation (2.35), in only function of z. Thus the problem reduces to

compute the derivative with respect to z̄ of e−α{z,z̄}. Using that

∂z̄ =
1

2θ
[z, ] (3.18)

and that [z, z̄] = 2θ we can show that

∂z̄e
−α{z,z̄} = −

πω

2
e−α{z,z̄} z (3.19)

and then the second term of equation (3.16) vanishes. So, the BPS equation (3.8) reduces

to

∂z̄χ0 − ig̃Ã0
z̄χ0 = 0 (3.20)

with solution

χ0 = N eig̃(iÃ0
z̄ z̄+Ã0

zz) , (3.21)

where N is a normalization factor. Periodicity of χ0 requires that Ã0 has the form

Ã0
z =

π

g̃

(

n0

L̃1

+ i
m0

L̃2

)

(3.22)

with integers n0 y m0. In commutative space this particular form of A0 is a pure gauge

and thus can be simply gauged away. In noncommutative space this is also the case with

the proviso that the gauge transformation will also transform the non-trivial part of the

field Ã (equation (3.12)). However the effect of the transformation will be only a shift in

the coordinates of the fields. So, without losing generality we can make m0 = n0 = 0.

– 9 –
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Concerning the BPS equation eq. (3.8), one has first to write the field F̃12 in terms

of the variables M defined in eq. (3.12). Clearly the gauge invariant variables are to be

defined from the combination

H = M M † (3.23)

so that one should be able to write the Bogomolny equations in terms of H. Since F̃12

is not gauge invariant but covariant, one can not write it only in terms of H; indeed a

straightforward computation gives

F̃zz̄ =
i

g̃
M−1 H ∂z

(

H−1∂z̄H
)

M †−1 . (3.24)

Substituting this expression, and that for Φ given by eq. (3.13) in the Bogomolny equation

leads to

H ∂z

(

H−1∂z̄H
)

=
1

2
g̃2
(

χ χ† − µ2
0H
)

, (3.25)

where χ is given in equations (3.15), (3.22) and

µ2
0 = φ2

0 −
2πk

g2L̃1L̃2

. (3.26)

In order to make further progress to find solutions of eq. (3.25) one has in principle to

resort to numerical techniques as it is already the case for θ = 0.

4. Non abelian extension and discussion

It should be possible to extend most of our results to the case of (appropriate) non abelian

gauge groups. As it is well known, consistency of noncommutative theories requires to

work with U(N) groups and not SU(N) [12]. One can then consider a U(2) × U(1) model

as a first step in the study of vortex solutions in a noncommutative version of the standard

model, along the lines of Ref.[4] for the commutative case.

Consider then the energy for static configurations,

E = TrT

(

1

2
tr(Wij Wij) +

1

4
tr(BijBij) + (DiΦ)† (DiΦ) + λ (Φ†Φ − φ2

0)
2

)

, (4.1)

where the U(2) gauge fields are defined as

Wi = W a
i λa , λ0 =

1

2
I , λk =

1

2
σk (4.2)

Bi is a U(1) gauge field, Φ is a Higgs field in the fundamental representation of U(2) and

the covariant derivatives and field strengths are defined as

DiΦ = ∂iΦ − igWi Φ + i
g′

2
Φ Bi (4.3)

Wij = ∂iWj − ∂jWi + ig[Wi, Wj ] , Bij = ∂iBj − ∂jBi + ig′[Bi, Bj ] . (4.4)
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Notice that the covariant derivative is defined so that it acts from the left for the U(2)

group and from the right for the U(1) one. The appropriate way to write perfect a square

à la Bogomolny for the Higgs covariant derivative is in this case

|DiΦ|2 = |DiΦ − iγ εij DjΦ|2 − γ g tr(εijΦ
† Wij Φ) + γ

g′

2
(Φ†Φ) εij Bij +

+ divergence (4.5)

leading to the following expression for the energy:

E = Tr

(

1

2
|DiΦ − iγ εij DjΦ|2 +

1

2
tr
(

Wij − γε
g

2
Φ Φ†

)2
+

+
1

4

(

Bij + γ
g′

2
εij(Φ

†Φ − µ2 φ2
0)

)2

+ γ
g′

2
µ2φ2

0 εij Bij +

+

(

λ −
g2

4
−

g′2

8

)

(

Φ† Φ − φ0

)2
−

(

g2

2
+

g′2

4
(1 − µ2)

)

Φ† Φ φ2
0 +

+

(

g2

2
+

g′2

4
(1 − µ4)

)

φ4
0

)

. (4.6)

Then, if we choose

µ2 = 1 + 2
g2

g′2
λ =

g2

4
+

g′2

8
(4.7)

the energy is bounded as

E ≥ γ g′ µ2φ2
0ΦB − µ2(µ2 − 1)φ4

0A , (4.8)

where ΦB is the flux of the B field and A is the area of the torus.

The bound is attained when the following BPS equations are satisfied,

DiΦ − iγ εij DjΦ = 0 (4.9)

Bij + γ
g′

2
εij(Φ

†Φ − µ2 φ2
0) = 0 (4.10)

Wij − γεij
g

2
Φ Φ† = 0 . (4.11)

As in the commutative space case [4]–[6], the bound has a topological component, propor-

tional to the B flux and a geometrical part, proportional to the area of the torus. The

non-commutative nature of space and the extra U(1) factor associated to the U(2) group

renders nevertheless, the analysis of the solutions of these equations considerably more

involved.

Let us end our work by summarizing our main results. We have analyzed periodic

configurations of matter and gauge fields in non commutative space. We have discussed in

detail how as a result of coordinate non commutativity, the region of periodicity of gauge

invariant and gauge covariant quantities may differ, a property that has to be kept in mind

in order to obtain consistent results. In this work, we have focussed mainly in the abelian

Maxwell Higgs model, where we have been able to obtain BPS equations whose vortex

solutions also solve the Euler Lagrange equations. We have presented a particular solution
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to these equations which, in the θ → 0 commutative limit corresponds the Bradlow solution

on the commutative torus. In the general case, we were able to reduce the problem of the

two coupled BPS equation to that of equation (3.25), which in principle should be solved

using numerical techniques, as it is the case for the commutative torus [6].

We believe that the generalization to non-abelian models will not present major diffi-

culties. As a particular example and as a first step in this direction, we have shown how

the BPS equations of a U(2) × U(1), a simplified version of the Standard Model in non

commutative space, are obtained. Of course, the noncommutative character both of the

space and the gauge group makes the obtention of explicit solutions much more compli-

cated but a more detailed analysis should reveal the existence of Z-vortex arrays (possibly

with the presence of charged mesons condensates) as it is the case in ordinary space [4].

We hope to report on this issues in a future publication.
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A. A useful result

We prove here a helpful result that was used extensively throughout the paper:

Lemma. Let A and B be two operators such that [A, B] = iµA where µ is an arbitrary

constant, then

eiA eiB = ei(f(µ)A+B), (A.1)

where

f(µ) =
µ

eµ − 1
. (A.2)

Proof. We write

eiA eiB = eiC . (A.3)

First we notice that a quick look at the Campbell-Baker-Hausdorff formula

eAeB = eA+B+ 1

2
[A,B]+ 1

12
([A,[A,B]]+[B,[B,A]])+··· (A.4)

reveals that C must be of the form

C = f(µ)A + B (A.5)

since any arbitrary nested commutator with [A, B] will give, either zero or something

proportional to A. So the problem reduces to find the function f(µ).
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Consider now the function

U(s) = eisA eisB (A.6)

we have that
dU

ds
U−1 = i

(

A + U B U−1
)

. (A.7)

But

eisA B e−isA = B + is[A, B]

= B − sµA (A.8)

since higher order commutators vanish. Thus we have

dU

ds
= i ((1 − s µ) A + B) U . (A.9)

Now we write according to (A.3) and (A.5)

U(s) = eiC(s) , C(s) = s (f(sµ)A + B) . (A.10)

We have
dU

ds
=

∞
∑

n=0

in

n!

dC(s)n

ds
(A.11)

but

dC(s)n

ds
=

n−1
∑

p=0

Cp dC(s)

ds
Cn−p

= s−1 n C(s) + µf ′(sµ)
n−1
∑

p=0

Cp A Cn−p . (A.12)

Now we notice that

C(s) A = A C(s) + [C(s), A]

= A (C(s) − i s µ) (A.13)

and applying successively this result we have

C(s)p A = A (C(s) − i s µ)p . (A.14)

Replacing this result back in (A.12) and then in (A.11) we get

dU

ds
= i s−1 C(s) U + µf ′(sµ) A

∞
∑

n=0

in

n!

n−1
∑

p=0

(C(s) − i s µ)p C(s)n−p−1 . (A.15)

The sum in p is a geometric sum, so it can be easily performed. It gives

n−1
∑

p=0

(C(s) − i s µ)p C(s)n−p−1 = (i s µ)−1 (C(s)n − (C(s) − i s µ)n) (A.16)
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and substituting this result in (A.15) we get

dU

ds
= i s−1 C(s) U + µf ′(sµ) A

∞
∑

n=0

in

n!
(i s µ)−1 (C(s)n − (C(s) − i s µ)n)

= i s−1 C(s) U − i s−1f ′(sµ) A
(

eiC(s) − ei(C(s)−isµ)
)

= i
((

f − f ′ (1 − esµ)
)

A + B
)

U . (A.17)

Finally, comparing this equation with (A.9) we have the following differential equation

for f

f − f ′ (1 − esµ) = 1 − s µ . (A.18)

The solution (with the initial condition f(0) = 1, as can be deduced from the series

expansion of (A.6)) is

f(sµ) =
sµ

esµ − 1
(A.19)

and evaluating in s = 1 we get the desired result.

Taking the inverse of expression (A.1) (and rescaling the fields and µ) we have the

equivalent result:

eiB eiA = ei(g(µ)A+B) , g(µ) =
µ

1 − e−µ
. (A.20)

Similarly we can prove,

ei(A+B) = eih(µ)A eiB , h(µ) =
eµ − 1

µ
(A.21)

and

ei(A+B) = eiB eik(µ)A , k(µ) =
1 − e−µ

µ
. (A.22)

In all cases

[A, B] = iµA . (A.23)

B. Cyclic property of the integral

We will show below that the cyclic property of the integral is valid whenever one defines

the integration on the appropriate torus.

First, from the definition of the integration on the torus, it is straightforward to see

that for strictly periodic functions f(x, y) and g(x, y), the cyclic property holds

∫

T
f g =

∫

T
g f . (B.1)

Consider now two functions φ1(x, y) and φ2(x, y) satisfying the non-trivial periodic

conditions

φi(x + L1, y) = U1(x, y) φi(x, y)

φi(x, y + L2) = U2(x, y) φi(x, y) , i = 1, 2 . (B.2)
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The product

w1(x, y) = φ†
1(x, y) φ2(x, y) (B.3)

is periodic on the torus T . On the other hand the reversed product

w2(x, y) = φ2(x, y) φ†
1(x, y) (B.4)

is periodic in the scaled torus T̃ (2.43). Thus, following the definition of integral on the

noncommutative torus, w1 must be integrated on T and w2 on T̃ . We will show that this

definition satisfies
∫

T
w1(x, y) =

∫

T̃
w2(x, y) . (B.5)

Let us consider, for simplicity, the case k = 1. As we showed previously, the functions φ1

and φ2 can be decomposed as

φ1(x, y) = φ0
1(x, y) η(x, y)

φ2(x, y) = φ0
2(x, y) η(x, y) , (B.6)

where φ0
i (x, y) , i = 1, 2 are periodic in T̃ and

η(x, y) = eiα{z , y} θ3

(

πz

L1
|
iL1

L2

)

, α = −
1

2θ
log s . (B.7)

Then

w1(x, y) = η†(x, y) φ0 †
1 (x, y) φ0

2(x, y) η(x, y)

w2(x, y) = φ0
2(x, y) η(x, y)η†(x, y) φ0 †

1 (x, y) . (B.8)

Consider first the integral

I1 =

∫

T
w1(x, y) =

∫

T
η†(x, y) φ0 †

1 (x, y) φ0
2(x, y) η(x, y) . (B.9)

Since φ0 †
1 (x, y) φ0

2(x, y) is periodic in T̃ , without loss of generality we can replace it by

ei2π(nx/L̃1+my/L̃2) , n, m ∈ Z . (B.10)

Consider now the product

γ(x, y) = η†(x, y) ei2π(nx/L̃1+my/L̃2)η(x, y) . (B.11)

It can be easily shown that for any function f(x, y)

f(x, y) ei2π(nx/L̃1+my/L̃2) = ei2π(nx/L̃1+my/L̃2) f(x − t1, y + t2) , (B.12)

where

t1 = 2πm
θ

L̃2

, t2 = 2π n
θ

L̃1

. (B.13)
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Thus

γ(x, y) = ei2π(nx/L̃1+my/L̃2) η†(x − t1, y + t2) η(x, y)

=
∑

p

∑

q

ei2π(nx/L̃1+my/L̃2) e−πL2/L1p2+i2πp(z̄−t1−it2)/L1 ×

× e−iα{z̄−t1−it2 , y+t2} eiα{z , y} e−πL2/L1q2+i2πq(z−t1+it2)/L1 . (B.14)

Next we have to expand this expression in Fourier modes

γ(x, y) =
∑

p,q

γpq ei2π(px/L̃1+qy/L̃2) (B.15)

and keep the coefficient γ00. Using several times the identities (A.1), (A.20), (A.21), and

(A.22), and after a straightforward but long computation, we get

γ00 =

{

0 if m is even

s
√

2L1/L2e
−π2(L2

1
m2+L2n2)/2L̃1L̃2 if m is odd .

(B.16)

Then

I1 =

∫

T
γ(x, y) = L1L2 γ00 . (B.17)

Now consider the integral

I2 =

∫

T̃
w2(x, y) =

∫

T̃
φ0

2(x, y) η(x, y) η†(x, y) φ0 †
1 (x, y) . (B.18)

Since the product η(x, y) η†(x, y) is periodic in the torus T̃ , as well as φ0 †
1 (x, y) and φ0

2(x, y),

we can rewrite I2 as

I2 =

∫

T̃
φ0 †

1 (x, y) φ0
2(x, y) η(x, y) η†(x, y) (B.19)

and again replace φ0 †
1 (x, y) φ0

2(x, y) by ei2π(nx/L̃1+my/L̃2).

First we compute

η(x, y) η†(x, y) =
∑

p

∑

q

eiα{z , y} e−πL2/L1p2+i2πpz/L1 ×

× e−πL2/L1q2+i2πqz̄/L1 e−iα{z̄ , y} . (B.20)

After another long computation, using the identities (A.1), (A.20), (A.21), and (A.22), we

can write

η(x, y) η†(x, y) = s−1

√

2L1

L2

∑

p,q

e−π(L2

2
p2+4L2

1
q2)/2s2

ei2π(px/L̃1+2qy/L̃2). (B.21)

Thus, δ00, the (0, 0) Fourier mode of the product

δ(x, y) = ei2π(nx/L̃1+my/L̃2) η(x, y) η†(x, y) (B.22)
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is given by

δ00 =

{

0 if m is even

s−1
√

2L1/L2e
−π2(L2

1
m2+L2n2)/2L̃1L̃2 if m is odd .

(B.23)

Notice that δ00 differs from γ00 in a factor s2 which precisely the relation between the area

of the two torus. The integral is

I2 =

∫

T̃
w2(x, y) = L̃1L̃2 δ00 = L1L2 s2 δ00 = L1L2 γ00 . (B.24)

So ∫

T
φ†

1(x, y) φ2(x, y) =

∫

T̃
φ2(x, y) φ†

1(x, y) . (B.25)
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