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a b s t r a c t

In this note we give some remarks and improvements on our recent paper [5] about an
optimization problem for the p-Laplace operator that were motivated by some discussion
that we had with Prof. Cianchi.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

In this note, we want to give some remarks and improvements on our recent [1] about an optimization problem for the
p-Laplace operator. These remarks were motivated by some discussion that we had with Prof. Cianchi and we are grateful
to him.
Let us recall the problem analyzed in [1]. Given a domain Ω ⊂ RN (bounded, connected, with smooth boundary) and

some class of admissible loadsA, in [1] we studied the following problem:

J(f ) :=
∫
∂Ω

f (x)uf dS → max (1)

for f ∈ A, where u is the (unique) solution to the nonlinear problem with load f{
−∆pu+ |u|p−2u = 0 inΩ,

|∇u|p−2
∂u
∂ν
= f on ∂Ω.

(2)

Here p ∈ (1,∞), ∆pu = div (|∇u|p−2∇u) is the usual p-Laplacian, ∂∂ν is the outer normal derivative and f ∈ L
q(∂Ω) with

q > p′

N ′ , where r
′
=

r
r−1 for all 1 < r <∞.

In [1], we worked with three different classes of admissible functionsA

• The class of rearrangements of a given function f0.
• The (unit) ball in Lq(∂Ω).
• The class of characteristic functions of sets of given measure.
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For each of these classes, we proved existence of a maximizing load (in the respective class) and analyzed properties of
these maximizer.
When we worked in the unit ball of Lq, we explicitly found the (unique) maximizer for J, namely, the first eigenfunction

of a Steklov-like nonlinear eigenvalue problem. Whereas when we worked with the class of characteristic functions of set
of given boundary measure, besides to prove that there exists a maximizer function we could give a characterization of set
where the maximizer function is supported. Moreover, in order to analyze properties of this maximizer, we computed the
first variation with respect to perturbations on the set where the characteristic function was supported. See [1], Section 5.
The aim of this work is to generalize the results obtained for the class of characteristic functions of set of given boundary

measure to the class of rearrangements of a given function f0.
Recall that if f0 is a characteristic function of a set of HN−1-measure α, then every characteristic function of a set of

HN−1-measure α is a rearrangement of f0.
We refer the reader to our work [1] for notation and more on problem (1).

2. Characterization of maximizer function

In this sectionwe give characterization of amaximizer function relative to the class of rearrangements of a given function
f0.
We begin by observing that, for any given f ∈ Lq(∂Ω), problem (2) has a unique weak solution uf , for which the

characterization holds∫
∂Ω

fuf dS = sup
u∈W1,p(Ω)

1
p− 1

{
p
∫
∂Ω

fudS −
∫
Ω

(
|∇u|p + |u|p

)
dx
}
. (3)

Let f0 ∈ Lq(∂Ω), with q >
p′

N ′ and letRf0 be the class of rearrangements of f0. We are interested in finding

sup
f∈Rf0

J(f ). (4)

In [1], Theorem 3.1, we prove that there exists f̂ ∈ Rf0 such that

J(f̂ ) = sup
f∈Rf0

J(f ).

We begin by giving a characterization of this maximizer f̂ in the spirit of [2].

Theorem 2.1. f̂ is the unique maximizer of linear functional L(f ) :=
∫
∂Ω
f ûdS, relative to f ∈ Rf0 , where û is the solution to (2)

with load f̂ . Therefore, there is an increasing function φ such that f̂ = φ ◦ û,HN−1-a.e.

Proof. By [3], Theorem once we show that f̂ is the unique maximizer of L in the classRf0 , the existence of the function φ
follows.
Now, we proceed in two steps.

Step 1. First we show that f̂ is a maximizer of L(f ) relative to f ∈ Rf0 .
In fact, let h ∈ Rf0 , since

∫
∂Ω
f̂ ûdS = supf∈Rf0

∫
∂Ω
fuf dS, we have that∫

∂Ω

f̂ ûdS ≥
∫
∂Ω

huhdS = sup
u∈W1,p(Ω)

1
p− 1

{
p
∫
∂Ω

hudS −
∫
Ω

(
|∇u|p + |u|p

)
dx
}

≥
1
p− 1

{
p
∫
∂Ω

hûdS −
∫
Ω

(
|∇û|p + |û|p

)
dx
}
,

and, since∫
∂Ω

f̂ ûdS =
1
p− 1

{
p
∫
∂Ω

f̂ ûdS −
∫
Ω

(
|∇û|p + |û|p

)
dx
}
,

we have∫
∂Ω

f̂ ûdS ≥
∫
∂Ω

hûdS.

Therefore,∫
∂Ω

f̂ ûdS = sup
f∈Rf0

L(f ).

Step 2. Now, we show that f̂ is the unique maximizer of L(f ) relative to f ∈ Rf0 .
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We suppose that g is another maximizer of L(f ) relative to f ∈ Rf0 . Then∫
∂Ω

f̂ ûdS =
∫
∂Ω

gûdS.

Thus ∫
∂Ω

gûdS =
∫
∂Ω

f̂ ûdS ≥
∫
∂Ω

gugdS

= sup
u∈W1,p(Ω)

1
p− 1

{
p
∫
∂Ω

gudS −
∫
Ω

(
|∇u|p + |u|p

)
dx
}
.

On the other hand,∫
∂Ω

gûdS =
∫
∂Ω

f̂ ûdS =
1
p− 1

{
p
∫
∂Ω

f̂ ûdS −
∫
Ω

(
|∇û|p + |û|p

)
dx
}

=
1
p− 1

{
p
∫
∂Ω

gûdS −
∫
Ω

(
|∇û|p + |û|p

)
dx
}
.

Then ∫
∂Ω

gûdS = sup
u∈W1,p(Ω)

1
p− 1

{
p
∫
∂Ω

gudS −
∫
Ω

(
|∇u|p + |u|p

)
dx
}
.

Therefore û = ug and as a consequence, û is the unique weak solution to (2) with load g . Since, moreover, û is the unique
weak solution to (2) with load f̂ it follows that f̂ = g ,HN−1-a.e.
The proof is now complete. �

3. Derivative with respect to the load

Now we compute the derivative of the functional J(f̂ ) with respect to perturbations in f̂ . We will consider regular
perturbations and assume that the function f̂ has bounded variation in ∂Ω .
We begin by describing the kind of variations that we are considering. Let V be a regular (smooth) vector field, globally

Lipschitz, with support in a neighborhood of ∂Ω such that 〈V , ν〉 = 0 and letψt :RN → RN be defined as the unique solution
to { d

dt
ψt(x) = V (ψt(x)) t > 0,

ψ0(x) = x x ∈ RN .
(5)

We have ψt(x) = x+ tV (x)+ o(|t|) for all x ∈ RN .
Thus, if f ∈ Rf0 , we define ft = f ◦ ψ

−1
t . Now, let

I(t) := J(ft) =
∫
∂Ω

ut ftdHN−1

where ut ∈ W 1,p(Ω) is the unique solution to (2) with load ft .

Lemma 3.1. Given f ∈ Lq(∂Ω) then

ft = f ◦ ψ−1t → f in Lq(∂Ω), as t → 0.

Proof. Let ε > 0, and let g ∈ C∞c (∂Ω) fixed such that ‖f − g‖Lq(∂Ω) < ε. By the usual change of variables formula, we have,

‖ft − gt‖
q
Lq(∂Ω) =

∫
∂Ω

|f − g|qJτψtdS,

where gt = g ◦ ψ−1t and Jψt is the tangential Jacobian of ψt . We also know that

Jτψt := 1+ tdivτV + o(|t|).

Here divτV is the tangential divergence of V over ∂Ω . Then

‖ft − gt‖
q
Lq(∂Ω) =

∫
∂Ω

|f − g|q(1+ t divτV + o(|t|))dS.
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There exist t1 > 0 such that if 0 < t < t1 then

‖ft − gt‖Lq(∂Ω) ≤ Cε

where C is a constant independent of t . Moreover, sinceψ−1t → Id in the C1 topology when t → 0 then gt = g ◦ψ−1t → g
in the C1 topology and therefore there exists t2 > 0 such that if 0 < t < t2 then

‖gt − g‖Lq(∂Ω) < ε.

Finally, we have for all 0 < t < t0 = min{t1, t2} then

‖ft − f ‖Lq(∂Ω) ≤ ‖ft − gt‖Lq(∂Ω) + ‖gt − g‖Lq(∂Ω) + ‖g − f ‖Lq(∂Ω) ≤ Cε

where C is a constant independent of t . �

Lemma 3.2. Let u0 and ut be the solutions of (2) with loads f and ft respectively. Then

ut → u0 in W 1,p(Ω), as t → 0+.

Proof. The proof follows exactly as the one in Lemma 4.2 in [2]. The only difference being that we use the trace inequality
instead of the Poincaré inequality. �

Remark 3.3. It is easy to see that, as ψt → Id in the C1 topology, then from Lemma 3.2 it follows that wt := ut ◦ ψt → u0
strongly inW 1,p(Ω).

With these preliminaries, the following theorem follows exactly as Theorem 5.5 of [1].

Theorem 3.4. With the previous notation, we have that I(t) is differentiable at t = 0 and

dI(t)
dt

∣∣∣∣
t=0
=

1
p− 1

{
p
∫
∂Ω

u0f divτVdS + p
∫
Ω

|∇u0|p−2〈∇uT0, V
′
∇uT0〉dx−

∫
Ω

(|∇u0|p + |u0|p)div Vdx
}

where u0 is the solution of (2) with load f .

Proof. For the details see the proof of Theorem 5.5 of [1]. �

Now we try to find a more explicit formula for I ′(0). For this, we consider f ∈ Lq(∂Ω) ∩ BV (∂Ω), where BV (∂Ω) is the
space of functions of bounded variation. For details and properties of BV functions we refer to the book [4].

Theorem 3.5. If f ∈ Lq(∂Ω) ∩ BV (∂Ω), we have that

∂ I(t)
∂t

∣∣∣∣
t=0
=

p
p− 1

∫
∂Ω

u0Vd[Df ]

where u0 is the solution of (2) with load f .

Proof. In the course of the computations, we require the solution u0 to be C2. However, this is not true. As it is well known
(see, for instance, [5]), u0 belongs to the class C1,δ for some 0 < δ < 1.
In order to overcome this difficulty, we proceed as follows. We consider the regularized problems{
−div ((|∇uε0|

2
+ ε2)(p−2)/2∇uε0)+ |u

ε
0|
p−2uε0 = 0 inΩ,

(|∇uε0|
2
+ ε2)(p−2)/2

∂uε0
∂ν
= f on ∂Ω.

(6)

It is well known that the solution uε0 to (6) is of class C
2,ρ for some 0 < ρ < 1 (see [6]).

Then, we can perform all of our computations with the functions uε0 and pass to the limit as ε→ 0+ at the end.
We have chosen to work formally with the function u0 in order to make our arguments more transparent and leave the

details to the reader. For a similar approach, see [7].
Now, by Theorem 3.4 and since

div (|u0|pV ) = p|u0|p−2u0〈∇u0, V 〉 + |u0|p div V ,
div (|∇u0|pV ) = p|∇u0|p−2〈∇u0D2u0, V 〉 + |∇u0|p div V ,
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we obtain

I ′(0) =
1
p− 1

{
p
∫
∂Ω

u0f divτVdS + p
∫
Ω

|∇u0|p−2〈∇u0 ,T V ′∇uT0〉dx−
∫
Ω

(|∇u0|p + |u0|p) div Vdx
}

=
1
p− 1

{
p
∫
∂Ω

u0f divτVdS + p
∫
Ω

|∇u0|p−2〈∇u0 ,T V ′∇uT0〉dx−
∫
Ω

div ((|∇u0|p + |u0|p)V )dx

+ p
∫
Ω

|∇u0|p−2〈∇u0D2u0, V 〉dx+ p
∫
Ω

|u0|p−2u0〈∇u0, V 〉dx
}
.

Hence, using that 〈V , ν〉 = 0 in the right hand side of the above equality we find

p− 1
p
I ′(0) =

∫
∂Ω

u0f divτVdS +
∫
Ω

|∇u0|p−2〈∇u0 ,T V ′∇uT0 + D
2u0V T〉dx+

∫
Ω

|u0|p−2u0〈∇u0, V 〉dx

=

∫
∂Ω

u0f divτVdS +
∫
Ω

|∇u0|p−2〈∇u0,∇(〈∇u0, V 〉)〉dx+
∫
Ω

|u0|p−2u0〈∇u0, V 〉dx.

Since u0 is a week solution of (2) with load f we have

I ′(0) =
p
p− 1

{∫
∂Ω

u0f divτVdS +
∫
∂Ω

〈∇u0, V 〉f dS
}

=
p
p− 1

∫
∂Ω

divτ (u0V )f dS.

Finally, since f ∈ BV (∂Ω) and V ∈ C1(∂Ω;RN),

I ′(0) =
p
p− 1

∫
∂Ω

divτ (u0V )f dS =
p
p− 1

∫
∂Ω

u0Vd[Df ].

The proof is now complete. �
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