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Abstract

We study the existence of periodic solutions for a nonlinear system of nth-order differential equations on time scales. Assuming
a suitable Nirenberg-type condition, we prove the existence of at least one solution of the problem using Mawhin’s coincidence
degree.
c© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

In this work, we investigate the existence of solutions y : [0, σ n(T )]T → RN to the following nonlinear system of
nth-order differential equations on time scales

y∆n
= f (t, y, . . . , y∆n−1

), t ∈ [0, T ]T; (1)

under the time-scales periodic conditions:

y(0) = y(σ n(T )), y∆(0) = y∆(σ n−1(T )), . . . , y∆n−1
(0) = y∆n−1

(σ (T )). (2)

We shall assume that the nonlinearity f : [0, T ]T × Rn.N
→ RN is continuous and bounded with respect to y.

However, in contrast with the systems of equations of pendulum type, in this work f will be typically a non-periodic
function of y. More precisely, we shall study problem (1) under a generalization of the so-called Nirenberg condition
for n = 2 which, in turn, generalizes the well-known Landesman–Lazer conditions for the case N = 1.
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There exists a vast literature on Landesman–Lazer-type conditions for resonant problems, starting with the
pioneering work [1] for a (scalar) second-order elliptic differential equation under Dirichlet conditions (for a survey
on conditions of this kind see e.g. [2]). In [3], Nirenberg extended the Landesman–Lazer conditions to a system of
second-order elliptic equations. Nirenberg’s result can be adapted for a system of periodic ODEs in the following way:

Theorem 1.1. Let p ∈ C([0, T ], RN ) and let g : RN
→ RN be continuous and bounded. Further, assume that the

radial limits gv := limr→+∞ g(rv) exist uniformly with respect to v ∈ SN−1, the unit sphere of RN . Then the problem

y′′
+ g(y) = p(t)

has at least one T -periodic solution if the following conditions hold:

1. gv 6= p :=
1
T

∫ T
0 p(t)dt for any v ∈ SN−1.

2. The degree of the mapping θ : SN−1
→ SN−1 given by

θ(v) =
gv − p

|gv − p|

is non-zero.

In this work, we generalize several aspects of this result. On the one hand, we do not deal with a system of classical
ordinary differential equations but, more generally, with a system of dynamical equations on time scales. Let us recall
that the concept of time scale, also known as measure chain, was introduced by Hilger in [4], with the aim of unifying
continuous and discrete calculus. Thus, for a function y : T → R, where T ⊂ R is an arbitrary closed set, a general
derivative y∆ is defined, in such a way that if T = R (continuous case) then y∆ is the usual derivative (i.e. y∆

= y′),
and if T = Z, then the discrete derivative is retrieved, namely y∆

= ∆y. For a detailed introduction to the theory
of time scales see e.g. [5–7]. It is worth to remark that, although the field of boundary value problems for dynamic
equations in time scales had a rapid growth in the last years, not much literature concerning resonant problems is
known. A previous work dealing with this kind of situation on a time scale is [8], where a second-order multi-point
boundary value problem is studied. We may also mention [9], where Landesman–Lazer conditions for a second-order
periodic problem on time scales are obtained by variational methods.

On the other hand, our system consists of higher-order equations, for which some of the standard tools of the theory
of second-order operators (e.g. maximum and comparison principles) are not applicable.

Finally, the nonlinearity f is more general, since it may also depend on the derivatives of y. In particular, even for
the classical case T = R, this fact implies that the problem has non-variational structure, and motivates the use of topo-
logical methods instead: more precisely, we shall apply Mawhin’s coincidence degree theory (see e.g. [10]). This pow-
erful tool has been applied to many resonant boundary value problems. An application for a resonant problem on time
scales is given in [8]; for periodic conditions, the continuation method has been firstly used in [11], and also in [12].

We shall assume that f : [0, T ]T × Rn.N
→ RN is continuous and satisfies the linear growth condition

| f (t, y0, . . . , yn−1)| ≤ ε sup
1≤ j≤n−1

|y j | + M (3)

for some ε to be specified, and some arbitrary constant M . In this situation, our condition concerning the existence of
radial limits of the nonlinearity takes the following form:

Condition (F)
For each t the limit

lim
s→+∞

f (t, sv, y1, . . . , yn−1) := fv(t) (4)

exists uniformly with respect to v ∈ SN−1 and |y j | ≤
C M

1−Cε
for j = 1, . . . , n − 1 where the constant C > 0 is defined

in Lemma 2.2.
Thus, our main result reads:

Theorem 1.2. Assume that condition (F) holds. Then the boundary value problem (1) and (2) admits at least one
solution, provided that

1. f v :=
1

σ(T )

∫ T
0 fv(t) ∆t 6= 0 for any v ∈ SN−1.
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2. The degree of the mapping θ : SN−1
→ SN−1 given by

θ(v) =
f v

| f v|

is non-zero.

For completeness, let us summarize the main aspects of coincidence degree theory. Let V and W be real normed
spaces, L : Dom(L) ⊂ V → W a linear Fredholm mapping of index 0, and N : V → W continuous. Moreover, set
two continuous projectors πV : V → V and πW : W → W such that R(πV) = Ker(L) and Ker(πW) = R(L), and an
isomorphism J : R(πW) → Ker(L). It is readily seen that

LπV := L|Dom(L)∩Ker(πV) : Dom(L) ∩ Ker(πV) → R(L)

is one-to-one; denote its inverse by KπV . If Ω is a bounded open subset of V, N is called L-compact on Ω if πWN (Ω)

is bounded and KπV(I − πW)N : Ω → V is compact.
The following continuation theorem is due to Mawhin [10]:

Theorem 1.3. Let L be a Fredholm mapping of index zero and N be L-compact on a bounded domain Ω ⊂ V.
Suppose
1. Lx 6= λN x for each λ ∈ (0, 1] and each x ∈ ∂Ω .
2. πWN x 6= 0 for each x ∈ Ker(L) ∩ ∂Ω .
3. d(JπWN ,Ω ∩ Ker(L), 0) 6= 0, where d denotes the Brouwer degree.

Then the equation Lx = N x has at least one solution in Dom(L) ∩ Ω .

2. Proof of Theorem 1.2

Set V ⊂ Crd([0, σ n(T )]T, RN ) given by

V = {y : ∃y∆n− j
∈ Crd([0, σ j (T )]T, RN ) for j = 1, . . . , n − 1, and y satisfies (2)}

equipped with the norm

‖y‖V := sup
0≤ j≤n−1

‖y∆ j
‖Crd ([0,σ j (T )]T,RN ).

Moreover, let

D = {y ∈ V : ∃y∆n
∈ Crd([0, T ]T, RN )},

W = Crd([0, T ]T, RN ),

and define the operators L : D → W, N : V → W given by

Ly = y∆n
, N y = f (·, y, . . . , y∆n−1

).

A simple computation shows that Ker(L) = RN , and

R(L) =

{
ϕ ∈ W :

∫ σ(T )

0
ϕ(t)1t = 0

}
.

Thus, we may define the projectors

πV(y) = y(0), πW(ϕ) =
1

σ(T )

∫ σ(T )

0
ϕ(t)1t,

and consider J : R(πW) → Ker(L) as the identity of RN .
It is immediate to prove that N is continuous; furthermore, if ϕ ∈ R(L), then KπV(ϕ) is the unique solution y ∈ D

of the problem y∆n
= ϕ satisfying y(0) = 0.

Remark 2.1. The inverse operator KπV may be established in a more precise way. Indeed, if y ∈ V satisfies y∆n
= ϕ,

then
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y∆n−1
(t) = c1 +

∫ t

0
ϕ(s)1s := c1 + I (ϕ)(t),

where the constant c1 is uniquely determined by the boundary condition y∆n−2
(0) = y∆n−2

(σ 2(T )); namely

c1 = −
1

σ 2(T )

∫ σ 2(T )

0
I (ϕ)(s)1s.

Inductively, it follows that

y(t) = P(t) + I n(ϕ)(t),

where P is a generalized polynomial of order n − 1 (i.e. an nth-order anti-derivative of 0), and the coefficients of P
are uniquely determined by the successive integrals of ϕ.

The proof of the following lemma is immediate from the previous remark:

Lemma 2.2. There exists a constant C such that

‖KπV(ϕ)‖Cn−1
rd

≤ C‖ϕ‖W

for any ϕ ∈ R(L).

If y belongs to a bounded set Ω ⊂ V, then ϕ = (I − πW)N y is bounded, and from the Arzelá theorem and the
previous lemma we deduce that KπV(I − πW)N is compact. Thus, the L-compactness of N follows.

We claim that the solutions y ∈ D of the equation Ly = λN y with 0 < λ ≤ 1 are a priori bounded for the V-norm.
Indeed, otherwise there exists a sequence {yk} ⊂ D such that

y∆n

k = λk f (t, yk, . . . , y∆n−1

k )

with 0 < λk ≤ 1 and ‖yk‖V → ∞. Writing

yk(t) = yk(0) + KπV(λk N yk)

it follows that

‖yk − yk(0)‖Cn−1
rd

≤ C‖λk f (t, yk, . . . , y∆n−1

k )‖W ≤ Cε sup
1≤ j≤n−1

‖y∆ j

k ‖Crd + C M.

Thus, if ε < min{
1
C , 1}, it follows that

‖yk − yk(0)‖Cn−1
rd

≤
C M

1 − Cε
.

Then

|y∆ j

k (t)| ≤
C M

1 − Cε
for j = 1, . . . n − 1, 0 ≤ t ≤ σ j (T ),

and it follows that |yk(0)| → ∞. Taking a subsequence, we may assume that yk (0)
|yk (0)|

→ u for some u ∈ SN−1, whence

zk(t) :=
yk (t)
‖yk‖V

also converges to u. Integrating the equation, we obtain that

0 =

∫ σ(T )

0
y∆n

(t)1t = λk

∫ σ(T )

0
f (t, yk, . . . , y∆n−1

k )1t.

Thus, writing yk = ‖yk‖V.zk , and using the dominated convergence theorem for the time scales integral (see [13]),
we deduce from condition (F) that∫ σ(T )

0
fu(t)1t = 0,

a contradiction.
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Thus, the first condition in Theorem 1.3 is fulfilled taking Ω = BR(0) with R large enough.
Furthermore, if y ∈ Ker(L) ∩ ∂Ω , then

πWN y =
1

σ(T )

∫ σ(T )

0
f (t, y, 0, . . . , 0)1t,

and by the degree condition 2 it is easy to verify that the second and the third conditions of Theorem 1.3 are fulfilled.
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