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We prove the existence of infinitely many stationary solutions of a nonlinear one-dimensional superlinear
equation on time scales using a Lusternik-Schnirelmann type result.
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1. Introduction

In this paper, we consider the following superlinear equation on a time scale T:
YRy =0 x € lably, (1
where 7 is a positive constant, under Dirichlet conditions:
W@) = y(a*(b)) =0, 2

with a,b € T, a < b. Replacing y by —y, we may consider only the case y Aa) = 0.

Remark 1.1. In particular, equation (1) can be regarded as a time scales version of the
stationary one-dimensional case for the nonlinear Schrédinger equation

,y(x, 1) = i(93y(x, 1) + |y(x, Dy(x, 1)),

which has been the subject of great interest in recent years. This equation arises on the study
of propagation of electromagnetic waves in a nonlinear medium, or of a laser beam in optical
fiber [2,5,9,11,12].

Our main theorem reads as follows.

THEOREM 1.2.  Problem (1)—(2) has infinitely many solutions.
Let us briefly recall that the concept of dynamic equations on time scales was introduced
by Hilger in Ref. [8] with the motivation of providing a unified approach to continuous and
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discrete calculus. The notion of a generalized derivative y * was defined, where the domain of
the function y is an arbitrary closed non-empty subset T C R. If the time scale T is a
nontrivial interval, then the usual derivative is retrieved, that is y A— y’. On the other hand, if
T = Z, then the generalized derivative reduces to the usual forward difference, that is
y & = Ay.

We remark that in the continuous case T = R, Theorem 1.2 admits a simple proof. Indeed,
one may verify for example that, for any a > 0, the problem

Y +y" =0, y(0)=y(@=0

admits a positive solution y,, which is unique, and symmetric with respect to tp = a/2.
Thus, it suffices to consider « = (b — a)/N for N € N, and define

yt) = (— 1Yyt —a —ja) if a+ja<t=a+(j+ Da,

forj =0, ...,N — 1. Infact, it is easy to prove that all nontrivial solutions of the problem are
constructed in this way. It is worth to observe, however, that the previous argument takes
advantage of the self-similarity of the interval [a, b], and for this reason it cannot be
generalized for an arbitrary time scale T.

A more general argument, which holds for the equation y” 4+ g(y) = p(x) where g is any
superlinear function, relies on the study of the index

1
I(\) = 5

?

Jb YA = Ay ()
a V) + )

where y, is the unique solution of the initial value problem

Y +g(y»)=px), y0)=0, y'(0)=A.

It is well known that I(A) computes the number of rounds that the curve ®, : [a,b]— R?
given by @, (x) := ( y’A(x), ya(x)) performs around the origin, starting at the point (A, 0); in
particular, if I(A) € (1/2)Z, then y, is a solution of (1)—(2). Thus, existence of infinitely
many solutions follows from the fact that 7 is well defined and continuous when A is large,
with I(A) — o0 as A — oo. But, once again, it does not seem to be possible to implement this
procedure in the context of a general time scale, since its main idea is based on the following
equality, which holds by simple integration of the IVP, but has no obvious generalization for
time scales:

/ 2 /\2 N
Y (zx) +GO) =5+ J p(s)y'(s)ds,

where G(u) = [,g(s)ds.

We shall give a different proof for an arbitrary time scale, based on a variant of the
Lusternik-Schnirelmann theory given by Clark in Ref. [6]. More precisely, solutions shall be
obtained from the critical points of an appropriate even functional.

The paper is organized as follows. In Section 2, we give some preliminary results
concerning the Sobolev spaces on time scales.

In Section 3, we introduce an appropriate variational setting for problem (1)—(2) and give
a proof of Theorem 1.2.
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2. Preliminary results

There exists a vast literature on time scales after the pioneering work [8]. For a general
introduction to the theory, we refer the reader to Refs. [3,4].

In order to study problem (1)—(2), by variational methods, let us recall the Lebesgue
measure in times scales, firstly defined in Ref. [7], which can be constructed in the following
way.

For a,b € T with a < b, consider A C P([a, b)1) the completion of o-algebra generated
by the family

{[x0,x)1:a=x0 < x| =b,x0,x; € T}.

Hence, there is a unique o-additive measure w, : A— R" defined over this basis as:
ma([x0,x1)7) = x1 — xp. As mentioned in Ref. [1], it is easy to see that mua can be
characterized as follows:

pa = A+ Y (o) —x)dy,

i€l

where A is the Lebesgue measure on R, {x;},c; is the (at most countable) set of all right-
scattered points of T and &, is the Dirac measure concentrated at x. A function f which is
measurable with respect to w, is called A-measurable, and the Lebesgue integral over [a, b)y
is denoted by

b
Jf(x)Ax = J fodpa.
a [a.b)r
Thus, for 1 = p < oo the Banach L”-spaces may be defined in the standard way, namely
. b
LA ([a,b)y) = {f:f : [a,b)r — R is A — measurable and J [ FolPAx < 00},

where f denotes the equivalence class of f, consisting of all A-measurable functions on [a,b)T
that coincide with f almost everywhere for the A-measure. The norm of this space will be
denoted by

b 1/p
Il = ([ Lrooras)

Next, we shall introduce as in Ref. [1] the idea of weak time scale derivative (for
shortness, weak derivative). For completeness, let us recall that a function ¢ is termed to be
right-dense continuous on [a, b |1 if ¢ is continuous at every right-dense point x € [a, b |7,
and limx_,xo— @(x) exists and is finite at every left-dense point xy € [a, b ]1. Further, the space
C }d([a, b 1y) is defined as the set of those functions ¢ : [a, o (b)]y — R that have a right-dense
continuous derivative on [a, b |y.
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DEFINITION 2.1, Letf € L’;([a7 b)T). Aweak derivative of f (if it exists) is a A-measurable
function g such that

b

b
Jf(x)qu(x)Ax = —J g(x) @7 (x)Ax

a

for any ¢ € Cld([a7 bly) such that ¢(a) = ¢(b) = 0.

Remark 2.2. Iff € Cid([a, b]t), then by the product rule it follows that f 4 is also a weak
derivative of f.

Remark 2.3. Let g € C,y([a,b]y), and define f(x) = fgg(s)As. Then, by the fundamental
theorem (see [7]) it follows that g is the derivative of f.

Remark 2.4. Itis easy to see that if f'has zero weak derivative, then f = ¢ for some constant
c. In view of the previous remark, we deduce that if f has a right-dense continuous weak
derivative on [a, b]T, then it belongs to Cld([a, bly).

Thus, the Sobolev spaces Wi’p ([a, b)T) may be defined as in the standard case T = R:

WIA"I’([a, byy) = {f € LX(la,b)y) : f hasaweak derivative 4 e i(a, b))},

equipped with the norm

1/p
— A
1ty = (LA, + 1210, )
In particular, for p = 2 we shall denote H 'A([a, b)) = WIA’Z([a, b)1), and the norm is induced
by the inner product given by
b A A
(9 = [ [P + 2008 @] Ax

Basic properties of Sobolev spaces in time scales can be found in Ref. [1].

3. Proof of Theorem 1.2

In this section, we introduce the variational setting for problem (1)—(2), and give a proof of
Theorem 1.2 based on a specialization of the Lusternik-Schnirelmann theory to the case of an
even functional of a Banach space.

Without loss of generality we may assume that @ = 0 and b = 1. For convenience, let us
set B = o*(1) and the space

H = H, ([0, Br) = {y € HA(10, By) : ¥(0) = y(B) = 0}.

From now on, we shall denote by ||-]| the norm of H, and by ||-|| » the norm of L”([0, B)).
Next, define the functional J:H — R by

B [ A 2 2 1 2
J(y) = (J yA<x)2Ax> —J ly? " Ax = Iy 19 = llyel1722.
0 0
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It is clear that if y is a critical point of J, then y is a weak solution of the problem

[y 211724400 + 525 1y @)y 7x) = 0
¥(0) = y(B) = 0.

3)
Indeed, it follows from simple computation that J € C (H ,R), with

B B
DI((@) = 2y + 1)||yA||i¥J VWetmAr - (y+ 2>J @Iy ()" (WAL,
0 0
Thus, if DJ(y) = 0, we deduce that y is a weak solution of (3).

Remark 3.1.  As every element of WIA"” ([a, b)T) has an absolutely continuous representative
(see [1]), it follows from Remark 2.4 that any weak solution of (3) is in fact classical, in the
sense that it admits a continuous (standard) time scale second derivative.

The connection between solutions of (3) and solutions of the original problem is clear from
the following lemma.

LemMA 3.2.  Assume that y € H — {0} is a critical point of J and let

e (Y2 1/YIIyAH_zZ.
2y+1) L

Then y = ry is a solution of (1)—(2). Moreover, if S is any one-dimensional subspace of H,
the number of nontrivial critical points of J belonging to S is at most two.

Proof. If y € H — {0} is a critical point of J, a straightforward computation shows that y is a
solution of (1)—(2). Moreover, if ¢(a) = J(ay), then ¢(a) = DJ(ay)( y). On the other hand,
as ¢(a) = Alal*™™D — Blal”*? with A = [ly*|29"", B = llyl[12, it follows that ¢ has
exactly two nonzero critical points. Thus, DJ(ay) = 0 only for a = 0, *1. ]

In order to obtain solutions of (3) as critical points of J, let us recall the well-known Palais-
Smale condition.

DEFINITION 3.3.  Let E be a Banach space and J € C'(E,R). It is said that J satisfies (PS)
if any sequence {y,} C E such that |J(y,)| = ¢ for some constant ¢ and DJ(y,) — 0, has a
convergent subsequence in E.

DEFINITION 3.4.  Let E be a Banach space and let A C E\{0} be closed and symmetric with
respect to 0. The genus of A is defined in the following way: If there exists f : A — R\ {0}
continuous and odd with N minimum, then gen(A) = N; otherwise, gen(A) = oo.

The following result is a consequence of a Lusternik-Schnirelmann theorem, due to Clark [6].

THEOREM 3.5. Let E be a Banach space such that dim(E) = N for some N € N. Let
J € CY(E,R) be an even functional satisfying (PS), such that J(0) = 0, and assume that
¢ € ( — 0,0), where the constant ¢ = c(N) is defined by

c:= inf supJ(y).
gen(A)zNyEE (y)
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Then c is a critical value of J. Furthermore, if c(M) = ¢ for some M > N, then gen(J ~'(c)) >
M — N.

Proof of Theorem 1.2.

1.

J is bounded below and coercive.
Indeed, for y € H we may write y(x) = fg y2(s)As, and deduce that

Iyl = B2 lyA .

Hence,
Ivllz = BlyllLe,
and
I3 = B2y e,
Thus

I = P (A - grr2),

and the claim follows.
J satisfies (PS).

Assume that J(y,) is bounded, and that DJ(y,) — 0. Then {y,} is bounded in H, and
taking a subsequence we may suppose that y, — y uniformly, and weakly in H for some
yEH.

Furthermore, using the fact that DJ(y,)(y, — y) — 0 and that y, — y uniformly, we
deduce that

B
||y,%||izj AW — WA A — 0,
0

If || yﬁ [l.2 — 0, then y, — 0 in H and the claim is proved. Otherwise, taking a subsequence
we may assume that

B
Oyﬁ(x)(yn — A ) Ax— 0.

On the other hand, as y, — y weakly in H, we also have:

B
)yA(x)(yn — 2 x)Ax — 0.
(

Hence

B
[/t = pPeoas—o,
0
and we conclude that y, — y strongly in H.
Application of Theorem 3.5.

Let N € N and ¢ = ¢(N) be defined as in Theorem 3.5. As J is bounded below, it
follows trivially that ¢ > — oo.
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Moreover, as the elements of H are continuous, it is clear that if y € H satisfies y? = 0,
then y = 0. Indeed, y(0) = y(8) = 0, and for x € (0, 8)1 we have:

If x is right-dense, then y(x) = y“(x) = 0.

If x is left-scattered, then y(x) = y“(p(x)) = 0.

If xy is right-scattered and left-dense satisfies y(xy) # 0, then y # 0 over a neighborhood
of xp. In particular, y # 0 over a nonempty interval / = (xo — 8, x0)y for some 6 > 0.
As xq is left-dense, if x € I, then o(x) € I. It follows that y(o(x)) # 0, a contradiction.

Next, let V C H be any subspace with dim(V) = N. It follows that the norms defined over
V by |[y2|l.> and |ly?||,> are equivalent; thus, there exists a constant k such that

Iyl 2 < klly%ll,. Yy e V.
Hence, from the imbedding LXH([O, B)) — Li([O, B)), if y € V we obtain:
J() = KDy — Ny el2EE = Iyl (K20l — a)

for some positive constant a. Hence, there exists € > 0 such that J(y) < O for any y € V such
that 0 < ||y|]| < 2e. Thus, if we consider the set

A={y€eV:e=|yl =2¢},

it follows by compactness that sup,esJ(y) < 0. Furthermore, from Borsuk Theorem
(see, e.g. [10]) we deduce that y(A) = N, and then ¢ < 0. From Theorem 3.5, we conclude
that c is a critical value of J. If c(M) = ¢ for some M # N, then gen(J ~!(c)) > |M — N| and
J ~Y(¢) is an infinite set of critical points of J. Otherwise, {c(N): N € N} is an infinite set of
critical values of J. Taking into account Lemma 3.2, the proof is complete. (]

Acknowledgement

The author would like to thank the anonymous referees for the careful reading of the original
manuscript and their fruitful corrections and remarks.

References

[1] Agarwal, R.P., Otero-Espinar, V., Perera, K. and Vivero, D., 2006, Art. ID 38121 Advances in Difference
Equations, 14.

[2] Berestycki, H. and Lions, P.-L., 1983, Nonlinear scalar field equations I. Existence of a ground state. Archive
for Rational Mechanics and Analysis, 82(4), 313-345.

[3] Bohner, M. and Peterson, A., 2001, Dynamic Equations on Time Scales. An Introduction with Applications
(Boston, MA: Birkhéduser Boston, Inc.).

[4] Bohner, M., Guseinov, G. and Peterson, A., 2003, Introduction to the Time Scales Calculus. Advances in
Dynamic Equations on Time Scales (Boston, MA: Birkhéduser Boston), pp. 1-15.

[5] Cazenave, T., 1989, An Introduction to Nonlinear Schrodinger Equation Textos de Métodos Matematicos
22 (Rio de Janeiro: LM.U.F.R.].).

[6] Clark, D., 1972/73, A variant of the Lusternik-Schnirelman theory. Indiana University Mathematics Journal,
22(1), 65-74.

[7] Guseinov, G., 2003, Integration on time scales. Journal of Mathematical Analysis and Applications, 285(1),
107-127.

[8] Hilger, S., 1990, Analysis on measure chains—a unified approach to continuous and discrete calculus. Results
in Mathematics, 18(1-2), 18-56.



Downloaded by [Universidad de Buenos Aires] at 13:33 04 March 2015

1058 P. Amster

[9] Lebowitz, J., Rose, H. and Speer, E., 1988, Statistical mechanics of the linear Schrodinger equation. Journal of
Statistical Physics, 50(3—4), 657—687.
[10] Lloyd, N., 1978, Degree Theory (Cambridge: Cambridge University Press).
[11] Strauss, W., 1977, Existence of solitary waves in higher dimensions. Communications in Mathematical Physics,
55(2), 149-162.
[12] Weinstein, M., 1982/83, Nonlinear Schrodinger equations and sharp interpolation estimates. Communications
in Mathematical Physics, 87(4), 567-576.



