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Abstract

We study the existence of periodic solutions for a nonlinear system of nth-order differential equations on time scales. Assuming
a suitable Nirenberg-type condition, we prove the existence of at least one solution of the problem using Mawhin’s coincidence
degree.
© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

In this work, we investigate the existence of solutions y : [0, " (T)]T — RY to the following nonlinear system of
nth-order differential equations on time scales

n n—1
yA" = f y, ..y, tel0, Tl (1)

under the time-scales periodic conditions:

¥0) = y(@" (M), y30) =y2@" (M), ....y2(0) = y2" (0 (T)). )

We shall assume that the nonlinearity f : [0, T]t x R™Y — R¥ is continuous and bounded with respect to y.
However, in contrast with the systems of equations of pendulum type, in this work f will be typically a non-periodic
function of y. More precisely, we shall study problem (1) under a generalization of the so-called Nirenberg condition
for n = 2 which, in turn, generalizes the well-known Landesman—Lazer conditions for the case N = 1.
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There exists a vast literature on Landesman—Lazer-type conditions for resonant problems, starting with the
pioneering work [1] for a (scalar) second-order elliptic differential equation under Dirichlet conditions (for a survey
on conditions of this kind see e.g. [2]). In [3], Nirenberg extended the Landesman—-Lazer conditions to a system of
second-order elliptic equations. Nirenberg’s result can be adapted for a system of periodic ODE:s in the following way:

Theorem 1.1. Let p € C([0, T, RN ) and let g : RY — RN be continuous and bounded. Further, assume that the
radial limits g, = lim,_, | oo g(rv) exist uniformly with respect tov € SN =1, the unit sphere of RN Then the problem

Y +8() = p®)
has at least one T -periodic solution if the following conditions hold:

l. gy #p = %fOT p(t)dt for any v € SN™1.
2. The degree of the mapping 6 : SN=1 — SN~ given by

o) = P
lgv — Pl

IS non-zero.

In this work, we generalize several aspects of this result. On the one hand, we do not deal with a system of classical
ordinary differential equations but, more generally, with a system of dynamical equations on time scales. Let us recall
that the concept of time scale, also known as measure chain, was introduced by Hilger in [4], with the aim of unifying
continuous and discrete calculus. Thus, for a function y : T — R, where T C R is an arbitrary closed set, a general
derivative yA is defined, in such a way that if T = R (continuous case) then yA is the usual derivative (i.e. yA =y,
and if T = 7Z, then the discrete derivative is retrieved, namely yA = Ay. For a detailed introduction to the theory
of time scales see e.g. [5-7]. It is worth to remark that, although the field of boundary value problems for dynamic
equations in time scales had a rapid growth in the last years, not much literature concerning resonant problems is
known. A previous work dealing with this kind of situation on a time scale is [8], where a second-order multi-point
boundary value problem is studied. We may also mention [9], where Landesman-Lazer conditions for a second-order
periodic problem on time scales are obtained by variational methods.

On the other hand, our system consists of higher-order equations, for which some of the standard tools of the theory
of second-order operators (e.g. maximum and comparison principles) are not applicable.

Finally, the nonlinearity f is more general, since it may also depend on the derivatives of y. In particular, even for
the classical case T = R, this fact implies that the problem has non-variational structure, and motivates the use of topo-
logical methods instead: more precisely, we shall apply Mawhin’s coincidence degree theory (see e.g. [10]). This pow-
erful tool has been applied to many resonant boundary value problems. An application for a resonant problem on time
scales is given in [8]; for periodic conditions, the continuation method has been firstly used in [11], and also in [12].

We shall assume that f : [0, T]p x R*N — RN is continuous and satisfies the linear growth condition

[f( Yo, syn—D)l <€ sup |yj|l+M (3)
1<j<n-—1
for some ¢ to be specified, and some arbitrary constant M. In this situation, our condition concerning the existence of
radial limits of the nonlinearity takes the following form:
Condition (F)
For each ¢ the limit

hm f(tvsvvyla-‘~’yn71) = fv(t) (4)
s— 400
exists uniformly with respect to v € SN=1 and [yjl < % for j = 1,...,n — 1 where the constant C > 0 is defined

in Lemma 2.2.
Thus, our main result reads:

Theorem 1.2. Assume that condition (F) holds. Then the boundary value problem (1) and (2) admits at least one
solution, provided that

1. F, = ﬁf{ fo(t) At # 0 forany v € SN1.
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2. The degree of the mapping 6 : SN~ — SN=1 given by

S

Lol

0(v) =

s non-zero.

For completeness, let us summarize the main aspects of coincidence degree theory. Let V and W be real normed
spaces, L : Dom(L) C V — W a linear Fredholm mapping of index 0, and N : V — W continuous. Moreover, set
two continuous projectors 7y : V — V and wyw : W — W such that R(wy) = Ker(L) and Ker(sryw) = R(L), and an
isomorphism J : R(zwyy) — Ker(L). It is readily seen that

Ly = L|pom(L)nKer(ry) : Dom(L) N Ker(my) — R(L)

is one-to-one; denote its inverse by Ky, . If {2 is a bounded open subset of V, N is called L-compact on {2 if wyy N (£2)
is bounded and K, (I — mww)N : 2 — V is compact.
The following continuation theorem is due to Mawhin [10]:

Theorem 1.3. Let L be a Fredholm mapping of index zero and N be L-compact on a bounded domain {2 C V.
Suppose

1. Lx # ANx for each A € (0, 1] and each x € 9 12.
2. wywwNx # 0 for each x € Ker(L) N af2.
3. d(JawN, 2 NKer(L), 0) # 0, where d denotes the Brouwer degree.

Then the equation Lx = Nx has at least one solution in Dom(L) N 2.
2. Proof of Theorem 1.2
Set V C Crq([0, o™ (T)]T, RY) given by
V={y: 34" € Cu([0, 0/ (1)1, RY) for j = 1,...,n — 1,and y satisfies (2)}

equipped with the norm

A
Iyllv:= sup [y ”Crd([()’o-./'(T)JT,RN)-

0<j=<n-1
Moreover, let

D={(yeV:3y* € Cu(0, TIr, RY)},
W = Crq([0, Tlt, RY),

and define the operators L : D — W, N : V — W given by

n n—1

A simple computation shows that Ker(L) = R", and

o (T)
R(L) = {goeW:f (p(t)At:O}.
0

Thus, we may define the projectors

1 o(T)
my(y) = y(0), Ty (@) = mfo p(t)At,

and consider J : R(ryy) — Ker(L) as the identity of RY.
It is immediate to prove that N is continuous; furthermore, if ¢ € R(L), then K (¢) is the unique solution y € D
of the problem yA" = ¢ satisfying y(0) = 0.

Remark 2.1. The inverse operator K, may be established in a more precise way. Indeed, if y € V satisfies yA” =g,
then
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1 t
YA W = + fo @($)As = c1 + 1(9) (1),

where the constant ¢ is uniquely determined by the boundary condition ym_2 0) = yAn_2 (UZ(T)); namely

1 o(T)
cl=——5— I(p)(s)As.
o(T) /o
Inductively, it follows that
y(@) = P@) + 1" (p)(1),

where P is a generalized polynomial of order n — 1 (i.e. an nth-order anti-derivative of 0), and the coefficients of P
are uniquely determined by the successive integrals of ¢.

The proof of the following lemma is immediate from the previous remark:

Lemma 2.2. There exists a constant C such that
1Ky @1 = Cligll
forany ¢ € R(L).

If y belongs to a bounded set 2 C V, then ¢ = (I — yy) Ny is bounded, and from the Arzeld theorem and the
previous lemma we deduce that K, (I — myy)N is compact. Thus, the L-compactness of N follows.

We claim that the solutions y € D of the equation Ly = ANy with 0 < A < 1 are a priori bounded for the V-norm.
Indeed, otherwise there exists a sequence {yx} C D such that

n n—1
ykA :)‘kf(t»yk""vykA )

with 0 < A < 1 and || yk|ly — oo. Writing
Yi(®) = yk(0) + Kry (Ax Nyg)
it follows that

n—1 J
Iyt = 3O llnt < Claf @ ey Dllw < Ce sup 1y i,y +CM.

l<j=n-1

Thus, if ¢ < min{%, 1}, it follows that

- n—-1 < .
1ye = 3Ol enr = 72

Then

forj=1,...n—1,0<t<0o/(T),

i Ol < =

Eg;l — u for some u € SV, whence

and it follows that |y (0)] — oo. Taking a subsequence, we may assume that Gi
k(1) = ”};k(ﬁi/ also converges to u. Integrating the equation, we obtain that

o(T) An o(T) A"_I
0=/ y (t)At=)»k/ S@ Yk, sy DAL
0 0

Thus, writing yx = ||yk|lv-zk, and using the dominated convergence theorem for the time scales integral (see [13]),
we deduce from condition (F) that

o(T)
/ fu(I)At 20,
0

a contradiction.
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Thus, the first condition in Theorem 1.3 is fulfilled taking {2 = Bg(0) with R large enough.
Furthermore, if y € Ker(L) N 842, then

1 o(T)
anyz—/ f&,y,0,...,0)At,
a(T) Jo
and by the degree condition 2 it is easy to verify that the second and the third conditions of Theorem 1.3 are fulfilled.
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